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Abstract 

The primary objective of damage detection is to ascertain with confidence if damage is 

present or not within a structure of interest. In this study, a damage classification problem is cast 

in the context of the statistical pattern recognition paradigm. First, a time prediction model, 

called an Auto Regressive-Auto Regressive model with Exogenous inputs (AR-ARX), model is 

fit to a vibration signal measured during a normal operating condition of the structure. When a 

new time signal is recorded from an unknown state of the system, the prediction errors are 

computed for the new data set using the time prediction model. When the structure undergoes 

structural degradation, it is expected that the prediction errors will increase for the damage case. 
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Based on this premise, a damage classifier is constructed using a sequential hypothesis testing 

technique called a sequential probability ratio test (SPRT). The SPRT is one form of parametric 

statistical inference tests and the adoption of the SPRT to damage detection problems can 

improve the early identification of conditions that could lead to performance degradation and 

safety concerns. The sequential test assumes the probability distribution of the sample data sets, 

and a Gaussian distribution of the sample data sets is often assumed. This assumption, however, 

might impose potentially misleading behavior on the extreme values of the data i.e. those points 

in the tails of the distribution. As the problem of damage detection specifically focuses attention 

on the tails, the assumption of normality is likely to lead the analysis astray. To overcome this 

difficulty, the performance of the sequential hypothesis test is improved by integrating extreme 

values statistics, which specifically model behavior in the tails of the distribution of interest, into 

the sequential probability ratio test. 

KEYWORDS: damage detection, time series analysis, sequential probability ratio test, extreme 

value statistics, statistical pattern recognition, vibration test. 

 

1. Introduction 

The most primary goal of structural health monitoring and damage detection is simply to 

identify from measured data if a structure of engineering interest has deviated from a normal 

operational condition. Particularly, vibration-based damage detection techniques assume that 

changes of the structure’s integrity affect characteristics of the measured vibration signals 

enabling one to detect damage. The area of the SHM that receives the most attention in the 

technical literature is feature extraction (Doebling et al., 1998). Feature extraction is the process 

of the identifying damage-sensitive properties, derived from the measured vibration response, 
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which allows one to distinguish between the undamaged and damaged structures. On the other 

hand, the least attention is paid to the development of statistical inference tools to enhance the 

actual damage classification process. A statistical inference is concerned with the implementation 

of the algorithms that operate on the extracted features to quantify the damage state of the 

structure. 

In this paper, a unique combination of time series analysis, statistical pattern recognition 

techniques, and extreme value statistics is presented to automate the damage identification 

problem with a special attention to the statistical modeling for decision-making. The structure of 

the report is as follows. Section 2 briefly reviews the time series analysis of vibration signals 

using the AR-ARX model. Section 3 outlines the main theory of sequential probability ratio test, 

and Section 4 extends the SPRT to extreme value statistics. The SPRT is applied to numerical 

and experimental data in Sections 5 and 6, respectively. Section 7 concludes and summarizes the 

findings of this study. 

 

2. Time Series Analysis 

The time series analysis begins with the assumption that a “pool” of signals is acquired from 

a known structural condition of the system. In the experimental example reported later on, 

multiple time series are recorded from the undamaged structure. The collection of these time 

series is called the “reference database” in this study. The construction of this reference database 

is shown to be useful for normalizing data with respect to varying operational and environmental 

conditions. The applications of this time series analysis to data normalization are presented in 

Sohn and Farrar (2001) and Sohn et al. (2001). 
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A linear prediction model combining AR and ARX models is employed to compute the 

damage-sensitive feature. In this case, the damage-sensitive feature is the residual error between 

the prediction model and measured time series.  

First, all time signals are standardized prior to fitting an AR model such that: 

x

xx
x

σ

µ−
=ˆ  (1) 

where x̂  is the standardized signal, xµ  and xσ  are the mean and standard deviation of x, 

respectively. This standardization procedure is applied to all signals employed in this study. 

(However, for simplicity, x is used to denote x̂  hereafter.) 

For each time series x(t) in the reference database, an AR model with r auto-regressive terms 

is constructed. An AR(r) model can be written as (Box et al., 1994): 

)()()(
1

tejtxtx x

r

j

xj +−=
=

φ  (2) 

This step is repeated for all signals in the reference database.  

Employing a new segment y(t) obtained from unknown structural condition of the system, 

repeat the previous step. Here the new segment )(ty  has the same length as the signal )(tx : 

)()()(
1

tejtyty y

r

j

yj +−=
=

φ  (3) 

Then, the signal segment )(tx  “closest” to the new signal block )(ty  is defined as the one that 

minimizes the following difference of AR coefficients:  

Difference = 
=

−
r

j

yjxj

1

2)( φφ  (4) 

This “data normalization” is a procedure to select the previously recorded time signal from 

the reference database, which is recorded under operation and/or environmental conditions 
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closest to that of the newly obtained signal. If the new signal block is obtained from an 

operational condition close to one of the reference signal segments and there has been no 

structural deterioration or damage to the system, the dynamic characteristics (in this case, the AR 

coefficients) of the new signal should be similar or “closest” to those of the reference signal 

based on the Euclidean distance measure in Equation (4).  

When a time prediction model is constructed from the selected reference signal, this 

prediction model should be able to appropriately predict the new signal if the new signal is 

“close” to the reference signal. On the other hand, if the new signal were recorded under a 

structural condition different from the conditions where reference signals were obtained, the 

prediction model estimated from even the “closest” signal in the reference database would not 

reproduce the new signal well.  

For the construction of a two-stage prediction model proposed in this study, it is assumed that 

the error between the measurement and the prediction obtained by the AR model ( )(tex  in 

Equation (2)) is mainly caused by the unknown external input. Based on this assumption, an 

ARX model is employed to reconstruct the input/output relationship between )(tex  and )(tx . 

