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ABSTRACT

MP_Lite is a light weight message-passing library designed to deliver the maximum per-
formance to applications in a portable and user friendly manner. The Virtual Interface (VI)
architecture is a user-level corhﬁmnica.tion protocel that bypasses the operating system to pro-
vide much better performance than traditional network architectures. By combining the high
efficiency of MP_Lite and high performance of the VI architecture, we are able to implement a
high performance message-passing library that has much lower latency and better throughput.

The design and implementation of MP_Lite for M-VIA, which is a modular implementation
of the VI architecture on Linux, is discussed in this thesis. By using the eager protocol
for sending short messages, MP_Lite M-VIA has much lower latency on both Fast Ethernet
and Gigabit Ethernet. The handshake protocol and RDMA mechanism provides double the
throughput that MPICH can deliver for long messages. MP_Lite M-VIA also has the ability to
channel-bonding multiple network interface cards to increase the potential bandwidth between
nodes. Using multiple Fast Ethernet cards can double or even triple the maximum throughput

without increasing the cost of a PC cluster greatly.



CHAPTER 1. INTRODUCTION

1.1 Parallel Computing

The need for more computational power is the main driving force in the development of
computers. Scientific and engineering problems require extremely fast computers to simulate
physical phenomena. Some typical examples include weather prediction, the atomic structure
of materials, the evolution of galaxies and the behavior of microscopic electronic devices (CS99).
To satisfy the computation need, one approach is to build a more powerful processor and use
a huge amount of memory. However, a single processor in many cases still cannot meet the
computational demand. For example, it will take 13 hours to predict the earth’s weather
for the next two days by using a computer that can execute one trillion (10'?) calculations
per second (Pac97). Moreover, the speed of light is an intrinsic limitation to the speed of
computers (Dem95). Instead of using a more powerful single processor, another solution is
parallel computing: use multiple-cooperating processors to solve large problems.

There are two broad classes of parallelism: SIMD (Single Instruction Multiple Data) and
MIMD (Multiple Instruction Multiple Data). SIMD systems perform the same operation on
different data concurrently. Vector machines, such as Cray T-90, and systems like the CM2 are
examples of the SIMD architectures. MIMD systems perform different operations on different
data concurrently. MIMD architectures have two basic types: shared-memory or distributed-
IEImory.

Shared-memory MIMD architectures consist of a collection of processors and memory mod-
ules that share the same memory bus. Each processor can access any memory module directly.
Although the memory access is faster than distributed memory computers, shared-memory

systems have specific problems such as memory consistency. Examples of shared-memory



architectures include the SGI Origin systems, IBM 43p/44p and Compaq ES40/DS20.

In distributed-memory MIMD systems, each processor has its own private memory. Access
to other processors and memory is via the network. There are many netwofk interconnect
topologies such as 2D and 3D meshes, fat trees, and flat networks. Examples of distributed-
memory architectures include the Cray T3E, Intel Paragon and IBM SP-2.

Distributed-memory MIMD systems can also be built using a group of PCs or workstations.
Such systems are referred to as clusters. A cluster is a collection of independent computer sys-
tems tightly-coupled by a dedicated netv._rork to form a multiprocessor computing environment.
Building a cluster is very economical and can have significant computational power, but the

network can limit the kind of applications that will run effectively on it.

1.2 Communication in Parallel Computers

Shared-memory computers typically use compiler directives that control concurrency and
access to data or use a native shared-memory library for inter-process communication. Distributed-
memory computers use a message-passing paradigm. Parallel computer vendors usually have
their own message-passing libraries optimized for their particular machines. There are also
many free distributions suitable for a variety of architectures. Among those implementations,
MPICH (GLnDS96) and LAM MPI (BDV94) are the two most commonly used message-passing
libraries that conform to the message passing interface (MPI) standard(For94).

The basic operations of message-passing are the send and receive functions. The simplest
model to measure the communication cost for sending a message is: communication time =
latency + message size / bandwidth. The communication time can make a big difference
in the performance of a parallel application. Therefore, it is always desirable to improve
the performance of the underlying message-passing library and the network protocol. The
performance of a message-passing library or a network protocol is usually measured by three

factors:

1. Latency: The preparation time for sending a message, or the time to send a smallest

useful message. It can be roughly measured by sending and receiving a 1 byte message



to another node and dividing the round-trip time by 2. Latency has a significant impact

on applicatons that pass small to moderately sized messages.

2. Bandwidth: The measurement of the communication rate. It tells us the maximum

number of bits or bytes that can be transfered per second.

3. Host processing cost: The CPU cycles consumed for communication.

From a software perspective, the performance of a message-passing library can be improved
In two ways: improve the performance of the message-passing layer or improve the underlying
network protocol.

The implementation of traditional network protocols, such as TCP, suffers a performance
penalty because of the operating system processing overhead and the extra memory-to-memory
copies between kernel space and user space. Many research efforts have designed user-level pro-
tocols that bypass the operating system to deliver higher performance (vECgS92; vEBBV95;
PKC97; DBL197; PT98; fIT00; CCC97). The Virtual Interface Architecture (CCCY7) is one
such protocol that defines an interface between high performance network hardware and com-
puter systems.

The message-passing layer can also be improved. For portability issues, many message-
passing implementations complicate the internal queuing structure and require extra buffering
for normal operations. Therefore, they do not match the performance of the underlying network
protocol. MP _Lite (Tur) is a light weight message-passing library designed to streamline the

flow of data and deliver the maximum performance to the application.

1.3 The Goal of This Thesis

It is clear that if we can integrate the advantages of a light-weight message-passing library
and OS-bypass network protocols, we can implement a message-passing library that has better
performance. In this thesis, we will discuss the design and implementation of the MP_Lite
message-passing library on top of M-VIA, which is a modular implementation of the VI ar-

chitecture for Linux. The goal is to combine the high efficiency of MP_Lite with the high



performance of M-VIA, and exploit the potential of the VI architecture to provide a low la-
tency and high bandwidth message-passing library for applications. MP _Lite M-VIA uses two
different communication modes to achieve low latency for short messages and high bandwidth
for long messages. Also, MP_Lite M-VIA is the first to implement channel-bonding mecha-
nisms on M-VIA, which provide double or triple the maximum throughput by using two or

three Fast Ethernet cards in each machine in a cluster computer.

1.4 Organization

In chapter 2, a brief introduction to the message-passing paradigm and its implementations
will be presented. We will also investigate some user-level communication protocols. The
emphasis is on the MP_Lite message-passing library and the Virtual Interface Architecture.
Chapter 3 will discuss the design and implementation details of MP_Lite for M-VIA. The
experimental results, compared to MPICH, MVICH and TCP will be presented in chapter 4.
The discussion of the limitations of MP Lite M-VIA, as well as a summary and discussion of

future efforts, will be presented in chapter 5.

1.5 Other Research Efforts

In addition to the thesis work described here, a generic floating-point data compression
library was also designed and implemented as the partial fulfillment of the requirement for the
degree. The goals of my effort on this project were to develop the initial prototype for the
compression library and fine tune the algorithms for the arbitrary precision routines.

Data compression is an effective way to increase the data transfer bandwidth or storage
capacity in high performance computing. In the compression library, we only deal with scien-
tific data: integer and floating-point numbers, single and double precision. The goals of the

compression library include (CKS*00):

o A fast, robust library for application use.

e Utilize determinable and limited amount of resources.



¢ Run-time resource configuration.
e Operate on local data structure or distributed data structure (via Global Arrays).

o Portability by avoiding assembly level code.

The compression library is still under development. Currently it provides interfaces to
compress and uncompress double precision data using different algorithms and contains several
utility functions.

Given an uncompressed buffer, the size of the compressed buffer is dynamically determined
and allocated and the handle of the compressed buffer is returned to the user. The handle con-
tains the address of the compressed buffer as well as the header information. The compression

algorithms currently implemented are:

* Double precision to single precision.
¢ Double precision to arbitrary precision.
e Skip lists.

» Double precision to arbitrary precision then using skip list mechanism.

IEEE standard 754 specifies that a double precision number contains one sign bit, 11
exponent bits, and 52 mantissa bits. The exponent has a bias of 1023, thus an exponent of
zero means that 1023 is stored in the exponent field. In the algorithm of double precision to
arbitrary precision, the user specifies how many exponent and mantissa bits are needed and
the algorithm adjusts the numerical representation accordingly. The algorithm must deal with

several aspects of compressing the numerical representation of a double precision number:

1. If the number of exponent bits the user specified is not enough to represent the data,
the algorithm will automatically increase the number of bits to that required. There
is a compression option that can let the algorithm automatically determine how many
exponent bits are needed to represent the maximum (or minimum) number in the user

data.



2. Some representations are reserved for special values. For example, infinity is represented
with an exponent of all ones and a mantissa of all zero. These values should be handled

differently.

3. Big endian and little endian have different representations of a floating-point number.

So the endian information should be stored in the compression header.

The skip list algorithm represents a number in two components: data value and data index.
It eliminates the need to represent a zero value therefore it is usefully for any sparse array or
matrix. A variation of the skip list is to count the number of continuously repeated values.
One of the requirement of the compression library is that user can modify the compressed data
without uncompressing the entire buffer. For a skip list compressed buffer, the modification
may lead to size change of the buffer. So an extra buffer is provided in skip list compressed
buffer to store small changes. If too many changes are made and lead to the overflow of extra
buffer, the current implementation must uncompress and re-compress the entire buffer.

Some application level functions are provided to operate on the compressed buffer: get
or put a portion of successive data, gather or scatter data according to an index map, and

accumulate data.



CHAPTER 2. COMMUNICATION WITHIN A CLUSTER

Shared-memory multi-processor machines usually use shared-memory for inter-process com-
munication. For distributed systems, especially in clusters, message-passing is a more common
approach. The two most commonly used message-passing standards are PVM (Parallel Virtual
Machine) and MPI (Message Passing Interface}). MPI does not support some features of PVM
such as dynamic process spawning, but it has more flexible collective functions (gather/scatter)
and asynchronous send and receive communication capabilities. Some commonly used message-
passing libraries are investigated in this chapter. The MP _Lite message-passing library will be
discussed in more detail.

Message-passing libraries are implemented on top of an underlying network protocal. Com-
pared to traditional network protocols, a user-level protocol allows the user to byvpass the op-
erating system and access the network device directly, thus providing low latency and better
performance. We will investigate several user-level protocols and focus on the Virtual Interface

Architecture.

2.1 Parallel Virtual Machine

PVM (PVM; Sun90) is one of many message-passing systems that preceded the formation
of the MPI standard. It is an integrated set of software packages that allows a heterogeneous
collection of computers to be used as a single parallel computer. PVM provides a general
programming interface for algorithms, and the underlying infrastructure permits the execu-
tion of applications in a virtual computing environment that supports multiple computation
models, such as functional parallelism and data parallelism. It provides support for a variety

of architectures. The processors involved can be scalar machines, multi-processor machines or



other special processors. The principles of PVM include:

e User-selected funning host. The user selects a set of machines to run the application on

and can exploit the capability of each specific machine.

o The basic unit of parallelism is a fask. A task is often but not always a process in the

operating system.

¢ Explicit message-passing model. Message-passing is accomplished by using explicit send

and receive commands.
o Heterogeneity and multiprocessor environment support.

A typical execution of a PVM application is a set of one or more sequential programs
containing embedded PVM function calls in either the C or FORTRAN language. Each ap-
plication program or instance of the application corresponds to one task. The compiled and
linked binary codes are placed in a location accessible from each machine involved. The user
starts one task, which eventually invokes other tasks. Those active tasks exchange messages

" to complete local computations. The results in each node are finally combined.

