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Semianalytical Solutions of Radioactive or Reactive
Transport in Variably-Fractured
Layered Media: 1. Solutes

Abstract. In this paper, semianalytical solutions are developed for the problem of
transport of radioactive or reactive solute tracers through a layered system of heterogeneous
fractured media with misaligned fractures. The tracer transport equations in the non-
flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the
mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical,
or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order
chemical reactions. The tracer-transport equations in the fractures account for the same
processes, inadditiontoadvectionandhydrodynamicdispersion. Anynumberofradioactive
decay daughter products (or products of a linear, first-order reaction chain) can be tracked.
The solutions, which are analytical in the Laplace space, are numerically inverted to provide
the solution in time and can accommodate any number of fractured and/or porous layers.
The solutions are verified using analytical solutions for limiting cases of solute and colloid
transport through fractured and porous media. The effect of important parameters on the
transport of 3H, 23"Np and 2*%Pu (and its daughters) is investigated in several test problems

involving layered geological systems of varying complexity.

1. Introduction

The study of radioactive and/or reactive contaminant transport in complex fractured
geologic systems has become increasingly important in recent years because of the need

to predict the migration and fate of the contaminants. Currently, there are some very
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large contaminated sites (such as Hanford, Washington; Nevada Test Site (NTS), Nevada;
Idaho National Engineering and Environmental Laboratory (INEEL), Idaho) where severe
pollution by radioactive materials extends -over large areas within the subsurface rocks.

At Yucca Mountain (YM), Nevada, the site of the potential repository for high-level
nuclear waste, the transport of radioactive contaminants must be predicted for tens to
hundreds of thousands of years. Performing reliable radionuclide transport calculations for
this temporal and spatial scale is obviously very difficult, and furthermore it is impossible
to verify the results. In addition, the complex geology of the site and the unsaturated nature
of a significant portion of the flow path add to the difficulty in making such predictions.

The potential site is located in southern Nevada about 120 km northwest of Las Vegas,
and is characterized by a thick unsaturated zone (600-700 m) and the presence of rocks onto
which important radionuclides in the wastes tend to sorb strongly. The YM stratigraphy
consists of layers of welded and nonwelded tuffs (with vastly different hydraulic, transport,
and geochemical properties), with the former generally being extensively fractured and the
latter behaving similarly to a porous medium [Montazer and Wilson, 1984; Liu et al., 1998;
Bandurraga and Bodvarsson, 1999].

The varied geological and hydrological characteristics of the different tuff layers at
Yucca Mountain make the modeling of flow and transport a challenging task. A single
representation for all O'f the hydrogeologic units is inappropriate, and several different
approaches and algorithms must be employed for obtaining reliable modeling results.
Analytical and semianalytical models of transport that can account for the site heterogeneity
are important because they allow the validation of complex multidimensional numerical
models, are computationally efficient, and can provide bounding estimates of the possible
solutions of the expected transport at the site.

Previous analyticalsolutions ofsdlutetransport infractured mediainvolvedexclusively
single semi-infinite domains (layers). Tang et al. [1981] developed a quasi two-dimensional

solution for the transport of solutes in a single saturated fracture (i.e., with a semi-infinite
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matrix) that assumed a constant concentration boundary and accounted for (a) advection
and dispersion in the fractures, (b) diffusion in the matrix, the fractures, and across their
interface, (c) sorption onto the matrix and the fractures, and (d) radioactive decay. The
analytical solution of Sudicky andFrind {1982] accounted forthe sameprocesses inasystem
of parallel fractures (i.e., with a finite matrix block size). The solution of Robinson et al.
[1998] is an extension of the Sudicky and Frind [1982] solution and accounts for the effect
of fracture skin on transport in a system of parallel fractures. By neglecting hydrodynamic
dispersion inthe fracturesand assuming aninstantaneous (Dirac-type) deposition of a parent
radionuclide at the boundary, Sudicky and Frind [1984] obtained analytical solutions to the
problem of transport of a two-member radioactive chain in a single fracture.

In this paper, semianalytical solutions are developed for the problem of transport of
radioactive or reactive solute tracers (i.e., at concentrations that do not affect the fluid prop-
erties) through a layered system of heterogeneous fractured media with misaligned fractures
(such as the unsaturated zone at YM). The solutions allow any number and combination of
fractured and/or porous layers that can vary in hydraulic and transport properties, fracture
frequency, water saturation, fracture flow, and fracture-matrix interaction. The tracer trans-
port equations in the non-flowing matrix account for (a) molecular diffusion, (b) surface
diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear
kinetic or equilibrium physical, chemical or combined solute sorption, and (e) radioactive
decay or first-order chemical reactions. The solute transport equations in the fractures ac-
count for the same processes, in addition to advection and hydrodynamic dispersion. Any
number of daughter products of radioactive decay (or of a linear, first-order reaction chain)

can be tracked, and several boundary conditions can be accommodated.

2. Solute Transport Equations

2.1. The PDE of Solute Transport

The one-dimensional (1-D) Partial Differential Equation (PDE) of transport of a
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radioactiveorreactivesolutetracersthroughavariablysaturatedporous  orfracturedmedium

(PM or FM) is described by the equation

2 20, 2
=055 (Grra ) ves (Gra e ) va-aps O
+ A0 [¢(S—5)C+¢S.Ci+(1—¢)pF],
where
C dissolved species concentration in the mobile pore water [M L~3];
D, intrinsic diffusion coefficient for the mobile pore water [L2T'];
C; dissolved species concentration in the immobile pore water [M L~3];
D; intrinsic diffusion coefficient in the immobile pore water [L2T1];
F =Fp,+ F¢;
F,  relative concentration of the physically adsorbed species [(ML™3)/(ML~3)];
F.  relative concentration of the chemically sorbed species [(M L~3)/(ML~3)];
R reacted species mass per unit volume in the mobile fraction [M L~3];
R; reacted species mass per unit volume in the immobile fraction [M L~3];
Dp  apparent surface diffusion coefficient [M L~1T~1];
U =V ¢ (S — S,), Darcy velocity [LT1];
% pore flow velocity [LT ~'];
S water saturation [L3/L3];
Sr irreducible water saturation [L3/L3];

P PM grain density [M L~3];

é total PM porosity [L3/L3];

A = ln2/T1/2, radioactive decay constant [T‘Il];
Ty half-life of radioactive species [T'].

The parameters &, and 6, are defined as

1 for reactive transport 0  for reactive transport
5r - and 6,\ =

0  for radionuclide transport

1 forradionuclide transport
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The first three terms on the left-hand side of (1) describe diffusion in the mobile pore
water [Skagius and Neretnieks, 1988] through the immobile thin film in the immediate
vicinity of the PM grains [de Marsily, 1986], and surface diffusion [Jahnke and Radke,
1987; Skagius and Neretnieks, 1988; Cook, 1989; Berry and Bond, 1992], resbectively. The
~ fourth term on the left-hand side (1) describes advective transport. The terms on the right-
hand side of equation (1) describe the dissolved species accumulation and radioactive decay
in the pore water, in the immobile fraction, and on the PM grains due to sorption. Chemical
reactions in the water phase are also accounted for [Cho, 1971]. A detailed discussion of

these terms can be found in Moridis [1999], from where
Dm:¢(S—ST) (TpDo+aL V) and Di ZTi¢STD0 (2)

where Dy is the molecular diffusion coefficient of the dissolved species in water [L?T '],
op, is the longitudinal dispersivity [L], 7, is the tortuosity factor of the pore paths
[dimensionless], and 1; is the tortuosity factor in the diffusion paths through the immobile
fraction [dimensionless]. If surface diffusion cannot beneglected [fensen and Radke, 1988],

Dr is given by [Jahnke, 1986; Jahnke and Radke, 1987]
Dp =75 (1_¢)st’ (3)

where 7, is the tortuosity coefficient of the surface path [dimensionless], and D; is the
surface diffusion coefficient [L2T~!]. For homogeneous PM systems there is theoretical
justification [Cook, 1989] for the relationship 75 = %Tp.

