L

h
J

] AT
JUL 26 2000 21 NGINEERING DATA TRANSMITTAL e
[At [S et 290U
JIESO 14 /05592 /#T 70
2. To: (Receiving Organization) 3. From: (Originating Organization) 4. Related EDT No.:
SNFP Operatiocons Support LMSI Software Development & Int. N/A
- - - - - 7. Purchase Order No.:
5. Proj./Prog./Dept./Div. 6. Design Authority/Design Agent/Cog. Engr.:
MAC-IT T. G. Ibsen/M. J. Winkelman N/A_
9. Equip./Component No.:
8. Originator Remarks:
N/A
For approval and release 10. System/Bldg./Facility:
2261 Stevens
12. Major Assm. Dwg. No -
11. Receiver Remarks: 11A. Design Baseline Document? O Yes @ No N/A . - —
13. Permit/Permit Application No.:
None
N/A
14. Regquired Response Date:
N/A
15. DATA TRANSMITTED {F) (G) (H) ()
o (C) Sheet |(D) Rev Approval| Reason O"tgl_ Rege
Hem {B) Document/Drawing No. No { ho *| (E) Title or Description of Data Transmitted Be5|g- for Trans- Sla of Diero
No. : : nator mittat stsign siﬁgn-
1 HNF-6445 0 Software Development Q 1 1 1
Guidelines for Visual
Basic and SQL Server
16. KEY

Approval Designator (F)

Reason for Transmittal (G)

Disposition (H) & {I)

E, S, Q, DOR N/A pproval 4. Review Approved 4. Reviewed no/comment
(See WHC-CM-3-5, ease 5. Post-Review) 2 Approved w/comment 5. Reviewed w/comment
Sec. 12.7) 3 Informatlon 6. Dist. {(Receipt Acknow. Required) 3. Disapproved w/comment 6. Receipt acknowledged
17 SIGNATURE/DISTRIBUTION
: {See Approval Designator for required signatures)
C) | - ps H i
€a- | pbig {J) Name (K) Signature (L) Date (M} MSIN ea- Dis {J) Name (K) Signature (L) Date (M) MSIN
son P P -
Design Autharity 3 | 6 |c. D. lucas o= e wo
Design Agent 1 1 M. J. Winkelman y
1 1 Cog. Eng. T, G. Ibsen 7 ‘7) @lm (f/,? J\/nﬂ 3 6 K. R. Morris / 7 J/
. R e A W
1 1 |Cog.Mgr. K. J. wllleps\)\(_m@,\‘_ 629fec | 3 6 | L. L. Blehm .- _;Mf(//_ﬁ__ C/S50/o2
1|1 |ea p. p. scotrt \A], M] 3 SNF Project File X3-85
e 7
Safety ! 3 Central Files Bi-07
Env. 3 DOE Reading Room H2-51
18. 19, 20. 21. DOE APPROVAL (if required)
Ctrl No.
V. ?{\W Cpfray O Approved
Signature of EDT Date Authorized Representative Date | Design Author Date O Approved wicomments
Originator for Receiving Organization Cognizant Ma)
() Disapproved wicomments

BD-7400-172-2 (10/97)

BU- 7RU-T 721

CORRESPONDENCE DISTRIBUTION COVERSHEET

Aut

=2
g

a]
T. G. Ibsen
R. . South
K. R. Stafford
M.

Subject:

J. Winkelman

Addressee

Correspondence No.

HNF-6445, Rev. 0

SOFTWARE DEVELOPMENT GUIDELINES FOR VISUAL BASIC AND SQL

SERVER
DISTRIBUTION
Approval Date Name Location wiatt
Correspondence Control A3-01 X
Central Files B1-07 X
DOE-RL Reading Room H2-53 X
L. L. Blehm H8-60 X
T. G. Ibsen H8-41 X
C. D. Lucas X3-74 X
K. R. Mormis X3-74 X
D. D. Scott HZ-43 X
R. J. South H8-41 X
K. R. Stafford HB-41 X
K. J. Willers HS8-41 X
M. J. Winkelman H3-41 X
SNF Project File X3-85 X

A-GDOT-5388 (02/98)

HNF-6445
Revision Rev O

Software Development
Guidelines for Visual Basic
and SQL Server

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Project Hanford Management Contractor for the
U.S. Department of Energy under Contract DE-AC06-96RL13200

Fluor Hanford
P.Q. Box 1000
Richland, Washington

Approved for public release; further dissemination unlimited

HNF-6445
Revision Rev 0
EDT 629502

Software Development Guidelines for
Visual Basic and SQL Server

Document Type: EPRO Division: SNF
T.G. Ibsen

Lockheed Martin Services, Inc.