2.2 Message Passing Interface

MPI (For95), which was first defined in 1992, is a widely accepted standard for writing
niessage-passing programs on multiprocessor machines. The standard provides portability
between various architectures and an easy-to-use, consistent interface for application develop-
ment.

MPI is a library that can be called from C, C++ or FORTRAN programs. It is designed
to allow efficient inter-processor communication, reduce memory-to-memory copies and allow
the developer to overlap communication and computation. The semantics of the interface is
architecture independence and language neutral. Therefore, MPI applications can be develped
on and for many platforms and used in a heterogeneous environment. MPI provides reliable
communication for the upper layer, so applications do not need to deal with communication

failures. MPI guarantees thread-safety for multithreaded programming as well.



MPI describes the syntax and semantics for point-to-point communications, collective com-
munications, group, context and communicator management, process topologies, environment
management and profiling interface.

In point-to-point communications, the messages are not overtaking. If two sends match
one receive or one send matches two receives, the destination node will not receive the second
message if the first one is pending. In a single-threaded program, the send and receive are also

ordered. There are four communication modes for point-to-point communications:

Standard mode: The blocking send and receive are standard mode communication. In this
mode, a send can start whether or not a matching received has been posted and can
complete before a matching receive is posted. It is up to the MPI implementation to
decide whether outgoing message will be buffered and if the send operation should be
blocked. The standard send mode is non-loeal: the completion of the send may depend

on the matching receive.

Buffered mode: This is similar to standard mode, but it is local. If a send operation is
executed before a matching receive is posted, the outgoing message will be buffered to

allow the send call to complete.

Synchronous mode: A send can start whether or not a matching receive is posted, but will
complete successful only when the matching receive is posted and has started receiving.

This ix a4 non-local function.

Ready mode: A send may start only when the matching receive is posted. Otherwise an

error is returned.

In addition to these blocking communication mechanisms, MPI defines non-blocking com-
munication mechanisms. A non-blocking send initiates the data transfer and returns im-
mediatedly. A wait function needs to be called to complete the operation. Non-blocking
conunumication mechanisms can use all four communication modes described above.

Collective communications involve a group of processes. The collective operations provided

by MPI include: barrier synchronization, broadcast, gather/scatter, global reduction opera-



10

tions such as sum, max and min and many other variations. Collective functions are typically
built upon basic point-to-point communication primitives.

Since version 1.1 of the MPI standard, many efforts have been made to add new functional-
ity. MPI 2.0 was introduced in 1997. Many new features were added such as dynamic process
creation, one-side communication and paraliel IO (For97).

There are many implementations of the MPI standard. Computer vendors usually have
their own MPI implementation optimized for their specific architectures. There are also many
implementations that are freely distributed and suitable for a variety of architectures. MPICH

and LAM MPT are the two most comnmonly used implementations.

2.21 MPICH

MPICH (GLnDS96) is a compiete implementation of the standard. The initial implemen-
tation was available immediately when the MPI standard was released in 1994. The goal of
the MPICH project is to provide a portable, robust and efficient MPI implementation and
promote the adoption of the MPI standard. MPPICH is essentially a base implmentation for
parallel computers. MPICH is suitable for a variety of architectures. It supports traditional
distributed-memory parallel computers (Intel Paragon, IBM SP, NCube, Cray T3D). shared-
memory architectures (SGI Origin, IBM SMP, Compaq ES40) and clusters of workstations
running Unix or Windows. MPICH is intended to exploit the capability of specific architec-
tures to obtain high performance communications.

The key for performance and portability in MPICH is the Abstract Device Interface (ADI),
which is architecture independent. All MPI functions are implemented using macros and
functions that make up the ADI. The ADI layer provides basic send and receive functions and
message management. [t contains codes for message packetizing, attaching headers, buffer
management, queue management and handling heterogeneous environments.

For each different architecture, the ADI is implemented by using an architecture specific
low level channel interface. The channel interface implements three data transfer protocols:

The eager protocol where data is sent to the destination immediately; the rendezvous protocol
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where data is sent to the destination only when a matching receive is posted; the get or put
protocol where data is read or written directly. The simplicity of the channel interface, which

can be as small as five functions, provides a quick way to port MPICH to new architectures.

2.2.2 LAM MPI

LAM (Local Area Multicomputer) (BDV94) is a full implementation of MPI and is a
programming environment for heterogeneous computers on a network. LAM provides enhanced
monitoring and debugging tools, such as a snapshot of a process and message status, to facilitate
the message-passing application development.

Each computer runs a LAM daemon, which consists of a nano-kernel and a dozen system
processes. The nano-kernel schedules these internal processes and some external processes to
provide a communication subsystem for message passing between other LAM daemons. The
LAM buffer daemon collects incoming messages and stores outgoing messages for forwarding.
LAM MPI has the capability of dynamic process spawning, in which a group of MPI processes
can collectively create a new group of processes and a new communicator is established for

communication.

2.2.3 MP_Lite

MP _Lite (TCKO01) is a light weight message-passing library designed to streamline the data
flow and deliver the maximum performance to applications in a portable and user-friendly
manner. The purpose of MP _Lite is to minimize the overhead of the message-passing layer and
deliver as much performance as possible to applications. A full implementation of the MPI
standard requires complicated buffering and queue management to provide portability for
various architectures and handle situations such as MPI_ANY _SOURCE in receive operations,
out-of-order messages and byte mismatches between send and receive pairs. The extra buffering
and memory copy overhead, as well as the complicated multi-layered programming structure,
reduce the communication bandwidth and increase the latency.

MP _Lite provides a subset of the most commonly used MPI functions, which are enough
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for a large number of the parallel codes. The simplicity makes it easy to reduce extra buffering
and programming overhead, and thus deliver the maximum performance from the underlying
network layer to the application. It is an ideal research tool for studying the performance of

message-passing. Below is a listing of MPI commands that MP _Lite supports.

o Initialization and cleanup

MPI Init, MPI_Comm size, MPI_Comm rank, MPI_Finalize.

¢ Send and receive functions

MPI_Send, MPI_Recv, MPI.Sendrecv, MPI.Bsend. MPI Isend, MPI TRecv, MPI Ssend,
MPI_Srecv, MPI_Wait.

s (Collective operations

MPI_Alireduce, MPI Bcast, MPI Barrier.

¢ Timing functions

MPI_Wtime,

e Cartesian coordinate functions

MPI_Cart_create, MPI_Cart_coords, MPI_Cart_rank, MPI_Cart_shift, MPI_Cart_get.

The MP_Lite does not support groups, the use of communicators for creating subgroup
and the abstraction of the data types in a heterogeneous environment. It is not appropriate

for more complex codes using those features. Below is listing of what is not supported.

o Communicators other than Cartesian grid functions and MPI_COMM_WORLD.
o MPI_File. and MPIO_ functions.
o Many variations on the basic communication functions.

s Heterogeneous environments.
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Figure 2.1 represents the organization of MP_Lite. Applications can use the MP _Lite
syntax, which is simpler than standard MPI syntax, or choose to use standard MPI syntax. The
MP Lite layer has support for all the implemented send/receive functions, collective functions,
timing functions, ¥O functions and Cartesian functions. There are also functions for a variei;y

of other ongoing areas of research.

- to retain
portability

 workstations

Wixed systemn
distributed
SMPs

Figure 2.1 Diagram of the structure of MP_Lite

Each MP _Lite module implements point-to-point communication functions for different
architectures. For the TCP module, there are two modes: synchronous and asynchronous.
Communication events within an SMP node can be through either TCP or through shared-
memory segments. There is also a module for using the Cray T3E SHMEM library that
provides twice the performance of the Cray optimized MPIL In chapter 3 of this thesis, we
present the work on the M-VIA module, which bypasses the operating system to provide lower
latency and higher bandwidth.

The TCP synchronous module simply increases the TCP send and receive buffers. Because
all the messages must be buffered at TCP layer, this is an efficient way to reduce extra buffer-

ing and memory-to-memory copies. Therefore, the TCP synchronous module provides the
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maximim performancé to the application layer. However, it will lock up if the user puts more
data than can fit into the enlarged T'CP buffers. Setting TCP buffers to a large size can make
it usable for many applications but requires.lahrge amounts of memory for this configuration.

In the TCP asynchronous mode, the send and receive functions initiate the data transfer
but return before completion. Whenever the data is transfered out of the TCP buffer or more
data arrives in the TCP receive buffer, a SIGIO signal is generated so that a signal handling
routine can continue transfering the data. Asynchronous send and receive functions are non-
blocking and are more robust than the synchronous mode. The MP_Wait() function will buffer
the send data when necessary, therefore it will never be blocked even if two nodes are both
sending. This asynchronous mode provides good performance even when using the default
TCP buffer size.

All modules of MP _Lite implement the basic communication primitives and use the same
type of message queues to manage the message buffering when needed, such as for out-of-order
messages. They provide a consistent interface i:o the upper layer though the implementation

details may differ. .

2.3 Other Message-Passing Libraries

In addition to the traditional two-side communication libraries, which require the coopera-
tion of both the source and destination, there are one-sided communication libraries that can
put or get messages without the explicit cooperation of the iteracting node. The version 2.0
of the MPI standard has some support for one-sided communication, b_ut the typical example
is the Cray T3E SHMEM library (SHM94).

There are also several high-level libraries that build upon or beyond traditional message-
passing libraries to provide a stmple to use interface for applications. As an example, Global
Arrays (NHL96) provides a distributed multi-dimensional array interface as well as one-sided

communication mechanisms.
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2.4 User-level Networking

All message-passing libraries are implemented on top of one or more underlying network
protocols. The performance of the network protocol is critical to the performance of message-
passing libraries. Traditional network protocols such as TCP usually use kernel protocol stacks
to handle data transfer and demultiplexing operations. This mechanism requires data being
copied multiple times between user space and kernel space. For example, in Linux, to receive
a packet, the data is moved from the I/O device to the kernel sk _buff data structure, and
then moved to the user buffers. The extra memory-to-memory copy as well as the operating
system processing overhead increases the data transfer latency and decreases the bandwidth
(CIRS89).

In order to improve the performance, it is desirable to move the network interface much
closer to the application. A User-level Networking (ULN) protocol defines an interface between
applications and underlying network devices. Applications can talk directly to the network
interface controllers through a protected environment, thus reducing the operating system
processing overhead and eliminating the extra memory copies. Examples of ULN are U-Net.
Active Messages, Fast Messages, Virtual Memory-Mapped Communication, Basic Interface for

Parallelism, Scheduled Transfer Protocol and the Virtual Interface Architecture.

2.4.1 Active Messages

Active Messages (AM) (vECgS92) is an asynchronous communication mechanism intended
to overlap communication and computation. The traditional send/receive model often uses
blocking or a handshaking mechanism to implement the blocking communications, and a buffer-
ing mechanism to implement the non-blocking asynchronous communication mode. Thus the
effectiveness of an application using the message-passing library is degraded under the tradi-
tional send/receive model due to poor overlap of communication and computation. In Active
Messages, each message contains as its header the address of a user-level handler which is
executed on message arrival at the destination side. The handler is executed to extract the

message body from the network, which is viewed as a pipeline. The sender launches the mes-
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sage into the network and continues computing; the receiver is notified or interrupted on the
message arrival and runs the handler to receive the message body. The Active Messages differ
from the Remote Procedure Call (RPC) in that the handler executed on the message arrival is
to extract the message body from the network instead of performing computation. Buf'feriﬁg

is not needed for Active Messages.

