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Abstract

The primary objective of damage detection is to ascertain with confidence if damage is
present or not within a structure of interest. In this study, a damage classification problem is cast
in the context of the statistical pattern recognition paradigm. First, a time prediction model,
called an Auto Regressive-Auto Regressive model with Exogenous inputs (AR-ARX), model is
fit to a vibration signal measured during a normal operating condition of the structure. When a
new time signal is recorded from an unknown state of the system, the prediction errors are
computed for the new data set using the time prediction model. When the structure undergoes

structural degradation, it is expected that the prediction errors will increase for the damage case.
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Based on this premise, a damage classifier is constructed using a sequential hypothesis testing
technique called a sequential probability ratio test (SPRT). The SPRT is one form of parametric
statistical inference tests and the adoption of the SPRT to damage detection problems can
improve the early identification of conditions that could lead to performance degradation and
safety concerns. The sequential test assumes the probability distribution of the sample data sets,
and a Gaussian distribution of the sample data sets is often assumed. This assumption, however,
might impose potentially misleading behavior on the extreme values of the data i.e. those points
in the tails of the distribution. As the problem of damage detection specifically focuses attention
on the tails, the assumption of normality is likely to lead the analysis astray. To overcome this
difficulty, the performance of the sequential hypothesis test is improved by integrating extreme
values statistics, which specifically model behavior in the tails of the distribution of interest, into
the sequential probability ratio test.

KEYWORDS: damage detection, time series analysis, sequential probability ratio test, extreme

value statistics, statistical pattern recognition, vibration test.

1. Introduction

The most primary goal of structural health monitoring and damage detection is simply to
identify from measured data if a structure of engineering interest has deviated from a normal
operational condition. Particularly, vibration-based damage detection techniques assume that
changes of the structure’s integrity affect characteristics of the measured vibration signals
enabling one to detect damage. The area of the SHM that receives the most attention in the
technical literature is feature extraction (Doebling et al., 1998). Feature extraction is the process

of the identifying damage-sensitive properties, derived from the measured vibration response,
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which allows one to distinguish between the undamaged and damaged structures. On the other
hand, the least attention is paid to the development of statistical inference tools to enhance the
actual damage classification process. A statistical inference is concerned with the implementation
of the algorithms that operate on the extracted features to quantify the damage state of the
structure.

In this paper, a unique combination of time series analysis, statistical pattern recognition
techniques, and extreme value statistics is presented to automate the damage identification
problem with a special attention to the statistical modeling for decision-making. The structure of
the report is as follows. Section 2 briefly reviews the time series analysis of vibration signals
using the AR-ARX model. Section 3 outlines the main theory of sequential probability ratio test,
and Section 4 extends the SPRT to extreme value statistics. The SPRT is applied to numerical
and experimental data in Sections 5 and 6, respectively. Section 7 concludes and summarizes the

findings of this study.

2. Time Series Analysis

The time series analysis begins with the assumption that a “pool” of signals is acquired from
a known structural condition of the system. In the experimental example reported later on,
multiple time series are recorded from the undamaged structure. The collection of these time
series 1is called the “reference database” in this study. The construction of this reference database
is shown to be useful for normalizing data with respect to varying operational and environmental
conditions. The applications of this time series analysis to data normalization are presented in

Sohn and Farrar (2001) and Sohn et al. (2001).
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A linear prediction model combining AR and ARX models is employed to compute the
damage-sensitive feature. In this case, the damage-sensitive feature is the residual error between
the prediction model and measured time series.

First, all time signals are standardized prior to fitting an AR model such that:

)

where x is the standardized signal, x4, and o  are the mean and standard deviation of x,

respectively. This standardization procedure is applied to all signals employed in this study.
(However, for simplicity, x is used to denote x hereafter.)
For each time series x(7) in the reference database, an AR model with r auto-regressive terms

is constructed. An AR(r) model can be written as (Box et al., 1994):
x0)= D @, x(t=j) +e,(1) 2)
j=1

This step is repeated for all signals in the reference database.
Employing a new segment y(#) obtained from unknown structural condition of the system,

repeat the previous step. Here the new segment y(7) has the same length as the signal x(r) :

Y= Y6, 3= ) +e,0) )

Then, the signal segment x(¢) ‘“closest” to the new signal block y(¢) is defined as the one that

minimizes the following difference of AR coefficients:
Difference = Y (¢, —¢,;)’ 4)
j=1

This “data normalization” is a procedure to select the previously recorded time signal from

the reference database, which is recorded under operation and/or environmental conditions
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closest to that of the newly obtained signal. If the new signal block is obtained from an
operational condition close to one of the reference signal segments and there has been no
structural deterioration or damage to the system, the dynamic characteristics (in this case, the AR
coefficients) of the new signal should be similar or “closest” to those of the reference signal
based on the Euclidean distance measure in Equation (4).

When a time prediction model is constructed from the selected reference signal, this
prediction model should be able to appropriately predict the new signal if the new signal is
“close” to the reference signal. On the other hand, if the new signal were recorded under a
structural condition different from the conditions where reference signals were obtained, the
prediction model estimated from even the “closest” signal in the reference database would not
reproduce the new signal well.

