Implementation of MPICH on top of MP_Lite

by

Shoba Selvarajan

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Daniel Berleant (Major Professor)
Ricky Kendall
Srinivas Aluru
Dave Turner

fowa State University
Ames, lowa

2002

Graduate College
lowa State University
This is to certify that the master’s thesis of
Shoba Selvarajan

has met the thesis requirements of lowa State University

Nguud) oo™

Major Professor

For the Major Program

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1. INTRODUCTION TO MESSAGE PASSING

1.1 The Message-Passing Model

1.2 Message Passing Terminologies

1.3 Pros and Cons of the Message-Passing Model
1.3.1 Advantages
1.3.2 Limitations

1.4 Alternatives to the Message-Passing Model
1.4.1 One-sided libraries
142 Global arrays
1.4.3 Threads model

CHAPTER 2. HISTORY OF MPI

2.1 Develepment of the MPI Standard
2.2 Goals of the MPI Forum

2.3 History of MPICH

2.4 Precursor Systems of MPICH

CHAPTER 3. SUMMARY OF MPI AND OTHER IMPLEMENTATIONS
3.1 MPICH

32 LAM/MPI
3.3 MP_Lite

vi

vii

viil

G A R W W LN -

-J

Ww O 0 o~

i1
12
12

3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

Chimp

MPI/PRO

TCGMSG

PVM

Unify

MVICH

Vendor Versions

3.10.1 IBM

3.10.2 HP

3.10.3 Digital

3.104 SaGlI

MPICH ADI Implementations

3.11.1 MPICH for SCl-connected clusters

3.11.2 MPI derived datatypes support in VIRTUS

3.11.3 Porting MPICH ADI on GAMMA with flow control

3.11.4 Design and implementation of MPIl on Puma portals

3.11.5 Multiple devices under MPICH

3.11.6 MPICH on the T3D: A case study of high performance
message passing

MPICH Channel Interface Implementations

3.12.1 Wide-area implementation of the Message Passing Interface

3.12.2 MPICH-PM: Design and implementation of Zero Copy MPI for PM

3.12.3 MPI-StarT: Delivering network performance to numerical applications

3.12.4 MPICH/Madeleine: A true multi-protocol MPI for high

performance networks

CHAPTER 4. PERFORMANCE COMPARISON

CHAPTER 5. INTRODUCTION TO MP_LITE

5.1
5.2

5.3

Overview

MP_Lite Controllers

5.2.1 Synchronous controller

5.2.2 SIGIO interrupt driven controller
Features of MP_Lite

13
13
14
14
15
16
16
16
17
17
17
18
18
18
18
19
19

20
20
20
21
21

22

23

26

26

27

27

28
29

CHAPTER 6. THE ARCHITECTURE OF MPICH

6.1
6.2
6.3
64

6.5

Abstract Device Interface

The Channel Interface

Channel Interface Functions

The Channel Interface Protocols

6.4.1 The Short protocol

6.4.2 The Eager protocol

6.4.3 The Rendezvous protecol

6.44 Threshold values for the MPICH message protocols
6.4.5 Blocking and non-blocking communication
implementing MP_Lite as a MPICH Channel interface Device

CHAPTER 7, PERFORMANCE RESULTS

7.1
7.2
7.3

7.4
75

The Test Environment

NetPIPE

Performance using Gigabit Ethernet

7.3.1 Performance on the PC mini-cluster

7.3.2 Performance on the Alpha mini-cluster

Effect of Eager/Rendezvous Threshold on the PC Cluster
Summary

CHAPTER 8. CONCILUSIONS AND FUTURE WORK NEEDED

APPENDIX. CHANNEL INTERFACE ROUTINES

BIBLIOGRAPHY

30

3
32
33
34
35
35
36
37
37
38

40

40
41
41
41
44
45
46

47

49

56

Figure 1.1.
Figure 4.1.
Figure 4.2.

Figure 4.3.

Figure 5.1.
Figure 6.1.
Figure 6.2.
Figure 6.3.
Figure 6.4,
Figure 7.1.
Figure 7.2.

Figure 7.3.

Figure 7.4.

Figure 7.5.

Figure 7.6.

vi

LIST OF FIGURES

Message passing.

Throughput graph across the Netgear fiber GE cards on the PC cluster.

Throughput graph across the TrendNet copper GE cards on the PC cluster.

Throughput graph across the SysKonnect GE cards on the PC cluster
with jumbo frames.

The structure of MP_Lite.

The structure of MPICH.

The Short protocol.

The Eager protocol,

The Rendezvous protocol.

Throughput on the PC cluster with Netgear fiber GE cards.
Throughput on the PC cluster with TrendNet copper GE cards.
Throughput on the PC cluster with SysKonnect GE cards using
jumbo frames.

Throughput on the Alpha cluster with Netgear fiber GE cards.
Throughput on the Alpha cluster with SysKonnect GE cards using
jumbo frames.

Effect of Eager/Rendezvous threshold on the PC cluster

with Netgear fiber GE cards.

24

24

25
26
30
35
35
36
42

42

43

44

45

46

Table 7.1.

Test-bed

vii

LIST OF TABLES

40

viii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Dave Turner, my supervisor, for
enthusiastically guiding and helping me during the course of this research. He has been a constant
source of motivation, inspiration and knowledge, all along my way.

My special thanks are due to Dr. Berleant, my major advisor, for his continuous support and
guidance throughout my graduate studies.

| gratefully thank Dr. Ricky Kendall and Dr. Srinivas Aluru for serving as my committee
members, and for reviewing my thesis manuscript.

| would like to thank Dr. Bill Gropp, Argonne National Laboratory, for clarifying my doubts
regarding the MPICH implementation. | deeply acknowledge his help and suggestions.

| thank my parents, without whom | would not have completed my graduate studies

successfully. | am forever indebted to their moral support and motivation.

Ts~T a0

ABSTRACT

The goal of this thesis is fo develop a new Channel Interface device for the MPICH
implementation of the MPl (Message Passing Interface) standard using MP_Lite. MP_Lite is a
lightweight message-passing library that is not a full MPl implementation, but offers high
performance. MPICH {Message Passing Interface CHameleon)} is a full implementation of the MP]
standard that has the p4 library as the underlying communication device for TCP/IP networks. By
integrating MP_Lite as a Channel Interface device in MPICH, a parallel programmer can utilize the full
MPI implementation of MPICH as well as the high bandwidth offered by MP_Lite.

There are several layers in the MPICH library where one can tie a new device. The Channel
Interface is the lowest layer that requires very few functions to add a new device. By attaching
MP_Lite to MPICH at the lowest level, the Channel interface, almost all of the performance of the
MP_Lite library can be delivered to the applications using MPICH. MP_Lite can be implemented
either as a blocking or a non-blocking Channel Interface device.

The performance was measured on two separate test clusters, the PC and the Alpha mini-
clusters, having Gigabit Ethernet connections. The PC cluster has fwo 1.8 GHz Pentium 4 PCs and
the Alpha cluster has two 500 MHz Compaq D820 workstations. Different network interface cards like
Netgear, TrendNet and SysKonnect Gigabit Ethernet cards were used for the measurements.

Both the blocking and non-blocking MPICH-MP_Lite Channel Interface devices perform close
to raw TCP, whereas a performance loss of 25-30% is seen in the MPICH-p4 Channel Interface
device for larger messages. The superior performance offered by the MPICH-MP_Lite device
compared to the MPICH-p4 device can be easily seen on the SysKonnect cards using jumbo frames.

The throughput curve also improves considerably by increasing the Eager/Rendezvous threshold.

CHAPTER 1

INTRODUCTION TO MESSAGE PASSING

1.1 The Message-Passing Model

Message passing is one of many parallel-programming paradigms that are used for
parallelizing computational intensive applications. In the message-passing model, the application is
split into a number of programs that operate independently, usually on different processors. The
processors have their private local memories and are linked to one another by means of a
communication network. Each processor executes its own copy of the code and interacts with other
processors by exchanging messages. It is the programmer's responsibility to preserve the underlying
logic that controls the working of the application. The programmer has to partition the data among the

processors and explicitly specify any interaction among them.

Processor A Processor B

Memory Network Memory

Data """/’7’,,/—-? Data

Send (data) Receive (data)

Figure 1.1. Message passing.

The message-passing model can be defined as:

» A setof processes having only local memory.

s Processes communicate by sending and receiving messages.

» Data transfer between processes requires cooperative operations to be performed by

each process (a send operation must have a matching receive).

All message-passing libraries provide a key set of facilities for the application developer:
¢ The ability to create and terminate processes on remote machines.

e The ability to monitor the state of those processes.

+ Routines that enable programs to send messages, or signals, to other programs.

+ Routines to do collective/group communications and synchronization.

1.2 Message Passing Terminologies

Blocking communication

A communication routing is blocking if it returns only after the action is complete. For a send
operation, the routine must block until the data is successfully sent or safely copied so that the buffer
that contained the data is available for reuse. In the case of a receive, the routine must block till the

data is at its final destination so the application can use it.

Non-blocking communication
A non-blocking communication routine returns without waiting for any communications events
to complete (such as copying of message from user memory to systern memory or arrival of the

message). The communication between the two processes may also overlap with computation.

Synchronous communication

In synchronous communications, both the source and the destination nodes are blocking.
The source node has to delay sending the message until the destination node posts a matching
receive, and has started to receive the message. An exchange of a message represents a

synchronization peint between the two processes.,

Asynchronous communication
In asynchronous communications, the source node is non-blocking; it initiates the send and

returns immediately without waiting for the destination node to receive the message. The source and

destination nodes function independently and place no constraints on each other in terms of

completion.

1.3 Pros and Cons of the Message-Passing Model

1.3.1 Advantages

The message-passing model is extensively used in the field of parallel computing because of

the following advantages.

= Universality: It matches the hardware of most of today's parallel supercomputers, cluster
of workstations (separate processors connected by a communication network) and
shared-memory multi-processors,

e Performance: Memory and bandwidth are scalable to the number of processors. The
programmer has more control over the locality of memory accesses. Performance
depends on the programmer’s ability to write efficient parallel code.

e Functionality: It has a full set of functions that offers complete control over data
movement, which helps the programmer to express most of the parallel algorithms.

e Debugging: It is easier to debug than other parallel programming models because the

programmer has explicit access to the memory.

1.3.2 Limitations
Some of the limitations of the message-passing model are presented below.
* Hard to program: The programmer must identify all the paralle! regions in the code and
divide the work efficiently among different processors. The programmer must explicitly
implement a data distribution scheme and all interprocess communication and is also

responsible to resolve data dependencies, and avoid deadlock and race conditions.

+ Significant communication overhead is introduced for small transactions. In order to
minimize overhead and latency, data may be accumulated in large chunks and delivered
before the destination node needs it.

s No portability path from serial systems.

+ Difficult to design modules for reusability.

1.4 Alternatives to the Message-Passing Model

1.4.1 One-sided libraries

In the traditional message-passing model, communication is two-sided; both the source and
destination nodes must co-operate. There are also libraries [1,2] that support one-sided
communication operations such as “gef” and “puf” functions. One-sided communication assumes that
a process can access data on a remote node asynchronously, without explicit cooperation of the
process on the remote node. The latency and overhead costs of the one-sided operations are
comparable to those of the standard send and receive operations.