2.4.2 U-Net

The User-Level Network Interface (U-Net) (VEBBV95) communication architecture pro-
vides processes with a virtual view of a network interface to enable user-level access to high-
speed communication devices. It focuses on reducing the processing overhead to provide low-
latency communication and exploit the full network bandwidth even for small messages. It is
an architecture designed to support traditional network protocols such as TCP/IP, as well as
newer networking abstractions such as Active Messages.

The U-Net architecture consists of three parts: the end-point represents a handler to the
network, the communication segments hold the communication data and the message queues
hold descriptors for incoming or outgoing messages. To send a message, the send descriptor
is pushed to the send queue and then the network interface will complete the descriptor.
Incoming messages are demultiplexed into the appropriate destination based on message tags.
The U-Net architecture specifies two levels of communication: a base-level which requires an
intermediate memory copy at both the source and destination, and a direct-access mode which

supports true zero-copy data transfers.

2.4.3 TFast Messages

Fast Messages (FM) (PKC97) is a low-level messaging layer similar to Active Messages,
but expands Active Messages by imposing stronger reliability guarantees. It uses essentially
the same API as Active Messages and has the same concept of message handlers, but pro-
vides a guarantee for reliable delivery, ordered delivery and control over the scheduling of the

communication work (decoupling), which is a mechanism to allow programs to control their
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cache performance. This allows the higher message layers the ability to avoid flow control,

retransmission and other reliability issues.

2.4.4 Virtual Memory-Mapped Communication

Virtual Memory-Mapped Communication (VMMC) (DBL*97) is a communication model
providing direct data transfer between the virtual address space of the sender and receiver.
The receiver exports the destination memory region, and the sending process ¢mports remote
buffers. VMMC protects the memory access by restricting the exporting and importing of the
buffers. After a successful import, the sender can transfer data from its virtual address space
into the imported destination buffer. This is accomplished by using a Remote Direct Memory

Access (RDMA) mechanism.

2.4.5 Basic Interface for Parallelism

The Basic Interface for Parallelism (BIP) (PT98) is a small API implemented on Myrinet
network hardware. It imnplements all communication in a user layer library and gives the user
direct access to the hardware. Memorj copies are minimized during data transfer. Short
messages are stored in an circular queue, so that send calls will not block even if no matching
receive has been posted. Sending a long message requires a receive to be posted before or no

longer than 50ms after the send.

2.4.6 Scheduled Transfer Protocol

The Scheduled Transfer Protocol (STP) (fIT00; SGI) is an ANSI specified connection-
oriented data transfer protocol. The protocol supports flow-controlled Read and Write se-
quences and non-flow-controlled, persistent-memory Put, Get and FetchOp sequences. The
objective of STP is to provide high-bandwidth data transfer with minimal host CPU usage
for long messages, and very low latency for short messages. STP has been implemented on
Gigabyte System Network {GSN) and Gigabit Ethernet for Irix 6.5. The implementation on

Linux is under development.
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The STP flow-controlled Read and Write sequences are designed to increase the bandwidth
of the long message transfer. A small control message is used to pre-allocate buffers on the
destination node, and the user buffers are mapped into the network interface’s address space.
Therefore, data can be transfered directly from the source user buffers to the destination user
buffers using a RDMA mechanism to achieve potentially true zero-copy data transfer.

The non-flow-controlled Get/Put/FetchOp sequences are designed for short messages where
low latency is the key. These sequences rely on more persistent memory mapping of the data
buffers. The data buffers, once mapped through the kernel, are subsequently used and re-used
to send/receive multiple blocks of data several times, thus resulting in very low latencies.

STP provides the basic transport layer infrastructure that can be used to implement mul-
tiple Upper Layer Protocols (ULP). Currently the only ULP implemented for Linux is the
INET sockets API, AF_INET sockets of type SOCK SEQPACKET using the protocol family
IPPROTO_STP. STP can use hardware acceleration, or use full software support. The cur-
rent Linux implementation includes a full software support module and the enhancements to
Gigabit Ethernet drivers with the Alteon firmware.

The current Linux implementation consists of a complete STP stack for long message
transfers through the socket API. However, it does not support reliable data delivery. and
is still in a very unstable beta stage. There is also an OS-bypass library (1ibST) fur short
message transfers, but it does not work because the receive ring in the device driver has not
been implemented and the send sequences can only send header information. Thercfore. we

have not implemented MP _Lite for STP.

2.4.7 Virtual Interface Architecture

Virtual Interface Architecture (VIA) (CCC97; DRM*98), which is a standard proposed by
Compaq, Intel and Microsoft, is an architecture for the interface between high performance
network hardware and computer systems. The VIA is designed to enable applications to
communicate over a System Area Network (SAN). A SAN is a type of network that provides

high bandwidth, low latency communication, and has very low error rates. Very similar to
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U-Net, VIA defines a set of functions, data structures, and associated semantics, and provides
direct access to the network interface for moving data directly into and out of process memory
without additional copies of data and bypassing the operating system in a fully protected
manner.

The VIA model consists of several components, as illustrated in Figure 2.2. The application
and VI user agent form the VI consumer part of VIA. The VI user agent, typically the VI
Provider Library, is an API for the application to access the kernel agent and the virtual
interfaces. The kernel agent, which is a privileged part of the operating system and usually a
device driver, performs operations such as memory registration, and opening/closing network
interfaces. The data transfer is through Virtual Interfaces. A network interface controller
(NIC) can be associated with multiple Virtual Interfaces. Each VI represents an end-point of
a connection. The kernel agent, Network Interface Controllers and Virtual Interfaces form the

VI provider part of the architecture.

Application

MPI, Other API
VI Provider Library

send/receive . RDMA write/read
register memory

open/close NIC Vi Vi
r r
e e
c C
VI Kemmel Agent v v

Network Interface Controller

Figure 2.2 VI architecture model

A VT consists of a pair of work queues: a send queue and a receive queue. The VI consumer
performs the send and receive operations by posting descriptors to the send queue and receive

queue. A descriptor is a data structure that contains all the information that the VI provider
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needs to process the requests, such as pointers to data buffers. Each queue is associated with
a doorbell. Whenever a new descriptor is posted to the queue, the doorbell is used to notify
the underlying NIC. The status information is returned from NIC to the VI consumer. Figure

2.3 shows a diagram of a Virtual Interface.

buffer buffer buffer buffer
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Descriptor Descriptor
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Network Interface Controller

Figure 2.3 A Virtual Interface

Each work queue in the VI can associate with a completion queue. The notification of the
completed descriptor in the work queue can be directed to the completion queue. A completion
queue allows a VI consume to coalesce notification of descriptor completions from the work
queues of multiple VIs in a single location. There are four methods to check the status of a

descriptor:

¢ Poll the send or receive quene.
e Wait on the send or receive queue.
¢ Poll the completion queue.

o Wait on the completion queue.

The polling method provides the minimum latency but requires more CPU cycles. The VI
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specification recommends using completion queues. Waiting on the completion queue is more
efficient.

The VI architecture requires that user buffers be registered before they are used. The
registration of a buffer locks the buffer memory pages into physical memory and translates the
virtual address to a physical address. This memory registration process allows the VI consumer
to reuse the registered buffers. The VI provider can transfer data directly between buffers of
VI consumers and the network interface controller without additional buffering.

There are two data transfer models in VI: the send/receive model and RDMA model. In
the send/receive model, descriptors are posted to the send queue and receive queue. Data is
transfered from the buffers specified by the send descriptors to the buffers specified by the
receive descriptors. Send descriptors and receive descriptors keep a strict one-to-one mapping
and are queued and dequeued in FIFO order. The VI consumer is responsibile for the man-
agement of flow control, so the receive side must pre-post at least one descriptor of sufficient
buffer size before the data arrives.

In the RDMA model, the initiator of the data transfer specifies the address of both the
source buffer and the destination buffer. There are two types of RDMA operations: the RDMA
Write and RDMA Read. In an RDMA Write, the data is transfered from the local buffer to
the remote buffer. In an RDMA Read, the data is transfered from the remote buffer to the
local buffer. Prior to the data transfer, the remote VI informs the local VI of the address
and the registered memory handle of the remote buffer. The RDMA mode does not consume
any descriptors in the remote VI queues, and no notification is given to the remote VI unless
the Immediate Data field is specified in the local descriptor. The support for RDMA Write is
mandatory, while the support for RDMA Read is optional.

The VI architecture supports three reliability levels: unreliable delivery, reliable delivery
and reliable reception. All VI NICs are required to support Unreliable Delivery. Other levels are
highly recommended but not required. The detailed information about reliability is discussed
in chapter 5.

The VI architecture and the Scheduled Transfer Protocol are very similar. They both
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provide RDMA. mechanisms to increase the bandwidth of long message transfers and use pre-
registered buffers for short messages to reduce latency. In STP, the sending of control messages
to pre-allocate buffers at the destination is automatically handled by the protocol, but in VIA,

the handshaking and the flow-control must be handled by the VI consumer.

2.5 VIA Implementations

2.5.1 M-VIA

M-VIA (BS99) is a modular implementation of the VIA for Linux being developed by Na-
tional Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National
Laboratory. The modular implementation allows it to support many types of network inter-
faces, and provides a portable and robust interface conforming to the VIA standard. M-VIA
consists of a user provider library, a loadable kernel agent module and several modified device
drivers. It can operate in either hardware acceleration mode or full software mode. It supports
hardware VIA “doorbell” or software “doorbell” modes with a fast trap (a trap to a privileged
mode that does not incur the overhead of a system call) for legacy hardware.

M-VIA is a full featured implementation of the VIA. The M-VIA kernel module is di-
vided into several independent components including connection management, protection tag
management, registered memory management, completion queue management, error queue
management and the requisite Linux kernel extensions. The modular design makes it easy to
be integrated into current Linux systems, for either the 2.2 or 2.4 kernels of Linux. The hard-
ware support includes: Loop-back driver, DEC tulip Fast Ethernet cards, Intel Pro/100 Fast
Ethernet cards, 3Com ”"Boomerang” Fast Ethernet cards, PacketEngines GNIC-I Yellowfin
Gigabit Ethernet cards, PacketEngines GNIC-II Hamachi Gigabit Ethernet cards, Syskonnect
SK-98XX Gigabit Ethernet cards and Intel Pro/1000 Gigabit Ethernet cards.

The current release does not have full support for reliable reception. Version 1.2b2 supports
reliable delivery, which is very close to the reliable reception level. The latter is required to
provide a full robust message-passing library for scientific applications.

The design of M-VIA 2 has been initiated. M-VIA 2 will redesign the internal structure to
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2.5.2 The Berkeley VIA Implementation

The Berkeley VIA implementation (BGC98) is a prototype implementation on Sun Solaris,
Windows NT and PC Linux over Myrinet. It follows the suggested reference implementation
contained in the é,ppendices of the VIA specification. One design choice was to keep as little
information in the NIC’s memory as possible. The VI creation and connection are protected by
mapping a queue for protected commands into the kernel driver’s memory so only the kernel
driver can perform those operations. Doorbells are implemented as a single memory location
on the NIC and polled by the firmware.

The Berkeley VIA implementation only supports a subset of VIA rather than the entire
standard. It does not implement the scatter/gather capability, reliability modes, error and

completion queues and the RDMA facilities.

2.5.3 Commercial Products

Many vendors provide VI-aware hardware and corresponding VIA implementations. They
are: Giganet (Emulex) - cLan, Finisar - Fibre Channel VI Host Bus Adapter, Tandem -
ServerNet I, Fujitsu System Technologies - Synfinity CLUSTER, and NEC - V1000 NIC.