The species concentration in the mobile and immobile water fractions are related

through the linear equilibrium relationship [de Marsily, 19861,
Ci=K;C, Ri = Ki R, (4)

where K 1s a dimensionless mass transfer coefficient. Equation (1) then becomes

_ 92C 9% F aC
Droz+Prgz —Ugt

o O

oC oF R
= — 4+ AC - — g rOh—
¢h(8t+ A )-!—(1 (j))p(at +(5,\/\F)+5,d)h TR
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where

DT:¢{D0 [’Tp (S*Sr)+TiS7-Ki]—f—(S—ST)CYLV} (6)

and

h:(S_Sr)"‘SrKi- (7)

2.2. The Equations of Solute Sorption and

First-Order Chemical Reaction

Consideringthat sorption occurs as thedissolvedspecies diffusesthrough the immobile
water fraction, and assuming linear equilibrium (LE) sorption, the following relationship
applies:

F,=K K C, (8)

where K is the distribution coefficient [M ~1L3].

Linear kinetic physical (LKP) and linear irreversible physical (LIP) sorption are

described by the equation [Moridis, 1999]

OF,
8—tp+)\Fp:kp(KdKiC -6, Fp), (9)

where k, is the kinetic constant of linear adsorption [7~'], and

1 for LKP sorption;
op = { (10)

0  for linear LIP sorption.

In the case of LIP sorption, K 4 does not represent the distribution coefficient of LE sorption,

but is rather a proportionality factor.

Thefirst-order reversiblechemicalsorptionisrepresentedbythelinearkineticchemical
(LKC) model
oF,
at

+AF. =k K;C —k F,, (11)

C

where kF [M~1L3T 1] and k. [T~!] are the forward and backward kinetic constants,

respectively. Note that equation (11) can be used in conjunction with the physical sorption
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equations to describe combined sorption [Cameron and Klute, 1977}, e.g., physical and
chemical sorption. Combined sorption accounts for the different rates at which a species
is sorbed onto different PM constituents. Thus, sorption onto organic components may be
instantaneous(LE),whilesorptionontomineralsurfacesmaybemuchslowerandkinetically
controlled [Cameron and Klute, 1977].

The equations of a series of N, first-order chemical reaction are given by [Cho, 1971}

ORy
54‘, - ’Cl Cl )
OR
o =K2Cr =K1 Ch s
g (12)
IR
8Nc =Kn.Cn. — Kne-1Cne-1
t
where K; (j = 1,...,N,) is the chemical reaction rate constant [T'~'], and N, is the

number of chemical reactions in the series.

2.3. The Solute Transport ODE in the Laplace Space

2.3.1. Parent or Stable Species. After incorporating the sorption terms, the Laplace
transform (LT) of the solute transport equation (5) yields the following Ordinary Differential

Equation (ODE)
&2C . dC "
D—_-U—~—-EC= 13
dz? dz 0, (13)

where C = £{C}, £{} denotes the LT of the quantity in the brackets,

' E=¢[(s+ AR+ hK], (14)
(h+wi for LE sorption;
h+uy for LKP or LIP sorption,
h+vy for LKC sorption,
R= (15)

h+ (w+ u)y for combined LE and LKP/LIP sorption,

I+ (w+v)+y for combined LE and LKC sorption,

h+ (u+wv)y forcombined LKP/LIP and LKC sorption,
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( Dy +¢pr1swip Dy for LE sorption;
Dr+¢rsut Ds for LKP or LIP sorption,
Dy +¢rsv9 Dy for LKC sorption,

Dr + ¢ 75 (w+u)yp Ds  for combined LE and LKP/LIP sorption,

Dt + ¢7s(w+v)y Ds for combined LE and LKC sorption,

\ Dr + ¢ 75 (u+v)y Ds for combined LKP/LIP and LKC sorption,

kyp K4 K; kS K; (1-9¢)
:K Ki, = " I - = ) = ) ]‘7
w=ad CEeEata ke VT siark Y s 1

and s is the Laplace space parameter. The term R is an expanded retardation factor, which

can account for kinetic behavior [Moridis, 1999]. Its development involves the LT of the

sorption from equations (8) through (11). It is straightforward to show that [Moridis, 1998]

F=pC (18)
where F' = L{F} and
(w for LE sorption;
U for LKP or LIP sorption,
v for LKC sorption,
P =9 (19)

w +u for combined LE and LKP/LIP sorption,

w+ v for combined LE and LKC sorption,

\ u+v for combined LKP/LIP and LKC sorption.
Equation (13), subject to equations (14) through (19), is the Laplace space equation

of solute transport in its most general form. Implicit in (13) are the assumptions that (a)
C(z,t =0) =0,(b) F(z,t =0) =0, (¢c) R(z,t = 0) = 0, and (d) in combined sorption,
different sites are involved in each of the constituent types of sorption.

2.3.2. Daughter Species of Radioactive Decay. If the species is radioactive, the

right-hand side of equation (5) is augmented by the term

~Aimy[phCoy +(L—¢)pF,_1], where m, =

3
Mu~1
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M, is the molecular weight of the v-th daughter (1 < v < Ny, Ny being the total number
of radioactive decay or reaction products), and v — 1 refers to the decaying parent. Then, the
Laplace space transport equation for any daughter product v of the decay chain following a

LE isotherm is given by

d2C, dC, . .
Du T T - Eu v— —Gylpy_1;
U &, =-G6,C,, (20)
where
Gl/ = ¢mr /\u—l Ru—l (21)

If the daughter sorption is kinetically controlled, equations (9) and (11) need to account
for the generation of daughter mass due to the decay of the sorbed parent, and become

F,
6:97 +AE ~Moime G Fsy = koG, — kg F, | (22)

where F),_1 is the sorbed mass of the parent,
kp, Kq K; for LKP/LIP sorption, kp 6, for LKP/LIP sorption,
ka = kﬁ -
kr K; for LKC sorption, k7  for LKC sorption,
and ¢, is the fraction of the mass of the decayed sorbed parent that remains sorbed as
a daughter (0 < ¢, < 1). The term ¢, is introduced to account for the possibility that

daughters can be ejected from grain surfaces due to recoil, e.g., the ejection of 2*4Th from

grain surfaces during the alpha decay of 233U [Faure, 1977]. The LT of (22) returns

o~ -~ -~

Fu:pcu'*'mrprcu—la (23)

where p is obtained from equation (19), and

)\I/—. v . -
1t for (a) LKP/LIP or (b) combined LE-LKP/LIP sorption
Py = S+)\u+kp6p (24)
T Al/— v -
—l—g—ljj for (a) LKC sorption or (b) combined LE-LKC sorption
S + Al/ + kC

For combined LKC and LLKP/LIP sorption, p, is the sum of the two components in (24).

Using (23) and (24), it is easy to show that equation (20) applies, but with

G, =¢dme A1 Ruy — (s + X)) pe]. (25)
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All other terms in (20) remain unchanged. Equations (20) through (25) are valid in any
layer n. For a complete daughter ejection [Faure, 1977], {, = 0, p, = 0, and (21) and (25)
become identical.

2.3.3. Products of Chemical Reactions. If the species is a product of the v-th first-
order chemical reaction in the reaction chain (12), the right-hand side of equation (5) is

augmented by the term —¢ h K, _{ C,,_;. Then, equation (20) applies unchanged, but with

Gy_1=¢hK,_1. (26)

3. Transport in Layered Fractured Media

The development of the equations for transport in a layered fractured media expands
on the analysis of Tang et al. [1981] and Sudicky and Frind [1982]. A schematic of the

fracture-matrix system is shown in Figure 1, in which the /V layers have different properties.

3.1. Transportin the Matrix

3.1.1. The ODE of Parent or Stable Species Transport in the Matrix. Advection
in the matrix is neglected, that is U]* = 0. Then the Laplace space ODE of the species
transport in the matrix layer n is given by

m 2O

D
"odx?

—E™C™ =0, (27)

where the superscript m denotes the matrix. The diffusive flux across the fracture-matrix

interface is given by

Gn = —1Tp Dt —2 (28)
T, =0

and differs from the analogous expression of Tang et al. {1981] in the inclusion of the active
interface area reduction factor r,,. The term r,, (1 > r,, > 0) is defined as the ratio of the
average interface area between mobile water in a fracture and its surrounding matrix to the
average interface area between a fracture and the surrounding matrix. A detailed discussion

on the subject can be found in Liu et al. [1998]. For a fully saturated fracture, r,, = 1.
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3.1.2. The ODE of Daughter Transport in the Matrix. From equation (20), the

Laplace space ODE of transport of the daughter v in the matrix of layer n is given by

d*Crm - ~
m n,v m m m ~m
Dn,u dz2 - En,u Cn,u — _GV n,w—19 (29)
n

where the term G} is computed from (21) to (26). The diffusive flux of the daughter v

across the fracture-matrix interface is given by equation (28).

