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Abstract

In this work, we have undertaken a theoretical approach to the complex problem of modeling
the flow of electromagnetic waves in photonic crystals. Our focus is to address the feasibility
of using the exciting phenomena of photonic gaps (PBQ) in actual applications.

We start by providing analytical derivations of the computational electromagnetic methods
used in our work. We also present a detailed explanation of the physics underlying each
approach, as well as a comparative study of the strengths and weaknesses of each method.
The Plane Wave expansion, Transfer Matrix, and Finite Difference Time Domain Methods are
addressed. We also introduce a new theoretical approach, the Modal Expansion Method.

‘We then shift our attention to actual applications. We begin with a discussion of 2D pho-
tonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air
cylinders in a layered dielectric background. Comparison with the performance of a conven-
tional guide is made, as well as suggestions for enhancing it. Our studies provide an upper
theoretical limit on the performance of such guides, as we assumed no crystal imperfections
and non-absorbing media.

Next, we study 3D metallic PBG materials at near infrared and optical wavelengths. Our
main objective is to study the importance of absorption in the metal and the suitability of
observing photonic band gaps in such structures. We study simple cubic structures where the
metallic scatterers are either cubes or interconnected metallic rods. Several metals are studied
{aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic
cubes are found to be less lossy than the connected rod structures. Qur results reveal that
the best performance is obtained by choosing metals with a large negative real part of the

dielectric function, together with a relatively small imaginary part.



Finally, we point out a new direction in photonic crystal research that involves the in-
terplay of metallic-PBG rejection and photonic band edge absorption. We propose that an
absolute metallic-PBG may-be used to suppress the infrared part of the blackbody emission
and, emit its energy only through a sharp absorption band. Potential applications of this new
PBG mechanism inclade highly efficient incandescent lamps and enhanced thermophotovoltaic
energy conversion. The suggested lamp would be able to recycle the energy that would other-
wise go into the unwanted heat associated with usual lamps, into light emitted in the visible

spectrum. It is estimated this would increase the efficiency over conventional lamps by about

40%.



1 Introduction to Photonic Crystals

Dissertation Organization

In this dissertation, we follow an alternative thesis format, which allows for the inclusion
of published papers in scholarly journals. Each paper is presented as an independent chapter
in exactly the same format it was published. In what follows, we present a brief description
of the highlights of each chapter and how it fits in the theme of this work. In addition, a brief
abstract of the contents of each chapter is provided at the beginning of the chapter.

In chapter 1, we present a general introduction to the subject of photonic band gaps and
crystals. A rather detailed thorough review of the most relevant theoretical and experimental
literature in the area is provided to get the reader acquainted with the most recent developments
in the field and to set the stage for the discussions provided in the subsequent chapters. In this
chapter we also address the need for adequate theoretical techniques for studying the complex
problem of electromagnetic wave propagation in such complicated structures. The needs as
well as the expectations from these theoretical approaches are also highlighted.

In chapter 2-4 we provide a review of the theoretical techniques employed in the current
work.. While most of these techniques are existing developed methods, the aim here is to pro-
vide a comprehensive picture of these methods. In chapter 5, on the other hand, we present a
detailed discussion of a new approach to the problem of modeling the flow of electromagnetic
waves in a photonic crystal. This method, the Modal Expansion method, was initially devel-
oped and put to extensive use for modeling one- and two-dimensional lamellar gratings. In
chapter 5 we explain how this method can be extended successfully to model three-dimensional
photonic crystals. The approach we present here is due largely to Zhi-Yuan Li, and has proven

to yield converged results where the previous methods have failed.



Chapter 2 provides a detailed development of the first of the theoretical methods addressed
in the current work. Here, we investigate the so-called Plane Wave (PW) expansion technique.
As we have pointed out in earlier sections, this method is operates in k-space and is used
primarily for mapping the band structure of photonic crystals. Our goal is to provide the
reader with the theoretical foundation of this method, and to present a brief explanation of its
underlying physics. A highlight of the major strengths as well as the limitations and drawbacks
of this technique will also be summarized.

Next, we address the Transfer Matrix Method (TMM) in chapter 3. We shall begin by
representing Maxwell’s equations on a discrete lattice of real space points. We then show
how such discrete equations can be recast into the form of a transfer matrix which connects
the electric and magnetic fields on one face of a layer of lattice points to another. Once the
transfer matrix of the individual layers is obtained, the overall matrix is simply evaluated by
taking products of the individual layer transfer matrices. This enables us to find the fields
at every point in our system and from this extract the band structure or transmission and
reflection information. This method is used primarily for calculating the transmission and
reflection coefficients of photonic crystals, both periodic and with considerable disorder. Our
goal is to provide the reader with the theoretical foundation of this method, and to present a
brief explanation of its underlying physics. A highlight of the major strengths as well as the
limitations and drawbacks of this technique will also be summarized.

Our focus in chapter 4 is on the so-called Finite-Difference Time-Domain (FDTD) method.
As its name suggests, this method offers a way of probing the temporal as well as the spatial
development of waves propagating inside a photonic crystal. However, this is not the only
attractive feature about this method; rather, it has another very appealing aspect to it. It
turns out, as we will show in later sections that this method scales as an order V , where IV is
the number of spatial discretization points. This is an order N improvement over the TMM,
and N? over the PW method. Again, our goal is to provide the reader with the theoretical
foundation of this method, and to present a brief explanation of its underlying physics. Finally,

a highlight of the major strengths as well as the limitations and drawbacks of this technique



will also be summarized.

Having addressed three of the most widely uéed techniqués in photonic crystal modeling
in the first three chapters, we next shift our attention to a new theorefical approach to the
problem of modeling the flow of electromagnetic radiation in photonic crystals. The method at
hand, known as the Modal Expansion Method (MEM), offers a much more comprehensive study
of photonic crystals as compared to the previous approaches, as well as limited weaknesses.
This method was initially developed and put to extensive use for modeling one- and two-
dimensional lamellar gratings. In chapter 5 we explain how this method can be extended
successfully to model three-dimensional photonic crystals. Preliminary results obtained using
this new approach will be presented. A highlight of the capabilities of this new approach will
be pointed out, as well as the limited number of draw backs it suffers from.

After providing the reader with a sufficient theoretical foundation, we shift our attention
to actual applications of the previous theoretical techniques. Chapters 6, 7, and 8 are a
collection of selected papers where the previous methods have been put to use. These chapters
comprise the core of the research conducted by the author for fulfilment of the Ph.D. thesis
requirements. We begin with a discussion of 2D photonic crystal wave guides in chapter 6.
The structure addressed consists of a 2D hexagonal structure of air cylinders in a 1ayered:
dielectric background. Comparison with the performance of a conventional guide is made, as
well as discussions related to means and suggestions for enhancing its performance: Our studies
also provide an upper theoretical limit on the performance of such guides, as we assumed no
crystal imperfections and non-absorbing media. In the first part of our studies, the three-
layer structure is studied in vacuum, in the second part, the three-layer structure is put on a
high-dielectric-constant substrate to investigate the effects of substrate losses in the system.

Having pointed out the severe limitations of 2D photonic crystals, we shift out attention
to 3D photonic crystals. However, to avoid the experimental difficulties of manufacturing
several unit cells primarily arising for the small index contrast of semiconducting materials, we
focus our attention on the use of metals as our building blocks. This eliminates the need for

multiple unit cells to realize the PBG effect. We begin in chapter 7 by theoretically studying
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- three-dimensional metallic photonic band gap (PBG) materials at near infrared and optical

wavelengths. Qur main objective is to find the importance of absorption in the metal and
the suitability of observing photonic band gaps in this structure. For this reason, we study
simple cubic structures and the metallic scatterers of choice are either cubes or interconnected
metallic rods. Several different metals are studied (aluminum, gold, copper, and silver). Our
calculations favor copper which gives the smaller absorption compared to the rest of the metals
studied. The effect of topology is also addressed, and isolated metallic cubes are found to be
less lossy than the connected rod structures. The calculations suggest that isolated copper
scatterers are very attractive candidates for the fabrication of photonic crystals at the optical
wavelengths. We conclude by pointing out the key requirement for reducing the notorious
metallic absorption.

The next step is to use our findings so far and utilize them in fabricating an actual metallic
photonic crystal. In chapter 8 we point out a new direction in photonic crystal research
that involves the interplay of photonic band gap (PBG) rejection and photonic band edge
absorption. It is proposed that an absolute PBG may be used to frustrate the infrared part of

black-body emission and, at the same time, its energy is preferentially emitted through a sharp

absorption band. Potential application of this new PBG mechanism includes highly efficient

incandescent lamps and enhanced thermophotovoltaic energy conversion. Here, 2 new method
is proposed and implemented to create an all-metallic 3D crystal at infrared wavelengths, A,
for this purpose. Superior optical properties are demonstrated. The use of metal is shown to
produce a large and absolute photonic band gap (from A ~ 8um to > 208um). The measured
attenuation strength of ~ 30 dB/ per unit cell at A = 12pm is the strongest ever reported
for any 3D crystals at infrared A. At the photonic band edge, the speed-of-light is shown
to slow down considerably and an order-of-magnitude absorption enhancement is observed.
In the photonic aliowed band, A ~ Sum, the periodic metallic-air boundaries mold the flow
of light, leading to an extraordinarily large transmission enhancement. The realization of a
3D absolute band-gap metallic photonic crystal will pave the way for highly efficiency energy

applications and for combining and integrating different photonic transport phenomena in a



photonic crystals. One such potential application is the use of such a crystal to manufacture a
new type of incandescent lamp. The suggested lamp would be able to recycle the energy, that
would otherwise go into the unwanted heat associated with usual lamps, into light emitted in
the visible spectrum. It is estimated this would increase the efficiency over the conventional
lamps from about 5% to over 60%.

We end the work at hand by providing a summary of our all of our findings in chapter
9. Recommendations for future work as well as ways of enhancing the current theoretical
techniques are also pointed out.

Chapters 6, 7, and 8 have all been published in scholarly journals. Chapter 6 was published
in the Journal of Lightwave Technology, Vol. 17., No. 11, November 1999. Chapter 7 was
published in Physical Review B, Vol. 62, No.23, December 2001. Chapter 8 is published in
Nature, Vol. 417, May 2002.

Introduction

In this chapter we present a brief literature review of the major achievements in the field
of photonic crystals. This is by no means a complete or exhaustive review of all tﬁe work that
has been undertaken in this vast and ever expanding field of research; rather, we focus our
attention on relevant advances in topics with direct impact on the work at hand. Qur goal
is to get the reader up-to-date with the subject matter, and acquainted with the underlying
motivation for this work. For a more thorough review, the specialized reader is advised to
refer to the NAT'O ASI conference proceedings(1, 2, 3]. A collective theoretical approach to
the physics of photonics is also outlined beautifully in K. Sakoda’s recent book [4]. Finally,
for a general overview of the subject, the book by Joannopoulos [5] also provides an excellent

introduction to the field.

A New Wave of Information Carriers

The past few decades have witnessed a technological revolution in industrial electronics.

New generations of ightweight, extremely compact, and more efficient devices have dominated



the market. At the top of the list for industrial success criteria are minimal device size and high
speeds. As aresult, an ever-growing demand for the development of faster more efficient circuits
has become the dominant drive in the integrated-circuit industry. However, two problems
brought the integrated-circuit industry almost to a halt, inhibited its continuous success, and
obstructed its flourishment. First, miniaturization of electronic circuits leads to increased
circuit resistance, and hence high levels of power dissipation. Second, high-speeds require
greater sensitivity to signal synchronization and a faster means of communication between
the various circuit components. Given the order of magnitude drift velocity of electrons in
a typical semiconductor crystal, the latter seems a goal with a dead end. As both problems
arise essentially from the physical characteristics of the information carrier in such circuits,

namely the electron, scientists have recently turned to light as a possible alternative. Fueled by

_ the greater communication speeds that light can offer, the larger band width for information

carriage, and the fact that unlike the fermionic electrons, light is not as strongly interacting
with itself and its background as electrons are, the candidacy of light seemed quite powerful.
Yet, one must pause and ask the important question: If light is to play the role of electrons
in the new “optical-circuit” industry, what will play the rolé of the hosting semiconductor
crystals? In essence, what will mold the propagation of light and control these super fast
information photons? ‘To answer these and similar questions, we turn back to the fundamental
physics underlying the operation of semiconductor devices.

Careful examination of the physics of semiconductors reveals that the underlying physical
principle is the existence of an energy band gap, and that all of the subsequent semiconductor
applications are a direct result of the ability to control and manipulate this gap. The questions
that we must answer then become: how can we open a photonic band gap? What would
constitute our valence and conduction bands? What would be our optical impurities, and how
can we dope such optical crystals? Finally, and perhaps most the most important question of
all is its existence in nature. Do such crystals exist in nature or do they have to be artificially
fabricated?

To accomplish our task and aid in our quest, we start by comparing the quantum mechanics
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of electrons in a crystal, to the electrodynamics of photons in the proposed photonic crystals.

The Schrodinger equation of an electron in a crystal lattice reads:

ﬁ2
3 V4 Vi) wle) = B 1)

Here, V(r) is the periodic crystal Coulomb potential at the position r in the lattice, ¥(r) is
the electron’s quantum mechanical wave function at r, and E is the total energy eigenvalue.

The corresponding equation for a photon in a photonic crystal lattice can be obtained bj elim-

inating either the electric or magnetic field vector in favor of the other. Using the macroscopic

Maxwell’s equations, assuming a source-free medium, and eliminating E in favor of H the

resulting equation is:

[v x (%Vx)} H(r) = (-";-)2}1(1-), (1.2)

where e(r) is the dielectric function at the position r in the lattice, H(r) is the magnetic
field vector at r, and w is the angular frequency. Careful examination of Equations (1.1) and
(1.2) yields the following analogies and similarities. First, they are both simple eigenvalue
problems, which means that, in principle, both can be approached using standard eigenvalue
solution techniques. Both operators, enclosed in square brackets, on the left-hand side of the
equations are Hermitian, as can easily be verified. This, in turn, implies their solutions will
be real measurable quantities. Finally, but most importantly, we see that £(r) is the photonic
counterpart of V(r) . This suggests that a crystal structure in which the dielectric function
varies periodically would somehow open up a photonic band gap. Moreover, by extending the
analogy even further, we see this so-called photonic band gap would manifest itself in the form
of band(s) of forbidden frequencies, w, for light propagation through the crystal, in as much as
its counterpart, the electronic energy band gap, E, forbids the propagation of electronic waves
in a crystal lattice.

In spite all of these similarities, however, there are some grave differences. First, the

Schrodinger equation is a scalar wave equation, while the Maxwell equations are vector equa-
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tions. This imposes an additional constraint on the solutions of Equation (1.2), namely
V -H = 0, or that the solutions must be transverse. In addition, Maxwell equations can
“in principle” be solved exactly; whereas, due to the electron-electron interaction, the elec-
tronic Schrodinger equation cannot. Of course, as we shall see shortly, particularly in chapter
2 and throughout the rest of this thesis, this is far easier said than done. Yet, the most striking
difference is that, unlike the semiconductor crystals, which are not only naturally occurring,
but also extremely abundant, our much-desired photonic crystals would have to be artificially

fabricated.

What is a photonic crystal?

In light of our previous discussions, one can define a photonic crystal as a novel class
of artificially fabricated structures which possess the ability to control and manipulate the
propagation of light. Such crystals can be constructed by periodically repeating an array of
dielectric or metallic units in one, two, or three dimensions, thereby. constituting what have
come to be known as one-, two-, or three-dimensional photonic crystals.

The underlying physical pfinciple of operation of such crystals is rather simple: an elec-
tromagnetic wave passing through an array of periodic scatterers will undergo destructive
interference for certain combinations of wave vectors at certain frequencies, thus forbidding
their propagation. Though such an idea is not completely new and has been around for quite
sometime, the Fabry-Perot resonators, or as they are sometimes called Bragg stacks, are one
example [6], what we intended to do with it is quite different. Rather than simply reflecting
the incident electromagnetic radiation at all but one frequency without any control over the
subsequent propagation, as is the case with the above examples, the idea is to fully control and
direct light through its full course of propagation. Properly designed, such photonic crystals
would not only have the ability to allow the propagation of light in certain frequency regions
and inhibit it in others, but also localize light and restrict it to a certain region of space [7].

Potential applications of such structures include loss free mirrors on which a microwave

dipole antenna can be mounted; in this case greater efficiencies and high directionality are
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expeéted as compared with mounting in conventional dielectric substrates {8, 9, 10]. Others
have suggested the use of such crystals as lossless wave guides [L1], where a line defect would
be created and operated at frequencies within the gap of the underlying periodic photonic
structure. Such a guide would not only have the ability to guide light from one point to the
other without any loss whatsoever, but also would have the ability to do so around sharp
corners where conventional dielectric slab guides and optical fibers are known to be very lossy.
Moreover, and perhaps the most intriguing of all applications, would be the possibility of
creating optical switches and logic gates by implementing non-linear materials, in which case
the position and size of the gap would be mandated by the light intensity [12]. This would
make the hopes of replacing all the current electronic devices with optical counter parts a

possible reality!

The search for Photonic Band Gaps: A Brief Literature Review

Three-dimensional photonic band gap structures

Photonic band gaps were first suggested by Yablonovitch in 1986 [13]. Yablonovitch’s goal
was to try to inhibit or suppress electron-hole pair radiative recombinations, a major loss
mechanism in semiconductor devices. Arguing the analogy with the one-dimensioral (1D)
interference coatings, Yablonovitch proposed that a three-dimensional (3D) layered dielectric
structure would open up an electromagnetic band gap where electromagnetic waves would be
forbidden to propagate. Using a simple straight forward calculation, the size of the gap would
be dictated by the contrast bétween the two refractive indices nl and n2 of the alternating
layers. He estimated the required contrast to be at least An = 0.21n, where An = nl ~n2 and
n = (nl 4+ n2)/2. Yablonovitch went even further, explaining how such a 3D layered dielectric
structure could b.e fabricated or grown. He proposed a checkerboard type of arrangement that
would eventually lead to a face centered cubic (FCC) lattice structure. Yet, Yablonovitch
acknowledged in his paper that it wounld be difficult to find a common lattice matched pair
of materials with a suﬁciently large index difference. However, because of the simplistic

arguments and the modest approach to the problem that Yablonovitch followed, his work did
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not spark strong interest at the time.

Only a few months later, S. John proposed a new mechanism of strong Anderson localiza-
tion [14]. The idea was that a carefully prepared 3D periodic dielectric structure containing
random disorders would lead to strong localization of light in the neighborhood of the disor-
ders. His theoretical studies were based on the solutions of the scalar wave equation of the
electric field. He attributed the resulting localization to the periodic nature of the surrounding
dielectric, and deduced that a threshold index contrast of n1/n2 2 2.13 was necessary to open
up an electromagnetic frequency gap to inhibit the propagation of light, and hence promote its
localization. He also suggested that this so-called gap would extend in all three directions if the
Brillouin zone (BZ) of the underlying dielectric lattice was as close to sphericity as possible.
Although completely theoretical and based on a scalar wave approximation, later proven to be
an inaccurate oversimplification, John’s study is regarded as one of the fundamental theoretical
foundations in the field.

In light of the arguments presented by John, Yablonovitch made the first experimental
attempt at fabricating a photonic band gap crystal [15]. To ensure his success, Yablonovitch
modeled his structures based on analogies drawn and concepts extended from the electron
waves in & crystal. By analogy with the electronic case, it was expected that band gaps
would appear at places where the constant energy surface in the momentum space, (k-space),
comes close to touching the Brillouin zone boundary. To maximize the chance of produciﬁg
a complete omnidirectional gap, it would be necessary to produce Brillouin zone with almost
equal extends in all crystal directions. In other words, an almost spherical Brillouin zone!
Out of all the common lattice types, the face centered cubic (FCC) structure has the most
spherical first Brillouin zone. Based on these arguments, and using a “cut and try” method
[15], Yablonovitch fabricated two classes of test structures. The first class consisted of FCC
arrays of Al2O3 (n ~ 3.0) spheres in an air background with a range of filling fractions. The
second consisted of FCC arrays of spherical air voids in a dielectric host (n = 3.5), Fig.1.1,
again in a range of filling fractions. In spite of Yablonovitch’s elaborate experimental efforts,

out of a total of 21 fabricated structures, only one produced what was perceived back then as
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Figure 1.1 Construction of FCC crystals consisting of spherical voids.
Hemispherical holes are drilled on both faces of a dielectric
sheet, which are then stacked up to make an FCC crystal {15].
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Figure 1.2 The experimentally reported photonic band structure in recip-

rocal space for and FCC spherical-air-atom crystal with 86%

filling fraction [15].
a full 3D photonic band gap, Fig.1.2. Because of the léck of experimental resolution, however,
a degeneracy of the bands at the W and U points was overlooked, and the structure only
displayed a pseudo gap in the frequency range investigated by the experiment. This fact was
only highlighted and proven to be the case when adequate vector wave calculations we-re later
implemented, as will be discussed briefly. It is only fair, however, to mention that the FCC
structure fabricated by Yablonovitch, does in fact possess a band gap, but it resides at a higher
frequency range than he had predicted experimentally. Nevertheless, Yablonovitch’s attempt
was regarded as a breakthrough.

The first elaborate theoretical investigation of Yablonovitch’s experiment was carried out
independently by two different groups: S. Satpathy, Z. Zhang, and M. Salehpour [16], and K.
Leung and Y. Liu [17]. In these studies, however, the scalar wave approximation was invoked.
Here the two polarizations of the electromagnetic waves were treated separately, thereby decou-
pling the problem and reducing it to the solution of two scalar equations. The results showed

the existence of a gap, but the position and size of the gap were not in guantitative agreement
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with Yablonovitch’s experiment. Furthermore, they also predicted the existence of full 3D gaps
at a smaller threshold index contrast, contradicting what was observed experimentally! The
only reasonable conclusion was that the errors made by neglecting the vector nature of light
were more serious than initially anticipated.

A full vector calculation for Yablonovitch’s FCC experiment was performed by K. M. Leung
and Y. F. Lin [18]. In their approach, the plane wave expansion technique was used to solve
Maxwell’s equations. The process proved to be somewhat complicated and lengthy, in principle,
because they eliminated the magnetic field in favor of the electric in Maxwell’s equations,
thus yielding an eigenvalue equation in which the operator was not Hermitian. Nevertheless,
their results provided a more detailed mapping of the energy gap than prior calculations, and
distinguished between S-polarized and P-polarized waves. Although their results generally
agreed with the experiment performed by Yablonovitch [15], there was a grave disagreement
in the size of the gaps at the W and U Brillouin Zone points! Their calculations revealed no
gap at these two points, rather the bands were found to be degenerate. They assessed that
the observed degeneracy at the U Zone point was purely accidental and could be lifted by
varying the value of the air-to-dielectric filling fraction. The degeneracy at the W Zone point
is, on the other hand, real and can be attributed to the inherent structure symmetry. These
observations were also found by Z. Zhang and S. Satpathy [19], who assessed that the FCC
structure fabricated by Yablonovitch [15], at the most, possessed a pseudo gap resulting from
Mie resonances. In spite of the agreement between the results of K. M. Leung and Y. F. Lin
[18] and those of Z. Zhang and S. Satpathy [19], there were serious doubts about their validity.
Their technique suffered from convergence problems as well as inconsistent solutions for the
electric and magnetic components of the fields. (See chapter 2 for details.)