2.6 VIA Implementations for MPI

2.6.1 MVICH

MVICH (Cen) is an MPICH-based implementation of MPI over VIA. It provides a high
performance MPI for high speed networks such as Gigabit Ethernet, GigaNet, ServerNet II,
or Fast Ethernet.

MVICH is a full implementation of the ADI2 for VIA, developed from scratch. It imple-

ments four protocols to maximize performance over a range of message sizes:

¢ For short messages, MVICH uses an eager protocol, in which data is sent and received

through pre-posted buffers, with the source sending data immediately.
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e For long messages, MVICH uses one of three protocols, depending on whether the un-

derlying NICs support RDMA Write or Read.

1. The “r3” protocol is a standard rendezvous protocol in which data is senf only when the

receiver has sent an ok-fo-send message.

2. The “rput” protocol is an RDMA Write protocol. Data is sent after an ok-fo-send is
posted by the receiver. Memory on both the sender and receiver is dynamically registered

so this protocol is zero-copy.

3. The “rget” protocol is an RDMA Read protocol similar to “rput”.

MVICH is still under development. The current release is 1.0a6.1. Work is in progress to
pass the full conformance and stress tests. We will compare the performance of MVICH with

communication libraries in chapter 4.

2.6.2 M-VIA for LAM MPI

The ParMa2 project has a basic M-VIA implementation for LAM MPI (BBCR: al'oP). It
also utilizes the normal send/receive and RDMA mechanism to improve the performance. The

basic communication functions supported include:

Standard send, synchronous send, buffered send and ready send.

[

Non-blocking primitives.

Tag and communicator control on messages.

MPI_Probe and non-blocking MPI_IProbe, used to read a matching envelope.

Support for receive from any process: MPI_ANY _SOURCE in receive functions.

This package also has a flow control functionality to avoid exhausting all communication
resources including RDMA space and pre-posted descriptors. Packet fragmentation and re-

assembly are implemented due to the 32 KB limitation of the maximum packet size.
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The drawback of this implementation is that user buffers are not dynamically registered.
Data is transfered between pre-registered send and receive buffers. Therefore, a memory copy is
needed to copy data between the user buffer and the pre-registered buffer at both the source and
destination. This greatly reduces the performance for large messages. Moreover, it is currently
very unstable. One problem is that it is unable to send messages more than approximately

1600 times. Therefore, it is impossible to run a full NetPIPE (SMG97) benchmark test.

2.6.3 VIA for MPI/PRO

MPI/Pro (DS98; DS99) is a commercial MPI implementation by MPI Software Technology
Inc. MPI/Pro uses a progress thread in each of its VI and SMP communication devices for
implementing an independent, non-polling message progression, thus MPI/Pro makes progress
on all messages independent of the sequence of user calls. Similar to other implementations, two
different protocols are used to handle short message send/receive and long message RDMA
to achieve the required low latency and high bandwidth. Other features include multiple
receive queues and optimized derived data types. Currently MPI/Pro VIA supports Giganet,

ServerNet-II and FC-VI (Finisar). The support for Myrinet is in development.

2.6.4 MPI Implementation on the NTSC VIA cluster

The National Center for Supercomputing Applications (NCSA) has implemented a Fast
Messages layer on top of VIA for their large scale Windows NT Super Cluster (NTSC), so that
MPI-FM, which is derived from MPICH that uses Fast Messages Interface, can run on top of

VIA through the Fast Message layer (Pan).

2.6.5 MP _Lite M-VIA

In the next chapter, we will discuss the implementation of MP Lite on top of M-VIA. By
combining the light weight, highly efficient MP Lite with high performance M-VIA, we will be
able to deliver most of the available performance that the underlying hardware offers to the

application layer.
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CHAPTER 3. IMPLEMENTATION OF MP_LITE FOR M-VIA

Using M-VIA to implement message-passing libraries has several advantages. For slower
networks such as Fast Ethernet, M-VIA provides much lower latency. For faster networks such
as Gigabit Ethernet, M-VIA offers much higher throughput because memory-to-memory copies
are minimized. M-VIA can use hardware acceleration to further improve the performance. By
combining the light-weight MP_Lite with M-VIA, we will be able to fully utilize the benefits
of both in order to deliver low latency and high bandwidth communication to applications in

a portable manner. The goals of this research project are:

o High performance (low latency, high throughput and low CPU load). The MP_Lite
M-VIA module will deliver almost all the performance that M-VIA can offer to the

application layer in an optimal situation.

o Channel-bonding capability. MP_Lite M-VIA will have the capability to use multiple

network interface controllers simultaneously to improve potential bandwidth.

s Minimizing resource usage. MP _Lite should minimize memory utilization and CPU work-

load. This is important for scalability.
o User friendly. Reduce M-VIA related configuration for MP _Lite and provide the same

interface and configuration mechanisms as other MP _Lite modules.

3.1 System Overview

The MP _Lite library already provides the high level functions that are independent of the
underlying communication protocols. These include global reduction functions and gather /scatter

functions. Therefore, what is required for a module is the implementation of the point-to-point
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functions, buffer management; message management, queue control, data segmentation and as-
sembly, as well as initialization and finalization procedures. The components of the system

and their respective relationships are shown in Figure 3.1.

Initialization

Dynamic Memory Registration

/\

Send Eager Protocol Receive
Blocking Send . - Blocking Receive
Asychronous Send Segmentation o| Assembly Asychronous Receive
Wait Wait
Handshake Protocol
RDMA Write
send_q |recv_g | msg_q mbuf, dbuf
Queue Management Buffer Management
Finalization

Figure 3.1 MP_Lite M-VIA module overview

The initialization procedure checks input parameters, allocates memory and sets up con-
nections. The point-to-point functions include blocking and non-blocking asynchronous send
and receive commands using two different transmission protocols: the eager protocol and the
handshake protocol. Dynamic memory registration is critical for the performance of long mes-
sage transfers. Data segmentation and assembly is necessary during transmission because of
the 32 KB limit of the maximum transfer unit in M-VIA. It is also imperative since we need to

use multiple network interface controllers for channel-bonding. The important data structures
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in message queue management are the receive queue, send queue and message queue. Buffer
management contl;ols- the memory resource usage. The finalization stage frees the allocated
memory and shuts down related processes.

In the following section, the details of the module implementation of M-VIA for each of

the sub-modules are delineated.

3.2 Queue Management

QQueue management provides a mechanism to buffer and access outstanding messages. The
send and receive queues are used to manage the asynchronous messages. The message queue
is used to buffer incoming messages that do not have a matching receive. Messages are queued

and dequeued in First In First Out (FIFO} order. The related data structures are:

struct MP _msg_entry: The MP_Lite message data structure which contains all the nec-
essary information for a message, such as the message id, source, destination, buffer

" address, length, tag and segmentation information for channel-bonding.

struct MP_msg_entry *send_q[]: Each node has a send queue for all other destination
nodes. A message of destination dest is appended to the end of send_g{dest]. The send
function dequeues messages from the head of send_g[dest] as it delivers the message to

the destination node.

struct MP_msg_entry *recv_q[]: Each node has a receive queue for each source nodes.
Messages expected from source src are posted to the end of recv_q[sre]. When a message
is coming from sre, the recv_q[sre| is searched from the beginning for a match. recv_gf-1]

is reserved for messages whose source is a wildcard.

struct MP_msg_entry *msg_q[}: The buffered message queue is for incoming messages that

do not have a match in recv.q. A message that is sent to itself is also posted to msg-_q.

The separation of queues by message destination or source speeds up the demultiplexing of
incoming and outgoing messages which enhances the performance. An example of the recv_q

is shown in Figure 3.2
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recv_q
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Figure 3.2 An example of the receive queue

Functions related to queue operation are:
post(): Post a message to the send_q, recv_q or msg_q

send_to_q(): Send a message directly to msg.q, which is used only when a node sends a

message to itself.

recv_from_q(): Try to retrieve a message from the msg.q. This is the first step to receive
any message. When a match is found, the data is copied to the destination buffer and
the message in msg.q is dequeued and destroyed. A receive message matches if the tags
of these two messages are the same or the tag of the receive message is a wildeard and

the number of bytes is less than or equal to the expected length.

find_a_posted_receive(): Find a matching receive in recv_q when a message is coming. If a

match is found, the message is returned and dequeued from the recv_q.

3.3 Buffer Management

Sending and receiving is accomplished by posting descriptors, which describe the data
address, length and registered memory handle. The short messages are copied to the pre-
registered buffers for sending (long messages use user buffers directly). Receive descriptors
need to be pre-allocated before connection is setup in order to receive unexpected data before

user buffers are available. Because limited memory resources, buffer management is needed
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to control the memory vsage. In our implementation, we use the concept of mbuf, which is
similar to the data structure used in many operating system memory management designs.
A mbuf is a block of memory that contains both the buffer description (in our case, the VI
descriptor) and the actual buffer space. An mbuf is linked as a queue. Functions are provided
to queue and dequeue a block of mbuf from the head of the queue. An mbufs is allocated in
a contiguous address space so that when it is registered, we get only one memory handle to

make things easier. This is illustrated in Figure 3.3.

Buffer I_ Descriptor

Address ]
Next
mbuf
Buffer Descriptor
Buffer l_ Descriptor
Address L. ]
Next
Buffer Descriptor

Figure 3.3 mbufs

In addition to mbuf, there is another type of buffer unit called dbuf. A block of dbuf only
contains a VI descriptor and does not have its own buffer space. An mbufis for sending and
receiving small messages, which are always be buffered in mbufs before sending or receiving.
A dbuf is for sending large messages. The buffer pointer will be redirected to the actual user

buffer. The advantages of the separation of mbuf and dbuf are:

1. Because the size of dbuf is small, we can allocate a lot of dbufs for sending large messages
without greatly increasing the system resource utilization. For example, we can allocate
300 dbufs (descriptors) for sending messages of up to 8 MB (each descriptor can point to

a 32 KB block of user data).
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2. We can increase the size of mbuf to improve the short message performance. Because
an mbuf is only used for sending small messages, which do not require many descriptors,
we can increase the size of an mbuf without greatly increasing the total system memory
usage. For example, we can set the size of an mbuf to 16 KB, so that a message smaller

than 16 KB can be sent in one descriptor.

In the MVICH implementation, there is only one type of buffer vbuf, which is similar to
mbuf. An vbuf is used to send both small and large messages. To send a large message, lots
of vbufs are needed. Because each vbuf has its own buffer space, to reduce resource usage, the
vbuf size should be small. For ex'a,mple, set the vbuf size to 1 KB in MVICH. A message of size
5 KB needs to be send 5 times, which limits the MVICH performance.

Functions related to mbuf (dbuf is similar) are:

via_desc.request(): In response to the user buffer request, dequeue a block of mbuf from the

mbuf list for usage.
via_desc_release{): When finished using an mbuf, queue the mbuf to make it available again.

via_desc_restore(): Restore the default value of the descriptor in an mbuf.

3.4 Important Data Structures

struct via_conn: This is the data structure represents the VIA connection. All the informa-
tion of a VI connection, such as the VI handle, the connection handle and the remote
address, is included in this data structure. Since the current M-VIA implementation
does not provide fully reliable data transfer, a sending sequence number and an ezpected

receiving sequence number are added to improve the error detection.