3.2. Transportin the Fractures

3.2.1. Adjustments to Concepts and Equations. In fracture transport, the Darcy

velocity Uy, in any layer n is computed from the basic mass balance equation as

Qu
Un = b
M, b,

where @), is the water influx rate per unit fracture thickness (in the y direction, not shown
-in Figure 1) at the z; = 0 boundary [L?T '], and 2b,, is the fracture aperture [L]. The
parameter M, [L/L] is the relative fracture density, and is determined from the number of
fractures in an arbitrary length L, (see Figure 1). The term L., is related to the matrix block

half-width X,, [L] and b,, (see Figures 2a and 2b) through the relationship

Ly

M, = ————,
2(Xn +bn)

=1,...,N.

There are two different ways to treat the fractures. If the fractures are open, we
have surface-based rather than volume-based sorption in the fractures of any layer n
(n =1,..., N). The following changes are then made:

(a) F'is now the mass of solute adsorbed per unit surface of the fracture [M L~2].
(b) From the mass balance equations, the term (1 — ¢) p in (17) is replaced by 1/b,,, where

by, is the fracture half-width or half-aperture [L] in layer n.

(c) The distribution coefficient of the fracture K({ 1s now defined as the mass of solute

adsorbed per unit area of surface divided by the concentration of solute in solution -

[Tang et al., 1981), with units [L].

11
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(d) The kinetic constants k" of chemical sorption in (11) have units [LT ~']; kZ in(11)
have units [M L™ 2T1].
If the fractures are filled (a rather common occurrence), they are treated as a porous
medium. Then, there is no need for the conceptual or mathematical adjustments in (1)
through(4). Inbothopenandfilledfractures, theright-handsideofequation(5)isaugmented

by the term

1/b, for open fractures
Qn = flq,, where fI= { (30)

1 for filled fractures,
and ¢, is described by (28).
3.2.2. The ODE of Parent or Stable Species Transport in the Fractures. The
Laplacespaceequation forfracture transport alongthe z-coordinate(Figure 1)then becomes

d2C! dCf
f n o Un n

D
" dz2 dzy,

~ElC) =Qn, (31)

where the f superscript denotes the fracture, the n subscripts denotes the layer, and
Cjn = L{Q,}. Equation (31) is written in terms of the local coordinate z, in each layer n.
3.2.3. The ODE of Daughter Transport in the Fractures. The Laplace space ODE

of transport for the daughter v in the matrix of layer n is given by

o —Un = B{,Cl,=Qu-GLC], ;. (32)
n n

d*C{, dCi

All the terms in (32) are as previously defined.

3.3. Initial and Boundary Conditions

The nitial and boundary conditions corresponding to the fracture equation are

C',fl(zn,t =0) =0,
Cl(z1 = 0,t) = C,o(t),

(33)
Cl(zn = Zn,t) = Cf 1 (2041 =0,1), n=1,...,N—1

C,fv(zN — 00,t) =0

b
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where Z,, denotes the thickness of the n-th segment (layer). The time dependence of Cg
allows investigation of systems with time-variable upper boundaries. Some of the more

common forms of Co(t) are

r Co constant concentration
Coexp[—A(t + ta)] decaying radionuclide concentration
Cro(t) = ¢
N*
ZC{‘ Ut —t;_y) —U(t —t])] variable pulse concentration

\ i=1

(34)
where Cj is a constant, ¢4 is the release delay (the time between radionuclide generation or
storage, and the beginning of release), U (t — t*) denotes the unit step function at time ¢t*,
and N* is the number of the different pulses with concentration C7. Note that ¢t = 0 and
that, for N* = 1, we obtain the unit pulse of duration ¢].

The initial and boundary conditions corresponding to the matrix equation are

C™(z =0,t) = CI(zn, 1),

oCm . (35)
3 (x = X,t) =0 for Case 1 (Figure 2a),
x

C(x — o0,t) =0 for Case 2 (Figure 2b),

where X is the half-width of the matrix block (Figure 2). Case 1 in Figure 2a describes a
finite system with a Neuman-type boundary at x = X. If dry fractures (i.e., fractures in
which the water phase is discontinuous) occur in the rock matrix of Case 1, the half-width
X isreplaced by X* = 2X/(n4+1), where nq is the number of dry fractures evenly spaced
along z inthe matrix block(Figure 2b). Case 2 in Figure 2b describes asemi-infinitesystem.

The Laplace transforms of equations (33) through (35) are trivial.

13
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4. The Laplace Space Equations
4.1. General Matrix Solutions in Each Layer

4.1.1. Parent or Stable Species. Omitting for simplicity the n subscript, and

expanding on Tang et al. [1981] and Sudicky and Frind [1982], the solutions to (27) are
R He¢cosh[f (X — z)] for Case 1
om — (36)
Heexp(—6z) for Case 2

respectively, where H¢ and H¢ are parameters to be determined, and

Em
0=0(s) =4/ —.
(s) T (37)
From (36) and the Laplace transform of (35),
He¢cosh(§ X) = Cf = H® _o
Er(z=0) = HieohEX)=CT= B =axy forCael (g
He =Cf for Case 2
from which
hl(X — ~
~ ~ coshl6 ( z)] C’  for Case |
C™ =C"™(z,s) = cosh(6 X) (39)
exp(—0 ) c’ for Case 2

The equations in (39) are applicable in any layern (n = 1,..., N).
4.1.2. Daughter or Reaction Products. Following the same approach, it is
straightforward to show that the Laplace space solution of the ODE in (32) for any daughter

or reaction product v is given by

4

1 K<
H; cosh[f, (X — z)] + Z (H A:’,ﬁ) H cosh[f.(X —z)] forCase

C':n —_ < . K:U—Nl 1=V
H:exp(—0,z) + Z ( A:’;) H; exp(—0,. ) for Case 2
k=v—1 \i=v
(40)
where
T GT'L
Ap = (41)
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The coefficients H,, are given by the general expression
H, = Z Tu,n‘ 6,{ 3 (42)
k=1

where T), . are appropriate coefficients. Expressions for H, and T, . (the derivation of
which is tedious but straightforward) are provided in Appendix A. Equation (40) shows that
the solution of the matrix transport equation of the daughter or reaction product v requires

knowledge of the fracture solutions of all previous members of the decay or reaction chain.

4.2. General Fracture Solutions in Each Layer

4.2.1. Parent or Stable Species. From the Laplace transform of the diffusive flux in

(30), and omitting for simplicity the subscript n,

Q=~f1C’, (43)
where
r D™ @tanh( X) for Case 1
v = (44)
rD™0 for Case 2
Substituting in (31) and collecting terms,
?cf dCt A
D' ~ —-E*C/ = 45
dz? v dz 0, (45)
where E* = Ef + « f9. The general solution to (45) is given by
Cl = C'(x,s) = aexp(n® 2) + Bexp(n™ 2), (46)
where « and 3 are parameters to be determined, and
2 [ =
ni:U:l:\/U +4DJ E . (47)

2Df
Equations (43)—(47) apply in any layer n.
4.2.2. Daughter or Reaction Products. From equations (30)—(32) and (40)—(42), for

a daughter v

Qu="/17DJ'W, = f15 4,.Cl. (48)
r=1

15
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Equation (48) is general and applies to both Case 1 and Case 2. Expressions for W, and
Vv are provided in Appendix B.

Substituting in (32) and collecting terms,

2Cf  dC! A A . A
Df —2 —U—*~F; Ci=-G,CI_,+ > wCl, (49)
k=1

where E = Ef + v, f9.
Following the same approach, it is straightforward to show that the Laplace space

solution of any daughter or reaction product v is given by

Cl = a,exp(n 2) + B, exp(n z) + Y., (50)
where
1 1
Yo= D Alcacep(nfz)+ Y AL Beexp(ng 2), (51)
K=r—1 K=v-1
and
Bﬂ:
i v, (52)

Df (nE)? —Un¥ — E;
Expressions for ij,{ and for v < 5 are given in Appendix C. Equations (50) and (51) show
that the solution of the fracture transport equation of the daughter or reaction product v

requires knowledge of all previous «,, and f3,, i.e., the solutions of all previous members of

the chain.

5. The Solution Approach
5.1. Determination of the o and 3 Parameters

Equation (46) defines a total of 2N unknowns, i.e., the a and 3 parameters in each of the
N subdomains. These are obtained from the solution of the following equations.
5.1.1. Boundary Equations. These apply to the z; = 0 pointin the firstlayer (n = 1).