Soon after, K. M. Ho, C. T. Chan, and C. M. Soukoulis [20] proposed a different approach
for the dielectric function representation within the same context of the plane wave expansion
technique. Their approach provided a simple solution to the inconsistency problem observed
previously in the plane wave method, and also achieved faster convergence. However, more

significant was the observation that the degeneracy at the W and U Brillouin zone points was
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actually real, and resulted from the crossing of the second and third bands at these symmetry
plane points. Contrary to earlier reports [18], such a degeneracy was independent of refractive-
index contrasts and filling ratios. In essence, the degeneracy cannot be lifted rendering the FCC
structure gapless, and confirming the error in the experimental observations of Yablonovitch
[15]. More important, however, was the suggestion provided by Ho et al. for creating a photonic
crystal structure with an actual full 3D gap. In their classic 1990 paper, Ho et al. proposed
the use of a diamond structure consisting of either dielectric spheres in an air background, or
the inverse structure of air spheres in a dielectric background. The result was an astonishing
full 3D gap with a gap-to-midgap ratio (£2) of up to 21% for the first case and a record high |
value of 46% for the latter (these bounds were later corrected to 14 and 29%, respectively
[21]). In spite of this great discovery, however, the proposition made by Ho et al., although
theoretically sound, was extremely impracticall Due to the complexity and the intricate detail
of the diamond structure its fabrication is, up till today, impossible in the relevant length
scales! This meant that the hunt for a realistic structure which can be realized practically and
that possessed a full 3D gap was still on, and a realistic photonic band gap structure was in
serious doubt {22].

The first practical structure followed shortly after. In an attempt to fabricate the diamond
structure proposed by Ho et al. [20], Yablonovitch noted that the diamond structure is a very
open structure characterized by open channels along the (100) directions. Thus, by drilling
cylindrical channels through a dielectric block along these directions, a structure with the

inherent diamond symmetry can, in principle, be created. Now, since there are 6 sets of (100)

“directions in the lattice, there will be 6 sets of channels that would need to be drilled. To ease

the problem of the necessary delicate alignment, the structure can be tilted so that the (111)
plane is exposed, in which case 3 of the necessary six sets of holes will be slanted at 35.26° with
respect to the normal to the (111) -plane. However, the remaining 3 sets of holes would have
their axes parallel to the (111} direction, and, hence, will Be extremely hard to accomplish
on a thin film oriented along the (111) direction. In the end, and because of the difficulty,

Yablonovitch [23] abandoned the last 3 sets, and maintained only the first 3. However, he
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Figure 1.3 Three-axis drilling technique for constructing the Yablonivite
structure [23].

ingeniously pointed out that only these 3 were necessary for lifting the degeneracy suffered
by his previous FCC structure. He noted that what the diamond structure had essentially
accomplished was to introduce 2 atoms per Wigner-Seitz unit cell in its FCC twin structure.

Viewed from a different angle, it is equivalent to deforming the atoms located at the cubic
lattice points into a cluster of 2 touching atoms for a large enough filling fraction, one of
the major requirements of the Ho et al. group [20]. This is precisely what the 3-axis drilling
technique had produced, with the exception that the atoms are now odd-shaped, roughly
cylindrical voids centered in the Wigner-Seitz unit cell, with a preferred axis pointing in the
(111) direction, Fig.1.3. The structure was, in fact, found to possess a moderate full 3D gap.
The gap-to-midgap ratio was only % = 19% for the high bound dielectric contrast of 3.6.
Nevertheless, a practical structure was now in hand, and applications seemed a close reality.
Although the structure introduced by Yablonovitch [23] displayed a full 3D gap, it proved
to be extremely difficult to realize at optical frequencies where the core of the anticipated
applications lay. |

A more amenable type of photonic crystal lattice was later introduced by Ho et al. [24].
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Later to be known as the Iowa State University (ISU} layer-by-layer structure, this structure
Fig.1.4 consists of layers of 1D rods with a stacking sequence that repeats every fourth layer
with a repeat distance ¢. Within each layer the rods are arranged in a simple 1D pattern and
are separated by a distance a. The rods constituting the next layer are rotated through an
angle # = 90°. The rods in every alternate layer are parallel, but shifted laterally relative to
each other by half a rod spacing. Though strikingly simple in form, this structure actually
possesses the symmetry of a face centered tetragonal lattice (FCT), and for the special case
of £ = V2, the lattice can be derived from an FCC unit cell with a biases of two rods! Even
more striking is the fact that‘thjs layered structure can be derived from the famous diamond
structure by replacing the {(110) chain of atoms with rods!

This structure has several appealing features. First, it has been observed to produce a large
gap-to-midgap ratio of up to 18%, and was predicted to produce large gap-to-midgap of up to
28%, when modified by drilling cylindrical holes through it yielding a diamond-like network
[24]. Not only that, but this large gap is actually quite robust and is immune to the specific

shape of the rods, and persists even with dielectric contrasts as low as 1.9. Furthermore, the gap

" is seen to persist even with inter-layer rotation angles as small as 60°. Most important of all,

however, is the relative ease of its fabrication using conventional microfabrication techniques
even at optical wavelengths. Recently, this structure has actually been fabricated at optical
wavelengths by S. Y. Lin et al. [25]. A further appealing feature is the inherent symmetry of
the structure that allows for the ease of accommodation of point and line defects for use in
creating high-quality resonance cavities and wave guides [27]. For example, the removal of one
complete rod would create a line defect suitable for straight wave guides. On the other hand,
the removal of two touching half rods in two successive layers would create a 90° bend wave
guide [26]. Furthermore, the removal of two complete touching rods would create a "T-splitter"
[26], and so on.

One major concern with the ISU structure, however, is the alignment of the alternate
parallel layers. As studies conducted by the ISU group have suggested, the observed gap is

rather very sensitive to the relative alternate layers shift. A deviation from the selected half a
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Figure 1.4 Schematic diagram of the ISU layer-by-layer structure.

rod spacing shift results in a drastic reduction in the size of the gap. In fact in the special case
of a zero alternate layer shift, the structure acquires the so-called wood-pile arrangement, which
has been shown to be gapless [28]. While the alignment problem is trivial in the millimeter
wavelength scale, it is a major problem in the optical wavelengths, where state-of-the-art
optical aligners must be employed [26]. This is 2 major drawback, and as a result has limited the
popularity of optical research related to the ISU structure to a handful of groups. Several recént
efforts have been directed towards finding alternate methods for overcoming the alignment
problem, the most recent was accomplished by the Japanese group [29]. Here, a unit cell of
the structure is formed by wafer binding two successive bilayers. The redistribution of the
diffraction pattern intensity as each set of bilayers is shifted relative to the other is used as an
indicator for determining the exact half a rod spacing shift.

A third structure displaying a full band gap was later suggested by the MIT group [31]. Like
the ISU layer—by—layér structure, this structure was supposedly introduced around a possible
fabrication scheme. First, a layer of high index semiconductor, typically Si, is grown to a
thickness d. Next, a series of parallel groves of width w, depth d, and spacing a are etched
and backfilled with 2 second material of a lower refractive index, e.g., Si0a2. Another layer of

81 is then grown on top to a thickness of A < d. A second series of groves translated laterally
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Figure 1.5 A schematic for the growth process for the MIT group’s layered
structure [30].

by § with respect to the first set are then etched to a depth of d, so they actually cut into
the first layer. The entire process is then repeated to yield an intricate 3D structure of strides’
and holes. The fabrication process is shown in Fig.1.5. To maximize the resulting gap, the
regions of the lower index material are then etched away completely. It is claimed that the
construction of such a structure has "an inherent simplicity"!

Several difficulties, however, combat this claim. First, the successive parts of the above
growth techmique must be aligned. This is notoriously difficult. To some extent this has
been addressed by the MIT group who have gone on to make a series of calculations in which
they consider certain amounts of disorder either in the layer thicknesses or in their alignment.
Their results [32] show that the band gaps do survive these fabrication imperfections up to
an irregularity of ~ 16%. A more serious problem, however, is the drilling of holes in the
final fabrication step specifically on the micron scale? In two-dimensional systems, regularly

spaced holes have indeed been achieved on that scale, but only by exploiting the special etching
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Figure 1.6 Tetragonal square spiral photonic crystal. The crystal shown
here has a solid filling fraction of 30%. For clarity, spirals at
the corners of the crystal are highlighted with a different color
and height. The tetragonal lattice is characterized by lattice
constants a and c. The geometry of the square spiral is illus-
trated in the insets and is characterized by its width, L, cylinder
radius, r, and pitch, ¢. The top left inset shows a single spiral
coiling around four unit cells {33].
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properties of silicon. In the structure at hand, however, this would have to be done in two
different materials at the same time. Whether this can be achieved in the same way is not yet
clear.

On top of all of this lies another surprise! although in the end the MIT structure looks
quite complicated, it can be shown that it is nothing other than the ISU structure viewed from
the (111) face, but with wave-shape-like rods instead of straight ones! As a consequence, most
of the experimental work performed on 3D structures has been performed on the relatively
"easier" ISU layer-by-layer structure.

Very recently, 2 new structure based on an underlying tetragonal lattice geometry has
been introduced by O. Toader and S. John [33, 34]. The structure, illustrated in Fig.1.6,
consists basically of square spiral posts grown initially on a two-dimensional square lattice of
growth centers. The result is a tetragonal lattice of intertwined spirals with a gap-to-midgap
ratio of 15%. Though considerable smaller in gap size and relatively more complicated, it
has been claimed that such a structure is amenable to micro-fabrication using a technique
called Glancing Angle Deposition [35, 36]. Although such a structure reportedly has minimal
alignment issues compared to the previous layered structures, it remains to see how intentional
defects and wave guides can be incorporated in the structure. An interesting observation,
however, is that this structure is founded on a tetragonal symmetry, and hence belongs to the
same symmetry group as the previous layered structures, and the hunt is still on for simpler

3D structures.

Two-dimensional photonic band gap structures

Ideally, it would be desirable to fabricate 3D photonic structures at optical length scales.
After all, this is where their greatest impact in today’s technology is anticipated. The key
number here is 1.5um. However, as is clear from the previous discussion, fabricating a structure
which is periodic in all three dimensions at such length scales is far from a trivial problem.
As a result, the attention of quite a few groups in the community has shifted to the relatively

easy to fabricate two-dimensional (2D) photonic crystals.
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Vast theoretical and experimental studies were carried out on structures consisting of air
rods drilled in a dielectric slab and arranged in either a square or a triangular lattice, as well
as on the inverse structure of dielectric rods in an air background {37, 38, 39, 40, 41, 42]. The
argument was that in spite of the missing periodicity in the third dimension, there are still
major potential applications for such crystals, if proven to exist. Among such applications were
planar wave guides, super prisms (43|, and prefect planar mirrors [44]. In addition, because of
the relative ease in fabrication, and the order of magnitude reduction in the theoretical calcu-
lations, such 2D structures would constitute a domain in which new physics can be explored,
and grounds for pfoof of physical principles [45].

The first key measurements were performed by scientists at IBM working in the microwave
regime [46]. Their test structure consisted of a square lattice of alumina rods with 0.74mm
diameter and a lattice constant of 1.87mm. Their measurements revealed a large gap for the
TM modes (E field parallel to the rods) and a significantly smaller gap was observed for the TE
modes (H field parallel to the rods). Their observations were later confirmed by calculations
performed by the MIT group {47]. Further calculations by the same group also suggested that a
triangular lattice was a more favorable structure for opening sizable gaps for both polarizations.
An unfavorable observation, however, was that such gaps are not overlapping!

More recent work included the calculation of the band structures of a whole class of 2D
hexagonal structures, commonly known as the boron nitride structures [42]. Here, two inter-
locking triangular lattices of different diameter rods were used. At the one extreme when the
radius of the rods belonging to one of the lattices is set equal to zero, we obtain the usual trian-
gular lattice. On other, when the two radii are equal, we obtain the honey-comb or hexagonal
lattice. The largest gaps were observed for the cases of a triangular lattice of air cylinders in a
dielectric background, and for a hexagonal lattice of dielectric (in their case graphite) cylinders
in an air background.

Effects of introducing disorders in 2D photonic crystals has since been investigated. Cav-
ities resulting from point defects were studied using the transfer matrix method (TMM) [48].

Other studies focused on the disorder introduced by perturbing the position or radii of the
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cylinders [49]. In all of these studies, however, the 2D structures were assumed to be infinite
in the third dimension. In spite of this, the reported theoretical predictions for the effects of
removing a single or multiple rows of cylinders agreed well with the experimental results [50].
However, major concerns were raised as to the viability of such defects as wave guides, since
losses in the third dimension were neglected.

Several different approaches were undertaken while fabricating submicron 2D structures.
One approach was to use reactive ion etching of semiconducting glass arrays [51] or to use high
resolution electron beam lithography [52]. Another was based on exploiting the anisotropic
etching properties of silicon to produce macroporous silicon structures [53, 54). More recentl.y,
however, a technique based on photo-electrochemical etching was introduced by the Max-
Planck-Institute group in Germany. A detailed description of the resulting macroporous silicon
structures can be found in [55]. The group reported the fabrication of long range ordered 2D
structures with pore center-to-center distance as low as 1.5um, and a pore diameter as large
as 1.36pum at a depth of up to 100um.

Regardless of the process with which such crystals are produced, a tempting question that
one must answer is: does the loss of periodicity in the third dimension destroy the usefulness of
a 2D crystal and hmit its application to being a test ground for physical principles? Apparently
not! The point fo remember is that despite the lack of periodicity in the third dimension, light
can still be contained by total internal reflection when such crystals are sandwiched between
two slabs of a relatively large dielectric cladding. Light will, of course, be able to escape at
some angles, but this is no worse, at least in principle, than the dielectric wave guides used
currently in integrated optics. However, the viability of such wave guides is still a subject
of debate in the community. Some studies [56] have suggested drastic improvement in the
guiding efficiency over planar dielectric wave guides. It is assumed that when combined with
2D photonic crystal structures, in which line defects have been created, more confinement in the
plane of periodicity can be achieved. Such structures will be even more useful for use around
sharp corners and bends. Other studies [57] have refuted the argument, and argued that the

introduction of such 2D structures in 2 slab guide merely increases the impedance of the guide
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and while the in-plane losses are minimal, large out-of-plane losses cannot be diminished. More
recent studies by the MIT group have focused on mapping the 2D band gaps and the resulting
defect modes when such crystals are fabricated in finite slabs [58]. Although their calculations

show some promising advances, they remain to date purely theoretical predictions.

Photonic crystal fibers

| An alterative approach to 2D photonic wave guides was first introduced by a group at
Southampton {59]. They proposed the use of a so-called photonic band gap 2D fiber. This
was essentially an array of a 2D array of air holes in silica arranged in a hexagonal honeycomb
arrangement and mechanically drawn to form a fiber. The idea is then to introduce a defect
by either removing one or a bundie of rods such that the general cylindrical symmetry about
the axis of the structure is preserved. This opens up an air channel along the axis of the fiber
which is then used to guide light.

The advantage is, while conventional optical fibers restrict light to propagating along their
axis via total internal reflection, the photonic érystal fibers would essentially accomplish this
via the 2D photonic band gap effect, and because the guiding is essentially done in air, this
would avoid the major problems associated with the coupling of the radiation in the high
index core of the conventional fibers. The greater advantage would be the ability to bend
these fibers beyond the threshold bending radius of the conventional optical fibers, where
the critical angle conditions are no longer satisfied and the fiber is very lossy. More recent
studies were conducted by a group at Corning Inc. [60]. Their studies provide both optimized
theoretical and experimental results for both air core and dielectric core band-gap fibers, and
have reported very promising outcomes.

A more intriguing approach to wave guiding using 2D photonic crystals was introduced
recently by the MIT [61]. In their more recent publication [62], a cylindrical air wave guide
was constructed by etching away the core of concentric multi-layer dielectric mirrors which
possessed the property of Aomnidirectional reflection. In their studies, they showed that the

lowest order TE mode can propagate in a single mode fashion through even large-core fibers, in
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- which case other modes are eliminated asymptotically by their large losses and pore coupling.

To quite elaborate extents, the group also addressed the issues of dispersion, radiation leak-
age, material absorption, nonlinearity, bending, acircularity, and interference roughness using
leaky modes perturbation and methods. Their results showed that cladding properties such as
absorption and nonlinearity could be neglected due to the strong confinement of light in the
hollow core. Their observations proved to be extremely promising and fabrication efforts in
the optical length scales have been undertaken.

Whether 2D structures will prove to be useful for wave guiding or not is still an open
question. Nevertheless, 2D structures have certainly provided a medium for exploring new

physics and grounds for testing principles and new ideas.

Symmetry, Topology, and Photonic Gaps

Very early in the development of the field of photonic crystals, it became evident that the
refractive index contrast played a vital role in opening up photonic gaps. A minimum value
around ~ 3 was found to be the necessary threshold. However, it also became evident that
not any periodic arrangement of dielectric scatterers would yield a photonic gap. In fact, only
a handful of crystal structures succeeded in doing so. Thus far, all the crystal structures that
have yielded a full 3D gap, regardless of size, were found to belong to the so-called A7 family
of structures [9]. The A7 crystals structure consists of a rhombohedral lattice with a basis of
two atoms situated at the crystal 'positions d = 4-u(a; + a2 + a3), where ay, as, and a3 are the

primitive lattice vectors defined by:

ap = aofe, 1,1}, a2 = ao{l,¢,1}, and az = ap{1,1,¢} (1.3)
~onc?
withe — 1— v/'1+ cosa — cos a
cos o

Here, « is the angle between any two primitive lattice vectors. Although all the 3D structures
mentioned above seem quite alien to each other, they can all be produced from this group by

proper choices of the parameters, o and u. For instance, by choosing & = 60° and u = —é, we
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Figure 1.7 Schematic diagram depicting the two different types of scatter-
ing mechanisms responsible for photonic gap formation [63].

produce the diamond structure. Setting o = 60°, u = 0, and joining up the lattice points by
cylinders, we arrive at the Yablonovite structure. Similarly, but with a little more effort, we can
generate the ISU layer-by-layer structure, the spiral rod structure, and even the simple cubic
structures, by the appropriate choice of parameters. This leads us to the obvious question:
what are the necessary crystal symmetry requirements for yielding a photonic gap? In fact,
what are the general rules of thumb, if any, that yield a photonic gap? To answer these
questions, it is imperative to understand how the photonic gap essentially arises. In the next
section we shall follow the argument presented by S. John et al. [63].

Photonic band gap formation can be understood as a "synergic interplay" between two

distinct resonance scattering mechanisms. One the one hand, there is the microscopic scattering
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Figure 1.8 Spriral rods defined in a diamond structure by connecting the
lattice points along the (001) crystal direction [64].

resonance from the dielectric material contained in a single unit cell of the photonic erystal. On
the other hand, there is the macroscopic resonance dictated by the geometrical arrangement
of the repeating unit cells of the dielectric microstructure.

The first resonance is governed By the local symmetry of the scattering elements. A simple
illustration of this is depicted in Fig.1.7. Here, an incoming light wave is scattered from a 1D
square potential well. It is clear that transmission is maximized when the wave length of the
incoming radiation is equal to the width of the well. On the other hand, if only one-fourth of
the wavelength fits in the well, then reflection is maximized. This one-quarter condition is a
simple example of the microscopic scattering resonance condition and, as illustrated, depends
solely on the local configuration of the scattering center. Conversely, when there is a periodic
arrangement of repeating unit cells of the dielectric microstructure, the result is a Bragg type
of resonance scattering. This occurs whenever the spacing between adjacent unit cells is an
integer multiple of half of the optical wavelength. A photonic band gap is facilitated only if
the geometrical parameters of the crystal are such that both the microscopic and macroscopic
resonances occur at precisely the same wave length. In addition, both of these scattering

mechanisms must be independently quite strong.



27

Most of the effort set forth has focused on increasing the strength of the macroscopic
scattering and, while this has led in one way or another, to the birth of the A7 family of
structures, increasing the strength of the microscopic scattering strength, on the other hand,
means that one would have to investigate the effect of the local topology of the individual
scattering centers. Among the first to investigate the effects of the local structure were the
Japanese group, Noda et al. [64]. In fact, they have proposed recently that by carefully choosing
the local symmetry of the scattering centers, a photonic band gap can be opened repardless
of the periodic macroscopic arrangement they are arranged into. Their idea actually emerged
through careful examination of the structures which have thus far yielded photonic gaps. By
connecting the lattice points of a structure known to display a photonic band gap along actual
material interconnects, they observed that all the previous 3D structures can be viewed as
periodic arrangements of twisted rods [64]. Fig.1.8 shows the twisted rod arrangement resulting
from connecting the diamond structure lattice points along the (001) direction. Interestingly,
however, They discovered that any periodic arrangements of such twisted rods resulted in a
sizable photonic band gap regardless of the underlying symmetry of the lattice constituting
the periodic arrangement. Fixing the dielectric contrast to 12.25 : 1, they reported a gap-to-
midgap ration (%) up to 16.8% for a SC arrangement of air rods in a dielectric back ground,
while a maximum of only 3% was found for dielectric rods in an air background. For an
FCC arrangement they obtained maximum gaps of 19.5 and 17.2% for non-touching rods in
dielectric and air backgrounds respectively, while a large gap up to 27.5% was observed when
the dielectric rods were allowed to overlap. Furthermore, by using a BCC arrangement, they
observed respective maximum gaps of 20 and 16.7% for the non-touching rod case in dielectric -

and air backgrounds, respectively. It is these results that actually motivated the introduction

-of the tetragonal lattice of square spiral posts suggested by O. Toader and S. John (33, 34]

mentioned earlier.
Though these results are quite exciting, one must point out that even after arranging such
twisted rods into SC, FCC, or even BCC lattices, and because of the shape of the rods, the

overall symmetry remains that of the A7 family! However, what is important is the indirect
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implication of this work, namely the realization that "fopology" does play a vital role in the
creation of the gap. Yet, it is not the topology of the individual entities that is of prime
importance, rather, that of the high dielectric material, specifically whether it is connected,
network topology, or disconnected, cermet topology. This was first pointed out by Ho et al. [65].
It turns out, as suggested by the above results, as a general rule of thumb, network topology
is more favorable for producing large gaps than the cermet topology [66].

The effect of tf)pology on the photonic gaps can be understood by analyzing the fields at the
top and bottom of the band gap, specifically by mapping the displacement field intensity [67].
For simplicity, we shall first consider the case of a two-dimensional square lattice of dielectric
cylinders in an air background. In this case, one can identify two different polarization states:
TE modes, where E is in the plane of the crystal and H is perpendicular to it, and TM modes,
where the opposite is true. Inspection of the band gap diagram of this structure reveals a
relatively large photonic gap for the TM modes, while the TE modes are observed to have
no gap at all. Examining the displacement field at the top of the lower band (bottom of the
photonic gap) for the TM mode, we find it is predominantly concentrated in the dielectric rods
and very little leaks into the air regions. Conversely, and because of the mutual orthogonality
requirement on successive modes, we find the TM mode residing at the bottom of the upper
band (top of the photonic gap) has all of its displacement field predominantly concentrated
in to the air regions. However, from the electromagnetic energy density point of view, the
concentration of D in the high dielectric yields a lower energy configuration than the case
where it is mostly in the air. This, in turn, implies that the mode at the bottom of the gap
will possess a much lower energy than the upper mode, thereby resulting in a large band gap.

For the TE modes, on the other hand, the situation is completely different. In this case,
E must remain perpendicular to the rods at all times. Consequently, when the mode at the
bottom of the gap tries to concentrate the D field in the rods to produce a lower energy
configuration, it is frustrated by the boundary conditions which it must obey and instead the
field penetrates into the air between the cylinders. The mode at the top of the gap, while

maintaining its orthogonality to the former mode, is more or less the same and has all of its
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D field in the air regions. The end results is a very small or no energy gap.

Consider now an alternate scenario, instead of isolated high dielectric entities in an air
background, we now have a lattice of air holes in a dielectric host. In this case we find that it
is the TE modes that possess the large gap, while the TM modes have a sizably smaller gap.
The TM modes above and below the gap are observed to both concentrate D in the dielectric;
in the intersections for the lower mode and in the veins in between for the upper mode. Thus,
no large gap is produced. ‘The TE modes, on the other hand, confine the lines of D to run
along the dielectric channels and avoid the air regions. The upper mode, orthogonal to this,
forces the D field into the air regions, thus opens up a large gap.

