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CHAPTER 1: GENERAL INTRODUCTION

I. Historical Background

The major title of this dissertation, ‘From first principles,” is a phrase often
heard in the study of thermodynamics and quantum mechanics. These words
embody a powerful idea in the physical sciences; namely, that it is possible to distill
the complexities of nature into a set of simple, well defined mathematical laws, from
which specific relations can then be derived. In thermodynamics, these fundamental
laws are immediately familiar to the physical scientist by their numerical order: the
. First, Second and Third Laws. However, the subject of the present volume is
quantum-mechanics - specifically, non-relativistic quantum mechanics, which is
- appropriate for most systems of chemical interest. The first principles of this field

are commonly expressed by an equation first written by Schrodinger in 1926

2
nd¥a@t)
ot 2m

V¥(q,t)+V(q)¥(q,t) (L.1)
where i is the square root of negative one, % is Planck’s constant divided by 27,
¥(q,t) represents the system’s so-called wavefunction, which is a function of space
and time, respectively, m is the system’s mass, and V is the potential energy of the
system. There are various ways that one could ‘derive’ this equation or justify its

form based on the matter-wave theories of de Broglie,” or perhaps by using
Heisenberg’s® famous commutation relation, [q, p]=i#1, which first appeared in the

paper ‘Zur Quantenmechanik’ by Born and Jordan,* and independently a few months
later in Dirac’s first paper on quantum mechanics.’> For our purposes here, it is
entirely reasonable to consider Eq. (1.1) as a fundamental quantum postulate, and
then derive our relations from it; i.e. from first principles.

In the study of electronic structure, one usually begins from the time
independent form of Schrédinger’s equation, since, in the absence of a time-varying
field, the time dependence of the wavefunction is easily integrated out by separation
of variables. Let ¥(q,f) = y(q)f(t); then
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- Since both sides of Eq. (1.2) are functions of independent variables (space and time),
each side must therefore be equal to the same constant, E. Consider the solution of
the left-hand side (LHS):

—%jdt: Inf(t) = ——iE—t:>f(t) =e'%‘ (1.3)
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such that evolution of the wavefunction is now known for all times, and is given by
the phase factor in Eq. (1.3). The right-hand side (RHS) of Eq. (1.2) is then:

—h—Vzw(q) +V(Qw(q)=Ew(q) = {—% Vi V(q)}w(q) =Ey(q)

2m (1.4)

= Hy(q)=Ly(q)

where the Hamiltonian operator, H, has been defined as the sum of the kinetic and

potential energies of the system. In Dirac notation, the time-independent

Schrédinger equation is written as

Hly) = Elv) (15)

In this form, it is easy to demonstrate that the expectation value of the energy
operator, H, gives. the energy, E, of the system since the wavefunction itself is

normalizable.

For a system of interacting electrons and nuclei, we have the following

Hamiltonian in atomic units:®
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where 7 indexes the electrons, A indexes the nuclei, M 4 18 the mass of nucleus A, and
Z 4 is the charge on nucleus A. This Hamiltonian can be simplified upon application
of the Born-Oppenheimer approximation,” which states that since the nuclei are
approximately 1800 times as massive as the electrons, they can be considered as
stationary points, and the electrons move in their constant potential field. In this
case, the second term in Eq. (1.6) is zero, since the nuclei have no kinetic energy, and
the last term is a constant, since the distance between the nuclei will not change. Eq.

(1.6) becomes

H=-33V-S32 35 a7)
245 i Al il
Another technique used to simplify Schrodinger’s equation is called the
orbital approximation. Here, the many-electron wavefunction is written as the

product of one-electron wavefunctions:

Vit = V1 (DW,(2)--wy (N) (1.8)

where there are N electrons in the system. The RHS is called a Hartree product,® and
each individual function y; is called a spatial orbital. According to the Born
interpretation of the wavefunction,’ a part of the full Copenhagen interpretation of

' quantum mechanics, named after the place where Niels Bohr worked as its principal
creator,” the spatial probability density is given by |w2|dr, where dt is an element

- of volume. If the wavefunction is written as a Hartree product, then this probability
density must be the produét of the squares of the individual orbitals. According to
probability theory, this can only be true if the probability represented by the
individual orbitals are independent of one another. This approach is therefore

called the independent electron model." If it was possible to write the Hamiltonian,



Eq. (1.7), as the sum of one-electron terms, then the solution of Schrédinger’s

equation would be a simple task by separation of variables. As it is, the
Hamiltonian depends on rij"l, which means that we must know the instantaneous

relative positions of two electrons. Therefore, the full Hamiltonian cannot be written
as the sum of one-electron Hamiltonians; but since the utility of such a
representation is clear, there has been considerable effort to generate approximate

one-electron Hamiltonians. Consider the following expression:

H e = Y 1(0) = Z{-%v; + V(z’)} (1.9)

where V(i) is some average potential resulting from the field of the other electrons in
the system. As written, this approximate Hamiltonian does not explicitly include
electron correlation, which is the instantaneous interaction of pairs of electrons.
According to Pauli’s Exclusion Principle,” no two electrons in the same atom
can have the same set of quantum numbers. Since electrons have spin quantum
numbers of +1/2, this means that each orbital can at most contain two electrons, one
‘spin up” and the other ‘spin down’. This condition arises naturally if we assume
that the system’s wavefunction is antisymmetric - i.e. the wavefunction changes sign
when two electronic coordinates are interchanged.® The first use of the
antisymmetry property was by Heisenberg in his 1926 study of the spectrum of
helium.” Pauli’s exclusion principle had been developed in the context of the old
quantum theory, and so to incorporate this into Schrédinger’s wavefunction
terminology, Heisenberg reasoned as follows: Let w(l,2) represent the
wavefunction of a two-electron system, where the “1” represents the four
coordinates of electron 1 (three spatial and one spin). Pauli said that no two
electrons can have identical coordinates, so the most natural way to represent this
was to write y(1,2) = —w(2,1); therefore if the two Sets of coordinates are the same,
we have y/(1,1) = -y (1,1), which must be zero.® Note that since physical properties

depend on the square of the wavefunction, the antisymmetry property does not



directly affect them. Mathematically, we can write antisymmetry in terms of an

operator, A;, which interchanges the coordinates of electron i and j:

Aw(1,2, 4,7, ,N)=w(L,2,,j,i,-,N) 1.10)
' =—y(1,2,--+,i,j,-,N) .
It is apparent from the form of the Hartree product formulation of the wavefunction
(Eq. 1.8) that it is not antisymmetric. If, on the other hand, Eq. (1.8) is formulated as

a determinant,” it will be antisymmetric:

Wi =N D, €5 v, (W, ()5 (K)- - (1.12)

ik,

where ¢ is analogous to the three-dimensional Levi-Civita symbol:” it is +1 for
even permutations of ijk..., -1 for odd permutations, and zero if any index is
repeated. (In a linear sequence abcd, any single (or other odd number of)
interchange(s) of two adjacent elements is an odd permutation. An even number of
such interchanges results in a even permutation.) N is a normalization factor.