For the construction of a two-stage prediction model proposed in this study, it is assumed that

the error between the measurement and the prediction obtained by the AR model (e (f) in

Equation (2)) is mainly caused by the unknown external input. Based on this assumption, an

ARX model is employed to reconstruct the input/output relationship between e () and x(¢).

x(t) = Za,. x(t —1) +Zﬂj e (t—j)+e.(t) &)
where € (t) is the residual error after fitting the ARX(p,q) model to e (t) and x(¢) pair. The

feature for damage diagnosis will later be related to this quantity, € (7). Note that this AR-ARX

modeling is similar to a linear approximation method of an Auto-Regressive Moving-Average
(ARMA) model presented in Ljung 1987 and references therein. Ljung (1987) suggested keeping

the sum of p and g smaller than r ( p+ g < r). Although the p and g values of the ARX model are
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set rather arbitrarily, similar results are obtained for different combinations of p and ¢ values as
long as the sum of p and ¢ is kept smaller than r.
Next, it is investigated how well this ARX(p,q) model estimated in Equation (5) reproduces

the input/output relationship of e (¢) and y(7):

£,0=y0) ~ Y@ yt=i) =3B, ¢t~ ) ©)
where e (¢) is considered to be an approximation of the system input estimated from Equation
(3). Again, note that the @, and f ; coefficients are associated with x(7) and obtained from
Equation (5). If the ARX model obtained from the reference signal block x(t) and e (¢) pair
were not a good representative of the newly obtained signal segment y(7) and e (¢) pair, there
would be a significant change in the standard deviation of the residual error, £, (t), compared to

that of & (¢). Therefore, the standard deviation of the residual error is defined as the damage-

sensitive feature and the increase of this standard deviation is monitored to using the following

sequential probability ratio test.

3. Damage Classification using Sequential Probability Ratio Tests

The SPRT procedure is particularly relevant if the data is collected sequentially (Wald,
1947). Examples of such sequential collection include failures on a production line, patient
throughput in a hospital or relapses in behavioral interventions. Sequential Analysis is different
from classical hypothesis testing where the number of cases tested or collected is fixed at the
beginning of the experiment. In classical hypothesis testing the data collection is executed

without analysis and consideration of the data. After all data are collected, the analysis is done
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and conclusions are drawn. However, in sequential analysis every case is analyzed directly after
being collected, the data collected up to that moment is then compared with threshold values,
incorporating the new information obtained from the freshly collected case. This approach allows
one to draw conclusions during the data collection, and a final conclusion can possibly be
reached at a much earlier stage as is the case in classical hypothesis testing. The advantages of
sequential analysis are easy to see. As data collection can be terminated after fewer cases and
decisions drawn earlier, the savings in terms of human life and misery, and financial savings,
might be considerable. Particularly, the framework of this sequential analysis suits the paradigm

of continuous structural health monitoring very well.

3.1 Sequential Test

A sequential statistical inference starts with observing a sequence of random variables {x;}
(i=12,...). This accumulated data set at stage n is denoted as:
X, =(x,...x,) @)
The goal of a statistical inference is to reveal the probability model of X, , which is assumed to

be at least partially unknown. When the statistical inference is cast as a parametric problem, the

functional form of X, is assumed known and the statistical inference poses some questions
regarding the parameters of the probability model. For instance, if {x;} are independent and

identically distributed (i.i.d.) normal variables, one may pose some statistical test about the mean
and/or the variance of this normal distribution.
A sequential test is one of the simplest tests for such a statistical inference where the number

of samples required before reaching a decision is not determined in advance. An advantage of the
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sequential test is that on average a smaller number of observations are needed to make a decision
compared to the conventional fixed-sample size test. First, a simple hypothsis test containing
only two distinct distributions is considered. Here, the interest is in discriminating two simple
hypotheses:

H, :0=6, H :0=6, 6 +6 (8)
where @ is a particular parameter value in questionl, and it is assumed that @ can take either 6,
or 6, only. When a sequence of observations {x,} are available, the purposes of any sequential

test for the above hypotheses are (1) to reach the correct decision about H, with the least

probability of type I and II errors®, and (2) to minimize the sampling number before the correct

decision is made, and (3) to eventually terminate with either the acceptance or rejection of H as

the sampling size n increases. When a sequential test satisfies the last condition, the test is
defined closed. Otherwise, an open test may continue infinitely observing data without reaching

any terminal decision about H .

It turns out that the simultaneous achievment of all three goals is impossible by any test.
Therefore, a reasonable compromise among the these conflicting goals needs to be achieved. For
the well-established fixed-sampling tests, the sample size n is fixed, and an upper bound on the
type I error is pre-specified. Then, an optimal fixed-sample test is selected by minimizing the
probability of type II error. On the other hand, a sequential test specifies upper bounds on the
probabilities of type I and II errors and minimizes the following average sample number,

E(n|6):

" In general, @ can be a vector of multiple parameters. However, 6 is assumed to be a single parameter for
simplicity in this paper.
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E(n|9)=inp(n|9) 9)

where p(n|0) is the probability mass function of n when @ is the true value of the parameter.
Note that for a closed test p(n<e|8)=1 for @ = 6, or 6,.

There exist a class of sequential tests, and sequential tests, which satisfy the following criteria
are called valid (Ghosh, 1970):

(1) The test is closed.
2)1-0@)<a for 6=0, (10)
(3) Q@) < B for =6,

where & and [ are the preassined type I and II errors, respectively. Q(8) is the probability that

any sequential test accepts H, as n — oo. In other words,

00)=Y [f(x,]0)dx, (11

n=l X,eRY
where f(X,|6) (change the equation size to 12 pt later) is the conditional probabilty of observing
the accumuated data set X, given the assumption of 6. The integral in Equation (11) is
evaluated over the acceptance region of H, (X, € R’). The second criterion in Equation (10)
states that for all values of n, the true type I error, 1-Q(8,), should be less than the pre-assigned
risk & . In a similar fashion, the third criterion indicates that the true type II error Q(6,) should
be less than £ . Among various valid sequential tests, it can be proven that the SPRT minimizes

on average the sample size required to make a correction making it an optimal sequential test.