This model is better than the message-passing model in the sense that no coordination is
required on both sides for each data transfer. However, it is slightly difficult to use since it often
requires the programmer to understand and manage data locality, and to perform manual
handshaking (which is automatic in two-sided communications).

The one-sided communication model is useful when parallel programs need to make
unpredictable references to remote data. It is particularly useful for applications that use dynamic load
balancing and have wide variation in task size.

The SHMEM (Shared Memory Access) library developed by Cray is a one-sided library for
the Cray T3E and SGI Origin systems. The SHMEM calls have significantly lower startup latencies
and higher bandwidths. However, it is not portable to other computer systems. The GPSHMEM

(Generalized Portable SHMEM) library [3] is @ general purpose SHMEM library that attempts to

achieve full portability. It provides the same one-sided interface but is implemented on top of lower

level libraries.

1.4.2 Global arrays

The message-passing programming model is widely used because of its portability. But, in
some applications, coding becormes complex when the programmer tries to maintain a balanced
computation load and avoid redundant computations. The shared-memory programming model
simplifies coding, but it is not portable and often provides littte control over inter-processor data
transfer costs. Global Arrays (GA) [4,5] combines the better features of the message-passing and
shared-memory models, leading to a tradeoff between ease of programming and loss of efficiency.

Global Arrays allows for simple coding and efficient execution for a class of applications that
appears to be fairly common. It provides a portable interface through which each process in a MIMD
{(Multiple Instruction Multiple Data) parallel program can independently, asynchronously, and
efficiently access logical blocks of physically distributed matrices, with no need for explicit cooperation
by other processes. In this respect, it is similar to the shared-memory programming model. However,
the GA model also acknowledges that access to a remote portion of the shared data is slower than to
the local portion. The locality information for the shared data is available and a direct access to the
local portions of shared data is provided. In these respects, it is similar to message passing.

The programmer is free to use both the shared-memory and message-passing paradigms in

the same program, and to take advantage of existing message-passing software libraries.

1.4.3 Threads model

In the threads model, a single process can have multiple flows of control called “threads”. The
threads run concurrently in the context of the process that invoked them, sharing its code, data, open
files, /O channels and all other rescurces, and communicating with each other through global
memory. This requires synchronization constructs like semaphores and locks to ensure that not more

than one thread is accessing the same resource at any time.

There are two different implementations of threads, namely, Pthreads (POSIX threads) and
OpenMP [6,7]. Pthreads is a POSIX.1¢ standard established to control the spawning, execution, and
termination of multiple threads within a single process. It is a system-level standard for controlling
shared-memory. The Pthreads standard is not targeted towards HPC (High Performance Computing)
end-users since there is minimal Fortran support. Even under C, it is difficult fo use for scientific
applications, as it is aimed more at task parallelism than at data parallelism.

OpenMP is a specification for a set of compiler directives, library routines, and environment
variables that can be used to specify shared-memory parallelism in Fortran and C/C++ programs. It is
often implemented as a high level interface to Pthreads. OpenMP provides robust support for loop-
level parallelism by spawning threads of execution for loop iterations, and is also designed to give the
programmer fine control over variable scope, thread scheduling, and thread synchronization.

OpenMP uses the fork-join model of execution. The program begins execution as a single
process, called the master thread of execution. The master thread executes sequentially until the first
parallel region construct is encountered. When it enters a parallel region, i forks a team of threads
(one of them being the master thread). The statements in the program that are enclosed by the
paraliel region construct are then executed in parallel among the various team threads. Upon exiting
the parallel construct, the threads in the team synchronize (join the master) and terminate leaving
only the master thread.

OpenMP is a p'arallei programming model that is typically used for SMP systems. SMP
(Symmetric Multi-processing) systems contain several CPUs in a single computer, each of which has
access to the same set of memory chips, with each working as a general-purpose CPU that can

execute any process in the system.

CHAPTER 2

HISTORY OF MPI

21 Development of the MPI Standard

The initial work on the MPI {(Message Passing Interface) standard [8,9] started in 1992 at Oak
Ridge National Laboratory and at Rice University. It was focused on developing an efficient message-
passing library and application software that could be ported to a wide array of high performance
multi-computers. Several message-passing libraries that were being used at that time did not have a
common syntax, and hence were not portable. To ensure portability and to enhance the features of
the existing libraries, a standard was strongly desired which would provide hardware vendors with a
well-defined set of routines that could be efficiently implemented.

In April 1992, the Workshop on Standards for Message Passing in Distributed Memory
Environment was sponsored by the Center for Research on Parallel Computation (CRPC). At this
workshop, the essential features of the message-passing standard were discussed, and a working
committee called the "MPI Forum” was established to continue the standardization process. In
November 1992, four of the members of the MPI Forum produced a preliminary draft proposal, known
as MPI 1.0, which presented the essential features necessary to the MPI standard. In November
1992, the MPI Forum met again at the Supercomputing conference held in Minneapolis. It formed
subcommittees that would concentrate on different areas of the standard, and also decided to
produce a draft of the MPI standard during the following year. In November 1993, the four attendees
presented the MPI standard draft, and in May 1994 the MPI 1.0 industry standard was finally
released.

MPI 1.0 primarily focused on point-to-point communications; it did not include any collective
communication routines and was not thread-safe. Since then, the MPI standard had undergone
various revisions - 1.1 (June, 1995) and 1.2 (July, 1997}, which corrected errors and minor omissions.

Even though MPI had become a widely accepted standard for message passing, it lacked a number

of features. To address these concerns, the MPI Forum developed the MPI-2 version, which was
released in July 1997. Major topics like dynamic processes, one-side operations, 1/O, C++ language
bindings, collective operations, and threads were covered by the MPI-2 standard.

The design of MPI was strongly influenced by the research work at the IBM T. J. Watson
Research Center, Intel's NX/2, Express, nCUBE's Vertex, p4, and PARMACS. Message-passing
libraries like Zipcode, Chimp, PVM, Chameleon, and PICL also contributed to the development of the
MP} standard. The MPI standardization effort involved about sixty people representing forty different
organizations mainly from the United States and Europe. Most of the major vendors of concurrent

computers, researchers from universities, government laboratories, and industry were also involved.

2.2 Goals of the MP] Forum

The principal goal of the Message Passing Interface is to develop a standard that can be
widely used to write efficient and portable message-passing programs. The following is a complete
list of goals:

+ Design a portable Application Programming Interface (API).

e Allow efficient communication; avoid memory-to-memory copying, allow computation-

communication overlapping and offload to a communication co-processor, if available.

* Allow for implementations that can be used in a heterogeneous environment.

s Allow convenient C and Fortran 77 bindings for the interface.

¢ Assume a reliable communication interface; the user need not cope with communication

failures. Such failures are dealt with by the underlying communication subsystem.

¢ Define an interface that is not too different from current practice.

o Define an interface that can be implemented on many vendors’ platforms, with no

significant changes in the underlying communication and system software.

* The semantics of the interface should be language independent.

e Theinterface should allow multiple threads of execution to exist within a process.

2.3 History of MPICH

At the Supercomputing Conference held in November 1992, when the preliminary draft
proposal for MPI 1.0 was presented, William Gropp and Ewing Lusk volunteered to develop an
immediate implementation of the MPI standard. The goal was to point out any problems in the
spegcification that might arise during implementation and to experiment with new ideas. Gropp and
Lusk, at the Argonne National Laboratory, designed and developed the first version of MPICH (MPI
CHameleon) [10,11,12,13] that implemented the pre-specification within a few days. it was mostly
developed using the existing portable systems p4 and Chameleon. This implementation was
gradually modified to provide increased performance and portability. At the same time it was greatly
expanded fo include all of the MPI specification. It borrowed algorithms for the collective operations,
topologies and attribute management from Zipcode.

When the MPI standard 1.0 was released in May 1994, the MPICH implementation was
complete, portable, fast, and available immediately. With the MP! standard almost stable, MPICH
continued to evolve in several directions. First, the Abstract Device Interface (ADI) [14,15]
architecture was developed and stabilized. The ADI layer provides basic, point-to-point message-
passing services. Second, individual vendors and others took advantage of ADI to develop their own
highly specialized implementations of MPICH. This resulted in extremely efficient implementations of
MPI on a greater variety of machines. Third, the set of tools that form part of the MPICH parallel

programming environment was extended.

2.4 Precursor Systems of MPICH

MPICH was available immediately because it made use of the stable code from existing

systems. Although most of that original code was altered, MPICH still owes some of its design to

those precursor systems:

10

P4, a third-generation parallel programming library that includes both message-passing
and shared-memory components. P4 still remains one of the “Channel interface devices”
on which MPICH can be built,

Chameleon, a high-performance portability package for message passing on parallel
supercomputers. A substantial amount of Chameleon technology is incorporated into
MPICH.

Zipcode, a portable system for writing scalable libraries. Several concepts including
contexts, groups, and communicators of Zipcode were included in the design of the MPI

standard.

11

CHAPTER 3

SUMMARY OF MPI AND OTHER IMPLEMENTATIONS

This chapter presents a brief overview of the various public domain, commercial and vendor
versions of MP| and other implementations [16]. It also discusses some of the ADI and Channel

Interface implementations of MPICH.

3.1 MPICH

MPICH (Message Passing Interface CHameleon) is the most important MP! implementation,
It is a freely available software developed at Argonne National Laboratory and Mississippi State
University. MPICH is the parent of a large number of commercial implementations of MP! including
vendor-supported implementations from Digital, Sun, HP, SGl/Cray, NEC and Fujitsu. Most of the
experimental and research versions of MPl were also based on MPICH.

The design of MPICH was guided by two principles; to maximize the amount of code that can
be shared without compromising performance and to provide a structure whereby MPICH could be
ported to a new platform quickly. Performance and portability were the two main goals in proposing
the architecture of MPICH. The advantages of MPICH include portability, language bindings for C,
Fortran and C++, high performance, heterogeneity and interoperability.

MPICH is highly portable because of its layered design. It has a 4-layered architecture, The
top two layers contain the bindings for the MPI functions. The lowest layer is called the Channel
Interface layer [17] and the one above it is called the ADI (Abstract Device Interface) layer. The bulk
of MPICH code is device independent and is implemented on top of an Abstract Device Interface
(ADI). The ADI interface hides most hardware-specific details, allowing MPICH to be easily ported to
new architectures. The Channel Interface layer just transfers data from the address space of one

process to that of the other.

12

3.2 LAM/MPI

The LAM (Local Area Multicomputer) [18] implementation of MPI is a freely available and
portable implementation that was originally developed at the Ohio Supercomputer Center, and is now
being developed at Indiana University by Dr. Andrew Lumsdaine. LAM existed before MP| and was
adapted to implement the MPI interface. LAM runs on many platforms, including RS8000, Irix, Linux,
HPUX, OSF/1 and Solaris.