In keeping with the theme of ‘from first principles,” and in order to lead into
the treatment of NMR chemical shifts for closed-shell molecules in Chapter 3, let us
consider the restricted Hartree-Fock formalism in some detail. A closed shell
molecule is one in which all N electrons are paired spin-up and spin-down in N /2

orbitals. The wavefunction for such a system is a simple modification of Eq. (1.11):

v=N Y g vy, (NBG) Wy (N)BN)

i,j;k/"'

=N z Eij.. 761(1)7(2(])751\1(1\])

i,jk,

(1.12)

where o represents spin-up, and B spin-down. The spin and spatial orbitals are

orthonormal:
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The normalization constant can be derived by considering the normalization of the

total probability density:

1= [y'y de(1)--de(N)

:N2<.2 €. LDLG) (N Y & x1<l>x2<m>-~xN<N>> (1.14)

N N

=N Y Y i (D23 2y (N 22D 2 (1) 200 (ND)

ijk,-lmmn,.-

then since the integration is over the coordinates of all N electrons,

N N
2

1=N 2 2 8ijk-~-£1mn~.-5it5jm5kn"'
i,jk,--l,mmn,.-

g (1.15)
—N2 Y & NN

ik,
to leave a normalization factor of N = (N !)_1/2.

With a full form of the wavefunction, Eq. (1.12), we can now evaluate the

energy expectation value

E=(y|H|y) (1.16)

for a closed-shell molecule. Let the Hamiltonian, Eq. (1.7) be written as
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ij>i
This allows Eq. (1.16) to be written as

E=(y[H|y)+(w|H,|v) | (1.18)

Consider the one-electron term first:

witlv)=3(v[-3v1- 32|

i A

t//>=N(wIH“’”(1)lw) (1.19)

since the electrons are equivalent and indistinguishable in both the Hamiltonian and

the wavefunction. Using the full form of Eq. (1.12), Eq. (1.19) becomes

NI, 4

]

N

N N
e

2 EiEimn (D) e NIH )| 2D 200(m) - sy (N)) (1.20)

Lmn,

Now, since the core Hamiltonian is a function of the coordinates electron 1 only, and
the Levi-Civita symbol ensures that no index will be repeated, choose i = I =1 and

integrate over the other electronic coordinates:

N

(SR VI YN PN |2 e0 P

ijk,
N-1

=[(N-" Y &l (aOIH™ ] 10) (1.21)

jok,ee

=[N (G OE" O ) Y, &,
jok

The sum over the squares of the Levi-Civita symbol will give a factor of (N - 1),

which leaves
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Note that we could have picked any of the i,j k... electrons to be electron 1 in the
derivation, so the full form of the expectation value is the sum of Eq. (1.22) over all N

spin orbitals:

(WiH v) = Y (x:OH"@)|xQ)= Y H, (1.23)

i i

This formulation makes the integration over the coordinates of electron 1 more
transparent.

Now consider the expectation value of the two-electron Hamiltonian:

witly) =3 3 M) = X Ly (1.2

i j>i 1] 12

since electrons are again indistinguishable. We can then apply similar techniqués as

for the one-electron term by substituting in Eq. (1.12):

SAN-21" 3 et (HOBGF TN 1O )7, N)) (125
i,j---lm,e 12

One is now left with a case slightly different than before; the two-electron operator is
a function of two electfonic coordinates, so the permutations of electrons can either
be identical, or they can differ by the interchange of one pair. This can be
represented in the following way, where i, j, I, and m have been chosen to represent

electrons 1 and 2:



1
1 2N 1'2'...NN__112 ...NN
_ —21—[(N—2)!]_ § gijkmglmnm(x(Z)x (1) 2 (N = 22 (D 2 () -+ 20 ( ))(1'26)‘
rfelome . X(6i16j25[16m2) (6115]251267111)

where the negative sign arises because of the interchange of [ and m. One can then

integrate over the coordinates of the other 2N -2 electrons:

1 751(1)7(2 D=1 2:(D 2, (m)
=5l - 2)" 2 Z Eq. l l ) (1.27)
bk X(6116]26ll6 ) (6i16j26126m1)
Then by application of the remaining Kronecker delta funcﬁoﬁs:
Z 2k-- <751(1)752(2)|—|7(1(1)7(2(2»
1
~Lv-2)p”
2 Exri.. xl(l)x2(2)| |x1(2)x2(1)> (1.28)

1
=5[<x1<1>x2<2>|;—

|26 (D 2,(2)) - (xl(l)x2(2)l |x1(2)x2(1))}
12
As before, we need not have chosen i, §, I, and m to designate electrons 1 and 2. To

find the whole expectation value, we again sum over spin orbitals:

(wlHfw) = EN)(x,(l)x,Q)l @) (xi<1>x,.<2)[ri|zi(2>x,.<1)>]

| i

(1.29)

Nlp—\

2 ()7, %) - <x,-(1)[c'<j(1)|xi(1)>]

where the coulomb () and exchange (K) operators have been defined. Or, by

introducing a simplified notation,
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L]

(w|Hy) = %Z(L; - Kij>- | - (1.30)

And finally, substitution of Eq. (1.23) and Eq. (1.30) into Eq. (1.18), the total energy
expectation value is given by

N 1 N
E:ZHii+EZ(],.j—KiJ.) (1.31)
i L]

in terms of spin orbitals.
The energy given in Eq. (1.31) can be minimized with respect to the spin
orbitals, subject to the restraint that the spin orbitals remain orfhonormal, by
 standard methods.® The result is a set of integro;differential equations, known as the

Hartree-Fock equations:

| ﬂ%i>=%~|xi> (1.32)

Hartree-Fock theory is a common starting point for many more advanced theoretical.

methods, some of which are outlined in the next section.
To finish this historical background, it should be noted that the practical
method for solving Egs. (1.32) is by expanding the spatial molecular orbitals as a

linear combination of atomic orbitals, commonly called the LCAO approximation:

v =>.Cud, (1.33)

where the ¢, are typically a set of well-defined standard Gaussian functions, which

are in turn often constructed from a linear combination of primitive Gaussian
functions. [See Eq. (3.112).]

9, = x;yj,z;;‘e‘“ﬂ’" (1.34)
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Eq. (1.34) is an example of a Cartesian Gaussian function centered at a point u,
where the angular momentum of the function is represented by the x, y, and z
components as shown. This leads to a physically odd situation where a d shell is
represented by six functions rather than the familiar five. This is due to a linear
dependence in the Cartesian space. Appendix A demonstrates the nature of this
 linear dependence and shows how to remove it in practice.

A note on terminology: if a single atomic orbital is represented by a single
function, this is termed a minimal basis set; if two functions are used per atomic
orbital, this is called a double-zeta basis. Triple-zeta and higher basis sets have
analogous meanings.

Frequently, basis sets are modified by the addition of polarization functions
of a higher angular momentum. For the case of hydrogen, which in a standard basis
is represented by functions of s character, this would mean adding a function of p
character, and this would allow for a distortion away from spherical symmetry, in
the direction of any applied or environmental field. Basis sets are also augmented
by the use of diffuse functions. Interactions like hydrogen bonding are by their
nature weaker, and take place over larger distances. Therefore to account for these
kinds of interactions, functions that are more “diffuse,” i.e., are spr_ead over a greater

physical space, are required.