In light of the above discussion, and by extending our analysis to the three-dimensional case,
one would understand why a 3D network topology is more favored for large gap production
over a 3D cermet one. In a network there will always be some continuous dielectric path into
which the D field can concentrate in regardless of polarization. The successive mode, which
must be orthogonal to this one, will thus be pushed out of the dielectric and into the air
regions, thereby producing a configuration in which two successive modes are t'.]ujte different in
their energy values, thus opening up a gap. On the contrary, in a cermet topology this will not
be the case, réther, if we have a "low dielectric host" with "high dielectric inclusions", then
the boundary conditions on the fields will always force the penetration of the "low dielectric"
regions resulting in a reduced gap size or none at all.

Our analysis above certainly agrees with the finding of the Japanese group mentioned
previously [64]. In fact, when starting with a parent cermet topology of an FCC lattice of
twisted dielectric rods, the observed gap was rather small, compared to the case of the network
topology of twisted air rods in a dielectric background. However, when the dielectric rods were
allowed to touch and overlap, the topology deviated from the parent cermet to a newborn

network and the gap size increased dramatically.
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Metallic Photonic Crystals or Structures

Practically increasing the strength of the micro- and macro-scattering resonances implies
that the underlying solid material must have a very high refractive index (typically ~ 3), while
at the same time exhibits negligible absorption or extinction of the light (1db/cm). These
conditions, along with the requirement that the individual scattering processes be indepen-
dently strong along with what topological implications this entails, have severely restricted
the set of engineered dielectrics that exhibit a photonic band gap. One suggestion is to use
metallic scatterers rather than dielectric ones. Certainly the huge metallic dielectric function
would mean that a fewer number of periods are necessary to achieve a photonic band gap
effect [68, 69]. However, one must worry about the inherent metallic absorption especially at
the optical frequency length scales. Indeed, most of the proposed metallic or metallodielectric
photonic crystals have focused on the microwave frequency regions where the absorption is
considerably less [70, 71, 72, 73, 74, 75, 76]. However, there are some favorable situations
where the redistribution of the photon wave field, due to the periodicity, prevents the metal.
from absorbing the light [77]. Under such circumstances, "the light sees the metal sufficiently
to be scattered by it, but not enough to be absorbed" {77).

Once a photonic crystal contains highly conducting elements such as metals, the possibility
of generating local surface currents comes into play, and, as a result, the intertwined roles
of topology and polarizatién change dramatically. As usual, we first start by considering the
somewhat simple two-dimensional photonic crystal. Kuzmiak et al. {78] studied the case of an
array of infinitely long metallic cylinders arranged in square and triangular lattices embedded
in vacuum. Their results showed a striking qualitative difference in the band structures of the
two different polarizations.

For the TE modes, they obtained a band structure that was very similar to the free space
dispersion except with a number of super-imposed very flat bands. For TM modes, however, the
situation was very different. No flat bands were observed, rather a finite cut-off frequency below
which no propagating modes existed. To physically understand these observations, we note that

while the TM modes can couple to longitudinal oscillations of charge along the length of the
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cylinders, because of the orientation of the E field, the TE modes, however, cannot. This means
there exists a cut-off frequency below which vigorous longitudinal oscillations are generated
by an incoming TM polarized radiation, resulting in no propagation. It is worth pointing out
that such oscillations do not occur at the bulk plasma frequency, however, because the metal
has been diluted by cutting it up into cylinders, rather at an effective plasma frequency which
scales with the square root of the filling fraction (essentially the square root of the average

electron density). Unable to couple to such longitudinal modes, a TE polarized wave instead

. excites discrete excitations associated with the isolated cylinders. However, these modes are

shifted in frequency and perturbed, due to the interactions between the neighboring cylinders.
As a result, they appear in the band structure as a number of very flat, almost dispersionless,
bands.

Once again we extend our analysis to 3D structures. In this case, a cermet topology, such as

an array of metal spheres, bulk plasma-type of oscillations are not possible because the metal

is not continuous; rather, by analogy with the TE modes in two dimensions, both polarizations

show the flat bands caused by the interaction of the modes of the individual spheres [2]. In
the network topology, on the other hand, collective oscillations throughout the structure are
possible for both polarizations. Consequently, the band structure becomes similar to that
of the TM modes in two dimensions, producing an effective plasma frequency below which
propagation is impossible [68].

The first 3D metallic structure was introduced by Sievenpiper, Sickmiller, and Yablonovitch
[71]. They introduced a metal wire structure based on a diamond lattice in the centimeter
length scale. Here the structure was created by joining the adjacent lattice points by thick
copper wires. In agreement with the above analysis, this network-like structure displayed a
forbidden band below a cut-off frequency in the GHz frequency range, as well as 2 more conven-
tional photonic band gap at a higher frequency resulting from the periodicity of the structure.
Defec_:ts in the lattice were also introduced, and were observed to allowed modes inside the gap.
Almost simultaneously, the ISU group proposed a rather more simple metallic structure [72]

constructed from layers of a metallic square mesh separated by layers of a dielectric spacer.
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Their results were in qualitative agreement with the wire diamond lattice, once again iden-
tifying a finite cut-off frequency below which no modes could propagate. Defects were also
introduced by simply cutting the wires; the result was the appearance of allowed modes below
the cut-off frequency.

A more theoretically sound investigation of the behavior of such metallic structures was
carried out by Pendry [80]. In his calculations, Pendry used the wire diamond structure;
however, the diameter of the wires was of the order microns rather than the millimeters of
the Yablonovitch structure. His results showed that the effective plasma frequency of the
structure is not only controlled by the average electron density, but also by the inductance of
the wires. The net effect was a several orders of magnitude increase in the effective mass of
the electrons, consequently reducing the plasma frequency. Unlike the Yablonovitch structure
which had a plasma frequency of the same order of magnitude as the lattice spacing, in the
Pendry structure the square of the plasma frequency was suppressed by a factor of In(a/r)
where a is the lattice spacing and r is the wire radius. The result is that the plasma frequency
is shifted far below the ﬁ'equeAncy at which the primary diffraction effects occur. This prevents
diffraction from interfering with the plasma frequency and resuits in a much cleaner effect
supporting the validity of the above arguments.

More recent studies were conducted by Mclntosh et al. [81, 82]. In their studies, they
proposed the use of an FCC lattice bf metallic units embedded in a dielectric background
to open up infrared stop bands. Their results showed promising applications for possible IR
filters. Because their goal was to design reflection filters, their studies completely overlooked the
effect of metallic absorption and focused solely on transmission measurements. The theoretical
simulations they provided also assumed lossless metallic conductors. It was unclear from their
work whether such metallic structures would ever play a role in any other form of application.

A more welcome study was conducted by Zhang et al. [83]. In their efforts, Zhang et al.
showed both theoretically and experiinenta.lly that it was possible to realize photonic band
gaps using dielectric-coated metallic spheres as building blocks in the GHz frequency regime.

Robust photonic band gaps were found to exist, provided that the filling ratio of the spheres
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exceeded a certain threshold. However, what was more intriguing about their work was the
demonstration of how robust were such metallic generated photonic band gz;.ps and that they
were quite immune to random disorders in the global structure symmetry. The group also
provided arguments about the possibility of extending their results to the infrared and optical
regimes. They assessed that, by proper choice of the coating dielectric spacer and the metal
cores, such gaps could be realized in spite of metallic -absorption.

Almost immediately after this, the ISU group ([84], see also chapter 7) investigated theo-
retically the effects of metallic absorption on the photonic band gap in an all metallic photonic
crystal. They argued that metals possessed an IR-to-optical window of frequencies in which
metallic absorbance is minimal and can, in fact, be negligibly small with a proper choice of
the material. They also showed that by proper choice of the metallic crystal parameters, it
is possible to avoid the catastrophic metallic absorption region and overlay the photonic band
gap with this preferred window. By satisfying both conditions together, it was demonstrated
that an incoming electromagnetic radiation would be rejected by the crystal and negligible
absorbance would take place. The effect of intentionally introducing defects was also studied.
The group demonstrated that the defect induced transmission bands suffered from nearly zero
absorbance. This opened the door for a much welcomed progress in the possibility of using
defects in metallic photonic crystals as IR and possibly optical waveguides [85].

Soon after, the ISU group, in collaboration with the Sandia National Lab group, designed
the first all metallic 3D photonic crystal at IR wavelength scale (see chapter 8). An ISU layer-
by-layer crystal was fabricated using tungsten metal; transmission, reflection, and absorbance
measurements were performed[86]. Not only did the crystal display a huge photonic band
gap attenuation effect, a record high 30db per unit cell, but also provided grounds for a
very promising incandescent lamp and thermal photovoltaic applications. They showed a
considerable slow down in the speed of light at the photonic band edge, and, as a result,
an order of magnifude enhanced absorption was produced. This, however, was not a typical
material induced absorbance, as both theoretical calculations and experimental measurements

have shown that a slab of tungsten metal produces negligible absorbance at those wavelength
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scales. Rather, it appeared that sufficient reduction in the group velocity of light had taken
place, allowing for more interaction time with the crystal, and hence increased absorbance.
Not only was this the first demonstration of the possibility of slowing down light, they also
noted that this extraordinary absorbance narrow peak can be tuned by varying the erystal
parameters. Such an absorbance peak would function as an emission band when the structure
was properly heated. They argued that the extraordinary large metallic gap would be ideally
suited for suppressing broad band blackbody radiation in the infrared [87] and recycling its
energy into a selective emission band in the visible spectrum, thus producing an efficient
incandescent lamp with minimal or no thermal losses at all!

In an attempt to explain the origin of the prescribed sharp absorbance peak, the ISU
group used a modal expansion technique to solve for the field distributions in the various
crystal modes {88]. They showed, the wide lowest stop band gap extending to zero frequency is
induced not only by the wave guide cut-off attenuation, but also by the coupling of waveguide
modes between unit cells in different layers, a global photonic band gap effect. Due to the cavity
resonance formed inside the photonic crystal, nearly 100% transmission can be achieved. In.
contrast, surface plasmons were shown to play a negative role in this resonance, and, hence,

were ruled out as possible sources for the experimental observations.

Self Assembled Photonic Crystals or Colliodal Crystals and Photonic ‘Band
Gaps

It became apﬁarent very early on, and as we have highlighted throughout the previous
sections, that fabricating 3D photonic crystals at oi)tical length scales is both tedious and
extremely difficult. In an attempt to overcome this problem, the experimental community
turned its attention to what are widely known as self assembled structures [89]. Though hard-
sphere like interactions, a colloidal suspensions containing mono-disperse sub-micron spheres
minimizes its {ree energy assembling in short ranged, closed packed FCC clusters [90]. The
result is the production of random stacks of hexagonal planes, a structure with intrinsic disorder

along the c-axis. Charged colloids, on the other hand, yield well-ordered crystals with the FCC
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arrangement [91]. Such structures have been used to demonstrate the inhibition of spontaneous
emission of dye molecules dissolved in the solvent between the spheres [92]. The net negative .
charge of spheres is counterbalanced by the free ions in the solution. Once these jons are
removed, the spheres interact both via long range Van der Waals forces, as well as short range
electrostatic repulsion. Under favorable conditions the colloid undergoes a phase change from
a disordered phase to a crystalline FCC structure.

Provided that the mono-disperse condition (< 5% radial variation) is satisfied within the
suspension, a wide range of sphere radii (from 1nm to 10mu) can be used to manufacture such
crystals. The resulting lattice constants, on the other hand, appear to be governed by the
concentration of spheres. Several groups [93, 94, 95] have produced such crystals with the goal
of experimentally studying photonic effects.

A key experimental measurement is that of the Kossel line pattern for a given crystal. This
is simply the diffraction pattern produced using a diffuse source at a given frequency. The
transmitted light signal produces a series of Elark rings, or stop bands, corresponding to angles
where the Bragg condition is -satisfied for some set of crystal planes. By analogy with the
standard crystallography techniques, these patterns are used to identify the lattice type and
orientation of the single crystal domains.

A major drawback, however, is the dielectric contrasts in these colloids, typically about 1:4.
Unfortunately, this is much too small to produce complete band gaps. One idea is to utilize
spheres with a high dielectric core. The question, of course, is whether this can be done while
mainfa.ining the mono-dispersion criterion.

Another possibility is to increase the dielectric constant of the solvent. In other words,
use the colloidal crystal as a template. One such early attempt resulted in an interconnected
network of uniform pores in a titania background [96]. Though no long range crystalline
order was achieved, the technique proved ground breaking for the production of uniform pores
in a dielectric background. Following this, a number of groups modified the approach to first
synthesizing ordered silica or polystyrene spheres, then infiltrating with an appropriate material

with a relatively large refractive index, and finally removing the spheres either by chemical
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Figure 1.9 Beam geometry for an f.c.c. interference pattern [108].

etching or firing. Several different materials have been attempted including solgels and ceramic
precursors [97, 98, 99, 100}, metals and polymers [101, 102, 103, 104], as well as semiconducting
nano-particles [105]. A further technique is to introduce a high index background material
during the process of colioidal crystallization. This latest approach was undertaken by the
ISU group and succeeded in producing long range ordered FCC thin films on the order of
centimeters [106, 107].

In spite of all the development and successes in the field of inverse opals, their direct
application in the design of photonic crystals is still unclear. Aside from being used as possible
reflection coatings, to date it is very difficult to intentionally introduce and control defects
during or after the crystallization process. As a result, it remains unclear whether such crystals
will make it into the realm of possible photonic devices or will remain merely grounds for

fundamental physical research.

Photonic Crystals Through Lithographic Holography

The experimental techniques described thus far have focused on the use of various
etching and other lithographic techniques to create a periodic structure by removing material,
more or less, from a solid block. These techniques have the potential to combine the size of

the colloidal crystal with the controlled order of layer-by-layer assembly, yet they are both
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tedious and extremely time consuming. A more elegant appi'oach was introduced by Berger,
Gauthier-Lafaye, and Costard {108]. They argued that photonic crystals can be viewed as
holograms with extremely high refractive index contrasts. Since the refractive index function
was successfully approximated by a finite number of plane waves [20}, it is therefore possible
to construct such a crystal via holographic recording using a finite number of plane waves.
The group theoretically investigated the feasibility of their approach to a number of photonic
structures, but succeeded only in experimentally fabricating a 2D triangular lattice.

Very recently, however, a group at Oxford University described how such a process can
be extended to fabricate 3D structures using only four intersecting laser beams [109]. The
resulting interference pattern is then used to illuminate a photoresist. The high intensity
regions in the interference pattern render the photoresist soluble, allowing the 3D periodic
template to be formed Figs.1.9 and 1.10. Inverse structures can then be formed by infiltrating
the template. This simple, yet elegant, holographic technique may hold the key to fabricating
the much desired and superior diamond lattice. It also possesses the viability, at least in
principle, to create a variety of crystal structures by simply varying the relative orientation
and polarization of the four laser beams. It also has the advantage of speed, since the entire
pattern in the photoresist is created in nanoseconds. However, it remains to test to what
extent ideal defect-free structures can be experimentally realized, how absorption of the laser
beams affects uniformity in thickness, and how intentional defects can be incorporated in the

resulting template.

Tunable Photonic Crystals

A question that has for long baffled the community was the possibility of optical switching.
The essential difficulty arises from the fact that to design a viable optical switch, one must
find a way of varying the optical properties of the resulting structure. In other words, be able
to tune and move the band gap from one frequency range to another. This, in turn, implies
the ability to vary the lattice constant of a realized structure and or its refractive index. Thus

far, however, all of the fabrication methods proposed produced photonic band gap structures
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Figure 1.10 Calculated constant-intensity surfaces in four-beam laser inter-
ference patterns designed to produce photonic crystals for the
visible spectrum from photoresist. The primitive basis (con-
tents of a Wigner-Seitz unit cell) is shown inset in each case

[108].
with fixed crystal dimensions and refractive indiceé.

Recently, the MIT group proposed the use of block copolymers as self assembling building
blocks for 1D, 2D, and 3D photonic crystals [110]. By controlling the composition, molecular
weight, and architecture of the macromolecules, the resulting equilibrium phase can be molded
into a rich repertoire of equﬂibrium phase periodic structures. Possible assembled structures
include alternating molecular layers, complex topologically connected cubics, cylinders on a
hexagonal lattice, and spheres on a body-centered lattice. In addition to providing the topolog-
ically preferred network topology, such molecules provide also strikingly flexible structures in:
as much as plastics. This means that by applying an appropriate mechanical stress within the
elastic limits, one can change the lattice constant of the assembled structure, thereby changing
both the location and the size of the photonic gap. Thus far, the group has only been successful
in fabricating 1D crystals using this technique. However, efforts continue for producing such
structures in 2D and 3D configurations.

A more recent attempt at tunable photonic crystals was undertaken by John and Busch
[111, 112, 113]. Their idea was based on infiltrating an inverse opal structure with an optically
birefringent nematic liquid erystal. The resulting composite material was shown to exhibit

a completely tunable photonic gap. In particular, it was shown that such a 3D gap can be
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completely opened or closed by applying an electric field of appropriate strength. Such an
electric field would act to rotate the axis of the nematic molecules relative to the inverse opal

backbone, thereby changing the refractive index contrast, and, hence, the gap size.

Modeling and Numerical Methods

Early on, it became apparent that a sound fundamental foundation was needed to aid and
guide the experimental efforts. Certain requirements or expectations, however, were imposed
by the preliminary experimental efforts. Among these “adequate theory requirements” where

to:

o produce a detailed map of the energy band diagram to aid the search and discover the

viability of new photonic crystals.

e estimate experimentally measurable quantities, e.g., the transmission, reflection, and
absorption spectra, for the sake of touching base with the realistic limitations of imperfect

samples.

¢ simulate the real time evolution of the electromagnetic fields in the proposed structures

for the sake of testing possible devise applications and feasibility.

e provide deep physical insight in to the physical origins of photonic features to better aid

the development of potential applications.

In the next few chapters we will highlight some of the most widely used full 3D techniques
used in the investigation of photonic crystal research and applications and describe briefly the
major theoretical techniques used in the investigation of photonic crystal research and appli-
cations. The Plane Wave Expansion Method, the Transfer Matrix Method, and the Finite
Difference Time Domain Method will be addressed. In an attempt to paint a detailed picture
of a potential PBG-crystal application, each method has both an advantage that it offers as
well as a drawback that limits its use. We will present a brief explanation of the physics under-

lying each approach, as well as a comparative study of the strengths and weaknesses of each
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method. Simulations and results obtained by these methods will be presented and discussed.
A new theoretical approach, the so-called Modal Expansion Method, will be presented. This
method offers a much more comprehensive study of PBG-crystals as compared to the previous
approaches, as well as limited weaknesses. The beauty of this technique is that it is tailored to
the silicon processing and machining techniques. Preliminary results obtained using this new

approach are presented and compared to its peers.
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2 Finding Photonic Band Structures: The Plane Wave Expansion Method

In this chapter we present a detailed derivation of the Plane Wave (PW) expansion method,
and the physics underlying it. This method was first introduced by Ohtaka et al. [1], and later
implemented by Leung and Liu .[2], and Zhang and Satpathy [3]. The version we present here,
however, is due primarily to Ho et al [4] which, as we shall see, automatically incorporates the
transverse requirements that must be imposed on the solutions of Maxwell’s equations, while
at the same time dealing with pure Hermitian operators. As we have pointed out in earlier
sections, this method is used primarily for mapping the band structure of photonic crystals.
Our goal is to provide the reader with the theoretical foundation of this method, and to present
a brief explanation of its underlying physics. A highlight of the major strengths as well as the

limitations and drawbacks of this technique will also be summarized.

Plane Wave Expansion Concept

To formulate our eigenvalue problem, we start from the fundamental Maxwell’s equations

for source free medium:

V-D(rt) =0, ' (2.1)
V- B(rt) = 0, (2.2)

V x E(rt) = —%B(r,t), (2.3)

£
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V x H(xrt) = %D(r,t). (2.4)

where E is the electric field, H is the magnetic field, B is the magnetic induction, and D is the

electric displacement. Assuming a non-magnetic isotropic dielectric medium, one can write:

B(r,t) = poH(r.t), (2.5)

D(r,t} = ege(r)E(r,2). ‘ (2.6)

Where 5 and g¢ are the permeability and permittivity of free space, respectively, and e(r)
is the relative dielectric constant of the medium, chosen here to be a real position dependent
function. Furthermore, by assuming a harmonic time dependent form e~** for the fields, the

two curl Equations (2.3) and (2.4) reduce to:

V x E(r,t) = swpH(r,t), (2.7}

V x H(rt) = —iweoe(r)E(T,). | (2.8)

Eliminating E(r,t) in favor of H(r,t) in Equations (2.7) and (2.8) and rearranging we obtain;

[v x (—E-(—li_-)-VX)] H(r) = (%’)2H(r), | 2.9)

\/’710—55 is the speed if light in vacuum. Equation (2.9) is the desired eigenvalue

where ¢ =
equation of the magnetic field vector. It is worth noting that one could have eliminated the
magnetic field in favor of the electric field to obtain the analogous eigenvalue equation for the
electric field, in which case, the resulting operator enclosed in square brackets, on the left-hand
side would have not been Hermitian as in the above equation. To further simplify this equation,

we exploit the periodicity of the structure, specifically that of the dielectric function, namely;
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e(r +a;) = g(r), (2.10)

where a; are the primitive lattice vectors. This allows us to expand the inverse of the dielectric

function appearing in Equation (2.9) in a Fourier series of plane waves of the form;

?11.) = S e (@)es, (2.11)
G

where G is a reciprocal lattice vector constructed by any linear vector combination of the

primitive reciprocal lattice vectors {b;;i = 1,2, 3}, the latter defined by;

bf a; = 27T(5,;j. (2.12)

Taking the Fourier transform of Equation (2.9) and using (2.10), we obtain:

2
A (k+G) xHg | = (%) Hg. (2.13)

&+G)x |

feXel

e
G

To impose the transverse condition on the fields mandated by Equations (2.1) and (2.2), we ex-

press the magnetic field vector as a vector sum over vectors orthogonal to the relevant(k + G); -

He =Y hgata, (2.14)
A .

where the €)’s are the pair of unit vectors perpendicular to (k + G). Together, these three

form a right-handed set satisfying

(k+G)xe = |k+G|xs, (2.15)
and

(k+G)x8 = —Ilk+G|x8.
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Substituting (2.15) into (2.14) we get

- ~ wy2 ~
—-k+G)x | > E‘G}G\ (k+ G) X hgy 1850\ | = (E) > _heéx.
e\ >

Teking the dot product of each side with &, gives

- —~ - wy 2
~(k+G)x | 3 EG,IG\ (k+G) xhgy 18\ | | -8 = (_) Ao

A

Rewriting p as A and rearranging we get

AA A
Z\ Heovhavan = (E) han,
G\, A

where

\ ) S~ 1 a
Hgon = —t o [+ G) x (k+G) x&,] -8

(2.16)

(2.18)

(2.19)

Though the expression in (2.18) and (2.19) looks quite more complicated than the one we

initially started with, Equation (2.19) actually simplifies with the aid of (2.15) to a rather

simple form

A -1
Y. — _
gefel Coc

—(k+G) x8, -8 (k+G)x8p -6

= o [+ &
! —(k+G)X€2\'§2 (k+G)X§1\-€2

€-€en —e2-ep
-1 \I

—ep - 62\ e el\

[(k+G) x (k+GY) x&,] -8 [(k+G)x (k+GY) x8,]-§
[(k+G)x (k+G)) x8\] -6 [(k+G)x (k+GY) x8,] &

(2.20)

Equation (2.20) can now be solved using standard numerical techniques yielding all the

allowed frequencies, w, corresponding to a given wave vector, k, where the sum in (2.18) is to
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be truncated, retaining enough plane waves for the desired degree of accuracy.

Problems with the Plane Wave Expansion Method

Self consistency

To ensure a physical result, we must check to see if the finite number of plane waves used in
solving the truncated sum of the magnetic field eigenvalue Equation (2.13) yields a consistent

result if the same number of plane waves is used in the electric filed counter part, namely,

(c+G) x [(k+ G) x Bel = (2)" Te o Ean. (2.21)
el

However, it was observed very early that, because of the truncated sum, such a requirement is
nearly never met!

