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Semianalytical Solutions of Radioactive or Reactive 
Transport in Variably-Fractured 
Layered Media: 1. Solutes 

Abstract. In this paper, semianalytical solutions are developed for the problem of 

transport of radioactive or reactive solute tracers through a layered system of heterogeneous 

fractured media with misaligned fractures. The tracer transport equations in the non- 

flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the 

mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, 

or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order 

chemical reactions. The tracer-transport equations in the fractures account for the same 

processes, inadditiontoadvectionandhydrodynamicdispersion. Anynumberofradioactive 

decay daughter products (or products of a linear, first-order reaction chain) can be tracked. 

The solutions, which are analytical in the Laplace space, are numerically inverted to provide 

the solution in time and can accommodate any number of fractured and/or porous layers. 

The solutions are verified using analytical solutions for limiting cases of solute and colloid 

transport through fractured and porous media. The effect of important parameters on the 

transport of 3H, 237Np and 239Pu (and its daughters) is investigated in several test problems 

involving layered geological systems of varying complexity. 

1. Introduction 

The study of radioactive andor reactive contaminant transport in complex fractured 

geologic systems has become increasingly important in recent years because of the need 

to predict the migration and fate of the contaminants. Currently, there are some very 
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large contaminated sites (such as Hanford, Washington; Nevada Test Site (NTS), Nevada; 

Idaho National Engineering and Environmental Laboratory (INEEL), Idaho) where severe 

pollution by radioactive materials extends over large areas within the subsurface rocks. 

At Yucca Mountain (YM), Nevada, the site of the potential repository for high-level 

nuclear waste, the transport of radioactive contaminants must be predicted for tens to 

hundreds of thousands of years. Performing reliable radionuclide transport calculations for 

this temporal and spatial scale is obviously very difficult, and furthermore it is impossible 

to verify the results. In addition, the complex geology of the site and the unsaturated nature 

of a significant portion of the flow path add to the difficulty in making such predictions. 

The potential site is located in southern Nevada about 120 km northwest of Las Vegas, 

and is characterized by a thick unsaturated zone (600-700 m) and the presence of rocks onto 

which important radionuclides in the wastes tend to sorb strongly. The YM stratigraphy 

consists of layers of welded and nonwelded tuffs (with vastly different hydraulic, transport, 

and geochemical properties), with the former generally being extensively fractured and the 

latter behaving similarly to a porous medium [Montazer and Wilson, 1984; Liu et al., 1998; 

Bandurraga and Bodvarsson, 19991. 

The varied geological and hydrological characteristics of the different tuff layers at 

Yucca Mountain make the modeling of flow and transport a challenging task. A single 

representation for all of the hydrogeologic units is inappropriate, and several different 

approaches and algorithms must be employed for obtaining reliable modeling results. 

Analytical and semianalytical models of transport that can account for the site heterogeneity 

are important because they allow the validation of complex multidimensional numerical 

models, are computationally efficient, and can provide bounding estimates of the possible 

solutions of the expected transport at the site. 

Previous analyticalsolutions ofsolutetransport infractured mediainvolvedexclusively 

single semi-infinite domains (layers). Tunget al. [ 198 1 ] developed a quasi two-dimensional 

solution for the transport of solutes in a single saturated fracture (i.e., with a semi-infinite 
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matrix) that assumed a constant concentration boundary and accounted for (a) advection 

and dispersion in the fractures, (b) diffusion in the matrix, the fractures, and across their 

interface, (c) sorption onto the matrix and the fractures, and (d) radioactive decay. The 

analytical solution of Sudicky andFrind [ 19821 accounted forthe sameprocesses inasystem 

of parallel fractures (i.e., with a finite matrix block size). The solution of Robinson et al. 

[ 19981 is an extension of the Sudicky and Frind [ 19821 solution and accounts for the effect 

of fracture skin on transport in a system of parallel fractures. By neglecting hydrodynamic 

dispersion inthe fracturesand assuming aninstantaneous (Dirac-type) deposition of a parent 

radionuclide at the boundary, Sudicky and Frind [ 19841 obtained analytical solutions to the 

problem of transport of a two-member radioactive chain in a single fracture. 

In this paper, semianalytical solutions are developed for the problem of transport of 

radioactive or reactive solute tracers (Le., at concentrations that do not affect the fluid prop- 

erties) through a layered system of heterogeneous fractured media with misaligned fractures 

(such as the unsaturated zone at YM). The solutions allow any number and combination of 

fractured and/or porous layers that can vary in hydraulic and transport properties, fracture 

frequency, water saturation, fracture flow, and fracture-matrix interaction. The tracer trans- 

port equations in the non-flowing matrix account for (a) molecular diffusion, (b) surface 

diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear 

kinetic or equilibrium physical, chemical or combined solute sorption, and (e) radioactive 

decay or first-order chemical reactions. The solute transport equations in the fractures ac- 

count for the same processes, in addition to advection and hydrodynamic dispersion. Any 

number of daughter products of radioactive decay (or of a linear, first-order reaction chain) 

can be tracked, and several boundary conditions can be accommodated. 

2. Solute Transport Equations 

2.1. The PDE of Solute Transport 

The one-dimensional (I-D) Partial Differential Equation (PDE) of transport of a 
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radioactiveorreactivesolutetracersthroughavariablysaturatedporous orfracturedmedium 

(PM or FM) is described by the equation 

where 

dissolved species concentration in the mobile pore water [ML-3];  

intrinsic diffusion coefficient for the mobile pore water [L2T1];  

dissolved species concentration in the immobile pore water [ 

intrinsic diffusion coefficient in the immobile pore water [L2T-l]; 

= Fp + F, ; 

relative concentration of the physically adsorbed species [ ( A ~ L - ~ ) / ( M L - ~ ) ] ;  

relative concentration of the chemically sorbed species [ (ML-3) / (  A ~ L - ~ ) ] ;  

reacted species mass per unit volume in the mobile fraction 

reacted species mass per unit volume in the immobile fraction [ML-3];  

apparent surface diffusion coefficient [ML-lT-l]; 

= V 4 (S - ST), Darcy velocity [LT-'1; 

pore flow velocity [ L T - ~ I ;  

water saturation [L3/L3];  

irreducible water saturation [ L 3 / L 3 ] ;  

PM grain density [ i ' ~ f L - ~ ] ;  

total PM porosity [L3 /L3] ;  

= ln2/T1/2, radioactive decay constant [T- l ] ;  

half-life of radioactive species [TI. 

The parameters 6, and 6~ are defined as 

0 for reactive transport 

1 for radionuclidc transport 

1 for reactive transport 

0 for radionuclide transport 
& =  { and 6~ = 
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The first three terms on the left-hand side of (1) describe diffusion in the mobile pore 

water [Skagius and Neretnieks, 19881 through the immobile thin film in the immediate 

vicinity of the PM grains [de Marsily, 19861, and surface diffusion [Jahnke and Radke, 

1987; Skagius and Neretnieks, 1988; Cook, 1989; Berry and Bond, 19921, respectively. The 

fourth term on the left-hand side ( 1 )  describes advective transport. The terms on the right- 

hand side of equation ( 1 )  describe the dissolved species accumulation and radioactive decay 

in the pore water, in the immobile fraction, and on the PM grains due to sorption. Chemical 

reactions in the water phase are also accounted for [Cho, 19711. A detailed discussion of 

these terms can be found in Moridis [1999], from where 

where DO is the molecular diffusion coefficient of the dissolved species in water [ L 2 T 1 ] ,  

a ~ ,  is the longitudinal dispersivity [L], rp is the tortuosity factor of the pore paths 

[dimensionless], and Ti is the tortuosity factor in the diffusion paths through the immobile 

fraction [dimensionless]. If surface diffusion cannot beneglected [Jensen and Radke, 19881, 

DF is given by [Jahnke, 1986; Jahnke and Radke, 19871 

where rs is the tortuosity coefficient of the surface path [dimensionless], and D, is the 

surface diffusion coefficient [L2T-']. For homogeneous PM systems there is theoretical 

justification [Cook, 19891 for the relationship r, = $ rp. 

The species concentration in the mobile and immobile water fractions are related 

through the linear equilibrium relationship [de Marsily, 19861, 

where Ki is a dimensionless mass transfer coefficient. Equation ( 1  ) then becomes 
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where 
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and 

2.2. The Equations of Solute Sorption and 

First-Order Chemical Reaction 

Consideringthat sorption occurs as thedissolvedspecies diffusesthrough the immobile 

water fraction, and assuming linear equilibrium (LE) sorption, the following relationship 

applies: 

F,=KdKiC,  (8) 

where Kd is the distribution coefficient [M-1L3]. 