LAM provides an infrastructure to turn a network of workstations {possibly heterogeneous)
into a virtual parallel computer. A userlevel daemon running on each node provides process
management, including signal handling and /O management. LAM also provides extensive
monitoring capabilities to support tuning and debugging. The xmpi tool that comes with LAM provides
visualization of message traces and allows inspection of message queues. By defauli, full message
rmonitoring is enabled énd communication goes through the daemens. It is also possible o enable
direct client-to-client cornmunication using TCP sockets or shared-memory for higher performance.

LAM is compliant with MPI 1.1 and also implements dynamic process management routines

from MPI-2.

3.3 MP_Lite

MP_Lite [19,20] is a lightweight message-passing library that implements an efficient subset
of MPI commands. It is mainly a research tool, being developed in Ames Laboratory, to study and
improve the performance of the message-passing layer. It delivers the maximum performance of the
underlying network layer to the applications by avoiding extra buffering and memory-to-memory
copies, and allowing overlapped computation and communication. MP_Lite can run on top of TCP on
workstation clusters, on the SHMEM library on Cray T3E and SG| machines and on VIA module [21].

The user can run MP_Lite under two modes of operations, namely the synchronous and the

SIGIO (interrupt driven) modes. The synchronous mode s a thin layer over the TCP/IP sockets

13

interface. It makes use of the TCP send and receive buffers and avoids buffering at any cost. The
SIGIO mode operates based on interrupts. When the TCP buffers receive or empty data, SIGIO
interrupts are generated. The signal_handling routine services all active socket buffers to maintain
constant message progress. This is a fully robust version with performance almost as good as the

synchronous version.

3.4 Chimp

CHIMP (Common High-level Interface to Message Passing) [22] is a message-passing
system that was implemented by Alasdair Bruce, James (Hamish) Mills, and Gordon Smith at the
Edinburgh Parallel Computing Center (EPCC) between 1991 and 1994, Like LAM, CHIMP started off
as an independent portable message-passing infrastructure and was later adapted te implement MPI.
CHIMP is best known as the basis for the vendor-supplied optimized versions of MPI for the Cray
T3D and T3E. It is portable and can run on many platforms including Solaris, Irix, AlX, OSF/1, and
Meiko. CHIMP does not support Linux and is no longer in active development. It is not widely used,

atleast in the US.

3.5 MPI/PRO

MPI/PRO [23] is commercial software infroduced in April 1998 from MPI Software
Technology, Inc. The company is a spin-off from Mississippi State University and led by Tony
Skjellum. MPI/Pro suppeorts all the 128 functions included in the MPI standard and runs on Linux,
Windows, and Mercury Race Systems.

MPI/Pro has a number of features that proves it to be very efficient and robust for
programming clusters of workstations. MPI/Pro provides multi-device architecture and multi-threaded
design. Using multiple threads allows for independent message processing, asynchronous

synchronization and notification, and a high degree of computation and communication overlapping.

14

Thread safety is assured at the user level. Other important design considerations are to optimize
persistent mode MPI operations and derived datatypes. This allows for exploiting the high abstraction
power of derived data types without loss of performance. Multiple queues are maintained for receive
request to reduce the processing time and to increase the degree of concurrency. Two different

protocols are used to handle short and long messages separately.

3.6 TCGMSG

The TCGMSG (Theoretical Chemistry Group Message-passing toclkit) [24] is a programming
model and interface developed by Robert Harrison et al. of Pacific Northwest National Laboratory. It
is used for writing portable parallel programs using message passing. It supports a wide variety of
UNIX workstations, supercomputers, heterogeneous networks, and true parallel computers such as
the Intel iPSC, Delta and Paragon, SGI Power Challenge, the IBM SP1/2 and Cray T3D.

TCGMSG was mainly designed having chemistry applications in mind, and provides limited
functionality such as point-to-point communication, global operations and a simple load-balancing
facility. It strongly enforces types and does not support wildcards. A message sent with a particular
type must match that of the corresponding receive posted. The processes are connected with
ordered, synchronous channels. Asynchronous communication is only provided on machines that

explicitly support it.

3.7 PVM

PVM (Parallel Virtual Machine) [25] is a portable message-passing system designed fo link
separate host machines of varied architecture to form a “virtual machine” which is a single,
manageable computing resource that can be used for concurrent or parallel computation. PYM was

originally developed in 1989 as a research tool to explore heterogeneous network computing by Oak

15

Ridge National Laboratory (ORNL) but is now available as a public domain software package for free
use.

PVM can be used at several levels. At the highest level, the fransparent mode, tasks are
automatically executed on the most appropriate computer. In the architecture-dependent mode, the
user specifies which type of computer is to run a particular task. in low-level mode, the user may
specify a particular computer to execute a task. In all of these modes, PVM takes care of all message
routing, data conversion, and task scheduling across the network of incompatible computer
architectures.

PVM is comprised of two main components - the PVM daemon process (pvmd3) and the
fibrary interface routines (libpvm3.a, libfpvm3.a, libgpvm3.a). The PVYM daemon is a Unix process that
oversees the operation of user processes within a PVM application and coordinates inter-machine
PVM communications. One PVM daemon runs on each machine. The master daemon is started first,
which spawns all other daemons. User processes communicate with each other through these
daemons. They first talk to their local daemon via the library interface routines. The local dasmon
then sends/receives messages to/from remote host daemons.

Some of the limitations of PVM: the performance often depends on slow networks, low
bandwidth due to lots of buffering, suffers high latency, mostly allows only coarse-grained
applications, difficult to balance the load, recovery from host failure is expensive and sometimes

impossible,

3.8 Unify

Unify [26] is a subset of MPI that was built on top of PVM. It is a dual-AP! (Application
Program Interface) message-passing system that was developed at Mississippi State University. It
allows users to write applications containing only MP! calls, or a mixture of MP! and PVYM calls. The

resulting executable runs in the PVM environment.

16

The intention of developing Unify was to demonstrate the relative ease of implementation of
MPI, and o enable users fo take current PVM applications and slowly migrate toward complete MPI
applications, without having to make the complete conceptual jump from one system to the other.
However, the project was not completed fully, although it did address the difficulty of mapping

identifiers hetween the PVM and MPI domains, which it solved using additional function calls.

39 MVICH

MVICH {27,28] is an MPICH-based implementation of MPI for the Virtual Interface
Architecture (VIA). It provides a high performance MPI for commodity high-speed networks (Gigabit
Ethernet, Giganet, ServerNet I, or Fast Ethernet). VIA is an industry standard interface for System
Area Networks (i.e. networks for clusters) that provides protected, zero-copy user-space inter-process
communication. MVICH implements the MPICH Abstract Device Interface (ADI2) on VIA. MVICH is
being developed at Lawrence Berkeley National Laboratory and is distributed with an open source

license.

3.10 Vendor Versions

3.10.1 IBM

IBM has been a consistently strong supporter of MPI. IBM's implementation of MPI for its SP
systems was one of the first vendor-supperted MP| implementations. MPI has replaced IBM's
proprietary library MPL as the preferred message-passing library on SP systems. The currently
available implementation of MPI (IBM MPI) is rewritten from scratch.

IBM MP! runs on IBM SP systems and AlX workstation clusters. IBM MPI is integrated with
IBM's Parallel Environment (PE) and Parallel Operating Environment (POE), which are layered

software packages that provide the “glue” allowing an SP {or cluster) to function as a single machine.

17

3.10.2 HP

HP provides an implementation of MPI that runs on all current HP hardware. HP MPI was
derived from MPICH, but also was significantly influenced by LAM.

HP MP! uses whatever communication medium it has access to: TCP/IP between hosts,
shared-memory within a host, and a hardware data mover for long messages on Exemplar systems.

HP MPI is compliant with MPI 1.2.

3.10.3 Digital

Digital is a newcomer to the MPI world, having recently released a version for clusters of
Alpha SMP servers connected by Digital's proprietary Memory Channel interconnect. Digital MPI is
quite close to the original MPICH, with special optimizations for communication over local shared-
memory and over the memeory channel.

Digital's implementation of the MPICH AD! uses a lower level communication layer, UMP
(Universal Message Passing), which provides low-level communication functionality over the Memory
Channel and over shared-memory. For long messages, UMP uses a background thread to allow

overlap of communication and computation.

3.10.4 SGI

SGl has three separate MPI implementations for its three types of machines - parallel vector
{(e.g. JBO/CO0O/TI0), Irix (including Origin 2000), and T3E. These implementations all have different
roots and are therefore treated as separate implementations.

SGI/PVP MPI is derived from MPICH. It supports MPI applications within a single PVP
(Parallel Vector Processor, such as the Cray J80, C30 and T90), using shared-memory for
communication, or spanning several PVPs {using TCP for communication).

SGI/T3E MP! is derived from the T3D implementation developed at the Edinburgh Parallel
Computing Center. The T3D version was in turn derived from the Chimp implementation. T3E MPl is

robust, and well integrated with the environment.

18

SGl/Irix MPI is originally derived from MPICH, but has evolved considerably. It has also

incorporated xmpi from LAM. SGI MP! is compliant with MPI 1.2.

311 MPICH ADI Implementations

3.11.1 MPICH for 3Cl-connected clusters
This paper [29] presents the design and implementation of an ADI-2 device with SCI
adaptation for the current MPICH distribution. The implementation of the SCl-specific ADI-2 device
ch_smi is based on the ch_shmem (shared-memory) device that is part of the MPICH distribution.
This implementation is a cost-effective cluster solution because of the extremely low latencies
for small messages and the high maximum bandwidth. The free availability of the source code also
helps to establish SCI connected clusters as a high-performance, solid yet affordable platform for

technical and scientific computing next to the poputar ethernet connected clusters.

3.11.2 MPI derived datatypes support in VIRTUS

The VIRTUal System (VIRTUS) project is focused on providing advanced features for high
performance communication and /O in cluster environments. This paper [30] presents the porting of
MPICH 1.1.x on the Fast Messages (FM) library and the usage of the features of FM to provide
efficient communication for non-contiguous data structures.

The porting concerns two different internal interfaces of MPICH 1.1.x calied channe! and
ADI-2, respectively. The AD!-2 interface offers a rich set of primitives that allow the implementation of
communication support to MPI| derived data types.

These results confirm the effectiveness of FM's interface and implementation in delivering the

raw hardware performance of the communication subsystem to the applications.

19

3.11.3 Porting MPICH ADI on GAMMA with flow control

The Genoca Active Message MAchine (GAMMA) [31] is an experimental prototype of a
lightweight communication system based on the Active Ports paradigm and designed for efficient
implementation over low-cost Fast Ethernet interconnects.

In order to make best use of the GAMMA programming interface while providing an MPI
interface to the user, the original ADI layer was substantially changed atop GAMMA. Only two
protocols were used for message delivery, namely, the Eager and the Rendgzvous protocols.

The GAMMA ADI implementation is two-threaded, allowing for on-the-fly inspection of
expected messages queue and minimal copy on receive. As a side effect of multi-threading
implementation of the ADI level, the porting of MPICH should be thread-safe. Porting the ADI layer to
GAMMA greatly speeds up point-to-point MPI communications, but is not as much a satisfactory

answer for collective calls.

3.11.4 Design and implementation of MPl on Puma portais

The Puma operating system provides a flexible, lightweight, high performance message-
passing environment for massively parallel computers. Message passing in Puma is accomplished
through the use of a portal.