Message headers: Message headers tell the destination what type of incoming message it
is. They can be used to distinguish messages and selectively receive them. They are
also called message envelopes. To reduce transfer overhead, we use variable size headers

instead of a large fixed one to keep the header as small as possible. A few fields of the
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beginning of these headers are identical, so they have a common small header for easy

analysis. There are four types of headers used in different transmission modes:

1. OP_SEND: Normal send by using the eager protocol. Data is accompanied with the

header. The message length and tag are included in the header.

2. OP_RDMAW _RTS: RDMA Write request-to-send. Parameters include message length,

tag and source message id.

3. OP RDMAW_CTS: RDMA Write clear-to-send. Parameters include destination
buffer length, tag, source message id, destination message id, and registered desti-

nation memory handle.

4. OP_ RDMAW _DONE: This is used to notify the data destination that an RDMA
Write operation is done. This header contains the message length, tag, destination
message id and destination memory handle. This header can be eliminated if using
the I'mmediateDate field of the descriptor to inform the completion of the RDMA

opertion.

3.5 Imitialization

Initialization is done in the MP _Init()} function. The library needs to read and analyze
input arguments, determine the process id, initialize log and status files, allocate and create
data structures and setup VI connections.

The run-time parameters are stored in a configuration file .mplite.config in the current
working directory. The configuration file is created by the mprun startup script. The formait

of this file is:

<number of nodes>
<number of NICs>
<program name¢ and arguments>
0 <nodeQ NIC0>, <noded NICi>,

1 <nodel NICO>, <nodel NICi1>,
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Each node started by mprun reads those parameters and begins to determine its own process
id. The process id is an integer starting at zero and uniquely identifies each node. Because
multiple nodes can run on the same machine (especially on an SMP machine), and they are
basically identical, we need a mechanism to avoid contention in determining the process id.
It would be easy if the mprun script could determine the process id when it launches each
process, and then transfer this id as an input argument to each process. However, because
Fortran support for command line arguments is limited, it is not easy to deliver the process
id to the correct process if multiple identical processes are running on the same machine. So
each process has to determine the id independently.

Our approach is to use System V shared memory to determine the unique process id. All
the nodes on the same machine try to create a named shared memory region. The name
of the shared memory region is unique to each mprun session. If the shared memory region
already exists, then the processes try to attach to this memory region. The shared memory
region contains an integer. The initial value of this integer is zero. Each process grabs the
current value in the shared memory region and increments the value by one. Of course the
shared memory needs to be locked using a semaphore to avoid contention from other processes
accessing the same shared memory region. All the processes running on the same machine
will get different values and can be ordered accordingly. Each process uses the grabbed value
combined with the value read from the file .mplite. config to determining its unique process id.
. The last process closes the shared memory region.

After determining the unique process id, the next step is to determine the network devices
to be used (the VIA device name), such as ” /dev/via_ethQ” for the first NIC, * /dev/via_ethl”
for the second NIC, etc. The NIC name or IP address must be translated to the specific device
name. In MVICH, the device name is fixed in the source code, so if you want to use another
NIC on your machine instead of the default one, you have to recompile the MVICH package.

The M-VIA implementation of LAM MPI uses a configuration file to store the VIA device
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names, so you have to manually modify the configuration file if you want to use another NICL.

MP _Lite can stripe data across multiple NICs simultaneously to increase the transmission
bandwidth. The MP_Lite implementation dynamically determines the device from the user
provided NIC name at run-time. It works by getting the IP address of the specified NIC name,
using the octl() function to get a list of all the network interfaces installed on the system
and comparing the IP address with each of these interfaces. Dynamic configuration eliminates
the need for special configuration options for the M-VIA module and keeps the arguments of
mprun the same as for other modules.

The VI initialization procedure also allocates memory and creates data structures. This
includes allocating all the message and queue structures, allocating and registering mbufs and
dbufs (whose address must be properly aligned for performance), opening the VI devices and
creating VIs.

The last step of the MP_Lite initialization stage is to set up a fully-connected network.
Connections must be made between each pair of nodes. Each VI can only represent one
connection, so we have to create nprocs — 1 VIs and make nprocs — 1 connections in each
node for nprocs nodes. Each VI is given the local and remote address when created. The
descriminator (similar to the port number in TCP, but not restricted to integers) of each VI is
specified as a triplet {local node id, remote node id, NIC id}. Thus different VIs on the same
node have different descriminators.

The connection sequence is determined by the process ids. Each node accepts a connection
from nodes with a smaller id, then each node initiates connections to nodes with larger id
values. To synchronize this procedure, every node will send a go signal to its upper neighbor

and receive a go signal from its lower neighbor after all connections are generated.

3.6 Communication Protocols

Two communication protocols have been implemented in the MP _Lite M-VIA module: the

eager protocol and the handshake protocol. The eager protocol is for short message, and

'In fact, due to at least one bug, you can only use the first NIC unless you utilize some non-trivial hacks.
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the handshake protocol is for long messages.

3.6.1 The Eager Protocol

The eager protocol assumes the receive node has enough pre-posted buffers to hold the
incoming messages. Once messages are posted for sending, messages accompanied with headers
are sent to the destination node immediately. On the destination node, the arriving messages
are stored in the pre-posted buffers and copied to the user buffers when a matching receive is
posted. Because of limited buffer resources, this protocol is only suitable for small messages.

The eager protocol is illustrated in figure 3.4.

Sender Receiver
Pre—post
Post Buffers
User Send Buffer \ User Recewving Buffer
Descriptor Descriptor
Copy
l Header+Data Meinory Copy
—_— -
VI Send Queue VI Receive Queve

Figure 3.4 Diagram of the eager protocol

The eager protocol can significantly reduce the communication latency since messages are
sent without delay. However, it requires pre-posting enough buffers to hold the incoming data
from arbitrary sources and at least one memory copy is needed at the destination node to copy
data from the pre-posted buffers to the user buffers.

The MP _Lite M-VIA implementation involves an additional memory copy at the source
node, from the user buffers to the pre-registered mbufs. A procedure can be implemented
that dynamically registers the user buffers and posts the user buffer directly to the VI send

queue. However, for small messages, it takes more time to register/deregister buffers than to
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copy data to pre-registered buffers. Table 3.1 shows the time comparison of memory copy and

registration/deregistration of different data sizes on an Intel PIII PC.

Table 3.1 Memory copy compared to memory registration

Data size (bytes) | Memory copy (us) | Registration/deregistration (us)

8 0 4

64 0 4

256 0 4

2048 1 4

4096 2 5

8192 4 6

16384 47 8

32768 91 12

65536 181 21

The table shows that when the data size is less than 8 KB, the memory copy is faster than
memory registration/deregistration. Therefore, for small messages, it is more efficient to use
the memory copy. For large messages, we switch to the handshake protocol and use the RDMA

Write to achieve high performance, zero-copy data transfer.

3.6.2 The Handshake Protocol

The handshake protocol requires handshaking between the source and destination nodes.
Because of the handshake delay, it is suitable only for large messages. The source node sends out
a request-to-send control message that includes the message size and tag. When the destination
buffer is available, the destination node replies with a clear-to-send message containing the
destination buffer address and the registered memory handle. The source node then uses an
RDMA Write mechanism to deliver data directly into the destination buffer. No extra memory
copy is needed?. This is illustrated in figure 3.5.

The handshake protocol is more robust than the eager protocol since the source will not
send messages until there is enough room at the destination. It can deliver very high band-

width when combined with the RDMA Write mechanism to achieve a zero memory copy data

2In fact, M-VIA still has one internal memory copy at the receive side if no hardware acceleration is available.



37

Sender Receiver
requesl=to-send (message tag + length)
clear—to—-send (destination buffer address)
User Buffer
RDMA Write
- Destination Buffer
Data

VI Send Queye

REOMA Write Done

Figure 3.5 Diagram of the handshake protocol

transfers. Although handshaking delays exist, for large messages, the data transmission time
is significantly larger than any such delay.

It is possible to devise another simple handshaking protocol that reduces one handshake
and can overlap communication and computation at the receive side. Whenever a receive
is posted. the destination node just sends out a clear-to-send message to the source node,
then continues working on other computational components. The source node does not send
out any message when a send message is posted. Instead, the source node just waits for a
matching clear-to-send message, then starts the RDMA Write procedure to send data without
the interaction of the destination node. After the message is written remotely, a RDMAW
Done message is sent to the destination to notify that the transfer is complete.

This method has problems however. Consider what happens if both nodes are going to
send. They will both be waiting for clear-to-send messages, which leads to deadlock. Another
problem exists in channel-bonding. Because the receive node can have a larger buffer than
source message, it is unable to determine how to segment the data and register the buffer
unless it receives the source buffer length information. Therefore it can not send a clear-to-

send heforehand.
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3.7 Dynamic Memory Registration

In the RDMA Write mode, whenever a send or receive is posted, the corresponding buffer
is dynamically registered. The registration of a buffer is to pin the buffer into the physical
memory. When the data transfer is finished, the buffer is deregister. The frequent registration
and deregistration may decrease performance.

One optimization in MP _Lite M-VIA is to keep the registration information for the last few
registered buffers. When a buffer is registered, the buffer address, length and the registered
memory handle are put into a memory registration cache. When the data transfer is completed,
the buffer is not deregistered immediately. Instead, the buffer registration informiation is still
stored in the cache. Before registering a buffer, the cache is searched to see whether a registered
buffer is available for use. In case of a cache hit, the registration informiation in the cache can
be used immediately, thus eliminating the overhead of memory registration.

There are three statuses of a cache entry: INVALID, CACHED and IN_USE. An empty
cache entry is marked INVALID thus can be used to register a new buffer. If a cache entry is
being used by any of the MPI send or receive commands, it is marked IN_USE. If all of the MPI
send or receive cornands that use the cache entry are completed, the cache entry ix marked
CACHED. In case of a cache miss, an empty cache entry is searched first to register the new
buffer. If the cache is full, the least recently used cache entry is replaced. However. a cache
entry that is in IN_USE status can’t be replaced because the data transfer is not completed
for this entry. If all the cache entries are in use, then the newly registered buffer will not use
the cache.

In M-VIA, there are limitations on the the size of buffers and the number of buffers that
can be registered. It is neccessary to clean the cache if the memory registration will exceed

those limitations.

3.8 Send

In MP_Lite, there are two essential send functions: MP_Send() and MP_ASend(}. MP _Send()

is a blocking function that does not return until the message is received or stored somewhere
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so that the send buffer is free for reuse by the sending process. The MP_ASend() function is
a non-blocking, asynchronous function that returns after the function is called. It only indi-
cates that the sending mechanism has started; it has not completed. The buffer can not be
reused until a matching MP_Wait() is called. The implementation of MP_Send() is just an
MP_ASend() followed by an MP.Wait().

In MP_ASend(), the message destination is checked first. Messages sent to oneself are copied
directly to msg.q. Other messages are posted to send_q. MP_ASend() does not actually start
sending the message. The actual sending begins only when MP_Wait() is called. MP_Wait()
takes a message from the head of the send_q and begins to deliver the message. This message
might not be the message that matches the MP_Wait() call. The procedure is repeated until
the message corresponding to the MP_Wait() call is taken out of the send_q and has been
delivered.

The send is implemented by using two transmission protocols described in the last section,
eager protocol and handshake protocol. Small messages are sent using eager protocol. Messages
less than 12 KB accompanied with OP_SEND headers are copied to the pre-registered mbufs
and put into the send queue. In the eager protocol, we assume the destination has enough
space to store small messages, so in most cases sends will not be blocked. If the destination
node does not have enough buffers, data will be lost. In a reliable version of M-VIA, the lost
data is supposed to be re-transmitted by M-VIA. In an unreliable version of M-VIA, currently
only error messages are generated by MP_Lite.

