
14 Related EDT No
HtVfSO 141

2 To (Receiving Organization) 13 From (Originating Organization)

SNFP Operations Support LMSI Software Development & Int. N/A

MAC-I1

2 2 6 1 Stevens
12 Major Assm Dwg No

T. G. Ibsen/M. J. Winkelman N/A

11 Receiver Remarks N/A

None 13 PermNPermit Application No

8 Originator Remarks

FOL approval and release

N/A
14. Required Response Date:

9 Equip /Component No

N/A
10 SystemIBldg IFaciYy

15

(') NO Sheet

DATA TRANSMITTED

(Dbp (E) Tltle or Descnption of Data Transmitted

0 Software Development

Guidelines for Visual

Basic and SQL Server

(B) DacumenWDrawing No
No.

I

E, S, Q , D OR NIA
(See WC-CM-55 ,

Sec. 12.7)

I
16.

1. Ap roval 4. Review 1. Approved 4. Reviewed nolcomment
2. ReLase 5. Post-Review 2. Approved wlcomment 5~ Reviewed wlcomment
3. Information 6. Dist. (Receipt Acknow. Required) 3. Disapproved wlcomment 6. Receipt acknowledged

19.

Authorized Re resentative Date
for Recelving grganization

I I

KEY

3 I DOE Reading Room H2-51
20 21 DOE APPROVAL (ifrequired)

Ctrl No.

L&6 0 Approved

Date 0 Approved wlcomments

0 Disapproved wlcornments

1 1 1
I I I I

Approval Designator (F) I Reason for Transmittal (G) I Disposition (H) 8 (I)

SlGNATUREIDlSTRlEUTlON
(See Approval Designator for required signatures) 17

I Safety I Central Files 81-07
I I I I I

I I Env
I I

18.

Signature of EDT Date
Originator

ED-7400-1 72-2 (1 0197)

CORRESPONDENCE DISTRIBUTION COVERSHEET

Author

T. G. Ibsen
R. J . South
K. R. Stafford
M. J . Winkelman

Addressee Correspondence No.

HNF-6445, Rev. 0

SOFTWARE DEVELOPMENT GUIDELINES FOR VISUAL BASIC AND SQL
SERVER

Subject:

DISTRIBUTION

Approval Date Name Location wiatt

Correspondence Control
Central Files
DOE-RL Reading Room
L. L. Blehm
T. G. lbsen
C. D. Lucas
K. R. Morris
D. D. Scott
R. J . South
K. R. Stafford
K . J . Willers
M. J . Winkelman
SNF Project File

A3-01
B1-07
H2-53
H8-60
H8-41
x3-74
x3-74
H8-43
H8-41
H8-4 1
H8-4 1
H8-4 1
X3-85

X
X
X
X
X
X
X
X
X
X
X
X
X

H NF-6445
Revision Rev 0

Software Development
Guidelines for Visual Basic
and SQL Server

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Project Hanford Management Contractor for the
U.S. Department of Energy under Contract DE-AC06-96RL13200

P.O. Box 1000
Richland, Washington

Fluor Hanford

Approved for public release; further dissemination unlimited

HNF-6445
Revision Rev 0

EDT 629502

Software Development Guidelines for
Visual Basic and SOL Server

Document Type: EPRO Division: SNF

T.G. lbsen
Lockheed Martin Services, Inc.

R. J. South
K. R. Stafford
M. J. Winkelman
Lockheed Martin Services, Inc.

Date Published

June 2000

Prepared for the U S . Department of Energy
Assistant Secretary for Environmental Management
Project Hanford Management Contractor for the
U.S. Department of Energy under Contract DE-AC06-96RL13200

P.O. Box 1000
Richland, Washington

Fluor H anf ord

gelease Approval
7/q /a

Date
~~ -

Release Stamp

Approved for public release; further dissemination unlimited

SOFTWARE DISCLAIMER .
Th s mater a was oreoared as an account of worn soonsored
of an agency of lne i n lea Slates Government Ne'ther the
Ln le0 Slates Government nor Ine Jniled Slales Depanmenl 01
Energy. nor any of Ine r emp oyees ma6es any warranly
express or mp ea or assumes any egal ao t y or
respons.brlily for tne accriacy comp eleness or usef. ness 01
any nformalion. apparahs prodx l or process a sclosed of
represenls that 1s Lse WOJ 0 no1 nfringe prwale y owned f gnls

This report has been reproduced from the best available copy.
Available in paper copy and microfiche.