Linear kinetic physical (LKP) and linear irreversible physical (LIP) sorption are 

described by the equation [Muridis, 19991 

where I C ,  is the kinetic constant of linear adsorption [T-l],  and 

1 for LKP sorption; 

0 for linear LIP sorption. 
.=( 

In the case of LIP sorption, Kd does not represent the distribution coefficient of LE sorption, 

but is rather a proportionality factor. 

Thefirst-order reversiblechemicalsorptionisrepresentedbythelinearkineticchemical 

(LKC) model 

(11) 
i3Fc 
- + A F c = I C T  KiC F C ,  at 

where IC: [ A 4 - ' L 3 T ' ]  and IC; [T-'1 are the forward and backward kinetic constants, 

respectively. Note that equation ( I  I )  can be used in conjunction with the physical sorption 
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equations to describe combined sorption [Cameron and Klute, 19771, e.g., physical and 

chemical sorption. Combined sorption accounts for the different rates at which a species 

is sorbed onto different PM constituents. Thus, sorption onto organic components may be 

instantaneous(LE),whilesorptionontomineralsurfacesmaybemuchslowerandkinetically 

controlled [Cameron and Klute, 19771. 

The equations of a series of Nc first-order chemical reaction are given by [Cho, 19711 

where Kj 0’ = 1,. . . N,) is the chemical reaction rate constant [T-l], and N, is the 

number of chemical reactions in the series. 

2.3. The Solute Transport ODE in the Laplace Space 

2.3.1. Parent or Stable Species. After incorporating the sorption terms, the Laplace 

transform (LT) of the solute transport equation ( 5 )  yields the following Ordinary Differential 

Equation (ODE) 
d 2 e  d e  h 

D - - U - - E C = O ,  
d x 2  d x  

where e = C{C}, C{} denotes the LT of the quantity in the brackets, 

R =  

E = 4 [(s + 6x A) R + 6, hK] , 
h + w $  for LE sorption; 

h + u $  

I1 + v ?/I 

ti + (w + u )  41 

h + (20 + 71) 1/, 

it. + (u, + 71)  1/1 

for LKP or LIP sorption, 

for LKC sorption, 

for combined LE and LKP/LIP sorption, 

for combined LE and LKC sorption, 

for combined LKPLIP and LKC sorption, 
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D = <  

' DT + 47s w '$ Ds 

DT + 4 T, u '$ D ,  

DT + 47s '$ D, for LKC sorption, 

DT + 4 7, ( w  + u)  '$ D, 

DT + 4 rS ( w  + v) '$ D, 

\ DT + 4 rS (u  + v) $ D, 

for LE sorption; 

for LKP or LIP sorption, 

for combined LE and LKP/LIP sorption, 

for combined LE and LKC sorption, 

for combined LKPLIP and LKC sorption, 

and s is the Laplace space parameter. The term R is an expanded retardation factor, which 

can account for kinetic behavior [Moridis, 19991. Its development involves the LT of the 

sorption from equations (8) through (1 1). It is straightforward to show that [Moridis, 19981 

U 

U for LKC sorption, 

for LKP or LIP sorption, 

w + u for combined LE and LKPLIP sorption, 
p =  I 

w + u for combined LE and LKC sorption, I u + u for combined LKPLIP and LKC sorption. 
Equation ( 1  3), subject to equations (14) through ( I  9), is the Laplace space equation 

of solute transport in its most general form. Implicit in (13) are the assumptions that (a) 

C(z, t = 0) = 0, (b) F ( z ,  t = 0) = 0, (c) R(z ,  t = 0) = 0, and (d) in combined sorption, 

different sites are involved in each of the constituent types of sorption. 

2.3.2. Daughter Species of Radioactive Decay. If the species is radioactive, the 

right-hand side of equation ( 5 )  is augmented by the term 
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M u  is the molecular weight of the v-th daughter (1 < v 5 Nd, Nd being the total number 

of radioactive decay or reaction products), and v - 1 refers to the decaying parent. Then, the 

Laplace space transport equation for any daughter product u of the decay chain following a 

LE isotherm is given by 

de ,  h h 

U - - E, C, = -G, C,-i, d2 e,, 
D v p -  dx 

where 

G, = 4% A”-1 Ru-I 

If the daughter sorption is kinetically controlled, equations (9) and (1 1) need to account 

for the generation of daughter mass due to the decay of the sorbed parent, and become 

where F,-1 is the sorbed mass of the parent, 

k ,  Kd Ki for LKPLIP sorption, k,  6, for LKPLIP sorption, 

k z  Ki for LKC sorption, k; for LKC sorption, 
k a =  { k P =  { 

and C, is the fraction of the mass of the decayed sorbed parent that remains sorbed as 

a daughter (0 5 C, 5 1). The term C, is introduced to account for the possibility that 

daughters can be ejected from grain surfaces due to recoil, e.g., the ejection of 234Th from 

grain surfaces during the alpha decay of 238U [Faure, 19771. The LT of (22) returns 

where p is obtained from equation (19), and 

for (a) LKPLIP or (b) combined LE-LKPLIP sorption 

for (a) LKC sorption or (b) combined LE-LKC sorption 

A,-1 CY u 
s + A, + k, 6, 
xu-1 Cv 21 

s + A, + k ,  

(24) 

For combined LKC and LKPLIP sorption, p7. is the sum of the two components in (24). 

Using (23) and (24), it is easy to show that equation (20) applies, but with 
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All other terms in (20) remain unchanged. Equations (20) through (25) are valid in any 

layer n. For a complete daughter ejection [Faure, 19771, c,, = 0, p ,  = 0, and (21) and (25) 

become identical. 

2.3.3. Products of Chemical Reactions. If the species is a product of the v-th first- 

order chemical reaction in the reaction chain (12), the right-hand side of equation ( 5 )  is 

augmented by the term -4 h K,-l Cv-l. Then, equation (20) applies unchanged, but with 

3. Transport in Layered Fractured Media 

The development of the equations for transport in a layered fractured media expands 

on the analysis of Tang et al. E19811 and Sudicky and Frind [1982]. A schematic of the 

fracture-matrix system is shown in Figure 1, in which the N layers have different properties. 

3.1. Transport in the Matrix 

3.1.1. The ODE of Parent or Stable Species Transport in the Matrix. Advection 

in the matrix is neglected, that is UT = 0. Then the Laplace space ODE of the species 

transport in the matrix layer n is given by 

where the superscript m denotes the matrix. The diffusive flux across the fracture-matrix 

interface is given by 

and differs from the analogous expression of Tang et al. [ 198 11 in the inclusion of the active 

interface area reduction factor T,. The term T, (1 2 T, > 0) is defined as the ratio of the 

average interface area between mobile water in a fracture and its surrounding matrix to the 

average interface area between a fracture and the surrounding matrix. A detailed discussion 

on the subject can be found in Liu et ul. [ 19981. For a fully saturated fracture, T~ = 1. 
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3.1.2. The ODE of Daughter Transport in the Matrix. From equation (20), the 

Laplace space ODE of transport of the daughter v in the matrix of layer n is given by 

where the term G r  is computed from (21) to (26). The diffusive flux of the daughter v 

across the fracture-matrix interface is given by equation (28). 

3.2. Transport in the Fractures 

3.2.1. Adjustments to Concepts and Equations. In fracture transport, the Darcy 

velocity Un in any layer n is computed from the basic mass balance equation as 

where Qw is the water influx rate per unit fracture thickness (in the y direction, not shown 

.in Figure 1) at the z1 = 0 boundary [L2T-l],  and 2bn is the fracture aperture [L] .  The 

parameter Mn [L/L]  is the relative fracture density, and is determined from the number of 

fractures in an arbitrary length L, (see Figure 1). The term L, is related to the matrix block 

half-width X n  [L] and bn (see Figures 2a and 2b) through the relationship 

n =  1, ..., N .  L X  

2 (Xn + bn) ’ 
M,  = 

There are two different ways to treat the fractures. If the fractures are open, we 

have surface-based rather than volume-based sorption in the fractures of any layer n 

(n = 1, . . . , N ) .  The following changes are then made: 

(a) F is now the mass of solute adsorbed per unit surface of the fracture [ M L P 2 ] .  