Large messages use the handshake protocol and RDMA Write mechanism. The source
node sends an OP_RDMAW _RTS (RDMA Write request-to-send) message to the destination
node with the buffer length and tag being specified in the header. The sender then waits
for the OP RDMAW_CTS (RDMA Write clear-to-send) message. It is necessary to check the
destination buffer length in the reply. If the destination buffer is large enough, then we can
begin the RDMA Write session by transferring data from the source buffer directly to the
destination buffer. No additional memory copy is needed. I the destination buffer is too

small, it is not considered an match. Because of the maximum 32 KB transfer size limits of
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M-VIA, for messages larger than 32 KB, we need to segment (e.g., packetize) the data before
transmission.

There are two choices when sending large messages. The first one sends out a 32 KB
descriptor, waiting for it to complete then using the same descriptor to send another 32 KB
of data. This method requires only one descriptor, thus reducing the memory usage. The
second approach, which is the default method, posts as many descriptors as necessary to send
a message. Although this method requires more descriptors, the throughput is better for

Gigabit Ethernet.

3.9 Receive

MP Lite has two types of receive functions: MP_Recv() and MP_ARecv(). MP Recv() is
a blocking receive function, and MP_ARecv() is a non-blocking, asynchronous receive. In the
actual implementation, MP_Recv() is just a MP_ARecv() followed by a blocking MP_Wait().
MP_ARecv() does nothing other than put the message into the recv.q. The MP_Wait() handles
the actual data transfer.

The receive procedure in MP_Wait() starts by checking the msg.q. The message might
have already been received and buffered in msg q. If a matching message is found, the data
is copied from the msg_q to the destination buffer and the buffer in msq.q is freed. Before
copying the data, it is important to wait until the message is completely received. If the receive
buffer 1s larger than the buffered message in recv_q, after data is copied to the receive buffer,
the search in msq.q should be continued to find another match that can fill the availabe space
in the receive buffer,

I the message is not found in msg_q, it needs to be actually received over the network. The
VI receive function is called to wait on the VI receive queue until a message header is received.

By distinguishing different types of message headers, different operations are performed:

e If the header is OP_SEND, it is a small message sequence that will use the eager protocol.
The receive side extracts the message length and tag and tries to find a matched receive

in the recv_q. If the tags of the send and receive message are the same, or if the receive
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tag is a wildcard, then they are matched. If no such match is found in the recv_q, the
incoming message needs to be buffered. This is done by allocating a temporary buffer
and creating a new message. After receiving the incoming message in the temporary
buffer, the message is posted to the msg q. If a posted receive is found that matches the
incoming message, then the incoming message stored in the pre-posted mbufs is copied

to the destination user buffer.

Things would be easy if all the matched send and receive messages were the same size.
If the receive buffer is smaller than the send buffer, it is a mismatch and another posted
receive should be searched. In the case where the message sent is smaller than the receive
buffer, the message is copied to the receive buffer and the progress of the receive buffer
is adjusted. The receive buffer is put in the recv_q again. This allows following incoming

messages being received into this receive buffer.

If the header is OP_ RDMAW _RTS, it is an RDMA Write request-to-send message. First
recv_q is checked to find a matching receive. If no such match is found, a temporary
message buffer is created for the incoming data. This buffered message is put in the
msg_q even though no data has been received. An OP_RDMAW _CTS message is sent to
allow the RDMA Write to begin. If the receive buffer is larger than the send buffer, after
data transfer is completed, the progress of the receive buffer is adjusted and the receive

buffer is put in the recv_q again.

If the header is OP RDMAW_CTS, it is an RDMA Write clear-to-send message, and is
a response to the previous OP_ RDMAW_RTS request. The message id is extracted from
the header to find out which message made the request and the RDMA Write operation

is started for this message.

If the header is OP_ RDMAW_DONE, it is an acknowledgment from the source node
that an RDMA Write operation has been completed. The destination node extracts the
message id from the header to know which message has been done, then adjusts the

number of bytes left field of the message to adjust the current state. It is not necessary
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for the entire message to have been received because the receive buffer may be larger
than the message sent. The actual implementation uses the Immediate Data field of the
descriptor to send the last data packet, so that the last packet will consume one descriptor

at the destination side to indicate the completion of the data transfer.

The destination node repeatedly receives headers and progresses each receive until the
desired message is received. A special case is when the source of the receive message is a
wildcard, matching any source. The destination node cycles through each source by using a
method outlined above to see whether a matching header has arrived. This is not very efficient,

since we must check each source, but it is convenient at this time.

3.10 Channel-Bonding

Channel-bonding is the ability to stripe messages across multiple network interface cards to
improve the potential bandwidth between machines in PC and workstation clusters. Channel
bonding was first introduced in the Beowulf parallel workstation (SSB795), where using two
Ethernet channels could sustain 70% or greater throughput than a single network alone.

Compared to channel-bonding on multiple Fast Ethernet cards, using one Gigabit Ethernet
card in the same situation does provide higher throughput, but this greatly increases the cost
of the whole computer system. Channel-bonding on multiple Fast Ethernet cards provides an
economic and scalable way to improve the communication performance in clusters.

To enable channel-bonding, it is neccessary to allocate a copy of related data structures
such as the NIC handle, VI handle, mbuf, and connection descriptor for each NIC. During the
initialization stage, a full connection network is constructed for each NIC. That is, NIC 0 on
all nodes will form a fully connected network, NIC 1 on all nodes will form a separate fully
connected network, etc.

MP _Lite M-VIA defines a size threshold for starting channel-bonding. Long messages
usually can use channel-bonding. For small messages sent by the eager protocol, if the message
size is larger than the channel-bonding threshold, the message can also be sent using multiple

NICs. The data buffer is divided into blocks of data, where each data segment is stored in one
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VI descriptor. For two NICs, a header with the first block of data is posted to the send queue
of the first NIC, the second block of the data is posted to the send queue of the second NIC.
After both sends have completed, the third block of data, if available, is posted to the send
queue of the first NIC again. This procedure continues until all the data is sent. Each NIC
sends one descriptor each time, in order. The destination node receives blocks of data from

each NIC in the same order, as in figure 3.6.

NIC 0 NIC 1 NIC O NIC1 NICO

Figure 3.6 Channel-bonding for small messages

For large messages, it is neccessary to register buffers used by every NIC, so it is better
to divide the buffer into approximately equal length segments with each NIC handling one
segment of data. Remember that the destination node needs to reply with the address and the
registered memory handle of each segment to the source node. The destination node is unable
to do so before the requesi-to-send message is received from the source node, since the receive
buffer may have a different size than the send buffer thus the receiver does not know how to
segment the buffer using the same mechanism as the source node. But it can be assumed that
the size of the recetve buffer is equal to the size of the send buffer, so the receive buffer can
be registered before the arrival of OP_ RDMAW_RTS. This improves the performance in most
situations. Finally, if the sizes are different, the buffer can be deregistered and re-register using

the new buffer size. The segmentation is illustrated in figure 3.7

NICO NIC 1

Figure 3.7 Channel-bonding for large messages sent by the RDMA Write

After a segment has been transfered, the NIC needs to notify the destination node of the

completion of the data transfer. Only when all notifications from each NIC have been received,
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the data transfer is completed.

3.11 Finalization

The finalization step frees all of the resources allocated by the MP_Lite library. This include
disconnecting all of the connections, deregistering and freeing all mbufs and dbufs, destroying
VI data structures, and freeing all other memory allocated by the library. It is necessary to

synchronize the execution of each node before cleaning up.

3.12 Porting M-VIA to the Alpha Platform

Currently M-VIA is only tested for PC x86 platforms running Linux. We have made some
changes to the source code of M-VIA so that it also works on the Alpha Linux.

The first change needed is the doorbell type. The doorbell is an operating system mech-
anism for a process to notify the VI NIC that a descriptor has been placed on a work queue.
Three doorbell types are provided by M-VIA: fast trap, ioctl and register. The register door-
bell is not yet implemented in M-VIA. The x86 version uses fast trap. However, the fast trap
code is written by using x86 assembly language to bypass the OS system calls. For the Alpha
platform, it is neccessary to disable the fast trap and use ioctl doorbell instead. The descriptor
offset into the physical page field in the doorbell token format needs to be slightly increased
because the page size on Alphas is 8 KB compared to 4 KB on the x86 platform.

Another problem is the mapping among user virtual addresses, kernel virtual addresses
(linear address) and physical addresses. In the memory registration function, a user vir-
tual address needs to be mapped to a physical address. This is accomplished in the macro
generic_virt_to_phys(), which walks through page tables to get the physical address. The result
of the page table walking in the current M-VIA implementation is the kernel virtual address on
Alpha instead of the physical address. It needs to be further translated to a physical address
by adding a PAGE_OFFSET. Also, the input parameter to the kernel function MAP_NR(),
gets a memory map index for a page in the kernel memory, should be a kernel virtual address

instead of a physical address as in the current M-VIA.
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One problem still not solved is the size of the memory handle. It is defined as a 32 bit
unsigned integer. However, according to the VI specification and the actual programming, the
memory handle is obtained by (Virtual Address >> PAGE_SHIFT - PROTECTION INDEX).
On the Alpha platform, the address is 64 bit, so theoretically, a 32 bit memory handle is not
enough. In our changes to the source code, we did not increase the size of the memory handle
because it is related to many other data structures, and thus a non-trivial aspect of the port.
'The M-VIA implementation should handle this through a normal abstraction mechanisms and

this advice has been sent to the developers.
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CHAPTER 4. PERFORMANCE OF MP_LITE M-VIA ON LINUX

4.1 Experimental Environment

4.1.1 Configuration

The performance evaluation environment consists of two test clusters. The first cluster
contains two Pentinum III PCs connected back-to-back by multiple Fast Ethernet and Gigabit
Ethernet cards. The second test-bed consists of two Compaq DS20 Alpha workstations, also
connected by multiple Fast Ethernet and Gigabit Ethernet cards. The configurations of these

two clusters are shown in table 4.1.

Table 4.1 Test cluster configuration

CPU memory | Fast Ethernet | Gigabit Ethernet
DEC Tulip Syskonneet
PC cluster Pentinum III 450MHz 256MB 3Com 3C59X Hamachi
Intel/Pro 100
Alpha cluster | Compaq DS20 500MHz 1.5GB ) Syskounect

The clusters are running the Red Hat 6.2 Linux distribution with kernel version 2.2.19.
The M-VIA version is 1.2b2, which supports reliable delivery. We applied our Alpha patch to
this version of M-VIA. In the experiment, three different M-VIA implementations of MPI are

compared as shown in table 4.2.

Table 4.2 Installed M-VIA implementation for MPI

MPI software package | M-VIA Implementation
MP _Lite 2.2 M-VIA module
MPICH 1.2.0 MVICH 1.0a6.1
LAM MPI 6.3.2 ParMa2 VIA patch 0.3
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4.1.2 NetPIPE Performance Evaluator

For all tests we used the NetPIPE (SMG97) performance evaluation tool. NetPIPE stands
for the Network Protocol Independent Performance Evaluator. The network performance is
evaluated using multiple ping-pong tests. The transfer block size is increased from a single
byte until transmission time exceeds one second. The transmission of each size of data block is
repeated enough times so that the total time is far greater than the timer resolution. NetPIPE
reports the block size in bytes, throughput in Mbps (Megabits per second), and transfer time
in microseconds. The latency for a 1-byte message is also reported.