2 Type I error arises if H , 1s rejected when in fact it is true. Type II error arises if H, is accepted when it is false.

9



LA-UR-02-998: will be submitted for publication of International Journal of Structural Health Monitoring

Because of this extreme sensitivity of the SPRT to signal disturbance, the SPRT has been applied
for the surveillance of nuclear power plant components (Gross and Humenik, 1991).
When implementing the SPRT, a trade-off must be considered before assigning values for &

and [ . When there is a large penalty associated with false positive alarms (for example, alarms
that shut down traffic over a bridge), it is desirable to keep & smaller than . On the other

hand, for safety critical systems such as nuclear power plants, one might be more willing to
tolerate a false positive alarm to have a higher degree of safety assurance. In this case, it is not

uncommon to specify £ larger than « .

3.2 Sequential Probability Ratio Test
A SPRT, S(b,a), for the hypothesis test in Equation (8) is defined as follows (Ghosh, 1970):

Observe a sequence of observations {x;} (i=1,2,...) successively, and at stage n;

(1) Accept H, if Z,<b
(2) Reject H, if Z, >a (12)
(3) Continue observing dataif b<Z <a

where the transformed random variable Z, is the natural logarithm of the probability ratio at

stage n (It should be clear by now why this test is called a sequential probability ratio test):

_ln f(Xn |61)

; F(X.16,) for n>1 (13)

Without any loss of generality, Z, is defined zero when f(X,|6,)=f(X,|6,)=0. b and a are

the two stopping bounds for accepting and rejecting H  , respectively, and they can be estimated

0

by the following Wald approximations (Wald, 1947):

10
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bzlni and aslnﬂ (14)
l-a o
Although closed form solutions of a and b are available for several probability models, it has
been a standard practice to employ Equation (14) to approximate the stopping bounds in all
practical applications. The continuation region b<Z <a is called the critical inequality of
S(b,a) at stage n.
In many practical problems, it is often more realistic to formulate the hypothesis test as
discrimination between two one-sided hypotheses:
H, :0<6, H :0260, 06 <6, (15)
The criteria in Equation (10) are now equivalent to

(1) The test is closed.
2)1-06)<a for 6<06, (16)

(3) QOB)< B for 620,
Ghosh (1970) shows that the previous SPRT shown in Equation (12) also provides an optimal

solution to this hypothesis test defined in Equation (15).

3.3 Applications to Normal Distribution

In the damage detection problem presented, the main interest is t examine how the probability
distribution function of the residual errors broadens as data are recorded under a damaged
condition of a system. Therefore, the following hypothesis test is constructed using the standard
deviation of the residual errors as the parameter in question:

H :0<o, H:0z20, 0<0,<0,<> (17)

11
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Here, when the standard deviation of the residual errors, o, is less than a user specified standard

deviation value o, the system in question is considered undamaged. On the other hand, when
o becomes equal to or larger than the other user specified standard deviation o, the system is
suspected to be damaged. It should be noted that the selection of o, and o, is structure

dependent, and it might be necessary to use signals from a few damage cases in order to establish
these two decision boundaries.

If modified observations {z;} (i=1,2,...) are defined as follows;

zZ, —]n‘f(Xl—lgl) and . =In f(Xl |O-1)f(X,'_1 |Go)
fXo,) f(X,|o)f(X. |0o)

(18)

then, Z, becomes:

Z,=2.% (19)
Assuming that X, has a normal distribution with mean 4 and standard deviation o, z; can be

related to x;:

I P ) 2 o
2 =500, =0 )~ ) —lnd—l (20)

o

In a graphical representation of a SPRT S(b,a), Z,, which is the cumulative sum of the
transformed variable z;, is continuously plotted against the two stopping bounds b and a. It
should be noted that the mean u of the distribution is assumed to be known. Even when u is

unkown, the aforementioned procedure is still valid if x; is replaced by y;,:

yi:Kij—ixiH}/ ii+1) fori =1,2,... (21)
=

12
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It can be shown that now {y,} has 1i.d. normal distribution with zero mean and the same

standard deviation as &, (i) .

4. Extreme Value Statistics

In the previous section, the SPRT procedure is formulated assuming that the sampled data
have a normal distribution. However, the assumption of normality might impose potentially
misleading behavior on the extreme values of the data, namely, those points in the tails of the
distribution. An alternative approach can be based on extreme value statistics. This branch of

statistics was developed to specifically model behavior in the tails of the distribution of interest.

In fact, there is a large body of statistical theory that is explicitly concerned with modeling
the tails of distributions, and these statistical procedures are applied to the current problem of
damage classification. The relevant field is referred to as extreme value statistics, a branch of
order statistics. There are many excellent textbooks and monographs in this field. Some are
considered classics (Gumbel, 1958; Galambos, 1978), and others are more recent (Embrechts et
al., 1997; Kotz and Nadarajah, 2000). Castillo (1988) is notable in its concern with engineering
problems in fields like meteorology, hydrology, ocean engineering, pollution studies, strength of
materials, etc. Although extreme value statistics has been widely applied, there has been little

application of these techniques to damage detection.