Prinfsd m the UnNfed States of Amsnca

Total Pages: 2 7

HNF-6445 REV0

SOFTWARE DEVELOPMENT GUIDELINES
for VISUAL BASIC AND SQL SERVER

Last Update
June 2000

HNF-6445 REV 0

This page intentionally left blank.

..
11

HNF-6445 REV 0

CONTENTS

I.0 INTRODIJCTION 1
- 1.1 PURPOSE 1
1.2 SCOPE ... 1

2.0 ... 1 __
........................

2.1.1 Functional Ovcrvicw Comment (I leader)
2.1.1 Passed Information ..
2.1.3 Purpose 2
2.1.4 Created By and Date .. 2
2.1.5 Revisions ..
2.1.6 Example ..

. .

2.2 COMMKN'I'S 3
... 4
... 4

2.3.1 Grouping Constants ... 6
2.3.2 & and + Opcrators ...
2.3.3 Creating Strincs for MscBox, InputBox, and SOL Oueries

2.4 NAMING 7
.5 ERROR HANDLING .. 7

3.0 VERSION NUMHb.RS .. 7

-

. >

4.0 VISUAL BASICTM .._. 8
4.1 T H E S'I'ANI>AKI> ... 8

4.1.1 Visual BasicTM Coding Conventions ... 8
4.1.2 Data Access Ohicct Naming ... IO
4.1.3 Suggested Prefixes for Menus ... 1 1
4.1.4 Choosing I'rcfixcs for Other Controls
4.1.5 Constant and Variable Naming I 1
4.1.6 Variable Scope Prefixes ... 12
4.1.7 Proper Location to Declare Variables .. 12
4.1.8 Variables ..

Variable Data Types ...
4.1.10 Arrays ... 14
4.1.11 Constants ... 14
4.1.12 Descriptive Variable and Procedure Names .. 14
4.1 . I 3 User-Defined Types
4.1 . I4 Passed Variables
NAMING OBJECT FILES .. 15
4.2.1 Modules ... 15
4.2.2 Class Modules .. 15
4.2.3 Forins 16

4.2

...
111

HNF-6445 REV 0

4.2.4 Mdi Forms 16

....................... 16
... I6

... I6 5.1.1 Tables
5.1.2 Fields

5.1.4 Rules
5.1.5 Trippers

.............. ...

.. 17
.. 17

.................................. 18

.................................. 18

.............................

iv

HNF-6445 REV 0

AD@
DA@
MSSQL
RDO
SQL
UDT
VB

TERMS

Active Data Objects
Data Access Objects
Microsoft SQL ServerTM
Remote Data Objects
Structured query language
User-defined type
Visual BasicTM development environment

HNF-6445 REV 0

DEFINITIONS

Major
Version

Minor
Version

Revisions

Stored
Procedure

Tracking
Number

Trigger

UDT

Major versions change the scope and functionality of the system being
developed. Default major version in Visual BasicTM is 1 .x.x.

Minor versions are changes that add enhancements to existing functionality, or
correct extensive problems in the system. Default minor version in Visual BasicTM
is O.X. 1 .x. A new software release to the customer will require a minor version
change.

Revisions are corrections of bugs found during testing, development and use.
Default revision in Visual BasicTM is 0.x.x.l.

Stored procedures are sets of logical statements (a program) that is stored within a
database. These may be executed from within the database by specific events or
on a specific schedule, or on demand from another source, such as a Visual
BasicTM program.

A number assigned to a Change Control for tracking a specified
problem or enhancement.

A trigger is a stored procedure that is executed from an event within the database.

User-defined type contains one or more element of any data type specified by the
developer.

vi

MNF-6445 REV. 0

1.0 INTRODUCTION

Development Guidelines are programming directions that focus not on the logic ofthe program
but on its physical structure and appearance. These directions make the code easier to read,
understand, and maintain. These guidelines are put in place to create a consistent set of
conventions to follow that will standardize the development process. With these guidelines in
place the readability and understanding others have when reviewing the code is greatly
enhanced. Use these guidelines as a general rule when writing any set of logical statements.

