
The Particle Physics Data Grid
Final Report

Miron Livny
The Condor Project

Computer Sciences Department
University of Wisconsin-Madison

The main objective of the Particle Physics Data Grid (PPDG) project has been t o
implement and evaluate distributed (Grid-enabled) data access and management
technology for current and future particle and nuclear physics experiments. PPDG
has been underway since August 1999, funded initially by the DOE Next Generation
Internet program, and recently by a combination of DOE HENP and the
Mathematical, Information, and Computational Sciences (MICS) off ice. I t is has
been a collaborative e f fo r t between computer scientists and physicists at DOE
HENP laboratories (Argonne, Berkeley, Brookhaven, Fermilab, Jefferson and
SLAC), Caltech, the San Diego Supercomputer Center (SDSC) and the Condor
Project a t the University o f Wisconsin. PPDG has focused on integrating
middleware and tools under development by members o f the collaboration.

Within the broad vision of Grid-enabled data management and access f o r HENP,
the specific goals of PPDG have been to:
- Design, implement, and deploy a Grid-based software infrastructure capable of

supporting the data generation, processing and analysis needs common to the
physics experiments represented by the participants
Adapt experiment-specif ic software to operate in this Grid environment and t o

exploit this infrastructure.
-

To accomplish these goals, the PPDG has focused on t
deployment of three critical services:
- Reliable and efficient File Replication Service

lemen ation and t)gw atent & learance Granted

wolR.vvwL 11.26 * 02
Date Mark I? Dvorscak - High Speed Data Transfer Services 630) 252-2393 - Multi-Site File Caching and Staging Service Office &lall' of m~rk.dvorscakQch.doe.gov Intellectual Propert Law

- Reliable and recoverable job management servicePoE ChlcagoOperations 0 4 ice

The focus of our activity has been the job management services and the interplay
between these services and distributed data access in a Grid environment. We
have studied the special needs and requirements o f the HENP community in this
area and developed software to study the interaction between HENP applications

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, exprcss or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its w would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or rervicc by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, m m -
mendktion. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necwarily state or
reflect those of the United States Government or any agency thcrcof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

and distributed data storage fabric. We developed a number o f prototypes that
enabled us to study and experiment with different approaches t o interfacing HENP
applications to remote storage devices and staging data from/to such devices t o
local data caches. A number o f independent research and developed activities (e.9.
The Pluggable File System (http://www.cs.wisc.edu/condor/pfs/), The Network
Storage Appliance (http://www.cs.wisc.edu/condor/Dfs/), and the formulation of
the frame work of Data Placement (DaP) jobs) were triggered by these activities.

One key conclusion f rom these early studies was the need for a reliable and
recoverable tool for managing large collections of interdependent jobs. I n the
attached document we provide an overview o f the current status of the Directed
Acyclic Graph Manager (DAGMan) we developed and list i ts main features and
capabilities. DAGMan has proven to be an important contributor t o Grid
middleware and adopted by most HENP Grid projects (e.9. The Grid Physics
Network (www.GriPhvN.orq) and the EU Data Grid Project (eu-
datagrid.web.cern.ch/eu-datagr id/).

http://www.cs.wisc.edu/condor/pfs
http://www.cs.wisc.edu/condor/Dfs

The Directed AcycIic Graph Manager (DAGMan)

, Condor Project
Computer Sciences Department

University Of Wisconsin-Madison

Overview
The Directed Acyclic Graph Manager (DAGMan) is a service developed for managing
the execution of multiple distributed jobs with interdependencies. DAGMan accepts a
declaration of the jobs to be run and the constraints on their order, and manages their
execution in a fault-tolerant manner. DAGMan assumes that re-execution of old work is
expensive, and is designed to continue right where it left off in the aftermath of crashes
and other failures.
DAGMan relies on Condor in two important ways. First, DAGMan uses Condor as a
service for reliably executing jobs. DAGMan need not worry about the many ways that
an individual job may fail in a distributed system, because Condor assumes all
responsibility for hiding and retrying such errors. Thus, DAGMan need only concern
itself with the details of ordering and task selection, and ensuring the fault-tolerance of
the sequence of jobs, rather than the individual jobs themselves.

