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Abstract--The variational nodal method is generalized by dividing each spatial node into
a number of triangular finite elements designated as subelements. The finite subelement
trial functions allow for explicit geometry representations within each node, thus
eliminating the need for nodal homogenization. The method is implemented within the
Argonne National Laboratory code VARIANT and applied to two-dimensional
multigroup problems.

Eigenvalue and pin-power results are presented for a four-assembly OECD/NEA
benchmark problem containing enriched UO, and MOX fuel pins. Qur seven-group
model combines spherical or simplified spherical harmonic approximations in angle with
isoparametric linear or quadratic subelement basis functions, thus eliminating the need
Jor fuel-coolant homogenization. Comparisons with reference seven-group Monte Carlo
solutions indicate that in the absence of pin-cell homogenization, high-order angular
approximations are required to obtain accurate eigenvalues, while the results are
substantially less sensitive to the refinement of the finite subelement grids.

I. INTRODUCTION

Nodal diffusion methods have been widely employed for performing whole-core
reactor physics calculations.! More recently, nodal transport methods have found
increased use in treating problems where steep flux gradients, sharp cross section
discontinuities, and other phenomena lead to substantial inaccuracies in the diffusion
approximation.>® In particular, the variational nodal method incorporated in the Argonne
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National Laboratory code VARIANT*’ performs multigroup spherical harmonics (Py) or
simplified spherical harmonics (SPy) calculations in two- and three-dimensional
Cartesian and hexagonal geometries.””’

Nodal codes, including VARIANT, typically utilize homogenized cross sections for
fuel assembly-size nodes. With whole-core transport methods available, the largest
remaining uncertainties most frequently revolve around the use of these homogenized
cross sections and the subsequent dehomogenization procedures needed to reconstruct
fuel pin powers. Despite the use of high-order angular approximations in whole-core
transport calculations, the homogenization approximations still cast doubt on the
accuracy of the results. To eliminate the need for homogenized nodes, we have derived a
subelement formulation of the variational nodal method. In VARIANT, the even-parity
transport equation is solved within each node and the nodes are coupled together by odd-
parity Lagrange multipliers. The generalized method presented here retains the
multigroup response matrix formalism in VARIANT coupled with Py or SPy angular
approximations. However, the polynomial trial functions previously used to represent the
spatial flux distribution within the node are replaced by finite elements with continuous,
piecewise polynomial trial functions. This approach allows the cross sections to be
discontinuous at the finite element interfaces within each node, thus the requirement that
the nodes be homogeneous is eliminated. We have chosen to designate these finite
elements as subelements, since the variational nodal method itself may be viewed as a
hybrid finite element formulation.®

An earlier investigation implemented square subelements with piecewise bilinear trial
functions, allowing homogenized fuel pin-cells to be represented explicitly within a fuel
assembly-size node.® Increasingly, however, advances in computing power have allowed
such problems to be treated such that each node is the size of one homogenized fuel pin-
cell. In this work we implement triangular isoparametric subelement approximations of
a heterogeneous pin-cell geometry where the interface between the fuel and coolant
within each node is explicitly represented; the fuel, gap, and cladding remain
homogenized. In Sec. II, the subelement theory is presented while in Sec. III the
generalized formulation is applied to a two-dimensional benchmark problem, and its
capabilities and limitations are discussed.

II. THEORY

Since the variational nodal method utilizes a standard multigroup formulation, we
take the within-group transport equation as the starting point for our derivations

Q- Vy(F. QO +Z, W (F.Q) =2, (HP(F) +S(7), (1)
where for this work we assume isotropic scattering and sources. In Eq. (1), I/I(F,fl) and
¢(7) represent the group angular and scalar flux, S(¥) is the group source, and X (7)
and X (7) are the total and within-group scattering cross sections. We can transform Eq.
(1) into a second-order even-parity form yielding

Q-VETQ VY (F,Q)+Z, v (7F,Q) =%, ¢(F)+S(F), (2)
where the even- and odd-parity flux components are defined by
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We next write Eq. (2) in a functional form with odd-parity boundary conditions,
(A S\ + +
F[u/*,u/’]=jdvjd§2[2, (Q-Vyr) +y'zy ]—J‘dV(¢2_\,¢+2¢S)
+2[dr[dQQ-iy 'y~

where V is the problem domain, bounded by the surface I" with outward normal 7.
To obtain the nodal functional, we decompose the problem domain into subdomains
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V, (called nodes) and define the odd-parity flux y~( 7,Q2) on the surfaces, I, , of each

node. Using these definitions, we can rewrite Eq. (4) as a superposition of nodal
contributions:

v 1= Bl v, ®
where the nodal functional is written as
Flytw]= jdvjdsz[z,‘l (@ Wﬁ)z +Y'E, uf}— fav[pzp+295]
+2[dr| dQ[fz-ﬁyﬁw-]

The inclusion of the Lagrange multipliers for l//"(?,fl) allows the use of y*(7,Q) trial

. (6)

functions that are discontinuous across the nodal interfaces. The trial functions for

v ( F,fl) , of course, are uniquely defined along the interfaces.