R. J. South
K. R. Stafford
M. J. Winkelman

Lockheed Martin Services, Inc.

Date Published

June 2000

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Project Hanford Management Contractor for the
U.S. Department of Energy under Contract DE-AC06-96RL13200

Fluor Hanford
P.O. Box 1000

Richland, Washington

HANFORD

RELEASE

Release Approval Date Release Stamp

Approved for public release; further dissemination unlimited

SOFTWARE DISCLAIMER

This material was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor the United States Department of
Energy, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.

This report has been reproduced from the best available copy.
Available in paper copy and microfiche.

Printed in the United States of America

Total Pages: 27 &N

HNF-6445 REV 0

SOFTWARE DEVELOPMENT GUIDELINES
for VISUAL BASIC AND SQL SERVER

Last Update
June 2000

HNF-6445 REV 0

This page intentionally left blank.

1

HNF-6445 REV 0

et

=N

<

CONTENTS

INTRODUGCTION Lot e e e e e e 1
PURPOSE e et e e et e e e e e e s ra e e e e e e e e ae s e e e bans 1

S OPE . et e e e b ——tereseie b aetoresa e a et e e neennaes 1
NERAL GUIDELINES (it e ee et ee e a 1
FUNCTIONAL OVERVIEW COMMENT (HEADER) ...oovvvvviviivieveeee e 1

2.1.1 Functional Overview Comment (Header) .o e 2

2.1.2 Passed INfOImMatION.cocooiiriiiereies e i e e e e e ese s e e e s eemm e en e e eneanes 2

B I TN LV o L0 L E PO TR TR 2

2.1.4 Created BY and Dateoeeveeerieiii ettt st 2

2. 1.5 REVISIOIS tooiviiie ittt ieee st ee s es e st e at ot st a sttt ettt et e e e e e e e e e 2

2. 1.6 EXAMPLE oo bbb oot b o b bttt et et eee e s 3

2.2 COMMENTS .ot e e ae e e e e e s et antaeetaseseesrabaessessesiareneeeeine 3
2.2.1 RevIiSIOn REMATKS covruiiie it ab e s a s e e rrsbaease e e e e 4

2.3 FORMATTING YOUR CODE ..ottt ee et es e 4
2.3.1 Grouping CONSIANLS .ooveiveei et eeee e re s e te s s iessiesetereiesstes ses saatmsaareeeenns 6

2.3.2 & AN F O PCIALOIS et tueruieetieitieeieiee e e e e ees s b babbarbas b o b b e b ab b abaaseaeabeesaeseerenen 6

2.3.3 Creating Strings for MsgBox, [nputBox, and SQL Queriesccc........ 6
NAMIING oo ettt e e e 7
ERROR HANDLING ©.oovi ittt ee e e at e e e e s s ae et aeasasessnansseessineans 7
VERSION NUMBERS ...ttt e e 7
VI S U AL B A S I M e ettt ee e s et ee e s s ib s aeesasssean s ababan s eeasesassanasanassasneneosoas 8
THE STANDARI ..ottt et ee e e e e et r e e e s e asa b ae s asesssnaeeasns 8

4.1.1 Visual Basic™ Coding CONVENLONSuuvveieieioiiiniiieieieieesieioairisieses e 8

4.1.2 Data Access ObJect NAMINE ..oovvviviiviiiiiiiiiee e eieesievsiiisieeesersstessssisstin e 10

4.1.3 Suggested PrefiXxes for MENUS vt 11

4.1.4 Choosing Prefixes for Other Controls.....ooooove oo 11

4.1.5 Constant and Variable NAMUNQccccoveverevriesretiessssesrsrnserssessreesseses 1t

4.1.6 Variable Scope PrefiXeS ittt e ceb b e e 12

4.1.7 Proper Location to Declare Variables.....ooooviveieiviiieiecieee e 12

e I T Vi 1] 1 O S 13

4.1.9 Variable Data TYPES .ooooiiioiniiiiiiieiiiie ettt ettt it ab e 13

A L L ATV S oo 14

G L1 TT CONSEANES ittt it e e e e e e e ee e 14

4.1.12 Descriptive Variable and Procedure Namesccocvvvvivieiveviriveeeceerninennens 14

4.1.13 User-Defined TyPES oiieeeiceireee i ieetetee et e et ee e e e e s ebaar e ee e s esnaaaneeaes 15

4.1.14 Passcd Variables oot e st b aranan e s 15
NAMING OBIECT FILES ...ttt tsrir s ee s s eiabaes e 15

B2 1 MOGUICS oottt reee e s e s e s ee e e e ene e 15

4.2.2 Class MoOdUIES ... e s a e 15

3 OIIII S i e aes 16

111

N
o]

