

RHODOPSEUDOMONAS PALUSTRIS GENOME PROJECT

FINAL REPORT

CAROLINE S. HARWOOD

NOVEMBER 22, 2000

U. S. DEPARTMENT OF ENERGY

DE-FG02-99ER62815

UNIVERSITY OF IOWA

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED

DOE Patent Clearance Granted
MPDvorscak Sept 9, 2007
Mark P Dvorscak Date
(630) 252-2343
E-mail mark.dvorscak@ch.doe.gov
Office of Intellectual Property Law
DOE Chicago Operations Office

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

A. STATEMENT OF THE PROBLEM STUDIED.

Rhodopseudomonas palustris is a common soil and water bacterium that makes its living by converting sunlight to cellular energy and by absorbing atmospheric carbon dioxide and converting it to biomass. This microbe can also degrade and recycle components of the woody tissues of plants; wood being the most abundant polymer on earth. Because of its intimate involvement in carbon management and recycling, *Rhodopseudomonas* was selected by the DOE Carbon Management Program to have its genome sequenced by the Joint Genome Institute (JGI). This grant provided funds for the preparation of genomic DNA from *Rhodopseudomonas* and for the distribution of this DNA to the JGI for use in genome sequencing.

B. SUMMARY OF THE MOST IMPORTANT RESULTS

Two lots of *Rhodopseudomonas* genomic DNA in quantities of approximately 200 µg were supplied to Jane Lamerdin, the then head of the Microbial Genome Sequencing Group at the DOE Joint Genome Institute. The DNA was of good purity and was used to prepare a random clone bank and a fosmid clone bank. These were then sequenced at the JGI. The resulting product was the complete nucleotide sequence (5,497,712 bp) of the *Rhodopseudomonas* genome. The PI assisted the Microbial Genome Group during the sequencing and genome assembly processes by providing technical information about the biology of *Rhodopseudomonas* and about the molecular makeup of the *Rhodopseudomonas* genome.