To implement the subelement treatment, we subdivide the nodal volume into
triangular isoparametric finite elements as seen in Fig. (1), where L and Q indicate
elements with linear and quadratic basis functions, respectively. The nodal functional
from Eq. (6) is now written as a superposition of subelement functionals

Elvw =X E,lviv ], ™)

[

where the functional for each subelement volume V,, is given as
(A TV + +
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In this work we consider only finite element basis functions that are continuous across
subelement interfaces. Since continuous trial functions are used within each node, the
surface term in Eq. (8) appears only along the nodal interfaces, and thus only for those
subelements adjacent to nodal interfaces.

Within each subelement the spatial and angular approximation of the even parity flux
is given by

®)

v (7.Q)=d @ef" ()&, FeV, ©)
the source is given by
S, (F)=f"(¥)s,, (10)

and the approximation of the odd-parity flux along each nodal interface y is given by
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Here the symbol & indicates Kronecker tensor multiplication of the angular and spatial
trial functions, and ife and 7y, are the unknown coefficients. The even- and odd-parity

angular functions g(Q) and ky(Q) are vectors of spherical harmonics defined such that
Rumyantsev boundary conditions are satisfied across the nodal interfaces.>° The spatial
dependence, h, (7), of the odd-parity Lagrange multiplier is approximated with a set of
orthogonal polynomials previously used in VARIANT.* The spatial distribution of the
even-parity flux, f(¥), is given by the finite element trial functions, the cross sections are

assumed to be unique constants within each finite element.
Inserting Eqgs. (9), (10) and (11) into Eq. (8) yields the algebraic functional for each
subelement

F, I:ée ,xy] =&7 [ZHK'L ®Z;1PK’L"' +leZ F'—KeZ F° jée
K.L

(12)
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where the spatial integrations over each subeylement result in the matrices
PEE= [ aV [V, £(F)9. 1, ()] (13)
F,=[av[£()5,@)]. (14
and
Dy, ;= y,e‘#‘[fi(?)hj(?)] . (15)
The angular integrations yield the matrices
HEE =J'dQ[fz’<gm (Q)¢rs, (Q)} (16)
1. =[d9|g,(2)e,(Q)] =5, (17)
Km=jdg[gm@n}:5m“ (18)
and
E,., = [dQ[Qn, g,(Q)k, (2)], (19)

which have the same form as those previously used in VARIANT.*
To assemble the nodal functional we must map the local finite element trial function
coefficients, ge , into a nodal vector of coefficients {. This is accomplished with a

Boolean transformation matrix =, .

g =E¢. (20)
The Boolean transformation, a description of which can be found in finite element
literature,'® is the mechanism by which continuity is enforced across subelement
interfaces.
The introduction of Eq. (20) into Eq. (12) and subsequent substitution into Eq. (7)
yields



Fv I:C’ X] = QTAQ - ZQTS + 2Z§TM7'X7' > (21)
7

where

[4

A=Y H" oy ET5P*E +lo Y E/%, FE -Ko Y =X FE , (22)
K,L € ¢ e

s=Ke Y ZF's 2, (23)

M, =E > =D, (24)

and | is the identity matrix.

With the treatment of the spatial and angular approximations within each node
completed, we may now proceed to the response matrix formulation. We first require the
functional to be stationary with respect to arbitrary variations in the vectors of unknown
coefficients. Upon taking the variation of Eq. (21) with respect to the even-parity flux
coefficients, {, we obtain

AG-s+> M,y =0, (25)

which may be solved for { to yield
C=A's—> A'M,y, . (26)
=

We next sum Eq. (21) over all of the nodes, as indicated in Eq. (5), and require the
resulting functional to be stationary with respect to variations in the Lagrange multiplier

coefficients Y, thereby restricting
¢, = M% (27)

to be continuous across nodal interfaces.
We can merge Eq. (27) with Eq. (26) to obtain
¢, =MA%s—> M A™M, ., (28)
Y

which can further be partitioned with respect to nodal interfaces to obtain

@=MA"'s—M A"'My. (29)
To arrive at the final response matrix form we make a change of variables and introduce
the partial current-like variables

F=10+3x (30)
along the node interfaces. Combining Egs. (29) and (30) we get the response matrix
equation

j =Rj +Bs, 3

where we have made use of the intermediate matrices
R=QEM A" M+1] LMTATM-1), (32)
B={IMTATM+I]'(LMTA?), (33)

and the identity matrix I.