From (46) and the Laplace transform of (33), for a known boundary concentration we have

~

oy + 31 = Cso, (53)
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while for known flux boundary conditions
al(Ul —D{?]+)+,81(U1—D{77_) :Ul ézo (54)

where 6’20 = L{C0}. For the common boundary conditions in (34),

( Co
s
Coexp(—=Atq)

constant concentration

)

decaying radionuclide concentration
Cz() = < s+ )\ y g
N* .,
Z 5’ [exp(—st;_,) — exp(—st})] piecewise constant concentration.

\ i=1

(55)

For the limiting case of a system consisting of a single semi-infinite layer (i.e., N = 1)

with an open fracture and a constant concentration at z; = 0, a3 = 0, ;1 = Cy/s, and

equation (46) is reduced to the Laplace space solutions obtained by Tang et al. [1981] (Case
2) and Sudicky and Frind [1982] (Case 1).

5.1.2. Concentration Equations. At the layer interfaces we have the equations

Ay exP(ﬂIq Zn—l) + :Bn—l eXP(U;_l Zn—l) — Qp — ﬁn = 0, (56)

forn = 2,..., N. An additional equation is provided by the requirement that 6’,{ be finite
for Zny — oo, which dictates that ay = 0.
5.1.3. Flux Equations. The remaining N — 1 equations are provided by the equality

of fluxes across the layer boundaries in the fractures, which dictates that

dct dc/
My by |UyyCl_ - DI, "—1} = M, b, [Un ci— DI = | (57)
dzp_y dzn |

in which the quantity in the brackets is computed at the value of the local z coordinate

indicated by the bracket subscript. From (46) and (57) we obtain
Uy 1 [Mn—l bn—l(Un—l - Di—-l "1:-1)] exp(n:_l Zn—l)
+ ,Bn—l [A/[n—l bn—l(Un—l - Drfl_1 771:_1)] CXP(Uﬁ_l Zn—l) (58)

— Qy, [Mn b (Un ~ D'rfl 77:)] ~ Bn [Mn br (Un — val 711:)] =0
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wheren=1,...,N — 1.
5.1.4. Equations for Daughters. For a daughter product v of radioactive decay or
reaction, the following changes are made to equations (53) through (58):
(a) In the right-hand side of equations (53) and (54), the term @0 is replaced by 5,,,20,
where a,,zo = L{C, 0}, and C, o is the concentration of daughter v at z; = 0. Fora

o~

constant C,, ,0, C,, ;0 can be obtained from equation (55). For a z; = 0 boundary with

A~

a decaying radionuclide concentration, C, o is computed from the Laplace transform

of the mass balance equation c’)ut’zo =ACu 20 — A—1Cu—1 20 as
} _ v,z0 A /\u——l A 6,
V20 = 8—+—)\UCXP(“ ta) +m, S exp(—Atqg) Cuo1,z0- (59)

For a reaction chain, equation (59) indicates a recursive reaction.

(b) The zero on the right-hand side of the layer interface equation (56) is replaced by
Yon(zn =0) =Y n_1(zn-1=Zp) forn=2,...,N.

(c) Equation (57) applies unchanged. The zero on the right-hand side of equation (58) is

replaced by the known quantity

M, b, (U, Y, n — DY dy%"]
0

YR dza

dY, n-
- n—1 bn—l {Un—l Yu,n—l _Df ¢

vn-—1 dzn-—l Z s

5.2. The Laplace Space Solutions

The generality and complexity of these equations preclude the development of closed-
form solutions for a;, B; (¢t = 1,..., N). Consequently, it is not possible to analytically
invert equations (46) or (50), and to obtain a closed-form equation for concentration in
time. The problem is alleviated by numerically inverting the Laplace space solutions. The

algebraic equations discussed in Section 5.1 may be written in a general matrix form as:

MX=8, (60)
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where M is the coefficient matrix, X is the vector of the unknowns, and B is the composite

vector of knowns. Solution of (71) returns the vector

X;

. X . )

X = _2 , where Xi:<gf>,i:1,...,N. (61)
Xy

The solution of the matrix equation (60) necessitates arithmetic values for the s
parameter of the Laplace space. These are provided by the numerical inversion scheme
of DeHoog et al. [1982] that uses complex values for s. The quantities M, X and B assume
the complex type of s. A detailed discussion of the application of this method and its
performance can be found in Sudicky [1990] and Moridis [1998].

The a; and ; computed from the matrix equation (60) are then used to obtain all
the 6,{ solutions (z = 1,..., V). The corresponding 6',’{‘ solutions are obtained from 5,{
and equations (39) or (40)—(42). Note that the solutions for daughters or reaction products

require knowledge of the solutions of all the previous members in the chain.

5.3. Numerical Inversions of the Laplace Space Solutions

The various time-variable concentrations can be determined by numerically inverting

the Laplace space solutions, i.e.,
Cl(z,t) = LTHCL(z,5)}, CR(z,t) = L7HCR (z,5)}, (62)

where £71{} denotes the inverse Laplace transform of the quantity in the brackets. Details

on the inversion will not be discussed here; they can be found in DeHoog et al. {1982].

6. Treatment of Special Conditions
6.1. Misaligned Fractures

The analysis presented thus far assumes that the effect of fracture offset on transport is

negligible. This may not be the case for large fracture spacing or at short observation times.
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The process that accounts for fracture misalignment is described in Figure 3. The
increased travel path of the transporting water caused by the offset fractures is indicated
by the horizontal pathway at the confluence of the n and n + 1 layers in Figure 3a, and its
effect is described by the addition of an “interlayer”, i.e., a pseudo-layer (Figure 3b) with
the following characteristics:

(@) A thickness Zy = max{X,, X, 1} if My, > M,_y, or Z; = min{X,, X1} if
M, < Mp,4,.

(b) A relative frequency My = M,,.

(c) An open or filled fracture of half-width by, through which water flows between the n
and n + 1 layers. The properties of the fracture in the interlayer are independent of
those in the layers above and below.

(d) A complex matrix, composed of the matrices of both the n and n + 1 layers. In Figure
3D, the matrices of the n and n + 1 layers are positioned on the left and right sides
of the fracture, respectively. The two components of the matrix are assumed to be
semi-infinite, as illustrated by their rotation by 90° (with respect to the original layer
orientation) in Figure 3b. Then, the flux into the composite matrix of the interlayer is

computed from equation (43), but with v = v, where

1

=g (Tn + Tnt1) 5 (63)

and 7y, Yn+1 are computed from equation (44).

Thus, considerationof misaligned fracturestransformsasystem of NV layerstoasystem
of N + Ny layers, where Nj is the number of interlayers. The solution of the augmented
system does not pose any particular challenges and proceeds in the manner discussed in
Section 5. Note that this approximation involves the longest possible travel path and the
largest possible amount of tracer diffusion. This is b.ecause diffusion into the matrix of the
interlayer (see Figure 3b) is larger than that into the n and n + 1 layers (along the layer
interface) owing to steeper gradients and their semi-infinite nature. Thus, the assumption of

fracture alignment provides the most conservative solution, while the assumption of fracture
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misalignment (as described by the concept of interlayers) reflects the least conservative

scenario. These two solutions provide the limits that bracket the true solution.

6.2. Occasional Unfractured Layers

If the layered system includes unfractured (porous) layers (e.g., Layer 3 in Figure
1), these are treated as a combination of a pseudo-matrix (representing the nonflowing
portion of the layer) and a pseudo-fracture representing the flowing portion of the layer. In
essence, unfractured layers are treated as filled-fracture systems, and all the equations apply
unchanged. The properties of the unfractured medium are assigned to both the pseudo-
matrix and the pseudo-fracture. The relative sizes of b and X can describe the flowing and
non-flowing portions of the porous medium. If water flows uniformly through the porous
medium, X = 0. This approach maintains water mass and flux balance.

It is obvious that, for unfractured media, L, = 2(b, + X,,), i.e., M,, = 1. Note that
water saturations S must be obtained from the solution of the steady-state flow equation
because the derivation of the transport equations is based on time-invariant flow conditions

and cannot compute changes in S.

6.3. Transportin Layered Unfractured Media

This is a limiting case of the scenario discussed in Section 6.2. Setting the non-flowing
portion of the matrix X,, = 0 (n = 1,..., N) transforms the problem into that of 1-D
solute transport in a layered porous (unfractured) system. Then, all the solutions derived

here apply unchanged.