Second, Condor is also responsible for making DAGMan itself reliable. To accomplish
this, the DAGMan service is run as a special Condor job which simply executes locally,
at the submission site. Once started, DAGMan turns around and submits jobs of its own
back to the same Condor queue it is running in.

example.dag
JOB A job-A.condor
JOB B job-B.condor
RETRY B 3
JOB C job-C.condor
RETRY C 3
JOB D job-D.condor
PRE D prepare-D. sh
POST D double-check-D.sh
PARENT A Child B C
PARENT B C Child D

The figure above demonstrates the declaration language accepted by DAGMan. A JOB
statement associates an abstract name (A) with a file that describes complete Condor job
(job-A.condor). Each one of these pairs represents a node in the DAG. A
PARENTKHILD statement describes the relationship between two or more nodes. In
this script, nodes B and C may not run until A has completed, while node D may not run
until C has completed. Nodes that are independent of each other may run in any order,
and possibly simultaneously.
In this script, node B and C are associated with a RETRY value. This value indicates
how many times DAGMan should retry a failed node before giving up. Node D is
associated with a PRE and a POST program. These commands indicate optional
programs to be run before and after a node executes. A job, combined with its optional
PRE and POST programs, constitutes a single “node” in the DAG.

PRE and POST programs are not submitted as Condor jobs, but are simply run by
DAGMan on the submitting machine. PRE programs are generally used to prepare for
execution (e.g., transferring or uncompressing input files), while POST programs are
generally used to clean up after, or evaluate the output of the job to determine whether it
succeeded or not.
Each node in the DAG is atomic with respect to recovery. In other words, either all the
components of a node (PRE, job, and POST) succeed, in which case the node succeeds,
or else the node fails and can be retried in its entirety.
DAGMan presents an excellent opportunity to study the problem of multi-level error
processing. In a complex system that ranges from the high-level view of DAGS all the
way down to the minutiae of remote procedure calls, it is essential to tease out the source
of an error in order to avoid unnecessarily burdening the user with error messages.

Jobs may fail because of the nature of the distributed system. Network outages and
reclaimed resources may cause Condor to lose contact with a running job. Such failures
are not indications that the job itself has failed, but rather that the System has failed the
job. Such situations are detected and retried by Condor in its responsibility to execute
jobs reliably. DAGMan is never aware of such failures.

Jobs may also fail of their own accord, however. A job may produce an ordinary error
result if the user forgot to provide a necessary argument or input file. In this case,
DAGMan is notified that the job has completed and detects a program result indicating an
error. It responds by noting the error, and continuing to run any other jobs which are not
dependant on the failed one. When DAGMan can no longer make forward progress, it
writes out a “rescue” DAG and itself exits with an error code. The rescue DAG is simply
a copy of the original DAG, indicating which nodes succeeded and which did not. To
continue, the user may examine the rescue DAG, fix any mistakes in submission, and
resubmit it 8s a normal DAG.

Internally, DAGMan represents the DAG with a Dag object, which contains Job objects.
Each Job object contains references to the Job objects of its parents and children. The

- *

, .

Dag object also contains a
manage its work. The first is the read@, which contains all of the uncompleted nodes
which are ready to run given the DAG’S dependencies. When DAGMan starts, the
readyQ is populated with all of the nodes with no parents (i.e., no dependencies), and is
updated each time a node completes. The submitQ keeps track of all the jobs DAGMan
has submitted to Condor, but has not yet received confirmation of.

er of internal data structures which DAGMan uses to

DAGMan receives all of its information on the state of its jobs by monitoring the Condor
user log. The user log is a file into which Condor writes records for every event in a
job’s lifetime: submission, execution, preemption, termination, etc. DAGMan does not
assume that a job has been successfully submitted or terminated until it sees the
corresponding event in the user log.