==

+−+−=
q

j

xxj

p

i

i tjteitxtx
11

)()()()( εβα  (5) 

where )(txε  is the residual error after fitting the ARX(p,q) model to )(tex  and )(tx  pair. The 

feature for damage diagnosis will later be related to this quantity, )(txε . Note that this AR-ARX 

modeling is similar to a linear approximation method of an Auto-Regressive Moving-Average 

(ARMA) model presented in Ljung 1987 and references therein. Ljung (1987) suggested keeping 

the sum of p and q smaller than r ( rqp ≤+ ). Although the p and q values of the ARX model are 
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set rather arbitrarily, similar results are obtained for different combinations of p and q values as 

long as the sum of p and q is kept smaller than r. 

Next, it is investigated how well this ARX(p,q) model estimated in Equation (5) reproduces 

the input/output relationship of )(te y  and )(ty : 

==

−−−−=
q

j

yj

p

i

iy jteitytyt
01

)()()()( βαε  (6) 

where )(te y  is considered to be an approximation of the system input estimated from Equation 

(3). Again, note that the iα  and jβ  coefficients are associated with )(tx  and obtained from 

Equation (5). If the ARX model obtained from the reference signal block )(tx  and )(tex  pair 

were not a good representative of the newly obtained signal segment )(ty  and )(te y  pair, there 

would be a significant change in the standard deviation of the residual error, )(tyε , compared to 

that of )(txε . Therefore, the standard deviation of the residual error is defined as the damage-

sensitive feature and the increase of this standard deviation is monitored to using the following 

sequential probability ratio test. 

 

3. Damage Classification using Sequential Probability Ratio Tests 

The SPRT procedure is particularly relevant if the data is collected sequentially (Wald, 

1947). Examples of such sequential collection include failures on a production line, patient 

throughput in a hospital or relapses in behavioral interventions. Sequential Analysis is different 

from classical hypothesis testing where the number of cases tested or collected is fixed at the 

beginning of the experiment. In classical hypothesis testing the data collection is executed 

without analysis and consideration of the data. After all data are collected, the analysis is done 
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and conclusions are drawn. However, in sequential analysis every case is analyzed directly after 

being collected, the data collected up to that moment is then compared with threshold values, 

incorporating the new information obtained from the freshly collected case. This approach allows 

one to draw conclusions during the data collection, and a final conclusion can possibly be 

reached at a much earlier stage as is the case in classical hypothesis testing. The advantages of 

sequential analysis are easy to see. As data collection can be terminated after fewer cases and 

decisions drawn earlier, the savings in terms of human life and misery, and financial savings, 

might be considerable. Particularly, the framework of this sequential analysis suits the paradigm 

of continuous structural health monitoring very well. 

 

3.1 Sequential Test 

A sequential statistical inference starts with observing a sequence of random variables }{ ix  

),2,1( =i . This accumulated data set at stage n  is denoted as: 

),( 1 nn xxX =  (7) 

The goal of a statistical inference is to reveal the probability model of nX , which is assumed to 

be at least partially unknown. When the statistical inference is cast as a parametric problem, the 

functional form of nX  is assumed known and the statistical inference poses some questions 

regarding the parameters of the probability model. For instance, if }{ ix  are independent and 

identically distributed (i.i.d.) normal variables, one may pose some statistical test about the mean 

and/or the variance of this normal distribution.  

A sequential test is one of the simplest tests for such a statistical inference where the number 

of samples required before reaching a decision is not determined in advance. An advantage of the 
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sequential test is that on average a smaller number of observations are needed to make a decision 

compared to the conventional fixed-sample size test. First, a simple hypothsis test containing 

only two distinct distributions is considered. Here, the interest is in discriminating two simple 

hypotheses: 

111 ,:,: θθθθθθ ≠== ooo HH  (8) 

where θ  is a particular parameter value in question1, and it is assumed that θ  can take either oθ  

or 1θ  only. When a sequence of observations }{ ix  are available, the purposes of any sequential 

test for the above hypotheses are (1) to reach the correct decision about oH  with the least 

probability of type I and II errors2, and (2) to minimize the sampling number before the correct 

decision is made, and (3) to eventually terminate with either the acceptance or rejection of oH  as 

the sampling size n  increases. When a sequential test satisfies the last condition, the test is 

defined closed. Otherwise, an open test may continue infinitely observing data without reaching 

any terminal decision about oH .  

It turns out that the simultaneous achievment of all three goals is impossible by any test. 

Therefore, a reasonable compromise among the these conflicting goals needs to be achieved. For 

the well-established fixed-sampling tests, the sample size n  is fixed, and an upper bound on the 

type I error is pre-specified. Then, an optimal fixed-sample test is selected by minimizing the 

probability of type II error. On the other hand, a sequential test specifies upper bounds on the 

probabilities of type I and II errors and minimizes the following average sample number, 

)|(E θn : 

                                                 

1 In general, θ  can be a vector of multiple parameters. However, θ  is assumed to be a single parameter for 
simplicity in this paper. 
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∞

=

=
1

)|()|(
n

npnnE θθ  (9) 

where )|( θnp  is the probability mass function of n  when θ  is the true value of the parameter. 

Note that for a closed test 1)|( =∞< θnp  for θ  = oθ  or 1θ .  

There exist a class of sequential tests, and sequential tests, which satisfy the following criteria 

are called valid (Ghosh, 1970): 

(1) The test is closed. 