An additional approximation implemented in conjunction with the subelement
approximation is source lumping. Instead of using a consistent source, as that defined by
Eq. (10), the source is lumped or averaged over several contiguous elements containing



identical cross sections.!' Source lumping has two major benefits: the number of source
components is reduced, thus reducing the computational burden of the fission source
iterations, and the lumped source components converge much faster than the consistent
source.

III. RESULTS

VARIANT has been modified to accommodate the subelement formulation and
employed to solve a two-dimensional benchmark problem specified by OECD/NEA."?
This benchmark problem was formulated to test the accuracy of the space-angle
approximations implemented in deterministic transport codes. The core configuration for
the benchmark problem is shown in Fig. 2, where each fuel pin is 1.08 cm in diameter,
each square is 1.26 cm in length, and the moderator region is 21.42 cm thick. Included in
the benchmark specification are seven-group cross sections for each of the compositions
defined in Fig. 2. For comparison, a reference multigroup Monte Carlo solution was
obtained for the steady state eigenvalue and pin power distribution. To estimate the
importance of the spatial and angular approximations for the benchmark, we first
examine approximations of several single pin-cell geometries and then apply a subset of
these approximations to the benchmark.

II1L.A Pin-cell Results

For this work we chose the node size to correspond to a single pin-cell and made use
of the triangular finite element representations of the pin-cell geometry given in Fig. 1
(fuel region is shaded). In each of the finite element meshes the fuel/coolant volume ratio
is exactly maintained. As indicated by Fig. 1, the quadratic meshes (Q) allow for a more
faithful representation of the fuel-coolant interface than the linear meshes (L). To assess
the sensitivity to the finite element mesh refinements and to refinements of the angular
approximation, we solved several single pin-cell problems with reflected boundary
conditions using the benchmark cross-sections. For brevity, we display the eigenvalue
results only for the highest enrichment MOX fuel pin-cell problem; this pin-cell yielded
the largest errors when low-order space-angle approximations were employed.

A reference eigenvalue solution for the high-enriched MOX fuel pin-cell problem
was obtained with the Monte Carlo code MCNP'? and a comparative solution obtained
with the collision probability code DRAGON.'"* The MCNP reference eigenvalue was
found to be 1.17472+0.00016 (99% confidence interval) and the best collision probability
eigenvalue solution was 1.17508. VARIANT was used to obtain eigenvalue solutions of
the pin-cell problem using a consistent source approximation and exact boundary
conditions (i.e. without Lagrange multiplier approximations). The finite element mesh
solutions for Py and SPy angular approximations are plotted in Figs. 3 and 4,
respectively, along with the reference MCNP solution.

The eigenvalue results indicate that the largest errors arise from the angular
approximations. For a given order N, the Py and SPy results are quite close to each other,
but both converge very slowly toward the Monte Carlo solution. The Py results should
converge to the Monte Carlo result and more detailed studies'' have shown that angular
expansions as high as P3; are required. Higher order Py cell calculations are not included



in this work, since P;s corresponds to the maximum order that can presently be applied in
the variational nodal framework to the OECD/NEA benchmark problem. Unlike the Py
approximation, the SPy approximation can be applied with very high orders. However,
Fig. 4 indicates that the SPy approximation does not produce accurate results. The
residual eigenvalue error observed in Fig. 4 is not unexpected since the SPy treatment is
not a rigorous treatment of the angular variable, and thus cannot be expected to produce
exact solutions for transport problems.

In contrast to the angular approximation, the convergence with respect to spatial
mesh refinement is quite rapid as indicated by Figs. 3 and 4. With both the Py and SPy
treatments, the spatial approximation appears to be sufficiently converged using the Q3
mesh. The large differences between the solutions using linear or quadratic finite
element meshes is attributable to quadratic meshes giving O(h*) accuracy and linear
meshes giving O(h?) accuracy. Consequently, for the benchmark problem, we employ
quadratic spatial mesh approximations. Specifically, we choose to use the Q2 mesh since
the difference between the Q2 and the Q3 mesh was found to be relatively minute when
compared to the errors caused by the angular approximation.