(b) From the mass balance equations, the term (1 - 4) p in (1 7) is replaced by 1 /bn, where 

bn is the fracture half-width or half-aperture [L]  in layer n. 

(c) The distribution coefficient of the fracture K;1/ is now defined as the mass of solute 

adsorbed per unit area of surface divided by the concentration of solute in solution 

[Tunget ul., 19811, with units [L].  
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(d) The kinetic constants k: of chemical sorption in (1 1) have units [LT-'1; k; in (1 1) 

have units [A4L-2T-1]. 

If the fractures are filled (a rather common occurrence), they are treated as a porous 

medium. Then, there is no need for the conceptual or mathematical adjustments in ( I )  

through(4). Inbothopenandfilledfractures, theright-handsideofequation(5)isaugmented 

by the term 

l/b,  for open fractures 

{ l  for filled fractures, 
Qn = f: qn, where f: = 

and gn is described by (28). 

3.2.2. The ODE of Parent or Stable Species Transport in the Fractures. The 

Laplacespaceequation forfracture transport alongthe z-coordinate(Figure 1)then becomes 

where the f superscript denotes the fracture, the n subscripts denotes the layer, and 

Qn = C{Qn}.  Equation (31) is written in terms of the local coordinate z, in each layer n. 

3.2.3. The ODE of Daughter Transport in the Fractures. The Laplace space ODE 

h 

of transport for the daughter v in the matrix of layer n is given by 

All the terms in (32) are as previously defined. 

3.3. Initial and Boundary Conditions 

The initial and boundary conditions corresponding to the fracture equation are 

( 3 3 )  
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where 2, denotes the thickness of the n-th segment (layer). The time dependence of CZo 

allows investigation of systems with time-variable upper boundaries. Some of the more 

common forms of C,o ( t )  are 

CO cons tan t concentration 

CO exp[-A (t  + t d ) ]  

xC:[U( t  - t5-1) - U ( t  - t t ) ]  

decaying radionuclide concentration 

N' 

variable pulse concentration 
i=l 

(34) 

G o ( t )  = 

where CO is a constant, t d  is the release delay (the time between radionuclide generation or 

storage, and the beginning of release), U ( t  - t') denotes the unit step function at time t*, 

and N* is the number of the different pulses with concentration Ci*. Note that t; = 0 and 

that, for N *  = 1, we obtain the unit pulse of duration t;. 

The initial and boundary conditions corresponding to the matrix equation are 

C,"(x,t = 0) = 0, 

C,"(x = 0 , t )  = CL(Z,,t), 

(x = X ,  t )  = 0 for Case 1 (Figure 2a), F 
C z ( x  -+ 03, t )  = 0 for Case 2 (Figure 2b), 

(35)  

where X is the half-width of the matrix block (Figure 2). Case 1 in Figure 2a describes a 

finite system with a Neuman-type boundary at x = X. If dry fractures (i.e., fractures in 

which the water phase is discontinuous) occur in the rock matrix of Case 1, the half-width 

X is replaced by X* = 2X/(nd + l), where n d  is the number of dry fractures evenly spaced 

along x inthe matrix block(Figure 2b). Case 2 in Figure 2b describes asemi-infinitesystem. 

The Laplace transforms of equations (33) through (35) are trivial. 
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4. The Laplace Space Equations 

4.1. General Matrix Solutions in Each Layer 

4.1.1. Parent or Stable Species. Omitting for simplicity the n subscript, and 

expanding on Tang et al. [ 198 11 and Sudicky and Frind [ 19821, the solutions to (27) are 

H" cosh[8 (X - z)] 

H e  exp(-8 Z) 

for Case 1 

for Case 2 

h 

respectively, where HC and H e  are parameters to be determined, and 

From (36) and the Laplace transform of (359, 

for Case 1 

for Case 2 

ef 
H"cosh(8X) = c^f + HC = 

cosh (8 X) 
h 

He = Cf 

h 

C y ,  = 0) = 

from which 
cosh[8 ( X  - z)] - cf for Case I 

cosh(8 X) 
h h 

C" = Crn(z,s)  = 

for Case 2 

The equations in (39) are applicable in any layer n (n = 1,. . . , N). 

4.1.2. Daughter or Reaction Products. Following the same approach, it is 

straightforward to show that the Laplace space solution of the ODE in (32) for any daughter 