The major problems with modeling the normal condition of a system are that the functional
form of the distribution is unknown and that there are an infinite number of candidate
distributions that may be appropriate for the prediction applications. The researcher must choose

among various distributions and then estimate parameters based on training data. This process is

13
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largely subjective. If instead of working with the central statistics of a distribution, extreme value
statistics are applied to the tails, there are only three candidate distributions for the tails and the
problem of model selection and parameter estimation becomes more objective.

Suppose that one is given a vector of samples (x,,...,x,) from an arbitrary parent

distribution. The most relevant statistic for studying the tails of the parent distribution is the

maximum operator, max( x, ,..., x, ), which selects the point of maximum value from the sample
vector. Note that this statistic is relevant for the right tail of a univariate distribution only. For the
left tail, the minimum should be used. The pivotal theorem of extreme value statistics (Fisher and
Tippett, 1928) states that in the limit as the number of vector samples tends to infinity, the
induced distribution on the maxima of the samples can only take one of three forms: Gumbel,
Weibull, or Frechet. The rest of this section will be concerned with elaborating on this fact.

If the values of the sequence (x,,..., x, ) are arranged in ascending order, the r" element of
this sequence x, is called the rth order statistic. The basic question, which now arises is, what

are the distributions of the order statistics, in particular, the minimum, x,, and the maximum, x, .

Following Castillo (1988), let m, (x) be the number of samples for which x; < x. Each time
one chooses a value x; from the sample, one is conducting a Bernoulli experiment, an

experiment that has one of two outcomes, with a probability F(x), the cumulative distribution

function (CDF), that x; < x, and the complementary probability, 1—F(x) , that x, > x. The CDF

of m,(x)1is, therefore, a binomial distribution with F “(x) denoting the probability of success

14
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r

F, ., (r)=Prob[m,(x)<r]= (Zj FE(0[1= FOo)]™ .

k=0

Now, because the event (x, <x) is basically the same as the event (m, (x)=r), P(x, <x) is
identical to p(m,(x)=r) = 1-P(m,(x)<r). In addition, it follows that F. (x) =

1-F, . (r=1) or

m,

F (0)=P(x, <x)=) (Zj F* [l - F(x)"™ (23)

If one is concerned with the maximum of the sample, the relevant order statistic is X, and

the relevant distribution is

F (x)=F"(x) (24)

Concentrating now on the maximum, let n — oo, then the limit distribution for the maximum

will satisfy

i [1 TFO=1 ,
Y0 R <1 23)

This distribution doesn’t make sense because a CDF is developed on the assumption that it is
continuous, but here the limit is discontinuous. The way around this discontinuity is to normalize

the independent variable with a sequence of constants (x — a, +b,x ) in such a way that
limF"(a, +b,x)=F, (x) (26)

n—oo

where F), (x) is a non-degenerate limit function. In fact, it is required that F,, (x) be continuous.

15
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Fisher and Tippett (1928) state that, in the limit as the number of vector samples tends to

infinity, the induced distribution F,,(x) in Equation (26) can only take one of the following three

forms: Gumbel, Weibull, or Frechet:

B
- if x>
Frechet: Fy (%) = exP (x - /J it x=24 (27)
0 otherwise
1 if x>A4
. _ RV
Weibull Fy(x)= exp| - ( A 5xj otherwise (28)
- x=A —oc0 < x < oo
Gumbel w (X) =exp| — CXP[— Tj 550 (29)

where A, &, and S are the model parameters, which should be estimated from the data. F_(x)

is, in fact, a cumulative density function of maxima and the subscript “M” is used to denote that
the distribution is for the maxima. Note that these distributions are relevant for the right tail of a
univariate distribution only. For the left tail, similar distributions for the minimum can be

obtained.

Now given samples of maximum data from a parent population, it is possible to select an
appropriate limit distribution and fit a parametric model to the data. It is also possible to fit
models to portions of the parent distribution’s tails as these models are equivalent in the tail to
the appropriate extreme value distribution. Once the appropriate model is obtained, the SPRT can
be reformulated using the know distribution type of the extreme values. In this paper, the
discussion is limited to the Gumbel distribution for maxima but similar derivation can be

obtained for the other extreme distributions.

16
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4.1 A Sequential Probability Test using a Gumbel Distribution for Maxima

Now, the SPRT is extended to the extreme values of the parent distribution, the distribution
of the residual errors. In the previous section, the SPRT is formulated assuming that the residual
errors have a normal distribution. However, slight errors in the normality assumption of the
parent distribution can lead to larger errors for the extremes resulting in errneous false
positive/negative indications of damage. To avoid this problem, the SPRT is reformualted using
the probability distributions of extreme values. It should be reminded that there are only three
possible choices for the distributions of the extremes regardless the parent distrubution types.
Particulary, because the maxima of a normal distribution are known to have a Gumbel
distribution and the resiual errors of the experimental study presented later are close to a normal
distribution, the derivation presented here focuses on incorprating Gumbel distribution for
maxima values into the SPRT. Similar formualtion can be easily derived for other types of
extreme value distribution and for minima values.

