skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/804542· OSTI ID:804542
 [1]
  1. Iowa State Univ., Ames, IA (United States)

Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to the response at the pure Cu and Ni electrodes. This is explained on the basis of the synergism of the two different metal sites at these binary alloy electrodes acting within the proposed response mechanism. Accordingly, adsorbed H-atoms are generated by cathodic discharge of H+ at the Ni-sites whereas adsorption of NO3- occurs at the Cu-sites.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
W-7405-Eng-82
OSTI ID:
804542
Report Number(s):
IS-T 1970; TRN: US200302%%768
Resource Relation:
Other Information: TH: Thesis (Ph.D.); Submitted to Iowa State Univ., Ames, IA (US); PBD: 27 Aug 2002
Country of Publication:
United States
Language:
English