II1.B Benchmark Problem Results

To employ the formalism of Sec. II, two additional approximations are applied to
solve the OECD/NEA benchmark problem. First, Lagrange multipliers (low order
polynomials) are used to approximate the spatial distribution of the odd-parity flux along
the nodal interfaces. Second, the group sources, defined to be consistent with the finite
subelement basis functions, are simplified by averaging over 2, 5, or 8 sub-regions of
each pin-cell as indicated by Fig. 5. Combined, these two approximations substantially
reduce the computational effort, while resulting in minor losses in accuracy of both the
eigenvalue and pin power solution.

Figure 6 compares Q2 mesh, quadratic Lagrange multiplier, 8 lumped source, Py and
SPy eigenvalue solutions for the OECD/NEA benchmark problem along with the
eigenvalue solutions for the infinite-lattice UO, pin-cell and the highest enrichment MOX
pin-cells. The 99% confidence intervals on the Monte Carlo eigenvalue solutions for the
OECD/NEA benchmark problem, the UO, pin-cell, and the MOX pin-cell are
1.18655+0.008%, 1.32557+0.07%, and 1.17472+0.03%, respectively. As seen in Fig. 6,
the benchmark eigenvalue is an amalgamation of the individual pin-cell problems;
additional calculations have shown that the lower enrichment MOX pin-cells behave
similarly to the highest enrichment MOX pin-cell, but with a smaller error in the
diffusion solution.!! The Py solutions indicate convergence towards the Monte Carlo
solution, but memory requirements and computational times prohibit the use of a high
enough angular approximation to achieve asymptotic convergence. Since two-
dimensional Py approximations require (N+1)*/4 even-parity angular basis functions
while SPy require only (N+1)/2, much higher order SPy approximations can be applied.
However, substantial residual error exists in the eigenvalue solution when using the SPy
approximation.

Most apparent from Fig. 6 is that the transport errors incurred in the angular variables
at the lattice-cell level dominate the global eigenvalue results. In contrast to the
heterogeneous pin-cell model, the use of pin-cell homogenized cross sections, obtained



from the lattice code DRAGON and employed in the standard version of VARIANT,
show little difference between a P; and Ps approximation. Furthermore, the Ps
eigenvalue solution is only 0.127% in error of the reference solution. This seemingly
advantageous aspect of using the homogenous treatment does not carry over to the
accuracy of the pin power distribution.

Tables I and II display pin power and eigenvalue results for Py and SPy
approximations, respectively, both using a quadratic Lagrange multiplier approximation
and an 8 lumped source approximation. The results of the Ps homogenized pin-cell
treatment and the 99% confidence intervals for the Monte Carlo solution are also
included for comparison. For each result, three measures of the pin power error are given
along with the eigenvalue percent error: the percent error in the pin with the maximum
power, the absolute value of the maximum percent error anywhere in the fuel assemblies,
and the root mean squared (RMS) percent error for the pin power distribution.

As in Fig. 6, the eigenvalue error in Tables I and I decreases monotonically with an
increasing Py approximation, but the pin power errors show no such systematic
improvement for an angular approximation of P or greater. Such seemingly erratic
behavior can be traced to a complex pattern of error cancellation between, angular,
subelement, lumped source, and nodal interface approximations. To resolve this effect
we include Q2 mesh results using a consistent source and quadratic Lagrange multiplier
approximation in Table III, and results using a consistent source and a cubic Lagrange
multiplier in Table IV. We also include a Q2 mesh SP»s solution in Table IV using a
consistent source and cubic Lagrange multiplier approximation for further comparison to
the SPn approximation.

Both Tables III and IV have eigenvalue solutions that are comparable to those given
in Table I, but the pin power solutions display a more monotonic behavior. A direct
comparison of Table I to Table III shows that with a consistent source approximation the
pin power results converge monotonically towards the reference solution through Py as
opposed to a Ps approximation seen in Table I. The introduction of the consistent source
removes entirely the errors introduced by the lumped source approximation and
demonstrates that the lack of monotonic convergence is attributable in large part to
cancellation of error between the angular approximation and the lumped source
approximation. In Table IV, monotonic convergence of both the eigenvalue and pin
power solutions is evident through the P,z solution, indicating that refinement of the
Lagrange multiplier approximation is also necessary to completely resolve the
inconsistent convergence behavior observed in Table I. Further improvements from
calculations using quadric Lagrange multiplier approximations were found to be
negligible. Comparison of the SPy solution in Table IV to those of Table Il demonstrates
that the errors resulting from spatial approximations are small compared with those
introduced by the inability of SPy approximations to approach asymptotically the exact
solution of the transport equation.