An additional source of discrepancy arises from the EZG\ term in (2.13). Two distinct ways
of evaluating. this term have been used. First, there is the so-called Inverse Ezpansion Method
in which the Fourier transform of e(r) is first evaluated. The result is then inverted to yield the
inverted Fourier transform of the dielectric function EZ-',IG\' The other is the so-called Direct
Ezxpansion Method, where £(r) is first inverted and then the Fourier transform of the inverse
is performed, giving E;‘,IG\ [5]. While the two choices produce the same résults in the limit of
an infinite plane wave basis set, for a finite plane wave expansion, they give different answers
when truncated to a finite basis. For many cases, it was found that the two methods have
different convergence behavior as the size of the plane wave basis is increased. For example,
for the case of the Yablonovitch FCC 86% air spheres structure, the first method was found to

produce eigenvalues that increase as the number of plane waves in the sum is increased, while

the second method resulted in an opposite behavior [5]. In addition, it was also found that

- convergence speed of the second method is much slower than the first, so that for moderate

basis sets, there is a big difference in the numeric results one obtains from the two methods.
This, in fact, is the source of the discrepancy between the two early vector wave photonic band

structure calculations, performed by Leung and Liu [2], and Zhang and Satpathy [3].
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As a general rule of thumb, for a network-type of topology, the inverse ezpansion method
converges much better than the direct expansion method. On the other hand, near the point of
transition between the two classes of structures, that is, when the isolated scatterers get close
to touching each other, the second method seems to perform better than the first method. For
a cermet-type of topology, however, both methods suffer from serious convergence problems.
Moreover, in this latter type of topology, the convergence of different bands are also quite
uneven for the same structure; some bands converge more rapidly for one method, while other

bands behave in just the opposite manner [5).

Convergence speed

Two factors are observed to obstruct the convérgence of the PW method and hence limit its
use. First, there is the scaling properties of the matrices involved in describing the system. In
a d-dimensional structure, the size of the matrix system scales as 2N¢, where N is the number -
of plane waves used in the expansion along each coordinate axis, and the factor 2 arises because
of the two different possible polarization states. Combined with the finite extends and complex
shapes of the building blocks of a typical crystal structure, this inevitably leads to exceedingly
large matrices. To understand exactly how this affects the matrix size, we point out that
from simple wave mechanics, to describe a particle localized in a finite region of space, one
would need a wave packet that incorporates a large number of plane waves. Now suppose that
our finite space is further complicated by having complex geometrical features incorporating
different media, as is the case when constructing a photonic crystal, the number of necessary
plane waves consequently grows exponentially, thereby leading to large matrix sizes.

The second limiting factor is the so-called Gibbs Phenomenon [6]. The discontinuous na-
ture of &(r) implies that its Fourier transform will have a very long tail. Not only this, but, in
general, the electric and magnetic field vectors will also be discontinuous across the disconti-
nuities in €, and, as a i."esult, will have nonvanishing components for large G vectors. Because
of this, any method that truncates a plane wave sum in either € or H is guaranteed slow, if

not, no convergence at alll Coupling this with the numerical problem size outlined above, the
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plane wave expansion method will be very costly both in terms of computer time and memory

requirements.

Developments and Improvements in the Plane Wave Expansion Method

To overcome the convergence speed problem, the MIT group [7} proposed a rather inge-
nious method. While working within the frame work of the Ho et al. version of the plane wave
method, they suggested using the same number of plane waves per polarization (Npw) in the
expansion as the number of grid points on which the dielectric function is sampled (Nppr).
Typically, this number is very large { 10%), and, hence, more than sufficient to achieve con-
vergence with well-defined Fourier transforms. To further tailor down the size of the problem,
they pointed out that by carefully examining the operator in the eigenvalue Equation (2.9),

namely

OH(r) = (%)2 H(), (2.22)

where 8 := [V X (E-(%Vx)] , one notices that the curl operation is diagonal in k-space, while
¢(r) is diagonal in real space. This means that the vector product 8H(r) can be evaluated in
steps using purely diagonal matrices. First, a trial wave function H is chosen in in k-space and
its curl is computed. Then a Fast Fourier transform is performed on the result, taking it into
real space where the diagonal dielectric function &(r) is divided. Fast Fourier transform is then
performed once again, taking the result back to k-space to evaluate the final curl. Since all the
matrix operations are diagoral in this scheme, the storage is only of the order Npw, which
is an order reduction over the usual direct expansion method. This reduces considerably the
required memory size and computational time which is dominated by the Fourier transform
step an order Npwlog(Npw).

The rather demanding question of evaluating the eigenvalues now springs to the scene.
The answer is rather simple, a variational method type of approach is used [8]. Since Equation
(2.22) is to be solved using the variational method by taking a trial wave function H, then by

the same token, minimizing (H |8]H) gives us one eigen-frequency w. To find all the eigen-
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frequencies, the précedure is repeated with the constraint that a new mode must be orthogonal
to any modes that have been already found. This eventually yields all the eigen-frequencies
and the field distributions for the modes.

Now that the problems relating to "plane wave cut-off " have been "circumvented," the
main remaining source of inaccuracy is the coarseness of the mesh used to sample the dielectric
function. Because of the discreteness of the real space grid used in this approach, boundaries
tend to be poorly represented. This is an unavoidable problem. However, one can limit
the severeness of its effects by performing some kind of smoothing or averaging along the
boundaries. There are several obvious choices; one choice is to average g(r) over the grid cell
containing the boundary and then invert the result to give 1/(r). Another possibility is to
reverse the order of the averaging and the inverting. However, the best results were obtained by
using & tensor average which uses both previous alternatives in different directions, depending

on the location of the boundary in question (7],

- 1
Em,ij = EmTNy + (g) CnliCriIMEME, (2-23)
. m

where 7 is the unit vector normal to the dielectric boundary and e;; is the Levi-Civita pseu-

dotensor.

Advantages Versus Disadvantages of the Plane Wave Expansion Method

It is only fair to say that had it not been for this semi-analytical approach to the photonic
crystal problem, no photonic crystals would have been delivered to date. The plane wave
expansion technique incorporates both simplicity and viability in a rather difficult and complex
problem. The result is a clear detailed mapping of the energy band diagram of almost any
type of periodic dielectric arrangement. In addition, by combining this method with simple
group theory analyses, it is possible to investigate large classes of crystal structures for possible
photonic gap production. In fact, the A7 family of structures first studied by Ho et al. [9] is
a product of this type of approach. |

In spite of this, however, the PW method suffers from grave disadvantages. Among these
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is the inability to efficiently study crystals containing materials with frequency dependent
dielectric functions such as metals, for example. The main problem stems from the fact that
the plane wave method fixes k& and searches for all the possible values of w, a process that
becomes exceedingly difficult and time consuming if € is frequency dependent. Furthermore,
the PW method is best suited for handling perfectly periodic systems. When a crystal structure
contains a defect or some kind of disorder, a supercell type of approach may be applied to model
the effect on the energy band diagram. This again is very costly in terms of the number of
plane waves that must be incorporated in the sum in {2.13), and, hence, the computational
time. Finally, while this type of approach provides a deep physical insight into the origins
of the photonic gap and the parameters affecting it, the PW method loses complete sight of
possible potentif;\l applications, as it cannot provide any information about the viability of
potential applications such as a cavity produced via a point defect, or the guidance capability
of a wave guide produced by a line defect. Nevertheless, it certainly paints a clear picture of

an invaluable portion of the overall photonic crystal portrait.
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3 The Transfer Matrix Method

In this chapter, we present a detailed derivation of the Transfer Matrix Method (TMM) and
the physics und;erlying it. We shall follow closely the development of the method as introduced
first by Pendry and MacKinnon [1, 2). We shall begin by representing Maxwell’s equations on
a discrete lattice of real space points. We shall then show how such discrete equations can be
recast into the form of a transfér matrix which connects the electric and magnetic fields on
one face of a layer of lattice points to another., Once the transfer matrix of individual layers
is obtained, the overall matrix is simply evaluated by taking products of the individual layer
transfer matrices. This enables us to find the ﬁelds at every point in our system and from this
extract band structure or transmission and reflection information. As we pointed out earlier,
this method is used primarily for calculating the transmission and reflection coefficients of
photonic crystals, both.periodic and with considerable disorder. Our goal is to provide the
reader with the theoretical foundation of this method and to present a brief explanation of
its underlaying physics. A highlight of the major strengths as well as the limitations and

drawbacks of this technique will also be summarized.

The Transfer Matrix Concept

To best present the physical concept underlying the transfer matrix approach, we begin by
cohsidering the simple example of a three-layered dielectric system in which an electromagnetic
radiation is incident from the left, F‘ig.3.1.

The equivalent transfer matrix (TM) of the medium is defined as the matrix representation
of the transmission and reflection coefficients that relate the outgoing field [E;m 0] to the in-

coming field [E,m, Ei_n] . Although this may sound a bit complicated, one can actually establish
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Figure 3.1 Electromagnetic radiation incident from the left on a
three-layered dielectric system.

a rather simple recipe for obtaining the equivalent transfer matrix of the whole system simply
by iteratively relating the fields at the various boundaries to their preceding ones. To see how |
this is done, we turn to Fig.3.1. Instead of writing a set of coupled vector equations at ecah
boundary, rather, we cast them in the form of a matrix equation. For example, the matrix
equation relating the incident and reflected fields [E},, E;,] at the first boundary to the fields

[E}, 7] immediately after the boundary is given by

Ef a1 ais E;';
“ = . (3.1)
E; Go1 92 Ez_n

Similarly, the fields [E;, E; | at the end of the first slab are related to the fields at its beginning
[EZ, E;] by

Ef bii b2 Ef
By bo1  bao E;

il

(3.2)

Finally, the transmitted field [E,, 0] is also related to the field impinging on the second

boundary [E;", E;'] according to

EL €11 c12 Ef
out — b . (3-3)
0 1 €22 E,

Using this iterative approach, one can combine the previous three equations to obtain
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X o= a

H->b

I dJE>C

a< A2n
b< A/ 2n
c< A2n

Figure 3.2 A schematic of the spatial discretization process. Here a, b, and
¢ are the discretization lattice vectors, A is the wave length of
the electromagnetic radiation, and n is the effective refractive

index of the medium.

+
E}, c11 €12 b1 b1 a1l 012 E;,

0 C21 €22 bay  boy as1 a2 E.

or

El, {T] Ef,
0 K,

(3.4)

The combined matrix [T] is the desired transfer matrix of the system and the task of finding

[T] reduces to evaluating the coefficients of the various constituent matrices.

This may be done

by implementing straight forward techniques for solving boundary value problems.

When modeling a photonic crystal, however, the approach of solving the actual boundary

value problem is rather difficult, and, in most cases, quite impossible.

To overcome this

difficulty, first real space is converted into a grid lattice as shown by the diagram in Fig.3.2

in such a way that the unit cell of the grid lattice extends a distance less than half of the

wavelength inside the medium %, n being the effective refractive index of the medium. This

restriction ensures that a standing wave fundamental mode can be captured within one unit cell

of the grid lattice, a restriction that ensures the convergence of our subsequent approximations.
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Figure 3.3 The discretized Maxwell’s equations are used to propagate the
fields from one face of the descretized lattice to the next.
Next, Maxwell’s equations are cast into the form of a set of finite difference equations on the

discrete lattice using the approximation

OE . OE(z + 0z) — 0E(z) _ 0E(z + a) — 0B(x) .

Oz dz a te.

Assuming an initial incident field, usually in the form of a plane wave, the descretized Maxwell’s
equations are then used to propagate the fields from one face of the descretized lattice to the
next, until the fields eventually reach the end of the structure. Once the terminal fields
are known, standard matrix solution techniques may be applied to relate the incident to the
terminal fields, thus yielding the transfer matrix of the system. A detailed derivation of this

systematic approach is given in the following section.

Obtaining the Real Space Transfer Maitrix

To show how the real space transfer matrix can be derived for an actual system, we start

from Maxwell’s equations for a source free isotropic medium

V-D(r,t) =0, (3.5)
V-B(r,t) =0, - (3.6)

V x E(rt) = —-%B(r,t), (3.7)
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V x H(r,t) = %D(r,t), | (3.8)

where E is the electric field, H is the magnetic field, B is the magnetic induction, and D is the
electric displacement. Here, we will only focus our attention on the fwo curl equations, (3.7)
and (3.8). The restrictions of orthogonality mandated by the other two divergence equations

will be incorporated automatically in our treatment. Fourier transforming to k-space we obtain

ik x E=1iwB (3.9)

and

kxH=—iwD. (3.10) .

We now make the following approximations

[e(:l:ikxa.) - 1]

+k, = — (3.11)
[e(ﬂ:ikyb) _ 1]
b, o~
ib
[e(:i:ikzc) _ 1]
+k, = 20—
ic

It is important to note that the approximations we have made in (3.11) preserve the form of
the cross product in (3.7) and (3.8), which automatically insures that any longitudinal modes
will have zero frequency, and hence guarantees transversality. Now we apply (3.11) to (3.9)

and (3.10) to obtain the descretized from of Maxwell’s curl equations in Fourier space, namely
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[eF#) — 1] B,  [el**) 1] E,
b ic
[e(:kisz) - 1] E:C [e(i?‘kza) — 1] Ez

ic - ia -
[e(:i:ikza) _ 1] Ey [e(:{:'ikyb) _ 1] E:r.- B
ia B ib -

and

[e(iikyb) _ 1] H, N [e(:l:ikzc) - 1] H,
ib ic
[e(:I:ikzc). _ 1] H:n N [e(:!:ik:a.) _ 1] Hz
ic i6
[ek=e) 1] H, [e&RD) 1] H,
ia + b

wB;

wB, (3.12)

wB,

—wD,,
~wD,. (3.13)

""“D.)Dz

We now Fourier transform back to real space to obtain the corresponding descretized equations

on a the real space descretized mesh

E.(r+b) — E.(r) _ Ey(r+c) - Ey(r)

ib ic
Eg(r+c¢)— Ey(r) E,(r+a)—E(r)
E,(r+ az)c— Ey(r)  Eu(r+ ];;t“ E.(r) _

ia ‘ ib -

and

_Hr =)~ ) | Hyr—c) — B

ib iC
_Ho(r - c) — H.(r) + H,(r —a) — H,(r) _
ic ia

__Hy(r —a) — Hy(r) + Hy(r —b) — H.(r)
ia ib

= wB,(r)

= wB,(r) - (3.14)

wB,(r)

—wDz(r)
—wDy(r). (3.15)

—wD,(r)
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Finally, choosing the propagation direction to be along the z-direction, we proceed to eliminate

the z-components of the fields and use

B(r) = pou(r)H(r),

D(r) = epe(r)E(r), (3.16)
1
Chp = \/m .

This yields the real space transfer equations along the z-direction

622

Ee(r+c) = Ey(r)+ (7?) p(r)H, (r)
L ( c? ) [Hy(r —a)—Hy(r) Hy(r—b)- Hx(r)]

_ (az:c)i a)) [Hy(rc; - aHy(r +a) Hz(rb—!— a— bg — Hp(r+ a)]
| (3.17)

and

w2

2
B+e) = B - (S ) s
c? y(r —a)— Hy(r ={r—b) — Hy(r
(s [Bete =ttt sty

be(r) a
B (bg(rci b)) [__Hz(r) —fx(r +b) N Hy(r—a+ bg — Hy(r + b)] .

(3.18)
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Hz(r+c) = Hi(r)+e(r+c)By(r+c)

+(aw2u(rc§a+0))'
[Ey(r+c) —Eyr—a+c) E;(r—a+b+c —Ez(r—a+c)]

a b
(8
(awzﬂ(r+0))'
[Ey(r+a+c)—Ey(r+c)_Ez(r+b+c)—Ez(r+c):| (3.19)
a b )
and
Hfr+¢) = Ho) —e(r+o)By(r+0)
_(_03_)
bw?p(r + c)
Ey(r+a-b+c)—E(r—b+c) Ei(r+c) —Em(r——b+c)]
] a b
(i)
~Ey(r+a+c)—Ey(r+c)_Em(r+b+c)-Em(r+c)] (3.20)
a b ’ )

We are now ready to extract the transfer matrix 7 for propagation along the z-direction. To

do so, we simply use the definition:

- PO -~ E,
F(r + c) = T.F(r), where F(r) = Y (3.21)
H

Equation (3.21) specifies the real space transfer matrix T and Equations (3.17) to (3.20) define

its elements.
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The Transfer Matrix and the Extraction of Transmission and Reflection Co-

efficients

As we mentioned before, the primary use of the transfer matrix is the calculation of the
transmission, 7, and reflection, R, coeficients. Indeed it is the ability of this method to esti-
mate these experimentally measurable quantities that has made the transfer matrix technique
one of the most powerful and widely used techniques in the area of photonic crystal modeling
to date.

In order to exfract 7 and R from f, it is necessary to choose a basis set in terms of
which we can expand the wave-field, this will act as our fixed reference "coordinate” system
or "bases". Our choice is the eigenvectors of the transfer matrix Tp for a layer of empty cells
(u(r) = (r) = 1.0). However, because T} is not Hermitian, we must distinguish between left

and right eigenvectors;

Right eigenvectors — Tp |rs) = e ;) (3.22)

Left eigenvectors — (I Ty = (I;] e?*ic.

Subject to the orthogonality condition;

(il |rs) = &35 (3.23)

Having defined our bases set, next we propagate the right eigenvectors through a layer of
occupied cells using the full real space transfer matrix T, and expand the resulting fields in

the complete set of right eigenvectors;

Tlr)=F= Tilr). (3.24)
k .

We then multiply from the left by the left eigenvectors to obtain the elements of T3 of the

transfer matrix;
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GIT ) = > 1 T lre)
k

= > T (Il Ire)
k

= Tl =T (3.25)

Equation (3.25) specifies the elements of 7 in our plane wave bases, which connect wavelets
on the left side of a slab along the z-direction to those on the right side. To avoid difficulties
arising from elements being randomly arranged inside f, we conveniently choose to order our
bases set vectors so that the right-going ones come first followed by the lefi-going ones. This
allows us to divide the transfer matrix into 4 sub-blocks, namely
~ T+t T+
T = , (3.26)
-+t T~
where the + sign denote right eigenvectors, whereas the — sign denotes left eigenvectors. For
example, 77 “would be the matix block relating right-going eigenvectors on one side of the
slab to lefi-going eigenvectors on the other.

We are now at a point where we are ready to extract the desired transmission and reflection
coefficients, 7 and R, respectively. Consider the diagram in Fig.3.4 depicting the two different
cases of wave incidence from the right-hand side and the left-hand side on a slab of material

If we denote the transmission and reflection matrices for a wave incident from the lef by

t¥+ and ¢t~ , and the transmission and reflection matrices for a wave incident from the right

by 7 and ¢~, then by definition, the transfer matrix must satisfy

T++ - 1 ++
= (3.27)
T-+ T-- =t 0

and
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t-+ ' t+b

Figure 3.4 The  transmission and  reflection  coefficients for
right-propagating and left-propagating waves.

T++ T+ 0 =
= . (3.28)
T+ T-- = 1

Combining (3.27) with (3.28) and solving for the elements of T in terms of t**+'s, we get

- T+ 7+~ H+ t+—[t——]—1t—+ = [t__] -1
T = = : (3.29)
T+ T —[t_+]_1t_+ [ ——]-—1

Equation (3.29) allows us to obtain t*%

s, once the full transfer matrix of the structure is
known. The latter can easily be done by multiplying the individual transfer matrices of the

individual layers compromising our structure:

Nl‘.a.yers ‘

H T; = Liotat- (3'30)
g1

It is worth pointing out that, this latter process becomes extremely simple if the structure

is periodic along the propagation direction, in which case all of the individual layer matrices

become identical replicas.
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The Transfer Matrix and the Band Structure

A further interesting application of this approach is to use it in determining the band
structure of a periodic system. Let our photonic crystal be periodic on a lattice defined by

primitive lattice vectors {a', b', ¢'}, which are some multiple of the discretization lattice vectors

{a,b', c'}:

a' = aa, b'= fb, and c' = vc. (3.31)

Then, by applying Bloch’s condition, we have

F(r+a') = %' F(r) (3.32)
F(r + b)) = 5P F(r) (3.33)
F(r+c¢) = *“F(r) . (3.34)

On the other hand, according to the definition of the transfer matrix, we can obtain the fields
f‘(z + ¢') in a subsequent layer by multiplying the fields in the previous layer f(z) by the
transfer matrix T of that layér. Thus, by taking the product of n such matrices, we can find
the fields in the n® layer using the fields in the first. Now, since there are, say -, layers in
each urit cell along the propagation direction, then a product of « such transfer matrices will
relate the fields in one unit cell to the equivalent point in the next. If 7, is the transfer matrix

for the i** layer, then

Flz+¢) = f[ﬁ.ﬁ(z). (3.35)

=1 "
Equations (3.32) and (3.33) allow us to set the boundary conditions on the fields in the = and

y directions by specifying k; and k,. Equations (3.34) and (3.35), on the other hand, give us
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an eigenvalue problem, which allows us to determine all the possible k;’s. Thus for a given
frequency w we first calculate T Next, from the eigenvalues of T" we extract all the k,’s which
correspond to propagating waves, that is we disregard any k, with an imaginary part. Finally

the process is then repeated for different frequencies to obtain the band structure k.(w).

Problems with the Transfer Matrix Method: Numerical Stability

Although the transfer matrix method we have described above is founded on strong physical
bases, unfortunately, it suffers from a serious numerical instability problem. The problem
essentially arises from the free space transfer matrix T elements that we use to define our

plane wave bases set. Recall Equa;tion (3.22),

Right eigenvectors — To Irs) = ek |73)

Left eigenvectors — {Ii| Ty = (L] e™¢

Also, recall that we are to construct the full transfer matrix from products of individual layer
transfer matrices. Couple this with the fact that for every k; there is an equivalent —k;, not
necessarily real, and the problem becomes quite apparent. The reason is that for each of
complex k corresponding to a wave which decays exponentially, there will be a wave which
grows exponentially. It is the product of such terms that threatens the numerical stability of
our algorithm, and renders it practically useless, even for medium size problems.

To overcome this problem, Pendry and MacKinnon [1, 2] suggested an alternative way of
combining layers. Their idea is based on the use of a multiple scattering formula for combining
the transmission and reflection coefficients of the individual layers. Rather than multiplying
the individual layer transfer matrices as is suggested in (3.22), we proceed by extracting the
transmission and reflection matrices for the first two layers, tlii and tg“':, along the direction
of propagation. We then employ a simple multiple scattering formula to combine these two

layers together, and find the total transmission and reflection matrices for the combined layer,
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involved are of dimension NV x N. Multiplying transfer matrices scales much more favorably, as
an order N2 operation, because of the sparseness of the transfer matrix. Usually the best course
of action is to make a compromise and add together as many layers as we can by multiplying
matrices and then switching to the multiple scattering technique before the numerical errors

become too large.

Advantages Versus Disadvantages of the Transfer Matrix Method

This approach has several key advantages over the plane wave method introduced in chapter
2. The main advantage is that while the plane wave method fixes k& and searches for all the
possible values of w, the TMM works the other way around. The TM is calculated for a specific
value of w and gives us all the possible values of k. This can be far more convenient, especially
if the dielectric function is some complex function of frequency as in the case of metals. It is
also vital if we wish to calculate the transmission and reflection matrices where we need to
find all the waves excited at a given frequency, rather than the other way around. Moreover,
it takes into account, to some extent, mode coupling difficulties, since a plane wave source is
assumed to be the origin of the impinging radiation, not to mention the nature of the boundary
conditions imposed on the fields. This is completely neglected in the PW method. Add to this
the fact that by providing the transmission and reflection coefficients of a given structure, the
TMM offers a direct way of comparison with the experimental méasurements. Furthermore,
by using the TMM, it is possible to estimate vital parameters for defect states at the center .
of all potential applications, such as the quality factor of a point defect, or the transmission
band of a line defect, etc.