The preScriptQ and postScriptQ contain all of the PRE and POST programs that are
ready to run given the state of the DAG. Although in many cases these queues are small,
because Pl2E and POST scripts execute quickly, the queues are needed because
DAGMan allows the user to throttle the number of local programs it runs simultaneously
to avoid overwhelming the local system resources.

Likewise, DAGMan allows the user to throttle the number of jobs it submits to Condor at
one time, to avoid resource over-utilization for jobs that consume resources (e.g., disk)
even when idle in the queue.

Technical Manual
A directed acyclic graph (DAG) can be used to represent a set of programs where the
input, output, or execution of one or more programs is dependent on one or more other
programs. The programs are nodes (vertices) in the graph, and the edges (arcs) identify
the dependencies. Condor finds’machines for the execution of programs, but it does not
schedule programs (jobs) based on dependencies. The Directed Acyclic Graph Manager
(DAGMan) is a meta-scheduler for Condor jobs. DAGMan submits jobs to Condor in an
order represented by a DAG and processes the results. An input file defined prior to
submission describes the DAG, and a Condor submit description file for each program in
the DAG is used by Condor.

Each node (program) in the DAG needs its own Condor submit description file. As
DAGMan submits jobs to Condor, it uses a single Condor log file to enforce the ordering
required for the DAG. The DAG itself is defined by the contents of a DAGMan input file.
DAGMan is responsible for scheduling, recovery, and reporting for the set of programs
submitted to Condor.

The following sections specify the use of DAGMan.

Input File describing the DAG

The input file used by DAGMan specifies four items:

,

1.

2.

3.

4.

A list of the programs in the DAG. This serves to name each program and specify
each program’s Condor submit description file.

Processing that takes place before submission of any program in the DAG to
Condor or after Condor has completed execution of any program in the DAG.

Description of the dependencies in the DAG.

Number of times to retry if a node within the DAG fails.

Comments may be placed in the input file that describes the DAG. The pound character
(#) as the first character on a line identifies the line as a comment. Comments do not span
lines.

An example input file for DAGMan is

Filename: diamond.dag

Job A A.condor
Job B B.condor
Job C C.condor
Job D D-condor
Script PRE A topgre.csh
Script PRE B midgre.per1 $JOB
Script POST B midgost.per1 $JOB $RETURN
Script PRE C midgre.per1 $JOB
Script POST C midgost.per1 $JOB $RETURN
Script PRE D botgre.csh
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

The first section of the input file lists all the programs t h t appear in the DAG. Each
program is described by a single line called a Job Entry. The syntax used for each Job
Entry is

JOB JobName CondorSubmitDescriptionFiIe [DONE]

A Job Entry maps a JobName to a Condor submit description file. The JobName uniquely
identifies nodes within the DAGMan input file and within output messages.

The keyword JOB and the JobName are not case sensitive. A JobName ofjoba is
equivalent to JobA. The CondorSubmitDescriptionFile is case sensitive, since the UNIX
file system is case sensitive. The JobName can be any string that contains no white space.

The optional DONE identifies a job as being already completed. This is useful in
situations where the user wishes to verify results, but does not need all programs within
the dependency graph to be executed. The DONE feature is also utilized when an error
occurs causing the DAG to not be completed. DAGMan generates a Rescue DAG, a
DAGMan input file that can be used to restart and complete a DAG without re-executing
completed programs.

The second type of item in a DAGMan input file enumerates processing that is done
either before a program within the DAG is submitted to Condor for execution or after a
program within the DAG completes its execution. Processing done before a program is
submitted to Condor is called a PRE script. Processing done after a program successfully
completes its execution under Condor is called a POST script. A node in the DAG is
comprised of the program together with PRE andor POST scripts. The dependencies in
the DAG are enforced based on nodes.