HNF-6445 REV 0

S Y, (4 C LT 5 1 1 <YV OO PSPPSRt 16
GENERAIL DATABASES AND MICROSOFT SQI SERVER™ i, 16
5.1 DATABASE DESIGN .ottt e et reab i s e s v st ae e eanseaeeneeeaaeneesrsranes 16

T I R 11 = S r OSSP OUOT RS 16

S0 FHEEAS eoroeeeees oo et ee et e e e e e ettt e e e e en et e e e s et e e e e e e n e re e e e e e s eannsree e 17

S 1.3 Stored Procedures oo crireieereeeiererreereresasserasseaamnnnntnnmeraneranenereransrsnars 17

S04 RUIES oottt ee ettt et e eerer e e et e et et e e e nan e e e e e e are s 17

S.1.5 TEIEEEES aoveeeeeeeeeeie e et ee e e ee e ertvees e s e e aeasassist e e e e eenatae et esesesrarebenas 17

G L0 VWS oot et btteataeaaaeaeas et r e btetbyebbuenennrnbnes 18
REFERENCES .ot eoeietteteeeeeeteeeeeeeett et e e et eeeeeaesssanasaee e e s rasaaessasbbbabaeeesasamababaneaasaen s nnrens 18

iv

ADO
DAO
MSSQL
RDO
SQOL
UDT
VB

HNF-6445 REV 0

TERMS

Active Data Objects

Data Access Objects

Microsoft SQL Server™

Remote Data Objects

Structured query language

User-defined type

Visual Basic™ development environment

Major
Version

Minor
Version

Revisions

Stored
Procedure

Tracking
Number

Trigger

upDT

HNF-6445 REV 0

DEFINITIONS

Major versions change the scope and functionality of the system being
developed. Default major version in Visual Basic™ is 1.x.x.

Minor versions are changes that add enhancements to existing functionality, or
correct extensive problems in the system. Default minor version in Visual Basic™
is 0.x.1.x. A new software release to the customer will require a minor version
change.

Revisions are corrections of bugs found during testing, development and use.
Default revision in Visual Basic™ is 0.x.x.1.

Stored procedures are sets of logical statements (a program) that is stored within a
database. These may be executed from within the database by specific events or
on a specific schedule, or on demand from another source, such as a Visual

Basic™ program.

A number assigned to a Change Control for tracking a specified
problem or enhancement.

A trigger is a stored procedure that is executed from an event within the database.

User-defined type contains one or more element of any data type specified by the
developer.

vi

HNF-6445 REV. 0
1.0 INTRODUCTION

Development Guidelines are programming directions that focus not on the logic of the program
but on its physical structure and appearance. These directions make the code easier to read,
understand, and maintain. These guidelines are put in place to create a consistent set of
conventions to follow that will standardize the development process. With these guidelines in
place the readability and understanding others have when reviewing the code is greatly
enhanced. Use these guidelines as a general rule when writing any set of logical statements.

1.1 PURPOSE

Development Guidelines are put into place in an effort to standardize the structure and style of
the development process. They are NOT intended to limit or channel the developer’s own
creativity and flexibility.

1.2 SCOPE

These guidelines will cover general development syntax, organization and documentation. The
general information covers the high level areas of development, no matter what the environment.
This guide will detail specific Visual Basic' guidelines, following the same standard naming
conventions set by Microsoft®, with some minor additions. The guideline will finish with
conventions specific to a Database or Microsoft’s SQL Server® specific environment.

2.0 GENERAL GUIDELINES
This section covers the generic guidelines that apply to most logical programming methods.

2.1 FUNCTIONAL OVERVIEW COMMENT
(HEADER)

All procedures, functions, subroutines, and instruction sets will be preceded with a header
summarizing code being written. The information detailed below is the basic structure required.
Other information may be included in the header that is not covered in this document. These
added items are left to the discretion of each programmer, but the following core pieces of
information must be included.

1 Visual Basic is a trademark of Microsoft Corporation, Redmond, Washington.
2 Microsofl is a registered trademark of Microsoft Corporation, Redmond, Washington.
3 SQL. Server is a trademark of Microsoft Corporation, Redmond, Washington.

]

HNF-6445 REV. 0

2.1.1 Functional Overview Comment (Header)

Each heading will list out any assumptions being made in the procedure. This list will show any
information that is not obvious to the programmer when reviewing this section of the code.
These assumptions are most likely objects such as an open file, database variable, control, global
constant, etc. that are set outside of this procedure.

2.1.2 Passed Information

Each header will list any passed information and the format of that information. Such as
“sTableName — name of a database table” or “sLastName ~ Last Name of an employee”. By
addressing each passed piece of information, the developer reviewing your code, knows the
intent of that data structure.

