lonF9503/7-- |
P\Nbl mes| CP-~Bb36Y

ON THE AUTOMATIC DIFFERENTIATION OF COMPUTER
PROGRAMS

CHRISTIAN H. BISCHOF

Mathematics and Computer Science Division
Argonne National Laboratory

9700 S. Cass Avenue, Argonne, IL 60439
bischof@mcs.anl.gov

Abstract. Automatic differentiation (AD) is a methodology for developing
sensitivity-enhanced versions of arbitrary computer programs. In this pa-
per, we provide some background information on AD and address some
frequently asked questions. We introduce the ADIFOR and ADIC tools
for the automatic differentiation of Fortran 77 and ANSI-C programs, re-
spectively, and give an example of applying ADIFOR in the context of the
optimization of multibody systems.

1. Introduction

Assume that we have a code for the computation of a function fand f:z €
R™ — y € R™, and we wish to compute the derivatives of y with respect
to . We call z the independent variable and y the dependent variable.

In computing derivatives, we should keep the following issues in mind:

Reliability: The computed derivatives should ideally be accurate to ma-
chine precision.

Computational Cost: In many applications, the computation of deriva-
tives is the dominant computational burden. Hence, the amount of
memory and runtime required for the derivative code should be mini-
mized.

Scalability: Whatever method we choose should be applicable to a 1-line

formula as well as a 50,000-line code.

The submitted manuscript has been authored
by a contractor of the U.S. Government |
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for | '
U. S. Government purposes.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

2 CHRISTIAN H. BISCHOF

Human Effort: Derivatives are a means to an end. Hence a user should
not spend much time in computing derivatives, in particular in situa-
tions where computer models are bound to change frequently.

Handcoding, divided-difference approximations, and symbolic methods
traditionally have been used for the computation of derivatives. However,
these methods fall short with respect to the previously mentioned criteria.
The main drawbacks of divided-difference approximations are their numer-
ical unpredictability and their computational cost. In contrast, both the
handcoding and symbolic approaches suffer from a lack of scalability and
require considerable human effort.

In this paper, we discuss another approach for computing derivatives,
based on automatic differentiation (AD). AD techniques rely on the fact
that every function, no matter how complicated, is executed on a com-
puter as a (potentially very long) sequence of elementary operations such
as additions, multiplications, and elementary functions such as sin and cos
(see, for example, [10, 16]. By applying the chain rule of derivative calculus
over and over again to the composition of those elementary operations, one
can compute, in a completely mechanical fashion, derivatives of f that are
correct up to machine precision {12].

In the next section, we give a brief overview of automatic differentia-
tion. Section 3 introduces the ADIFOR and ADIC AD tools for Fortran 77
and ANSI-C, respectively, and Section 4 answers some commonly asked
questions. In Section 5, we report on the application of ADIFOR in the
context of the optimization of a multibody system. Lastly, we summarize
our results.

2. Automatic Differentiation

Traditionally, two approaches to automatic differentiation have been de-
veloped: the so-called forward and reverse modes. These modes are distin-
guished by how the chain rule is used to propagate derivatives through the
computation. We briefly summarize the main points about these two ap-
proaches; a more detailed description can be found in [4] and the references
therein.

The forward mode propagates derivatives of intermediate variables with
respect to the independent variables and follows the control flow of the
original program. By exploiting the linearity of differentiation, the forward
mode allows us to compute arbitrary linear combinations J - § of columns

AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS 3

dy(1 ... 8yQ1
dz(1 dz(n

3yim) ... 2 yiﬂl)
8z(1) 8 z{n)

of the Jacobian

(1)

For an n X p matrix S, the effort required is roughly O(p) times the runtime
and memory of the original program. In particular, when S is a vector s,
we compute the directional derivative J x s = limp_g ﬂLh*:M“—’l

In contrast, the reverse mode of automatic differentiation propagates
derivatives of the final result with respect to an intermediate quantity, so-
called adjoint quantities. To propagate adjoints, one must be able to reverse
the flow of the program, and remember or recompute any intermediate value
that nonlinearly affects the final result. In particular, one must remember
the intermediate values taken by variables that are overwritten, and keep
a log of the branch directions taken. Also, changing a “+” to a “*” in the
computer code can have profound ramifications for the complexity of the
generated reverse mode code, while it does not have much effect for the
forward mode.