7. Verification

A FORTRAN program was written to obtain the semianalytical (SA) solutions
developed in Sections 4 through 6 by first solving (60), and then performing the numerical

inversion indicated in (62). This code, named FRACL, accounts for all the processes,
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phenomena and conditions discussed in Sections 2 through 6. It can obtain solutions for
a system involving an arbitrary number of layers NV of any combination of porous and/or
fractured media, and up to 4 daughters. It is computationally very efficient, and required
less than 10 seconds for any of the problems discussed in Sections 7 or 8.

FRACL is verified through comparisons to analytical solutions of radioactive solute
and colloid transport in 1-D porous (unfractured) media and quasi-2-D fractured media. In
all cases, FRACL solutions are first obtained in a system consisting of a single semi-infinite
layer (i.e., N = 1). The domain is then subdivided into three layers in the z direction, and
FRACL solutions for this multilayered system (N = 3) are obtained. Coincidence of the

analytical solutions to the FRACL solutions for NV = 1 and for N = 3 verifies FRACL.

7.1. Tests FS1 and FS2: Radioactive Solute Transportin Fractures

Tests FS1 and FS2 describe transport with LE sorption in the fracture-matrix system of
Case 1 (parallel fractures, Figures 2a) and Case 2 (single fracture, Figure 2b), respectively.
The corresponding analytical solutions were developed by Sudicky and Frind [1982] and
Tang et al. [1981]. The values of the parameters used for the computation of the analytical
and the SAsolutions areas in Sudickyand Frind [1982], and are listed in Table 1. A constant
concentration (CC) condition is applied at z; = 0.

Figure 4 shows the distribution of the relative concentration Cg (defined as Cr =
C,{ /C.0) in the fractures along the z axis at (a) ¢ = 1,000 days in Test FS1 and (b)
t = 10,000days in Test FS2. In both tests, the analytical solution and the two FRACL

solutions (for N = 1 and N = 3) are identical in the first 5 significant digits.

7.2. Tests PS1 to PS4: Radioactive Solute Transportin

Unfractured Porous Media

Tests PS1 to PS4 are designed to confirm the ability of the SA solutions to describe
transport in unfractured media without any modification. The solution to this problem is

provided by Bear [1979], and accounts for LE sorption and radioactive decay.
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The values of the parameters used for the computation of the analytical and the SA
solutions of Tests PS1 to PS4 are listed in Table 2. In all four tests, a constant concentration
condition is applied at z; = 0. The solute is a nondecaying isotope in Tests PS1 and PS2,
and a decaying radionuclide in Tests PS3 and PS4. LE sorption is considered in Tests PS2
and PS3, but is ignored in Tests PS1 and PS4.

Figure 5 shows the distribution of the relative concentration C'r along the z axis at
t = 200 days. The SA predictions of Cg distributions for both N = 1 and N = 3 are

identical with the analytical solutions of Bear [1979].

7.3. Test PS5: Transport of a Three-Member Radioactive

Solute Chain in Unfractured Porous Media

This test is designed to vefify the ability of the SA solutions to describe the transport of
reactive chains in unfractured media without any modification. An analytical solution to this
problem was developed by Harada et al. [1980], and accounts for LE sorption, radioactive
decay, and time-variable boundary conditions.

Test PS5 describes the transport of the radioactive chain 234U —230Th—226Ra through
a sorbing porous medium. The concentration of 234U (i.e., the parent radionuclide) at the
z1 = 0 is not constant over time, but subject to radioactive decay. The initial concentrations
of the 230Th and ?26Ra daughter radionuclides at the z; = 0 boundary are zero, butincrease
over time because of the decay of their parents.

The values of the parameters used for the computation of the analytical and the SA
solutions of Test PS5 are as in Harada et al. [1980], and are listed in Table 3. Figure 6shows
that the analytical solutions at t = 10, 000 years coincide with the SA predictions (for both

N =1 and N = 3) of the Cp distributions of the three radioactive chain members.

8. Analysis and Test Problems

In this section the transport of various radionuclides is studied in layered systems
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(involving both fractured and porous layers) of different characteristics and properties. The

Dy and X of the radionuclides discussed here appear in Table 4.

8.1. Problem 1: Importance of Fracture Misalignment

This problem studies the importance of fracture misalignment on transport, as quanti-
fied by the concept of interlayers (discussed in Section 6.1). The following analysis focuses
on the effects of the presence of such interlayers, in conjunction with other parameters of
the hydrogeologic layers and of the species. The flow velocity in all cases of Problem 1
was U = 0.1 m/day, the system was saturated (S = 1), and the z = 0 boundary was kept
at a constant concentration (Cg = 1).

8.1.1. Case 1-a: Effect of fracture offset (interlayers). This case involves the
transport of the nonsorbing solute species *H in a layered fractured system with fracture
offsets and various interlayer characteristics. Case 1-a involves three sub-cases: 1-al, 1-a2
and 1-a3. The geometry of the reference Case 1-al of the layered fractured system is
described in Table 5, while the hydraulic properties of the fractured layers are shown in
Table 6. The three main layers (identified as Layers # 1,3 and 5 in Table 6) were fractured
media (FM), while the interlayers (identified as Layers # 2 and 4) were considered to be
fracture interlayers (FI, i.e., horizontal open fractures connecting the vertical fractures in
the layers above and below).

The characteristics of Cases 1-a2 and 1-a3 are explained in Table 7, which shows only
the differences from the base Case 1-al. Thus, Cases 1-a2 and 1-a3 differ from Case 1-al
in that the interlayers are porous interlayers (PI), i.e., the horizontal features connecting the
fractured layers are either fractures filled with porous media or unfractured porous media.
Flow and transport occurs through a porous medium with different transport behavior than
in the Flsof Case 1-al. The hydraulic properties of the porous media in the PIsin Cases 1-a2
and [-a3 are the same as those of the porous matrix in the overlaying and underlying layers.
The connecting Pl in Cases 1-a2 and 1-a3 havea b = 0.025 m and 0.1 m, respectively. Note

that in Pl and PM layers there are no fractures and b represents the half-width of the flowing
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portion of the matrix.

The results of the three subcases of Case 1-a are shown in Figure 7, which shows the
fracture C'i. The presence of the interlayers in Figure 7 is marked by the vertical steps in the
Cr profiles (caused by the fact that Figure 7 indicates the vertical coordinate z and not the
length of the travel path. For the nonsorbing 3H and at early times, the retardation caused
by the presence of the FI is measurable, as compared to the case with aligned fractures (no
interlayer, denoted by NI in Figure 7—included for comparison). This was expected because
of the longer travel path in the case of FIs, which increase the amount of 3H diffusing into
the porous matrix and result in lower fracture concentrations. At the same early times, the
retardation caused by the PIs can be substantial and increases with the half-width b of the
PI. These results also conform with expectations because of the slower flow velocities in
the porous media of the PI (as compared to those in the fractures of the FIs), which increase
the residence time and diffusion into the porous matrix.

Figure 7 also shows that the effect of the interlayers keeps decreasing with time. This
was expected in Case 1-a because the travel path increase caused by the interlayers is small
(as the layer.half-width X is only 0.25 m) and 3H is nonsorbing (leaving diffusion into
the matrix as the only mechanism removing the radionuclide from the flowing water). At
t = 10* days, the presence of interlayers of any kind (FI vs. PI) has no effect on the
concentration profile in the fractures.

8.1.2. Case 1-b: Combined effect of interlayers and matrix width of the fractured
layers. This case involves three subcases: 1-bl, 1-b2 and 1-b3 (see Table 7). Cases 1-bl,
1-b2 and 1-b3 differed from Cases 1-al, 1-a2 and 1-a3 in that X = 2.5 m instead of 0.25
m, thus substantially increasing the travel path and residence time of H in the interlayers.
This is expected to increase retardation, especially at early times.

Figure 8 confirms this expectation. Att = 102 days, the presence of the relatively fast
flowing Fl is sufficient to reduce C', in the fracture by about four orders of magnitude. The

effect is more pronounced in Case 1-b3 (PI with b = 0.1 m). The same pattern is observed
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att = 103 days, at which time the retardation in Case 1-b3 remains very substantial. This
is caused by the reduction of the advective and dispersive components of transport (because
velocity decreases as b increases) in addition to the reduction of the molecular diffusion
component (due to the smaller ¢ and 7 values in the filled fracture, see equation (2)).
Remarkably, stronger retardation is observed in Case 1-bl (FI) than in case 1-b2 (PI with
b = 0.025 m). This is attributed to the larger solute mass in the PI, which is less affected
by diffusion into the matrix (about the same in both cases). As in Case 1-a, the effect of the
fracture offset (presence of interlayers) decreases with time.