This paper [32] discusses the issues regarding the development of the MPICH on top of
portals. It also describes the design and implementation of both MPI point-to-point and collective

communications, and MPI-2 one-sided communications.

3.11.5 Multiple devices under MPICH

This paper [33] describes an enhanced MPICH architecture. Whereas other MPICH
implementations support only one communication medium for internode communication at a time, the
enhanced MPICH implementation supports different ones too. The basic idea is to introduce a so-
calied multi-device in addition to individual devices, so called subdevices, each of them supporting a

certain communication medium.

20

An “ordinary” ADI-2 device performs only the mapping of a unique neftwork to a flat virtual
structure. In such a case there is only one communication device. Whereas in a heterogenous
network several principles, e.g. global shared-memory (SCI) as well as packet or stream based ones,
are available for increased performance. Hence, the multi-device has to support several devices, and
therefore, an auxiliary interface within multi-device is needed. The performance obtained was nearly

the same as that of a pure ADI-2 device.

3.11.6 MPICH on the T3D: A case study of high performance message passing

This paper [34] describes the design, implementation, and petformance of MPICH to the Cray
T3D massively parallel processing system. The Cray T3D contains up to 2048 processors connected
by a high-speed, 3-D torus communication network. It has a physically distributed shared-memory,
where each processing element (PE) has local memaory that is globally addressable.

Cray's SHared MEMory access library {(SHMEM) for remote memory transfers is used for the
impiementation. This library contains a plethora of functions for point-to-point and collective

communication, synchronization, and cache manipulation.

3.12 MPICH Channel Interface Implementations

3.12.1 Wide-area implementation of the Message Passing Interface

The wide-area environment introcduces challenging problems for the MPI implementor, due to
the heterogeneity of both the underlying physical infrastructure and the software environment at
different sites. This paper [35] describes an MPI implementation that incorporates solutions to these
problems.

The MPICH implementation of MP| was extended to use communication services provided by
the Nexus communication library and authentication, resource allocation, process
creation/management, and information services provided by the |-Soft system and the Globus

metacomputing toolkit.

21

Nexus provides multi-method communication mechanisms that allow multiple communication
methods to be used in a single computation with a uniform interface; |-Soft and Globus provided
standard authentication, resource management, and process management mechanisms.

The result is a system that allows programmers to use simple, standard commands to run
MPI programs in a variety of metacomputing environments (freely combining heterogeneous

workstation and massively parallel resources), while making efficient use of underlying networks.

3.12.2 MPICH-PM: Design and implementation of Zero Copy MPI for PM

MPICH-PM [36] consists of the MPICH implementation of the MPI standard, ported to the
high-performance, communications library PM. This research paper presents the MP! implementation
using a zero-copy message transfer mechanism, called Zero Copy MPI, which was designed and
implemented based on the MPICH “Channel Interface”. The PM communication driver is used as the
low-level communication layer, which supports not only a zero-copy message transfer but also
message-passing mechanisms.

The Zero Copy MPI achieves good performance compared to other zero-copy
implementations. It also supports a multi-user environment where many MPI| applications may run

simultaneously on the same nodes.

3.12.3 MPI-StarT: Delivering network performance to numerical applications

This article [37] describes the development of MPI-StarT, an MPICH “Channel Interface”
implementation for a cluster of SMPs interconnected by the StarT-X cluster interconnect. StarT-X
allows a cluster of PCl-equipped host platforms to communicate with an order-of-magnitude better
performance than a conventional local area network. MPI-StarT implementation is centered around
preserving and delivering the StarT-X communication performance to user applications.

MPI-StarT represents a collaboration between a numerical applications programmer and the
StarT-X architect. The collaboration started with the modest goal to satisfy the communication needs
of MITMatlab. However, by supporting the MPI| standard, MPI-StarT has been successful in extending

support to other MPI applications.

22

Although the MPI-StarT was implemented on the Channel Interface, some changes were also

made to the MPICH’s ADI and Protocol Layers for correct and optimal operations.

3.12.4 MPICH/Madeleine: A true multi-protocel MPI for high performance networks

This paper [38] introduces a version of MPICH handling different networks simulianeously
and efficiently. The core of the implementation relies on a device called ch_mad, which is based on a
generic multi-protocol communication library called Madeleine.

One approach for multi-protocol support in MPICH is to use the Abstract Device Interface
(AD!) layer, which allows plugging different network support medules. In practice, however, a heavy
integration work has to be done each time a new device is fo be supported, in order to preserve inter-
device coexistence. As a consequence, there is currently no MPICH version supporting network
heterogeneity.

An alternate soiution is to get a multi-protocol versicn of MPICH through the use of a generic
multi-protocol communication library such as Madeleine, the communication subsystem of the FM
environment. This multi-protocol version of MPICH generally outperforms other free or commercial

implementations of MPI,

23

CHAPTER 4

PERFORMANCE COMPARISON

This chapter briefly summarizes the point-to-point communication performance of most of the
current message-passing libraries (described in a paper by Turner et al [39]). The throughput graphs
of raw TCP, MPICH, LAM/MPI, MPI/Pro, MP_Lite, PVYM and TCGMSG libraries are compared using
several Gigabit Ethernet NICs (Network Interface Cards). The NetPIPE [40,41] graphs are plotted
using throughput (Mbps) versus message size (Bytes) on a logarithmic scale. It clearly shows the
throughput for each transfer block size and the maximum throughput that can be achieved.

All the graphs were plotted from data taken on two 1.8 GHz Pentium 4 PCs with 768 MB of
PC133 memory and 32-bit/33-MHz PCI slots, loaded with Linux 2.4.7-10 kernels. The two machines
were connected back-to-back using Gigabit Ethernet (GE) cards. The performance was measured on
three GE cards, namely, the inexpensive TrendNet copper GE cards, Netgear fiber GE cards and the
expensive SysKonnect GE cards. The SysKonnect GE cards provide a low latency and high
bandwidth for jumbo frames with an MTU (Message Transfer Unit) size of 9000 Bytes. The Netgear
and the TrendNet GE cards use the standard MTU size of 1500 Bytes. All the message-passing
libraries were appropriately tuned and available parameters optimized to provide peak performance.

The message passing performance of all libraries on the Netgear fiber GE cards and the
TrendNet copper GE cards are presented in Figure 4.1 and Figure 4.2 respectively. The raw TCP
performance for both cards is around 550 Mbps with a message latency of 120 ys and 200 us
respectively.

On the Netgear fiber GE cards, most of the libraries deliver performance close to that of raw
TCP. However, for large messages, MPICH and PVM show a 20-25% loss in performance. On the
cheaper TrendNet copper GE cards, most libraries have problems and they peak out between
200-300 Mbps. Only MPICH and MP_Lite perform well on these cards. The poor performance of the
other tibraries is due to the smaller TCP socket buffer sizes used, which is hard-coded and is not

available to the user as a tunable parameter.

24

600

500
2 —raw TCP
S 400 MPICH
£ —AM/MPI
at ——
g- 300 MPI/P_ro
E —P_Lite
S 200 —TCGMSG
£
[

100

0 : ; . ; ;
1 10 100 1000 10000 100000 1000000 10000000

Message Size in Bytes

Figure 4.1. Throughput graph across the Netgear fiber GE cards on the PC cluster.

600

500 o

—raw TOP
—— PICH
| AM/MP|
e M P/ Pro
s (AP L ite
— PV M
TCGMSG

o~
[
(o]

n
(=]
o

Throughtput in Mbps
[+)
o
o

100

0 7 T T T T T
1 10 100 1000 10000 100000 1000000 10000000

Message Size in Bytes

Figure 4.2. Throughput graph across the TrendNet copper GE cards on the PC cluster.

25

800
700
600
a2 =———raw TCP
g 500 — A PICH
c s | AM/MP
-t —
g. 400 MPiIP'ro
b —P_Lite
= —PVM
Q 300 TCGMSG
=
e
200
100
0 7 T T r r '
1 10 100 1000 10000 100000 1000000 10000000

Message Size in Byles

Figure 4.3. Throughput graph across the SysKonnect GE cards on the PC cluster with jumbo frames.

The use of jumbeo frames (2000 Bytes MTU size) on the SysKonnect cards, as shown in
Figure 4.3, enhances the raw TCP throughput to 700 Mbps with a low message latency of 32 ps. All
the libraries seem to perform reasonably well matching the throughput of the raw TCP except MPICH
and PVM,

From the above resuits on the Gigabit Ethernet cards, it is evident that MP_Lite performs very
well compared to MPICH. The use of larger messages on the SysKonnect cards clearly illustrates the
superior performance of MP_Lite compared to MPICH. By implementing MPICH on top of MP_Lite at
a lowermost level (the “Channel Interface” level), the high throughput of MP_Lite can be delivered to

MPICH. Also, the full MPI specification of MPICH can be retained, which is not offered by MP_Lite.

26

CHAPTER 5

INTRODUCTION TO MP_LITE

51 Overview

MP_Lite is a lightweight message-passing library that was primarily designed to deliver peak
performance to the applications. It is an ideal research tool that is portable and has many user-
friendly features built into it. MP_Lite implements the core set of functions like blocking and non-
blocking “sends” and “receives”, common global operations, synchronization and broadcasting, which

form the most widely used commands in paraliel codes.

TeP /
‘workstations.] [

Ciganet hardware Mixed system Cray T3E
distributed —
M-VIA Ethemet SMPs SGl Crigins

Figure 5.1. The structure of MP_Lite.

MP_Lite is not a full implementation of the MPI standard. A full implementation of MPI

(MPICH, for instance) supports advanced features like derived datatypes, communicators, parallel

27

I/O, remote memory access, and dynamic process management. MP_Lite, on the other hand,
provides enough functions that most parallel codes need. Thus, by keeping it simple, buffering is
minimized and almost all the performance of the TCP layer is delivered to the application layer.

The structure of MP_Lite is presented in Figure 5.1. MP_Lite can be run on TCP on clusters
of workstations, on SMP systems, on Cray T3E’s native SHMEM library and SGI Qrigin systems. It
can also be run on VIA module, which bypasses the operating systems to provide lower latency and
higher bandwidth. In order to retain complete portability, applications using the MP_Lite syntax can

also be run on systems where MPI is installed.

5.2 MP_Lite Controllers

MP_Lite currently has three different controllers; the synchronous controiler, SIGIO interrupt
driven controller and Pthreads controller. The first two controllers are discussed below. The Pthreads

controller is still under development.

5.21 Synchronous controller

This is the simplest version in which the performance almost equals that of the raw socket
calls. The send and receive TCP buffer sizes are increased to their maximum values so that is can
accommodate very large messages. This avoids exfra buffering and memaory-to-memory copies, thus
providing superior performance. The user is however responsible to keep the message traffic within
the limits and see that the ftraffic does not exceed the TCP buffers at any time. Otherwise, the
communication may just freeze up,

In this version, the asynchronous sends send the message fully and the wait function does
nothing. The asynchronous receives just log the message information allowing the wait function to
handle the actual receives. The send function pushes the message to the TCP buffer directly. The
receive function first checks the ‘message queue’ {which buffers out-of-order messages). If it does not

find the message in the ‘message queue’, it checks the TCP buffer. Messages in the TCP buffer that

28

do not have a maiching header corresponding to the posted receive are copied fo the ‘message
queue’. Thus, out-of-order messages are handled by buffering, thereby reducing the efficiency. A
message with ‘any source’ checks all the messages in the TCP buffer and buffers all of them until a
suitable match is found. The programmer should therefore avoid writing code that causes this extra
buffering.