The major disadvantage with the TMM is that it becomes impossible to map the band
structure along an arbitrary direction in k-space, something which is trivial to do using a
PW technique. In addition, the TMM provides us with no information about the temporal
development of the fields inside the photonic crystal, vital information when designing splitters,
channel drop filters, couplers, and even simple waveguides. Moreover,“the scaling properties

of this technique, better than the PW method by an order N, are still of order N2. This
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imposes severe restrictions on the size of the problem that can be modeled. This, in fact, is the
greatest limitation of this technique when it comes to dealing with defects or disorders, when
a supercell is the only way to treat a problem in a method that imposes periodic boundary

conditions like the one at hand.
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4 The Finite-Difference Time-Domain Method

In this chapter we present yet another method which has recently found its way into the
photonic crystal community. Our focus in this chapter is on the so-called Finite-Difference
Time-Domain (FDTD) method. As its name suggests, this method offers a way of probing the
temporal as well as the spatial development of waves propagating inside a photonic crystal.
However, this is not the only attractive feature about this method. Rather, it has another very
appealing aspect to it. As we will show in later sections, this method scales as an order N,
where N is the number of spatial discretization points. This is an order N improvement over
the TMM, and N2 over the PW methods.

Throughout this chapter, we will follow closely the development of this method as outlined
in the book by A. Taflove [1]. As usual, our starting point is Maxwell’s equations, where we
shall begin by showing how one can discretized them fully in both space and time. We will then
proceed to explain how the space-time descretized equations can be used to yield information
about the fields inside the crystal at points throughout the process of propagation. Qur goal
is to provide the reader with the theoretical foundation of this method, and to present a brief
explanation of its underlying physics. Finally, the major strengths as well as the limitations

and drawbacks of this technique will be summarized.

Discretizing Maxwell’s Equation in Space and Time: The Yee Algorithm

Motivated by the idea of developing a method that can simulate the time-evolution of the

electromagnetic fields inside a given crystal, we begin by examining Maxwell’s curl equations:

0H 1 ol
5 = #VXE P (4.1)
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and

oE 1 3
<o lvxu-Ie 4.2
o e X e (4.2)

where E and H are the electric and magnetic fields, respectively, £ and p are the permittivity

and permeability of the medium respectively, p\ is the equivaient magnetic resistivity (included

here to account for any possible magnetic losses), and ¢ is the electric conductivity. The next

step is to introduce our discretization by replacing all spatial and temporal derivatives by finite

differences according to the following prescription:

Space Point = (4,7, k) = (iAz, jAy, kAz), (4.3a)
Function of space and time = f(iAz, jAy, kAz,ndt) = [, (4.3b)
Spatial derivative = af(ZAm’JA;; kAz nAd) = ek Ao 3.k + 0f(Az)?],
(4.3¢c)
Of(ilc, jAy, Az nAt) i = £
Temporal derivative = 1 (':;;t : - = Lk A7 ik O[(At)?].
(4.34d)

To ensure conversion, we require that the discretization steps, both spatial and temporal,
be sufficiently small so that we can neglect terms containing second order in them, specifically
Agpace € ﬁ, Aime € A—:%, A being the wavelength, n the effective refractive index, and ¢
the speed of light. A more detailed discussion of this requirement will be addressed in a later
section. For the sake of simplicity, we will only consider here one component of the two curl
equations, the reader is advised to follow exactly the same argument to arrive at the final
forms of the other 5 components. We will at the end of our derivation, provide the final forms
of these subsequent equations. Qur choice is the z — component of the magnetic field curl

equation, namely,
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0H, 1 (8E, O0E,
5= ( T p\HE). (4.4)

Employing our discretization prescription in (4.3), we get:

n+ n—l ‘ (Ey):j.k+% —(Ey):j,k_%
(HI):.,J,2 (Hz); ;£ _ ( 1 ) Az B (4.5)

At y =) g B0
High e Y YN AL

Examining (4.5), one immediately realizes that the field quantities are evaluated at three
different time steps: n,n — %, and n + -% This is a major problem, since our aim is to arrive
at an algorithm by which we step forward in time by knowing the fields at a preceding time.
In other words, we can only afford to maintain two and only two different time steps.Also,
the electric field components and the magnetic field components must independently belong
to two different time steps. To overcome this difficulty, we introduce the "semi-implicit"

approximation,

n+2
+ (H:
(Hm)z,J,k -~ ( x)"’-?'k 9 ( )13 k (46)

This is nothing other than an arithmetic average and it turns out to be more than sufficient,
if At is chosen to be sufficiently small as previously described. Substituting {4.6) into (4.5),

collecting terms, and rearranging, we obtain

1P_‘n:_ﬁA

nti 205 5,k
(Hz)i;72 = | —pr— (H)gk
1+2—M%At ’
oo (B ”)",Hg Boliiep
.F-"zjic
i 4.7
1+2,u kAt (E: 13_’&::(::)”r 3,k ( )

Ay

The remaining H — field components can be obtained in a straight forward manner, simply

by cyclic-permutation of the indices z,y, and 2. Thus, generally we can write
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1 — Baik Ag
ik = | | i +
1,4,k 1 + ;‘:Ll k At t/1,0,k

At (B )ngk+§ (& )tak—%_
Kk A

T 2eseng | | Bk =Bt g
Hi gk AT

; (4.8)

where E?,and % now refer to z,Y, and z, respectively. Following a similar argument, the

E — field components can be obtained from

1_;21& t

£,

UT=(ﬁﬁﬁJ@m+
(Ex)m

_AE =3+%k 1J ok

€3,k AG
—_— . 4.9
(7w i 49

Figure 4.1 shows the spatial discretization process for the field components. Notice the
time offset between the E — field and the H — field components. This is a very important
point, and, in fact, is the whole idea behind this method. Because the fields are offset by % a
time — step, this allows us to compute the component of one field from those of the other in a

leapfrog type of process, according to the following procedure:
e First we initiekize the E(H) field at the time step t = 0 x At.

¢ Then using these E(H) field values, we compute and store the H(E) field values at the

time step t = 2 x At.

» Nezt, use the values just computed for the H(E) field to calculate and store the E(H)

field values ot time step t = 1 x At.

s Repeat...

Figured.2 shows this leapfrog type of calculation in one-dimension.
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Figure 4.1 Position of the electric and magnetic field vector components
about a cubic unit cell of the Yee space lattice.[2]
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Figure 4.2 Space-time chart of the Yee algorithm for a one-dimensional
example showing the use of central differences for the space
derivatives and the leapfrog for the time derivatives [1].
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Numerical Stability

Throughout the development of the FDTD algorithm above, we have maintained the as-
sumption that Agpace and Agime are both small enough to suffice the inclusion of only first
order terms in the finte-differences (4.3¢) and (4.3d). An imposing question now is: exactly
how small is small enough? and what, if any, is the relation between the upper bound on Agpace
and Asme? To ensure a stable, accurate representation of the fields on the discretized cell, we
must guarantee that the ﬁlesh size is small enough to capture the field variations throughout
the structure. Typically, this can be ensured by choosing the unit cell of the grid lattice to be
less than half of the wavelength inside the medium %, n being the effective refractive index of
the medium. This restriction ensures that a standing wave fundamental mode can be captured
within one-unit cell of the grid lattice, a restriction that guarantees the convergence of our
subsequent approximations. However, a more cautious approach, long adopted in the field, is
to use a grid size that is 20 times smaller than A, even with normal dielectric materials.

Once an upper bound is set on the spatial grid size, we turn our attention to the temporal
one. Though the obvious choice is to set Agime = &“;—“5&, we shall see this severely over estimates
the necessary upper bound on Ajime and may very well lead to convergence problems. To find
the necessary constraint on Af, we proceed by separating the FDTD algorithm into separate
time and space eigenvalue problems, and mandate the overlapping of the stability regions of

the solutions of both problems according to the following procedure:
¢ First, the plane-wave eigenmodes are assumed to propagate in the numerical data space.

e We then determine the spectrum of eigenvalues for these modes due to the numerical

space differentiation.

e Next, we compare them to the stable spectrum of eigenvalues as determined by the

numerical time differentiation process.

¢ By requiring the complete spectrum of spatial eigenvalues to be contained within the
stable range, we are assured that all possible numerical wave modes in the grid are

stable, i.e., cannot grow spuriously without Jimit. This will bound the time step.
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To simplify our task, we will assume a sourcefree, lossfree medium, (p = ¢ = 0). It can
be shown, however, that the results obtained here will still hold in the more general case of
lossy media and in the presence of sources [3]. We start by casting Maxwell’s equations in the

compact vector representation,

JVx(H+jJE)= %(H +iE), (4.10)

where j = v/—1, and we have chosen to work in using a normalized system of units where
i =1, g =1, and therefore ¢ = 1. Letting V = H + JE, then according to the convergence
prescription, the stability of our FDTD algorithm can be examined by considering the pair of

eigenvalue problems:

0
a |nmerica.£v = AV (411)

and

jvlnumerical XV =AV _ (4.12)

Using the Yee leapfrogging as the numerical time derivative, the left-hand side of (4.11) can

be cast into the form

1 1
n+35 -y

Vigk — Viix
et = AV (4.13)
where V is a generic field vector component. We now define a solution growth factor ¢;;x

according to

n+% Ve
_ Vigk _ Vijk
Gijk =T — = -1~ (4.14)
Viie vz
o ik

According to this definition, a given spatial mode will grow at a rate of (g;;%)". To ensure a
converged solution, therefore, we require that |g; ;x| <1 for all possible spatial modes and for
all possible grid points. This ensures there are no modes that will increase out of bounds as

the time marching process proceeds. Substituting (4.14) in to (4.13), we get:
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v
GikViie = ao% v
A = AV (4.15)

Factoring out V[, ;, solving for ¢; 5%, and imposing the magnitude restriction on ¢; j.%, We arrive

at the following requirement on the spatial eigenvalues:
2

-2
—— < —, )
N <Im(A) < ; (4.16)

‘We now point out.that at any time step n, the instantaneous values of the electric and magnetic
fields distributed in space across a grid can be Fourier transformed with respect to the i, j, k
grid coordinates to yield a spectrum of sinusoidal modes. The result is usually referred to as
the spatial-frequency spectrum, or plane wave eigenmodes of the grid. Let the following specify
an arbitrary spatial-frequency mode having ¥z, Ey, and &, as the z—, y-, and z--components

of its numerical wavevector:

Vijx=Vo ej(lléziAm+‘lEyjAy+‘£zkAz). (4.17)

Using the Yee central space differencing to implement the derivatives of the curl operator, it

can be shown that (4.12) yields

r , -~ Az IPAY] z . =~ Az
-2 [——:—B- sin{kz—) + Ay sm(kyT) + 5 sm(kZT)] X V;je=AVi;g. (4.18)
Resolving 4.18 in to components and solving for A we get

1 ~ Az 1
Al=—4 [— sin(k;—) +
: 277 (Ay)

(Az)
This implies that A is purely imaginary and by using the upper bounds on the trigonometric

sm(&%) + sin(?’éz%)] . (4.19)

1
(A2)?

Sin function, we obtain
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1 1 1 1 1 1
_2\/ e T ot P <Im(A) < 2\/ o Rt et (4.20)

Combining Equations (4.16) and (4.20), we immediately obtain the desired upper bound on

the temporal grid size or time step At, as

At < = (4.21)

1 1 1
\/ @y T @ T ey

Or more generally, by demoralizing to a non-unity value of ¢, equation {4.21) becomes:

At < 1 (4.22)

- 1 1 1
c\/ B T e T ey

Equation (4.22) defines the desired upper bound on the time step. In the special case of a

cubic spatial mesh, Az = Ay = Az = Agpace, the requirement mandated by (4.22) reduces to:

At < %\7’%, precisely the restriction we imposed on At at the beginning of our discussion.

The Finite-Difference Time-Domain Method and the Band Structure

A further interesting application of the FDTD approach is to use it to determine the band
structure of a periodic system [4]. This can be accomplished by launching an electromagnetic
pulse with a limited time span, Ar. In Fourier space, this translates into a frequency packet
with a large number of frequencies included in it, Aw ~ 1/A7. If the initial fields are cho-
sen such that they obey the Bloch condition for a particular wavevector k, then the Fourier
transform, with respect to time, will pick out the allowed frequencies corresponding to k as a
series of delta functions. By repeating for other k’s we get the whole band structure. If we
also ensure that the initial fields obey the transverse condition, V - B(r,t) = 0, then we pick
up only the transverse solutions not the longitudinal ones. We must be careful, however, when
we choose the initial fields; modes which do not have a finite overlap with the starting fields
will ﬁot be found.

The total time for each k-point is NNy, where N, is the number of real space points used
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and Ny is the number of time steps. So, the method is really of the order N if the number
of time steps we need to use is independent of the system size. For most band structure

calculations, this is indeed the case.

Advantages versus Drawbacks of the Finite-Difference Time-Domain Method

The FDTD approach has several key advantages over all of the preceding methods, as well
as several drawbacks. The leapfrog time stepping mechanism used is fully explicit, thereby
completely avoids the problems associated with simultaneous equations and matrix inversions
as in both of the preceding methods. The order of operations in this method scale as N, N,
being the number of real space discretization points. This allows the use of a very fine grid
for the representation of the dielectric function. The method further imposes no restriction on
the type of source used, this allows an accurate simulation of the experimental efforts, where
the sources used are not plane waves, but vary from quantum-dot point sources to Gaussian
beams. More importantly is the fact that by using the FDTD method, we are able to account
for the finiteness of the structure in all 3—dimension;=;. Moreover, the method allows for the
explicit examination of the time development of EM waves in the structure and therefore is
the best suited algorithm for investigating wave guiding mechanisms and cavity coupling.

However, there are some rather serious drawbacks to this method. For example, to calculate
the transmission and reflection coefficients, a Gaussian frequency pulse is launched into the
structure. The fields values, are then stored on a slicing plane. Fast Fourier transform is
then performed on these values and the component of the pointing vector perpendicular to the
plane is calculated for every frequency. It is then spatially averaged and compared with the
corresponding value of a reference medium to yield the transmission and reflection coefficients.
This is more tedious and sensitive to errors than the TMM method.

Furthermore, the band structure calculations performed using this method are haunted by
the need of extremely careful choice of the initial fields, as well as the necessity of high time
resolution for the ability to distinguish between parasite pulses originating from the numerical

space termination at the boundaries and the actual signal.
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Moreover, to date this method has effectively never been used to model lossy and gain
media; the reason stems from the infinitesimal extent of the spatial parameters describing these
materials. For example, when modeling a lossy metal, one must incorporate an extremely fine
spatial grid to account for the infinitesimal metallic skin-depth. This immediately magnifies
the time and memory requirements of the algorithm, rendering it practically useless for such
cases. There are, however, some ongoing efforts at our end to try to incorporate such material
properties via virtual loss mechanisms. For example, to model the skin-depth effect, one may
choose to add an absorbing component to an otherwise perfect metallic reflector or incorporate
a finite conductivity. Nevertheless, this work is still in its early stages and must be subjected

to several tests before credit can be claimed.
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5 The Modal Expansion Method

In the past few chapters, we presented three of the most widely used techniques in photonic
crystal modeling. We addressed the strengths as well as the weaknesses of each of these methods
and pointed out the specific applications where each method prevailed over the others. In
this chapter, we present a new theoretical approach to the problem of modeling the flow of
electromagnetic radiation in photonic crystals. The Modal Expansion Method (MEM) offers a
much more comprehensive study of photonic crystals as compared to the previous approaches,
as well as limited weaknesses. This method was initially developed and put to extensive use
for modeling one- and two-dimensional lamellar gratings [1].

In this chapter, we explain how this method can be extended successfully to model three-
dimensional photonic crystals. The approcah we present here is due at large to Zhi-Yuan Li [2],
and has proven to yield converged results where the previous methods have failed. Preliminary
results obtained using this new approach will be presented. A highlight of the capabilities of

this new approach will be pointed out, as well its limnited number of drawbacks.

Principal Features of the Modal Expansion Method

To avoid redundancy by the mere introduction of yet another numerical method for mod-
eling photonic crystals, we reguire that a new proposed method overcome most, if not all,

of the drawbacks, as well as provide more comprehensive information over the previous three

" methods. To accomplish this, we begin by surveying the weaknesses to, as well as the desired

strengths of these methods.
Our first requirement is to overcome the poor representation of the dielectric function at

the grid boundaries arising from the spatial discretization process. This can be accomplished
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by avoidiﬁg real space altogether and, like the PW method, working in k-space. Second, we
need to avoid the notoriously large matrices associated with any k-space type of representation.
This can be done by exploiting the crystal symmetry of the structure and, as we shall see in
some cases, can amount to reducing the matrix sizes to those of a 2D problem. Third, we
need to map the field distributions throughout the structure. We shall see that the method we
are about to present, not only provides this, but in fact it actually provides the more crucial
distribution of the eigenmodes inside the structure. Finally, we require the ability of handling
complex frequency dependent dielectric functions, while at the same time maintaining high

numerical stability.

Numerical Stability and the Choice of the Transfer Matrix

To provide the spatial field distribution, we will need to implement some kind of transfer
matrix which contains the field information at various spatial locations throughout the struc-
ture. We encountered such a transfer matrix formalism in chapter 3, while addressing the
transfer matrix method, and discovered that such matrices are highly unstable for moderately
large systems. To show how one may avoid such a problem, we will begin by reiterating the
formalism of such matrices, point out the reason for the instability problem, and then explain
how it can be surpassed.

Consider the simple case of an electromagnetic wave incident from the right on a slab of
uniform material, Fig.5.1. Using simple electromagnetic boundary value arguments, one can
easily relate the fields at the two boundaries of the slab. This relation can readily be expressed

in the following matrix notation.

Ef t1n ti2 Ef ~{ Ef
2 | = V=Tt ). (5.1)
E; fo1 oo ET Ey
Here we have chosen the simplest way to appropriate and arrange the fields based on their

spatial locus relative to the slab. In this case, the resulting transfer matrix is termed the

Transmission-Matriz or simply the T-matriz. This is the same type of matrix that we have
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Figure 5.1 Electromagnetic waves incident on a uniform slab of material.

encountered in chapter 3, when discussing the transfer matrix method (TMM). The reason for
the instability is consequently the same. For a homogeneous slab of material, the T-matrix
can be diagonalized and expressed in the form:

gib= 0

T = : (5.2)
0 e #=

where zis the thickness of the slab, and 3 is the wavevector component. The instability
problem becomes quite obvious when we choose to deal with materials for which the dielectric
function is not purely real. In this case, 8 becomes complex. This immediately implies that one
of the diagonal elements of the T-matrix will grow exponentially to dominate and overwhelm
the other element which is decaying exponentially‘at the same rate, thus leading to numerical
overflows and inaccuracies.

One way of avoiding this problem is by rearranging the choice of the related fields in the
matrix equation. Rather than ordering the fields based on their spatial locus relative to the

slab, we can choose to order them based on their propagation direction in the form

ES LT Ey ~ 1 By
2 | _ | T T 2 | _5 2 | (5.3)
Ef T2l T2 By B

In this type of arrangement, the resulting transfer matrix is called the R-Matriz and is not to

be confused with the reflection matrix, since the matrix at hand does not contain immediate
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reflection information.

Another way of ordering the fields is by choosing to arrange them in a scattering format,
where we assume that two distinct fields aere incident on the slab from both sides at the same
time, and then scattered away from it. The resulting matrix nofation is given below and, for
obvious reasons, the resulting transfer matrix is called the Secattering-Matriz or simply the

S-Matriz:

BN oo | [ B ) _g . (5.4)

Er S91 S99 Ey Ey
To see how the above choices offer a much more stable configuration, we point out that for
a homogeneous slab, the resulting diagonal formats will be such that the diagonal elements of
R will be the ratio of either two exponentially growing or two exponentially decaying numbers
at the same rate. On the other hand, those of S will be both exponentially decaying num-
bers. This means that after combining several layer-matrices, the results will not produce any
numerical overflows, and hence, stability is achieved. The only drawback to the previous two
choices is they do not contain any explicit physical information about the desired reflection and
transmission coefficients of the slab. Rather, in order to extract such information, one would

have to relate the overall structure RB- or S-matrix to the T-matrix to extract this information

(See chapter 3). However, this process is rather trivial.

Modal Expansion Method Pseudo Algorithm

The algorithm we present here is designed primarily for layered-structures, i.e., structures
that can be divided into layers related to each other by crystal symmetry operations. Notice
that we can cast almost all periodic structures in o layered-structure configuration! In other
words, the algorithm can easily be extended to include all types of structures by correct use of
simple group theory techniques.

We begin by reducing the size of the problem from 3D,order N*® operations, to 2D and,

hence, order N2operations. This can easily be done by noting that for a layered structure,
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regardless of its symmetry, each distinct layer can be viewed as a 2D grating, Liké the TMM,
we then assume the existence of a separating fictitious infinitesimally thin (practically of zero
thickness) layer of vacuum separating the respective structure layers.

We then follow in the foot steps of the PW method. We proceed by casting Maxwell’s
equations into an eigenproblem format. Next, we Fourier transform to k-space, and map the
fields onto an appropriate plane wave basis. We then proceed to solve the resulting eigenvalue
problem in these basis, subject to the appropriate boundary conditions only for the first layer.

Having solved for the fields in the fictitious vacuum layer immediately above and below the
first structure layer, we then extract either the R- or the S-matrix for the first layer. This can
be done by employing standard matrix manipulation routines.

The next step is to obtain the transfer R or § matrices for the subsequent layers. Here, we
make use of the symmetry operations reldting the consecutive layers to simplify this task. If,

for example, layer 2 can be generated from layer one by a symmetry operation Uss, ie.

Layer 2 = Uys[Layer 1].

Then, the transfer matrix of this second layer can be obtained from that of the first layer by

applying a unitary transformation of the form

Hy = U1_21R1U12, or Sp = Ul_?lSlUlg.

Similarly, one can easily derive the transfer matrix of the n** layer by using the appropriate
symmetry Opera.ti'on. To avoid wasting computer memory, however we, proceed first by finding
the combined transfer matrices of the first two layers, and then save them in place of R or
Sz, before proceeding to obtain that of the next layer. This means that at the most we need
only preserve three large matrices: the transfer matrix of the first layer Rlor Si, that of the
layers combined so far R, or Sin, and a work matrix used to temporarily store calculated
information, R;; or Sj;. It is worth pointing out that it may be possible to even reduce further

the number of matrices to only the first two types by overwriting continuously Rj. or Sin.
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This, however, demands extreme caution, and limits the ability of the algorithm to be restarted
after proceeding to calculate for a chosen period of time.

One benefit of obtaining the individual layer transfer matrices is that one can immediately
obtain the field distributions at any given layer. This allows us to map the spatial progress of
the fields throughout the structure.

The final step is to extract the vital physical information about the structure. The reflection
and transmission coefficients can be obtained by relating our overall transfer matrix to the
equivalent T-matrix of the structure, while the modal distribution profiles are simply obtained
by evaluating the eigenvectors of the transfer-matrix. An even further possibility is obtaining
the band structure. This can be done by diagonalizing the equivalent transfer-matrix of the

structure.

The Modal Expansion Method and the ISU Metallic Layer-by-Layer Strurure

As we have seen above, the MEM offers a rich domain of information about the structure.
It remains to provide the analytical base of this method. In the following few sections we give
a rather detailed derivation of the necessary equations for the formalism of this new technique.