1.1 PURPOSE

Development Guidelines are put into place in an effort to standardize the structure and style of
the development process. They are NOT intended to limit or channel the developer's own
creativity and flexibility.

1.2 SCOPE

These guidelines will cover general development syntax, organization and documentation. The
general information covers the high level areas of development, no matter what the environment.
This guide will detail specific Visual Basic' guidelines, following the same standard naming
conventions set by Microsoft*, with some minor additions. The guideline will finish with
conventions specific to a Database or Microsoft's SQL Server3 specific environment.

2.0 GENERAL GUIDELINES

This section covers the generic guidelines that apply to most logical programming methods.

2.1 FUNCTIONAL OVERVIEW COMMENT
(HEADER)

All procedures, functions, subroutines, and instruction sets will be preceded with a header
summarizing code being written. The information detailed below is the basic structure required.
Other information may be included in the header that is not covered in this document. These
added items are left to the discretion of each programmer, but the following core pieces of
information must be included.

HNF-6445 REV. 0

2.1.1 Functional Overview Comment (Header)

Each heading will list out any assumptions being made in the procedure. This list will show any
information that is not obvious to the programmer when reviewing this section of the code.
These assumptions are most likely objects such as an open file, database variable, control, global
constant, etc. that are set outside of this procedure.

2.1.2 Passed Information

Each header will list any passed information and the format of that information. Such as
“sTableName - name of a database table” or “sLastName - Last Name of an employee”. By
addressing each passed piece of information, the developer reviewing your code, knows the
intent of that data structure.

2.1.3 Purpose

The heading will contain a brief description of the basic functionality being performed. An
example would be as follows:

“Purpose: This function generates a recordset of data based on the fields passed.”

This information is important when trying to determine what is being done in the routine.
Developers can generate many different solutions for the same result and this brief description
provides the person reviewing the code a basic idea of what is being accomplished. In the
purpose statement describe WHAT is being done, do not detail HOW the process is
accomplished,

2.1.4 Created By and Date

Following the purpose, there should be the name of the developer who created the procedure and
the date. (e g , “Created by: John Doe April 7, 2000”).

2.1.5 Revisions

After the “Created By” information in the header, there should be a listing of revisions made to
this procedure. The revision line should include the date, version, developers name and
description of the revision. The most current revision should go at the top of the list. Such as:

06/04/98 1 .O. 1

06/03/98 1.0.0 John Doe - Originally Written

Jane Doe - Corrected overflow on iCount variable, by changing it to a long
integer IngCount.

2

HNF-6445 REV. 0

When tracking numbers are being used for problems or enhancements, follow the revision
number with the tracking number as follows:

06/04/98 l.O.l(l234) Jane Doe - Corrected overflow on iCount variable, by changing it
to a long integer IngCount

2.1.6 Example
.

'*Assumptions:
'*

'* Passed Information:
'* dDate, Date of transaction
'*

'*Purpose:
'*
'*

'*Created by:
'* John Doe 06/04/98

'*

File number being passed already references an open file
'*

iFileNum, File Handle Number for data output
'*

This function uses the variable passed, converts it to a special YYYYMMDD
date, and writes the result to an ASCII file.

'*

'*Revisions:
'* 06/04/98 1 .O.O John Doe Originally written

.
'*

2.2 COMMENTS

Comments must be written throughout the application. These comments are designed to give
general direction and explanation of what is being accomplished in that particular section of the
code. An example would be the underlined text below:

Displuv the hourpluss mouse aointer
Screen. MousePointer = vbHourglass

3

HNF-6445 REV. 0

There is no hard and fast rule on adding comments, but generally the more explanation the better.
Try to write the comments in general terms to provide the individual. who is reading your code,
an “introduction” to the next set of instructions. In addition to introducing your code, any further
description should be placed before the line of code or at the end of the line; for example, the
following underlined text:

‘Open Emplovee File
Open sFileName for output as iFileNum
Or
Open sFileNume for ouiput us iFileNum ‘Open Employee File

Keep in mind that the purpose of comments is to make the code more understandable, and more
readable. When the code readability begins to degrade because of excessive comments, the
comments become significantly less useful. Where possible, summarize.