or reaction product v is given by 

1 

H: cosh[O,(X - z)] + H: cosh[8,(X - z)] for Case 1 

1 

H z  exp( -8, x) + for Case 2 
n=v- 1 

A cr = 

where 



~~~ ~ ~ 
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The coefficients H,, are given by the general expression 

U 

H ,  = Tu,K , 
n= I 

where are appropriate coefficients. Expressions for H ,  and Tu,& (the derivation of 

which is tedious but straightforward) are provided in Appendix A. Equation (40) shows that 

the solution of the matrix transport equation of the daughter or reaction product v requires 

knowledge of the fracture solutions of all previous members of the decay or reaction chain. 

4.2. General Fracture Solutions in Each Layer 

4.2.1. Parent or Stable Species. From the Laplace transform of the diffusive flux in 

(30), and omitting for simplicity the subscript n, 

(j = y f q  Ef , 

where 
r Dm 13 tanh(6' X) for Case 1 

r D " 8  for Case 2 
Substituting in (3 1) and collecting terms, 

dEf h u - - E* cf = 0 ,  Df - -  d2Ef 
dz2 d z  

where E* = Ef + y fq. The general solution to (45) is given by 

where Q and p are parameters to be determined, and 

rt 
r l =  

U -+ dU2 + 4Df E* 
2 Df 

(43) 

(44) 

(45) 

(47) 

Equations (43)-(47) apply in any layer n. 

4.2.2. Daughter or Reaction Products. From equations (30)-(32) and (40)-(42), for 

a daughter v 
I /  
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Equation (48) is general and applies to both Case 1 and Case 2. Expressions for W,, and 

yY,& are provided in Appendix B. 

Substituting in (32) and collecting terms, 

V-1 
h de: h 

U - - E:C,f = -G,,Eyf-l + f q  CyV,nCl, d2 

&=l 
Df,,- d z  (49) 

where E: = EL + yu,u fQ. 

Following the same approach, it is straightforward to show that the Laplace space 

solution of any daughter or reaction product v is given by 

where 
1 1 

n=u-1 n=u-l 

and 

Expressions for B:n and for u 5 5 are given in Appendix C. Equations (50) and (5 1) show 

that the solution of the fracture transport equation of the daughter or reaction product u 

requires knowledge of all previous a, and PY, i.e., the solutions of all previous members of 

the chain. 

5. The Solution Approach 

5.1. Determination of the a and p Parameters 

Equation (46) defines a total of 2N unknowns, i.e., the a and p parameters in each of the 

N subdomains. These are obtained from the solution of the following equations. 

5.1.1. Boundary Equations. These apply to the z1 = 0 point in the first layer (n = 1). 

From (46) and the Laplace transform of (33), for a known boundary concentration we have 



while for known flux boundary conditions 

f +  Ql(U1 - D, rl ) + Pl(U1 - Df r l - )  = Ul e o  

h 

where CZo = C{ CZo}. For the common boundary conditions in (34), 

(54) 

h 

c z o  = 

' co - 
S 

. i=l 

constant concentration 

decaying radionuclide concentration 

piecewise constant concentration. 

(55) 
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For the limiting case of a system consisting of a single semi-infinite layer (Le., N = 1) 

with an open fracture and a constant concentration at 21 = 0, cy1 = 0, P1 = Co/s, and 

equation (46) is reduced to the Laplace space solutions obtained by Tanget al. [ 198 I ]  (Case 

2) and Sudicky and Frind [ 19821 (Case 1). 

5.1.2. Concentration Equations. At the layer interfaces we have the equations 

for n = 2,. . . , N. An additional equation is provided by the requirement that 

for ZN --+ 00, which dictates that Q I N  = 0. 

be finite 

5.1.3. Flux Equations. The remaining N - 1 equations are provided by the equality 

of fluxes across the layer boundaries in the fractures, which dictates that 

in which the quantity in the brackets is computed at the value of the local z coordinate 

indicated by the bracket subscript. From (46) and (57) we obtain 
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where n = 1,. . . , N - 1. 

5.1.4. Equations for Daughters. For a daughter product u of radioactive decay or 

reaction, the following changes are made to equations (53) through (58): 
h 

In the right-hand side of equations (53) and (54), the term e Z o  is replaced by C V , z ~ ,  

where CVlZo = C{ C u , z ~ } ,  and C V , z ~  is the concentration of daughter v at 2 1  = 0. For a 

constant Cu,z~, Cu,z~  can be obtained from equation (55).  For a z1 = 0 boundary with 

a decaying radionuclide concentration, C V , z ~  is computed from the Laplace transform 
acv 20 of the mass balance equation - = XVCu,zo - Xu-lCV-l,zo as at 

h 

h 

h 

For a reaction chain, equation (59) indicates a recursive reaction. 

The zero on the right-hand side of the layer interface equation (56) is replaced by 

YV,,(zn = 0) - Yu,n-l(~n-l = Zn) for n = 2, .  . . , N. 

Equation (57) applies unchanged. The zero on the right-hand side of equation (58) is 

replaced by the known quantity 

5.2. The Laplace Space Solutions 

The generality and complexity of these equations preclude the development of closed- 

form solutions for cq, (i = 1,. . . , N). Consequently, it is not possible to analytically 

invert equations (46) or (50), and to obtain a closed-form equation for concentration in 

time. The problem is alleviated by numerically inverting the Laplace space solutions. The 

algebraic equations discussed in Section 5.1 may be written in a general matrix form as: 



where M is the coefficient matrix, k is the vector of the unknowns, and B is the composite 

vector of knowns. Solution of (7 1) returns the vector 

The solution of the matrix equation (60) necessitates arithmetic values for the s 

parameter of the Laplace space. These are provided by the numerical inversion scheme 

of DeHoog et al. [ 19821 that uses complex values for s. The quantities M, k and assume 

the complex type of s. A detailed discussion of the application of this method and its 

performance can be found in Sudicky [ 19901 and Moridis [ 19981. 

The ai and pi computed from the matrix equation (60) are then used to obtain all 

the solutions (i = 1,. . . , N). The corresponding e: solutions are obtained from C,f 

and equations (39) or (40)-(42). Note that the solutions for daughters or reaction products 

require knowledge of the solutions of all the previous members in the chain. 

h 

5.3. Numerical Inversions of the Laplace Space Solutions 

The various time-variable concentrations can be determined by numerically inverting 

the Laplace space solutions, Le., 

where C-'{} denotes the inverse Laplace transform of the quantity in the brackets. Details 

on the inversion will not be discussed here; they can be found in DeHoog et al. [1982]. 

6. Treatment of Special Conditions 

6.1. Misaligned Fractures 

The analysis presented thus far assumes that the effect of fracture offset on transport is 

negligible. This may not be the case for large fracture spacing or at short observation times. 
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The process that accounts for fracture misalignment is described in Figure 3. The 

increased travel path of the transporting water caused by the offset fractures is indicated 

by the horizontal pathway at the confluence of the n and n + 1 layers in Figure 3a, and its 

effect is described by the addition of an “interlayer”, i.e., a pseudo-layer (Figure 3b) with 

the following characteristics: 

(a) A thickness 21 = max{Xn,Xn+l} if M, > or 21 = min{X,,Xntl} if 

M n  < Mn+l. 
(b) A relative frequency MI = M,. 

(c) An open or filled fracture of half-width b ~ ,  through which water flows between the n 

and n + 1 layers. The properties of the fracture in the interlayer are independent of 

those in the layers above and below. 

(d) A complex matrix, composed of the matrices of both the n and n + 1 layers. In Figure 

3b, the matrices of the n and n + 1 layers are positioned on the left and right sides 

of the fracture, respectively. The two components of the matrix are assumed to be 

semi-infinite, as illustrated by their rotation by 90” (with respect to the original layer 

orientation) in Figure 3b. Then, the flux into the composite matrix of the interlayer is 

computed from equation (43), but with y 71, where 

and yn, yn+l are computed from equation (44). 

Thus, considerationof misaligned fracturestransformsasystem of N layerstoasystem 

of N + NI layers, where NI is the number of interlayers. The solution of the augmented 

system does not pose any particular challenges and proceeds in the manner discussed in 

Section 5. Note that this approximation involves the longest possible travel path and the 

largest possible amount of tracer diffusion. This is because diffusion into the matrix of the 

interlayer (see Figure 3b) is larger than that into the n and n + 1 layers (along the layer 

interface) owing to steeper gradients and their semi-infinite nature. Thus, the assumption of 

fracture alignment provides the most conservative solution, while the assumption of fracture 
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misalignment (as described by the concept of interlayers) reflects the least conservative 

scenario. These two solutions provide the limits that bracket the true solution. 

6.2. Occasional Unfractured Layers 

If the layered system includes unfractured (porous) layers (e.g., Layer 3 in Figure 

l), these are treated as a combination of a pseudo-matrix (representing the nonflowing 

portion of the layer) and a pseudo-fracture representing the flowing portion of the layer. In 

essence, unfractured layers are treated as filled-fracture systems, and all the equations apply 

unchanged. The properties of the unfractured medium are assigned to both the pseudo- 

matrix and the pseudo-fracture. The relative sizes of b and X can describe the flowing and 

non-flowing portions of the porous medium. If water flows uniformly through the porous 

medium, X = 0. This approach maintains water mass and flux balance. 

It is obvious that, for unfractured media, L,  = 2(b, + X,), Le., M ,  = 1. Note that 

water saturations S must be obtained from the solution of the steady-state flow equation 