2.1.3 Purpose

The heading will contain a brief description of the basic functionality being performed. An
example would be as follows:

“Purpose: This function generates a recordset of data based on the fields passed.”

This information is important when trying to determine what is being done in the routine.
Developers can generate many different solutions for the same result and this brief description
provides the person reviewing the code a basic idea of what is being accomplished. In the
purpose statement describe WHAT is being done, do not detail HOW the process is
accomplished,

2.1.4 Created By and Date
Following the purpose, there should be the name of the developer who created the procedure and
the date. (e.g., “Created by: John Doe April 7, 20007).

2.1.5 Revisions

After the “Created By” information in the header, there should be a listing of revisions made to
this procedure. The revision line should include the date, version, developers name and
description of the revision. The most current revision should go at the top of the list. Such as:

06/04/98 1.0.1 Jane Doe - Corrected overflow on iCount variable, by changing it to a long
integer IngCount.
06/03/98 1.0.0 John Doe - Originally Written

HNF-6445 REV. 0

When tracking numbers are being used for problems or enhancements, follow the revision
number with the tracking number as follows:

06/04/98 1.0.1(1234) Jane Doe - Corrected overflow on iCount variable, by changing it

2.1.6

2.2

to a long integer IngCount

Example
€ o ok 3 ok ok g e o ke o sk sk o o o a8 ok ok ok ok o ok e o s sk o ok ok o oK sl ok ok o ok st ok ok 3k ok ok ok ok ok o o o ok e ok ok ok ok ok ok ok ok okokok ok s ok sk ek ok ok
¢k

“* Assumptions:

¥ File number being passed already references an open file.
<k

“* Pagssed Information:

* dDate, Date of transaction

¥ iFileNum, File Handle Number for data output

ok

“*Purpose:

% This function uses the variable passed, converts it to a special YYYYMMDD
ok date, and writes the result to an ASCII file.

“%

“*Created by:

ok John Doe 06/04/98

“*Revisions:

¥ 06/04/98 1.0.0 John Doe Originally written

o
ke sk e e o o S e e s o sk s o o ok ok sk o sk ok o o sk o ok ok e sk sk okl koK ok ok ofe ok ok oF ok ok ok ok o ok ek ok sk sk of ok ok ok sk ok sk ok ok ok ok ok ok ok o ok

COMMENTS

Comments must be written throughout the application. These comments are designed to give
general direction and explanation of what is being accomplished in that particular section of the
code. An example would be the underlined text below:

' Display the hourglass mouse pointer.
Screen. MousePointer = vbHourglass

HNF-6445 REV. 0

There is no hard and fast rule on adding comments, but generally the more explanation the better.
Try to write the comments in general terms to provide the individual. who is reading your code,
an “introduction” to the next set of instructions. In addition to introducing your code, any further
description should be placed before the line of code or at the end of the line; for example, the
following underlined text:

‘Open Employee File
Open sFileName for output as iFileNum
Or
Open sFileName for output as iFileNum ‘Open Employee File

Keep in mind that the purpose of comments is to make the code more understandable, and more
readable. When the code readability begins to degrade because of excessive comments, the
comments become significantly less useful. Where possible, summarize.

2.2.1 Revision Remarks

When remarking a revision, note the change in the header, but also put the revision number in a
remark preceding the correction, such as the underlined text below:

'1.0.1 Corrected Overflow with iCount by changine data type to long
Dim IngCount as Long

In some cases a tracking number from a change control system is assigned to the revision being
made. In this case the tracking number should follow the revision number as follows:

‘1.0 1¢(1234) Corrected Overflow with iCount by chaneing data type to long
Dim ingCount as Long

23 FORMATTING YOUR CODE

The format of your code should be nested together to best describe the logical flow of your
program.

o Standard, tab-based, and nested blocks should be indented four spaces which is the
default tab setting for the Microsoft Visual Basic Editor. (However, this document
uses the default MS Word tab settings ~ so may be off from the same code in VB)

HNF-6445 REV. 0

e The header comment should be indented one space from the preceding asterisk. The
comment body under the header should be indented one tab. Comments on a
particular block of code should be indented the same number of tabs as the code
being commented. For example:

© o ok ok ok ok sk o o ok sk ok ok ok ok R ok ok ok sk e o ok ook ok ok ok sk e ok ok ok o ok ok ok ok ok ok ok ok KR R KK

“* Assumptions:

¥ None
%
“* Purpose:
E Returns the first occurrence of a specified user in the UserList array.

-

“* Passed [nformation:

* saUserList(): List of users to be searched.

* sTargetUser: Username to search for

ok

“*Returns:

¥ The index of the first occurrence of the strTargetUser in the straUserList array.
“* If target user is not found, return -1.