In what follows, we shall focus our attention at the special case of an ISU metallic layer-
by-layer structure. In particular, we shall focus our attention on the IR-to-optical wavelength
regimes. We will occupy ourselves primarily with one single layer of such a structure, keeping
in mind that the subsequent layers are mere 90° — rotations or 1/2 a period diagonal —
translations of this first layer, see Fig.5.2. This means that once we have found the transfer
matrices for this first layer, we are more or less done, as the transfer matrices of the subsequent
layers are easily obtained from the one at hand by the appropriate unitary transformations as
we have explained above. In the following few sections, we shall closely follow the development

provided in reference [2].
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AN

Figure 5.2 ISU layer-by-layer structure. Each layer can be viewed as a 2D
grating. Each subsequent layer is a 90° rotation with respect
to the previous one, and every two bilayers diagonally shifted a
distance equal to half the period. The inset of the figure depicts
the case of an electromagnetic wave incident on one such layer.
f is the polar angle of incidence, A is the rod height, @ is the
rod separation, and d is the grating period.

Maxwell’s Equations in K-space: Eigenvalue problem approach

A careful examination of the ISU layer-by-layer structure shows that each layer constitutes a
1D-Lamellar grating. Consider the case of an electromagnetic wave incident on one such layer of
the structure, where the rods are situated in the zy-plane and aligned parallel to the y-azis sep-
arated by distance a. Assume further that the grating is of high k and period d, Fig5.2. Suppose
an electromagnetic wave with a wave vector k = (koz, koy, k02) = ko(sin 0 cos ¢, sin 8 sin ¢, cos 6)
is incident on the grating shown in Fig.5.2. Here, # and ¢ are the polar and azimuthal angles,
respectively. There are three regions to consider; the reflection-region (z > h), the grating-
region (h > z > 0); and the transmission-region (z < 0), denoted by the letters r, m, and ¢,
respectivel}. Moreover, since k, and k&, are the tangential wavevector components along the
metal wall, they are conserved across this air-metal interface. To solve for the eigenmodes in
each region under arbitrary incident conditions, we will use the following trial function as an

eigenmode for the E-field in the air domain 0 <z < a:
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E,(r) = e*==+ k[, sin(B,z) + By cos(B1x)), (5.5a)
E,(r) = ¢*=**¥(C) sin(B, ) + D1 cos(B,z)], (5.5b)

Eu(r) = e*==+*o¥[_(ik B, + ik, Dy)B1; sin(B,z) + (iky Ay + ik, B1 )BT  cos(B1z)]. (5.5¢)

Here, k2 + 52 + kZ = e1k§, with Im(f;) > 0 to account for the finite conductivity of the metal.

The E-field in the metal domain ¢ < z < d is assumed to have the form

Ey (r) — pikzztikyy [ Az eiﬂz(z-—a.) + Bze—iﬁz(m—d)], (5.6&)
E,(r) = eth=> Ty 0y eifa(ema) | Doe—thale—d)) . (5.6b)

Ey(r) = e*emt ¥ _(k, Ay + k,C2) 5 1eP2(*~%) 4 (ky By + K, Dp)B5 e P29 (5.6c)

where kZ + 3 + k2 = ezk and Im(8,) > 0.
Next, we determine the amplitudes in the trial solution by using boundary conditions at
metal walls located at # = a and = = d. Since E,, E,, H, and H, are all continuous across the

metal walls, from the E-field continuity we get:

Ajsinfia+ BicosfBia = Asg, (5.76.)
Cisinffia+ Dicosffia = Co (5.7b)
and
poB1 = By, (5.8a)
pO-Dl = Dz, ‘ (58b)

where py = €*=¢ is the Bloch’s phase factor. In deriving Equations (5.8a) and (5.8b), we have

used Bloch’s theorem to relate fields at £ = 0 and z = d. The continuity of the H-field, on the



a7

other hand, yields

~[kykB7" cos Bya) Ay + [kyk. BT sin B1a]By — (K261 + By) cos B1a)Cy + [(K2BT" + ;) sin Bya] Dy

= —(ikyks 05" ) A2 — (K283 + B2)Ca, (5.9a)
[kykz By cos Bya]Cy — [kyka By sin Bya] D1 + [(k BT + By) cos fral Ay — (K57 + B1) sin fra] By
= (ikyk.03") Bz + (k385" + B2) De. (5.9b)

pol~(kyk. BT AL — (K287 + B1)C1] = (ikyk.B3) B2 + (K23 + B2) D2,  (5.102)

pol(kyk:B7 )0 — (R3BTH + B1)A1] = —(ikyk:B57) D2 — (ki3 + Ba)Bz. (5.10b)

In deriving Equations (5.10a) and (5.10b}, we have neglected terms with a factor gPald—a)
which is far smaller than one due to small skin depth of metal in mid-infrared-to-optical

wavelength regimes. Define

_ -1 _(2a-1
N A G MR _

BTN+ By kykaBy
. -1 (12—t
T - ikyk: By (kB + Ba) . (5.11b)
i(k2851 + Ba)  ikykaBpt

Combining (5.9) with (5.11) we obtain

A A : B
2 =T,'n b cos By a—T5 1Ty ' sin f,a = ' sin B e+ ' cos 5, a.

Co Ch D (&) Dy
(5.12)

From (5.8) and (5.11) we get
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B A Y
o =V . B (5.13)

D, 1

Denoting T' = T2_1'T1 and deleting B; and D; from (5.12) and (5.13), we finally -have

2 A1 Al
-1 tan Bya = 2T
Cl 01
or
A A
tan B¢ = 2 — T3 "l (5.14)
Cy Ch

Equation (5.14) is recognized to be a standard eigen-equation for the matrix @ = 2(I-72)"1T,
with tan §,a being the eigenvalue. It will be shown that this eigen-equation can be analytically
solved. Notice () and T have the same eigenvector, it therefore suffices to work on 7', whose

explicit form is

T—TyiT, = =i k207181 + k2281 + B, B2 kyk. 7By — B3 '8y

p_ (5.15)
270 kyk:B1' B2 — 8761 28318, + k2BoBT + B1Ba

After some algebraic manipulations, we find that the eigen-equation,

Cl Cl

has eigenvalues of x = —ie¢1 3, /€23, and & = —if3; /B, corresponding to eigenvectors (A4, Cy) =
(1, —ky/k.) and (A1,Cyi) = (ky/k., 1), respectively. From this, the eigenvalues of Equation

(5.14) are directly calculated as
—2i8, 8,

tan e = ———=
B+ B

(5.16)
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and
—2ie1€2031 8o
3% + €63

The corresponding eigenvectors are (A}, C1) = (1, —k,/k,) and (42, C?) = (ky/ks,1), respec-

tan 8;a = (5.17)

tively.

We have designated these two modes as mode 1 and mode 2. Equations (5.16) and (5.17)
are both transcendental equations, whose solutions must be numerically calculated on the
complex plane. To avoid this difficulty, we start from solutions for a perfect-conducting metal
wall (keep in mind that with a large value of €; in mid-infrared regime, the eigenmodes should
- not be far from those for a perfect conducting structure), and use iteration techniques to find
the accurate solutions of §; in Equations (5.16) and (5.17). For higher modes m > 1, we set

the initial value of 3; to be 8% = mm/a, then the following iteration procedure is followed.

—~ 28765

tan A7 +lg = 152 5.18
e B (518
and
—2i6162ﬁ?6g
tan 87 la = , 5.19
= G+ 2y (519)
where n=10,1,2,--- , and (8%)? = (e2 — €1)k2 + (B})°. In practice, several iteration loops are

enough to guarantee an accurate solution of 3;.

The iteration technique cannot be applied to the lowest mode by starting from 8Y = 0. It
is easy to find that 8, = 0 is a solution of both {5.16) and (5.17). However, it can be shown
that this solution is un-physical, unless ¢ is infinite.

Now we can write down the EM fields inside the grating region using eigenmode expansion.
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The tangential field components are

Eo(r) = Y [Ame®om*Xf (2) + Bmeam* X, () +

m .

C’me’lk;mﬁz}f;;z (z) + Dppe®m* X, (z)]et*e (5.20a)
Ey(r) = Z[Ameik:mlzyrjﬁ (@) + Bme™am*Y7 () +

m

Cme Y4y (3) + DebimeY ()]0 (5.20b)

and

Ho(r) = Y [Ane*omi®Ul, (a) + Bue™om Ur, (z) +
Coneiima Upta(@) + Dne™am2® Uy ()] ™Y (5.212)

Hy(r) = Y [Ane™mVE (@) + Bue™m® Vo, (z) +

m

Cmeik:’"?zV,:g (z) + Dme*=m2®V, 7, (z)]e¥v¥ (5.21b)

Here X", (z) is the modal function of the E-field x-component commected with mode 1
under the upwards k. wave vector k;':ml, others are similarly defined. A.,, Bm,Cm, and D,
are modal coefficients. For the lowest mode m = 0, since only mode 2 is present, A and By,
vanish.

To determine the amplitude of modal functions, we use the boundary conditions at the two

interfaces of z = h and 2 = 0. We also use the method of moments and project the E-field



101

onto the plane waves and obtain

dEnu(h) = Coeoah I3, + Doc oIl +

S (Ane it IL & Bt 2 4 Coneimat I,

m>1

PP (5.222)
AEAR) = Goc™h 3, 4 DocTrh iy +

Z[A 8 zmlhu[}m_f_B e zmthfm_}_C e zm2hJ3
m>1

+D,,ezmalt Tl (5.22b)

and

dE(0) = CoIfo+Dolig+ Y [Anlltm+ Bmlim + Cmlly + Dnlé,]  (5.232)

m>1

dE;(0) = CoJio+DoJio+ D [AmJtm + Bmdim + Cndin + DmJiy).  (5.23b)
m>1

Here the moment between a plane wave function and a modal function is defined as

d d
Iz];m _ \/[; —-Ika:tEX'f'l (m)dm Izm = ‘/(; —zkmzz:X :'-(:‘v)dE

d d
o= [ X t)in, Hi = [ e Xz, @)

JEny M, and Nf . (k=1,2,3,4) are obtained by replacing X(z) by Y{(z), U(z), and V(z)
in the integration. The boundary condition of the H-field is done by projecting the H, field
onto the modal functions of mode 1, while projecting the H,, field onto the modal functions of

mode 2. This resulis in
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S Hui(B)M_imm = Coe*io2"83, 4 Doe*zoah G4 o+
i

ikt , h >,k ikt
+ § :[Ame =mi1 Sa}n,m"{"Bme #m'1 an,m"*'omeik”m?hsgz,m’
m'>1

+Dpeema ST, ] (5.24n)
ZHyi(h)N—i,m = Coe™: °2hT3 + Doe™= °2hT#;,,0 +
Z [Ame :mll TT}?. m! + -B e z mll T2 m’ + C et ZmZhTa?-z

mi>1

+DpeFamt T2 ] : (5.24b)

and

> Hei(0)Mosm = CoS%,0 + DoSy o+
[

> [AmShmt + BmS2 s + CmS3, s + DS ] (5.25a)

mi>1

> " Hyi(0)N_im = CoTi, o + Dol o+
i

> AmTh o + BT o + CuT3 o + DT 1, (5.25b)

mi>1

where, m = 1,2,--- and the moment between two modal functions is defined as

d
St = || Uh@U@de, S = / 4@, (0)ds,  (5.26a)

d
53 = fo (@)U, ,2(a:)da:, Spmt = j[; Ut (2)U () dz. (5.26b)
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and

d d
L . = ]0 Ut @)Uk, (2)de, T2 .= fo Uba(@)Upn (2o, (5.27a)

3
Tnm

]

d d
f Una(2)Up g (), T = f U (2)U o (2)de. (5.27Db)
0 0

From equations (5.24) and (5.25) we can delete the modal amplitude unknown variables and

obtain the following matrix equation that connects the E-field and H-field on both sides of the

grating as
E.i(h) Py P Py Py Hyi(h)
Eyi(h) _ Py Py Py Py Hyi(h) . (5.28)
Ez:(0) Py Py P33 Py Hzi(0)
E,:(0) | P P Pay Faq | \ Hy(0)

Once the transfer matrix of the structure is defined, our next task is to determine how
to combine such matrices to obtain the overall matrix of a prating with an arbitrarily large
thickness in a numerically stable manner. In the next sections we shall focus primarily on
deriving the necessary recursion relations for combining the R— and S—transfer matrices for
an arbitrary number of structural layers, followed by a simple prescription for extracting the

transmission and reflection spectra from them.

Recursion relations for the R~transfer Matrix

We start by considering the case of an R-type of transfer matrix. When we deal with grat-
ings consisting of many layers, we can assume that each layer is surrounded by two imaginary
infinitely-thin air films on both of its sides. The introducf.:ion of these extra air thin films has
no physical contamination to the scattering problem, because the thickness of all films is set
to zero. But these imaginary air films enable us to treat each grating layer separately in a
systematical manner. All that is left is to combine these single layers into a whole. The bonus

of great convenience is a natural result from such a technique. To appreciate the numerical
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stability for arbitrarily thick gratings, we should use the R-matrix technique to calculate the
overall R-matrix connecting the plane waves in the incidence and transmission regions. The

key point of this technique is as follows. Suppose we have obtained the overall R-matrix for

the first n layers R™ = (R™ R, R(™ R®)Y, which satisfies

aF RY RY | [ o
= T ol (5.29)

n ki) —_

F RY RG O

and the R-matrix 7®+1) for the (n + 1)* layer which satisfies
O+ - (n+l) (n+1) Q- ’ (5.30)

ntl T T22 nt1

where 7 (Q5) and 9} (Q;) are column vectors for waves in the upper side of the 1% and
(n+ 1) layer of the gratings, while QF (Q7) and Q7 ,(Q,,,) are column vectors for waves
in the lower side. We can prove straightforward that the overall R-matrix R"*D for the total

n + 1 layers is given by

REHY = R™ 4 ROEIY - g R, (5.31a)
RE™ = BRI - R, (531
(?4_1) _ T21+1)[(n+1) Rgg)]—le), (5.31c)
Rg’;“) - ngwrl) T21+1)[ (n+1) _ (g)]—lr{gﬂ)_ (5.31d)

Therefore, the procedure to calculate the overall R-matrix for a grating is as follows. First,
calculate the R-matrix for the first layer 7(*} and set R(Y) = r(}), Then, calculate the R-matrix
for the second layer 7¢2), and use equation (6.31) to calculate the overall R-matrix R® for the

first two layers, repeating until the final layer of the gratings.
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Obtaining the transmission and reflection spectra form the R-matrix

With the final overall R-matrix in hand, we can solve the reflection and transmission

coefficients by

AN S e o
: o g |\ s
or finally
I+ R _plntn) E AR
11 12 T - 11 0 (5 33)
B 1-rg? |\ B )\ B
Here I is an unit matrix, and
. 0 . N T
E = (BEy?, Eg,» By By )7 (5.34a)
_N . N
E. = (B 2%,---,E%--- ,El,---E*)T, (5.34b)
N . N T
= (Et21"':E?1"':Eg:"'Et2) . (5340)

Obviously, we have selected an index sequence of (7,¢) to designate the plane wave components
(kijz, kijy)- All numerical manipulations take this sequence as the universal basis.

Until now we have only derived the R-matrix for the first layer of the ISU layer-by-layer
PBG gratings, parallel to the y-axis. We can follow the same procedure as that for the first layer
to calculate the R-matrix for the second layer, and the other layers. "However, the symmetry of
the PBG gratings reminds us to adopt an easier way to obtain the R-matrix for other layers.
We see that the second layer, with rods directed along the x-axis, is just a 90° rotation from
the first layer. The third layer is translated by d/2 from the first layer along the x-axis, and the
fourth layer is translated from the second layer by d/2 along the y-axis. In another words, the
third and fourth layers as a whole are translated from the first and second layers by (d/2, d/2).
Therefore, under a straightforward transformation of coordinates, we can derive the R-matrix

for any layer in a simple way.
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First consider the 90° rotation transformation. The coordinates are transformed as

!

y—o,

z— -y,

(5.35)

where z,y and z’,y’ are coordinates in the lab (original) and crystal (rotated) frames. This

also means that both the wavevectors and EM fieldvectors should be transformed in the same

way,

(kas by} — (ks Bz,

(Eﬂ?z Ey) - (_E;? E;:)

(5.36)

Suppose 7’ and r is the R-matrix in the rotated and original coordinates, respectively, which

satisfy :
Qob(k ;)
Qg (ki ;)
M (ki)
Oy (ki)
and
0, (k—j,0)
Qg (k—j3)
(k)
0, (k—j)

Transforming Equation (5.38) into rotated coordinates, we get

~O5 (k)
% ;)
~E ()
Ul (k)

[ 711
,.’1(1 )
21

"‘"1(1 )
#11)

Ty
7(21)

T2

11
’"£1 )

21
’”gl )

11
"'51 )
21
i "'21 )

m 1
""£1 )

21
Tgl )

11
Tél )

(21)

| T21

1(12)
711

1(22)
™

22
7'§1 )

12
7'51 )

29
?"51 )

12
"’{1 )

22
7’%1 )

12
7'%1 )

29
7'51 )

#(11)
T2

1(21)
LT

G0

1(21)
Tan

o
“
3
“

11
?‘gz )

21
7‘52 )

11
Tg2 ) _

21
Té?. )

7(12)
T2

7(22)
T2

1(12)
Toy

1(22)
Tog

12
T](.2 )

(22)
7o

12
7":(22 )

99
Téz )

12
7'§2 )
22
""g2 )
12
7'%2 )

22
Téz )

0 (Finn)
0y (raa)
Dz (krmn)
Ny (ki)

(5.37)

Qe (k)
(g, (k)
2z (km,n)
01y (ki)

(5.38)

_9,0; (kl—n,m)
oy (K m)
_Qfl.jc (kLn,m)

1y (Frm)

(5.39)
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Comparing (5.39) with (5.40), we obtain the transformation of the R-matrix under 90° rotation

r (gt —nm) — D, 5m,n), (5.402)
(g i —n,m) — 32, jim,n), (5.40b)
~r P (=di—n,m) — i, jm, ), (5.40c)
ry (=g i —n,m) — 32, jym,n). (5.400)

The same transformation rule applies to 712, r21, and 7.
The transformation of the R-matrix under the axis translations is simpler as a comparison

with the axis rotation. Under axis translation
z—a' —z0, y—Y —u0, (5.41)
the field directions and wave vectors remain unchanged
(kar ky) — (koo ky), (B, By) — (B, EBy). (5.42)
Each plane-wave component of the EM field is transformed by

E(ki’j)eik,-m+ikj _, E!(ki,j)eik;x"'_ik;‘y’ — E,r (k;,j)eik,-:c+ikjye—ik;wo—z'kjyo’ (5'43)

which yields to
E(kij) — E'(kj ;) e~ o Hve, . (5.44)

Recalling the definition of the R-matrix, we find the following transformation of the R-matrix

under axis translation,

711 (6, 53m,n) — 11 (4, 5; m, n)el ke FmIzotilk; —knJuo (5.45)
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and 712,721, and 792 have the same transformation.

According to the above analysis, if the EM wave is normally incident on the 2D gratings,
then the R-matrix of the second layer is just a 90°-rotation transformation from that for the
first layer, which is block-diagonal. In this case, only the R-matrix for the first layer is needed,
this greatly reduced the numerical calculations. The overall R-matrix for the 2D PBG gratings
with arbitrary layers can be calculated on the basis of the first layer using the R-matrix addition
technique shown in Equation (5.31). For arbitrary incidence angles, the R-matrix of the second
layer is no longer a simple rotation-transformation from the first layer. Instead, we first make a
transformation so that in the 90°-rotated coordinate the incident wave vector onto the second
layer is (kjz, kg,) = {—koy, koz). Next, we calculate the R-matrix ' in this rotated coordinate
using the same procedure for the first layer. Finally we back-transform this block-diagonal
matrix to obtain the R-matrix » in the original coordinate according to Equation (5.39).

After we have obtained coefficients for the reflection and transmission waves, the transmis-

sion and reflection spectra are calculated by

B |k c |
7= 2% = 2 TRl (5.46)
¥
and .
_ IEzJI |k'*“.7 zI
o z‘szU Z [EoPlkosl > . (547)

where the summation is over those homogeneous Bragg waves with a lateral wavevector ( kgm.-{—
1252 4 (koy +3525)2 < k2, and E}; and EJ; are the amplitudes of the transmission and reflection

Bragg wave in the (i§)** order.

Recursion relations and transmission and reflection spectra for the S-transfer

matrix

In this section we shall only give the results, as the procedure for deriving the necessary
formulas is nearly identical to those for the R-matrix case discussed previously. If S is

the overall S-matrix for n combined layers and s is the S-matrix of the (n + 1)* layer,
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respectively, one straightforwardly proof, that the overall S-matrix for the combined n + 1

layers is given by {?):

SE = 34 - S s (5450
S§g+1) - s§g+1)+ sgflaﬂ) S§§)[I—~ Sgln+1) s{’;)]—l Sé;ﬂ), .(5. 48b)
SETY = SR+ SR I - S s s, (5.480)
s = S - -si s, (5.48d)

The procedure for finding the reflection and transmission spectra, is identical to that for

the R-matrix case.

Advantages versus Drawbacks of the Modal Expansion Method

The MEM approach has several key advantages over all of the preceding methods. It
is an order N2 algorithm, since we apply the PW expansion only in a 2D scheme. It also
awards a higher degree of accuracy compared to the TM method, since there is no attémpt
to represent the dielectric function of a spatial grid. (Remember the dielectric function is in
reality a non-local function. In fact, it is a tensor.) This accuracy is displayed in Fig.5.3,
where we compare a calculation performed using the TMM and one performed using the MEM
to the experimental data for a metallic ISU layer-by-layer structure. Careful examination of
the figures, shows that while the TMM at the most is able to provide a general qualitative
agreement with the experimental data, the MEM method is actually able to pick up all of the
features displayed in the experimental plot. Furthermore it allows for the extraction of the
modal intensity distribution and, hence, offers a good estimate on the desired source profile for
enhanced coupling (e.g., in wave guide designs). In addition, this method is very well adapted
to the micro processing and machining techniques, and is directly extendable to all periodic
structures. However, more importantly it is a very stable and versatile method.

In spite of all of these advantages, however, the MEM method suffers from a grave dis-

advantage. Because it was developed more or less within a PW framework, this immediately
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implies that the results will be and are in fact slowly converging. This imposes severe demands
on the computation time and memory. This problem can generally be reduced by further im-
plementation of the crystal symmetry, and high-performance parallelization of the computer

codes.
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Introduction

Telecommunications and optical computing applications need efficient guiding of light on a
single chip. Traditionally this has been accomplished by dielectric wave guideé, such as optical
fibers, which propagate light efficiently in straight lines. However, such dielectric wave guides
are limited to a large bending radius, otherwise large radiation losses can occur, and new wave
guides are needed to bend light around sharp corners.

A new direction is to use three-dimensional photonic band gap (PBG) crystals. By fab-
ricating a wave gujcie or a channel in a three-dimensional (3D) photonic band gap crystal
and operatihg at frequencies within the band gap, such wave guides overcome the problem of
bending light around sharp corners[3].

However three-dimensional PBG crystals are still very difficult to fabricate at optical length
scales. An alternative is to use simpler two-dimensional (2D) PBG crystals. Previous studies
[4, 5] show that highly efficient transmission of light can be achieved around sharp corners in
2D PBG wave guides. One major limitation to these studies is that the 2D structure used was
assumed to be infinite in the dimension perpendicular to the plane of periodicity. One would

therefore expect leakage of waves in the practical situation of a finite structure.
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Here we present simulations of the energy transport in such waveguides using a finite-
difference-time-domain method. The geometry investigated consists of a three-layered dielec-
tric structure in the dimension perpendicular to the plane of periodicity of the 2D PBQ@ struc-
ture, (Fig.6.1). The middle layer of which is to have a dielectric constant that is much larger
than the other two enclosing layers. The dielectric contrast between the layers would then act
to confine propagation to the central layer in exactly the same way as a conventional wave
guide would. |

Our proposed structure was first suggested by Labilloy et al[1], in conjunction with their
studies of transmission and reflection off a 2D PBG structure. The idea of including the three-
layered dielectric structure was then used to guide the light out of the structure and into the
measuring apparatus. In this article, however, we focus on the feasibility of such a structure
as a wave guide.