Syntax for PRE and POST script lines within the input file

SCRIPT PRE JobName ExecutabZeName [arguments]

SCRIPT POST JobNameExecutableName [arguments]

The SCRIPT keyword identifies the type of line within the DAG input file. The PRE or
POST keyword specifies the relative timing of when the script is to be run. The JobName
specifies the node to which the script is attached. The ExecutabZeName specifies the
script to be executed, and it may be followed by any command line arguments to that
script. The ExecutabZeName and optional arguments have their case preserved.

Scripts are optional for each job, and any scripts are executed on the machine to which
the DAG is submitted.

The PRE and POST scripts are commonly used when files must be placed into a staging

running. An example using PREPOST scripts involves staging files that are stored on

~

- area for the job to use, and files are cleaned up or removed once the job is finished

. -

tape. The PRE script reads compressed input files from tlie tape drive, and it
uncompresses them, placing the input files in the current directory. The program within
the DAG node is submitted to Condor, and it reads these input files. The program
produces output files. The POST script compresses the output files, writes them out to the
tape, and then deletes the staged input and output files.

DAGMan takes note of the exit value of the scripts as well as the program. If the PRJ3
script fails (exit value != 0), then neither the program nor the POST script runs, and the
node is marked as failed.

If the PRE script succeeds, the program is submitted to Condor. If the program fails and
there is no POST script, the DAG node is marked as failed. An exit value not equal to 0
indicates program failure. It is therefore important that the program returns the exit value
0 to indicate the program did not fail.

If the program fails and there is a POST script, node failure is determined by the exit
value of the POST script. A failing value from the POST script marks the node as failed.
A succeeding value from the POST script (even with a failed program) marks the node as
successful. Therefore, the POST script may need to consider the return value from the
program.

By default, the POST script is run regardless of the program's return value. To prevent
POST scripts from running after failed jobs, pass the -NoPostFaiZ argument to
condor-su bmit-dag.

A node not marked as failed at any point is successll.

Two variables are available to ease script writing. The $JOB variable evaluates to
JobNume. For POST scripts, the $RETURN variable evaluates to the return value of the
program. The variables may be placed anywhere within the arguments.

As an example, suppose the PRE script expands a compressed file named JobName . gz.
The SCRlPTentry for jobs A, By and C are

SCRIPT PRE A pre.csh $JOB .gz
SCRIPT PRE B pre.csh $JOB .gz
SCRIPT PRE C pre.csh $JOB .gz

The script pre . csh may use these arguments

#!/bin/csh
gunzip S a r w t11 Sargvtzl

The third type of item in the DAG input file describes the dependencies within the DAG.
Nodes are parents and/or children within the DAG. A parent node must be completed

successfidly before any child node may be started. A child node is started once all its
parents have successfully completed.

The syntax of a dependency line within the DAG input file:

PARENT ParentJobName ... CHILD ChildlobName ...

The PARENT keyword is followed by one or more ParentJobNames. The CHILD
keyword is followed by one or more ChildlobNames. Each child job depends on every
parent job on the line. A single line in the input file can specify the dependencies from
one or more parents to one or more children. As an example, the line

PARENT pl p2 CHILD el e2
produces four dependencies:
1.

2.

3.

4.

pl to el

pl to e2

p2 to el

p2 to e2

The fourth type of item in the DAG input file provides a way (optional) to retry failed
nodes. The syntax for retry is

Retry JobName NumberOfRetries

where the JobName is the same as the name given in a Job Entry line, and
NumberOfRetries is an integer, the number of times to retry the node after failure. The
default number of retries for any node is 0, the same as not having a retry line in the file.

In the event of retry, all parts of a node within the DAG are redone, following the same
rules regarding node failure as given above. The PRE script is executed first, followed by
submitting the program to Condor upon success of the PRE script. Failure of the node is
then determined by the return value of the program', the existence and return value of a
POST script.