3k

“* Created by:
ok John Doe 06/04/98

O
“* Revisions:
‘*06/04/98 1.0.1 John Doe Originally Written
oo o oo sk skt R R R R o K o KK o K o ok ok o o s ok

Function iFindUser(saUserList() As String, sTargetUser As String)As Integer

Dim il as Integer ' Loop counter.
Dim bFoundas Boolean ' Target found flag.
iFindUser = -1

il=0

‘Start While Loop

While il <= Ubound(saUserList) and Not blnFound
‘Nested If Statement
If saUserList(intl) = sTargetUser Then
bFound = True
iFindUser = il
End If
Wend
End Function

HNF-6445 REV. 0

2.3.1 Grouping Constants

Variables and defined constants should be grouped by function rather than split into 1solated
areas or special files. Visual Basic™ generic constants should be grouped in a single module to
separate them from application-specific declarations.

2.3.2 & and + Operators

Use the & operator when connecting strings and the + operator when working with numerical
values. Using the + operator to concatenate may cause problems when operating on two
variants. For example:

vatVarl = "10.01"

vatVar? = 11
vhitResult = vatVarl + vatVar2 utResult = 21.01
vatResult = vatVarl & vatVar?2 'vutResult = 100111

2.3.3 Creating Strings for MsgBox, InputBox, and
SQL Queries

When creating a long string, use the underscore line-continuation character to create multiple
lines of code so that you can read or debug the string easily. This technique is particularly useful
when displaying a message box (MsgBox) or input box (InputBox) or when creating an SQL
string. For example:

Dim sMsg As String
sMsg = "This is a paragraph that will be " —
& "in a message box. The text is" —
& " broken into several lines of code” -
& " in the source code, making it easier”" —
& " for the programmer to read and debug."
MsgBox sMsg

Dim sQRY As String
sQRY = "SELECT *" —

& Y FROM Titles" —

& " WHERE [Year Published] > 1988"
TitlesQry.SQL = sQRY

HNF-6445 REV. 0

2.4 NAMING

When naming any variable, constant, stored procedure, table, or field, the programmer must use
common sense and select a name that applies to the object being written. No slang or colorful
naming unique to that programmer will be accepted. The naming should try to reflect the scope
of information being written. For example:

‘Declare Variables

Dim iRecCount as Integer ‘Record Count
Dim recEmpRecordset as Recordset 'Employee Recordset
Dim bExitFlag as Boolean ‘Exit Flag

25 ERROR HANDLING

All trappable errors need to be handled within an error handling section of code. The use of any
“On Error Resume Next” method of error handling is only acceptable in simple procedures,
where extensive error handling would not be helpful in solving the problem.

Where applicable make the label for the error handling method by using the follow suffix
*“ EH:”, such as:

Sub EmployeeName
On Error goto EmployeeName EH:
‘Program
Exit Sub
EmployeeName EH:
‘Handle Error
End Sub

3.0 VERSION NUMBERS

Version numbers used for released software will follow the format, X.X. X (Major.
Minor.Revision). Version 1.x.x will be the initial release of the software. During development,
we will follow the above format, but add additional numbers, X.X.X(x)
(Major.Minor.Revision(Change Control Number)). The change control number will be used
only for re-marking corrections or enhancements tracked in a change control system. Numerous
bugs may be corrected to create a 1.2.5 revision, and to locate the exact fix, the tracking number
is used.

Visual Basic (6.0) will automatically increment the revision number if that option is set at the
project level. A new revision number is assigned automatically with every successful compile of
the program. When a series of revisions is approved for release to the customer, the minor
version (or major version) will be manually incremented, and the revision manually reset to zero.

HNF-6445 REV. 0

4.0

VISUAL BASIC™

This section covers the specific guidelines used with Visual Basic™.

4.1 THE STANDARD

Microsoft® has set the basic standards for writing with their Visual Basic™ development
environment. These guidelines will be followed on this project, with some slight modifications.

4.1.1 Visual Basic™ Coding Conventions

All objects will be named using the proper prefix. This naming will make it easy to identify each
object in the code. The list of prefixes below covers most of the major objects in Visual Basic™.