One limitation of the synchronous controller is that if the nodes send more messages than the
capacity of the TCP buffers, a lock-up condition occurs. The user must ensure that the message

traffic is within the TCP buffer size.

5.2.2 SIGIO interrupt driven controller

This is the fully robust version and is the default mode for UNIX systems. It does not suffer
from the lock-up condition that happens in the synchronous version. It performs very well even with
the default TCP buffer size, which is usually around 64 kB, but performs even better when the TCP
buffer size is increased.

The asynchronous controller handles asynchronous sends and receives using the SIGIO
interrupt that is generated when there is some data in the TCP buffer. For an asynchronous send, a
SIGIO is generated when the data moves out from the TCP buffer. A sigio_handler() routine captures
the SIGIO interrupts and services them by pushing more data into the appropriate send buffers. An
asynchronous receive gets all the data from the corresponding TCP receive buffer. When more data
arrives in the TCP buffer, a SIGIO interrupt is generated which services the active receives. The wait
routine just blocks until the data transfer is complete. The blocking sends and receives are simply the
asynchronous routines followed by a call to the wait function.

The lock-up condition does not happen here, because the source node does not block on a
send. The wait routine allocates a send buffer and copies the extra data fo the send buffer. When
there is space available in the TCP buffer, the sigio_handfer() completes the transfer by pulling data
from the send buffer instead of its original place and frees the memory after the transfer is complete.

Hence, it is robust and safe.

29

5.3 Features of MP_Lite

The following is a list of features in a nutshell that is provided by the MP_Lite library for

writing parallel codes:

Simple and freely available.

Implements the core message-passing routines used by most parallel codes.

Can be run as three different modes — synchronous, asynchronous and Pthreads modes.
Offers better performance (closer to that of raw TCP) compared to most other message-
passing libraries. This is especially true in the case of high-speed networks like Gigabit

Ethernet.
Portable and runs on different platforms like the TCP, SHMEM and VIA modules.
An ideal research tool that takes only few seconds to compile.

User-friendly with several debugging and frace options.

30

CHAPTER 6

THE ARCHITECTURE OF MPICH

MPICH has a layered design where every layer corresponds to an abstraction of a
communication device, which provides a set of services to the upper layer and, in turn, requires a set
of services that should be provided by a lower layer. Specifically, the upper layer provides the API
whereas the lower layer can be customized to exploit the hardware architecture, thus optimizing

performance. The layered approach also allows for maximizing code sharing across implementations.

Mpl

MPI

Point-to-Point

(MP_Lite) (SGI(4))

Abstract Device

Interface

(MP_Lite] C SHMEM) (NX) QSGi(B))

Channel

Interface

(MP._Lite) CChameieon) (P2) C SGI(2))

Figure 6.1. The structure of MPICH.

31

MPICH contains four layers. From bottom to top, they are:

o Channel Interface device layer - This includes various operating system facilities and
software drivers for different communication devices.

* AD! fayer - This layer encapsulates the differences of various communication devices and
provides a uniform interface to the upper layer. The ADI layer exports a point-to-point
ccmmunication interface.

s« MPI point-to-point primitives - This is built directly upon the ADI layer. It manages high-
level MPI communication semantics such as contexts, communicators and datatypes.

» MPI collective primitives - This is built upon the point-to-point primitive layer. Collective-
communication primitives include operations such as barrier, broadcast, reduce and
gather.

Messages share the same channel for both point-to-point communication and collective
communication. MPICH uses special tags to distinguish messages that belong to a user, point-to-
point communication, and internal messages for collective operations.

MP_Lite can be integrated at the Channel Interface, ADI or point-to-point levels.
Implementing MP_Lite at the lowest level, the Channel Interface level, delivers most of its
performance to applications that use MPICH. Hence, the ADI and point-to-point devices were not

implemented using MP_Lite.

6.1 Abstract Device Interface

The Abstract Device Interface (ADI) is the key component in the layered architecture of
MPICH, and is respensible for providing a portable, 'point-to-point message-passing interface to the
generic upper layers. Al the user-callable MPI functions are implemented using a set of forty different
macros and function definitions that constitute the AD! layer. The ADI layer provides hardware
independent access to the communication and synchronization primitives in the lower layer. |t

performs the following functions:

32

» Specifies messages {o be sent or received.

+ Moves data between the AP| and the message-passing hardware.

¢ Manages lists of pending messages (both sent and received).

e Provides basic information about the execution environment.

¢« Provides software emulations of any functions that may not be supported by some

devices.

In particular, the ADI layer contains the code for packetizing messages and attaching header
information, managing multiple buffering policies, matching posted receives with incoming messages
or queuing them if necessary, and handling heterogeneous communications.

There are many ADI devices (implementations) in the MPICH source tree that make it
portable. Some devices may provide limited functionality while others may provide more complex
functionality. One such implementation of the ADI layer is in terms of a lower layer called the
“Channel Interface” layer. The Channel Interface is a much simpler interface, and it is the fastest way
to add a new device to MPICH. This approach was used to attach MP_Lite to MPICH as a Channel

Interface device.

6.2 The Channel Interface

The Channel Interface is the easiest way to pert MPICH to a new environment, It is a low-
level communication interface that focuses on simple data-transfer operations. It essentially transfers
data from the address space of one process to that of ancther process. The Channel Interface uses

two Kinds of messages, namely control and data messages.

Confrol message:
it is used to rapidly transfer control information or small user-data. MPICH employs the
following four types of control messages:

« Small user-data message (encapsulated in a conirol message).

33

s Ready-fo-Send message sent by the source to the destination node to announce the
availability of a message.

* Ready-fo-Receive message sent by the destination to the source node to indicate that
the destination node is ready to receive a large data.

+ Flow control messages.

Data message:

This is used to transfer data on the network. Messages smaller than the Eager/Rendezvous
threshold are sent using the Eager protocol. Messages larger than the threshold value cannot be
buffered at the destination since it introduces delays due to memaory-memaory copies and eats up
large amount of memory. Therefore, very large messages are sent using the Rendezvous protocol
that performs a handshake before the data is sent. The handshaking ensures that the destination

node is ready to receive the large amount of data.

6.3 Channel Interface Functions

The Channel Interface consists of a minimal set of five required functions, which are
responsible for sending and receiving contiguous messages (carrying data or control information).

The simplest set of required functions for the Channel Interface are presented below,

MPID_ControlMsgAvail
Does a non-blocking check for the availability of a control message.

int MPID ControlMsgAvail({ void)

MPID_RecvAnyControl
Reads the next control message. If no messages are available, blocks until one can be read.

void MPID RecvAnyControl({ MPID_PKT T *pkt, int size, int *from)

34

MPID_SendControl
Sends a control message.

vold MPID_SendControl (MPID PKT T *pkt, int size, int dest)

MPID_RecvFromChannel
Receives data fromn a particular channel.

void MPID_RecvFromChannel { void *buf, int maxsize, int from)

MPID_SendChannel
Sends data on a particular channel.

void MPID_SendChannel { void *buf, int size, int dest)

In addition to the above functions, the Channel Interface may also provide support for non-
blocking operations. They are not mandatory, but can be used if available. The non-blocking
operations improve the efficiency by overlapping computation and communication, and offer greater
robustness. The Channel Interface also provides out-of-band operations, which perform remote
memory operations without local intervention. The Rendezvous protocol that transfers large
messages makes use of the out-of-band capability. A complete list of functions for the blocking, non-

blocking and out-of-band operations for the MPICH-MP_Lite device is presented in the Appendix.

6.4 The Channel Interface Protocols

In MPICH, a message consists of two different parts: the message body that contains the
data to be transmitted, and the envelope that has the header information {message source,
destination, tag and length). Based on the message length, the Channel Interface uses three different

message transfer protocols for data exchange.

35

6.4.1 The Short protocal
In the Short protocol, the data is sent along with the header to the destination. The total size

of the data and the header must be less than the MTU (Message Transfer Unit) used. It is used only

Source Destination

Send header & data

\ Receive header & data

Figure 6.2. The Short protocol.

for very short messages and offers very low latency. The Short protocol may be a performance

optimization for interconnect networks that send fixed size packets.

6.4.2 The Eager protocol

Source Destination

Send header

\>
\

Receive header
Send data

Receive data

Figure 6.3. The Eager protocol.

36

In the Eager protocol, the header is sent first followed by the data in two separate packets.
The data is delivered without waiting for the destination node to request it. The protocol assumes that
the destination node has enough space to store the data.

If a receive was already posted, the data is copied from the TCP buffer directly to the user
space. If a receive was not pre-posted, some space has to be allocated on the destination node to
store the data locally. When the receive is actually posted, the data is copied from the local buffer to
the user space. Thus, the data is copied twice for unexpected messages. This protocol is used for

messages that do not fit within a single packet yet small enough to be buffered at the destination.

6.4.3 The Rendezvous protocol

The Eager protocol relies on statically allocated resources and is not suitable for messages
that exceed the size of the receive buffer. The Rendezvous protocol directly copies the message to
the application’s memory bypassing the TCP buffers. It does a handshake before fransmitting the

message; therefore, it is more robust and safe.

Source Destination

Send header
\ Receive header
Send Ready-to-Receive
Wait for Ready-to-Receive /
Send data \

Receive data

Figure 6.4. The Rendezvous protocol.

The Rendezvous protocol does not deliver the data until the destination node requests it. The

source node initiates the communication by sending the header to the destination node. When the

37

destination node is ready to receive the data, it acknowiedges by sending a Ready-to-Receive packet
to the source node. The source node then sends the actual data to the destination node.

The source and destination nodes are synchronized before the actual data is transferred.
Thus, there is no need for intermediate buffering except that of the header. The data is delivered only
when user space is available at the destination nede and, therefore, the Rendezvous protocol is
robust and safe. However, the handshaking during synchronization introduces additional delays. This

protocol is used for very large messages.

6.44 Threshold values for the MPICH message protocols

MPICH, by default, uses the Short protocol for messages of size less than 1024 Bytes, the
Eager protocol for messages of size between 1024 Bytes and 128 kB, and the Rendezvous protocol
for messages larger than 128 kB. The Short/Eager threshold value can be changed by modifying the
default value 1024 of the macro MPID_PKT_MAX_DATA_SIZE in the mpid/ch2/packets.h file. To
change the Eager/Rendezvous threshold value, the default value 128000 must be changed in the
files mpid/ch2/chinit.c and mpid/ch2/chcancel.c.