(2) αθ ≤− )(1 Q  for oθθ =  

(3) βθ ≤)(Q  for 1θθ =  

(10) 

where α  and β  are the preassined type I and II errors, respectively. )(θQ  is the probability that 

any sequential test accepts oH  as ∞→n . In other words, 

∞

= ∈

=
1

)|()(
n RX

nn
o
nn

dXXfQ θθ  (11) 

where )|( θnXf  (change the equation size to 12 pt later) is the conditional probabilty of observing 

the accumuated data set nX  given the assumption of θ . The integral in Equation (11) is 

evaluated over the acceptance region of oH  ( o

nn RX ∈ ). The second criterion in Equation (10) 

states that for all values of n , the true type I error, )(1 oQ θ− , should be less than the pre-assigned 

risk α . In a similar fashion, the third criterion indicates that the true type II error )( 1θQ  should 

be less than β . Among various valid sequential tests, it can be proven that the SPRT minimizes 

on average the sample size required to make a correction making it an optimal sequential test. 

                                                                                                                                                             

2 Type I error arises if oH  is rejected when in fact it is true. Type II error arises if oH  is accepted when it is false. 



LA-UR-02-998: will be submitted for publication of International Journal of Structural Health Monitoring  

 10

Because of this extreme sensitivity of the SPRT to signal disturbance, the SPRT has been applied 

for the surveillance of nuclear power plant components (Gross and Humenik, 1991). 

When implementing the SPRT, a trade-off must be considered before assigning values for α  

and β . When there is a large penalty associated with false positive alarms (for example, alarms 

that shut down traffic over a bridge), it is desirable to keep α  smaller than β . On the other 

hand, for safety critical systems such as nuclear power plants, one might be more willing to 

tolerate a false positive alarm to have a higher degree of safety assurance. In this case, it is not 

uncommon to specify β  larger than α . 

 

3.2 Sequential Probability Ratio Test 

A SPRT, S(b,a), for the hypothesis test in Equation (8) is defined as follows (Ghosh, 1970): 

Observe a sequence of observations }{ ix  ),2,1( =i  successively, and at stage n ; 

(1) Accept oH  if bZn ≤  

(2) Reject oH  if aZn ≥  

(3) Continue observing data if aZb n ≤≤  

(12) 

where the transformed random variable nZ  is the natural logarithm of the probability ratio at 

stage n  (It should be clear by now why this test is called a sequential probability ratio test): 

)|(

)|(
ln 1

on

n
n

Xf

Xf
Z

θ

θ
=  for 1≥n  (13) 

Without any loss of generality, nZ  is defined zero when )|( 1θnXf = )|( onXf θ = 0. b  and a  are 

the two stopping bounds for accepting and rejecting oH , respectively, and they can be estimated 

by the following Wald approximations (Wald, 1947): 
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α

β

−
≅

1
lnb  and 

α

β−
≅

1
lna  (14) 

Although closed form solutions of a  and b  are available for several probability models, it has 

been a standard practice to employ Equation (14) to approximate the stopping bounds in all 

practical applications. The continuation region aZb n ≤≤  is called the critical inequality of 

S(b,a) at stage n . 

In many practical problems, it is often more realistic to formulate the hypothesis test as 

discrimination between two one-sided hypotheses: 

111 ,:,: θθθθθθ <≥≤ ooo HH  (15) 

The criteria in Equation (10) are now equivalent to  

(1) The test is closed. 

(2) αθ ≤− )(1 Q  for oθθ ≤  

(3) βθ ≤)(Q  for 1θθ ≥  

(16) 

Ghosh (1970) shows that the previous SPRT shown in Equation (12) also provides an optimal 

solution to this hypothesis test defined in Equation (15).  

 

3.3 Applications to Normal Distribution 

In the damage detection problem presented, the main interest is t examine how the probability 

distribution function of the residual errors broadens as data are recorded under a damaged 

condition of a system. Therefore, the following hypothesis test is constructed using the standard 

deviation of the residual errors as the parameter in question:  

∞<<<≥≤ 111 0,:,: σσσσσσ ooo HH  (17) 
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Here, when the standard deviation of the residual errors, σ , is less than a user specified standard 

deviation value oσ , the system in question is considered undamaged. On the other hand, when 

σ  becomes equal to or larger than the other user specified standard deviation 1σ , the system is 

suspected to be damaged. It should be noted that the selection of oσ  and 1σ  is structure 

dependent, and it might be necessary to use signals from a few damage cases in order to establish 

these two decision boundaries.  

If modified observations }{ iz ),2,1( =i  are defined as follows; 

)|(

)|(
ln

1

11
1

oXf

Xf
z

σ

σ
=  and 

)|()|(

)|()|(
ln

11

11

σσ

σσ

−

−=
ioi

oii
i

XfXf

XfXf
z  (18) 

then, nZ  becomes: 

=

=
n

i

in zZ
1

 (19) 

Assuming that nX  has a normal distribution with mean µ  and standard deviation σ , iz  can be 

related to ix : 

o

ioi xz
σ

σ
µσσ 122

1
2 ln))((

2

1
−−−= −−  (20) 

In a graphical representation of a SPRT S(b,a), nZ , which is the cumulative sum of the 

transformed variable iz , is continuously plotted against the two stopping bounds b and a. It 

should be noted that the mean µ  of the distribution is assumed to be known. Even when µ  is 

unkown, the aforementioned procedure is still valid if ix  is replaced by iy : 

)1(
1

1 +−=
=

+ iixixy
i

j

iji  for i  = 1, 2, … (21) 
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It can be shown that now }{ iy  has i.i.d. normal distribution with zero mean and the same 

standard deviation as )(iyε .  

 

4. Extreme Value Statistics 

In the previous section, the SPRT procedure is formulated assuming that the sampled data 

have a normal distribution. However, the assumption of normality might impose potentially 

misleading behavior on the extreme values of the data, namely, those points in the tails of the 

distribution. An alternative approach can be based on extreme value statistics. This branch of 

statistics was developed to specifically model behavior in the tails of the distribution of interest. 