In summary, Tables II and IV show that the errors in the pin power distribution for
SPy solutions are substantially larger than those of the Py solutions in Tables I, II, and IIL
Moreover, the homogenous pin-cell treatment also results in solutions more accurate than
the SPy heterogeneous solutions, reaffirming that the SPy approximation is not an
adequate approach to solving this problem. More importantly, the errors for the Py
solutions utilizing heterogeneous pin-cell cross sections are substantially smaller than



those using the homogenous pin-cell cross sections. Thus, although the homogenous
approach is computationally faster, the inclusion of cell heterogeneities results in a more
accurate representation of the pin power distribution.

IV. CONCLUSIONS

Two significant tasks have been accomplished. First, the finite subelement
formulation has been implemented in VARIANT to treat heterogeneous nodes in two-
dimensional Cartesian geometries. Implementation of the subelement formulation to
treat heterogeneous nodes in three-dimensional Cartesian in addition to further
refinements of the angular approximation are ongoing. Second, the heterogeneous node
formulation has been employed to compute the eigenvalue and power distribution for a
MOX benchmark problem that combines strong lattice effects with sharp spatial
gradients throughout the problem geometry. These calculations, in which the node
consists of a single fuel pin-cell with no fuel-coolant homogenization, are
computationally intensive. For while we found that convergence of the solutions is rapid
with respect to the spatial subelement grid, very high order spherical harmonic
approximations are required to obtain accurate eigenvalue and pin power solutions.

Improved computational algorithms presently under study should result in significant
computational time reductions for water reactor lattice problems similar to the benchmark
presented here. If larger nodes are utilized, nodes that contain several pin-cells for
example, the computational burden will shift from the solution of the response matrix
equations to their formation. Since the response matrix formation is ideally suited for
parallel computation, large gains in computational efficiency can be achieved with larger
node sizes. The foregoing calculations represent only one application of the variational
nodal method’s heterogeneous capabilities. The method may prove valuable for other
classes of transport problems, some of which are likely to display quite different tradeoffs
between accuracy and refinements of the space-angle approximations.
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Figure 4. SPy Eigenvalue Convergence Trend for a Single MOX Pin-cell Problem
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Figure 6. Eigenvalue Percent Errors.

25



Table I. Percent Errors for the Py Angular, 8 Lumped Source, Quadratic Lagrange
Multiplier Approximation
Ei lue | Maxi PinP

0.37 1.21 0.38
-0.02 0.95 0.23
-0.23 0.97 0.27
-0.44 1.22 0.39
-0.57 1.37 0.47

Homogenized Pin-cell 1.13 2.41 0.82




Table II. Percent Errors for the SPy Angular, 8 Lumped Source, Quadratic
Lagrange Multiplier Approximation
Eige I Maxi i

Angular Ord

SP, -0.316 0.60 6.44 1.77
SP; -0.367 0.37 3.55 0.85
SPs -0.406 -0.24 3.65 0.79
SP; -0.397 -0.62 3.59 0.84
SPq -0.374 -0.87 3.53 0.92
SP;, -0.351 -1.05 3.48 0.98
SPys -0.330 -1.16 3.46 1.04
SPys -0.313 -1.24 3.44 1.08
SPy; -0.300 -1.30 3.44 1.1
SPqg -0.290 -1.35 3.43 1.13
SPy, -0.281 -1.38 3.43 1.15
SPy; -0.274 -1.41 3.44 1.16
SP2s -0.268 -1.43 3.44 1.18




Table III. Percent Errors for the Py Angular, Consistent Source, Quadratic
Lagrange Multiplier Approximation
igenvalu i Pin Power

P, -0.278 0.95 5.90 1.73

Ps -0.320 1.16 2.03 0.89
Ps -0.311 0.72 1.44 0.55
P, -0.237 0.36 1.04 0.32
Py -0.169 0.11 0.75 0.19
P11 -0.092 -0.12 0.64 0.19




Table IV. Percent Errors for the Py Angular, Consistent Source, Cubic Lagrange
Multiplier Approximation

Angular Order Eigenvalue [Maximum Pin Power| Maximum RMS
P, -0.278 0.94 5.91 1.73

P -0.287 1.35 2.26 1.02

Ps -0.286 1.00 1.80 0.76

P, -0.250 0.75 1.53 0.59

Py -0.205 0.58 1.35 0.47

P11 -0.166 0.47 1.21 0.39

P13 -0.135 0.39 1.12 0.34

SP2s -0.242 -1.13 2.90 0.94