The switch from Short to Eager protocol must happen when the cost of copying the data (in
the Short protocol} is the same as the cost of sending an additional confrol message (in the Eager

protocol). The same holds for the switch from Eager to Rendezvous protocol,

6.4.5 Blocking and non-blocking communication
The Eager and Rendezvous protocols are further classified based on the method by which
the data is delivered:
*» Non-blocking
In this mode, the source node {or destination node)} can call a system service routine
fo initiate the send (or receive) and then return back to the user process without
waiting for the action to complete. The mpid/ch2/chneager.c and mpid/ch2/chnmdv.c
implement the required functions for the non-blocking versions of the Eager and

Rendezvous protocols respectively.

38

+« Blocking
In the blocking mode, the source node {or destination node) waits until the send (or
receive) action is complete bhefore it returns to the user process. This mode is
implemented in the mpid/ch2/chbeager.c and mpid/ch2/chbrndv.c files for the Eager
and Rendezvous protocols respectively.

The Short protocol always uses the blocking method for communication.

6.5 Implementing MP_Lite as a MPICH Channel Interface Device

This section discusses the integration of MP_Lite as an efficient MPICH Channel Interface
device. MP_Lite is a lightweight message-passing library that delivers performance close to that of
the raw TCP layer. MPICH is a full implementation of MPI that offers less performance compared to
MP_Lite. By implementing MP_Lite as a MPICH Channel Interface device, the performance of
MP_Lite can be delivered to MPICH and at the same time full MP] implementation of MPICH can be
retained.

MP_Lite can be implemented as two devices, ch_mplite_blk and ch_mplite_nblk for the

blocking and non-blocking communications respectively.

Steps involved in creating a ch_mplite_blk device:
1. The command Newbevice in MPICH is used to create a new device.
cd mpich-x/mpid
NewDevice -raw mplite_blk
This creates a new directory called ch_mplite blkinthe mpich-x/mpid directory.
2. Configure MPICH for the new device including other parameters like compiler, architecture, etc,
./configure --prefix=~/mpich-x --with-device=ch_mplite blk -rsh=ssh
3. The following files in the ch_mplite blk directory have to be edited:

channel .h (See Appendix)

39

mplite_blkpriv.c
chdef.h
mpid_time.h
Makefile
4, Create a directory mplite in the ch_mplite_blk directory and copy MP_Lite source code to it.
5. Editthempirun.inand mpirun.args.in scriptsinthe mpich-x/util directory.
6. Copy the mpirun.mplite blk file to mpich-x/bin directory and the
mpirun.ch_mplite_blkfile to the mpich-x/mpid/ch_mplite_blk directory.
7. make |& tee make.log inthe mpich-x directory.
8. To execute a program, compile it and use mpirun.
mpich-x/bin/mpirun -np 2 program name arguments
Use the -noloccal option if the program does not run on the local machine (only for the p4
device). Before doing mpirun, make sure that the machines.Sarch file in the directory
mpich-x/util/machines has the list of hosts that execute the code.
To implement a non-blocking device, all the steps are the same except that the word
mplite_ blk is replaced by mplite nblk and the mpich-x/mpid/ch mplite_nblk/Makefile

is modified to include the non-blocking files chneagexr. ¢ and chnrndv.c.

Functions added to MP_Lite:

The function MP_Aprobe was added fo MP_Lite fo support the implementation of the
Channel Interface device. MP_Aprobe does a non-blocking test for a message.

int MP_AProbe{ int nbytes, int source, int tag, int *flag)

If the message is present in the message queue or in the TCP buffer, it returns a true;
otherwise, it returns a false. if a message is present in the TCP buffer but the header information

does not match the request, then that message is pushed to the message queue and the TCP buffer

is probed again.

40

CHAPTER 7

PERFORMANCE RESULTS

7.1 The Test Environment

The performance measurements were executed on a PC mini-cluster and an Alpha cluster
mini-cluster. The PC cluster consists of two 1.8 GHz Pentium 4 PCs with 768 MB of PC133 memory
and 32-bit/33-MHz PCI slots, running the RedHat Linux 2.4.7-10 kernel. The Alpha cluster consists of
two 500 MHz Compaq DS20 Alpha workstations with 1.5 GB memory, running RedHat Linux 2.4.17.
The DS20s have a wider 64-bit/33-MHz PCI slots. Both the hosts within the two clusters are
connected using Gigabit Ethernet (GE).

The libraries were tested using a variety of network hardware. The Netgear fiber, TrendNet
copper and SysKonnect GE NICs were used for the PC cluster, and the Netgear fiber and
SysKonnect GE NICs were used for testing on the Alpha cluster.

The current MPICH version, MPICH-1.2.3, was used for testing. The performance of raw
TCP, MP_Lite (SIGIO version), MPICH-p4 (a blocking device) and MPICH-MP_Lite (both blocking

and non-blocking devices) were compared.

Table 7.1. Test-bed.

Cluster Name Processor RAM NICs 0s
Nétgear Fiber
1.8 GHz
PC cluster 768 MB TrendNet Copper Linux 2.4.7-10
Pentium 4
SysKonnect
500 MHz Netgear Fiber
Alpha cluster 1.5GB Linux2.4.17

Compaq DS20 SysKonnect

41

7.2 NetPIPE

NetPIPE (Network Protocol Independent Performance Evaiuator) is a tool developed at Ames
Laboratory to measure network bandwidth. It uses multiple ping-pong tests to evaluate the point-to-
point performance between two idle nodes on a network. It starts with a simple 1-byte message and
gradually increases the message size at regular intervals. Each data point is taken using several
ping-pong measurements to increase the accuracy.

The output is a file that contains the transfer time, throughput, block size and transfer time
variance for each data point. The throughput graph can be obtained by plotting throughput versus

transfer block size.

7.3 Performance using Gigabit Ethernet

7.3.1 Performance on the PC mini-cluster

Figure 7.1 shows the throughput comparison of raw TCP, MP_Lite and MPICH devices
{ch_pd, ch_mplite_blk and ch_mplite_nblk) on the PC cluster with the Netgear fiber GE cards. Raw
TCP offers a maximum throughput of 565 Mbps. MP_Lite perfarms close to TCP with a peak network
bandwidth of 540 Mbps. Both the blocking and non-blocking MPICH-MP_Lite implementations almost
trace the MP_Lite throughput curve. The MPICH-p4 device delivers only a maximum throughput of
430 Mbps. For larger messages, it suffers a loss of 25% in throughput compared to a loss of 5%
suffered by the MPICH-MP_Lite device with respect to the raw TCP curve.

The small dip in the MPICH curves (ch_p4, ch_mplite_blk and ch_mplite_nblk devices), near
the 512 kB message size, is due to the switch in the MPICH message transfer protocoel from Eager to
Rendezvous.

Similar performance can be noticed on the TrendNet copper GE cards on the PC cluster
(Figure 7.2). The MPICH-MP_Lite devices are close to the MP_Lite throughput curve and offer

throughput higher than that offered by the MPICH-p4 device.

600

500

400

300

200

Throughtput in Mbps

100

600

500

400

300

200

Throughtput in Mbps

100

42

m—raw TGP
w—MP_Lite

—ch_pd
—h_mplite_blk
= :h_mplite_nblk

10 100 1000 10000 100000 1000000 10000000

Message Size in Bytes

Figure 7.1. Throughput on the PC cluster with Netgear fiber GE cards.

_—

m—gw TCP
M P_Lite
—ch_p4

= ch_mplite_blk
=—ch_mplite_nblk

10 100 1000 10000 100000 1000000 10000000

Message Size in Byles

Figure 7.2. Throughput on the PC cluster with TrendNet copper GE cards.

43

800
700

[/}

& 500

= w—raw TCP

£ —MP_Lite

5

3 400 ch_p4

S —ch_mplite_blk

S 500 = ch_mplite_nblk

=

= /
100 j

0 , . \

1 10 100 1000 10000 100000 1000000 10000000
Message Size in Bytes

Figure 7.3. Throughput on the PC cluster with SysKonnect GE cards using jumbo frames.

Figure 7.3 shows the throughput on the PCs with the SysKonnect GE cards for jumbo frames
of MTU size 9000 Bytes. The use of jumbo frames clearly demonstrates the higher throughput offered
by the MPICH-MP_Lite device compared to the MPICH-p4 device. Raw TCP has a peak bandwidth of
700 Mbps. MP_Lite offers a maximum throughput of 680 Mbps, which is within 3% of the TCP results.
The MPICH-p4 device delivers a maximum throughput of 510 Mbps with a performance loss of nearly
30% for large messages. Both the blocking and non-blocking MPICH-MP_Lite devices deliver the full

performance of the MP_Lite library.

44

7.3.2 Performance on the Alpha mini-cluster

Figures 7.4 and 7.5 show the performance results on the Alpha mini-cluster with the Netgear
fiber and SysKonnect Gigabit Ethernet cards. Raw TCP offers a maximum throughput of 525 Mbps
and 900 Mbps on the Netgear and SysKonnect GE cards respectively. The MP_Lite library and the

MPICH-MP_Lite devices match the TCP curve fo within a few percentages for both sets of the Gigabit

Ethernet cards.
600
500
0
o
g 400 e W TCP
£ e MP_Lite
E] h_pd
& 300 ch_p
.: — T
g ch_mplite_blk
© 200 m—ch_mplite_nblk
=
=
100
0 ” T T r r
1 10 100 1000 10000 100000 1000000 10000000

Message Size in Bytes

Figure 7.4. Throughput on the Alpha cluster with Netgear fiber GE cards.

For larger messages, the MPICH-p4 device peaks out at 400Mbps and suffers a performance
loss of 25-30% on the Netgear fiber GE cards with a default MTU size of 1500 Bytes. it peaks out at
550 Mbps on the faster SysKonnect GE cards with jumbo frames of MTU size 9000 Bytes, suffering a

performance loss of about 35-40%.

45

1000

900 -
// Jaa

800 /

700

N
o
§ 600 raw TCP / m
£ o \P_Lite // N
et
3 500 messch_p4
] m—ch_mplite_blk /
m — T
g 400 ch_mplite_nblk
T
I
‘—

300

200 /

100

0 T T " -
1 10 100 1000 10000 100000 1000000 10000000

Message Size in Bytes

Figure 7.5. Throughput on the Alpha cluster with SysKonnect GE cards using jumbo frames.
7.4 Effect of Eager/Rendezvous Threshold on the PC Cluster

The following plot (Figure 7.8} shows the eftect of the Eager/Heﬁdezvous threshold of MPICH
on the throughput results. Since the non-blocking version of the MPICH-MP_Lite Channel Interface
device performs similar to the blocking version, it is omitted.

The default Eager/Rendezvous threshold value in MPICH is 128 kB, which was chosen to
cater to the memory needs of the older systems when MPICH was being developed. With the default
value, the performance degrades considerably near the region where the protocol changes from
Eager to Rendezvous. This is due to the handshaking performed by the Rendezvous protocol before
it transmits a large message. The dip gradually diminishes by increasing the threshold value to 256

kB, and then to 512 kB. For all the performance tests, a threshold value of 512 kB was used.

46

600

500
8
g 400 weeech_pd_128
c m—ch_pd_256
:';:; ch_p4_512
=3 300 = oh_mplite_bik_128
'§, == ch_mplite_blk_256
9 200 wmeen chy_miplite_blk_512
=
|-

100

0 T T T T T
1 10 100 1000 10000 100000 1000000 10000000

Message Size in Byles

Figure 7.6. Effect of Eager/Rendezvous threshold on the PC cluster with Netgear fiber GE cards.