In fact, there is a large body of statistical theory that is explicitly concerned with modeling 

the tails of distributions, and these statistical procedures are applied to the current problem of 

damage classification. The relevant field is referred to as extreme value statistics, a branch of 

order statistics. There are many excellent textbooks and monographs in this field. Some are 

considered classics (Gumbel, 1958; Galambos, 1978), and others are more recent (Embrechts et 

al., 1997; Kotz and Nadarajah, 2000). Castillo (1988) is notable in its concern with engineering 

problems in fields like meteorology, hydrology, ocean engineering, pollution studies, strength of 

materials, etc. Although extreme value statistics has been widely applied, there has been little 

application of these techniques to damage detection.  

The major problems with modeling the normal condition of a system are that the functional 

form of the distribution is unknown and that there are an infinite number of candidate 

distributions that may be appropriate for the prediction applications. The researcher must choose 

among various distributions and then estimate parameters based on training data. This process is 
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largely subjective. If instead of working with the central statistics of a distribution, extreme value 

statistics are applied to the tails, there are only three candidate distributions for the tails and the 

problem of model selection and parameter estimation becomes more objective.  

Suppose that one is given a vector of samples ( 1x ,…, nx ) from an arbitrary parent 

distribution. The most relevant statistic for studying the tails of the parent distribution is the 

maximum operator, max( 1x ,…, nx ), which selects the point of maximum value from the sample 

vector. Note that this statistic is relevant for the right tail of a univariate distribution only. For the 

left tail, the minimum should be used. The pivotal theorem of extreme value statistics (Fisher and 

Tippett, 1928) states that in the limit as the number of vector samples tends to infinity, the 

induced distribution on the maxima of the samples can only take one of three forms: Gumbel, 

Weibull, or Frechet. The rest of this section will be concerned with elaborating on this fact. 

If the values of the sequence ( 1x ,…, nx ) are arranged in ascending order, the thr  element of 

this sequence rx  is called the rth order statistic. The basic question, which now arises is, what 

are the distributions of the order statistics, in particular, the minimum, 1x , and the maximum, nx . 

Following Castillo (1988), let )(xmn be the number of samples for which .xx j ≤  Each time 

one chooses a value jx  from the sample, one is conducting a Bernoulli experiment, an 

experiment that has one of two outcomes, with a probability )(xF , the cumulative distribution 

function (CDF), that xx j ≤ , and the complementary probability, )(1 xF− , that xx j > . The CDF 

of )(xmn is, therefore, a binomial distribution with )(xF k  denoting the probability of success 
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−

=

−=≤= )](1[)(])(Prob[)(
0

)(  (22) 

Now, because the event )( xxr ≤  is basically the same as the event ))(( rxmn ≥ , )P( xxr ≤  is 

identical to ))(( rxmp n ≥  = ))((1 rxmP n <− . In addition, it follows that )(xF
rx  = 

)1(1 )( −− rF xmn
 or 

knk
n

rk

rx xFxF
k

n
xxxF

r

−

=

−=≤= )](1[)()P()(  (23) 

If one is concerned with the maximum of the sample, the relevant order statistic is nX  and 

the relevant distribution is 

)()( xFxF
n

xn
=  (24) 

Concentrating now on the maximum, let ∞→n , then the limit distribution for the maximum 

will satisfy 

1)(If   

1)(If  

0

1
)(lim

<

=
=

∞→ xF

xF
xF

n

n
  (25) 

This distribution doesn’t make sense because a CDF is developed on the assumption that it is 

continuous, but here the limit is discontinuous. The way around this discontinuity is to normalize 

the independent variable with a sequence of constants ( xbax nn +→ ) in such a way that 

)()(lim xFxbaF Mnn

n

n
=+

∞→
 (26) 

where )(xFM  is a non-degenerate limit function. In fact, it is required that )(xFM  be continuous.  
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Fisher and Tippett (1928) state that, in the limit as the number of vector samples tends to 

infinity, the induced distribution )(xFM  in Equation (26) can only take one of the following three 

forms: Gumbel, Weibull, or Frechet:  

Frechet:  
≥

−
−

=

otherwise0

ifexp
)(M

λ
λ

δ
β

x
xxF  (27) 

Weibull 

≥

=
otherwise

-
-exp    

if                   1                 

)(M

β

δ

λ

λ

x

x

xF  (28) 

Gumbel 
−

−−=
δ

λx
xFM expexp)(

0

   

>

∞<<∞−

δ

x
 (29) 

where λ , α , and β  are the model parameters, which should be estimated from the data. )(xFx  

is, in fact, a cumulative density function of maxima and the subscript “M” is used to denote that 

the distribution is for the maxima. Note that these distributions are relevant for the right tail of a 

univariate distribution only. For the left tail, similar distributions for the minimum can be 

obtained. 

Now given samples of maximum data from a parent population, it is possible to select an 

appropriate limit distribution and fit a parametric model to the data. It is also possible to fit 

models to portions of the parent distribution’s tails as these models are equivalent in the tail to 

the appropriate extreme value distribution. Once the appropriate model is obtained, the SPRT can 

be reformulated using the know distribution type of the extreme values. In this paper, the 

discussion is limited to the Gumbel distribution for maxima but similar derivation can be 

obtained for the other extreme distributions. 
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4.1 A Sequential Probability Test using a Gumbel Distribution for Maxima 

Now, the SPRT is extended to the extreme values of the parent distribution, the distribution 

of the residual errors. In the previous section, the SPRT is formulated assuming that the residual 

errors have a normal distribution. However, slight errors in the normality assumption of the 

parent distribution can lead to larger errors for the extremes resulting in errneous false 

positive/negative indications of damage. To avoid this problem, the SPRT is reformualted using 

the probability distributions of extreme values. It should be reminded that there are only three 

possible choices for the distributions of the extremes regardless the parent distrubution types. 