For a ¢ X m matrix W, the reverse mode allows us to compute the row
linear combination W -J with O(gq) times as many floating-point operations
as required for the evaluation of f. In a straightforward implementation,
however, the storage requirements may be proportional to the number of
floating-point operations required for the evaluation of f, as a result of
the tracing required to make the program “reversible.” When W is a row
vector w, we compute the derivative 2 wT+J) The reverse mode is particu-
larly attractive for the computation of long gradients, as its floating-point
complexity does not depend on the number of independent variables.

In either case, automatic differentiation produces code that computes
derivatives accurate to machine precision [12]. The techniques of automatic
differentiation are directly applicable to computer programs of arbitrary
length containing branches, loops, and subroutines.

3. Automatic Differentiation Tools

We are involved in the development of the ADIFOR (jointly with Rice
University) and ADIC tools, which provide automatic differentiation func-
tionality for Fortran 77 and ANSI-C, respectively, The ADIFOR 2.0 system
is mature, and reference [4] lists 25 references reporting on the use of ADI-
FOR in various application domains, on codes of up to 60,000 lines. ADIC,
in contrast, is in the prototype phase, but has been successfully applied to
codes of up to 10,000 lines. ADIFOR and ADIC employ a source transfor-
mation approach directly rewriting the source code. This approach requires

CHRISTIAN H. BISCHOF

181 = x(1) * x(2)

r$2 = 181 * x(3) Reverse Mode for computing _g‘T
1$3 = $2 * x(4) 5 Ixl1
r$4 = x(5) * x(4) X y .
r$5 = r$4 * x(3) \ r$3bu=m, i=1,...,4
r$1bar = 85 * x(2) xi1
r$2bar = 85 * x(1) oy
r$3bar = r$4 * r$1 r$3 = 3x(5)
r$4bar = x(5) * 1$2 J x(85)
do g%i$ = 1, g8p$
g38y(g3i$) = r81bar * g8x(g3i$,1) Forward Mode:
+ tgg:u N ggxgsgig,’gg Assembhng Vy
+ rodbar T gox(gdiy,
+ r$4bar * g¥x(g$i$,4) from é?&y and Vz(i),
+ r$3 * g8x(g%i8, 5) i=1,.
enddo
y =133 * x(5) } Computing function value

Figure 1. Sample Segment of an ADIFOR-generated Code

considerable compiler infrastructure, and ADIFOR and ADIC employ the
ParaScope [8] and Sage++ [7] compiler environments developed at Rice
and Indiana University, respectively. For references to other automatic dif-
ferentiation tools, see [4].

ADIFOR and ADIC employ a hybrid forward/reverse-mode approach
to generating derivatives. For each assignment statement, they use the re-
verse mode to generate code that computes the partial derivatives of the
result with respect to the variables on the right-hand side and then employ
the forward mode to propagate overall derivatives. For example, ADIFOR
transforms the Fortran statement

¥ = x(1) * x(2) * x(3) * x(8) + x(5)

into the code segment shown in Figure 1.! Note that none of the common
subexpressions z(%) * (j) are recomputed in the reverse-mode section for
%. The variable gp denotes the number of (directional) derivatives
being computed. For example, if gép$ = 5, and g$x(1:5,1:5) is the 5 x

5 identity matrix (i.e., g$x(i j) = g%(;%) then upon execution of these

statements, g$y(1:5) equals . On the other hand, assume that we wished
only to compute derivatives w1th respect to a scalar parameter s, so gép$

= 1, and, on entry to this code segment, g$x(1, i) ?.glzl i =1,...,5.
Then the do-loop in Figure 1 implicitly computes 3¢ ds —E‘ff w1thout ever
forming % explicitly.

»The dollar sign indicates ADIFOR-generated variables. ADIFOR 2.0 could use any
other character instead, taking care not to generate duplicate names.

AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS 5

ADIFOR and ADIC provide the directional derivative computation pos-
sibilities associated with the forward mode of automatic differentiation. We
also mention that both ADIFOR and ADIC can transparently exploit spar-
sity in derivative computations by replacing the dense vector loop in Fig-
ure 1 with a call to a SparsLinC routine [4, 5], which, as a byproduct of
the computation, will automatically compute the sparsity pattern of large
sparse Jacobians.