7.5 Summary

In this chapter, the performance of raw TCP, MP_Lite, MPICH-p4 device and MPICH-
MP_Lite blocking and non-blocking devices were presented. Both the blocking and non-blocking
devices deliver the same performance on both the test-beds and close to that of the MP_Lite library.
The MPICH-MP_Lite device definitely performs better on both the PCs and Alphas compared {o the

MPICH-p4 device. Also, increasing the Eager/Rendezvous threshold value gave better results.

47

CHAPTER 8

CONCLUSIONS AND FUTURE WORK NEEDED

This chapter presents the conclusions of the research on the implementation of the MPICH-
MP_Lite blocking and non-blocking Channel Interface devices.

The performance of the MPICH-MP_Lite Channel Interface device was measured on the PC
and Alpha mini-clusters using Netgear fiber, TrendNet copper and SysKonnect GE cards. For large
messages, the MPICH-MP_Lite Channel Interface device has a bandwidth closer to that of raw TCP
as compared to the MPICH-p4 Channel Interface device. This can be clearly seen in the faster
environment of the Alpha mini-cluster connected using SysKonnect GE cards with jurnbo frames of
MTU size 9000 Bytes. On this test-bed, the MPICH-MP_Lite Channel Interface device offers a peak
performance of 830 Mbps while the MPICH-p4 Channel Interface device provides a throughput of
only 530 Mbps for large messages. Compared to the raw TCP peak throughput of 800 Mbps, the
MPICH-p4 device suffers a loss of around 35-40%. Both the blocking and non-blocking MPICH-
MP_Lite devices are within 5-10% of the raw TCP throughput, and deliver almost all of the
performance of the MP_Lite library to the full MP1 implementation.

Increasing the Eager/Rendezvous threshold from the default value of 128 kB to 512 kB
improves the throughput curve, which otherwise shows a dip at the threshold value due to the initial
handshaking by the Rendezvous protocol.

The MP_Lite library uses signals to check all the TCP buffers when a message arrives. The
MPICH library, on the other hand, checks the TCP buffers only when the application makes a call io
the message passing interface. Thus, the MP_Lite library guarantees message progress at all times.
Therefore, the MPICH-MP_Lite device should prove even better for real applications than the
NetPIPE measurements indicate.

Both the blocking and non-blocking versions of the MPICH-MP_Lite Channel Interface device
offer the same throughput on the PC or Alpha mini-clusters. The non-blocking device would likely

prove to be superior on real applications.

48

This MPICH-MP_Lite work should pass on the performance benefits of other MP_Lite
modules ke SHMEM, SMP and VIA to the full MPI implementation. The MPICH-MP_Lite devices
have to be rigorously tested on real parallel applications on a variety of architectures, platforms and

network hardware.

49

APPENDIX

CHANNEL INTERFACE ROUTINES

#define MPIDPATCHLEVEL 2.0

int flag;

/* Five essential functions required for implementing a channel device */

#define MPID RecvAnyControl(pkt, size, from) \
{ MPID TRACE_CODE ("BRecvAny",-1};\
MP Recv(pkt, size, -1, 0 }; *(from) = last src;\
MPID TRACE CODE ("ERecvAny", * (from));}
#define MPID_RecvFromChannel (buf, size, channel) \
{ MPID_ TRACE CODE ("BRecvFrom", channel);\
MP_Recv(buf, size, channel, channel+l };\
MPID_TRACE_CODE("ERechrom",channel);}
#define MPID ControlMsghAvail() \
(MP_AProbe(1000000000, -1, 0, &flag), flag)
#define MPID SendControl{ pkt, size, channel) \
{ MPID_TRACE_CODE ("BSendControl",channel) ;\
MP_Send({ pkt, size, channel, 0);\
MPID_ TRACE_CODE ("ESendControl",channel) ;}
#if defined (MPID USE_SEND_BLOCK) && ! defined (MPID SendControlBlock)
/* SendControlBlock allows the send to wait until the message is received
(but does NOT require it). This can simplify scme buffer handling.
*/
#define MPID SendContrclBlock(pkt, size, channel } \
{ MPID_ TRACE CODE ("BSendControl",channel};\
MP_Send(pkt, size, channel, 0);\
MPID TRACE CODE ("ESendControl",channel);}
#endif

/* If SendControlBlock is not defined, make it the same as SendControl */
#if tdefined (MPID_SendControlBlock)
#define MPID SendControlBlock (pkt,size,channel) \

50

MPID SendContrel (pkt,size,channel)
#endif

/* Because a common operation is to send a control block, and decide
whether to use SendControl or SendControlBlock based on whether the

send is non-blocking, we include a definition for it here:

*/

#ifdef MPTD_USE_SEND BLOCK
#define MPID_SENDCONTROL (mpid_send handle,pkt,len,dest) \
if (mpid_send handle->is non blocking) {\
MPID SendControl{ pkt, len, dest);}\
else [\
MPID SendControlBlock{ pkt, len, dest);}
#else
#define MPID_SENDCONTROL (mpid_send handle,pkt,len,dest) \
MPID SendControl (pkt, len, dest)
#endif

/* Note that this must be non-blocking. On sgystems with tiny buffers, we
can't do this. Instead, we use a nonblocking send, combined with tests
for completion of the send and incoming messages. This will still
require that the destination process the eager message, but that is one
of the fundamental assumptions.

*/
#ifdef MPID TINY BUFFERS
fdefine MPID_SendChannel{ buf, size, chamnel)} \
{ ASYNCSendId t sid; \
MPID ISendChannel (buf, size, channel, sid);\
while (!MPID_TSendChannel (sid}) {\
MPID DewviceCheck (MPID_NOTBLOCKING) i\
AN
MPID_ TRACE CODE ("ESend",channel};}
#else
#define MPID SendChannel (buf, size, channel) \
{ MPID_TRACE_CODE ("BSend",channel) ;\

MP_Send(buf, size, channel, myproc+l);\

51

MPID TRACE CODE ("ESend",channel);}
#endif

/* Non-blocking versions (NOT required, but if PI_NO NRECV and PI_NO_NSEND
are NOT defined, they must be provided)
*/

#define MPID IRecvFromChannel{ buf, size, channel, id) \
{MPID_TRACE CODE ("BIRecvFrom",channel);\
MP_ARecv{ buf, size, channel, channel+1, id };\
MPID TRACE CODE ("EIRecvFrom", channel) ;}
#define MPID WRecvFromChannel (buf, size, channel, id } \
{MPID TRACE CODE ("BWRecvFrom',channel);\
MP_Wait { id };\
MPID TRACE CODE ("EWRecvFrom",channel) ;}
f#define MPID RecvStatus(id) \
{ MP_Test{ id, &flag), flag)}

/* Note that these use the tag based on the SOURCE, not the channel
See MPID_ SendChannel
*/

fdefine MPID ISendChannel{ buf, size, channel, id) \
{MPID_TRACE CODE ("BISend",channel);\
MP_ASend(buf, size, channel, myproc+l, id);\
MPID_TRACE CODE("EISend",channel);}
#define MPID WSendChannel{ id) \
{MPID_ TRACE_CODE ("BWSend", -1);\
MP_Wait(id };\
MPID TRACE CODE ("EWSend",-1};}
/* Test the channel operation */
#define MPID_TSendChannel(id) \
(MP_Test(id, &flag), flag)

/* If nonblocking sends are defined, the MPID_SendData command uses them;

otherwise, the blocking version is used.

*/

52

#ifndef PI_NO NSEND
##idefine MPID_SendData(buf, size, channel, mpid_send_handle) \
if (mpid _send handle->is_non blocking) {\
MPID_ISendChannel{ address, len, dest, mpid_send handle-ssid);\
dmpi_send_handle->completer=MPID CMPL WSEND;\
)
else \
{\
mpid send_handle->gid = 0;\
MPID SendChannel{ address, len, dest);\
DMPI mark send_completed(dmpi_send handle);\
}
#else
#define MPID SendData{ buf, size, channel, mpid_send handle) \
mpid send handle-ssid = 0;\
MPID SendChannel (address, len, dest);\
DMPI_mark_send completed(dmpi_send_handle);
#endif

/*
We also need an abstraction for out-of-band operations. These could
use transient channels or some other operation. Thig is essentially

for performing remote memory operations without local intervention.

Note that since MPID RecvTransfer is blocking (and may obstruct other
messages), the chbrndv.c code that uses it calls it only after
MPID_TestRecvTransfer succeeds. This may be expensive in some
applications.

*/

#define MPID CreateSendTransfer{ buf, size, partmer, id } {*{id) = 0;}
#define MPID CreateRecvTransfer{ buf, size, partner, id)} \
{*(id) = CurTag++;TagsInUse++; }
/*
Receive transfers may be blocking or nomblocking. Since a single

system may use both, there are separate definitions for the two cases.

*/

53

#define MPID StartNBRecvTransfer(buf, size, partner, id, request, rid) \
{MPID_TRACE_CODE ("BIRRRecv", id) ;\
MP_ARecv(buf, size, partner, id, rid);\
MPID_TRACE_CODE ("EIRRRecv", id);}

#define MPID_ EndNBRecvTransfer(request, id, rid) \
{MPID TRACE CODE ("BIWRRecv",id);\
MP_Wait(rid);\
MPID_TRACE CODE ("EIWRRecv",id};\
if (--TagsInUse == 0) CurTag = 1024; \
else if (id == CurTag-1) CurTag--;)}

fdefine MPID_ TestNBRecvTransfer(request) \
(MP_Test((request)-»>rid, &flag), flag)

#define MPID CompleteNBRecvTransfer(buf, size, partner, id, rigd)

#define MPID_StartRecvTransfer(buf, size, partner, id, request, rid) \
{MPID_ TRACE CODE ("BIRRRecv",id);\
rid = MPID_PT2PT2 TAG(id};\
(request) ->rhandle.buf = buf; {(request)->rhandle.len = size;\
(request) ->rhandle.dev_rhandle.from grank = partner;\
MPID_TRACE_CODE ("EIRRRecv", id);}
fidefine MPID_EndRecvTransfer({ request, id, rid) \
{MPID_TRACE_CODE ("BIWRRecv",id};\
MP_Wait (rid):\
MPID_TRACE_CODE ("EIWRRecv",id);\
if {--TagsInUse == 0) CurTag = 1024; \
else if (id == CurTag-1} CurTag--;)}

#define MPID TestRecvTransfer{ request) \
{ MP_APrcbe(100000000, {request)->from,

(request) ->recv_handle, &flag), flag)

ffdefine MPID_CompleteRecvTransfer(buf, size, partner, id, rid) \

MPID EndRecvTransfer (buf, size, partner, id, rid)