As a first step in our studies, we will restrict ourselves currently to studying the guidance
ability of this structure in straight lines. Comparison with the performance of a conventional
guide is made, as well as discussions related to means and suggestions for enhancing its per-
formance. Qur studies also provide an upper theoretical limit on the performance of such
guides, as we assumed no crystal imperfections and non-absorbing media. In the first part of
our studies, the three-layer structure is studied in vacuum, in the second part, the three-layer
structure is put on a high- dielectric-constant substrate to investigate the effects of substrate

loss in the system.

Structural Parameters and Calculations

When investigating a wave guide design, our prime interest is to monitor the temporal and
spatial development of the electromagnetic (EM) waves launched iﬁside the guide. For this
reason we employed the finite-difference-time-domain method (FDTD)[6], for the wave guide
simulations.

A three layered dielectric structure is created along the z axis. The upper and lower

dielectric layers are identical and are chosen to have a relative dielectric constant, &, of either
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1.00, 1.65, or 9.55 corresponding to air, Aluminum Ozide (Aly0O3), or Aluminum Gallium
Arsenide (GapaAlpsAs) respectively. The central layer on the other haﬁd, is chosen to have
a considerably higher dielectric constant of 12.50 corresponding to Gallium Arsenide (GaAs).
The hei.ght of the middle layer is chosen to have the values 0.43cm. or 0.86cm. and the overall
structure height is 2.72cm.

Two identical PBG structures consisting of a 2D triangular lattice of air cylinders are
drilled parallel to the z dimension of the dielectric structure, Fig.6.1. Each PBG structure
consists of four bilayers of cylinders whose periodicity extend in the x and y dimensions of the
structure. The two PBG structures will thus act to confine the propagation of the EM waves
to the zy plane of the thin vertical channel that Les between them. The dielectric constant
between the three dielectric layers will act concurrently to confine the EM wave propagation
along the z dimension to the central high dielectric layer. Our wave guide is thus defined as
the thin dielectric rectangular slab whose propagation axis lies parallel to the x dimension,
and whose zz walls are tangent to the PBG cylinders while its zy walls lie along the interfaces
betvlveen the central dielectric layer and the other two.

The number of air cylinders per yz bilayer in the PBG lattice, their radius, r, and their
center-to-center separation ( lattice constant ), a, are determined by the particular choice of

air-to-dielectric filling fraction, f, given by:

-5 2

The structure extends an overall 14em in the ¥ dimension and 25¢m in the z dimension. The
width of the guide along the y dimension is chosen to be 0.94cm .

In order to achieve good accuracy, the structure is divided into 640 by 360 by 108 grid points
along the z, y, and z dimensions respectively, and & time step of At = 0.682 x 10~'? is chosen.
The numerical space is terminated by second order Liao boundary conditions. To reduce the
size of the computational problem and hence both the memory and time requirements, the
symmetry displayed by our structure is utilized. The EM waves are launched into our guide

by means of a dipole antenna situated at the center of the central dielectric layer with its axis
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parallel to the y direction and extending 0.8cm. Using the dipole source at various deriving
frequencies, Mazwell’s equations are integrated in time using the FDTD method to obtain
the fields at each location within the structure. The symmetry plane that bisects the dipole
antenna along its long axis is then recognized as a magnetic image plane (magnetic wall).
The symmetry plane orthogonal to it and bisecting the guide feed, is on the other hand, is
an eleciric image plane (electric wall). We thus need only model one fourth of the whole
structure. |

Before moving to the details of our calculations, however, we would like to mention that in
order to compare our results with those experimentally observed by Labilloy et alf1], at least
from a qualitative point of view, a second structure in addition to the previous one is modeled.
In this latter case a considerably large substrate of GaAs is attached to the lower end of the
structure, and the dimensions of the whole structure are re-adjusted so that they possess the
same relative sizes as those studied experimentally.

To select the frequency of operation, the plane wave expansion technique [7, 8, 9], is first
used to map out the photonic band structure for our 2D PBG lattice for various choices of air-
to-dielectric filling fraction, (Fig.6.2 a and b). As is well known from earlier work [7] there is a
gap for the transverse electric (T'F) modes, (E in the plane of the structure i.e. perpendicular
to the cylinder axis), that opens up for filling fractions f > 20%. The transverse magnetic
(TM) modes have a much smaller gap that opens up for filling ratios f > 60%, Fig.6.2b. Only
a small region of filling fractions exists, between 60% and ~ 85%, where the TE and the TM
gaps overlap(7).

Throughout our calculations we shall therefore restrict ourselves to TE modes at a fre-
quency of 10GHz because of the corresponding noticeable PBG width. We shall further
restrict the majority of our studies to filling fractions of 20%, 50%, and 80%. The choice of
these particular filling fractions was done so as to sample regions on both sides of the gap as
well as the region inside it. Other values of f are also studied to support our conclusions and
predictions. Although our results are quoted at a frequency of 10GH z set by the dimensions

in our simulation, our results can be scaled up to optical frequencies simply by scaling the
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dimensions of the structure.

To effectively study the guidance ability of our structure, we need to examine both the
spatial and temporal distribution of the EM waves as they progress through the structure.
One way of doing so is by visualizing the electric field (E) intensity within planes that cut
through the whole structure, see for example Figs.6.3 and 6.4. Two such sets of planes are
selected. The first being the zy plane at the same level as our dipole, where the E field
intensity is examined to study leakage losses out of the photonic structure. The second is
the 2z symmetry plane cutting through the center of the dipole, and is used to inspect the 2
localization of the EM waves inside the guide as well as losses into the surrounding air and/or
substrate layers.

The disadvantage of the previous technique is that it provides no quantitative estimates of
the guidance efficiency, n,, or the spacial decay rate, oz , of the waves in the guide. To complete
the picture we therefore employ a second study technique. Here we monitor the power, Fy,
carried by the EM waves as they progress through the gnide by integrating the Poynting vector,
S, within yz planes that slice through our guide perpendicular to the direction of propagation.
P, is then plotted versus time at each of these layers, Fig.6.6. The time average value of Fy
is also calculated at each of these slicing planes and plotted versus displacement along the
guide, Fig.6.7. These plots provide us with adequate information regarding 7, and az. The
advantage of using S over the E field intensity is that not only does it provide information
about the guided power, but also takes into account the directionality of wave propagation. In

this way errors that are generated by including the reflected wave intensities are avoided.

Results and Discussion

The preliminary results indicate that the guidance features of our guide structure are highly
sensitive to three major factors. The first is the height of the air cylinders relative to that of
the guide itself, and is predominantly responsible for losses in the y direction. The second
factor is the dielectric contrast between the central dielectric layer and the other two bounding

layers, and is responsible for the losses in the z direction. Finally, the filling factor, f, of
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air-to-dielectric which concurrently influences both y and =z losses.

It is observed that decreasing the height of the air cylinders promotes part of the EM waves
to seek the easy escape route and leak over the top of the air cylinders. The wave bypasses
the photonic crystal and leaks out of the structure in the y direction. This agrees with the
experimental observations cited by Krauss et al[2], and can easily be shown by comparing
Fig.6.3a where the effective rod height is equal to that of the guide, and Fig.6.4a where the
rods actually extend throughout the whole structure.

The influence of the dielectric contrast between the three dielectric layers is similar to that
on the behavior of a conventional dielectric guide and is illustrated in Fig.6.3b and Fig.6.4b
which shows greater confinement in the z direction for higher dielectric contrast between the
outer and the inner layers. However, the problem arrises when trying to concurrently minimize
both z and y losses as they require somewhat opposing conditions.

We study the performance of the waveguide by calculating the power traversing at different
points along the guide (Fig.6.5 ) as a function of the air filling ratio f. The power in the
waveguide is found by integrating the Poynting vector over different planes along the waveguide.
We normalize the power in the waveguide by the power radiated by the dipole. For the high
dielectric layer enclosed by two air layers, (Fig.6.6a), we find the lowest loss occurs for the
conventional guide (f = 100 %), corresponding to a simple rectangular dielectric waveguide.
However, with the PBG structure, the lowest loss is observed for filling ratios of 10 or 20%
(Fig.6.6a), and substantially higher attenuation occurs for filling ratios of 50 or 80%. This
result is surprising since the PBG’s with filling ratios of 50-80% have the largest band gap
and would be expected to be the best. The gualitative reason for this is that at filling ratios
where PBG is best (~ 50%), there is little loss into the PBG, but there is instead loss in the
z direction perpendicular to the waveguide. We find that this loss in the z direction can be
reduced by going to a non—idéal PBG with filling fraction around 20%. This choice increases
slightly the leakage in the plane but reduces the leakage in the z-direction, providing optimum
performance. The best performance at 20%, has also been experimentally found by Labilloy

et al [1]and Krauss et alf2]. Evidently the leakage of the EM wave in the two directions can



119

not be reduced simultaneously.

Before concluding our current discussion, we would like to point out the effect of not
etching-off the substrate on which such a structure would actually be grown on. Figures
6.72 and (6.7b) show a comparison between the predictions of our simulation on the geometry
adopted by Labilloy et al[l] modeled with and without a substrate. It is obvious that including
a substrate causes more losses. Such losses are seen to increase during the initial part of the
guide (Fig.6.7a). They then level-off to a constant value when the guide mode is excited.
Although this happens quite early, the power lost to the substrate is large enough to generally

degrade the performance of the guide (Fig.6.8).

Conclusions

Upon-comparing our current guide feature with those of a conventional dielectric guide of
the same size, it is inevitable to conclude that the latter is in much better standing. However
one possible suggested modification that is expected to enhance the performance of the guide
is to replace each of the upper and lower dielectric slabs by a 1D photonic crystal. Tuned so
that it has an overlapping gap with our current 2D one, it is expected to completely suppress
the z losses. Unlike our current situation where the z scattering-off the 2D lattice of the air
cylinders seems unavoidable because of the large value of the refractive indez, n, of the central
dielectric slab[10], and no matter how large the dielectric contrast is, it cannot completely
eliminate the z losses. However, the only drawback that faces such a design is that the cost
relative to the gain is not expected to be very high, especially since a conventional dielectric
guide is seen to function very well.

However one should make use‘of the ability of the PBG structures to reflect waves very
efficiently and limit their function in a guide to bénds. A feasible proposal is to use conventional
dielectric guides to guide waves in the straight line segments of the required path and then to

implement a 2D PBG structure at any required bend along the path.
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Figure 6.1 Waveguide Geometry. (a} Side view. (b) Top view.
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Figure 6.3 Electric fleld intensity at an air-todelectric fillig fraction f of
50%. The dielectric contrast between the central dielectric layer
and the sandwitching ones is 12.5 : 1.0. (a} xy-plane slicing the
structure at the same level as the dipole. We show here only
one half of the structure as the xz-pane centered on the x-axiz
acts as a symmetry mirror plane. (b) xz-symmetry plane slicing
through the center of the structure.
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Figure 6.4 Electric field intensity at an air-todelectric fillig fraction f of
50%. The dielectric contrast between the central dielectric layer
and the sandwitching onesis 12.5 : 9.5. (a) xy-plane slicing the
structure at the same level as the dipole. We show here only
one half of the structure as the xz-pane centered on the x-axiz
acts as a symmetry mirror plane. (b) xz-symmetry plane slicing
through the center of the structure.
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7 Metallic Photonic Crystals at Optical Wavelengths
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University, Ames IA 50011

A paper published in Physical Review B Journal, Vol. 62, No.23, De-
cember 2001.

Abstract

We theoretically study three dimensional metallic photonic band gap (PBG) materials at
near infrared and optical wavelengths. Our main objective is to find the importantance of
absorption in the metal and the possibility of observing photonic band gaps in such structures.
For this reason, we study simple cubic structures where the metallic scatterers are either cubes
or interconnected metallic rods. Several different metals have been studied (aluminum, gold,
copper, and silver). Copper gives the smallest absorption and aluminum is more absorptive.
The isolated metallic cubes are less lossy than the connected rod structures. The calculations
suggest that isolated copper scatterers are very attractive candidates for the fabrication of

photonic crystals at the optical wavelengths.

Introduction

There has been growing interest in the development of easily fabricated Photonic Band Gap
(PBG) materials operating at the optical frequencies;! these are periodic dielectric materials
exhibiting frequency regions where electromagnetic (EM) waves can not propagate. The reason

for the interest in PBG materials arises from the possible applications of such materials in
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several scientific and technical areas such as filters, waveguides, optical switches, cavities,
design of more efficient lasers, etc.! Most of the research effort has been concentrated in the
development of two-dimensional {2D) and three-dimensional (3D) PBG materials consisting
of positive and frequency independent dielectrics!, in which case one can neglect the possible
problems related to the absorption. Here we offer an alternative approach to the fabrication of
PBG materials using metals. There are several studies of metallic photonic crystals which are
mostly concentrated at microwave, millimeter-wave, and far infrared frequencies.2~? In such
frequencies, metals act almost like perfect reflectors with no significant absorption problems.
Here, on the other hand, we focus on the infrared and near-optical ferequency regime. There are
certain advantages of introducing metals to photonic crystals. These include reduced size and
weight, easier fabrication methods and lower costs. A recent theoretical study suggested that
a face centered cubic lattice of metallic scatterers can possess a complete photonic band gap.'©
However, the absorption of the metal was completely ignored. Here, we use the transfer matrix
method to study the effect of absorption of the metal at frequency regime of interest (infrared
and near optical frequencies). In particular, we study simple cubic structures consisting of
isolated metallic cubes or iﬁterconnected metallic rods. Aluminum, copper, gold and silver
have been used in order to investigate the effect of different metals on the absorption. In all
the cases the lattice constant was chosen to be 0.25 microns and the metallic scatterers are

assumed to be imbedded in air.

Approach

We utilize the frequency dependent dielectric functions €;{w), e2(w) for these metals that
have been directly measured by Ordal et al !! from near infrared to optical frequencies (1
em ™! to 20000 em™1). This provides a very realistic base for the photonic response of metallic
structures composed of such elements. To aid the numerical calculation, the measured real and
imaginary dielectric functions have been interpolated with a Drude model to yield the desired

value of (e, €2) at any frequency. The Drude dispersion model offers an excellent fit to the
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measured data over a wide frequency range.!!

€1(w) = €00 — = -Iijw2 (7.1)
wiw,
EZ(w) = w3 _i (JJQJE (72)

The the plasma frequency wy, and the damping frequency wy, have been tabulated in Ref. 11,
by fitting the Drude dispersion model to experimental measurements. The values for wp and
wy are 11, 3570/19.4 THz (Al); 1914/8.34 THz (Cu); 2175/6.5 THz (Au); and 2175/4.35 THz
(Ag). These values fit the experimental data for (€1, €2) over frequencies from 30-900 THz,
which covers the entire range of interest. The resulting dispersion relations for the real and

imaginary parts of the dielectric constants of the above four metals are shwon in Figs. 7.1a

and 7.1b.

Calculations and Resuits

The metallic photonic crystals studied here are the three dimensional counterparts of fre-
quency selective surfaces (FSS).12 These are two dimensional arrays of metallic patches or
aperture elements that have frequency filtering properties. F3Ss have been studied in great
detail because of their application as filters, bandpass radomes, polarizers, and mirrors in
microwave region. 2 Most FSS work has focused on a single-layer metal patterns.

We use the transfer-matrix method (TMM), introduced by Pendry and MacKinnon,' to
calculate the EM transmission through the PBG materials. In the TMM, the total volume
of the system is divided in small cells and the fields in each cell are coupled to those in the
neighboring cells. Then, the transfer matrix is defined by relating the incident fields on one
side of the PBG structure to the outgoing fields on the other side. Using the TMM, the
band structure of an infinite periodic system can be calculated, but the main advantage of
this method is the calculation of the transmission and reflection coefficients for EM waves of

various frequencies incident on a finite thickness slab of the PBG material. In that case, the
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material is assumed to be periodic in the directions parallel to the interfaces.
The TMM has been used to simulate the reflection and transmission from a simple cubic
structure with metallic cubes at the lattice sites, occupying a filling fraction of 29.5 %. Three

unit cells constitute the thickness of the slab. The unit cell is discretized into 12 divisions, so

' that the 3-unit cell structure is described by a 12x12x36 mesh. This mesh accurately describes

the present cubes. We have checked the convergence of the calculations and found the high
frequency results to be well converged for this choice of discretization.

Figure 7.2 shows the transmission and absorption of a three unit cell thick structure con-
sisting of metallic cubes of 29.5 % filling ratio. There is a broad drop in transmission around
400 THz for all metals. The gap is wider for aluminium where the real part of the dielectric

function | €1(w) | has the largest absolute value at these frequencies'

. In contrast, copper
exhibits a narrower gap because it has a smaller value of | €2(w) |. The absorption ez(w) is
higher for aluminum generating the largest absorption feature in Fig.7.1b. The absorption for
gold and copper is less than 5% for all the frequencies below the upper edge of the gap. For
higher frequencies, there are peaks in the absorption which indicate that the wave penetrates
more in the metal. Usnally, a peak appears in the absorption close to the frequency where a
peak appears in the transﬁn'ssion. Aluminum however displays a greater amount of absorption
over the frequency range of the gap.

We also studied defects in a simple cubic structure consisting of metallic cubes. Defects
are introduced by reducing the size of the cubes in the middle layer by 50 %. This defect
introduces a peak in the transmission within the gap region (Fig. 7.3). This may have been
generated due to the displacement of the transmission peak at the low frequency side of the gap
(250 THz in Fig.7.1a) to higher frequencies. The transmission at the top of the peak is 0.97,
0.95, 0.95 and 0.52 for copper, gold, silver and aluminum, respectively. The lower transmission
for aluminum is due to the higher absorption at the defect peak (Fig. 7.3} which is as high as
0.42 for aluminum while being less than 0.05 for copper, gold and silver.

Figure 7.4 shows the transmission and absorption for the case where the metal forms an

network of square rods connecting nearest neighbors in a simple cubic lattice. The filling ratio



[ES——
v =

L o

135

of the metallic rods is 0.26. In that case there is a gap from zero up to a cutoff frequency
in accordance with previous studies.® The cutoff frequency is at 410, 510, 520 THz for cop-
per, gold/silver and aluminum, respectively. This trend is again related to the real part of
the dielectric constant; the higher its absolute value, the higher is the corresponding cutoff
frequency. On the other hand the absorption is higher for aluminum and smaller for copper
due to the higher (lower) value of the imaginary part of the dielectric constant for aluminum
(copper). For aluminum rods, there is a broad absorption feature around 375 THz similar to
the case for isolated cubes, which arises from the greater losses in aluminum compared to the
other metals. -

Defects in the interconnected structure are introduced by removing the metal inside a cube
centered on the lattice points of the second layer. Defect peaks appear in the transmission
(Fig.7.5) around 230 THz. The transmission on top of the peaks is 0.62, 0.43, 0.37, and 0.05 for
copper, silver, gold and aluminum, respectively. In contrast, there is an opposite trend for the
absorption which is 0.1, 0.28, 0.2, and 0.35 for copper, gold and aluminum, respectively. Both
of these trends are related to the higher (lower) value of the imaginary part of the dielectric
constant of aluminum (copper). We found higher absorption for the connected rods case than
in the isolated metallic cubés. This is an expected result since the interconnected structures

long range conduction currents are induced which lead to higher losses'.

Losses may be
further reduced by using dielectric structures coated with a thin layer of metal'® this may lead

to promising structures with gaps!®.

Conclusions.

In conclusion, we studied metallic photonic crystals at near infrared and optical wave-
lengths with the transfer matrix method. Our results show that robust mettalic PBGs may
be obtained by using metals. By corectly choosing the metalic parameters, in paricular the
damping frequency, an impinging electromagnetic radiation is foud to interact with the PBG
crystal sufficiently enough to be scattered by it, but not too much as to be absorbed by it.

Our studies focused on the absorption of such metallic structures for that reason we studied
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only the simple cubic geometry. Although this type of geometry does not result in the widest
possible gaps, it constitutes the simplest possible case study. We expect that our conclusions
regarding the absorption will hold to any other metallic structures. By comparing the results
for different metals, we found that copper gives the less possible absorption in all the cases.
Gold gives slightly higher absorption. Aluminum is very lossy and is not recommended for op-
tical photonic crystals. Isolated metallic scatterers have lower losses than the interconnected
metallic networks. The most promising configuration for an optical photonic crystal is the
isolated metallic scatterers composed of copper. Both silver and gold are acceptable although
slightly lower in performance. Defects in this structure introduce a narrow defect band that
acts as a frequency selective filter.

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University
under contract No. W-7405-Eng-82.
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Figure 7.1 Dispersion relations for Al, Ag, Au, and Cu. (a) Real part

of the dielectric constant. (b) Imaginary part of the dielectric
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Transmission and absorption for a simple cubic structure con-
sisting of isolated metallic cubes. Defects have introduced in
the structure by reducing the size of the cubes in the second
layer. The filling ratio of the cubes is 21%. The propagation
is along the 100 direction and the structure is three unit cells
thick.
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Figure 7.4 Transmission and absorption for a simple cubic structure con-
sisting of interconnected metallic square rods. The filling ratio
of the metal is 26%. The propagation is along the 100 direction
and the structure is three unit cells thick.
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direction and the structure is three unit cells thick.
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A paper published in the Journal Nature, Vol.417, May 2002,

Abstract

We point out a new direction in photonic crystal research that involves the interplay of
photonic band gap (PBG) rejection [1-3] and photonic band edge absorption. It is proposed
that an absolute PBG may be used to frustrate infrared part of Black-body emission and,
at the same time, its energy is preferentially emitted through a sharp absorption band. Po-
tential application of this new PBG mechanism includes highly efficient incandescent lamps
and enhanced thermophotovoltaic energy conversion [4]. Here, a new method is proposed and
implemented to create an all-metallic 3D crystal at infrared wavelengths, A, for fhis purpose.
Superior optical properties are demonstrated. The use of metal leads to the opening of a large
and absolute photonic band gap (from A ~ Bum to > 208um). The measured attenuation

strength of ~ 30 dB/ per umit cell at A = 12um is the strongest ever reported for any 3D
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crystals at infrared A. At the photonic band edge, the speed-of-light is shown to slow down
considerably and an order-of-magnitude absorption enhancement observed. In the photonic
allowed band, A ~ 5um, the periodic metallic-air boundaries mold the flow of light, leading to
an extraordinarily large transmission enhancement. The realization of 3D absolute band-gap
metallic photonic crystal will pave the way for highly efficiency energy applications and for '

combining and integrating different photonic transport phenomena in a photonic crystal.

. Introduction

It is known that a 3D metallic photonic crystal is promising for obtaining a larger photonic
band gap [5-7), for achieving new EM phenomenon [8-10] and for high temperature (> 1,000°C}
applications, However, metals offer theoretical challenges in the investigation of photonic band
gap behavior especially in the infrared (IR) and optical wavelength, as they are often dispersive
and absorptive [11]. The difficulties in fabricating 3D metallic crystal in the IR and optical
wavelengths present another challenge. So far, studies of metallic photonic crystais are mostly
concentrated at microwave and millimeter wavelengths (9, 12-13]. One excéption is work done
by Mclntosh et al on infrared metallodielectric photonic crystals {7]. Aléo, fabrication of optical
metallic 3D crystal using self-assembly method is just emerging [14,15].

In this work, fabrication of a Tungsten 3D photonic crystal was realized using a newly pro-
posed method. It is done by selectively removing Si from already fabricated polysilicon/Si02
structures, and back filling the resulting mold with chemical vapor deposited (CVD) Tun'gsten.
This method can be extended to create almost any 3D single-crystal metallic photonic crystals
at infrared ), which are previously not achievable by any other means. A SEM image of the

fabricated four-layer 3D Tungsten photonic crystal is shown in Fig.8.1a and (8.1b).