Condor Submit Description File

Each node in a DAG may be a unique executable, each wi;h a unique Condor submit
description file. Each program may be submitted to a different universe within Condor,
for example standard, vanilla, or DAGMan.

Two limitations exist. First, each Condor submit description file must submit only one
job. There may not be multiple queue lines, or DAGMan will fail. The second limitation
is that the submit description file for all jobs within the DAG must specify the same log.
DAGMan enforces the dependencies within a DAG using the events recorded in the log
file produced by job submission to Condor.

,

,

- a

consider a case where each job will require 4 Mbytes of input files, and the jobs will run
in a directory with a volume of 100 Mbytes of free space. Using the argument -majobs
25 guarantees that a maximum of 25 jobs, using a maximum of 100 Mbytes of space, will
be submitted to Condor at one time.

While the -majobs argument is used to limit the number of Condor jobs submitted at one
time, it may be desirable to limit the number of scripts running at one time. The optional -
maxpre argument limits the number of PRE scripts that may be running at one time,
while the optional -maxpost argument limits the number of POST scripts that may be
running at one time.

Job Monitoring

After submission, the progress of the DAG can be monitored by looking at the common
log file, observing the e-mail that program submission to Condor causes, or by using
condor-q -dag.

Job Failure and Job Removal

condor-submit-dug attempts to check the DAG input file to verify that all the nodes in
the DAG specify the same log file. If a problem is detected, condor-submit-dag prints
out an error message and aborts.

To omit the check that all nodes use the same log file, as may be desired in the case
where there are thousands of nodes, submit the job with the -log option. An example of
this submission:

condor-submit-dag -log diamond-condor.log
This option tells condor-submit-dag to omit the verification step and use the given file as
the log file.

To remove an entire DAG, consisting of DAGMan plus any jobs submitted to Condor,
remove the DAGMan job running under Condor. condor-q will list the job number. Use
the job number to remove the job, for example i

% condor-q - - Submitter: turunmaa.cs.wisc.edu : c128.105.175.125:36165> :
turunmaa.cs.wisc.edu
ID OWNER SUBMITTED RUN-TIME ST PRI SIZE CMD

9.0 smoler 10/12 11:47 0+00:01:32 R 0 8.7

11.0 smoler 10/12 11:48 O+OO:OO:OO I 0 3.6 B.out
12.0 smoler 10/12 11:48 O+OO:OO:OO I 0 3.6 C.out

condor-dagman -f -

3 jobs; 2 idle, 1 running, 0 held

% condor-rm 9.0

http://turunmaa.cs.wisc.edu
http://turunmaa.cs.wisc.edu

~~

. IT^
r'
u

, c

Before the DAGMan job stops running, it uses condorrm to remove any Condor jobs
within the DAG that are running.

In the case where a machine is scheduled to go down, DAGMan will clean up memory
and exit. However, it will leave any submitted jobs in Condor's queue.

Job Recovery: The Rescue DAG

DAGMan can help with the resubmission of uncompleted portions of a DAG when one
or more nodes resulted in failure. If any node in the DAG fails, the remainder of the DAG
is continued until no more forward progress can be made based on the DAG'S
dependencies. At this point, DAGMan produces a file called a Rescue DAG.

The Rescue DAG is a DAG input file, functionally the same as the original DAG file. It
additionally contains indication of successhlly completed nodes using the DONE option
in the input description file. If the DAG is resubmitted using this Rescue DAG input file,
the nodes marked as completed will not be reexecuted.

The Rescue DAG is automatically generated by DAGMan when a node within the DAG
fails. The file is named using the DAGlnputFiZeName, and appending the suffix . rescue
tb it. Statistics about the failed DAG execution are presented as comments at the
beginning of the Rescue DAG input file.

If the Rescue DAG file is generated before all retries of a node are completed, then the
Rescue DAG file will also contain Retry entries. The number of retries will be set to the
appropriate remaining number of retries.