II. Theoretical Methods

This section contains brief overviews of the theoretical methods that will be

employed or considered in later chapters.
A. Restricted Open-Shell Hartree Fock
In the above formulation of closed shell Hartree-Fock theory, we have

restricted each of the occupied orbitals to contain exactly two electrons; one spin-up,

the other spin-down. One need not impose this condition. If the spatial part of the
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doubly occupied orbitals are restricted to the same form, but some orbitals are
allowed to be singly occupied, i.e. open shell, this method is referred to as Restricted
Open Shell Hartree Fock (ROHF).

B. Unrestricted Hartree-Fock

In unrestricted Hartree-Fock (UHF) theory, the orbitals containing
individual electrons are allowed to vary such that the spin-up (alpha) orbitals are
not identical to the spin-down (beta) orbitals. This allows for the representation of
open-shell molecules, where the electrons are not necessarily paired evenly. The
major drawback to this theory is that the resulting wavefunction is not normally an
eigenfunction of the total spin operator, S?, which generates the value of the total
spin squared.” Therefore one does not obtain pure spin states from UHF theory; a
singlet state will contain contributions from higher triplet, quintet, etc. states,; this

phenomenon is known as spin contamination.
C. Perturbation Theory

A common technique for approximating the electron correlation energy not
accounted for in Hartree-Fock methods is called perturbation theory. Since the
correlation energy can be considered a small perturbation on the Hartree-Fock

energy, the full Hamiltonian can be written in the following way:
H=H" + )H' (1.35)

where H™ is the Hartree-Fock Hamiltonian, A is called an ordering parameter
which varies between zero and unity, and H' is the perturbation. By using Eq. (1.35)
as the Hamiltonian of the system and expanding the resulting equations as a Taylor
expansion in A4, one can set like terms equal to one another and thus obtain zeroth
order, first order, second order, etc. corrections to the energy and wavefunction.
This general scheme is known as many-body perturbation theory (MBPT),” but

when the zeroth order Hamiltonian is chosen to be the sum over Fock operators, the
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method is known as Meller-Plesset® (MP) perturbation theory. At second order, the
MP and MBPT methods are equivalent.”

D. Configuration Interaction

The solution of the Hartree-Fock (HF) equations leads to a ‘ground state’
wavefunction, where in the closed-shell case outlined above, all the electrons are
- paired. In addition to this state, one can also form wavefunctions (determinants)
that differ from the ground state by various excitations of electrons from occupied
orbitals to vacant ones. In considering these excitations, one automatically
incorporates electron correlation into the model. In other words, to account for
correlation, the mental image of electrons neatly occupying specific orbitals must be
abandoned. Let @ be the exact many-electron wavefunction. It is then expanded in

terms of excited-state wavefunctions:

D=y + ( )ZC W, + (2') ECabwab (3,) ZC;ZiW;ZZ " (1.36)

abrs abcrst

single exc1tauons double ex: excitations triple excitations

where y; is the Hartree-Fock wavefunction, and the electronic excitations are from
occupied 4, b, ¢, etc. HF orbitals to unoccupied 7, s, t, etc. HF orbitals, which are not
re-optimized during any variation of the CI procedure. If this expansion is carried
out to all possible excitations, ‘full CI’ leads to an exact solution of Schrédinger’s
equation in the space spanned by the basis set. The most common applications of CI are

single excitations (CIS) and single and double excitations (CISD).
E. Multi-Configurational Self-Consistent Field

An approximation to full Cl is to truncate the CI expansion at a given order,
and to optimize the CI coefficients and the HF orbitals. This is known as Multi-
Configurational Self-Consistent Field (MCSCF) theory. (For a full CI expansion,

there is no need to vary the HF orbitals.) Further, one allows the excitations to take
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place oﬁly in a well-defined active space, which is composed of a given number of
electrons in chemically important orbitals. This is a powerful and essential method
when the system of interest is not well represented by a single electronic
configuration; i.e. a single Lewis structure. Radicals, transition states, and
compounds containing transition metals quite often require a multi-configurational

wavefunction.
F. Coupled Cluster Theory

Another approximation to full CI is called coupled cluster theory, which is
similar in some respects to perturbation theory, discussed above. Perturbation
theory can be thought of as all types of excitations (singles, doubles, triples, etc.)
applied to the reference wave function to a given order.”® Conversely, coupled
cluster theory seeks to include to infinite order all excitations of a given type. Let

the coupled cluster wavefunction be written as

Wee =€ Wi (1.37)
where the cluster operator is given by
T=T,+T,+---+T, (1.38)
Here, the T; operator acts on the HF wavefunction to give all the ith excitations.
Therefore, if Eq. (1.38) is truncated at two terms, the method is referred to as CCSD
for coupled cluster singles and doubles. If Eq. (1.38) is truncated at the triples term,
the method is CCSDT, etc.

G. Density Functional Theory

The electron correlation can also be approximately calculated by replacing

parts of the HF Hamiltonian with terms that are functions of the electron density.?
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This density functional theory (DFT) is based on the fact that the ground state
electronic energy is completely determined by the electron density, given the
appropriate functional which extracts the energy from the density function.® The
exact functional is not known, and so the approximate nature of this method arises

because of the use of inexact or semi-empirical functionals.
H. The Effective Fragment Potential Method

This method is a major player in Chapters 2, 3, and 4, and so its general
features will be introduced here. The version of the EFP described® is what is
presently implemented in the quantum chemistry package GAMESS, and will be
referred to as EFP1; EFP2 is currently in development. The EFP1 model has been
developed at the Hartree-Fock (HF) level of theory; that is, the three terms included
in the model represent the type of interactions that one would expect to be
represented at the HF level: electrostatics, polarization (dipole - induced dipole
interactions), and exchange repulsion/charge transfer. EFP2 is a more general
method applicable to any solvent. The general structure of each of the three terms in
EFP1 (hereafter simply EFP) will be described in turn, after a short overview of the
entire method is given.

The EFP method for treating discrete solvent effects begins with the ab initio
Hamiltonian of the “solute,” which may include a small number of solvent
molecules. The remaining solvent molecules are then treated by adding their effect

on the system as one-electron terms in the ab initio Hamiltonian:
H=H,+V (1.39)

Where H is the Hamiltonian for the entire system, H, is the ab initio Hamiltonian of
the “solute,” or active region, and V represents the one-electron terms that describe
the potential due to the fragment molecules. |

This potential includes ab initio - fragment, ab initio(nuclei) - fragment, and
fragment - fragment interactions, each including the three terms mentioned above

(except for the ab initio(nuclei) - fragment interaction; there are no exchange
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repulsion/charge transfer terms there.) Note that Eq. (4.2) deals ONLY with the ab

initio - fragment interactions.
K . L ’ M
Vo(t,8) = Y Ve () + Y VP, 8) + D Vir () (1.40)
k=1 =1 m=1

Where p labels the fragments, s the ab initio electronic coordinates, Ve is the

electrostatic potential, V7’ is the polarization, and V’¥ is the exchange

repulsion/charge transfer. k, [, and m will be discussed with each term below.