Similar to Equation (17), the following hypothesis test is constructed using the standard
deviation of the maxima as the parameter in question:

H, :0,<0, H, 0,20, 0<0,<0 < (30)

Now, o,, is the standard deviation of the residual error maxima, and the subscript “M” denotes a

qunatity related to the maxima. o, is a user specified lower limit of the standard deviation for

the undamage contion, and o, is the other user specified upper limit for the damage condition. It

is observed that the change of the maxima distribution’s standard deviation is monotomically

related to the change of the parent distribution’s standard deviation. Here, an indirect statitstical

17
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inference on the standard deviation of the parent distribution (the distribution of the residaul
errors) is conducted by examining the standard deviation of the maximum values.
It can be shown that the model parameters, 4 and o, of the Gumble distribution are related

to its mean #,, and standard deviation o,, (Castillo, 1987):

J6

6§=26, and A=y, —0.577725 31)
/4

If the distribution of the maxima is preprocessed such that the mean value is zero, Equation (18)

can be rewritten in terms of A4 and o :

=L KlA) g gy S48 (X [ 4,,6,)
f(X,14,.6,) FX A, 8)f (X, | A4.6)

(32)

If {x,} are independent and identically distributed (i.i.d.), f(X,|4,,d,) becomes f(x,|4,0,) X

f(xy | 4,0,) x---x f(x,|4,,6,) and Equation (32) can be further simplified as follows:

Z.=IHM fori=12,....,n (33)

l f (‘xi |ﬂ’0’ 50)
Next, the probability density function of the Gumbel distributionfor maxiam is obtained by

differentiating the cumulative density function presented in Equation (29).

_dF(x)zl _x=A B _x=A
f(x)——dx 5 eXP( 5 jeXp{ eXP( . ﬂ (34)

By substituting Eqaution (34) into Equation (33), z, can be related to x;:

7, = —lng—l + (xi ;;/1” J — (xi ;‘111 J + exp(— il ;f")— CXp(— xi;\l/l‘] (35)

By relating 4 and o to o,, as shown in Equation (31), Equation (35) can be furhter simplied as

follows:

18
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x +045040, %, +045040,

z; S N (00_1—01_1))([+exp -t |-eXp| - ——F——F— (36)
o, 6 V6 o,/x V6 0)/7

Finally, the cumulative sum of the transformed variable, Z,, is monitored against the two

stopping bounds, a and b.

4.2 A SPRT using Extreme Value Statistics with a Known Gaussian Parent Distribution

In this section, the SPRT is modified assuming that the parent distribution of the maxima has
a known Gaussian distribution. Equaiton (24) shows that when the parent distribution has a
cumulative densition function F(x), the cumulative density function for the maxima extracted
from a sample size n becomes F"(x). Then, the cumulative density function and the associated

probability density function of maxima are obtained:
F, (x)=F""(x) and f,, (x)=nF""(x) f(x) 37

where F),(x) and f,,(x) are the CDF and PDF of the maxima values, and F(x) and f(x) are
the CDF and PDF of a normal distribution, respectively. By substituting Equation (37) into

Equation (18), the following z, statistics are obtained:

—1In Su (x; o) —1In nF" (x |O-l)f('xi | o)

“TNE Ko nFT(x |0, f(x o))
(38)
N D e S < _ F(x, |o))
_2(0'0 o, ))(x, =) lno_0+(n 1) ln—F(x,.|O'o)

Note that, when the sampling size for the maxima becomes one (n=1), Equation (38) reduces

back to Equation (20).

19
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5. Numerical Examples

In this section, the performances of three variations of the SPRT are compared for different
types of parent distributions. The three variations of the SPRT include (1) the conventional SPRT
with the normality assumption of data sets [Equation (20)], (2) a SPRT using a Gumbel
distribution for maxima [Equation (36)], and (3) a SPRT using extreme value statistics with a
known Gaussian parent distribution [Equation (38)]. Hereafter, these techniques are referred to as
SPRT-1, SPRT-2, and SPRT-3, respectively. These three SPRT techniques are applied to
simulated data sets with Gaussian, lognormal, and Gamma distributions.

From a given distribution type of population, two data sets are randomly generated. The first

set of data consists of 8192 data points and has a known standard deviation of o, . The second
data set also consists of 8192 data points and has an increased standard deviation of o, =F0,.

Here, F is an amplifying constant varying from 0.90 to 1.00, 1.10, 1.15, 1.45, 1.50, 1.60 and
1.70. The first data set simulates the residual errors from the initial intact condition of the
structure, and the second data set represents the residual errors from a new structural condition of
the structure.

The damage classification problem is cast in such a way that, if the standard deviation of the

new signal, o, becomes above a predetermined upper limit, .40, then the new signal is
considered from a damaged state of the system. On the other hand, if o is less than the other
predetermined lower limit, 1.20 , the new signal is assumed to be from the undamaged
condition. Otherwise (when 1.20, < o, < l40,), the damage classifier cannot make a

confident decision regarding the current state of the structure and needs to continue collecting
additional data. This sequential hypothesis test can be stated in a simplified format:
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H,:0, <120, and H,:0, 2140, (39)
Because the statistical inference in Equation (39) is cast only for the unknown standard deviation

0, it is assumed that the mean of the signals is known. Therefore, the mean of each signal is

subtracted from the raw signal.

When the SPRT is combined with maximum value statistics (SPRT-2 and SPRT-3), a
moving window of width 16 samples is stepped through the 8192 points of each data set to
generate 512 maxima for each condition. For all numerical examples, the upper bounds of type I
and II errors are set to 0.001. The corresponding two bounds are b = —-6.9 and a = 6.9,
respectively It should be noted that because the parent distribution is assumed unknown for
SPRT-2, the hypothesis test in Equation (30) cannot be performed and an alternative hypothesis
test 1s conducted on the standard deviation of the maximum values.

H, .0, ,<120, ad H:0 k2140, (40)
where the subscript denotes the quantifies for maximum values.

Three different parent distribution types are investigated in this section: normal, lognormal,
gamma distributions. It should be noted that the maxima of all three distributions have a Gumbel

distribution.