Particulary, because the maxima of a normal distribution are known to have a Gumbel 

distribution and the resiual errors of the experimental study presented later are close to a normal 

distribution, the derivation presented here focuses on incorprating Gumbel distribution for 

maxima values into the SPRT. Similar formualtion can be easily derived for other types of 

extreme value distribution and for minima values. 

Similar to Equation (17), the following hypothesis test is constructed using the standard 

deviation of the maxima as the parameter in question:  

∞<<<≥≤ 111 0,:,: σσσσσσ oMoMo HH  (30) 

Now, Mσ  is the standard deviation of the residual error maxima, and the subscript “M” denotes a 

qunatity related to the maxima. oσ  is a user specified lower limit of the standard deviation for 

the undamage contion, and 1σ  is the other user specified upper limit for the damage condition. It 

is observed that the change of the maxima distribution’s standard deviation is monotomically 

related to the change of the parent distribution’s standard deviation. Here, an indirect statitstical 
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inference on the standard deviation of the parent distribution (the distribution of the residaul 

errors) is conducted by examining the standard deviation of the maximum values. 

It can be shown that the model parameters, λ  and σ , of the Gumble distribution are related 

to its mean Mµ  and standard deviation Mσ  (Castillo, 1987): 

Mσ
π

δ
6

=  and δµλ 57772.0−= M  (31) 

If the distribution of the maxima is preprocessed such that the mean value is zero, Equation (18) 

can be rewritten in terms of λ  and σ : 
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If }{ ix  are independent and identically distributed (i.i.d.), ),|( 11 δλiXf  becomes ),|( 111 δλxf  ×  

),|( 112 δλxf  ××  ),|( 11 δλixf  and Equation (32) can be further simplified as follows:  
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=  for ni ,,2,1=  (33) 

Next, the probability density function of the Gumbel distributionfor maxiam is obtained by 

differentiating the cumulative density function presented in Equation (29). 
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By substituting Eqaution (34) into Equation (33), iz  can be related to ix : 
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By relating λ  and σ  to Mσ  as shown in Equation (31), Equation (35) can be furhter simplied as 

follows: 
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Finally, the cumulative sum of the transformed variable, iZ , is monitored against the two 

stopping bounds, a and b. 

 

4.2 A SPRT using Extreme Value Statistics with a Known Gaussian Parent Distribution 

In this section, the SPRT is modified assuming that the parent distribution of the maxima has 

a known Gaussian distribution. Equaiton (24) shows that when the parent distribution has a 

cumulative densition function )(xF , the cumulative density function for the maxima extracted 

from a sample size n becomes )(xF n . Then, the cumulative density function and the associated 

probability density function of maxima are obtained:  

)()( 1 xFxF n

M

−=  and )()()( 1 xfxFnxf n

M

−=  (37) 

where )(xFM  and )(xfM  are the CDF and PDF of the maxima values, and )(xF  and )(xf  are 

the CDF and PDF of a normal distribution, respectively. By substituting Equation (37) into 

Equation (18), the following iz  statistics are obtained: 
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(38) 

Note that, when the sampling size for the maxima becomes one )1( =n , Equation (38) reduces 

back to Equation (20). 
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5. Numerical Examples 

In this section, the performances of three variations of the SPRT are compared for different 

types of parent distributions. The three variations of the SPRT include (1) the conventional SPRT 

with the normality assumption of data sets [Equation (20)], (2) a SPRT using a Gumbel 

distribution for maxima [Equation (36)], and (3) a SPRT using extreme value statistics with a 

known Gaussian parent distribution [Equation (38)]. Hereafter, these techniques are referred to as 

SPRT-1, SPRT-2, and SPRT-3, respectively. These three SPRT techniques are applied to 

simulated data sets with Gaussian, lognormal, and Gamma distributions.  

From a given distribution type of population, two data sets are randomly generated. The first 

set of data consists of 8192 data points and has a known standard deviation of xσ . The second 

data set also consists of 8192 data points and has an increased standard deviation of yσ = xF σ . 

Here, F  is an amplifying constant varying from 0.90 to 1.00, 1.10, 1.15, 1.45, 1.50, 1.60 and 

1.70. The first data set simulates the residual errors from the initial intact condition of the 

structure, and the second data set represents the residual errors from a new structural condition of 

the structure.  

The damage classification problem is cast in such a way that, if the standard deviation of the 

new signal, yσ , becomes above a predetermined upper limit, 1.4 xσ , then the new signal is 

considered from a damaged state of the system. On the other hand, if yσ  is less than the other 

predetermined lower limit, 1.2 xσ , the new signal is assumed to be from the undamaged 

condition. Otherwise (when 1.2 xσ  < yσ  < 1.4 xσ ), the damage classifier cannot make a 

confident decision regarding the current state of the structure and needs to continue collecting 

additional data. This sequential hypothesis test can be stated in a simplified format: 
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xyxyo HH σσσσ 4.1:and2.1: 1 ≥≤  (39) 

Because the statistical inference in Equation (39) is cast only for the unknown standard deviation 

yσ , it is assumed that the mean of the signals is known. Therefore, the mean of each signal is 

subtracted from the raw signal.  

When the SPRT is combined with maximum value statistics (SPRT-2 and SPRT-3), a 

moving window of width 16 samples is stepped through the 8192 points of each data set to 

generate 512 maxima for each condition. For all numerical examples, the upper bounds of type I 

and II errors are set to 0.001. The corresponding two bounds are b = –6.9 and a = 6.9, 

respectively It should be noted that because the parent distribution is assumed unknown for 

SPRT-2, the hypothesis test in Equation (30) cannot be performed and an alternative hypothesis 

test is conducted on the standard deviation of the maximum values. 