1. The Electrostatic Term

The electrostatic potential is represented using a distributed multipolar

analysis (DMA) of the fragment charge densities. The total potential is given by

K
D Vi (u,9) (1.41)
k=1

where k labels the expansion points, which are defined as the atom (nuclear) centers,

and the bond midpoints in the fragment. [e.g. for water, K=5; see Fig. (1.1)]

Fig. (1.1) The dots indicate the location of the DMA expansion points, k.

The above expansion, Eq. (1.41), is a point-charge model, and thus knows
nothing of continuous three dimensional charge densities. This model works fine as

long as the two charge densities are far apart, but as they approach one another, the



17

charge densities overlap and the nuclei become unshielded with respect to
interactions with electrons. Therefore the actual interaction at short distances is
always more attractive than a DMA analysis would predict. This shortfall is
accounted for by a screening function that diminishes the magnitude of the
electrostatic potential for small distances: (See Chapter 2 for a derivation of

fragment-fragment charge penetration.)

‘/kelec(‘ul S) - [1 _ ﬁk (‘u)e-ak(#)rﬁc ]‘/kelec ([,L, S) i (142)

where « and B represent adjustable parameters for the given fragment species (e.g.
water).

Again, the above discussion is for ab initio - fragment interactions; for inter-
fragmént electrostatic interactions, simple classical expressions are used (dipole-

dipole, quadrupole-quadrupole, etc.)

2. The Polarization Term

The fragment molecules are polarized by the electric field of the ab initio
molecules. This is represented by an iterative perturbation model which uses
bonding and lone-pair localized orbital dipole polarizabilities, «,, [centered at
points [ in Eq. (1.40), see Fig. (1.2)]. These polarizabilities are extracted from finite-
field perturbed HF calculations on isolated fragment molecules. The iterations are
needed because a single fragment surrounded by other fragments and the ab initio
molecule(s) will ‘feel” the electric field, and an induced dipole will result in the

fragment.
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Fig. (1.2) The points [ are located at the centroids of the localized orbitals of the

fragment, shown here for water. The core orbital associated with the oxygen is
hidden.

The presence of this induced dipole has now affected the total field, which will in
turn affect the original induced dipole. This process must be iterated mathematically

until the entire system converges to a self-consistent polarization energy.
3. The Exchange Repulsion/Charge Transfer Term

The exchange repulsion between two entities with like or dislike charges is
purely a quantum mechanical effect. This interaction between the ab initio part and

the fragments is modeled by a one-electron term in the ab initio Hamiltonian.

! >
VP (1,8) = 3 B (e~ (1.43)
j

Here, m counts the number of repulsive points in the fragment [M=4 for water, see .
Fig. (1.3)], and o and B are fitted parameters; J=2 such that the function is a linear
combination of two Gaussians.

The Gaussian functions are centered on the fragment atom centers and center

of mass and are fitted using the following method.
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Fig. (1.3) The centers of the Gaussian functions, m in Eq. (1.43).

Ab initio calculations are performed on a number of points (192 for water

dimer). Using these, the ab initio exchange repulsion/charge transfer is found by

B~ =
7 remaninder

E E

‘polarization

(1.44)

total ~ “electrostatic

Then, the exchange repulsion/charge transfer term is fitted to Eq. (1.45) (i.e. A—0)

P

8-S WS- 195

p

Where o, is a weighting factor (set to unity for water) and p counts a number of grid

points. y is the ab initio wavefunction.
For fragment-fragment interactions, we use exponential rather than Gaussian

functions, and a smaller number of points for the fit.

III. Dissertation Organization

The present work contains seven chapters and six appendices: chapters 2
through 6 are papers accepted, submitted to, or in preparation for submission to
appropriate peer reviewed journals with the present author as the primary (chapters
2,3, 4, and 6) or secondary (chapter 5) contributor.

Chapter 2 details the derivation and implementation of an expression for

intermolecular charge penetration, an effect which is not accounted for when one
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represents a three-dimensional charge density using a distributed multipolar
expansion.

Chapter 3 introduces a modified derivation of Ditchfield’s gauge invariant
atomic orbital method for calculating chemical shifts. This method is coupled with a
modified implementation of McMurchie-Davidson one- and two-electron integrals.
The ultimate goal is to couple these methods with the Effective Fragment Potential
(EFP) method for solvation to allow for the prediction of chemical shifts in solution.

Chapter 4 describes an application of the EFP method to study the solvation
of formic and acetic acids. As many as five water fragments model solvation of the
weak acids, and physical properties such as dissociated bond length, Mullikan
charges, and energy are monitored as a function of the number of added waters.

Chapter 5 describes the implementation and reports results for the
generalization of the Gaussian-2 and Gaussian-3 methods for multi-configurational
wavefunctions. The purpose of these methods is to theoretically predict
thermodynamic values to chemical accuracy.

Chapter 6 is a study of the electronic structure of titanocene, the titanium
analog of ferrocene. A variety of theoretical methods are used, including HF,
second-order Moller-Plesset .(MP2) theory, DFT, MCSCF, and coupled cluster

theories.
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CHAPTER 2: EVALUATION OF CHARGE PENETRATION
BETWEEN DISTRIBUTED MULTIPOLAR EXPANSIONS

Taken from a paper that has been published in the Journal of Chemical Physics.
Reprinted with permission from the Journal of Chemical Physics 112(17),
May 1, 2000, pp 7300-7306.

Copyright 2000 American Institute of Physics

Mark A. Freitag, Mark S. Gordon, Jan H. Jensen, and Walter J. Stevens

Abstract

A formula to calculate the charge penetration energy that results when two
charge densities overlap has been derived for molecules described by an effective
fragment potential (EFP). The method has been compared with the ab initio charge
penetration, taken to be the difference between the electrostatic energy from a
Morokuma analysis and Stone’s Distributed Multipole Analysis. The average
absolute difference between the EFP method and the ab initio charge penetration for
dimers of methanol, acetonitrile, acetone, DMSQ, and dichloromethane at their

respective equilibrium geometries is 0.32 kcal mol™.

1. Introduction

There are several fundamental long and short-range intermolecular

interactions that occur between closed shell molecules in their ground states: Long

range interactions (U < r™") are due to electrostatics, polarization and dispersion;
while exchange repulsion, charge transfer, and charge penetration are considered to
be short-range (U o< ¢™*").® In principle, one can calculate all these interactions to a
desired level of accurac'y from the system’s approximate wavefunction using ab initio
techniques. In practice, the computational demands of such calculations quickly
become insurmountable as the size of the system increases. This is a particularly
difficult problem when one wishes to study solvated species, and so in recent years
there has been considerable work in developing discrete potentials, given in terms of

the above intermolecular interactions, for common solvents, particularly water.”
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The goal in these studies is to develop a pseudo-quantum potential that can recover
ab initio results while requiring minimal CPU time.