/* This is the blocking version */

#define MPID_RecvTransfer(buf, size, partner, id) {\

54

MPID_TRACE CODE {"BRecvTransfer",id) ;\
MP_Recv(buf, size, partnexr, id);\
if (--TagsInUse == 0} CurTag = 1024;\
else if (id == CurTag-1} CurTag--;\
MPID_TRACE_CODE("ERechransfer",id);}
#define MPID SendTransfer{ buf, size, partner, id) {\
MPID_TRACE_CODE ("BSendTransfex™, id) ;\
MP_Send(buf, gize, partner, id);\
MPID_TRACE CODE("ESendTransfer", id);}

#define MPID_ StartSendTransfer(buf, size, partner, id, sid } \
{MPID_ TRACE CODE ("BIRRSend",id);\
MP_Send(buf, size, partner, id }; sid = 1;\
MPID TRACE_CODE ("EIRRSend",id);}
#define MPID_EndSendTransfer(buf, size, partner, id, sid)} \
{MPID_TRACE_CODE("BWRRSend“,id);\
MPID TRACE_CODE ("EWRRSend", id) ;}
fdefine MPID TestSendTransfer(sid } 1

ffdefine MPID StartNBSendTransfer (buf, size, partner, id, sid) \
{MPID_TRACE CODE ("BIRRSend”,id);\
MP_ASend(buf, size, partner, id, =id };\
MPID TRACE CODE ("EIRRSend",id);}
#define MPID_EndNBSendTransfer(request, id, sid) \
{MPID TRACE CODE ("BWRRSend",id);\
MP_Wait (sid };\
MPID_ TRACE CODE ("EWRRSend",id);}
#define MPID TestNBSendTransfer(sid) \
{ MP_Test{ sid, &flag), flag)

/*
These macros control the conversion of packet information to a standard
representation. On homogenecus systems, these do nothing.
*/
#ifdef MPID_ HAS HETERO
#define MPID_PKT PACK (pkt,size, dest)
MPID CH_ Pkt pack{(MPID_PKT T*) (pkt},size, dest)

55

f{define MPID PKT UNPACK (pkt,size,src)

MPID_CH Pkt unpack({MPID PKT T*) (pkt),size,src)
telse

#define MPID_PKT PACK (pkt,size,dest)

#define MPID_PKT UNPACK(pkt,size,src)

#endif

/:\-
On message-passing systems with very small message buffers, or on
systems where it is advantageocus to frequently check the incoming

message gqueue, we use the MPID_DRAIN INCOMING definition
*/

#define MPID DRAIN INCOMING \

while (MPID DeviceCheck{ MPID NOTBLOCKING) != -1} ;
#ifdef MPID TINY BUFFERS
#define MPID DRAIN INCOMING FOR TINY (is_mnon_blocking) \
{if (is_non blocking) {MPID_DRAIN_ INCOMING;}}
felse
#define MPID DRAIN_INCOMING FOR TINY(is non blocking)
#endif

(1]

2]

56

BIBLIOGRAPHY

Nieplocha, Jarek, Rik Littlefield, and Matt Rosing. “Beyond message-passing: A case for one-
sided communication in MPL” In Proceedings of First MPI Developers Conference, 1995.

hitp:/fwww.osl.iu.edu/downioad/mpidc95/papers/htmi/nieplocha/ (date accessed: May 2002).

Turner, Dave. “Introduction to Parallel Computing.” Ames Laboratory.

http://cmp.ameslab.gov/para_comp_intro/para_intro.html {date accessed: May 2002).

[3] K., Parzyszek, J. Nieplocha and R. A. Kendall. “A Generalized Portable SHMEM Library for High

(4]

]

6]

Performance Computing.” Proceedings of the IASTED Parallel and Distributed Computing and
Systems 2000, Las Vegas, Nevada, Nov. 2000, (M. Guizani and X.Shen, Eds.), pp. 401-406.

IASTED, Calgary (2000).

Nieplocha, Jaroslaw, Robert J. Harrison, and Richard J. Littlefield. *“The Global Array
programming model for high performance scientific computing” SIAM - News, Sep. 1995,

hitp://www.emsl.pnl.gov:2080/docs/global/papers/siam.pdf {(date accessed: May 2002).

Nieplocha, Jarosiaw, Robert J. Harrison, and Richard J. Littlefield. “Global Arrays: A non-
uniform memory access programming mede! for high-performance computers.” The Journal of
Supercomputing, 1996.

http:/fwww._emsl.pnl.gov:2080/dacs/global/papers/iis.pdf (date accessed: May 2002).

OpenMP, Lawrence Livermore National Laboratory.
http:/fwww.lInl.gov/computing/tutorials/workshops/workshop/fopenMP/MAIN.html

(date accessed: May 2002).

(7

€

[10]

[12]

[13]

57

Sato, Mitsuhisa, et al. “OpenMP Design for an SMP Cluster.” Real World Computing
Partnership, Tsukuba, Japan.

http:/iphase.etl.go.jp/Omni/CSDSM/ewomp99/haome.html {date accessed: May 2002).

The MPI Forum, 1994. http://mww.mpi-forum.org {date accessed: May 2002).

Dongarra, Jack J., et al. “An Introduction to the MP! Standard.” Univ. of Tennessee Technical
Report CS$-95-274, Jan. 1995.

http:ffwww. netlib.org/utk/papers/intro-mpifintro-mpi.html (date accessed: May 2002).

MPICH Homepage. “MPICH - A Portable Implementation of MPI.”

http://www-unix.mcs.anl.govimpi/mpich/ (date accessed: May 2002).

Gropp, William, et al. “A high-performance, portable implementation of the MPI Message-
Passing Interface standard.” Parallel Computing, 1996,
http://www-unix.mcs.anl.govimpi/mpich/papers/mpicharticle/paper.htmi

{date accessed: May 2002).

Gropp, Williiam, and Ewing Lusk. “"Sowing MPICH: A case study in the dissemination of a

portable environment for parallel scientific computing.” Summer 1997.

Thakur, Rajeev. “MPICH on Clusters: Future Directions.” Linux Supercluster Users
Conference, Albuguerque, New Mexico, Sep. 2000.
http://spud-web.tc.cornell.edufactc/Supercluster/presentations/Thakur.pdf

(date accessed: May 2002).

58

[14] Gropp, Wiliam and Ewing Lusk. “MPICH working note: The implementation of the second-
generation MPICH ADL.” Apr. 1996.

ftp:/finfo.mes.anl.gov/pub/mpifworkingnote/adi2imp.ps (date accessed: May 2002).

[15] Gropp, Wiliam and Ewing Lusk. “MPICH Working Note: The Second-Generation ADI for

MPICH Implementation of MPL” May 1998.

ftp:/finfo.mes.anl.gov/pub/mpifworkingnote/nextgen.ps (date accessed: May 2002).

[16] Saphir, William. “A Survey of MPI Implementations.” Lawrence Berkeley National Laboratory,
University of California, Berkeley, CA, Nov 1997.

http://mww.crpe.rice.edu/NHSEreview/MPI/ (date accessed: May 2002),

[17] Gropp, William, and Ewing Lusk. “MPICH working note: Creating a new MPICH device using

the channel interface.” TR ANL/MCS-TM-213, Argonne National Laboratory, 1995.

[18] LAM/MPI Parallel Computing. http://www.lam-mpi.org/ (date accessed: May 2002).

[19] Turner, Dave. “MP_Lite: A light weight message-passing library.”

hitp:/iwww scl.ameslab.gov/Projects/MP_Lite/MP_Lite.html (date accessed: May 2002).

[20] Turner, Dave, Weiyi Chen, and Ricky Kendall. “Performance of the MP_Lite message-passing

library on Linux clusters.” In Linux Clusters: HPC Revolution, 2001.

[21] Chen, Weiyi. “Implementation of MP_Lite for the VI Architecture.” Master's thesis, 2001, Dept.

of Computer Science, lowa State University, Ames, 2001.

[22] Chimp: ftp://ftp.epcc.ed.ac.uk/pub/chimp/release/ (date accessed: May 2002).

59

[23] MPI/PRO: http:/fwww.mpi-softtech.com/ {date accessed: May 2002).

[24] Harrison, Robert J. “The TCGMSG Message-Passing Toolkit.”

http://www.emsl.pni.gov:2080/docs/nwchem/tcgmsg.htm! (date accessed: May 2002).

[25] Crawford, Emily Angerer. “PVM: An Introduction to Parallel Virtual Machine.” Oct. 1998.

http://www.hpc.gatech.edu/seminar/pvm.html (date accessed: May 2002).

[26] Vaughan, Paula L., et al. “Migrating from PVM to MPI, part I: The Unify System.” The Fifth

Symposium on the Frontiers of Massively Parallel Computation, McLean, Virginia, Jul. 1994,

[27] MVICH: http://www.nersc.goviresearch/FTG/mvich/ (date accessed: May 2002).

[28] Dimitrov, Rossen, and Anthony Skjellum. “Efficient MPI for Virtual Interface Architecture.” 1998.

[28] Worringen, Joachim, and Thomas Bemmerl. “MPICH for SCl-connected Clusters” In

Proceedings of SCI - Europe '29, Toulouse, Sep. 1999, pages 3 - 11.

[30] Cristaldi, Rosario, and Giulio lannello. "MP! derived data types in VIRTUS." In Proceedings of

CANPC '00, Toulouse, France, Jan. 2000.

[31] Chiola, Giovanni, and Giuseppe Ciaccio. “Porting MPICH ADI on GAMMA with Flow Control.”

In Proceedings of MWPP '99, Kent, Ohio, Aug. 1999.

[32] Brightwell, Ron, and Lance Shuler. “Design and Implementation of MP| on Puma Portals.” In

Proceedings of the Second MP| Developer's Conference, Jul. 1996, pages 18 - 25.

60

[33] Schindler, Sven, and Wolfgang Rehm. “Multiple devices under MPICH.” In Proceedings of the

workshops ARCS '98, Oct. 1999,

[34] Brightwell, Ronald, and Anthony Skjellum. “Design and Implementation Study of MPICH for the
Cray T3D.” Technical report, Gomputer Sci. Dept., Mississippi State Univ, 1998.
hitp://www.cs. msstate.edu/~tony/documents/Message-Passing/mpich_t3d_paper.pdf

(date accessed: May 2002),

[33] Foster, lan, et al. “Wide-Area Implementation of the Message Passing Interface” Parallel

Computing, 1998.

[36] O'Carroll, Francis, et al. “Design and Implementation of Zero Copy MPI for PM.” Technical

Report TR - 87011, RWC, Mar. 1998.

[37] Husbands, Parry, and James C. Hoe. “MPI-StarT: Delivering Network Performance to

Numerical Applications.” In SC "98, Nov. 1998.

[38] Aumage, Olivier, Guillaume Mercier, and Raymond Namyst. “MPICH/Madeleine: a True Multi-

Protocol MPI for High Performance Networks.” Oct. 2000.

[39] Turner, Dave and Xuehua Chen. “Protocol-Dependent Message-Passing Performance on Linux

Clusters”, Submitted to the Cluster 2002 conference.

[40] NetPIPE homepage. http://www.scl.ameslab.gov/netpipe/ (date accessed: May 2002).

[41] Snell, Quinn O., Armin R. Mikler, and John L. Gustafson. “Nefpipe: A network protocol

independent performance evaluator.” Scalable Computing Laboratory/Ames Laboratory, 1997.