None of these AD tools require any knowledge of the application domain.
Hence, unlike handcoding or symbolically assisted approaches, automatic
differentiation enables derivatives to be updated easily when the original
code changes. Information on these tools as well as application highlights
and reports can be found on the world-wide web at

http://www.mcs.anl.gov/autodiff/index.html.

4. Frequently Asked Questions

Given the mathematical underpinnngs of the concept of derivatives, the
“ignorance” with which one can apply an AD tool usually provokes some
of the questions that we try briefly to address here.

Question: How do you know that the code represents a globally differen-
tiable function?

Answer: We don’t. AD computes the derivative defined by the sequence
of assignment statements executed in the course of a function evalua-
tion. Hence, for a branch (if-statement), which potentially introduces
a nondifferentiability, AD will compute a one-sided directional deriva-
tive. This problem is further discussed in [9].

Question: How do you deal with intrinsics?

Answer: Some intrinsics functions, such as abs() and sqrt(), are not
differentiable in all points of their domain. At these points, ADIFOR
invokes the ADIntrinsics system [4] to provide a (user customizable)
default value, and prints a warning message. The ADIC prototype uses
a similar, although less refined, mechanism.

Question: What happens when you differentiate through iterative pro-
cesses?

Answer: It depends. AD generates a new iteration, and it is not clear
a priori whether the new iteration will converge and what it will con-
verge to, although empirically, AD leads to the desired result. However,
derivative convergence may lag, or derivatives may diverge. For some
commonly used approaches for solving nonlinear systems of equations,
this issue is discussed in [11]. This problem clearly requires more re-

6 CHRISTIAN H. BISCHOF

search, but the emergence of robust AD tools has made it possible to
tackle this problem for sophisticated numerical methods.

5. An Example: The Iltis All-Terrain Vehicle

The dynamic and kinetic behavior of vehicles can be modeled through
multibody systems. Optimization techniques can then be employed to im-
prove the design of such a vehicle with respect to comfort, ride, and han-
dling. For an overview of this field as well as the methods employed, see [1].

In general, the motion of a multibody system can be described as follows:

. y ’D(t, Y,z P) } ; (2)
M(t,y,p) z +k(t,y,2,p) = 4q(t,9,2,p)

where Y= %? is the derivative with respect to the time ¢, M is the mass
matrix, k are the coriolis forces, ¢ the external forces, y generalized position
coordinates, z generalized velocity coordinates, and p the design parame-
ters.

An efficient method for optimizing a multibody system is the adjoint
variable method developed by Bestle and Eberhard [2], which requires

O M, M, 3 M, aLkm-'Qm) a(km—Qm) a km‘Qm
the derivatives =Fpa, <zma, Sfma, CITa , and —5—5;:—)-

In [13], HiuBermann applied the first version of ADIFOR [3] to several
multibody systems and compared it with symbolic approaches and with
approximations of derivatives via divided differences.

However, application of ADIFOR 1.0 to the so-called Itis problem, a
benchmark problem modeling an all-terrain vehicle [15], proved to be some-
what laborious. ADIFOR 1.0 was unable to process the subroutine of several
thousand lines describing the equations of motion that had been generated
with the NEWEUL [14] package. The problem had to be split by hand, a
somewhat laborious and error-prone process.

With the new ADIFOR 2.0 system, however, one can now process the
code as is. Differentiating with respect to 20 parameters, one obtains the
results shown in Table 1. Computations were performed on a Silicon Graph-
ics Indigo with 32 MB RAM and a 100 Mhz MIPS R4000 microproces-
sor. Here “Iltis” refers to the original code, and “Iitis.AD” refers to the
code generated by ADIFOR 2.0. We see that the memory required by the
ADIFOR-generated code increases by a factor of 6.7, whereas runtime in-
creases by a factor 20, the same cost increase one would also experience
with divided-difference approximations. In most cases, however, ADIFOR-
generated code outperforms one-sided divided-difference approximations,
typically by a factor 1.5 to 3, and by a factor of 7.4 in the best case so
far [6]. Code expansion is considerable because of the somewhat unusual

AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS 7

TABLE 1. Results of Applying ADIFOR 2.0
to the Iltis Problem

Titis.AD Iltis Ratio

Memory (MB) 352 052 67
Runtime (sec) 42.6 213 20.0
Lines of code 71,887 11,172 6.4

structure of the NEWEUL-generated code. The number of lines of code
increases by a factor of 6.4, and the resulting length of the .AD versions
of the NEWEUL-generated files prevented compilation on an HP worksta-
tion. In our experience, code expansion by a factor 2 to 3 is typical. The
generated code accurately computes the desired derivatives, whereas the
study by HauBerman shows that this is not necessarily the case for divided
difference approximations.

