

Bond Forming Reactions of Carbyne and Nitrene Complexes

Final Technical Report for

DE-FG02-96ER14608

Templeton, J. L.

Institution: University of North Carolina Phone: 919-966-4575

Department: Department of Chemistry Fax: 919-843-8005

Address: Chapel Hill, NC 27514 Email: joetemp@unc.edu

An isolobal relationship among terminal carbyne, nitrene and oxo ligands provided the basis for our efforts to explore new synthetic routes to such complexes and to probe bond forming reactions of these ligands. The specific goals of this project were to explore reactions of carbyne and nitrene ligands, and a summary of our results follows. Manipulation of metal-ligand pi bonds to control reactivity patterns provided the conceptual basis for this work. New transformations and coupling reactions of the CR and NR moieties bound to metal centers have been explored and transformations of carbyne or nitrene ligands have been achieved.

Perhaps the most exciting results have come in the area of the simplest ligand: the CH carbyne unit. Treatment of $[Tp'(CO)_2W\equiv C-PPh_3][PF_6]$ (Tp' = hydridotris(3,5-dimethylpyrazolylborate) with $Na[HBEt_3]$ forms the methylidyne complex $Tp'(CO)_2W\equiv C-H$ via formyl and carbene intermediates. Protonation of the $Tp'(CO)_2W\equiv C-H$ methylidyne complex yields the cationic agostic methylidene complex, $[Tp'(CO)_2W=CH_2][BF_4]$. The methylidyne complex with a pK_a of 28.7 can be deprotonated to provide the anionic terminal carbide $Tp'(CO)_2W\equiv C-Li$; a resonance at 556 ppm in the ^{13}C NMR spectrum has been assigned to the carbide carbon. Addition of excess $Na[HBEt_3]$ to $Tp'(CO)_2W\equiv C-H$ generates the anionic methylidene complex $[Na][Tp'(CO)_2W=CH_2]$.

DOE Patent Clearance Granted

MDvorscak

Sept 30, 2002

Date

Mark P. Dvorscak

(630) 252-2393

E-mail: mark.dvorscak@ch.doe.gov

Office of Intellectual Property Law

DOE Chicago Operations Office

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Complexes that contain metal-carbon multiple bonds are activated toward deprotonation and alkylation reactions at the site beta to the metal. One application is in the case of methylcarbyne complexes which form reactive nucleophilic vinylidene anions when deprotonated. We used this reagent to derivatize carbyne ligands and to develop a new series of hydrocarbon bridged metal dimers. Combination of the nucleophilic vinylidene anion with an array of electrophiles yielded a range of monomeric carbyne derivatives, and dimers with terminal carbyne linkages to each metal were also prepared. Both C₃ and C₄ bridged skeletons linking metal centers in new dimeric products were synthesized, and examples of C₁ and C₂ connectors were also been prepared.

We have exposed interconversions among carbyne, allyl, and vinyl isomers.

Isomers of the carbyne unit (C₃H₄R) in Tp'(OC)₂W≡CCH₂CH₂R include η^2 -vinyl ligands in complexes of the type [Tp'(OC)₂W(η^2 -CH₂CCH₂R)], and these can rearrange to η^3 -allyl complexes [Tp'(OC)₂W(η^3 -CH₂CHCHR)]. The thermodynamic and kinetic relationships of these three isomeric ligands have been revealed in our studies.

We have also examined catalytic conversion of PhINR and olefins to aziridines with copper complexes. Electronic effects on the catalytic transfer of a nitrene fragment using a copper(I) complex as the catalyst have been investigated. Perhaps most importantly we proved that simple Lewis acids can convert imines and carbene precursors to aziridines, too.

References

1. "Dinuclear Molybdenum and Tungsten C₃ Bridged Complexes with Metal-Carbon Multiple Bonds", B. E. Woodworth and J. L. Templeton, *J. Am. Chem. Soc.*, **118**, 7418-7419 (1996).
2. "Stepwise Synthesis of (\equiv CCH₂CH₂C \equiv), (\equiv CCH=CHC \equiv), and (\equiv CC \equiv CC \equiv) Bridges between Molybdenum or Tungsten Centers", B. E. Woodworth, P. S. White, and J. L. Templeton, *J. Am. Chem. Soc.*, **119**, 828-829 (1997).
3. "Orientational and Stereochemical Preferences in Hydridotris(3,5-dimethylpyrazolyl-1-borato)(CO)₂W(η^3 -allyl) Complexes", D. Frohnapfel, P. White, J. L. Templeton, H. Ruegger, and P. S. Pregosin, *Organometallics*, **16**, 3737-3750 (1997).
4. "Substituent Effects on the Reaction Rates of Copper-Catalyzed Cyclopropanation and Aziridination of *para*-Substituted Styrenes", M. Mar Diaz-Requejo, P. J. Perez, M. Brookhart, and J. L. Templeton, *Organometallics*, **16**, 4399-4402 (1997).

5. "Formation of Derivative Carbyne Complexes from $Tp'(CO)_2M\equiv CCH_3$ (M = Mo, W)", B. E. Woodworth, D. S. Frohnapfel, P. S. White, and J. L. Templeton, Organometallics, **17**, 1655-1662 (1998).
6. "Variable Electronic Coupling Through Hydrocarbon Spacers Bridging Metal-Carbon Triple Bonds", D. S. Frohnapfel, B. E. Woodworth, H. H. Thorp, and J. L. Templeton, J. Phys. Chem. A, **102**, 5665-5669 (1998).
7. "Electrophilic Addition to Cyanide Ligands in Tungsten(II) Four-Electron -Donor Alkyne Complexes", D. S. Frohnapfel, Stefan Reinartz, P. S. White, and J. L. Templeton, Organometallics, **17**, 3759-3769 (1998).
8. "Deprotonation and Oxidation of the $W\equiv CCH_2$ -W Bridge to Form a C_2 -Biscarbyne $W\equiv C-C\equiv W$ Bridge", B. E. Woodworth, P. S. White, and J. L. Templeton, J. Am. Chem. Soc., **120**, 9028-9033 (1998).
9. "Synthesis and β' -Site Deprotonation/Alkylation Reactions of $Tp'(CO)_2W(\eta^2\text{-vinyl})$ Complexes", D. S. Frohnapfel, Alejandro Enriquez, and J. L. Templeton, Organometallics, **19**, 221-227 (2000).
10. "Insertion Products from Photolysis of $Tp'(CO)_3WH$ and Alkynes", D. S. Frohnapfel, P. S. White, and J. L. Templeton, Organometallics, **19**, 1497-1506 (2000).
11. "Transition Metal η^2 -Vinyl Complexes", D. S. Frohnapfel and J. L. Templeton, Coordination Chem. Rev., **206-207**, 199-235 (2000).
12. "Reactions of an Amphoteric Terminal Tungsten Methylidyne Complex , " A. E. Enriquez, P. S. White, and J. L. Templeton, J. Am. Chem. Soc., **123**, 4992-5002 (2001).

Related Categories: Transition Metal Chemistry, Catalysis, Organometallic