2.2.1 Revision Remarks

When remarking a revision, note the change in the header, but also put the revision number in a
remark preceding the correction, such as the underlined text below:

‘1.0. I Corrected Overflow with iCount bv changing dutu tvpe to long
Dim IngCount us Long

In some cases a tracking number from a change control system is assigned to the revision being
made. In this case the tracking number should follow the revision number as follows:

‘1.0.111234) Corrected Overflow with iCount hv chunninn dalo tvpe to long
Dim IngCount as Long

2.3 FORMATTING YOUR CODE

The format of your code should be nested together to best describe the logical flow of your
program.

Standard, tab-based, and nested blocks should be indented four spaces which is the
default tab setting for the Microsoft Visual Basic Editor. (However, this document
uses the default MS Word tab settings - so may be off from the same code in VB)

4

HNF-6445 REV. 0

The header comment should be indented one space from the preceding asterisk. The
comment body under the header should be indented one tab. Comments on a
particular block of code should be indented the same number of tabs as the code
being commented. For example:

.
'* Assumptions:

'* None
'*
'* Purpose:
'* Retums the first occurrence of a specified user in the UserList array.

'* Passed Information:
'*
'*

'*Returns:
'*
'*

'* Created by:
'* John Doe 06/04/98

'* Revisions:

saUserList0: List of users to be searched
sTargetUser: Usemame to search for

'*

The index of the first occurrence of the strTargetUser in the straUserList array.
If target user is not found, return -1.

'*

'*

'*06/04/98 1.0.1 John Doe Originally Written

.
Function iFindUser(saUserList0 As String, sTargetUser As String)As Integer
Dim il as Integer ' Loop counter.
Dim bFoundas Boolean ' Target found flag.

iFindUser = -1
il = 0
'Start While Loop
While iI <= Ubound(saUserList) and Not blnFound

'Nested If Statement
If saUserList(int1) = sTargetUser Then

bFound = True
iFindUser = iI

End If
Wend
End Function

5

HNF-6445 REV. 0

2.3.1 Grouping Constants

Variables and defined constants should be grouped by function rather than split into isolated
areas or special files. Visual BasicTM generic constants should be grouped in a single module to
separate them from application-specific declarations.

2.3.2 & and + Operators

Use the & operator when connecting strings and the + operator when working with numerical
values, Using the + operator to concatenate may cause problems when operating on two
variants. For example:

vntVurl = "10.01"
vntVar2 = I 1
vntResult = vnt Vurl + vnt Vur2
vntResult = vntVurl & vntVur2

'vntResult = 21.01
'vntResult = 10.0111

2.3.3 Creating Strings for MsgBox, InputBox, and
SQL Queries

When creating a long string, use the underscore line-continuation character to create multiple
lines of code so that you can read or debug the string easily. This technique is particularly useful
when displaying a message box (MsgBox) or input box (InputBox) or when creating an SQL
string. For example:

Dim sMsg As String
sMsg = "This is a paragraph that will he 'I --

& "in a message hox. The text is" - -
& 'I hroken inro several lines of code" ~ -
& 'I in the source code, muking it easier" -
& "for the programmer Io read and debug. I'

MsgBox sMsg

Dim sQRYAs String
sQRY= 'SELECT * ' I - - - -

& '' FROM Titles" - -
& ' I WHERE [Year Published] 1988"

TitlesQry.SQL = sQRY

6

HNF-6445 REV. 0

2.4 NAMING

When naming any variable, constant, stored procedure, table, or field, the programmer must use
common sense and select a name that applies to the object being written. No slang or colorful
naming unique to that programmer will be accepted. The naming should try to reflect the scope
of information being written. For example:

‘Declare Variables
Dim iRecCount as Integer ‘Record Count
Dim recEmpRecordset as Recordset ‘Employee Recordset
Dim bExitFlug us Boolean ‘Exit Flug

2.5 ERROR HANDLING

All trappable errors need to be handled within an error handling section of code. The use of any
“On Error Resume Next” method of error handling is only acceptable in simple procedures,
where extensive error handling would not be helpful in solving the problem.