6. Conclusions

This paper gave a brief introduction into automatic differentiation. We
reviewed the forward and reverse mode of automatic differentiation, an-
swered some commonly asked questions, and introduced the ADIFOR and
ADIC automatic differentiation tools. We also presented results on apply-
ing ADIFOR 2.0 to the Iltis multibody benchmark problem, which showed
that reliable and efficient derivatives can be computed by using AD with
minimal recourse to laborious and error-prone hand coding.

Acknowledgments

We thank Peter Eberhard for providing us with the Itis code and for per-
forming the benchmark runs. We also thank Peter Eberhard and Dieter
Bestle for introducing us to multibody system optimization. Lastly, we
thank Ralf Knésel for processing the IItis code with ADIFOR 2.0.

This work was supported by the Office of Scientific Computing, U.S.
Department of Energy, under Contract W-31-109-Eng-38; by the National
Aerospace Agency under Purchase Order 1L25935D; and by the National
Science Foundation, through the Center for Research on Parallel Compu-
tation, under Cooperative Agreement No. CCR-9120008.

References

1. Dieter Bestle. Analyse und Optimierung von Mehrkorpersystemen. Springer, Berlin,

10.

11.

12.

13.

14.

15.

16.

CHRISTIAN H. BISCHOF

1994.

Dieter Bestle and Peter Eberhard. Analyzing and optimizing multibody systems.
Mechanical Structures and Machinery, 20(1):67-92, 1992.

Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-
land. ADIFOR: Generating derivative codes from Fortran programs. Scientific
Programming, 1(1):11-29, 1992.

Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. Unpublished
information, Argonne National Laboratory, 1995.

Christian Bischof and Andrew Mauer. Unpublished information, Argonne National
Laboratory, 1995.

Christian Bischof, Greg Whiffen, Christine Shoemaker, Alan Carle, and Aaron
Ross. Application of automatic differentiation to groundwater transport models.
In Alexander Peters et al., editors, Computational Methods in Water Resources X,
pages 173-182. Kluwer Academic Publishers, Dordrehct, 1994.

Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Goutwals, Srinivas
Narayana, Suresh Srinivas, and Beata Winnicka. SAGE++: An object-oriented
toolkit and class library for building Fortran and C++ restructuring tools. In Pro-
ceedings of the Second Annual Object-Oriented Numerics Conference. IEEE, 1994.
D. Callahan, K. Cooper, R. T. Hood, K. Kennedy, and L. M. Torczon. ParaScope:
A parallel programming environment. International Journal of Supercomputer Ap-
plications, 2(4):84-99, December 1988.

Herbert Fischer. Special problems in automatic differentiation. In Andreas
Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithmas:
Theory, Implementation, and Application, pages 43 — 50. SIAM, Philadelphia, Penn,,
1991.

Andreas Griewank. On automatic differentiation. In Mathematical Programming:
Recent Developments and Applications, pages 83-108. Kluwer Academic Publishers,
Amsterdam, 1989.

Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen
Williamson. Derivative convergence of iterative equation solvers. Optimization
Methods and Software, 2:321-355, 1993.

Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by
the Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, pages 126—
135. SIAM, Philadelphia, 1991.

Uli Hauflermann. Automatische Differentiation zur Rekursiven Bestimmung von
Partiellen Ableitungen. STUD-102, Institut B fiir Mechanik, Universitit Stuttgart,
1993.

E. Kreuzer and G. Leister. Programmsystem NEWEUL’90. Technical Report An-
leitung AN-24, Institut B fir Mechanik, Universitat Stuttgart, 1991.

G. Leister and W. Schiehlen. Benchmark-beispiele des DFG-schwerpunktprogramms
dynamic von mehrkdrpersystemen. Technical Report Zwischenbericht ZB-64, Band
2, Institut B far Mechanik, Universitat Stuttgart, 1991.

Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120
of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or uscfulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