The conclusion reached from these results is that the effect of fracture offsets
(interlayers) increases with the matrix block size of the fractured layers. This is consistent
with expectations because the travel path increases substantially in fractured system with
large X, with a corresponding increase in residence time and diffusion into the matrix.

8.1.4. Case 1-c: Combined effect of interlayers and water saturation S of the
fractured layers. This case involved two subcases: 1-cl and 1-c2 (see Table 7). Cases
1-c1 differed from Case 1-al in that S™ = 0.8 and 'S/ = 0.5 instead of S™ = S/ = 1.
Cases 1-c2 differed from Case 1-a3 in that S™ = S/ = 0.8 instead of S™ = S/ = 1. The
effect of S is exhibited through its impact on the water velocity: a higher pore velocity V' is
needed to maintain the same U if S decreases. Thus, faster transport was expected in this
case, with a corresponding decrease in the importance of the increased travel path caused
by the fracture offset.

The results in Figure 9 confirm these expectations. Transport is faster than in Cases
1-a and 1-b, while the importance of the fracture offset (presence of interlayers) decreases

in systems with the same water mass flow rate but with decreasing .5,.

8.2. Problem 2: Radioactive Solute Transport
in a Complex Multi-Layered System

The complex geological system in Problem 2 is comprised of 14 layers and interlayers

of fractured and porous media. The geometry and configuration of the system are described
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in Table 8, and the rock properties and conditions are listed in Table 9. Linear equilibrium
sorptionis assumed, and thesorption coefficientsof thevariousradionuclides inthefractures
and in the matrix of the various layers (K ({ and K", respectively) are listed in Table 10.
The water velocity U at z = 0 as in Problem 1.

8.2.1. 3H Transport. The fracture Cr, profiles of the nonsorbing *H for both constant
concentration (CC) and decaying (radioactively) concentration (DC) at the z = 0 boundary
are shown in Figure 10, which includes observations at the following times: ¢, = 104 days,
t, = 5 x 10 days, t3 = 10° days, t4 = 2.5 x 10° days and t5 = 5 x 10° days.

The various layers can be generally identified by a change in the Cg slope, while
the interlayers are indicated by vertical sections of the C'r curves (as the abscissa is the z
coordinate rather than the travel path). For a CC boundary, the C distribution reaches a
steady state for ¢t > t4. As expected, the effect of the DC boundary is a Cr profile that
is progressively lower than the one for a CC boundary, never reaches steady state, and is
outside the Cp, range (< 107°) fort > t,4.

8.2.2. 99Tc Transport. %Tc (in its pertechnate TcOj speciation) is a non-sorbing
radionuclide with a longer half life than 3H (see Table 4). Two boundary conditions were
considered in this case: a CC boundary and a piece-wise continuous (step) concentration

(PC) boundary, i.e.,

1 fort <5 x 10* days

0 fort > 5 x 10% days

The Cr profiles in the fractures of the layered geologic system (at the same times as
in the case of 3H in Section 8.2.1) are shown in Figure 11. The effect of the longer half
life is evident in the C'p profile for CC boundary, which indicates that °®Tc advances much
further in the formation than 3H at the same times (the difference is due to radioactive
decay), and does not appear to have reached steady state at { = t5. The change in the
boundary concentration over time in the PC boundary case results in C; profiles that show

aprogressivelylarger(withtime) 99Tc-freezoneneartheboundary, whilethe Cp, further into

27




28 MORIDIS: SOLUTE TRANSPORT IN FRACTURED LAYERED MEDIA

the formation keeps decreasing and deviating from that for constant boundary concentration
(with which it coincides fully or in part for ¢ < t4).

As indicated in the case of 3H, the various layers and interlayers can be generally
identified from changes in the Cg slope. Transport in fast flowing fractures (e.g., in the case
of narrow fractures with large matrix blocks under a layer of wider fractures and narrow
matrix blocks) can also be identified by a near-horizontal portion of the Cr profile.

8.2.3. 23"Np Transport. The Cg, profile of the moderately sorbing 23“Np for a CC
boundary is shown in Figure 12. The observation times are: t; = 5 X 104 days, to = 10°
days, t3 = 5 x 10° days, t4 = 10° days, t5 = 2.5 x 10° days and tg = 5 x 10° days.

The slower transport of 23”Np (compared to that of °Tc) is caused by sorption and,
to a far lesser extent, by increased diffusion into the matrix. Despite its longer half-life, the
transport of 237Np appears to be about an order of magnitude slower than that of **Tc, and
does not appear to have reached steady state at ¢t = t¢.

The Cg profiles along the x axis in the matrices of the various layers at ¢t = g are
shown in Figure 13. The different shape of the curves is a function of their location (with
respect to the z = 0 boundary and to the solute front) and of the transport properties of the

matrix in the various layers.

8.3. Problem 3: Solute Transport of a Three-Member Radioactive
Decay Chain in a Complex Multi-Layered System

Problem 3 describes the transport of the radioactive chain 23%Pu— 235U— 231pa
through the complex multilayered system described in Problem 2 (Tables 8 and 9). The
sorption coefficients K L{ and K7 of the #*°Pu parent in the various layers are listed in
Table 10. The sorption coefficients of 23U and 23'Pa in the fractures and in the matrix
were assumed to be 5% and 50% of those for 23?Pu, respectively. Cr profiles of the three
radionuclides were obtained at the following observation times: ¢; = 10° days, to = 10°
days, t3 = 107 days, t4 = 10® days, t5 = 10° days, and t; = 10'° days. Two boundary

conditions were considered: a CC and a DC boundary.
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8.3.1. 239Pu Transport. Figure 14 shows the Cg profiles of 239Pu in the fractures
for constant boundary concentration and a decaying boundary concentration. There is no
or little deviation of the two curves until ¢ = t3. The fracture Cg in DC case at t = ¢4
is substantially lower than that of the CC case, and the Cg for a DC boundary is less than
1079 for t > t5 .

An interesting observation is that, for a CC boundary, the 23°Pu front does not advance
deep into the formation despite observation times orders of magnitude larger than those for
the 23"Np transport. This is due to the very strong sorption of 23°Pu onto the matrix and
fractures of the layers and, to a lesser extent, the shorter half life of 23°Pu (compared to that
of 23"Np. Note that the Cg profile appears to have reached steady state at t > ts.

In addition to the transport of the members of the chain, the transport of 239py was
studied separately, assuming a CC boundary and a 7 < 1 (see Equation (38) and the
corresponding discussion). This describes a situation in which not all the contact area
between fracture and matrix contributes to transport (e.g., because of a partially dry fracture
which constitutes a discontinuity in the water phase). In this case, 7 = SJ in the fractured
layers and interlayers (FM or FI), and = 1 elsewhere.

The effect of r < 1 in Figure 15 appears to have a substantial impact on transport,
and results in a 23°Pu front that reaches much further (i.e., about three times deeper) in
the geologic profile than that for » = 1. This is a direct consequence of a reduced area
for 239Pu diffusion from the fractures into the matrix, which leaves a larger amount of
Z39Pu in the fractures where advection is fast and sorption relatively small (compared to the
matrix). Thus, the transport of strongly sorbing radionuclides in fractured systems may be
substantially influenced (enhanced) by partially dry fractures.

8.3.2. 235U Transport. The fracture Cp profiles of 23°U for CC and DC boundaries
and for ¢t < 4 are shown in Figure 16. The Cp of the DC solution always exceeding that
from the CC solution, and significantly so (as imposed) in the vicinity of z = 0. A very

significant observation is that, in either case, Cp ~ 1 for t > t4 in the top 120 m of the
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domain. This is even more the case in Figure 17, which shows the Cg of 235U for t > 4
and gives a more detailed picture of the C'g distribution near the value of 1. The results in
Figures 16 and 17, in conjunction with the observations from Figure 14, indicate that for
t > tg4, practically all of the radionuclide that advances deep into the formation is the 235U
daughter. The transport of 23°U is faster, the front reaches deeper, and Cr ~ 1 because
2351 is generally weaker sorbing than 23°Pu and it has an extremely long half life. The
obvious implication is that studies of 23°Pu transport cannot neglect the transport of the
235U daughter, which is the dominant radionuclide at longer times.