Where applicable make the label for the error handling method by using the follow suffix
‘‘ - EM:”, such as:

Sub EmployeeName
On Error goto EmployeeNume - EH.

Exit Sub
EmployeeNume-EH:
‘Handle Error
End Sub

‘Progrum

3.0 VERSION NUMBERS

Version numbers used for released software will follow the format, X.X.X (Major.
Minor.Revision). Version 1 .x.x will be the initial release of the software. During development,
we will follow the above format, but add additional numbers, X.X.X(x)
(Major.Minor.Revision(Change Control Number)). The change control number will be used
only for re-marking corrections or enhancements tracked in a change control system. Numerous
bugs may be corrected to create a 1.2.5 revision, and to locate the exact fix, the tracking number
is used.

Visual Basic (6.0) will automatically increment the revision number if that option is set at the
project level. A new revision number is assigned automatically with every successful compile of
the program. When a series of revisions is approved for release to the customer, the minor
version (or major version) will be manually incremented, and the revision manually reset to zero.

7

HNF-6445 REV. 0

4.0 VISUAL BASICTM

This section covers the specific guidelines used with Visual BasicTM

4.1 THE STANDARD

MicrosoftB has set the basic standards for writing with their Visual BasicTM development
environment. These guidelines will be followed on this project, with some slight modifications.

4.1.1 Visual BasicTM Coding Conventions

All objects will be named using the proper prefix. This naming will make it easy to identify each
object in the code. The list of prefixes below covers most of the major objects in Visual BasicTM.

Suggested Prefixes for Controls

Control Type
~~~ ~ ~ ~~~~~~~~~~~~ ~ . 

3 D  Panel 
Animated button 
Check box 
Combo box, drop-down list box 
Command button 
Common dialog 

~~ . . . .  . . .. . ~ . ~ ~ .  .................. ~~~ ~ 

..... ....... ~ ~~ ~ ~~ ~ ~~~~ ~ ~~~~~ . . .  ~ 

. . . . 

Communications 
Control (used within procedures when the specific type 
is unknown) 
Data control 

Data-bound combo box 
Data-bound grid 

. ... . . . .~ .~ .... ~ 

.. _ _ _ ~ ~  ~ . .. . . - 

~~~ ~~~ ~~ ~ ~ ~ ~ ~ 

Data-bound list box
Directory list box
Drive list box
File list box
Form

~.~ ~ . ~

Frame
Gauge
Graph
Grid

Prefix I Example 1 - --.

Pnl 1 PnlGroup
ani ~ AniMailBox
chk I ChkReadOnlv

fra 1 FraLanguage
gau i GauStatus
.~

ma , GraRevenue
grd 1 GrdPrices

8

HNF-6445 REV. 0

ImgIcon
KeyCaps
L bl HelpMessage
LinVertical
LstPolicyCodes
MpmSentMessage
MpsSession
MciVideo
MdiNote

~ ~~ -

~ ~_

-

Control Type

Horizontal scroll bar

I Prefix Example 1
I hsb

Menu , mnu
MS Flex grid
MS Tab
OLE (ActiveX)

mst
ole (actx)

Pen BEdit
Pen Hedit

Control Type
~~

bed
hed

HsbVolume I

MnuFileOuen I
MsgClients
MstFirst

__.- _- ~

BedFirstName
HedSignature I

~ ink ~ InkMap
PicVGA ~ pic

.
Pen ink
Picture
Picture clip ~ clp ~ ClpToolbar

~

~~ ~ ,

Report
Shape

Vertical scroll bar
Slider

vsb
sld

VsbRate
SldScale

I . ImageList 11s IlsAllIcons
TreeView tre TreOrganization

9

HNF-6445 REV. 0

4.1.2 Data Access Object Naming

The following prefixes cover Data Access Objects (DAO).

Database object Prefix

~

j Container
! Database ~ db

~ dbe DBEngine
Document ~ doc

. . .

~ con
- ~ ~~ ~~~~~~~ ~~~ ~ ~ ~ ~~~~

1 . L

~ _ _ _ _ _

pp . ..