Suggested Prefixes for Controls

Control Type Prefix Example

| 3D Panel " 1 pnl PnlGroup

" Animated button lani | AniMailBox

 Checkbox chk | ChkReadOnly
Combéug&;ldrop-down list box cbo CboEnglish
Command button “emd CmdExit

' Common dialog . dig | DigFileOpen
Communications com | ComFax
Control (used within procedures when the specific tyﬁé ctr CtrCurrent
is unknown)

| Datacontrol dat | DatBiblio

| Data-bound combo box) dbcbo Dbcbol.anguage
Data-bound grid dbgrd D'B?g"rdQueryResult
Data-bound list box dblst bblstJobType
Directo&' list box dir DirSource
Drive list box drv | ﬁ'fi}Target
File list box fil FilSource
Form frm FrmEntry
Frame fra FralLanguage
Gauge gau m GauStatus

Graph gra GraRevenue

Grid grd GrdPrices

HNF-6445 REV. 0

Control Type

Prefix

" Horizontal scroll bar

hsb

BT et

Image

img

; Irﬁ g['cron'

Key status

key

Label

Ibl

Line

lin

List box

Ist

| LstPolicyCodes |

MAPI message

MCI

mpm
mps
MciVideo

mci

Example

LblHélp'Messagem
LinVertical

MpmSentMessage |
MpsSession

MDLehid form T

mdi

MdiNote

Menu

mnu

MnuFileOpen

MS Flex grid

msg

MsgClients

MS Tab

mst

' --M'st'First

OLE(ActweX) S

ole (actx)

i OléWorksheet

(actxWorksheet)

Outline

out

OutOrgChart

Pen BEdit
Pen Hedit

bed

" hed

BedFirstName
HedSignature

Control Type

Prefix

Example

Pen ink

ink

InkMap

Picture

pic

PicVGA

Picture clip

clp

ClpToolbar

Report

rpt

ptQtrlEarnings

Shape

shp

ShpCircle

Spin

spn

SpnPages

Text box

txt

TxtLastName

Timer

tmr

TmrAlarm

UpDown

upd

UpdDirection

Vertical scroll bar

vsbh

VsbRate

Shider

sld

. SldScale

ImageList

ils

llsAlllcons

TreeView

tre

TreOrganization

HNF-6445 REV. 0

Control Type Prefix Example
TabStrip N tab TabOptions
StatusBar sta StaDateTime
ListView - e vaHeadmgf, _
ProgressBar pre UPrgloadFile
RichTextBox o RifReport S

4.1.2 Data Access Object Naming

The following prefixes cover Data Access Objects (DAO).

Database object Prefix Example
Container con o ConReports
Database db DbAccounts
DBEngine dbe Dbelet
Document doc DocSalesReport
Field - fd FldAddress
Group grp GrpFinance
Index idx IdxAge
Parameter mprm PrmJobCode
QueryDef qry erSalesByRegioﬁWM
Recordset rec RecForecast
Relation rel RelEmployeeDept

TableDef tdef TdefCustomers
User usr UsrNew
Workspace wSsp WspMine
Some examples:
Dim dbOSSB As Database
Dim recEmp As Recordset, sSQLStmt As String
Const dbReadOnly = 4 ' Set constant.

'‘Open database.
Set dbBiblio = OpenDatabase("OSSP.MDB")
'Set text for the SOL statement.
sSQOLStmt = "SELECT * FROM Employees WHERE Last Name = "Doe"”
"Create the new Recordset object.
Set recEmp = db.OpenRecordset{sSQLStmt, dbReadOnly)

10

HNF-6445 REV. 0

4.1.3 Suggested Prefixes for Menus

When generating menus, use the following naming conventions for the specific controls. Note
that each menu control prefix is extended beyond the "mnu" label by adding an additional prefix
for each level. The ending name for each menu should detail the action being performed. The
following table provides the following:

Menu Caption Sequence Menu Handler Name
File Save MnuFileSave

Edit Copy MnuEditCopytoClipboard
Edit Find MnuEditFind

Help Contents MnuHelpContents

When this naming convention is used, all members of a particular menu group are listed next to
each other in Visual Basic’s™ Properties window. In addition, the menu control names clearly
document the menu items to which they are attached.

4.1.4 Choosing Prefixes for Other Controls

For controls not listed above or third party controls, a standard prefix should be created that is
different than any already set in place for other controls. Make the prefix two or more characters
which are consistent with the specific control’s functionality and a prefix that provides a clear
understanding.

Note: For any controls that a new prefix is created, please inform the technical lead to have this
document updated.

4.1.5 Constant and Variable Naming

In addition to objects, constants and variables also require well-formed naming conventions.
This section lists the recommended conventions for constants and variables supported by Visual
Basic.™ [t also discusses the issues of identifying data type and scope.

Variables should always be defined with the smallest scope possible. Global (Public) variables
can create enormously complex state machines and make the logic of an application extremely
difficult to understand. Global variables also make the reuse and maintenance of your code
mueh-more difficult.