because the derivation of the transport equations is based on time-invariant flow conditions 

and cannot compute changes in S. 

6.3. Transport in Layered Unfractured Media 

This is a limiting case of the scenario discussed in Section 6.2. Setting the non-flowing 

portion of the matrix X ,  = 0 (n  = 1,. . . , N )  transforms the problem into that of 1-D 

solute transport in a layered porous (unfractured) system. Then, all the solutions derived 

here apply unchanged. 

7. Verification 

A FORTRAN program was written to obtain the semianalytical (SA) solutions 

developed in Sections 4 through 6 by first solving (60), and then performing the numerical 

inversion indicated in (62). This code, named FRACL, accounts for all the processes, 
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phenomena and conditions discussed in Sections 2 through 6. It can obtain solutions for 

a system involving an arbitrary number of layers N of any combination of porous and/or 

fractured media, and up to 4 daughters. It is computationally very efficient, and required 

less than 10 seconds for any of the problems discussed in Sections 7 or 8. 

FRACL is verified through comparisons to analytical solutions of radioactive solute 

and colloid transport in 1 -D porous (unfractured) media and quasi-2-D fractured media. In 

all cases, FRACL solutions are first obtained in a system consisting of a single semi-infinite 

layer (i.e., N = 1). The domain is then subdivided into three layers in the z direction, and 

FRACL solutions for this multilayered system (N = 3) are obtained. Coincidence of the 

analytical solutions to the FRACL solutions for N = 1 and for N = 3 verifies FRACL. 

7.1. Tests FSl and FS2: Radioactive Solute Transport in Fractures 

Tests FS 1 and FS2 describe transport with LE sorption in the fracture-matrix system of 

Case 1 (parallel fractures, Figures 2a) and Case 2 (single fracture, Figure 2b), respectively. 

The corresponding analytical solutions were developed by Sudicky and Frind [ 19821 and 

Tang et al. [ 19811. The values of the parameters used for the computation of the analytical 

and the SAsolutions areas in Sudickyand Frind [ 19821, and are listed in Table 1. A constant 

concentration (CC) condition is applied at z1 = 0. 

Figure 4 shows the distribution of the relative concentration CR (defined as CR = 

CL/Czo) in the fractures along the z axis at (a) t = 1,000 days in Test FS1 and (b) 

t = 10,000days in Test FS2. In both tests, the analytical solution and the two FRACL 

solutions (for N = 1 and N = 3) are identical in the first 5 significant digits. 

7.2. Tests PS1 to PS4: Radioactive Solute Transport in 

Unfractured Porous Media 

Tests PSI to PS4 are designed to confirm the ability of the SA solutions to describe 

transport in unfractured media without any modification. The solution to this problem is 

provided by Bear [ 19791, and accounts for LE sorption and radioactive decay. 
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The values of the parameters used for the computation of the analytical and the SA 

solutions of Tests PS 1 to PS4 are listed in Table 2. In all four tests, a constant concentration 

condition is applied at z1 = 0. The solute is a nondecaying isotope in Tests PS1 and PS2, 

and a decaying radionuclide in Tests PS3 and PS4. LE sorption is considered in Tests PS2 

and PS3, but is ignored in Tests PSI and PS4. 

Figure 5 shows the distribution of the relative concentration CR along the z axis at 

t = 200 days. The SA predictions of CR distributions for both N = 1 and N = 3 are 

identical with the analytical solutions of Bear [ 19791. 

7.3. Test PS5: Transport of a Three-Member Radioactive 

Solute Chain in Unfractured Porous Media 

This test is designed to verify the ability of the SA solutions to describe the transport of 

reactive chains in unfractured media without any modification. An analytical solution to this 

problem was developed by Harudu et al. [1980], and accounts for LE sorption, radioactive 

decay, and time-variable boundary conditions. 

Test PS5 describes the transport of the radioactive chain 234U--+230Th+226Ra through 

a sorbing porous medium. The concentration of 234U (i.e., the parent radionuclide) at the 

z1 = 0 is not constant over time, but subject to radioactive decay. The initial concentrations 

of the 230Th and 226Ra daughter radionuclides at the z1 = 0 boundary are zero, but increase 

over time because of the decay of their parents. 

The values of the parameters used for the computation of the analytical and the SA 

solutions of Test PS5 are as in Haradu et ul. [ 19801, and are listed in Table 3. Figure 6shows 

that the analytical solutions at t = 10,000 years coincide with the SA predictions (for both 

N = 1 and N = 3) of the Cn distributions of the three radioactive chain members. 

8. Analysis and Test Problems 

In this section the transport of various radionuclides is studied in layered systems 
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(involving both fractured and porous layers) of different characteristics and properties. The 

Do and X of the radionuclides discussed here appear in Table 4. 

8.1. Problem 1: Importance of Fracture Misalignment 

This problem studies the importance of fracture misalignment on transport, as quanti- 

fied by the concept of interlayers (discussed in Section 6.1). The following analysis focuses 

on the effects of the presence of such interlayers, in conjunction with other parameters of 

the hydrogeologic layers and of the species. The flow velocity in all cases of Problem 1 

was U = 0.1 &day, the system was saturated (S = l), and the z = 0 boundary was kept 

at a constant concentration (C, = 1). 

i 

8.1.1. Case 1-a: Effect of fracture offset (interlayers). This case involves the 

transport of the nonsorbing solute species 3H in a layered fractured system with fracture 

offsets and various interlayer characteristics. Case 1-a involves three sub-cases: 1 -al, 1 -a2 

and 1-a3. The geometry of the reference Case 1-a1 of the layered fractured system is 

described in Table 5 ,  while the hydraulic properties of the fractured layers are shown in 

Table 6. The three main layers (identified as Layers # 1,3 and 5 in Table 6) were fractured 

media (FM), while the interlayers (identified as Layers # 2 and 4) were considered to be 

fracture interlayers (FI, i.e., horizontal open fractures connecting the vertical fractures in 

the layers above and below). 

The characteristics of Cases 1 -a2 and 1 -a3 are explained in Table 7, which shows only 

the differences from the base Case 1 -al. Thus, Cases 1 -a2 and 1-a3 differ from Case 1 -a1 

in that the interlayers are porous interlayers (PI), Le., the horizontal features connecting the 

fractured layers are either fractures filled with porous media or unfractured porous media. 

Flow and transport occurs through a porous medium with different transport behavior than 

in the Flsof Case 1 -al. The hydraulic properties of the porous media in the PIsin Cases 1 -a2 

and ]-a3 are the same as those of the porous matrix in the overlaying and underlying layers. 

The connecting PI in Cases I -a2 and I -a3 have a b = 0.025 in and 0.1 m, respectively. Note 

that in PI and PM layers there are no fractures and b represents the half-width of the flowing 
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portion of the matrix. 

The results of the three subcases of Case 1-a are shown in Figure 7, which shows the 

fracture CR. The presence of the interlayers in Figure 7 is marked by the vertical steps in the 

CR profiles (caused by the fact that Figure 7 indicates the vertical coordinate z and not the 

length of the travel path. For the nonsorbing 3H and at early times, the retardation caused 

by the presence of the FI is measurable, as compared to the case with aligned fractures (no 

interlayer, denoted by NI in Figure 7-included for comparison). This was expected because 

of the longer travel path in the case of FIs, which increase the amount of 3H diffusing into 

the porous matrix and result in lower fracture concentrations. At the same early times, the 

retardation caused by the PIS can be substantial and increases with the half-width b of the 

PI. These results also conform with expectations because of the slower flow velocities in 

the porous media of the PI (as compared to those in the fractures of the FIs), which increase 

the residence time and diffusion into the porous matrix. 

Figure 7 also shows that the effect of the interlayers keeps decreasing with time. This 

was expected in Case 1 -a because the travel path increase caused by the interlayers is small 

(as the layer half-width X is only 0.25 m) and 3H is nonsorbing (leaving diffusion into 

the matrix as the only mechanism removing the radionuclide from the flowing water). At 

t = lo4 days, the presence of interlayers of any kind (FI vs. PI) has no effect on the 

concentration profile in the fractures. 

8.1.2. Case 1-b: Combined effect of interlayers and matrix width of the fractured 

layers. This case involves three subcases: I-bl, 1-b2 and I-b3 (see Table 7). Cases 1-bl, 

1-b2 and 1-b3 differed from Cases 1-al, I-a2 and I-a3 in that X = 2.5 m instead of 0.25 

m, thus substantially increasing the travel path and residence time of 3H in the interlayers. 

This is expected to increase retardation, especially at early times. 

Figure 8 confirms this expectation. At t = lo2 days, the presence of the relatively fast 

flowing FI is sufficient to reduce Cn in the fracture by about four orders of magnitude. The 

effect is more pronounced in Case I-b3 (PI with 6 = 0.1 m). The same pattern is observed 
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at t = lo3 days, at which time the retardation in Case I-b3 remains very substantial. This 

is caused by the reduction of the advectiveand dispersive components of transport (because 

velocity decreases as b increases) in addition to the reduction of the molecular diffusion 