5.1 Gaussian Parent Distribution

In the first example, the parent distribution is assumed normal. Then, the three SPRTs are
applied to the simulation data. Table 1 summarizes the results of the sequential hypothesis
testing. Each entry in Table 1 has three numbers. The first number denotes the number of tests
accepting the right hypothesis, and the second number denotes the number of tests rejecting the

right decision. The last one is the number of cases where SPRT cannot make either decisions
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based on the given data sets. For example, when F=1.10, Table 1 reports that SPRT-2 accepts the
right null hypothesis 63 times out 100 simulations, and rejects the null hypothesis 16 times and
no decision is made for the remaining 21 cases.

As expected, SPRT-1 and SPRT-2, which are based on the normality assumption of the
parent distribution, have accepted the correct hypothesis 100%. However, SPRT-2 with the
Gumbel distribution of the maxima has several misclassifications near the lower decision
boundary (when F=1.10 and 1.15). These misclassifications are mainly caused by the discrepancy
between the stated hypothesis test and the actual hypothesis test conducted for SPRT-2. The
original hypothesis test is supposed to be performed on the standard deviation of the “parent
distribution”. However, because the parent distribution type is unknown for SPRT-2, the actual
hypothesis test is conducted on the standard deviation of the “extreme distribution”. Therefore,
cautions should be paid when the classification results in Table 1 are compared for the three
different SPRTs.

Figure 1 shows the typical results of the sequential tests. When the Z statistics goes below the
lower bound at b= —-6.9, the null hypothesis is accepted. On the other hand, when the Z statistics
becomes larger than the upper bound a= 6.9, the null hypothesis is rejected and the alternative
hypothesis is accepted. In this particular case shown in Figure 1, the accepting the null hypothesis
is the correct answer, and all sequential tests make the right classification. It is shown that SPRT-
1 generally comes to a decision earlier than the other two sequential tests. Because the extreme
values for SPRT-2 and SPRT-3 are sampled at every 16 points of the parent data, it is naturally
expected that the statistical inference using SPRT-1 will be faster than those using SPRT-2 and

SPRT-3 with extreme statistics.

Table 1: Damage classification results for normal distribution data
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Hypo . H,

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70
SPRT-1 | 100/0/0° | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0
SPRT-2 | 100/0/0 | 100/0/0 | 63/16/21 | 31/47/22 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0
SPRT-3 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0

*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number
of rejecting the right decision. The last one is the number of cases where SPRT cannot make either decisions based
on the given data sets. For example, 100/0/0 means that, out of 100 simulations, 100 times are correctly categorized

and there were no misclassification or undecided cases.
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Figure 1: A typical damage classification result for data sets with a normal distribution
(Correct decision: accepting H )

0 1000

5.2 Lognormal Parent Distribution

In the second numerical example, the parent distribution is assumed lognormal instead of

normal. A random variable, x, has a lognormal distribution if the natural logarithm of x is
normal. In this case, the density function of x becomes
{1
exp| ——

1 (mx—vf
N2 s x 2 s

where v and s are the mean and standard deviation of Inx, respectively. For this simulation,

f)= 41)

v=1.0 and s = 0.5 are assumed. The associated lognormal density function is displayed in Figure
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2. The skewness and kurtosis of this distribution are 1.74 and 8.45, respectively. Note that, for a
normal distribution, the values of the skewness and kurtosis are 0.0 and 3.0, respectively.

The analysis results are summarized in Table 2. Although the formulation of SPRT-1 is based
on the normality assumption, SPRT-1 surprisingly performs well even for a lognormal
distribution. The performance of SPRT-2 is compatible with the previous result for the normal
case. Again, the several misclassifications in Table 2 are mainly attributed to the difference
between the state and actual hypothesis tests. SPRT-3 completely misses the true hypothesis
when F=1.10 and 1.15. It seems that the false assumption of the parent distribution produces
accumulated errors in the extreme statistics leading the results of SPRT-3 astray. As shown in
Figure 3, SPRT-1 again makes the fastest decision among all three SPRTs, and SPRT-2 takes the

longest time to elect a hypothesis.

Table 2: Damage classification results for lognormal distribution data

Hypo H H,

o

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70

SPRT-1 | 100/0/0° | 100/0/0 | 100/0/0 | 99/1/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0

SPRT-2 | 100/0/0 | 100/0/0 | 93/1/6 | 66/15/19 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0

SPRT-3 | 100/0/0 | 11/89/0 | 0/100/0 | 0/100/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0

*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number
of rejecting the right decision. The last one is the number of cases where SPRT cannot make either decisions based
on the given data sets. For example, 100/0/0 means that, out of 100 simulations, 100 times are correctly categorized
and there were no misclassification or undecided cases.
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5.3 Gamma Parent Distribution

Finally, the sequential tests are applied to data sets simulated from a gamma parent
distribution. A gamma distribution is often used to describe the kth occurrence of an event, which
constitutes a Poisson process with a mean rate of occurrence, v (Ang and Tang, 1975). The

corresponding density function, therefore, is

v (vx)*

ro P [-w»] x>0 (42)

f(x)=

where I'(k) is the gamma function. Note that the exponential and chi-square distributions are
special cases of the gamma distribution, and obtained by setting k=1.0 and v =0.5 in Equation
(42), respectively. The gamma distribution is skewed to the right especially for smaller value k.
As the degrees of freedom, k, increases the gamma distribution converges to the normal
distribution. In this example, the sample data are generated from a gamma distribution with k=3
and v=0.2. This gamma distribution has the skewness value of 1.15 and kurtosis of 5.00,

respectively. The associated density function is plotted in Figure 4.
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Hypothesis results similar to the case of the lognormal distribution are obtained in Table 3
and Figure 5. For all three distribution types considered in the examples, SPRT-1 outperforms
SPRT-2 and SPRT-3. Humenic and Gross (1990) report a smilar condition that the SPRT is
robust in the sense that the SPRT works well even if the underlying distribution is not exactly
Gaussian. Again, the results of SPRT-3 seem unreliable especially near the lower decision
bound. Therefore, the application of SPRTs to the subsequent experimental data is limited to

SPRT-1 and SPRT-2.