11

HNF-6445 REV. 0

Varnables in Visual Basic™ can have the following scope:

Scope Declaration Visible In

Procedure-level ‘Private’ in procedure, sub, or _ The procedure in which it is
function i declared
Module-level ‘Private’ in the declarations section Every procedure in the form
of a form or code module (.frm, .bas) | or code module

Global ‘Public’ in the declarations section of | Everywhere in the application
a code module (.bas)

4.1.6 Variable Scope Prefixes

To separate a scope prefix from the normal variable prefix, a scope prefix will be followed with
an underscore character.

The use of variables in applications can become extensive, and to identify properly the scope of
each variable, the following prefixes are used.

: Scope Prefix Example

' Public or Global G G_sUserName

' Module-level M M_bInCalcInProgress

' Local None | dblVelocity

The use of these prefixes does not declare the variables scope; it just describes how this variable
was declared in the application. This 1s extremely useful and prevents developers from having to
“track down” the scope of these variables.

Note: The Visual Basic™ syntax checker will not catch any inconsistent use of prefixes. Such
as declaring a public-level variable that begin with a “M" or a “G”

4.1.7 Proper Location to Declare Variables

In most cases, the location where a variable is declared gives that variable scope: The exception
applies to public (global) variables. When declaring a public variable, this should be done
always in the declaration section in a single module, grouped by function. Give that module a
meaningful name that indicates its purpose, such as modPublic.bas. Global variables should be
used only when there is no other convenient way to share data between forms or modules.

12

HNF-6445 REV. 0

4.1.8 Variables

[t is important that every project require “Option Explicit” which enforces the declaration of
ALL variables in the project. This saves programming effort and avoids any problems caused by
typos (e.g., saUserNameTmp vs. sUserNameTmp vs. sUserNameTemp). To activate either go to
the Editor tab of the Options dialog, check the Require Variable Declaration option or use the
“Option Explicit” statement in your project. By doing this, Visual Basic™ will require the
declaration of all variables.

4.1.9 Variable Data Types

Use the following prefixes to indicate a variable's data type.

Data type Prefix Example

Boolean bln bFound

7 Byte byt bytRasterData

Collection object col colWidgets
“ Currency cur curRevenue
Date (Time) d dStart

‘Double Dbl dblTolerance
Error | Err errOrderNum
Integer 1 intQuantity

Long Ing lngDistancem
Object obj objCurrent

- Single f fAvé}éige -
String s sFName
User-defined type u udtEmployee
Variant vnt vntCheckSum

13

HNE-6445 REV. 0

Also it is allowable and sometimes easter to use character specific data types. Note that not all
data types have a character declaration. For those you must follow, use the following suftix
naming;:

Data type Suffix Example

Currency @ Revenue(@

Double # Tolerance#
Integer % Quantity%
Long R) Dot
Smg]e e Average!
§tr1ng I 5 B e pa
ET v o T

4.1.10 Arrays
To indicate an array, append a lowercase “a” after the normal variable prefix.

Example:
Dim saName() as String ‘Array of names
Dim faSalary() as Single ‘Array of salary values

4.1.11 Constants

The body of constant names should be mixed case with capitals initiating each word. For
constant naming, follow the same rules as variables, but add a C.

For example:
MC intUserListMax '‘Max entry limit for User list
'(Module level constaint,integer value local to module)
GC strNewLine '‘New Line character
'(string, global to application)
cstrName

4.1.12 Descriptive Variable and Procedure Names

The body of a variable or procedure name should use mixed case and should be as long as
necessary to describe its purpose. In addition, function names should begin with a verb, such as
InitNameArray or CloseDialog. For frequently used or long terms, standard abbreviations are
recommended to help keep name lengths reasonable. In general, variable names greater than
32 characters can be difficult to read on VGA displays. When using abbreviations, make sure
these are consistent throughout the entire application. Randomly switching between Cnt and
Count within a project will lead to unnecessary confusion.

14

HNF-6445 REV. 0

4.1.13 User-Defined Types

User-defined types (UDT) should be given a three-character prefix starting with the letter “u".
This makes the UDT easy to identify and locate. For example: “uemp” could be used as the
prefix for a user-defined employee type.

4.1.14 Passed Variables

By default, Visual Basic™ passes all variables by Reference (which means the original data
changes when changes are made inside the procedure) Whenever a variable is to be passed to a
procedure by Value (so the original data is unchanged despite what happens in the procedure)
that variable must be declared to be BY VAL in the procedure being called.

An example:

‘Function passing by Value variable to Update MyAge procedure
Sub SetAge ()
‘Dim local Variables
Dim intMyAge as integer
‘Call Procedure to update my age
Call UpdateMyAge(intMyAge)
If intMyAge<18 Then
‘Conditional Processing Code Goes Here.
End If
End Sub
Sub UpdateMyAge (By Val intMyAge)
‘Set age to referenced variable
G _intMyAge = intMyAge
End Sub

4.2 NAMING OBJECT FILES
Some objects in Visual Basic™ require the developer to save them to a file, (e.g., forms,

modules and class modules). The guidelines below outline the naming of these objects and the
name of the related file being saved.