Note from Figure 17 that, for ¢ = t4 and a DC boundary, Cr > 1, i.e., the 235U
concentration in the fractures exceeds the initial concentration of the 23%Pu parent at the
z = 0 boundary. This is possible because the boundary (which introduces a radionuclide
mixture composed of all the members of the 23%Pu decay chain) is now contributing a stream
ofalmost 100% 23U, whichis addedtothe 23*Uproduced fromthe(almost complete)decay
of 23°Pu already in the fractures and matrix of the system. As expected, the Cr from the
CC solution at ¢ = t4 is lower than that from the DC solution (Figure 16). Fort > t4,
the CC solutions exceed the DC solutions because the decay of the >3°U at the boundary is
beginning to have an effect on the fracture distribution of C'g. This is particularly evident
at t = tg. Note that steady state is not reached (in either the CC or the DC boundary cases)
even after tg = 10'0 days because of the extremely long half life of 23°U.

8.3.3. 231Pa Transport. The fracture Cp profiles of 23! Pa for CC and DC boundaries
are shown in Figure 18. The Cg levels of 231Pa are quite low because of the very long
half life of its 235U parent, its own shorter half life, and its stronger tendency to sorb. The
Cr increases with time for both DC and CC boundaries. The CC profile has always lower
concentrations because there are all derived solely from the decay of 23°U (the boundary

doesnotsupplyanyadditional 23!'PainaCCregime). Note thatineither case,concentrations

reach a steady state at about t = £4.
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9. Summary

In this paper, semianalytical solutions are developed for the problem of transport of
radioactive or reactive solute tracers through a layered system of heterogeneous fractured
media with misaligned fractures. The solutions allow any number and combination of
fractured and/or porous layers that can vary in hydraulic and transport properties, fracture
frequency, water saturation, fracture flow, and fracture-matrix interaction.

The tracer transport equations in the matrix account for (a) diffusion, (b) solute surface
diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear
kinetic or equilibrium physical, chemical or combined solute sorption or colloid filtration,
and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay
daughter products (or products of a linear, first-order reaction chain) can be tracked. The
tracer transport equations in the fractures account for the same processes, as well as for
advection and hydrodynamic dispersion. A wide array of boundary conditions (constant or
time-variable, concentration or flux) can be accommodated.

Analytical solutions describing transport in the fracture and the matrix of each layer
are first obtained in the Laplace space. These are impossible to invert analytically, and
are numerically inverted by the method of DeHoog et al. [1982] to yield the solutions in
time. These SA solutions are verified against analytical solutions of limiting cases of solute
transport in fractured media. Additional verification is provided by comparisons against
analytical solutions of transport in porous (unfractured) media.

The SA solutions are then tested in a series of hypothetical problems of increasing
complexity. The effectof important parameters on the transport of *H, 23”Np and 23°Pu (and
its daughters) is investigated in several test problems involving layered fractured geological
systems. Fracture misalignment appears to significantly affect transport if water flow (and,
consequently, transport) between the fractures of the overlaying and the underlying layers
occurs through a porous connecting pathway.

The semianalytical solutions are computationally very efficient, requiring less than 10
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seconds of execution time for the examples studied in this paper. The results of the test
problems indicate that the semianalytical solutions can easily solve the problem of transport
of parent and daughter radioactive species in multilayeréd heterogeneous systems under
a variety of boundary conditions. Thus, they can provide a simple and effective tool to
predict radionuclide transport in subsurface environments involving saturated/unsaturated
flow through variably fractured media (such as transport from the potential repository
through the fractured rock layers in the UZ of Yucca Mountain to the water table). While
such predictions are quasi 2-D and do not account for spatial variability and flow effects in
the 3-D continuum of the subsurface (such as perched water bodies, flow diversion and flow

focusing), they can provide bounding estimates that bracket the true solution.
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Appendix A: The H, and 7, . Coefficients

For Case 2 (X — o0), the H, = H of the first five members of a radioactive or

reactive chain (v = 1,...,5) are

He=C!
H§ =C4 — Ay Cf

H; = é{ — Aso ézf + Ag1(Asge — Az1) élf
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Hf = Cf — A3 Cf + As2(Asz — Au2) Cf
— Az [A33(Ass — Asz) — Asi(Ass — Aar)] Cf
HE = Cf — A5y Cf + Ass(Ass — As3) Cf
— Asa[Auz(Ass — As3) — Asz(Asa — As2)) C
+ A1 {As2[As3(Ass — As3) — Asa(Ass — As2))

- A31[A43(A54 - A53) - A41(A54 - A51)]} é'\lf

in which the m superscript of the A factors (equation (52)) are omitted for simplicity. The
terms 7, . inequation (53)can beeasilyidentified byinspection. Byfollowing theemerging
pattern, the development of the expressions for H,, for v > 5 is tedious but straightforward.

The H,, = HJ expressions (corresponding to Case 1) are entirely analogous, and are

derived by dividing H¢ by cosh(6, X). For example, for v = 2,

e _ ¢f Al
27 cosh(f, X) cosh(fy X)

o

Appendix B: The w, and 4, . Coefficients

For Case 2 (X — 00), the W, = W of the first 5 members of a radioactive or reactive

chain (v = 1,...,5) are

wi=6,cf

W5 = 0, Cf + Ay (6, — 0,)CY

W5 = 05CL + Agz (02 — 03) Cf + An1[As51 01 — As2 02 + (Agz — As1) 03] Cf

W§ = 04 CJ + Aus (03 — 64) CJ + Agp[Auz 02 — Ags 05 + (Asz — Agz) 04) C
+ Ag1{A31 Aa1 01 — Azz Aaz 03 + Ags(Asa — Azy) 03

— [As2 (Ag3 — Ag2) — Az1(Aaz — Aa1)] 04} élf
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We = 05 CL + Asq (04 — 05) Cf + Ags[As3 03 — Asg 04 + (Asq — As3) 05] C
+ Asp{ Agz Asz 02 — Az Asz 03 + Asa(Aaz — Asa) 04
~ [Aas (Ass — As3) — Aa(Ass — As52)] 05} Cf
+ A2 {ASI Aq1 As1 61 — A3z Aga As2 02 + Agz Asz(Asz — Azp) 03
— Asa[Az2 (Agz — Agz) — Az1(Agz — A4i)] 04
+ [As2[As3(Ass — As3) — Ag(Ass — Asz)]

— A31[Aa3(Ass — Asz) — Aa1(Ass — As1)]] 95} ci,

in which the m superscript of the A factors (equation (52)) are omitted for simplicity.
We obtain W¢ for Case 1 by replacing 6, by 6, tanh(6,X) in WE. Thus, forv = 2

and Case 1,
Wy = 0 tanh(8,X) C{ + Ag; [0; tanh (6, X) — 6, tanh(6,X )] C7

The terms 1, ,, are easy to obtain from (59) and the W<, W€ expressions by inspection.

Extension for v > 5 follows the same pattern.

Appendix C: The BZ, Coefficients

The Blff,c coefficients of up to the first 5 members of a radioactive or reactive chain

(v=1,...,5,k =1,...,v — 1) are given by the following general expressions:

Blic,u-1 =YTv,w—-1 fi- G,{
B;t,u—z = (’Yu,u—l fi- Gl{)Alj/:—l,l/—z + Yop—2 [
B:it,u—3 = (Vo1 f9— Glf/) Af—1,u~3 + (Yo,v—2 Ayi_z,u_g + Yo p—3) f¢
Bui,u—él - (’YV"/—l fq——Gl{) Al:f—l,u—4+(,y”7”—2 Af—z,u—4 +Yv,u-3 Af_:;,.,-4+’)’u,u—4) [

The coefficients A* needed for the computation of B are obtained from equation (63). All

other terms are as discussed in Section 5.2. Extension for v > 5 follows the same pattern.
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Table 1. Input parameters in Test FS1

Parameters Values
Water saturation S 1
PM grain density p 2600 kg/m?
Dy 1.6x107% m?/s
Fracture aperture 2b 1074 m
Fracture S 1
Fracture ¢ 1
Fracture 7 1
Fracture K Om
Longitudinal dispersivity ¢y, in the fracture 0.1 m
Fracture flow velocity V 0.1 m/day
Matrix block width 2.X 0.5m
Matrix S 1
Matrix ¢ 0.01
Matrix 7 0.1
Matrix K, 0 m3/kg

Radionuclide T /o

12.35 years (tritium)

Zl, Zg, Zg (fOf N = 3)

I m,9m, co
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Table 2. Input parameters in Tests PS1 to PS4