component (due to the smaller 4 and r values in the filled fracture, see equation (2)). 

Remarkably, stronger retardation is observed in Case 1-bl (FI) than in case 1-b2 (PI with 

b = 0.025 m). This is attributed to the larger solute mass in the PI, which is less affected 

by diffusion into the matrix (about the same in both cases). As in Case 1-a, the effect of the 

fracture offset (presence of interlayers) decreases with time. 

The conclusion reached from these results is that the effect of fracture offsets 

(interlayers) increases with the matrix block size of the fractured layers. This is consistent 

with expectations because the travel path increases substantially in fractured system with 

large X ,  with a corresponding increase in residence time and diffusion into the matrix. 

8.1.4. Case 1-c: Combined effect of interlayers and water saturation S of the 

fractured layers. This case involved two subcases: 1 -c 1 and 1 -c2 (see Table 7). Cases 

1-cl differed from Case 1-a1 in that S" = 0.8 and Sf = 0.5 instead of S" = Sf = 1. 

Cases 1-c2 differed from Case 1-a3 in that S" = Sf = 0.8 instead of S" = Sf = 1. The 

effect of S is exhibited through its impact on the water velocity: a higher pore velocity V is 

needed to maintain the same U if S decreases. Thus, faster transport was expected in this 

case, with a corresponding decrease in the importance of the increased travel path caused 

by the fracture offset. 

The results in Figure 9 confirm these expectations. Transport is faster than in Cases 

I -a and I -b, while the importance of the fracture offset (presence of interlayers) decreases 

in systems with the same water mass flow rate but with decreasing S,. 

8.2. Problem 2: Radioactive Solute Transport 

in a Complex Multi-Layered System 

The complex geological system in Problem 2 is comprised of 14 layers and interlayers 

of fractured and porous media. The geometry and configuration of the system are described 
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in Table 8, and the rock properties and conditions are listed in Table 9. Linear equilibrium 

sorptionis assumed, and thesorption coefficientsof thevariousradionuclides inthefractures 

and in the matrix of the various layers (K,f and K T ,  respectively) are listed in Table 10. 

The water velocity U at z = 0 as in Problem 1. 

8.2.1. 3H Transport. The fracture CR profiles of the nonsorbing 3H for both constant 

concentration (CC) and decaying (radioactively) concentration (DC) at the z = 0 boundary 

are shown in Figure 10, which includes observations at the following times: t 1 = lo4 days, 

t2 = 5 x lo4 days, t3 = lo5 days, t 4  = 2.5 x lo5 days and t 5  = 5 x lo5 days. 

The various layers can be generally identified by a change in the CR slope, while 

the interlayers are indicated by vertical sections of the CR curves (as the abscissa is the z 

coordinate rather than the travel path). For a CC boundary, the CR distribution reaches a 

steady state for t 2 t 4 .  As expected, the effect of the DC boundary is a CR profile that 

is progressively lower than the one for a CC boundary, never reaches steady state, and is 

outside the CR range (< lo-') fort 2 t4. 

8.2.2. "Tc Transport. "Tc (in its pertechnate TcO, speciation) is a non-sorbing 

radionuclide with a longer half life than 3H (see Table 4). Two boundary conditions were 

considered in this case: a CC boundary and a piece-wise continuous (step) concentration 

(PC) boundary, Le., 

1 

0 

fort 5 5 x lo4 days 

fort > 5 x lo4 days 
C R ( Z  = 0) = 

The CR profiles in the fractures of the layered geologic system (at the same times as 

in the case of 3H in Section 8.2.1) are shown in Figure 11. The effect of the longer half 

life is evident in the CR profile for CC boundary, which indicates that "Tc advances much 

further in the formation than 3H at the same times (the difference is due to radioactive 

decay), and does not appear to have reached steady state at t = t 5 .  The change in the 

boundary concentration over time in the PC boundary case results in C,$ profiles that show 

aprogressi velylarger(withtime) "Tc-freezoneneartheboundary, whilethe Cn further into 
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the formation keeps decreasing and deviating from that for constant boundary concentration 

(with which it coincides fully or in part fort  5 t 4 ) .  

As indicated in the case of 3H, the various layers and interlayers can be generally 

identified from changes in the CR slope. Transport in fast flowing fractures (e.g., in the case 

of narrow fractures with large matrix blocks under a layer of wider fractures and narrow 

matrix blocks) can also be identified by a near-horizontal portion of the CR profile. 

8.2.3. 237Np Transport. The CR profile of the moderately sorbing 237Np for a CC 

boundary is shown in Figure 12. The observation times are: tl = 5 x lo4 days, t 2  = lo5 

days, t 3  = 5 x lo5 days, t 4  = lo6 days, t 5  = 2.5 x lo6 days and t 6  = 5 x lo6 days. 

The slower transport of 237Np (compared to that of "Tc) is caused by sorption and, 

to a far lesser extent, by increased diffusion into the matrix. Despite its longer half-life, the 

transport of 237Np appears to be about an order of magnitude slower than that of 99Tc, and 

does not appear to have reached steady state at t = t 6 .  

The CR profiles along the z axis in the matrices of the various layers at t = t s  are 

shown in Figure 13. The different shape of the curves is a function of their location (with 

respect to the z = 0 boundary and to the solute front) and of the transport properties of the 

matrix in the various layers. 

8.3. Problem 3: Solute Transport of a Three-Member Radioactive 

Decay Chain in a Complex Multi-Layered System 

Problem 3 describes the transport of the radioactive chain 239Pu+ 235U+ 231Pa 

through the complex multilayered system described in Problem 2 (Tables 8 and 9). The 

sorption coefficients K i  and KT of the 239Pu parent in the various layers are listed in 

Table 10. The sorption coefficients of 235U and 231Pa in the fractures and in the matrix 

were assumed to be 5% and 50% of those for 23yPu, respectively. Cn profiles of the three 

radionuclides were obtained at the following observation times: tl = lo5 days, t 2  = loG 

days, t 3  = lo7 days, t 4  = lo8 days, t 5  = lo9 days, and tG = lo1' days. Two boundary 

conditions were considered: a CC and a DC boundary. 
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8.3.1. 239Pu Transport. Figure 14 shows the CR profiles of 239Pu in the fractures 

for constant boundary concentration and a decaying boundary concentration. There is no 

or little deviation of the two curves until t = t 3 .  The fracture CR in DC case at t = t 4  

is substantially lower than that of the CC case, and the CR for a DC boundary is less than 

1 0 - ~  for t 2 t 5  . 

An interesting observation is that, for a CC boundary, the 239Pu front does not advance 

deep into the formation despite observation times orders of magnitude larger than those for 

the 237Np transport. This is due to the very strong sorption of 239Pu onto the matrix and 

fractures of the layers and, to a lesser extent, the shorter half life of 239Pu (compared to that 

of 237Np. Note that the CR profile appears to have reached steady state at t 2 t 5 .  

In addition to the transport of the members of the chain, the transport of 239Pu was 

studied separately, assuming a CC boundary and a T 5 1 (see Equation (38) and the 

corresponding discussion). This describes a situation in which not all the contact area 

between fracture and matrix contributes to transport (e.g., because of a partially dry fracture 

which constitutes a discontinuity in the water phase). In this case, T = SL in the fractured 

layers and interlayers (FM or FI), and T = 1 elsewhere. 

The effect of T 5 1 in Figure 15 appears to have a substantial impact on transport, 

and results in a 239Pu front that reaches much further (Le., about three times deeper) in 

the geologic profile than that for T = 1. This is a direct consequence of a reduced area 

for 239Pu diffusion from the fractures into the matrix, which leaves a larger amount of 

239Pu in the fractures where advection is fast and sorption relatively small (compared to the 

matrix). Thus, the transport of strongly sorbing radionuclides in fractured systems may be 

substantially influenced (enhanced) by partially dry fractures. 

8.3.2. 235U Transport. The fracture Cn profiles of 235U for CC and DC boundaries 

and for t 5 t 4  are shown in Figure 16. The CR of the DC solution always exceeding that 

from the CC solution, and significantly so (as imposed) in the vicinity of z = 0. A very 

significant observation is that, in either case, C,i 2 1 for t 2 t 4  in the top 120 m of the 
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domain. This is even more the case in Figure 17, which shows the CR of 235U for t 2 4 

and gives a more detailed picture of the CR distribution near the value of I .  The results in 

Figures 16 and 17, in conjunction with the observations from Figure 14, indicate that for 

t 2 t4 ,  practically all of the radionuclide that advances deep into the formation is the 235U 

daughter. The transport of 235U is faster, the front reaches deeper, and CR 21 1 because 

235U is generally weaker sorbing than 239Pu and it has an extremely long half life. The 

obvious implication is that studies of 239h transport cannot neglect the transport of the 

235U daughter, which is the dominant radionuclide at longer times. 

Note from Figure 17 that, for t = t 4  and a DC boundary, CR > 1, Le., the 235U 

concentration in the fractures exceeds the initial concentration of the 239Pu parent at the 

z = 0 boundary. This is possible because the boundary (which introduces a radionuclide 

mixture composed of all the members of the 239Pu decay chain) is now contributing a stream 

ofalmost 100% 235U, whichis addedtothe 235Upr~d~ced fromthe(a1most comp1ete)decay 