MxMyMxMyo HH ,,1,, 4.1:and2.1: σσσσ ≥≤  (40) 

where the subscript denotes the quantifies for maximum values.  

Three different parent distribution types are investigated in this section: normal, lognormal, 

gamma distributions. It should be noted that the maxima of all three distributions have a Gumbel 

distribution. 

 

5.1 Gaussian Parent Distribution 

In the first example, the parent distribution is assumed normal. Then, the three SPRTs are 

applied to the simulation data. Table 1 summarizes the results of the sequential hypothesis 

testing. Each entry in Table 1 has three numbers. The first number denotes the number of tests 

accepting the right hypothesis, and the second number denotes the number of tests rejecting the 

right decision. The last one is the number of cases where SPRT cannot make either decisions 
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based on the given data sets. For example, when F=1.10, Table 1 reports that SPRT-2 accepts the 

right null hypothesis 63 times out 100 simulations, and rejects the null hypothesis 16 times and 

no decision is made for the remaining 21 cases.  

As expected, SPRT-1 and SPRT-2, which are based on the normality assumption of the 

parent distribution, have accepted the correct hypothesis 100%. However, SPRT-2 with the 

Gumbel distribution of the maxima has several misclassifications near the lower decision 

boundary (when F=1.10 and 1.15). These misclassifications are mainly caused by the discrepancy 

between the stated hypothesis test and the actual hypothesis test conducted for SPRT-2. The 

original hypothesis test is supposed to be performed on the standard deviation of the “parent 

distribution”. However, because the parent distribution type is unknown for SPRT-2, the actual 

hypothesis test is conducted on the standard deviation of the “extreme distribution”. Therefore, 

cautions should be paid when the classification results in Table 1 are compared for the three 

different SPRTs.  

Figure 1 shows the typical results of the sequential tests. When the Z statistics goes below the 

lower bound at b= –6.9, the null hypothesis is accepted. On the other hand, when the Z statistics 

becomes larger than the upper bound a= 6.9, the null hypothesis is rejected and the alternative 

hypothesis is accepted. In this particular case shown in Figure 1, the accepting the null hypothesis 

is the correct answer, and all sequential tests make the right classification. It is shown that SPRT-

1 generally comes to a decision earlier than the other two sequential tests. Because the extreme 

values for SPRT-2 and SPRT-3 are sampled at every 16 points of the parent data, it is naturally 

expected that the statistical inference using SPRT-1 will be faster than those using SPRT-2 and 

SPRT-3 with extreme statistics.  

Table 1: Damage classification results for normal distribution data 
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Hypo 
oH  1H  

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70 
SPRT-1 100/0/0* 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 
SPRT-2 100/0/0 100/0/0 63/16/21 31/47/22 100/0/0 100/0/0 100/0/0 100/0/0 
SPRT-3 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 
*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number 
of rejecting the right decision. The last one is the number of cases where SPRT cannot make either decisions based 
on the given data sets. For example, 100/0/0 means that, out of 100 simulations, 100 times are correctly categorized 
and there were no misclassification or undecided cases. 
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Figure 1: A typical damage classification result for data sets with a normal distribution 
(Correct decision: accepting 0H ) 

 
 

5.2 Lognormal Parent Distribution 

In the second numerical example, the parent distribution is assumed lognormal instead of 

normal. A random variable, x , has a lognormal distribution if the natural logarithm of x  is 

normal. In this case, the density function of x  becomes 

−
−=
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1
exp
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1
)(

s

x

xs
xf

ν

π
 (41) 

where ν  and s are the mean and standard deviation of xln , respectively. For this simulation, 

ν =1.0 and s = 0.5 are assumed. The associated lognormal density function is displayed in Figure 
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2. The skewness and kurtosis of this distribution are 1.74 and 8.45, respectively. Note that, for a 

normal distribution, the values of the skewness and kurtosis are 0.0 and 3.0, respectively.  

The analysis results are summarized in Table 2. Although the formulation of SPRT-1 is based 

on the normality assumption, SPRT-1 surprisingly performs well even for a lognormal 

distribution. The performance of SPRT-2 is compatible with the previous result for the normal 

case. Again, the several misclassifications in Table 2 are mainly attributed to the difference 

between the state and actual hypothesis tests. SPRT-3 completely misses the true hypothesis 

when F=1.10 and 1.15. It seems that the false assumption of the parent distribution produces 

accumulated errors in the extreme statistics leading the results of SPRT-3 astray. As shown in 

Figure 3, SPRT-1 again makes the fastest decision among all three SPRTs, and SPRT-2 takes the 

longest time to elect a hypothesis. 

Table 2: Damage classification results for lognormal distribution data 
Hypo 

oH  1H  

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70 
SPRT-1 100/0/0* 100/0/0 100/0/0 99/1/0 100/0/0 100/0/0 100/0/0 100/0/0 
SPRT-2 100/0/0 100/0/0 93/1/6 66/15/19 100/0/0 100/0/0 100/0/0 100/0/0 
SPRT-3 100/0/0 11/89/0 0/100/0 0/100/0 100/0/0 100/0/0 100/0/0 100/0/0 
*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number 
of rejecting the right decision. The last one is the number of cases where SPRT cannot make either decisions based 
on the given data sets. For example, 100/0/0 means that, out of 100 simulations, 100 times are correctly categorized 
and there were no misclassification or undecided cases. 
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Figure 2: A lognormal density function with 
ν =1.0 and s = 0.5 

Figure 3: A typical damage classification result 
for data sets with a lognormal distribution 

(Correct decision: accepting 0H ) 

 

5.3 Gamma Parent Distribution 

Finally, the sequential tests are applied to data sets simulated from a gamma parent 

distribution. A gamma distribution is often used to describe the kth occurrence of an event, which 

constitutes a Poisson process with a mean rate of occurrence, ν  (Ang and Tang, 1975). The 

corresponding density function, therefore, is  

[ ]x
k

x
xf
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νν

−
Γ

=
−

exp
)(

)(
)(

1

 0≥x  (42) 

where )(kΓ  is the gamma function. Note that the exponential and chi-square distributions are 

special cases of the gamma distribution, and obtained by setting k=1.0 and ν =0.5 in Equation 

(42), respectively. The gamma distribution is skewed to the right especially for smaller value k. 