Table 3: Damage classification results for Gamma distribution data

Hypo H H,

o

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70

SPRT-1 | 100/0/0° | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0

SPRT-2 | 100/0/0 | 100/0/0 | 99/1/0 | 83/1/16 | 98/0/2 | 100/0/0 | 100/0/0 | 100/0/0

SPRT-3 | 100/0/0 | 93/7/0 | 0/100/0 | 0/100/0 | 100/0/0 | 100/0/0 | 100/0/0 | 100/0/0

*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number
of rejecting the right decision. The last one is the number of cases where SPRT cannot make either decisions based
on the given data sets. For example, 100/0/0 means that, out of 100 simulations, 100 times are correctly categorized
and there were no misclassification or undecided cases.

0.06 - - : : 20 v
SPRT-3
0.05f
10
004 | 8 T lzsareectH,
. @ i 0
x0.03} g 0
(%]
o
0.02f
10} If Z <b, accept
001 SPRT-1
0 : : : : —20 ——— : :
0 10 20 30 40 50 0 1000 2000 3000 4000
X Samples

Figure 5: A typical damage classification result
for data sets with a gamma distribution
(Correct decision: accepting H )

Figure 4: A lognormal density function with k
=3.0and v=0.2
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6. Experimental Test

6.1 Description of a Test Structure

The structure tested is a three-story frame structure model as shown in Figure 6. The structure
is constructed of Unistrut columns and aluminum floor plates. The floors are 1.3cm-thick (0.51in)
aluminum plates with two-bolt connections to brackets on the Unistrut. The base is a 3.8cm-thick
(1.51in) aluminum plate. Support brackets for the columns are bolted to this plate and hold the
Unistrut columns. The details of these joints are shown in Figure 7 and Figure 8. The floor layout
from the top of the structure is shown in Figure 9. All bolted connections are tightened to a
torque of 0.7 Nm (60 inch-pounds) in the undamaged state. Four Firestone air mount isolators,
which allow the structure to move freely in horizontal directions, are bolted to the bottom of the
base plate. The isolators are inflated to 140 kPa gauge (20 psig) and then adjusted to allow the
structure to sit level with the shaker.

The structure is instrumented with 24 piezoelectric single-axis accelerometers, two per joint
as shown in Figure 9. The accelerometers are numbered from the corner A to B, C, and D
counterclockwise and from the top floor to the first floor. Accelerometers are mounted on the
aluminum blocks that are attached by hot glue to the plate and column. This configuration allows
relative motion between the column and the floor to be detected. The nominal sensitivity of each
accelerometer is 1 V/g. The shaker is coupled to the structure by a 15cm-long (6in), 9.5mm-
diameter (0.3751n) stinger connected to a tapped hole at the mid-height of the base plate. The
shaker is attached at corner D of the base floor (below floor 1), as shown in Figure 6, so that both
translational and torsional motions can be excited. The RMS voltage of the shake was fixed at 2
volts, and random signals were generated from the shaker. A 10-mV/lb-force transducer is also

mounted between the stinger and the base plate. This force transducer is used to measure the
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input to the base of the structure. A commercial data acquisition system controlled from a laptop
PC is used to digitize the accelerometer and force transducer analog signals. The data sets that
were analyzed in the feature extraction and statistical modeling portion of the study were the

acceleration time histories. Each time signal gathered consisted of 8192 points and were sampled

at 1600Hz.
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Figure 6: a three-story frame structure with dimension and damage locations
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Figure 8: the connection to the base plate Figure 9: floor layout as viewed from above

Two damage cases are investigated in this experiment. The first damage is introduced to the

corner A of the first floor (Damage 1) and the second damage is placed at the corner C of the

third floor (Damage 2). These two damage locations are shown in Figure 6. For each damage

case, the bolts are loosened until hand tight, allowing relative movement between floor plate and

column. After the damage cases, all the bolts were tightened again to the initial torque of 0.7 Nm

(60 in-pounds). Five time series are measured from the initial undamaged case, and these time

series are used for training, constructing the reference database. Five time series are recorded

under each damage case, and additional five time series are obtained after tightening all bolts to

the initial torque values. These time series are used for testing the proposed SPRT procedure.

That is, a total of 20 time series are used for this experiment.
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6.2 Damage Classification Results

Instead of independently analyzing 24 time histories from each accelerometer, the point-by-
point difference between time series from the two adjacent accemeroters at a joint is first
computed. Then, the resulting 12 time series corresponding to each joint are used for the AR-
ARX modeling. The order r in the AR model [see Equation (2)] is set to 25, and the p and ¢
orders for the ARX model [see Equation (5)] are set to 20 and 5, respectively. Satisfactory
prediction errors mostly less than 10% error are achieved for all the reference signals indicating
that the selected AR-ARX model aprropriately characterizes the underlying dynamic system of
each signal readings.