of 239Pu already in the fractures and matrix of the system. As expected, the CR from the 

CC solution at t = t 4  is lower than that from the DC solution (Figure 16). For t > t 4 ,  

the CC solutions exceed the DC solutions because the decay of the 235U at the boundary is 

beginning to have an effect on the fracture distribution of CR. This is particularly evident 

at t = t 6 .  Note that steady state is not reached (in either the CC or the DC boundary cases) 

even after t 6  = lolo days because of the extremely long half life of 235U. 

8.3.3. 231Pa Transport. The fracture CR profiles of 231Pa for CC and DC boundaries 

are shown in Figure 18. The CR levels of 231Pa are quite low because of the very long 

half life of its 235U parent, its own shorter half life, and its stronger tendency to sorb. The 

CR increases with time for both DC and CC boundaries. The CC profile has always lower 

concentrations because there are all derived solely from the decay of 235U (the boundary 

doesnotsupplyanyadditional 231 PainaCCregime). Note thatineither case,concentrations 

reach a steady state at about 1 = t 4 .  
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9. Summary 

In this paper, semianalytical solutions are developed for the problem of transport of 

radioactive or reactive solute tracers through a layered system of heterogeneous fractured 

media with misaligned fractures. The solutions allow any number and combination of 

fractured and/or porous layers that can vary in hydraulic and transport properties, fracture 

frequency, water saturation, fracture flow, and fracture-matrix interaction. 

The tracer transport equations in the matrix account for (a) diffusion, (b) solute surface 

diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear 

kinetic or equilibrium physical, chemical or combined solute sorption or colloid filtration, 

and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay 

daughter products (or products of a linear, first-order reaction chain) can be tracked. The 

tracer transport equations in the fractures account for the same processes, as well as for 

advection and hydrodynamic dispersion. A wide array of boundary conditions (constant or 

time-variable, concentration or flux) can be accommodated. 

Analytical solutions describing transport in the fracture and the matrix of each layer 

are first obtained in the Laplace space. These are impossible to invert analytically, and 

are numerically inverted by the method of DeHoog et al. [ 19821 to yield the solutions in 

time. These SA solutions are verified against analytical solutions of limiting cases of solute 

transport in fractured media. Additional verification is provided by comparisons against 

analytical solutions of transport in porous (unfractured) media. 

The SA solutions are then tested in a series of hypothetical problems of increasing 

complexity. The effectof important parameters on the transport of 3H, 237Np and 239Pu (and 

its daughters) is investigated in several test problems involving layered fractured geological 

systems. Fracture misalignment appears to significantly affect transport if water flow (and, 

consequently, transport) between the fractures of the overlaying and the underlying layers 

occurs through a porous connecting pathway. 

The semianalytical solutions are computationally very efficient, requiring less than I O  
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seconds of execution time for the examples studied in this paper. The results of the test 

problems indicate that the semianalytical solutions can easily solve the problem of transport 

of parent and daughter radioactive species in multilayered heterogeneous systems under 

a variety of boundary conditions. Thus, they can provide a simple and effective tool to 

predict radionuclide transport in subsurface environments involving saturatedhnsaturated 

flow through variably fractured media (such as transport from the potential repository 

through the fractured rock layers in the UZ of Yucca Mountain to the water table). While 

such predictions are quasi 2-D and do not account for spatial variability and flow effects in 

the 3-D continuum of the subsurface (such as perched water bodies, flow diversion and flow 

focusing), they can provide bounding estimates that bracket the true solution. 
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Appendix A: The H ,  and T,,+ Coefficients 

For Case 2 (X -+ m), the H ,  = H; of the first five members of a radioactive or 

reactive chain (v = 1, . . . 5) are 
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in which the m superscript of the A factors (equation (52)) are omitted for simplicity. The 

terms T,,& inequation (53)can beeasilyidentified byinspection. Byfollowing theemerging 

pattern, the development of the expressions for H, for u > 5 is tedious but straightforward. 

H," expressions (corresponding to Case 1) are entirely analogous, and are The H ,  

derived by dividing H," by cosh(0, X). For example, for v = 2, 

e; - A21 E{ H" - 
- cosh(02 X) cosh(02 X) 

Appendix B: The w, and TylK. Coefficients 

For Case 2 (X 4 oo), the W, = WE of the first 5 members of a radioactive or reactive 

chain (u = 1,. . . ,5) are 
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W: = 05 C,/ + A54 (04 - 05) E{ + A43[A53 03 - A54 04 + (A54 - A53) 051 E{ 
+ A32 { A42 A52 02 - A43 A53 03 + A54(A43 - A42) 04 

- [A43 (A54 - A531 - A42(A54 - 05} 6; 
+ A21 { A31 A41 A51 01 - A32 A42 A52 0 2  + A43 A53(A32 - A31) 03 

- A54[A32 (A43 - A42) - A31(A43 - &I)] 04 

+ [A32[A43(A54 - A53) - A42(A54 - A52)] 

- A31 [A43 (A54 - A53) - A41 (A54 - A51)]] 05 ef j I 
in which the rn superscript of the A factors (equation (52)) are omitted for simplicity. 

We obtain W; for Case I by replacing 0” by e,, tanh(0,X) in Wz. Thus, for u = 2 

and Case 1, 

W; = O2 tanh(02X) C,f + APl [el tanh(01X) - 02 tanh(&X)] 6f 

The terms yv,& are easy to obtain from (59) and the W;, Wz expressions by inspection. 

Extension for v > 5 follows the same pattern. 

Appendix C: The ~ y t ,  Coefficients 

The Byf, coefficients of up to the first 5 members of a radioactive or reactive chain 

(u = 1, . . . ,5, K = 1, . . . , v - 1) are given by the following general expressions: 

I f i -  By+/-1 - Yv,v-l fY  - Gf U 

Bvp-2 - (Yv,v-l f - G$4:-1,v-2 + Yu,v-2 f 

DU,v-3 - (Yu,v-l f 9  - GE) A;-l,L3 + (Yv,v-2 Av-2,v-3 + Y Y , Y - 3 )  f Y  

* -  

f -  rt 

* -  f f 
4 , / - 4  - (Yv,v-1 f Q - G L )  Ak1,v-4+(?1u,v-2 Av-2,v-4 +Yv,v-3 AI/-3,,/-4+Yv,v-4) . f f i  

The coefficients A* needed for the computation of D* are obtained from equation (63). AI1 

other terms are as discussed in Section 5.2. Extension for v > 5 follows the sa111e pattern. 
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PM grain density p 

DO 

37 

2600 kg/m3 

1.6 x IO-’ m2/s 

Analytical solution for a single fracture, Water Resour. Res., I7(3), 555-564, 198 I .  

Fracture aperture 2b 

Fracture S 

Table 1. Input parameters in Test FS1 

m 

1 

Values I Parameters I 

Fracture q5 

Fracture r 

r 

I 

1 

~~ 

Water saturation S 

Fracture Kd Om 
! 

I 1 

Longitudinal dispersivity CUL, in the fracture 

Fracture flow velocity V 

0.1 m 

0.1 d d a y  

~~ 

Matrix Kd 

Radionuclide 

o m3/kg 

12.35 years (tritium) 

Matrix block width 2X 0.5 m 

I Matrix S 1 

I--- Matrix q5 I 0.0 I 

I Matrix I- I 0.1 
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Parameters 

P 
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Values 

2600 kg/m3 

Table 2. Input parameters in Tests PS1 to PS4 

I DO 

Kd (Tests PS2 and PS3) 

0 m3/kg 

4.2735042 x lop5 m3kg 

I TI12 (Tests PSI and PS2) 03 (stable isotopes) 

I T1p (Tests PS3 and PS4) 
~ 

100 days 

10 m, 10 m, 03 
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P 

DO 

Table 3. Input parameters in Test PS5 

2600 kg/m3 

1000 m2/year 

I Parameters 

V 

Kd for 234u 

Values 

100 m/year 

1.648 19 m3/kg 

Kd for 230Th 

Kd for 226Ra 

7- 

8.24159 m3/kg 

8.22528 x m3/kg 

1 

T1,2 of 230Th 

T1/2 of 226Ra 

7 . 5 4 ~  io4 years 

1.60 x 1 O3 years 

I T 1 / 2  of 234U 1 2.45 x lo5 years 

50 m, 150 m, 00 

39 
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Radionuclide 
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DO (m2/s) A = - -  ln2 (I/s) 
T1/2 

99Tc 4.55 x 10-l' 1.031 x 

237Np 

239Pu 

7 . 1 2 ~  10-l' 1 . 0 2 6 ~  

6.08 x 10-l' 9.1 14x 

Table 4. Radionuclide properties used in the transport simulations of Section 8 

3H 

235u 

I 6 . 0 8 ~  10-l' I 6.7583 x 

Table 5. Layer geometry in Case 1-a of Problem 1 

Layer # Parameter Value 

FM z 
X 

b 

5 m  

0.25 m 

5 x m 

I 

2 b 5 x m FI 

FM 3 z 
x 
b 

10 m 

0.25 m 

5 x io-5 m 

4 FI b 5 x m 

5 FM z 
x 
b 

cmm 

0.25 m 

5 x m 
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Table 6. Properties in Case 1-a1 of Problem 1 

Layer # Parameters Values 

0.1 m 

0.01 

0.1 

1 

1 

1 

1 

0.1 m 

0.01 

0.1 

1 

1 

1 

1 



42 MORIDIS: SOLUTE TRANSPORT IN FRACTURED LAYERED MEDIA 

Table 7. Parameter variations in the various cases of Problem 1 

Parameter 

b 

b 

X 
z 
X 

z 
b 

X 

z 
b 

s,m = si 
b 

Value 

0.025 m 

0.10 m 

2.5 m 

2.5 m 

2.5 m 

2.5 m 

0.025 m 

2.5 m 

2.5 m 

0.10 m 

0.8 

0.5 

0.8 

0.1 m 
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8 

9 

10 

11 

12 

13 

14 

Table 8. Layer geometry in Problem 2 

PI 10-1 

FM 10 4 2 x 10-5 

FI 2 x 10-5 

FM 20 1 5 x 10-5 

FM 30 6 8 x 10-5 

PM 5 

PM 00 
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Table 9. Rock properties in Problem 2 

Layer # 

1 0.15 1 0.5 0.7 0.2 

2 
~~ 

0.3 I 0.3 1 0.4 

3 0.6 III ~ 

0.15 

4 1 0.35 I 0.3 0.3 

0.1 5 0.8 

0.9 6 0.35 I 0.8 0.9 

0.1 7 0.025 + III 0.9 

0.9 8 0.4 0.2 I 0.3 

9 0.01 I 0.2 0.95 1 I '  0.05 

0.05 10 

11 

0.95 

0.95 0.05 

0.9 12 * 0.05 

0.9 0.2 I 0.1 

13 1 1 

1 14 0.1 I 0.1 1 
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8 x 

8 x low4 

45 

8 x 8 x 8 x 

4 x 10-8 8 x 4 x 10-6 

Table 10. Transfer coefficients in Problem 2 

10-3 

8 x 

Layer I 3 H o r 9 9 T ~  