Two types of graphs are presented using the NetPIPE output:

Throughput graph: This is the graph of the throughput versus the message size on a log-
arithmic scale. The throughput graph is the traditional way to show the transfer rate
for each different block size. It is easy to see the maximum throughput in this type of

graph.

Signature graph: The throughput versus the elapsed time on a logarithinic scale. This graph
shows the network transfer latency and the network transfer “acceleration”. The latency

is the time of the first data point on the graph (1-byte round-trip time divided by 2).

4.2 Point-to-Point Communication

In this section, the results of the performance comparison for various communication li-
braries are presented. The communication is between a pair of Fast Ethernet or Gigabit

Ethernet interfaces on one of the test clusters.

4.2.1 Fast Ethernet on the PC Cluster

Figure 4.1 shows the throughput comparison of MP Lite M-VIA, MVICH, LAM MPI M-
VIA, MPICH and raw TCP between Tulip Fast Ethernet cards on two PCs. Raw TCP offers
a maximum of 83 Mbps throughput. Both MP Lite M-VIA and MVICH can deliver the

maximum TCP performance adequately. The maximum throughput of MP_Lite M-VIA is 91
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Mbps, which is a little better than the maximum throughput of TCP. MPICH loses 10% of the
TCP performance. The LAM MPI M-VIA has 80% of the TCP performance. For LAM MPI
M-VIA, there are stability problems in the current version, so we had to reduce the repeat

times when testing using NetPIPE, so the result are a little noiser than other tests.
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Figure 4.1 The throughput between Tulip Fast Ethernet cards on two PCs

For messages smaller than 8 KB, MP_Lite M-VIA and MVICH provide better performance
than TCP. Around 10 KB, both MP_Lite M-VIA and MVICH switch from the eager protocol to
the handshake protocol and start using the RDMA Write mode. There is a little performance
decrease at this point, but after 12 KB, the performance increases over TCP.

Figure 4.2 illustrates the matching signature graph of the above message transfer. The
signature graph clearly shows the latency, which coincides with the time of the first data point
on the graph, of each communication library.

M-VIA based communication libraries provide much lower latency than raw TCP. MP Lite
M-VIA has the lowest latency at 40us. MVICH and LAM MPI M-VIA are 45us and 56us
respectively. Compared to TCP at 52us and MPICH at 121us, M-VIA based libraries have

advantages for codes that send many small messages. The M-VIA OS bypass mechanism and
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Figure 4.2 The communication latency between Fast Ethernet cards

eager transfer protocol both contribute to the low latency and the characteristics of these

libraries.

4.2.2 Gigabit Ethernet on the PC Cluster

The difference between the message-passing libraries is more evident for faster networks
such as Gigabit Ethernet. Gigabit Ethernet, also known as the IEEE 802.3z standard. offers
a 1 Gbps raw bandwidth which is 10 times faster than Fast Ethernet. It operates in a very
efficient full-duplex, point-to-point mode in our experimental configuration. Initially Packet
Engine II Hamachi cards were used as our test NICs, but they can deliver at most 330 KB
of data due to some bugs in the device driver. Therefore, we switched to Syskonnect Gigabit
Ethernet cards.

Figure 4.3 shows that MP _Lite M-VIA and MVICH reach a maximum of 425 Mbps. Com-
pared to raw TCP, which has a 290 Mbps maximum, the result is very impressive. TCP based
MPICH tops out at 230 Mbps, which is only a little more than half of MP_Lite M-VIA and
MVICH. For messages sizes between 2 KB and 16 KB, the throughput of MP_Lite M-VIA
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Figure 4.3 The throughput between Syskonnect Gigabit Ethernet cards on
the PC test cluster

is much better than MVICH. This is because MP_Lite can use larger buffers to send small
messages without increasing the system memory usage much.

The latency of MP_Lite M-VIA is 4545, which is the best of the communication libraries
tested. The 51us latency of MVICH is also very low. TCP and MPICH are at 53ps and 127us
respectively.

The Syskonnect Gigabit Ethernet cards support TCP jumbo frames, in which the MTU
(Maximum Transfer Unit) of 9000 bytes is used instead of the standard 1500 bytes. Figure
4.3 shows that by enabling jumbo frames, the performance of TCP will reach 580 Mbps. The
latency remains the same as with the standard MTU. The native MTU of M-VIA is only 1480
bytes, and currently it does not support jumbo frames. It would be nice to run MP_Lite M-VIA
in conjunction with jumbo frames in the future.

Although the MPICH we tested is based on TCP, enabling jumbo frames does not improve
the performance of MPICH. This is becanse MPICH initializes the TCP buffer to a fixed 4096

bytes, thus a large MTU does not improve the performance of MPICH much {OF00).
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4.2.3 Gigabit Ethernet on the Alpha Cluster

This section focuses on the performance of the communication on the Alpha Linux chister

connected by Syskonnect Gigabit Ethernet cards. Figure 4.4 illustrates the throughput as a

function of message size for MP _Lite M-VIA, MPICH, TCP and TCP with jumbo frames.

The curve for MVICH is not shown here because currently MVICH does not work on Alpha

workstations. Figure 4.5 is the corresponding signature graph, which shows the latency (the

time of the first data point) of each communication library.
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Figure 4.4 The throughput as a function of message size on the Alpha

cluster

The performance of each communication library on the Alpha platform is much better

than on PCs due to less strain put on the memory bus. The maximum throughput of MP _Lite

M-VIA is as high as 720 Mbps, with a 36us latency. The throughput of raw TCP and MPICH

are 390 Mbps and 350 Mbps respectively, with latencies of 38us and 93us. !

The TCP with jumbo frames again has the highest 880 Mbps maximum throughput. How-

' The results are tested using Linux non-SMP kernel. Using SMP kernel will greately increase the latency of

TCP.
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Figure 4.5 The signature graph on the Alpha cluster

ever, this requires a switch that supports jumbo frames, which limits its use currently. The
support of jumbo frames in M-VIA is expected in future releases. The performance of MPICH

actually decreases by enabling jumbo frames.

4.3 Channel-Bonding on Linux Clusters

Channel-bonding is the ability to stripe messages across multiple NICs to increase the
communication rate between machines. Figure 4.6 shows that channel-bonding three 3Com
Fast Ethernet cards on PCs triples the communication bandwidth. Channel-bonding four Fast
Ethernet cards provides 332 Mbps, or nearly 90% of the potential bandwidth. However, the
tested M-VIA does not have full reliability built in yet, but these results are encouraging.

Currently we can use three 3Com cards or two Tulip cards for channel-bonding. Using
the fourth 3Com card or the third Tulip card can pass the NetPIPE test, but exhibits errors
during bi-directional transfers. We are unable to install the fourth Tulip driver on the Linux

system, and unable to install two Intel/Pro 100 M-VIA drivers.
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Figure 4.6 Channel-bonding up to four 3Com Fast Ethernet cards between
PCs

Figure 4.7 is the result of channel-bonding two Syskonnect Gigabit Ethernet cards on Alpha
systems. The result is not as good as on PCs. Using two Gigabit Ethernet cards only offers
a 20% improvement, nearly 150 Mbps extra bandwidth over using a single NIC. Because M-
VIA still has one memory copy on the receive side, the performance is limited by the internal

memory bandwidth, which limits the flow of data through the PCI bus.

4.4 Summary

In this chapter, the performance of MP _Lite M-VIA, MVICH, MPICH, LAM MPI M-VIA,
TCP and TCP with jumbo frames using Fast Ethernet and Gigabit Ethernet cards on both the
PC and Alpha platforms are presented. Generally, VIA based communication libraries have
better performance on throughput and latency. MP_Lite M-VIA has impressive performance
on both Fast Ethernet and Gigabit Ethernet. It has the lowest latency and nearly double the
performance of MPICH. The low latency is achieved by the M-VIA operating system bypass

mechanism for reducing system overhead, and by using the eager communication protocol as
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Figure 4.7 Channel-bonding two Gigabit Ethernet cards on the Alpha clus-
ter

well as buffering mechanisms to reduce the transfer delay. The small message header and large
buffers also reduce the communication overhead for small messages. The higher throughput
is obtained because of the very efficient RDMA Write mechanism. The memory copies are
minumized. Although reliability support needs to be further optimized and tested, the results
are very promising.

Channel-honding of three Fast Ethernet cards provides a nearly ideal tripling of the commu-
nication rate. This is a good way to increase the communication performance without greatly
mereasing the overall system cost. Although we can channel-bonding two Gigabit Ethernet
cards. the performance improvement is not as much as for Fast Ethernet cards, due to the

limitation of the internal memory bandwidth.
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CHAPTER 5. DISCUSSION AND CONCLUSIONS

This chapter will give a summary of the implementation and discuss the limitations and
issues of M-VIA and the MP Lite library. Possible countermeasures and future work will also

be proposed.

5.1 Features

The design and implementation of MP _Lite for M-VIA has achieved several objectives:

high performance, channel-bonding capability, portability, and a user friendly system.

5.1.1 High Performance

The high performance of MP _Lite M-VIA is demonstrated in the low latency and maximum
throughput. The implementation also tries to use wait functions instead of polling functions
to minimize the CPU load.

For both Fast Ethernet and Gigabit Ethernet, MP_Lite M-VIA has a much lower latency
than MPICH, and is also better than MVICH. The OS-bypass mechanism of M-VIA and the
light-weight nature of the MP _Lite library are the main factors that contribute to the low

latency. However, the following implementation choices are also important:

1. The eager protocol sends small messages without delay.

2. Pre-registered buffers are used to send and receive small messages to avoid dynamic

memory registration, which is more expensive than memory copies for small messages.

3. The small message envelop (message header) reduces the overhead.
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For large messages, the handshake protocol triples the latency. However sending a large
message requires much more time, so the latency is not a significant part of the total commu-
nication time. The time to send the data essentially hides the extra latency.

MP Lite M-VIA has much better th:ouéhpuﬁ compared to MVICH if the message size
is smaller than 16 KB. This is because MP Lite M-VIA uses larger bﬁﬁ'er size so that a
small message can be sent in one descriptor. The large buffer reduces the overhead of data
segmentation, assembly and transmission. Using large buffer does not increase the system
memory usage in MP_Lite M-VIA. For larger messages, MP_Lite M-VIA and MVICH have
almost the same throughput. Both can deliver almost all the performance that M-VIA provides.
The high throughput for large messages is due to the highly efficient RDMA mechanisms that

reduce the extra memory-to-memory copies.

5.1.2 Channel-Bonding

MP _Lite M-VIA can safely use at least three network interface controllers simultaneously on
a computer to increase the potential bandwidth. Channel-bonding three Fast Ethernet cards
triples the maximum throughput without increasing the cost greatly. Using four Fast Ethernet
cards has the potential to further increase the the maximum throughput, but this is still under
development and testing. MP Lite M-VIA is the first channel-bonding implementation on
M-VIA. Neither MPICH (MVICH) or LAM MPI have this capability.

5.1.3 Portability

MP.Lite M-VIA is programmed using the API defined by the VIA specification. The
implementation does not rely on M-VIA in any way. Therefore, the module should be able
to use other VIA-enabled networks without much modification. Furthermore, we have ported

the current release of M-VIA to the Alpha architecture running Linux. The performance of

MP _Lite M-VIA is also good on Alpha.



5.1.4 User Friendly System

MP _Lite M-VIA provides the same inferface for applications as other MP Lite modules.
MP _Lite M-VIA will automatically determine the devices to be used. Except for installing
and configurating the M-VIA software package, or another M-VIA network system, no extra
configuration work is required to run MP _Lite M-VIA. The execution procedures and command
line arguments are exactly the same as for other MP Lite modules. There is also debugging

information available if compiled with the requisite debug options.