One such effort has been the development of the Effective Fragment Potential
(EFP) method.” In this method, one typically divides the total system into two
parts, an ab initio, or active region, and a fragment region (although there is no
explicit need for an ab initio region). Then the fragment-fragment and/or fragment-
ab initio interactions are calculated within the framework of the EFP methodology.
Since the EFP model to date has been based on Hartree-Fock theory, EFPs allow for
the calculation of those intermolecular interactions that one would expect to find at
the Hartree-Fock level of theory: Electrostatics, polarization, exchange
repulsion/charge transfer, and charge penetration. (See Chapter 4 for a detailed
discussion of the EFP method.)

In several recent papers a modification of the original EFP method has been
discussed,” the key feature of which is the method’s generalization to any solvent.
This discussion is continued in the present work with a focus on the-calculation of
fragment-fragment charge penetration.

Conceptually, charge penetration can be understood in the following way:
Consider two molecules separated by a large distance from one another in space.
The electrostatic interaction between these two species is then very well represented
by Stone’s distributed multipolar analysis (DMA),” in which the electrostatic
potential of each molecule is expanded about several points, typically the atom
centers and bond midpoints, into monopoles, dipoles, quadrupoles, octopoles, etc.
The interaction energy is then calculated using the expressions for classical
multipolar interactions. However, if the two molecules are brought close enough,
such that their charge densities overlap, the nuclei on one molecule will no longer be
shielded by its own electron density, and will experience a greater attraction for the
electron density associated with the other species. The energy difference resulting
from this increased attraction is referred to as charge penetration.

Mathematically, Stone demonstrated the origin of charge penetration through
the following simple example:* Consider the interaction of a hydrogen-like atom

with nuclear charge Z and a proton. The wavefunction of the former is given by
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Z3 % -Zr .
W(r)—(_y_r—) e (2.1)

and the electron charge density is given by

3

p(r)= —Z—e‘zz’ . (2.2)
T

One can then use Poisson’s equation (V2V= ——e), where ¢, is the permittivity of
£

o

free space, to find the potential due to that density. This results in

V(r)= L + e‘ZZ’(Z + l) . (2.3)
r r

Since a multipolar expansion is in essence a Taylor expansion of the potential, which
is a simple function of 1/7, the second term in Eq. (2.3) is identified as the charge
penetration. At moderate distances, the charge penetration falls off as a simple
exponential.

It is well known that the exchange repulsion decays exponentially with
distance. Murrell and Teixeira-Dias™ have shown that charge penetration (E”") and
exchange repulsion energies (EX) behave similarly, and have: suggested the

following relation between the two:
E¥ = —E""(a+bR) (2.4)

where 4 and b are empirical parameters, and R is the intermolecular separation.
Conceptually, charge penetration should also be related to the intermolecular

overlap. Murrell had earlier observed that
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kS?
R

EX = (2.5)

where k is an empirical parameter and S is the overlap integral between two
molecular wavefunctions. Taken together, Eqgs. (2.4) and (2.5) suggest that E*"
roughly scales as the square of the intermolecular overlap. This suggestion is

supported by a recently published equation® for E* between two non-orthogonal
MO’s i and j,

1
en 1 E S[2
Er =2 i (2.6)
-2InS, | R, |

where R; is the distance between Gaussian centers. Eq. (2.6) is derived within the
Spherical Gaussian Overlap® approximation, and yields charge penetration energies
that are, on average, within 0.25 kcal mol™ * of the exact result for six different
homomolecular dimers of common solvents.*

An alternative, presumably less Computationallyv demanding, way to
calculate charge penetration between fragments is to introduce a damping function

that multiplies the electrostatic potential. Consider Eq. (2.3), when rewritten as®
V() =[1-e?*"(1+ rZ)][-— 1} = fe (V™) . (2.7)
. _

This suggests that a multipole expansion of the electrostatic potential (V™) can be
corrected for charge pénetration effects by using a damping function, f*™. Indeed,
as part of the original EFP method, Day et. al. have used a damping function to
model the electrostatic charge penetration between a distributed multipole
expansion and an ab initio charge density”. Damping functions have also been used

to correct multipolar expansion models of the induction energy,® and dispersion

energy.®
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The present paper describes the use of damping functions to model charge
penetration effects between two or more multipole expansions, i.e. to correct the
DMA electrostatic interactions between EFPs. The basic procedure is as follows:
One must choose the parameter in the damping function such that the function fits
the molecular ab initio electrostatic potential well in the region of interest. Then the
difference between the damped and undamped electrostatic interactions, within the
framework of the DMA, will be a good approximation to the charge penetration. A
derivation of this EFP/EFP charge penetration energy, along with an explanation of
how the damping function parameter is found, is given in Section II. The success of
this method for several homomolecular dimers is demonstrated in Section III. A
summary of our findings is presented in Section IV. The entire procedure described

here has been implemented in the electronic structure code GAMESS.¥

II. Theory

The notation used in the following equations is defined in Fig. (2.1); The
charge densities p, and p are centered at points A and B, respectively. These points |
represent the atomic centers and bond midpoints for EFPs. Points 1 and 2 represent
electronic positions associated with p, and py, respectively; All points are referenced

from an arbitrary origin, O. Using these definitions, the electrostatic interaction of

two charge densities p, and p; is given by -
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O

Fig. (2.1) Notation used in Section I. (See text for explanatibn.)

E™ = J‘ ,[ drdr, p,(r,)p5(xy) |r12|_1

; (2.8)
= J'drl pA(rlA)fdr2 P5(T) |1

where 1, =1, -R,. In the EFP method the electrostatic potential due to the charge

density is expanded in terms of charges, dipoles, quadrupoles, and octupoles at each

atomic center and bond midpoint using Stone’s distributed multipolar analysis:

E™ = _[ dr, p, (rlA)f dr, pe(r23)|:lr13|_l - (ri'—_fﬂi +e }

s
= _[drl Pa(ta) Vi (x,)

(2.9)
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where, as suggested by Eq. (2.9), V;*" is expanded in multipolar terms:

VBmult (rlB) - V;harge(rw) + V;fpole(rm) e (210)

Then, as indicated above, the effect of charge penetration is accounted for by
multiplying Eq. (2.10) by a damping function. This damping function should have a
number of features: a) go to unity for large R, and fall off towards zero as R,
approaches zero (where R, is the distance between points A and B); b) fit well to
the ab initio electrostatic potential of an isolated fragment in a region near its van der
Waals radius, and c) give rise to tractable integrals in Eq. (2.9). After numerous tests
with many functions that fit one or more of these criteria, it was found that a simple

exponential function gave the best balance of the desired qualities:

‘Z‘mult(rm) — (1 _ e‘a,q na )VAmult(rlA)' (211)

The parameter « is determined by minimizing the difference, A, between the

quantum mechanical electrostatic potential (ES) and the multipolar expansion of the

potential over a grid of points:

2
_ ES ES
A= 2 [‘/;b initio Vdamped multipole] .

grid points

To account for the fact that two damped distributed multipolar expansions
are interacting, the charge density on A, p,(r,), is found by applying Poisson’s

equation to the damped charge potential, Eq. (2.11):