As the degrees of freedom, k, increases the gamma distribution converges to the normal 

distribution. In this example, the sample data are generated from a gamma distribution with k=3 

and ν =0.2. This gamma distribution has the skewness value of 1.15 and kurtosis of 5.00, 

respectively. The associated density function is plotted in Figure 4.  
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Hypothesis results similar to the case of the lognormal distribution are obtained in Table 3 

and Figure 5. For all three distribution types considered in the examples, SPRT-1 outperforms 

SPRT-2 and SPRT-3. Humenic and Gross (1990) report a smilar condition that the SPRT is 

robust in the sense that the SPRT works well even if the underlying distribution is not exactly 

Gaussian. Again, the results of SPRT-3 seem unreliable especially near the lower decision 

bound. Therefore, the application of SPRTs to the subsequent experimental data is limited to 

SPRT-1 and SPRT-2.  

Table 3: Damage classification results for Gamma distribution data 
Hypo 

oH  1H  

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70 
SPRT-1 100/0/0* 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 
SPRT-2 100/0/0 100/0/0 99/1/0 83/1/16 98/0/2 100/0/0 100/0/0 100/0/0 
SPRT-3 100/0/0 93/7/0 0/100/0 0/100/0 100/0/0 100/0/0 100/0/0 100/0/0 
*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number 
of rejecting the right decision. The last one is the number of cases where SPRT cannot make either decisions based 
on the given data sets. For example, 100/0/0 means that, out of 100 simulations, 100 times are correctly categorized 
and there were no misclassification or undecided cases. 
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6. Experimental Test 

6.1 Description of a Test Structure 

The structure tested is a three-story frame structure model as shown in Figure 6. The structure 

is constructed of Unistrut columns and aluminum floor plates. The floors are 1.3cm-thick (0.5in) 

aluminum plates with two-bolt connections to brackets on the Unistrut. The base is a 3.8cm-thick 

(1.5in) aluminum plate. Support brackets for the columns are bolted to this plate and hold the 

Unistrut columns. The details of these joints are shown in Figure 7 and Figure 8. The floor layout 

from the top of the structure is shown in Figure 9. All bolted connections are tightened to a 

torque of 0.7 Nm (60 inch-pounds) in the undamaged state. Four Firestone air mount isolators, 

which allow the structure to move freely in horizontal directions, are bolted to the bottom of the 

base plate. The isolators are inflated to 140 kPa gauge (20 psig) and then adjusted to allow the 

structure to sit level with the shaker. 

The structure is instrumented with 24 piezoelectric single-axis accelerometers, two per joint 

as shown in Figure 9. The accelerometers are numbered from the corner A to B, C, and D 

counterclockwise and from the top floor to the first floor. Accelerometers are mounted on the 

aluminum blocks that are attached by hot glue to the plate and column. This configuration allows 

relative motion between the column and the floor to be detected. The nominal sensitivity of each 

accelerometer is 1 V/g. The shaker is coupled to the structure by a 15cm-long (6in), 9.5mm-

diameter (0.375in) stinger connected to a tapped hole at the mid-height of the base plate. The 

shaker is attached at corner D of the base floor (below floor 1), as shown in Figure 6, so that both 

translational and torsional motions can be excited. The RMS voltage of the shake was fixed at 2 

volts, and random signals were generated from the shaker. A 10-mV/lb-force transducer is also 

mounted between the stinger and the base plate. This force transducer is used to measure the 
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input to the base of the structure. A commercial data acquisition system controlled from a laptop 

PC is used to digitize the accelerometer and force transducer analog signals. The data sets that 

were analyzed in the feature extraction and statistical modeling portion of the study were the 

acceleration time histories. Each time signal gathered consisted of 8192 points and were sampled 

at 1600Hz. 
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Figure 6: a three-story frame structure with dimension and damage locations 
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Figure 7: a bolted joint of the test structure 
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Figure 8: the connection to the base plate Figure 9: floor layout as viewed from above 

 

Two damage cases are investigated in this experiment. The first damage is introduced to the 

corner A of the first floor (Damage 1) and the second damage is placed at the corner C of the 

third floor (Damage 2). These two damage locations are shown in Figure 6. For each damage 

case, the bolts are loosened until hand tight, allowing relative movement between floor plate and 

column. After the damage cases, all the bolts were tightened again to the initial torque of 0.7 Nm 

(60 in-pounds). Five time series are measured from the initial undamaged case, and these time 

series are used for training, constructing the reference database. Five time series are recorded 

under each damage case, and additional five time series are obtained after tightening all bolts to 

the initial torque values. These time series are used for testing the proposed SPRT procedure. 

That is, a total of 20 time series are used for this experiment. 

 



LA-UR-02-998: will be submitted for publication of International Journal of Structural Health Monitoring  

 30

6.2 Damage Classification Results 

Instead of independently analyzing 24 time histories from each accelerometer, the point-by-

point difference between time series from the two adjacent accemeroters at a joint is first 

computed. Then, the resulting 12 time series corresponding to each joint are used for the AR-

ARX modeling. The order r in the AR model [see Equation (2)] is set to 25, and the p and q 

orders for the ARX model [see Equation (5)] are set to 20 and 5, respectively. Satisfactory 

prediction errors mostly less than 10% error are achieved for all the reference signals indicating 

that the selected AR-ARX model aprropriately characterizes the underlying dynamic system of 

each signal readings. 