5.2 Limitations

As a research project, the implementation of MP_Lite on M-VIA exploits the basic func-
tionality and performance potential of M-VIA. Although the results are encouraging, there are

still many issues that may further improve the performance.

5.2.1 Reliability

The VIA supports three levels of communication reliability at the NIC level: unreliable
delivery, reliable delivery and reliable reception. Reliable reception has the highest level of
overall reliability, and is necessary before MP _Lite M-VIA is practical for real applications.

An unreliable delivery VI guarantees that data will arrive on the receiving side at most
once and the corrupted data will be detected. The data may be lost, or arrive in an erroncous
order. The VI will not re-transmit data when these errors occur.

For the reliable delivery mode, data will arrive at the destination exactly once. and in the
order submitted. This requires that the destination side replies with an acknowledgmnent to
the source, either in a stand-alone package or by a piggy-backing mechanism to include the
acknowledgment in the next set of data sent.

For reliable reception, in addition to the requirements of reliable delivery, the transmission
is successful only when the data has been delivered into the targetted user memory. This level
of reliability is not yet supported in the current M-VIA release.

Table 5.1 lists the features of these reliability levels. (CCC97)
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Table 5.1 Reliability guarantees

Property Unreliable | Reliable Delivery | Reliable Reception
corrupt data detected yes yes yes
data delivered at most once yes yes yes
data delivered exactly once no yes yes
data order guaranteed no yes yes
data lost detected no yes yes
connection broken on error no yes yes
state of send/RDMAW in-flight in-flight completed on
when request completed remote end also
state of send/RDMAW unknown unknown first one unknown,
when error occurs others not delivered

M-VIA version 1.2b2 supports reliable delivery. It introduces the windows and acknowledg-
ments to enhance the transmission reliability between sending and receiving VIs in the gener-
alized Ethernet ring device layer, which is on top of the device driver layer. It is not surprising
that the performance is slightly degraded due to the added handshaking and re-transmission.
Our experiments show that the latency is increased by 10us, and the throughput has a 5%
degradation, when compared to unreliable service.

M-VIA version 1.2b2 does not support reliable reception. The current implementation
of MP_Lite M-VIA associates two sequence numbers for each connection to improve error
detection. ‘The next sequence number holds the number for the next sending packets. Each
data packet is sent alone with the sequence number. The sequence number expected field records
the next expected packet. If the received sequence number does not coincide with the sequence
number expected, data has been lost. Data will not be duplicated because even for unreliable
service, data is only delivered once. Sequence numbers provide a simple method to detect data
lost in some situations. However, for mssages sent by using an RDMA Write, since receiving
VI does not consume descriptors except for the last packet, the system is unable to detect a
packet lost by using the added sequence number.

Implementing reliable reception may add more overheads and impact performance, but it
should be minimal. Most of the time-critical overhead has been added in the reliable delivery

service,
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5.2.2 Resource Reservation

Each receive VI pre-posts some descriptors {buffers) to receive unexpected data. In MP_Lite
M-VIA, the buffer resource is organized as the mbuf data structure. Such buffer reservations
should be done before the connection is set up. If the descriptors are posted after the connection
is in place, and the data arrives before buffers are posted, there will be no place to hold the
data, so it will be silently lost. This data loss, due to insufficient pre-posting of buffers, will
only happen for small messages sent using the eager protocol. For the RDMA write mode, the
data transfer can start only after the destination buffer is ready.

One question is how many buffers should be reserved and the size of each buffer. Suppose
that a 32 KB buffer block is associated with each descriptor, which is the maximum, and
10 such descriptors are posted in each VI. The total buffer reserved for each VI is 320 KB.
Also assume that the average size of short messages is 8 KB. In this configuration, at most
10 unexpected short messages can be received without posting any receive (each message will
consume one descriptor). If a 4 KB block is associated to each descriptor, and the total buffer
space reserved is still 320 KB, then 80 descriptors need to be posted. Each short message of
size 8 KB will consume 2 descriptors, and 40 unexpected messages can be received, which is
more than the first configuration. Although using a smaller buffer block is more efficient for
resource utilization, sending messages larger than the block size requires the consumption of
more than one descriptor and multiple sends. This impacts the overall performance. In the
actual implementation of MP_Lite M-VIA, we chose the size of 16 KB. This could be tuned,
either larger or smaller, for specific applications.

The buffer reservation has scalability issues. In a system that has 64 nodes, on every
node, 63 VIs need to be created and 63 connections need to be setup. If a 320 KB buffer is
reserved for each VI, the total buffer reserved is at least 320K B x 63 = 20M B in each node,
which is impossible because the maximum memory region that can be registered in the M-VIA
Implementation is currently 16 MB.

A better solution is to have a flow control mechanism. The source node has an initial

window that tells how many buffers are available on the destination. Whenever it sends out a
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packet, it decreases the window size by one. It does not send out more packets if the window
size becomes zero. The destination node informs the source node of the availability of buffers
in a timely manner. By using this technique, the risk of insufficient buffers and the resulting
loss of data can be eliminated. Each VI can safely pre-post a small number of buffers. This
procedure may have a performance penalty because of the overhead of transmitting window size
information. There are complicated optimization techniques available such as Silly Window

Syndrome (Com35).

5.2.3 Channel-Bonding Issues

Channel-bonding provides higher bandwidth, but requires more memory and marginally
increases latency. Fach network interface needs a copy of the related data structures. The
resources reserved as discussed in the previous subsection will also be doubled if using two
interfaces. The connection set up procedure will be impeded because more connections are to

be established. This may also lead to scalability problems.

5.2.4 Overlapping Communication and Computation

Overlapping communication and computation is a nice way to improve the performance
of parallel applications, if they can adequately take advantage of it. This requires the use of
non-blocking asynchronous communications. An application posts a send or receive to start,
the communication, then continues working on the computation. The communication and
computation are performed concurrently until the application calls the wait function to finish
the communication. Overlapping can give a speedup of at most a factor of 2.

One thing related to the performance of overlapping is the processor overhead in the com-
munication subsystem or what is left over for the application. A polling implementation usually
leads to a heavy CPU workload, and therefore leaves little for the application to use during
overlapped communication and computation.

MP _Lite M-VIA currently does not support overlapping communication and computation.

For non-blocking MP_ASend() and MP_ARecv() functions, we just put the message into the
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send_q or recv_g. It is MP_Wait() that actually performs the communication. The reason for
this is that we are using the M-VIA blocking send and receive functions, which wait on the
VI send and receive queues. So the communication can not be started before the MP_Wait()
function call.

'The handshake protocol also limits the ability to overlap communication and computation.
The source node needs to wait for a reply after sending out the request, and the receiver is
required to wait for the request before replying with the destination buffer address.

One solutions is to use the M-VIA asynchronous communication. M-VIA does provide
some asynchronous communication functions. They are implemented as signal notification
mechanisms. Whenever a send or receive descriptor has completed, a call-back function is
called to notify the completion. However, these asynchronous functions have not been fully
optimized yet. In the current version of M-VIA, the asynchronous receive takes three times the
latency compared to the blocking function. Asynchronous communications are quite promising
and need to be explored in the future.

Another way to overlap communication and computations is to use threads. A commu-
nication thread can be created to control the transfer of the messages. The communication
thread works concurrently with the main thread. Either blocking or non-blocking communica-
tions can be implemented with the communication thread. A synchronization method, such as
scimaphores or mutexes, would be required to synchronize the thread interactions. This would
solve the contention between the main thread and the communication thread.

The disadvantage of the thread based approach would be the synchronization delay. The
scheduling of threads would add latency to the communication. The current M-VIA VIPL (VI
Provider Library), is also not a thread safe library. Explicit locking is required when multiple

threads are accessing the same queue within a VI.

5.2.5 Other Issues

The number of VI connections is one of the scalability issues. MP_Lite M-VIA requires

a fully connected network. Large configurations will introduce significant delay in the con-
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nection start up procedure. A simple solution is to establish connections only when they are
needed. Some applications do not require a fully connected network. For example, applica-
tions using a tree-like structure for communications may only need to establish connections
between different tree layers. For these applications, establishing connections only when send
or receive operations are requested may reduce the initialization overhead. However, this has
several drawbacks: performance degradation that each communication operation may incur
connection setup and breakdown overheads. Only problem is when the connection needs to
be established. Since the connection setup procedure requires the co-operation of the source
and the destination nodes, if the send and receive pairs are not the exact match, some com-
plicated buffering and re-connect machanisms many be required. Moreover, if a wildcard
(MPI_ANY_SOURCE) is used in a receive function, a fully connected network may be needed.
One possible solution is to assign a “master” node. Each node establishes a connection to
the master node initially. The connection request to other nodes can via the master node.
However, this will increase the work load of the master node.

Another issue is the dynamic memory registration. The use of DMA to transfer data di-
rectly into and out of user buffer requires that the data page be locked and cannot be paged-out
by the operating system. To avoid an extra memory copy, user buffers need to be dynamically
registered before data transfer and deregistered when the transfer is completed. Currently we
only have a simple memory registration cache to keep the last few sets of registration infor-
mation. Without a more efficient memory registration manager, the frequent registration and
deregistration of large buffers may be too expensive, and lead to fragmentation of the page

tables (SASB99; BMO0O).

5.3 Conclusions and Future Efforts

The implementation of MP _Lite for M-VIA incorporates the efficiency of MP_Lite with the
high performance features of M-VIA, resulting in a small, high-performance message-passing
library that has much lower latency and better throughput on both Fast Ethernet and Gigabit

Ethernet. The eager protocol and the handshake protocol provide a better balance between
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latency and throughput for different message sizes. Channel-bonding based on the VIA is a
unique feature of MP _Lite M-VIA, providing from double to triple the performance of a single
network interface.

The limitations discussed in the previous section imply that further improvement is possible

in a number of directions:

e Improved reliability

e Asynchronous or thread-based communications

More testing

Application utilization

The VIA is supposed to work on System Area Networks, which are usually connected by
fabrics that have very low error rates. For networks such as traditional LANS, it is important
to provide full reliability support for the upper layers. As discussed in the previous section. M-
VIA caurrently does not support reliable reception. This limits its overall applicability. Because
reliable reception and reliable delivery are very similar, it is expected that the implelsentation
will not degrade performance much. The MP_Lite M-VIA module does not need any modifi-
cation to support higher reliability because it will automatically choose the highest reliability
level supported by the underlying network interface controller.

A fiow control mechanism in MP Lite M-VIA would be useful. The current MP _Lite
M-VIA assumes the data destination has pre-posted enough buffers to receive unexpected
small messages, which is the usual case. However, if an application continuously sends many
small messages without posting any receives, the destination may run out of buffer resources.
Currently only error messages will be generated in this situation. Using data windows to
control data flow as discussed in the previcus subsection is a better solution.

It may be beneficial to improve the asynchronous communication so that communication
and computation can be overlapped. Asynchronous communication (signal-based) or the use

of threads are two approaches. They need careful design and implementatioﬁ so that perfor-



64

mance will not be overtly impacted. A possible method is to combine them with synchronous
communications.

More testing is needed for MP_Lite M-VIA to improve the stability and usability. Currently
it is quite stable for running on small clusters and can successfully run some benchmarks and
real applications such as the Ames Lab Classic Molecular Dynamics program. Further testing
is still required, for more applications and larger configurations. We are currently building
a channel-bonded PC clusters with 24 nodes and three 3Com cards per machine. It is also

imperative that we test the functionality on other VI-enabled networks, such as Giganet.
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