Py (rIA) = _goVZVAmu” (rlA) = ptharge (rlA) + pfpow (rlA) e (2.12)

Since Poisson’s equation is applied to each term in the damped charge

electrostatic potential, the charge density is also expressed in terms of charge, dipole,
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quadrupole, etc. contributions. Then using Egs. (2.12) and (2.10), the integral in Eq.
(2.9) becomes

EElec :.[dl' pA rlA)Vénult(rlB)

. (2.13)
fdr charge (rm) + pdzpole(rm) +. ][Vcharge (rlg) + lepole( 13) +. ]
‘Consider the first integral in Eq. (2.13):
Efet gy = [ty 5% (5, ) V21 ). (2.14)

The approximate equality in Eq. (2.14) is due to the fact that it is not symmetric with
respect to interchange of points A and B. In Eq. (2.14), the charge density on A
interacts with the damped charge potential on B. If the points are interchanged, the
charge density on B interacts with the damped charge potential on A. Since we wish
to calculate, e.g. charge-charge, charge-dipole, dipole-charge, etc. interactions
separately, the integrals must be symmetrized with respect to interchange of points.
This is done by adding the interchanged integral and taking a simple average of the

resulting energies; for example,

Ef};l;(: Chg [I dl' charge IA Vcharge 1'13 J' dl'l pgharge (rlg )Vcharge (rlA )] . (21 5)

For clarity, only the integral Eq. (2.14) will be explicitly discussed; the second
term in Eq. (2.15) can be found trivially at the end of the derivation by exchanging
points A and B. ‘ |

From Egs. (2.10), (2.11), and (2.12) one finds

charge (rm) qA aA [ e—O‘A fia (216)

ha

VBcharge(rlB) — [1 - e‘as ’13] qz ’i:?l (217)
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“where the charge at point A, qa, is found using Stone’s method,” and ¢, is the

permittivity of free space.”® Then Eq. (2.14) becomes

~ o 5 e %alia e %ana e %8s
ec
Echg-chg - qA ds aA 80 Idrl - dr] , (218)

halis hatis

which can be evaluated using the following integrals:*®

/1
=20 47, -1 _ 20 4R
.fdrle s =2 [1- e #(1+asR 45|
4% A
_ _ _ T . _
Idrl g2 nag 2% sy 1 = R ( —— {a o 2oRas _ o2 4R 4 [aA + RAB(ai —ocﬁ)]}
o —o )
AB A B

ope 2R [R 5 (ocj - aﬁ) +20 A]

J‘drl e-—ZaArMe——ZaBrIB — 871: -
2 2 _
RAB(ocA - aB) +or 2R [RAB(oci - ocf;) - 2aB]

The second two are given by Coulson; the first has been evaluated using his method:
First, transform to spheroidal coordinates,® where

R R
fia =—"2@(/1_.u) fip :-2"‘1(,14-”)

dr, = d7 = %Rfm (#2 - u?)drdudg
1<A<oo —1<u<+l 0<¢<2n

such that

J e = R e (s

T

w~ 1
5 R‘%‘BL J_ldﬂdy (}, - ,u)e_“ARAB(A—y)
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substitute x =1 — u:

—® 4R px

y L4 T o p1 -
J.dr1 g2 anay ] = ——RiBJ. f dudx xe™*Ras*
2 1-pd-1
T 1 -
==R%: | du - e X+ dx e~ %R
2 R
QylRyp Oyl yp '

T, (1 . o M=p) 1
=2 R? dule 4R 45(1-4) +
2 AB'L ,U[ 0,Ryp 4R,

/4 1 - _ 1 —a -
— —RiB( J._ld‘u e %aRap(1 #)(1_”)_*_ i I—ldu g %aRap(1 #)\]

2 ARAB A*“AB

substitute x =1- u:

- 4 T 1 2 _ 1 2 -
fdr1 eyt = — R fo dx e ke g — J dxe "‘ARA”"J
2 o,4R ayRyp 70

1 2a,R 1 2 1
- 4 2 T t—=3
7T o | CaRap Ry 0,R) Ry,
=Ry

2, f L [_ 1 epre , L ]
2R, | @R, 04R,
- -7251{33 Esz-_j;[l — ek (14 20,R )] + H;E;[l — g2aRas ]J
= 2a;RAB [2-2e7%0 (14 0, R )]
- az’; - [1- 2o (14 0,R )]

which was to be demonstrated (Q.E.D.). The use of these integrals yields

2
rElec . g QB l_e‘O‘ARAB _ aA_ .

=0y Ryp ~O4 Ry
= e —e
chg~chg 2 2 [ ]
R, (oc W aB)
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where the charge at point A, g,, is found using Stone’s method,”® and ¢, is the

permittivity of free space.” Then Eq. (2.14) becomes

-0, n —Q4 N, —Opr
A Na 414 B
e e 1B

r+Elec €
thlg-—chg =q,4p ai gol:l. drl - J‘drl —_———:]/ (218)

Nahs Rahs

which can be evaluated using the following integrals:*®

§ ; 74 y
fdrl g 2 nagl = o [1-e?*"% (1+a,R )]
: 48%4
— — - T _ ~
Idrl g 2ana g 20Nyl = — {a e ek g72aRas [oc Lt R, (oci - o )]}
Ry (O‘A - aB)

. , 87 orpe > %4k [R AB(ai - aﬁ) +2a A]
jdl' g oA pTo0B N
1

2)\3 -
R AB(oci - (xB) +o e 2R [R AB(ocf‘ - oc;) —~ 20‘3]

The second two are given by Coulson; the first has been evaluated using his method:

First, transform to spheroidal coordinates,® where

R R
ha = '_;E(/‘L_.u) g =_§§(/1+,u)

dr, = dt =%R3;3(/12 — ) dAdydg
1SA<eo -1<pu<+l 0<¢<2n

such that

i et = 1 [ [ [ - ot

oo pl ‘
:%R‘iBJ.I J-—ldMM (A’_ﬂ)e_aARAB(A—,u)
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substitute x =1 — u:

) 4 T = ol _
fdrl g 2oanayl = -2—1{3“3J.1 f Audx xe %aRapx
me

= ER%BF d.u(_

—0t 4R 4px

e X+ _[dx g~ aRasx
5 a

QR yp 4R, E

1-
— zRiBJq d‘u e'U‘ARAB(l—/‘) ( ,Ll,) + 21 > )
2 1 4R, Ry

Y 1 ! ~@aR4p(1-p) 1 ! —@aRpp(1-
_.——-RAB(;—J‘_ld,u e K (1—,u)+—0ﬁ2—f_1d‘u o~ %aRap(1-1)

2 ARAB A"YAB

substitute x=1—u:

1 2 -
I dx e 4Ry 4 —
O 4R 4570 o OalRyp

- a4 7 1 2 _
_[drl e ZaArlArlBl — ERiB =7 .[0 dx e~%aRasx

1 20.R 1 2 1
—e A ip2 T T
T 4R, Ry, QR 5 AR yp

=R 1 [_ L _1—}
iRap | 04R gR 4
= % R%, &-ﬁ[l — 7% (14200, R 1 )] + ﬁp — e 2R ])
- Zoc;RAB (1?0 —20, R, e esRe 41— ¢ 2a)
= E&;TAB[Z ~2eRu (14 R, )]
- ai’;w [1-e?*%a (14 0,R )]

which was to be demonstrated (Q.E.D.). The use of these integrals yields

. 2
EElec - 94 QB 1— e~0¢,1R,w _ aA [e‘ag Rup _ e“aARAB]

chg—chg ~ 2 2
Ry (aA - O‘B)
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when «a, # oy, and

B e = MB—[l ~e” R"”(l + O”;ABH (2.20)
when «, =a; =a. In deriving Egs. (2.19) and (2.20), we have used the fact that
47e, =1 in atomic units, and R ,; represents the distance between expansion points A
and B.