~~~~ ~~ 

5 x 10-7 lo- ’  5 x 10-5 

8 x 10-4 8 x 8 x 

237Np 

5 x 10-4 

5 x 10-4 

239 Pu 

2.5 x 10-8 5 x 2.5 x l o W 6  
2.5 x 10-8 5 x 2.5 x 

9 x 10-4 

10-~ 

4.5 x 10-8 9 x 10-2 4.5 x 10-6 

1 0 - ~  10-1 lo- ’  

6 x I 3 x I 6 x I 3 x 1 I o . 1 0  

8 x  I 8 x I 8 x  I 8 x 

7 x  10-4 I 3.5 x 10-8 I 7 x  10-2 I 3.5 x 10-6 

6 1 0 1 0  

7 1 0 1 0  

1 0 1 o I o  

1 1 I o I o  

1 2 1 0 I o  

1 3 1 0 I O  6x I 3 x lo-’ I 6 x I 3 x 

1 4 1 0 I O  

(*): in m3/kg, (t): in m 
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Layers 1 J14,5: Fractured media 
Layer 3: Uctftactutcd media 

Lx. 

Figure 1. A variably-fractured layered geologic system. 
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v 

)-zb 

V 

47 

Figure 2. Fracture-matrix configurations and important parameters in Cases 1 and 2. 
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layvr n 

Figure 3. A graphic representation of the concept of interlayer describing the effects of 

fracture misalignment. The properties of layers ri and n + 1 are denoted by 1 and 2, 

respectively. 
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I I I I I I I  I I I I I I I I I I I I I  l l l l l l l l l l l l l l  I I I I I I I  

Figure 4. Comparison of the semianalytical (SA) solutions from FRACL to the analytical 

solution of radioactive solute transport in fractured media in Tests FS 1 and FS2. 
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0 5 10 15 20 25 30 
Distance (m) 

Figure 5. Comparison of the SA solutions to the analytical solutions of solute transport in 

porous media in Tests PS 1 to PS4. 
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1 oo 

I t = IO,OOO years 1 
16' 

1 o-2 

I o - ~  

I o - ~  

I o - ~  

- Analytical 
0 SA, 1 layer 
/ SA, 3 lavers 

Distance (m) 

Figure 6.  Comparison of the SA solutions from FRACL to the analytical solutions of solute 

transport of the radioactive chain 2'34U ---f 230Th --+ 22GRa in porous media in Test PS5. 
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- - 
- - 
- 

1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 l 1 1  

0 5 10 15 20 25 
Vertical coordinate z (m) 

Figure 7. Effect of fracture offset (presence of interlayers) on the transport of 3H through 

the layered fractured system of Case 1-a (NI: no interlayer, FI: fracture interlayer, PI(a): 

porous interlayer with 6 = 0.025 m, PI(b): porous interlayer with b = 0.1 m). 

- NI 
--- FI 

-.--- PI (b) 
......... PI(a) 

H transport 
1 3  Case I-a 
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1 oo 

lo-' 

I I I I  1 1 1 1  1 1 1 1  I I I I  I l l 1  

\ 

I 
L 
I 
\ 

.....-.. PI(a) I- -.-.- PI (b) 
\ 

0 5 10 15 20 25 
Vertical coordinate z (m) 

Figure 8. Combined effect of increased X and fracture offset (presence of interlayers) on 

the transport of 3 H  through the layered fractured system of Case I-b (nomenclature as in 

Figure 7). 
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1 oo 

lo-' 

lo-* 

1 o - ~  

1 o - ~  

1 o-' 

1 o-6 
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~1 
......... MI 

0 5 10 15 20 25 
Vertical coordinate z (m) 

Figure 9. Combined effect of water saturation S and fracture offset on the transport of 3H 

through the layered fractured system of Case 1 -c (nomenclature as in Figure 7). 
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20 40 60 80 
z coordinate (m) 

Figure 10. Fracture CR profiles of ‘H in the complex geological system of Problem 2 (CC: 

constant concentration boundary, DC: decaying concentration boundary). 
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1 oo 

lo-' 

1 o-2 

I o - ~  

1 o - ~  

I o - ~  

1 o-6 

I 0.' 

lo-* 

I o-' 
0 20 

rm 

- I 

I 
l l I ( I I I l ( I I I I ~ l I l l / I l l l j l l l l ( l l l l  1 1 1 1 1 1 1 1 1 ~  l l l l / l l l l ~ l l l l ~  I 

40 60 80 100 120 140 
z coordinate (rn) 

Figure 11. Fracture Cn profiles of "Tc in the geological system of Problem 2 (PC: pulse 

concentration boundary ). 
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20 40 60 80 100 120 140 
z coordinate (m) 

Figure 12. Fracture Cn profiles of 237Np in the geological system of Problem 2. 
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(237Np I 
1- 

- z = 5 m  
......... z =  15 m 

I 

i 0.9985 

..... 

0.9980 J 
0.0 0.1 0.2 0.3 0.4 0.5 

x (m) 

j 

1 o-6 
0.0 1 .o 2.0 3.0 

x (m) 

Figure 13. Matrix Cn profiles of 237Np at different elevations in the geological system of 

Problem 2. 
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1 oo 

lo-’ 

lo-* 

0 20 40 60 80 
z coordinate (m) 

Figure 14. Fracture CR profiles of 23yPu in the geological system of Problem 3. 
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....-... r< 1 

20 40 60 80 100 120 140 
z coordinate (m) 

Figure 15. Effect of P < 1 on the fracture Cn profiles of 239Pu in the geological system of 

Problem 3. 
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1 oo 

lo-’ 

1 o-2 

1 o - ~  

1 o - ~  

I o-’ 

1 o-6 

I o - ~  

lo-* 

I o-’ 
0 20 40 60 80 100 120 

z coordinate (m) 

Figure 16. Fracture Cn profiles of 235U in the geological system of Problem 3 for t 5 lo8 

days. 
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1.04 

1.02 

I .oo 

0.98 
6: 

0.96 1 

0.92 0.g4: 

0.90 1. 
Figure 17. Fracture CR profiles of 235U in the geological system of Problem 3 for t 2 lo8 

days. 
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1 o - ~  

1 o-’ 

1 o-6 

J I I I t 1 1 1  a , . .  I I I I 1 1 1 1  a , . .  I I I 1 1 1 1 1  , 

................................................ ................ ......... 
I. 

--h..,,( 
.I..”.. 

............ Wl 1 1c 

f ’  4 / .... .... Wl 
-..... ... 1 / *.._ 

.... 

1 o - ~  

1 o-8 

..... .... .... .... ... 

.......... ... 
.-.. e.. 

--. 

1 o - ’ O  
- - - 
- 

- - - - - - - - 
- 

1 I I I I I I I  - ’ . . I  I I 1 1 1 1 1  . ’ “ I  
1 

I I 1 1 1 1 1  ’ 
2 3 4 5 6 7 8 ‘  2 3 4 5 6 7 8  ’ 2 3 4 5 6 7 8 ’  

1 10 100 
z coordinate (m) 

lo-” 

1 0-l2 

Figure 18. Fracture CR profiles of 231Pa in the geological system of Problem 3. 
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