4.2.1 Modules

When naming modules in Visual Basic™, use the prefix mod_, (e.g., modMain). When saving
this file to the project, use the same naming, (e.g., modMain.bas).

4,2.2 Class Modules

When naming class modules in Visual Basic™, use the prefix cls, (e.g., cIsMain). When saving
these files to the project, use the same naming (e.g., cismain.bas).

15

HNF-6445 REV. 0

4.2.3 Forms

When naming forms in Visual Basic™, use the prefix frm as noted above. When saving the form
files to the project, use the same prefix, (e.g., frmMain.frm).

4.2.4 MdiForms

When naming midi forms in Visual Basic™, use the prefix mdi as noted above. When saving
mdi form files to a project, use the same prefix, (e.g., mdiMain.frm),

5.0 GENERAL DATABASES AND MICROSOFT SQL SERVER™

This section will cover some specific guidelines related to Microsoft’s SQL Server™ or basic
database design.

5.1 DATABASE DESIGN

The database design should follow a basic set of rules. When naming tables, fields, views,
queries, stored procedures, etc. the programmer needs to avoid the use of special characters (not
including underscores ©_7), and keep the naming of the objects descriptive.

5.1.1 Tables

The two sections below will cover the guidelines for naming tables. Keep the table names inline
with the data being stored.

5.1.1.1 Permanent Tables. Permanent tables have no prefixes.

Naming Convention: TableName
Example: Users

5.1.1.2 Temporary Tables. Temporary tables use the prefix tmp.

Naming Convention: tmpTableName
Example: tmpSummaryStats

For SQL Server™ temporary tables, make sure the table name is preceded with a #. The SQL
Server™ will automatically drop the table upon termination of the connection/session/stored
procedure. To remain consistent, keep the tmp prefix as follows:

Naming Convention: #tmpTableName
Example: #tmpSummaryStats

16

HNF-6445 REV. 0

5.1.2 Fields

Fields represent specific data in a table. The guidelines below outline some simple practices to
follow when naming these items. When naming fields, use the same name for the same field in
different tables.

5.1.2.1 Naming. When naming a field, use a descriptor that best outlines the data being stored.
Use a name that relates to what is being stored in the field, (e.g., First_Name, Last_Name).

5.1.2.2 Field ID’s. When naming any field that is a unique ID or an index for a table, that
field name should end with a suffix of ID, (e.g., Social_SecurityID, AccountlD, EmployeelD).
5.1.3 Stored Procedures

When writing stored procedures, follow the same general rules above as they apply. In addition,
the file name of the stored procedure should start with a stp_, then the name of the procedure,
followed by the suffix .prc when saving to a file as follows.

Naming Convention: stp_StoredProcedureName.prec
Example: stp_CreateTempTable.prc

5.1.3.1 Additional Header Information. Apply header information from Section 2.1 above,
but also include file name, procedure type, target tables and created objects as follows.

* File Name: stp_Procedure.spc
* Procedure type: Update
* Target Tables: History, Users
* Created: None
5.1.4 Rules

Any SQL Server™ rule needs to use the prefix rl as follows.

Naming Convention: rl_Table_Column
Example: rt_History Date

5.1.5 Triggers

Any SQL Server™ trigger needs to use the prefix tg. The name of the trigger, followed by a
suffix detailing the type of trigger written.

Trigger Suffix’s:
dl: Delete Trigger
up: Update Trigger
in; Insert Trigger
Naming Convention: tg Name XX
Example: tg_History_up

17

HNF-6445 REV. 0

5.1.6 Views
Any SQL Server™ view needs to use the prefix vw as follows.

Naming Convention: vw_Tablel Table2 or vw_Description
Example: vw_History_Current

6.0 REFERENCES

Microsoft, VR 5.0 On-line Books: Visual Basic Coding Conventions, Microsoft Corporation.

18

	2.1.3 Purpose
	2.1.4 Created By and Date
	2.4 NAMING
	ERROR HANDLING
	3.0 VERSION NUMHb.RS
	4.0 VISUAL BASICTM
	4.1 THE S'I'ANI>AKI>
	Visual BasicTM Coding Conventions
	Variable Scope Prefixes
	Proper Location to Declare Variables
	4.1.10 Arrays
	4.1.11 Constants
	4.1.12 Descriptive Variable and Procedure Names

	NAMING OBJECT FILES
	4.2.1 Modules
	4.2.2 Class Modules
	4.2.3 Forins