A similar procedure is used to calculate electron-nuclear interactions; here the
damped monopole contribution to the density is allowed to interact with the

unscreened nuclear charge. Again, starting from Eq. (2.9), the interaction is given by

Elec—Nuc __ charge -1 charge -1
Echg _J.drl Py (rlA)ZB ne +Idr1 Pg (rlB)ZA Na

) e_aA Na ) e—as ng
=q,Zg aA_[drl ——+qzZ, aBJ-drl

Nalis Nalis

(2.21)

i G P

AB

Note that Eg. (2.21) is already symmetric with respect to interchange of A and B.
Finally, summing Egs. (2.19) and (2.21), including the symmetrization, and
subtracting out the undamped interactions, the charge penetration energy for

charge-charge interactions only becomes

qu(gy +2Z,)e % o qp(q, +22Z,)e % e
Pen

chg~chg ~ 2R, n quBgai +206123) (e—asR,m _ e_aARAB) (2.22)
| ol —al

where «, # a; and Z, ;, = 0 for bond midpoints. For the o, =, = & case,
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OR,,

' en 1
E;:g—chg == .E_ I:QAqB (1 +

) +4,Z5 +q5Z, j|e'°’R’“’ (2.23)

AB _

Note in Egs. (2.22) and (2.23) the total charge penetration is the sum of all charge
penetration energies between unique pairs of intermolecular DMA points A and B.

If one follows the above procedures for charge-dipole interactions, an

equation analogous to Eq. (2.13) is found:

ha ~ dipol, ) e‘O‘A Na e'U‘A ’ue“as Na

charge e —

IdrlpA () V52" (r5) = q, pp Ol g, J.drl s cos@B+J‘a'r1 ————cos0,
Tiahie Tiahp

(2.24)

‘The integrals in Eq. (2.24) can also be evaluated analytically using Coulson’s

method, however, the first two dipole-charge integrals,

Zj.d e “ " cosh, 2J.dr e “anem i 0050,
1 3 - 1 3
d dipole Vcharge - fiahg VT
P, (rm) B (rw) =qpl QL E,

&4 fa ~C&4 s ,~0pg hip
e cosf e e cos@
+aAJ‘dr1~—_2-_A'"aAJ‘drl A

halis

2
halis

(2.25)

do not converge analytically. The resulting increase in CPU time rules out a
numerical analysis of these integrals, and evaluating charge-dipole interactions
without dipole-charge means not including all terms of a given order. Since this is
undesirable as well, the following analysis includes only charge-charge interactions.
It will be shown that even with such a seemingly severe truncation, a major
percentage of the total charge penetration is still recovered.

Before the results of the above analysis are given, the procedure for

determining the alpha parameter in the damping function will be briefly described.

Consider the error function
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A = 2 [‘/affnilio - Vdffnped multipole ]2 (2.26)

grid points

based on the difference between the ab initio and multipolar electrostatic potentials.
A grid is defined about an isolated fragment molecule in the following manner:
Concentric spheres are placed about each of the atom centers at 67% and 300% of the
van der Waals radius of the corresponding atom. As will be shown in the next
section, these values were chosen because they result in the best fit of the damping
function to the ab initio density, and they were found to describe the physically most
important regions in terms of charge penetration. The fragment is then placed
within a three-dimensional Cartesian grid with a spacing of 0.50 Bohr .in each
direction, and any point not within the two spheres is discarded. It was found that
the spacing has little effect on the fit unless the distance between grid points
becomes too large; 0.50 Bohr balances run time and accuracy well. The ab initio

density is calculated on the fragment during a GAMESS run, and the electrostatic

potential is computed at each grid point. Finally, the parameter ¢ is optimized in

the exponential damping function such that A in Eq. (2.26) is minimized. Note that

o is a property of the isolated monomer molecule.

III. Results and Discussion

Several tests were run to determine the optimal values of (r/r,,.) for the
radii of the concentric spheres about each atom to determine the set grid of points
used in (19). Fig. (2.2) shows the results on the water dimer using charge-charge
interactions only. The dimer geometry used here was obtained by first finding the
ab initio geometry at the RHF/6-31+G(d,p) level of theory, and then superimposing
the individual fragment monomer geometries on the dimer structure.* The abscissa
is the relative distance between the water molecules; 0 A represents the equilibrium
distance between the oxygen atoms, negative values bring the fragments closer
together, positive values move them further apart along a line connecting the

oxygen atoms.
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Fig. (2.2) Charge penetration error in kcal mol™” as a function of oxygen-oxygen
distance in the water dimer, and as a function of r, (separate curves). ., is 300%

of the Van der Waals radius of each atom.

The fragment geometries described above are used for the Morokuma
analysis [6-31+G(d,p)], and the resulting electrostatic energies are taken to be the
exact interactions for ab initio electronic densities. The FRAGONLY electrostatic
energies are obtained from a fragment-only calculation on the dimer, and do not
include any damping in the DMA. The difference between the Morokuma analysis
and the FRAGONLY run is then taken to be the charge penetration that the present
method is meant to calculate. It has been shown that a simple model of undamped
electrostatics and hard 'spheres leads to a good prediction of equilibrium geometries

for Van der Waals complexes,” so only the relevant interaction energies, with and

s
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without charge penetration, are reported here. In Fig. (2.2), r,,, is set at 300% of the
Van der Waals radius of each atom, and r,, is varied from 30% to 70% of the Van
der Waals radius. The ordinate is the difference between our calculated charge
penetration and the exact (Morokuma-FRAGONLY) charge penetration.

As I'py, approaches the atomic nuclei, the simplistic exponential damping
function breaks down as evidenced by the large error for the r,,, = 30% curve. To
understand this, consider the functional form of Stone’s estimate of charge
penetration given by the second term of Eq. (2.3) versus a simple exponential. The
single parameter exponential function crosses the ordinate at unity when r = 0,
whereas Stone’s function rises towards infinity. Therefore the exponential function
does not contain adequate flexibility to fit the ab initio potential in this region close to
the nuclear cusp. Depending on the specific monomer potential being fit, a
breakdown is expected to occur somewhere in this region. Once this region has
been entered, the alpha fitting procedure for the simple exponential quickly
deteriorates, the foundation of the method erodes and results in unpredictable error
in the calculated charge penetration. This can be seen in Fig. (2.3) for other dimers,
where the average breakdown point occurs in the region of ., = 55-60%. Referring
back to Fig. (2.2): For the higher values of r_,, as the monomers move farther apart
the charge penetration, and thus the error, goes to zero. At roughly r.;. = 40%,
almost all of the charge penetration is recovered at the equilibrium water dimer

geometry,
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Fig. (2.3) Charge penetration error in kcal mol™ for six homomolecular dimers at
their equilibrium geometries, as described in the text. The charge penetration error

is given as a function of r.;,. 1. = 300% of the Van der Waals radius on each atom.

although we have seen that this value is most likely too close to the nuclear center to
be used in general.