Parameters Values
p 2600 kg/m?3
Dy 5 x 1072 m?%/day
S 1
) 0.1
T 1
1% 0.1 m/day
K4 (Tests PS1 and PS4) 0 m3/kg
K4 (Tests PS2 and PS3) 4.2735042x107° m3/kg
T1/2 (Tests PS1 and PS2) o0 (stable isotopes)
Ty /2 (Tests PS3 and PS4) 100 days
2y, Lo, 23 (for N = 3) 10 m, 10 m, oo
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Table 3. Input parameters in Test PSS

Parameters Values
p 2600 kg/m3
Dy 1000 m?/year
S 1
¢ 0.3
T 1
|4 100 m/year
K4 for 234U 1.64819 m3/kg

K for 220Th

8.24159 m3/kg

K4 for 2?Ra

8.22528x 1072 m3/kg

T1/2 of 234U

2.45x10° years

T1/2 of 230Th

7.54x10* years

T1/2 of 226Ra

1.60x 10 years

Z1, Zy, Z3 (for N = 3)

50 m, 150 m, oo
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Table 4. Radionuclide properties used in the transport simulations of Section 8

Radionuclide Dg (m?/s) A= );1—/2 (1/s)
3H 1.60x107° 1.778x 1079

9T¢ 4.55x10~10 1.031x1013
Z37Np 7.12x10710 1.026x 10714
239py 6.08x10~10 9.114x10713

5y 6.08x10710 3.1023x107 17

231py 6.08x10~10 6.7583x 10713

Table S. Layer geometry in Case 1-a of Problem 1

Layer # Type Parameter Value
1 FM Z 5m
X 0.25 m
b 5x107°m
2 FI b 5% 107°m
3 FM Z 10 m
X 0.25 m
b 5x107°m
4 FI b 5x107°m
5 FM Z oom
X 0.25 m
b 5x 107 m
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Table 6. Properties in Case 1-al of Problem 1

Layer # Parameters Values
1,3,5 (73 01m
o 0.01
T =t =1t =1 0.1
¢! 1
Tf—Tz{:Tif:Tf 1
Kr=K] 1
Sm =SS 1
2,4 ar 0.1m
o 0.01
T =t =T =Tl 0.1
¢! 1
Tf—‘Tf:TifZTf 1
K =K/ 1
Sm =51 1
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Table 7. Parameter variations in the various cases of Problem 1

Case # Layer # Type Parameter Value
1-a2 24 PI b 0.025 m
[-a3 2,4 PI b 0.10 m
1-bl 1,3,5 FI X 2.5m

2,4 FI Z 2.5m
1-b2 1,3,5 FI X 2.5m
2,4 PI Z 2.5m
b 0.025 m
1-b3 1,3,5 FI X 2.5m
24 PI Z 2.5m
b 0.10 m
1-cl All FM, FI Sm 0.8
Ss 0.5
1-c2 All FM, PI Sm =51 0.8
24 PI b 01m
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Table 8. Layer geometry in Problem 2

Layer # Type Z (m) X (m) b (m)
1 FM 10 0.5 1074
2 PI 5x 1072
3 FM 10 0.25 5% 107°
4 PI 2.5 x 1072
5 FM 10 3 2 x 1074
6 PM 5
7 FM 15 0.1 2 x 1074
8 PI 107!
9 M 10 4 2x107°
10 FI 2x107°
11 FM 20 1 5x 1075
12 PM 5
13 FM 30 6 8 x 107°
14 PM 00
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Table 9. Rock properties in Problem 2

Layer # om ™ Sm of Tt St
1 0.15 0.5 0.7 1 1 0.2
2 0.3 0.3 1 0.3 0.3 0.4
3 0.1 04 0.6 1 1 0.15
4 | 0.35 0.3 1 0.35 0.3 0.3
5 0.05 0.5 0.8 1 1 0.1
6 0.35 0.8 0.9 0.35 0.8 0.9
7 0.025 0.2 0.9 1 1 0.1
8 0.2 0.3 0.9 0.2 0.3 04
9 0.01 0.2 0.95 1 1 0.05
10 0.01 0.2 0.95 1 1 0.05
11 0.05 0.15 0.95 1 1 0.05
12 0.1 0.1 0.9 0.2 0.1 0.9
13 0.05 0.1 1 1 1 1
14 0.1 0.1 1 0.1 0.1 1
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Table 10. Transfer coefficients in Problem 2

45

Layer 3H or ¥9Tc BTNp 239py

# Kre) | Kjh | Kre Kj(h) K7 Kj (1)

1 0. 0 6 x 104 3x 1078 6 x 1072 3x106

2 0 0 8 x 1074 8 x 1074 8 x 1072 8 x 1072

3 0 0 7x 1074 3.5x 1078 7x107% | 3.5x107°
4 0 0 8 x 1074 8 x 1074 8 x 1072 8 x 1072

5 0 0 8 x 1074 4 x 1078 8 x 1072 4x1078

6 0 0 104 104 102 1072

7 0 0 1073 5x 1077 1071 5x107°

8 0 0 8 x 1074 8 x 1074 8 x 1072 8 x 1072

9 0 0 5x107% | 25x1078 5x107% | 2.5x107°
10 0 0 5x107% | 25x 1078 5x 1072 | 2.5x107°
11 0 0 9x107% | 45x1078 9x 1072 | 45x107°
12 0 0 1073 1073 107! 107!

13 0 0 6 x 1074 3x 1078 6 x 1072 3 x 1076

14 0 0 7x 1074 7x 1074 7x 1072 7 x 1072

(*): in m3/kg, (f): inm
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Layers 1,2,4,%:  Fractured media
Layer 3: Unfractured media

y {] S N
i@ \\,
- M=3 . T fractures

My=2

Figure 1. A variably-fractured layered geologic system.
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Figure 2. Fracture-matrix configurations and important parameters in Cases 1 and 2.
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Layer n

Layer n+1

Interlayer

/
/

Figure 3. A graphic representation of the concept of interlayer describing the effects of

fracture misalignment. The properties of layers n and n + 1 are denoted by | and 2,

respectively.
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Legao e v v r o by v v bv g v Vo v e by a b v g gt
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i — Analytical I
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T o107 3
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Distance z (m)

Figure 4. Comparison of the semianalytical (SA) solutions from FRACL to the analytical

solution of radioactive solute transport in fractured media in Tests FS1 and FS2.
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Figure 5. Comparison of the SA solutions to the analytical solutions of solute transport in

porous media in Tests PS1 to PS4.
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Figure 6. Comparison of the SA solutions from FRACL to the analytical solutions of solute

transport of the radioactive chain 234U — 230Th — 226Rga in porous media in Test PSS5.
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i llllll[

T IIITTII

1
1

t=10" days

2 t=10° days

10

1 Illllll
1 IIIIIII

J 10°

1 lllllll
1 Illllll

1
1

10° - - I :
5 _ o
10 ; , *H transport :
] L Case 1-a n
6 $ 3
10 _I T 1 1 T l 1 l‘ .| i I I 1 { 1 I T I 1 1 I 1 ] 1 T
0 5 10 15 20 25

Vertical coordinate z (m)

Figure 7. Effect of fracture offset (presence of interlayers) on the transport of *H through
the layered fractured system of Case 1-a (NI: no interlayer, FI: fracture interlayer, PI(a):

porous interlayer with b = 0.025 m, PI(b): porous interlayer with b = 0.1 m).
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Figure 8. Combined effect of increased X and fracture offset (presence of interlayers) on

the transport of *H through the layered fractured system of Case 1-b (nomenclature as in

Figure 7).
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Figure 9. Combined effect of water saturation S and fracture offset on the transport of 3H

through the layered fractured system of Case 1-¢ (nomenclature as in Figure 7).
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Figure 10. Fracture CR, profiles of *H in the complex geological system of Problem 2 (CC:

constant concentration boundary, DC: decaying concentration boundary).
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Figure 11. Fracture Cj, profiles of *Tc in the geological system of Problem 2 (PC: pulse

concentration boundary).
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Figure 12. Fracture Cp profiles of 23"Np in the geological system of Problem 2.
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Figure 13. Matrix Cp profiles of 227"Np at different elevations in the geological system of

Problem 2.
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Figure 14. Fracture C profiles of 23%Pu in the geological system of Problem 3.
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Figure 15. Effect of » < 1 on the fracture Cp profiles of 239Pu in the geological system of

Problem 3.
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Figure 16. Fracture Cr, profiles of 23°U in the geological system of Problem 3 for ¢ < 108

days.
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Figure 17. Fracture C, profiles of 23U in the geological system of Problem 3 for ¢ > 108

days.
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Figure 18. Fracture Cg profiles of 231Pa in the geological system of Problem 3.
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