Field ~ fld

~ grp
Index idx

~ p ~ ~ . ~ ~ ~ ~ ...

p-~

.

L
j(iroap ' ' 1 Parameter j P"n

~ qry 1 QueryDef
Recordset j rec

~ re1 Relation
TableDef 1 tdef

~ wsp

. .-

~ ~ ~ ~~~~~~~~ ~ ~~ ~ ~ ~~ ~ ~ ~~~~ ~~ ~~ ~~~~~~~~~~~ ~~~~~~

i __-.

Lppppp~_p
i usr

. ~. ,. ~ ~~~~~~~~~~~~~~~~~~~~ ~ _~

K
... L

Example

ConReports
DbAccounts
DbeJet
DocSalesReport
FldAddress

~__p~~pp__

GrpFinance

PrmJobCode
QrySalesByRegion
RecForecast

~_pp__ ,

__
TdefCustomers
UsrNew
WspMine

~~~~ .......................... 

Some examples: 
Dim dbOSSB As Daiabase 
Dim recEmp As Recordsei, sSQLSimi As String 
Const dbReadOnly = 4 
'Open database. 
Sei dbBiblio = OpenDaiahase("OSSP.MDB'~ 

'Sei texi for ihe SQL statement. 
sSQLStmi = 'SELECT * FROMEmployees WHERE Lasi _ Name = "Doe" 
' Creuie ihe new Recordset objeci. 
Sei recEmp = db. OpenRecordsei(sSQLSimt, dhReadOnly) 

Sei conslant. 

10 



HNF-6445 REV. 0 

4.1.3 Suggested Prefixes for Menus 

When generating menus, use the following naming conventions for the specific controls. Note 
that each menu control prefix is extended beyond the "mnu" label by adding an additional prefix 
for each level. The ending name for each menu should detail the action being performed. The 
following table provides the following: 

Menu Caption Sequence Menu Handler Name 

File Save 
Edit Copy 
Edit Find 
Help Contents 

MnuFileSave 
MnuEditCopytoClipboard 
MnuEditFind 
MnuHelpContents 

When this naming convention is used, all members of a particular menu group are listed next to 
each other in Visual Basic'sTM Properties window. In addition, the menu control names clearly 
document the menu items to which they are attached. 

4.1.4 

For controls not listed above or third party controls, a standard prefix should be created that is 
different than any already set in place for other controls. Make the prefix two or more characters 
which are consistent with the specific control's functionality and a prefix that provides a clear 
understanding. 

Note: For any controls that a new prefix is created, please inform the technical lead to have this 
document updated. 

Choosing Prefixes for Other Controls 

4.1.5 Constant and Variable Naming 

In addition to objects, constants and variables also require well-formed naming conventions. 
This section lists the recommended conventions for constants and variables supported by Visual 
Basic.TM It also discusses the issues of identifying data type and scope. 

Variables should always be defined with the smallest scope possible. Global (Public) variables 
can create enormously complex state machines and make the logic of an application extremely 
difficult to understand. Global variables also make the reuse and maintenance of your code 
&more difficult. 

11 



HNF-6445 REV. 0 

Procedure-level 

I Module-level 

Variables in Visual BasicTM can have the following scope: 

‘Private’ in procedure, sub, or 
function 
‘Private’ in the declarations section 

scope 1 Declaration Visible In 

The procedure in which it is 
declared 
Every procedure in the form 
or code module 
Everywhere in the application 

~~ . 

4.1.6 Variable Scope Prefixes 

To separate a scope prefix from the normal variable prefix, a scope prefix will be followed with 
an underscore character. 

The use of variables in applications can become extensive, and to identify properly the scope of 
each variable, the following prefixes are used. 

Scope 

Public or Global 
~~ ~~~ 

Module-level 
Local 

The use of these prefixes does not declare the variables scope; it just describes how this variable 
was declared in the application. This is extremely useful and prevents developers from having to 
“track down” the scope of these variables. 

Note: The Visual BasicTM syntax checker will not catch any inconsistent use of prefixes. Such 
as declaring a public-level variable that begin with a “M” or a “G’ 

4.1.7 

In most cases, the location where a variable is declared gives that variable scope: The exception 
applies to public (global) variables. When declaring a public variable, this should be done 
always in the declaration section in a single module, grouped by function. Give that module a 
meaningful name that indicates its purpose, such as modPublic.bas. Global variables should be 
uscd only when there is no other convenient way to share data between forms or modules. 

Proper Location to Declare Variables 

12 



HNF-6445 REV. 0 

4.1.8 Variables 

It is important that every project require “Option Explicit” which enforces the declaration of 
ALL variables in the project. This saves programming effort and avoids any problems caused by 
typos (e.g., saUserNameTmp vs. sUserNameTmp vs. sUserNameTemp). To activate either go to 
the Editor tab of the Options dialog, check the Require Variable Declaration option or use the 
“Option Explicit” statement in your project. By doing this, Visual BasicTM will require the 
declaration of all variables. 

4.1.9 Variable Data Types 

Use the following prefixes to indicate a va..-_.- I ,  

Data type 

Boolean 
Byte 
Collection object 
Currency 
Date (Time) 

’ Double 
Error 

’ Integer 
Long 
Object 
Single 
String 