Experimental Measurements, Theoretical Calculations and Discussion

The optical properties of the 3D Tungsten photonic crystal are characterized using a
Fourier-transform infrared measurement system for wavelengths ranging from A = 1.5 to 25um

[16]. To obtain reflectance (R}, a sample spectrum was taken from a 3D Tungsten crystal first
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and then normalized to a reference spectrum of a uniform silver mirror. To find the absolute
transmittance (T), a transmission spectrum taken from a 3D Tungsten crystal sample was nor-
malized to that of a bare silicon wafer. This normalization procedure is intended to calibrate

away extrinsic effects, such as light reflection at the air-silicon interface and silicon absorption.

. For tilt-angle transmission measurements, the sample is mounted onto a rotational stage with

a rotational angles spanned from § = 0‘_’ to 60°, measured from the surface normal, i.e. <001>
direction.

The absolute reflectance (black diamonds) and transmittance (blue circles} of a four-layer
3D Tungsten photonic-crystal is shown in Fig.8.2a. Light propagates along the <001> direction
of the crystal and is un-polarized. The reflectance exhibits oscillations at A < 5.5um, raises
sharply at A ~ 6um (the band edge) and finally reaches a high reflectance of 90% for X > 8um.
Correspondingly, the transmittance shows distinct peaks at A < 5.5um, decreases sharply at
X ~ 6um (the photonic band edge) and then vanishes to below 1% for A > 8um. The dashed
line is for reference purpose and is a transmittance taken from a 6000A uniform Tungsten film.
The simultaneous high R and low T at A > 8um is indicative of the existence of a photonic band
gap in the Tungsten 3D photonic crystal. The attenuation is as large as ~ 30dB at A = 10um
for our 4-layer sample, or equivalently a unit cell. The multiple oscillations at A < 5.5um are
attributed to photonic density-of-states (DOS) oscillations in the photonic allowed band.

To confirm our experimental observation, a transfer-matrix calculation [5} of transmittance
and reflectance is carried out and the results shown in Fig.8.3. The structure parameters used
are the same as the fabricated structure other than it has a slightly higher filling fraction,
33.3%. A frequency dependent dielectric functions €(w), e2{w) for Tungsten were also used to
take inté account the dispersion and absorption effects {17, 18].

Fig.8.3a shows the computed result for a 4-layer (N=4) 3D crystal, which correctly predicts
photonic band edge position and the gap size. More importantly, the transmittance (blue color
curve) also shows a high transmission at A ~ 5um. Although, the computed peak value (80%)
is abouf three-times higher and the full-width-half-maximum (~ 0.5um) three times narrower

than the measured one. By increasing N from 6 to 8 and 10, the peak transmission drops
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monotonically from ~ 95% to ~ 756%, due to absorption loss. Surprisingly, there exists a sharp
absorption peak (red color spectrum) at A ~ 6 —7um. The peak A is near the band edge and its
absorptance is ~ 50%. Using a photoaccoustic spectroscopy technique [19), a direct absorption
measurement is performed and a clear absorption peak of 22% is observed ‘at A ~ 6um.
For comparison, the absorptance for an uniform Tungsten-film at this A is measured to be
~ 1%. For A < 4.5um, computed reflectance (> 75%) is much higher than the observed one
(20 — 30%). Since metallic absorption loss is not important in this A-range [17], the observed
low R is attributed to scattering losses. One source of scattering is structure imperfections
such as the keyholes shown in Fig.8.1.

The photonic band gap attenuation in a 3D metallic photonic crystal must not be confused
with typical metallic attenuation. To illustrate this point, transmission spectra for 3D crystals
of different number-of-layers, N=2, 4 and 6, were computed and the results shown in Fig.8.3b.
The dashed line is a reference spectrum taken from s uniform 6000A Tungsten-film. Consistent
with its small metallic skin-depth (300 — 5004 for lum < A < 25um), the Tungsten-film
transmittance is very low (T< 107%) and is nearly A-independent. The sa'mple spectrum, on
the other hand, exhibits a much higher transmission (T~ 10—1) for A < 6um, suggesting that
photonic transport in this spectral range is not dominated by metallic attenuation. Moreover,
a strong A-independent and N-dependent is observed in the band gap regime (A > 8um). This
N-dependence indicates that transmittance attenuation at A > 8um scales with layer-thickness
of our 3D structure, but not the metallic skin depth. Thus, the attenuation at A > 8um is due
primarily to photonic band gap effect. The attenuation constant in the photonic band gap is
very large. It is ~ 32, 56 and 64dB per unit cell at A = 10, 20 and 40um, respectively. This
means that as few as one unit cell of a 3D Tungsten crystal is sufficient for achieving stro.ng
electromagnetic waves attenuation.

To prove the existence of absolute metallic photonic band-gap, i.e. a common band gap
for light propagating in all directions, a tilt-angle reflection experiment was conducted. Five
tilt-angle spectra were shown in Fig.8.2b for # = 10, 30, 40, 50 and 60°, respectively. As

@ is increased, the band edge position moves from A ~ 6um for § = 10° to A ~ 8um for
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# = 60°. Nonetheless, both the oscillating features at A < 6um and the high reflectance at
longer wavelength remain for all #s. Despite the shift in band edge, a large complete photonic
band-gap exists, from A ~ 8um to A > 20um, for our 3D Tungsten photonic crystal. Such an
extraordinarily large band gap is ideally suited for suppressing broadband Blackbody radiation
in the infrared [20] and re-cycling its .energy into the visible spectrum. In the photon recycling
process, an absolute 3D photonic band gap completely frustrates IR thermal emission and
forces the radiation into a selective emission band. Consequently, energy is not wasted in heat
generation, but rather been re-channeled into a useful emission band. According to Kirchoff’s
law, the integrated absorptance equals integrated emissivity [21]. The absorption peak near
band edge (see Fig.8.3) is then an ideal channel for light emission. As a Tungsten 3D crystal
can be heated up to an elevated temperature of > 1500C, the emission band can be tailored
to be in the visible, giving rise to a highly efficient incandescent lamp. This new phenomenon
is based on a powerful interplay between photonic band gap rejection and photonic band edge
enhanced absorption, which is made possible by the creation of a 3D metallic crystal. This
photonic band gap mechanism for energy recycling has major energy consequences in thermal-
photovoltaic (TPV) application as well [4]. Using our 3D structure as an emitter, 2 TPV model
calculation [4] shows that the TPV conversion efficiency reaches 51%, which is to be compared
to 12.6% efficiency for a Black-Body emitter.

A 3D metallic crystal not only exhibits a strong photonic band gap, but also posses unique
transmission and absorption characteristics. It is noted that while transmittance through a
uniform 60004 Tungsten-film is extremely small T < 1078, peak transmission through 3D W-
crystal sample at A ~ 5um is high, T~ 25-~30%. We may also approximate our 3D structure as
arrays of sub-wavelength holes and the estimated transmission efficiency is also small, 3x 10~°
[22]. Here, the hole-radius is estimated from the straight opening shown in the inset of Fig.8.1a.
None of the above two approximations can explain the observed transmission enhancement.
A further transfer-matrix calculation reveals that the transmission peak A scales linearly with
lattice constant a and depends on material filling-fraction. A similar enhancement effect and

scaling behavior have also been observed in 2D metallic thin film hole-arrays and was attributed
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to surface plasma excitation [23]. However, its peak A is independent of the hole-diameter,
or equivalently hole filling-fraction. The surface plasmon picture is useful in describing EM
modes in thin films with small holes, where the film thickness is small compare with A [23].
It is likely that plasmon effect will play a role. However, a formal theoretical classification
of the nature of the EM modes in complex structures as ours would give better insights into
this extraordinary phenomenon. Such EM modes must also manifest the 3D erystal symmetry
and facilitate waveguiding through metallic openings [24]. To explore the manner by which
light-wave manages to mold itself according to the intricate 3D metallic structure (and to the -
Bloch Theorem), a FDTD calculation is carried out.

FDTD Calculations are done for a six-layer 3D crystal sample at three different As () = 5.2,
6.5 and 12um) and at two separate time steps T' (= 1At = 0.133 x10™'?second and 2At). This
calculation assumes a perfect metallic boundary condition, as Tungsten material absorption is
minimal at these As [17]. Here the Ats are chosen to display the transient and steady state
electromagnetic wave distribution, respectively. The color plot is expressed in a logarithmic
scale and shows electric intensity profile in the y-z plane. The light source is a continuous wave
point source, indicated by arrows, and is placed at mid-point of the first layer (L=1). The
Tungsten rods show up as red regions. At A = 5.2um and T = 1A%, see Fig.8.4a, light-wave
intensity (the dark blue color) diverges in y-direction and meanwhile its wave-front propagates
along z-axis up to L=6. At T' = 2At, Fig.8.4b, light has transported uniformly through all six
layers and its intensity reached a steady state. It is noted that, at the metallic boundaries, there
exists a strong field gradient, from red, green to blue, encompassing the metallic rods. These
periodic metallic-air boundaries mold the flow of light and dictate its Bloch-wave transport
characteristics. At A = 6.5um, Fig.8.4c and (8.4d), light also diverges in y-axis, propagates less
intensively toward L=4 at T = 1At and eventually through L=6 at T = 2A¢. Additionally,
the speed-of-light is slowed down considerably at this A. The weaker transmission and the
retarded speed-of-light are clear manifestation of light propé.gation at a photonic band edge.
This retardation, along with percolation of light through the 3D structure, may be responsible

for the large absorption at A = 6 — 7Tum. Here, the very unique photonic band edge behavior
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leads to order-of-magnitudes absorption-enhancement. At A = 12um (see Fig.8.4e and 8.4f),
light does not transport through the six-layer structure and is totally reflected back, as it is in

the photonic band gap region.

Potential Application

Finally, we address feasibility and challenges for realizing practical incandescent lamps. The
first challenge involves the creation of metallic photonic crystals in the visible wavelengths.
The minimum feature size needs to be made 10 times smaller, i.e.100 — 200nm. Current
commercially available optical lithographic steppers can produce feature size of 150 — 180nm
over a 12 —inch silicon wafer and down to 120nm by year 2002. These steppers are designed for
large-scale production with high yields, which should help driving the production cost down.
Another alternative is to use direct electron-beam write lithographic technique, although it is
more costly. It is also noted that a photonic band gap is effective only when infrared light is
emitted within the 3D photonic crystal. Emission from the sample surfaces would experience
less photonic band gap effect. One solution is to passivate the surface layers. By applying a
thin insulating surface coating, electrical current can only paés through bulk portion of the 3D

crystal, and high emission efficiency is again achievable.

Experimental Methods: Creation of a 3D single-crystal metallic photonic
crystal

Details on the fabrication of the polysilicon/Si02 3D photonic crystal, which formed the
basis of the Tungsten-molds, are given in reference-16. Briefly, the 3D silicon photonic crystal
consists of layers of one-dimensional rods with a stacking sequence that repeats itself every four
layers (a unit cell), and has a face-center-tetragonal lattice symmetry [25]. Further details on
the rest of the processing steps are as follows. Firstly, the polysilicon in a 3D silicon photonic
crystal was removed using a 6M, 85C KOH etch which has a selectivity of ~ 100 : 1. Over-etch
during the KOH process, which is required to ensure the removal of all the poly-silicon, results

in the formation of a “V” structure on the bottom of the layer contacting the substrate. This
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is due to etching of the underlying substrate. The KOH etch effectively stops when the etch-
front encounters.the slow etching {111} planes of the substrate, thus forming a “V” groove
(see Fig.8.1). However this artifact does not appear to significantly impact photonic band gap
performance. Secondly, the blanket CVD Tungsten film does not adhere to silicon dioxide and
was therefore grown on a 50nm thick TiN adhesion layer deposited by reactive ion sputtering.
The bulk of the Tungsten film was deposited at high pressure (90T orr)} from WF6 and H2. The
chemical vapor deposition of Tungsten results in films of very high purity; the film resistivity
was 10microOhm — em. The step coverage of the deposition process is not 100% and this
gives rise to the formation of a keyhole in the center of the more deepiy imbedded lines (see
Fig.8.1b). However, the resulting thickness is far greater than the skin depth of Tungsten and
the parts typically retain sufficient structura] integrity to be handled readily. And lastly, excess
Tungsten on the surface was removed by chemical mechanical polishing and the oxide mold
was removed with a 1 : 1 HF solution, which etches SiO2 but not Tungsten or TiN. All of the
techniques employed throughout are modifications of standard CMOS processes and all work

was performed on commercially available, monitor grade, six-inch silicon wafers.
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Figure 8.1 Images of a 3D Tungsten photonic crystal, taken by a Scan-

ning Electron Microscope (SEM). The images taken with and
: without oxide are shown in 1(a) and 1(b}, respectively. The 1D
¥ Tungsten rod-width is 1.2pm, the rod-to-rod spacing is 4.2um
and the filling fraction of Tungsten material is 28%. The bot-
tom “V” groove is formed due to a slow KOH etching {111}
¥ planes of the (001) oriented silicon substrate. The step cover-
age of the deposition process is not 100% and this gives rise
to the formation of a keyhole in the center of the more deeply
B imbedded lines.
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Figure 8.2 (a) The measured reflectance (black diamond), transmission
(black circles) and absorptance (red circles) spectra for light
propagating along <001> axis. The inset shows a schematic
top view of the 3D crystal. (b) Tilt-angle reflectance spectra
taken from the 4-layer Tungsten photonic crystal. The crystal
orientation is tilted from the <001> to <110> axes and the
light incident angle () is therefore systematically tilted away
from I" — X\ toward I’ — L of the first Brillouin zone. The tilt
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4-layer 3D Tungsten photonic crystal. (b) Computed transmis-
sion spectra for 3D Tungsten photonic crystal samples of differ-
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scale. The dashed line is a reference measured for a uniform
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Figure 8.4 Results of a finite-difference-time-domain (FDTD} calculation

for a six-layer Tungsten 3D photonic crystal. Calculations are
done for three different As (A = 5.2, 6.5 and 12pm) and at two
separate time steps (" = 1At and 2At¢). The simulation light
source is a point source, indicated by arrows, and intensity pro-
file plotted across the y-z plane in a logarithmic scale. The pur-
ple and red colors represent the strongest and weakest intensity,
respectively. The y-z plane intersects with even-layer metallic
rods (L=2, 4 and 6) and the L=3 odd-layer rod. The two yel-
low dashed lines indicate locations of the other two odd-layer
rods, L=1 and 5. Light wave transports strongly through the
3D crystal at A = 5.2um, less intensively and more slowly at
A = 6.5pm and is totally reflected at A = 12um, consistent with
the behavior of light propagation in the photonic allowed-band,
band-edge and forbidden band-gap.
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9 Summary and Conclusions

Throughout this work, we have undertaken a theoretical approach to the complex problem
of modeling the flow of electromagnetic waves in photonic crystals. The methods discussed are
by no means limited to handling such structures, but can be directly generalized to address any
type of transport phenomena. Qur focus extended beyond a pure theoretical approach to the
prablem to actually addressing the feasibility and use of the exciting phenomena of photonic
gaps in actual applications.

To achieve our goals, we started in chapter 1 by providing a solid basis on which the current
work was built. An exhaustive review of the relevant developments in the filed were summa-
rized, both from a practical and an academic point of view. Next, we shifted our attention to
providing the detailed physics underlying our theoretical approaches. Full analytical deriva-
tions of the computational electromagnetic methods used in our work were addressed in detail
in chapters 2 through 5. We then shifted our attention to actual applications of the previous
theoretical techniques.

We began with a discussion of 2D photonic crystal wave guides in chapter 6. The struc-
ture addressed consisted of a 2D hexagonal structure of air cylinders in a layered dielectric
background. Comparison with the performance of a conventional guide was made, as well
as discussions related to means and suggestions for enhancing its performance. Qur studies
also provided an upper theoretical limit on the performance of such guides, as we assumed no
crystal imperfections and non-absorbing media. In the first part of our studies, the three-layer
structure was studied in vacuum. In the second part, the three-layer structure was mounted on
a high- dielectric-constant substrate to investigate the effects of substrate loss in the system.

Upon comparing our current guide feature with those of a conventional dielectric guide of
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the same size, it is inevitable to conclude that the latter is in much better standing. However,
one possible suggested modification expected to enhance the performance of the guide is to
replace each of the upper and lower dielectric slabs by a 1D photonic crystal. Tuned so that it
has an overlapping gap with our current 2D crystal, it is expected to completely suppress the z
losses. Unlike our current situation where the z scattering-off the 2D lattice of the air cylinders
seems unavoidablé because of the large value of the refractive indez, n, of the central dielectric
slab, and no matter how large the dielectric contrast is, it caﬁnot completely eliminate the z
losses. However, the only drawback that faces such a design is that the cost relative to the
gain is not expected to be very high, especially since a conventional dielectric guide is seen to
function very well. Nevertheless, one should make use of the ability of the PBG structures to
reflect waves very efficiently and limit their function in a guide to bends. A feasible proposal is
to use conventional dielectric guides to guide waves in the straight line segments of the required
path and then to implement a 2D PBG structure at any required bend along the path.
Having pointed out the severe limitations of 2D photonic crystals, we shift our attention
to 3D photonic crystals. However, to avoid the experimental difficulties of manufacturing
several unit cells primarily arising for the small index contrast of semiconducting materials, we
focus our attention on the use of metals as our building blocks. This eliminates the need for
multiple unit ce]is to realize the PBG effect. We begin in chapter 7 by theoretically studying
three dimensional metallic photonic band gap (PBG) materials at near infrared and optical
wavelengths. Our main objective is to find the importance of absorption in the metal and the
suitability of observing photonic band gaps in this structure. For this reason, we study simple
cubic structures where the metallic scatterers are either cubes or interconnected metallic rods.
Several different metals are studied (aluminum, gold, copper, and silver). The effect of topology
is also addressed and isolated metallic cubes are found to be less lossy than the connected
rod structures. Qur results reveal that the best performance is obtained by choosing metals
with a large negative real part of the dielectric function, together with a relatively small
imaginary part. To achieve this, simply note that by examining the Drude formula for the

real and imaginary parts of the dielectric constant, Equations (7.1) and (7.2), the ratios of
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the imagiﬁary—to—real parts of the dielectric function in the high frequency limit (IR-optical)
approaches the dimensionless ratio of the damping frequency to the incident electromagnetic
wave frequency. The key to significantly reducing the absorption of metal in a PBG design is
thus to choose metals that possess relatively small values of the damping frequency (e.g., Ag,
Au, Cu, W, ..., etc.). |

Our studies in chapter 7 focused on the effect of absorption. For this reason, we only studied
simple cubic structures. This structure does not give the widest possible gaps but it is the
simplest possible structure. We expect that our conclusions regarding the absorption will hold
to any other metallic structures. By comparing the results for different metals, we found that
copper gives the least possible absorption in all the cases. Gold gives slightly higher absorption.
Aluminum is very lossy and is not recommended for optical photonic crystals. Isolated metallic
scatterers have lower losses than the interconnected metallic networks. The most promising
configuration for an optical photonic crystal is the isolated metallic scatterers composed of
copper. Both silver and gold are acceptable, although slightly lower in performance. Defects
in this structure introduce a narrow defect band that acts as a frequency selective filter.

The next step is to use our findings so far and utilize them in fabricating an actual metallic
photonic crystal. In chapter 8, we point out a new direction in photonic crystal research
that involves the interplay of photonic band gap (PBG) rejection and photonic band edge
absorption. It is proposed that an absolute PBG may be used to frustrate the infrared part
of the blackbody emission and, at the same time, its energy is preferentially emitted through
a sharp absorption band. Potential application of this new PBG mechanism includes highly
efficient incandescent lamps and enhanced thermophotovoltaic energy conversion. Here, a
new method is proposed and implemented to create an all-metallic 3D crystal at infrared
wavelengths, A, for this purpose. Superior optical properties are demonstrated. The use of
metal leads to the opening of a large and absolute photoﬁic band gap (from A ~ 8um to >
208um). The measured attenuation strength of ~ 30 dB/ per unit cell at A = 12um is the
strongest ever reported for any 3D crystals at infrared A. At the photonic band edge, the speed

of light is shown to slow down considerably and an order of magnitude absorption enhancement
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observed. In the photonic allowed band, A ~ 5um, the periodic metallic-air boundaries mold
the flow of light, leading to an extraordinarily large transmission enhancement. The realization
of 3D absolute band-gap metallic photonic crystal will pave the way for highly efficient energy
applications and for combining and integrating different photonic transport phenomena in
photonic erystals. One such potential application is the use of such a crystal to manufacture a
new type of incandescent lamp. The suggested lamp would be able to recycle the energy that
would otherwise go into the unwanted heat associated with usual lamps, into light emitted in
the visible spectrum. It is estimated this would increase the efficiency over the conventional
lamps by about 40%.

Finally, we address feasibility and challenges for realizing practical incandescent lamps. The
first challenge involves the creation of metallic photonic crystals in the visible wavelengths.
The minimum feature size needs to be made 10 times smaller, i.e., 100 — 200nm. Current
commercially available optical lithographic steppers can produce a feature size of 150 — 180nm
over a 12-inch silicon wafer and down to 120nm by year 2004. These steppers are designed for
large-scale production with high yields, which should help drive the production costs down.
Another alternative is to use the direct electron-beam write lithographic technique, although it
is more costly. It is also noted that a photonic band gap is effective only when infrared light is
emitted within the 3D photonic crystal. Emission from the sample surfaces would experience
less photonic band gap effect. One solution is to passivate the surface layers. By applying a
thin insulating surface coating, electrical current can only pass through bulk portion of the 3D
crystal and high emission efficiency is again achievable.

As far as future work, there are many possibilities that can extend and build upon the
ideas put forward here. Specifically there are several key directions we would like to followup

on:

e First there is the issue of enhancing the real space discretization process for better rep-
resentation of the dielectric function. A possible improvement is to use a 9-point space
stencil rather than the usual 4-point stencil. Not only would this lead to a fourth ac-

curate representation of the discretized Maxwell’s equations, but would provide a finer
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mesh for the real space mesh. Such efforts are well on their way at our end. However,

the process has thus far proven quite challenging, both analytically and numerically.

Another improvement is to implement a triangular 3-point spatial mesh, rather than the
usual rectangular one, or even an adaptive mesh. This approach has already been under-
taken by electrical engineers for quite sometime, and is yet to be adapted by physicists

in the field.

A further improvement is to allow for the temporal as well as spatial modeling of electro-
magnetic waves in the presence of absorptive and gain media using the FDTD method.
This would open the door to the possibility of theoretically studying photonic crystal
lasers and LEDs, and would pave the way for better understanding of the physics of
gain media. As we have mentioned before, current efforts in that direction have been

undertaken at our end, but several tests are in order before any credit can be claimed.

An additional improvement on the speed of convergence of the MEM method is in order.
This method provides an unprecedented rich domain of information about the photonic
crystals and how they mold the propagation of electromagnetic waves in them. However,
it is severely limited by the memory requirements demanded by a k-space method. Two
possibilities of improvements are at hand. First, there is the possibility of implementing
the same technique in real space, this would reduce the computational deman&s. Once
again, we have already started progressing towards this direction. The other is to in.crease
further the implementation of symmetry group considerations, and make more use of the

in-layer symmetry of the structure.

Finally, an interesting direction is to study further the problem of 3D PBG wavéguides.
The problem can be viewed as being two-fold. First, there is the coupling problem, and
this entails the design of the ultimate source for effectively coupling into such guides.
Second, there is the issue of efficiency and guide performance. This is largely hindered
by the fact that it is extremely hard in any temporal simulation to distinguish between

forward and backward propagating waves. An ingenious idea suggested by my research
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advisor, Dr. K.M. Ho, is to solve for the actual eigenmode of the guide and then actually
Jaunch this mode as our source. By taking the dot product of the subsequent wavelets
with this mode, one would then be able to identify the direction of energy flow along the
guide and judge its efficiency. Furthermore, by studying the behavior of this eigenmode
at the termination of the guide, one may be able to identify the coupling efficiency, the

related problems, as well as ways of improvements.

We hope these and similar ideas of improvements will be attempted in the near future.