Next, SPRT-1 and SPRT-2 are applied to the damage sensitive feature obtained from the AR-
ARX modeling, the residual errors. The type 1 & II errors are set to 0.001 as before. The
formulation of the sequential probability test here is based on the premise that, when a system
being monitored undergoes a structural change such as damage, a signal measured under the new
structural condition will be significantly different from the signal obtained from the initial
undamage case. Therefore, when a time prediction model is constructed using the baseline
undamaged time signal, the prediciton error of the newly obtained signal, which is again from the
dacasmage case, will departure from that of the baseline signal. Particularly, the prediction error
of the new singal is expected to increase. Based on this observation, the sequential hypothesis
test 1s cast as follows for SPRT-1:

H, :0<o, H:020, 0<0,<0 <> (43)

In this particular example, o, and o, are set to 0.40 and 0.42, respectively. Note that the

establishment of the o, and o, values are based on the observation of actually damage cases.

That is, changes of the standard deviation should be first monitored for the corresponding
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damage cases to select the appropriate o, and o, values. This selection of the o, and o, values

categorizes the proposed method as a supervised learning method. In a similar fasion, the
sequential hypothesis test for SPRT-2 is cast as follows:
H,6.o,<0, H:0,20, 0<0,<0 < (44)

o

o, and o, are set to 0.24 and 0.26 based on the similar obervations as before.

The results of damage classification using SPRT-1 and SPRT-2 are reported in

Table 4 and Table 5. To briefly summarize the results, SPRT-1 and SPRT-2 illustrate
comparable performance. Both SPRT-1 and SPRT-2 do not show any false-positive indications
of damage for all five undamaged cases. For the first damage case (Damage 1), the damaged joint
is located at the corner A on the first floor, and this joint is associated with sensor readings from
channels 17 and 18. Using SPRT-1 and SPRT-2, the correct damage location is correctly
revealed for all five cases. For the second damage case (Damage 2), where the bolt at the corner
C on the third floor is loosened corresponding to channel 5 and 6 readings, SPRT-1 indicates that
the adjacent joint at the corner D on the same floor is most likely damaged. SPRT-2 also suggests
the existance of damage at the same adjacent joint but correclty identifies the actually damaged

joint 3 times out of the five exampled time series.

7. Conclusion

A unique integration of time series analysis, statistical inference, and extreme value theory is
provided to address the issue of damage identification. Time series analysis techniques, which
solely based on the measured vibration signals, are first employed to extract damage sensitive

features for damage classification. While there had been increasing interest in the filed of
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structural health monitoring, decision as to whether a structure is damaged or not tend to be made
on the basis of exceeding some heuristic threshold. In this study, the sequential probability ratio
test (SPRT) is employed to provide a more principled statistical tool for this decision-making
procedure, excluding unnecessary interpretation of the measured data by users. Finally, the
performance and robustness of damage classification is improved by incorporating extreme
values statistics of the extracted features into the SPRT. The applicability of the SPRT to
structural health monitoring is demonstrated using measured time signals from a three-story
frame structure tested at a laboratory environment. The framework of the proposed SPRT is well
suited for developing a continuous monitoring system, and can be easily implemented on digital

signal processing (DSP) chips automating the damage classification process.

Table 4: Damage classification results using SPRT-1

Test | Chl- Ch3- Ch5- Ch7- Ch9- Chll- Chl3- Chl5- Chl7- Chl9- Ch2l- Ch23-
Case | Ch2 Ch4 Ch6 Ch8 Chl0 Chl2 Chl4 Ch6 Chi8 Ch20 Ch22 Ch24
o 0 0 0 0 0 0 0 0 0 0 0 0
& 0 0 0 0 0 0 0 0 0 0 0 0
=t 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0
_ 0 0 0 0 0 0 0 0 1 0 0 0
o 0 0 0 0 0 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
o 0 0 0 1 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0
s 0 0 0 1 0 0 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

*The zero ‘0’ denotes that the null hypothesis is accepted indicationg no damage is present at that joint, and the unity
‘1’ denotes that the null hypothesis is rejected and the corresponding joint is damaged. The shaded areas represent
the locations of the acutally damaged joints, and the hypothesis results in these shadded ares should ideally
correspond to 1. The hypothesis results should be zero otherwise.

** For each undamaged and damage cases, five time series are recorded, and the corresponding damage
classification results are shown.
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Table 5: Damage classification results using SPRT-2

Test | Chl- Ch3- Ch5- Ch7- Ch9- Chll- Chl13- Chl5- Chl7- Chl9- Ch21- Ch23-
Case | Ch2 Ch4 Ch6 Ch8 Chl0 Chl2 Chl4 Ch6 Chl8 Ch20 Ch22 Ch24
3 0 0 0 0 0 0 0 0 0 0 0 0
& 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0
_ 0 0 0 0 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0
s 0 0 0 0 0 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
o 0 0 1 1 0 0 0 0 0 0 0 0
2, 0 0 0 1 0 0 0 0 0 0 0 0
s 0 0 0 1 0 0 0 0 0 0 0 0
S 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0

*The zero ‘0’ denotes that the null hypothesis is accepted indicationg no damage is present at that joint, and the unity
‘1’ denotes that the null hypothesis is rejected and the corresponding joint is damaged. The shaded areas represent
the locations of the acutally damaged joints, and the hypothesis results in these shadded ares should ideally
correspond to 1. The hypothesis results should be zero otherwise.

** For each undamaged and damage cases, five time series are recorded, and the corresponding damage
classification results are shown.
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