~~~ 

-
-
~ ~ . . . ~ ~ ~.. ...

. .~~
~ User-defined type
. . . .

Variant

ata type.

cur
d
Dbl dblTolerance ~

U

vnt
udtEmployee

, vntCheckSum

13

HNF-6445 REV. 0

Also it is allowable and sometimes easier to use character specific data types. Note that not all
data types have a character declaration. For those you must follow, use the following suftix
naming:

~ Datatype ~ Suffix ! ! Example

Currency i @
Double I #

, Revenue@
Tolerance#

4.1.10 Arrays

To indicate an array, append a lowercase "a" after the normal variable prefix,

Example:
Dim saName() as String
Dim fasalary0 as Single

'Array of names
'Array of salary values

4.1.11 Constants

The body of constant names should be mixed case with capitals initiating each word. For
constant naming, follow the same rules as variables, but add a C.

For example:
MC - intUserLisiMax

GC-strNewLine 'New Line character

cstrName

' M m entry limit for User list
'(Module level constaint, integer value.local io module)

'(string, global io application)

4.1.12 Descriptive Variable and Procedure Names

The body of a variable or procedure name should use mixed case and should be as long as
necessary to describe its purpose. In addition, function names should begin with a verb, such as
InitNameArray or CloseDialog. For frequently used or long terms, standard abbreviations arc
recommended to help keep name lengths reasonable. In general, variable names greater than
32 characters can be difficult to read on VGA displays. When using abbreviations, make sure
these are consistent throughout the entire application. Randomly switching between Cnt and
Count within a project will lead to unnecessary confusion.

14

HNF-6445 REV. 0

4.1.13 User-Defined Types

User-defined types (UDT) should be given a three-character prefix starting with the letter “u”
This makes the UDT easy to identify and locate. For example: “uemp” could be used as the
prefix for a user-defined employee type.

4.1.14 Passed Variables

By default, Visual BasicTM passes all variables by Reference (which means the original data
changes when changes arc made inside the procedure) Whenever a variable is to be passed to a
procedure by Value (so the original data is unchanged despite what happens in the procedure)
that variable must be declared to be BYVAL in the procedure being called.

An example.

‘Function passing by Value variable to UpduleMjIAge procedure
Sub SetAge 0
‘Dim locul Variables
Dim intMyAge us inleger

‘Call Procedure to update my age
Cull UpdateMyAge(intMyAge)
IfintMyAge<lX Then

End If
‘Condirionul Processing Code Goes Here.

End Sub

Sub UpduteMyAge (By Vu1 intMyAge)
‘Set age to refirenced variable
G intMyAge = intMyAge
End Sub

4.2 NAMING OBJECT FILES

Some objects in Visual BasicTM require the developer to save them to a file, (e.g., forms,
modules and class modules). The guidelines below outline the naming of these objects and the
name of the related file being saved.

4.2.1 Modules

When naming modules in Visual BasicTM, use the prefix mod-, (e.g., modMain). When saving
this file to the project, use the same naming, (e.g., modMain.bas).

4.2.2 Class Modules

When naming class modules in Visual BasicTM, use the prefix CIS, (e& &Main). When saving
these files to the project, use the same naming (e.g., clsmain.bas).