Next, SPRT-1 and SPRT-2 are applied to the damage sensitive feature obtained from the AR-

ARX modeling, the residual errors. The type I & II errors are set to 0.001 as before. The 

formulation of the sequential probability test here is based on the premise that, when a system 

being monitored undergoes a structural change such as damage, a signal measured under the new 

structural condition will be significantly different from the signal obtained from the initial 

undamage case. Therefore, when a time prediction model is constructed using the baseline 

undamaged time signal, the prediciton error of the newly obtained signal, which is again from the 

dacasmage case, will departure from that of the baseline signal. Particularly, the prediction error 

of the new singal is expected to increase. Based on this observation, the sequential hypothesis 

test is cast as follows for SPRT-1:  

∞<<<≥≤ 111 0,:,: σσσσσσ ooo HH  (43) 

In this particular example, 0σ  and 1σ  are set to 0.40 and 0.42, respectively. Note that the 

establishment of the 0σ  and 1σ  values are based on the observation of actually damage cases. 

That is, changes of the standard deviation should be first monitored for the corresponding 
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damage cases to select the appropriate 0σ  and 1σ  values. This selection of the 0σ  and 1σ  values 

categorizes the proposed method as a supervised learning method. In a similar fasion, the 

sequential hypothesis test for SPRT-2 is cast as follows: 

∞<<<≥≤ 111 0,:,: σσσσσσ oMoMo HH  (44) 

0σ  and 1σ  are set to 0.24 and 0.26 based on the similar obervations as before. 

The results of damage classification using SPRT-1 and SPRT-2 are reported in  

Table 4 and Table 5. To briefly summarize the results, SPRT-1 and SPRT-2 illustrate 

comparable performance. Both SPRT-1 and SPRT-2 do not show any false-positive indications 

of damage for all five undamaged cases. For the first damage case (Damage 1), the damaged joint 

is located at the corner A on the first floor, and this joint is associated with sensor readings from 

channels 17 and 18. Using SPRT-1 and SPRT-2, the correct damage location is correctly 

revealed for all five cases. For the second damage case (Damage 2), where the bolt at the corner 

C on the third floor is loosened corresponding to channel 5 and 6 readings, SPRT-1 indicates that 

the adjacent joint at the corner D on the same floor is most likely damaged. SPRT-2 also suggests 

the existance of damage at the same adjacent joint but correclty identifies the actually damaged 

joint 3 times out of the five exampled time series.  

 

7. Conclusion 

A unique integration of time series analysis, statistical inference, and extreme value theory is 

provided to address the issue of damage identification. Time series analysis techniques, which 

solely based on the measured vibration signals, are first employed to extract damage sensitive 

features for damage classification. While there had been increasing interest in the filed of 
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structural health monitoring, decision as to whether a structure is damaged or not tend to be made 

on the basis of exceeding some heuristic threshold. In this study, the sequential probability ratio 

test (SPRT) is employed to provide a more principled statistical tool for this decision-making 

procedure, excluding unnecessary interpretation of the measured data by users. Finally, the 

performance and robustness of damage classification is improved by incorporating extreme 

values statistics of the extracted features into the SPRT. The applicability of the SPRT to 

structural health monitoring is demonstrated using measured time signals from a three-story 

frame structure tested at a laboratory environment. The framework of the proposed SPRT is well 

suited for developing a continuous monitoring system, and can be easily implemented on digital 

signal processing (DSP) chips automating the damage classification process.  

 

 

Table 4: Damage classification results using SPRT-1 
Test 
Case 

Ch1-
Ch2 

Ch3-
Ch4 

Ch5-
Ch6 

Ch7-
Ch8 

Ch9-
Ch10 

Ch11-
Ch12 

Ch13-
Ch14 

Ch15-
Ch6 

Ch17-
Ch18 

Ch19-
Ch20 

Ch21-
Ch22 

Ch23-
Ch24 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

U
n

d
am

ag
ed

 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 D

am
ag

e 
1

 

0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 D

am
ag

e 
2

 

0 0 0 1 0 0 0 0 0 0 0 0 
*The zero ‘0’ denotes that the null hypothesis is accepted indicationg no damage is present at that joint, and the unity 
‘1’ denotes that the null hypothesis is rejected and the corresponding joint is damaged. The shaded areas represent 
the locations of the acutally damaged joints, and the hypothesis results in these shadded ares should ideally 
correspond to 1. The hypothesis results should be zero otherwise. 
** For each undamaged and damage cases, five time series are recorded, and the corresponding damage 
classification results are shown. 
 



LA-UR-02-998: will be submitted for publication of International Journal of Structural Health Monitoring  

 33

 

Table 5: Damage classification results using SPRT-2 
Test 
Case 

Ch1-
Ch2 

Ch3-
Ch4 

Ch5-
Ch6 

Ch7-
Ch8 

Ch9-
Ch10 

Ch11-
Ch12 

Ch13-
Ch14 

Ch15-
Ch6 

Ch17-
Ch18 

Ch19-
Ch20 

Ch21-
Ch22 

Ch23-
Ch24 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

U
n

d
am

ag
ed

 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 D

am
ag

e 
1

 

0 0 0 0 0 0 0 0 1 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 D

am
ag

e 
2

 

0 0 1 1 0 0 0 0 0 0 0 0 
*The zero ‘0’ denotes that the null hypothesis is accepted indicationg no damage is present at that joint, and the unity 
‘1’ denotes that the null hypothesis is rejected and the corresponding joint is damaged. The shaded areas represent 
the locations of the acutally damaged joints, and the hypothesis results in these shadded ares should ideally 
correspond to 1. The hypothesis results should be zero otherwise. 
** For each undamaged and damage cases, five time series are recorded, and the corresponding damage 
classification results are shown. 
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