15

HNF-6445 REV. 0

4.2.3 Forms

When naming forms in Visual BasicTM, use the prefix frm as noted above. When saving the form
files to the project, use the same prefix, (e.g., frmMain.frm).

4.2.4 Mdi Forms

When naming midi forms in Visual BasicTM, use the prefix mdi as noted above. When saving
mdi form files to a project, use the same prefix, (e.g., mdiMain.frm).

5.0 GENERAL DATABASES AND MICROSOFT SQL SERVERTM

This section will cover some specific guidelines related to Microsoft’s SQL ServerTM or basic
database design.

5.1 DATABASE DESIGN

The database design should follow a basic set of rules. When naming tables, fields, views,
queries, stored procedures, etc. the programmer needs to avoid the use of special characters (not
including underscores ‘-’), and keep the naming of the objects descriptive.

5.1.1 Tables

The two sections below will cover the guidelines for naming tables. Keep the table names inline
with the data being stored.

5.1.1.1 Permanent Tables. Permanent tables have no prefixes.

Naming Convention: TableName
Example: Users

5.1.1.2 Temporary Tables. Temporary tables use the prefix tmp.

Naming Convention: tmpTableName
Example: tmpSummary Stats

For SQL ServerTM temporary tables, make sure the table name is preceded with a #. The SQL
ServerTM will automatically drop the table upon termination of the connectiodsessiodstored
procedure. To remain consistent, keep the tmp prefix as follows:

Naming Convention: #tmpTableName
Example: #tmpSummaryStats

16

HNF-6445 REV. 0

5.1.2 Fields

Fields represent specific data in a table. The guidelines below outline some simple practices to
follow when naming these items. When naming fields, use the same name for the same field in
different tables.

5.1.2.1 Naming. When naming a field, use a descriptor that best outlines the data being stored.
Use a name that relates to what is being stored in the field, (e.g., First-Name, Last-Name).

5.1.2.2 Field ID’S.
field name should end with a suffix of ID, (e.g., Social-SecurityID, AccountID, EmployeeID).

When naming any field that is a unique ID or an index for a table, that

5.1.3 Stored Procedures

When writing stored procedures, follow the same general rules above as they apply. In addition,
the file name of the stored procedure should start with a stp-, then the name of the procedure,
followed by the suffix .prc when saving to a file as follows.

Naming Convention: stp-StoredProcedureName.prc
Example: stp-CreateTempTable.prc

5.1.3.1 Additional Header Information. Apply header information from Section 2.1 above,
but also include file name, procedure type, target tables and created objects as follows.

* File Name:
* Procedure type: Update
* Target Tables: History, Users
* Created: None

stpProcedure . spc

5.1.4 Rules

Any SQL ServerTM rule needs to use the prefix rl as follows.

Naming Convention: rl-Table-Column
Example: rl-HistoyDate

5.1.5 Triggers

Any SQL ServerTM trigger needs to use the prefix tg. The name of the trigger, followed by a
suffix detailing the type of trigger written.

Trigger Suffix’s:
dl: Delete Trigger

up: Update Trigger
in: Insert Trigger

Naming Convention: tg-Name-XX
Example: tg-History-up

17

HNF-6445 REV. 0

5.1.6 Views

Any SQL ServerTM view needs to use the prefix vw as follows.

Naming Convention: vw Tablel-Table2 or vw-Description
Example: vw-History-Current -

6.0 REFERENCES

Microsoft, VB 5.0 On-line Books: Visual Basic Coding Convenlions, Microso$ Corprulion.

	2.1.3 Purpose
	2.1.4 Created By and Date
	2.4 NAMING
	ERROR HANDLING
	3.0 VERSION NUMHb.RS
	4.0 VISUAL BASICTM
	4.1 THE S'I'ANI>AKI>
	Visual BasicTM Coding Conventions
	Variable Scope Prefixes
	Proper Location to Declare Variables
	4.1.10 Arrays
	4.1.11 Constants
	4.1.12 Descriptive Variable and Procedure Names

	NAMING OBJECT FILES
	4.2.1 Modules
	4.2.2 Class Modules
	4.2.3 Forins