Tests on solvents other than water are shown in Fig. (2.3). It should be noted
that although these tests were done on dimers of identical monomers, the method
does not require this restriction; the charge penetration between any types of
fragments can be found this way. The geometries were found using the same
method as described above for water dimer. The Morokuma analysis was also
performed using the 6-31+G(d,p) basis. Again we note that at smaller values of r,,

the absolute error in all of the dimers increases unpredictably. As r,,, increases to a’
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'range of 60-80%, the error becomes more stable, and as r,;, increases further, outside
of the physically meaningful region for charge penetration, the error increases again
for most dimers. One could find an optimal value of r for each of the dimers

shown, but overall the best choice seems to be in the range 60-80%. Fig. (2.4) shows -
the
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0.5000 1

0.0000
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Fig. (24) The average error, standard deviation, and weighted average of the six
homomolecular dimers in Fig. (2.3), as described in the text. The charge penetration
error is given as a function of r ;. 1., = 300% of the Van der Waals radius on each

atom.

average error of the six dimers, the standard deviation, and the average error
weighted against the standard deviation. This plot shows where the standard
deviation is both small and centered about zero error. Although this plot suggests
the optimal value of 1.y, is 60%, the weighted average difference between r,, =60%

and 67% is only 0.05 kcal mol™, so very little is lost by choosing the larger, more
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conservative value of ry, = 67%. This choice is merely a suggestion based on the six
dimers tested, and can be changed in GAMESS by the user. Table (2.1) shows the
numerical results when r,;, = 67%. The average absolute error is 0.32 kcal mol”; the
largest absolute error is 0.65 kcal mol™ for methanol. If r__ = 80%, the average
absolute error for these six dimers is reduced to 0.27 kcal mol™; howevér, this value
of ., seems too high, since it nears the Van der Waals radius and the error is not
spread as evenly about zero. Note that only the absolute value of the error is
important. The overall charge penetration itself is attractive and thus negative, but
there is no assurance that the charge penetration will not be overestimated using this

method. This is especially true since only charge-charge interactions are included.

Electrostatic energies

Dimer Morokuma FRAGONLY Difference Charge-charge Error
(CH,),S0 -10.89 -8.42 -2.47 -2.89 0.42
CH,CN -5.12 -4.22 -0.90 -0.78 -0.12
(CH,),00 -3.26 -2.66 -0.59 -0.78 0.19
CH,OH -8.12 -6.89 -1.23 -0.59 -0.65
CH,Cl, -1.74 -1.47 -0.28 -0.33 0.06
H,O -8.21 -7.12 -1.09 -0.60 -0.49

Table (2.1) Charge penetration results, 6-31+G(d,p), for dimers of six common
solvents; 1/ I'ax = 67%/300% of van der Waals radius on each atom. (Grid
spacing = 0.50 Bohr. All values are in kcal mol™. The average absolute error is 0.32

kcal mol™. See text for discussion.)

The values of alpha for r,;,= 67% are given in Table (2.2). Note that since ¢ is

found by fitting the isolated monomer, these values will not change when used in

heteromolecular fragment systems.
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Monomer DMA point Alpha
C 2.91

H 1.66

S 1.82

(CHy),S0 O 1.94
S-C bm 1.22
S-Obm 10.00

C-Hbm 1.49

C (methyl) ' ' 2.17

C (cyano) 1.96

N 1.81

CH,ON H 1.76
C-Nbm 1.48

C-Cbm 0.56

CH 1.54

C (methyl) 1.89

C (carboxyl) 1.75

O 1.97

(CH,;),00 H 1.75
C-Obm 1.57

C-Cbm 1.03

C-Hbm 2.08

C 9.87

0] 1.983

H (methyl) 1.65

CH,CH H (hydroxyl) 3.06
C-H bm 1.63
C-Obm 10.00
O-Hbm 10.00
C 10.00

a ‘ 1.78

CH,Cl, H 1.76
C-Hbm 2.00
C-Clbm 10.00

6] 1.88

H,O H 2.95
O-Hbm ' 10.00

Table (2.2) Values of the alpha parameter used for the monomers that make up the

dimers in Table (2.1). (The abbreviation “bm” refers to bond mid-point.)

IV. Summary and Conclusions

A formula to calculate the charge penetration energy that results when two

charge densities overlap has been derived for molecules described by an effective
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fragment potential (EFP). The method has been compared with the ab initio charge
penetration, taken to be the difference between the electrostatic energy from a
Morokuma analysis and Stone’s Distributed Multipole Analysis. The average
absolute difference between the EFP method and the ab initio charge penetration for
- dimers of water, methanol, acetonitrile, acetone, DMSO, and dichloromethane at
their equilibrium geometry is 0.32 kcal mol™.

The EFP method in general has been shown to reproduce ab initio results very
accurately for water®, and this work is another step in the continuing development
of a general EFP method that will accurately model any solvent. The derivation and
implementation of dispersion and a parameter-free charge transfer in the EFP will

be the subjects of future work.
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CHAPTER 3: MODELING SOLVENT EFFECTS IN NUCLEAR
MAGNETIC RESONANCE SPECTRA

I. Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy has been an invaluable
source of information on molecular structure since its inception during the winter of
1945-46 by Bloch, et. al.”* and independently by Purcell, et. al.® Since 1974, there has
also been significant development in the ab initio theory of NMR chemical shifts. In
that year, Ditchfield presented a Gauge Invariant Atomic Orbital (GIAO)* method
that has proven to be quite popular and accurate, especially when applied in the
context of highly correlated ab initio methods, such as perturbation theory and
coupled cluster theory.” Traditionally, these calculations are carried out in the gas
phase, and the lack of consideration for solvent effects is one of the more obvious
sources of discrepancy between experimental reality and theoretical models.

Several methods have been developed for treating solvent effects on NMR
spectra; these have been reviewed recently by Helgaker, Jaszunski, and Ruud,® and
will only be summarized here. Due to the large size of the typical solvated system,
the majority of the research has focused on a “supermolecule” SCF description,
which at the HF level does not include dispersion effects. This approach has all the
well-known advantages and disadvantages of a typical supermolecule calculation;
an example of the latter is computational cost. There have also been two attempts to
use continuum models of solvation, which describe the electrostatic effects of the
solvent without treating a discrete solvent explicitly. (See Chapter 2 for more
comments on continuum models.) The first is the GIAQ/ (Multi-Configurational)
Self-Consistent Reaction Field (MCSCRF) method due to Mikkelsen, ef. al.% and the
second is the IGLO/Polarizable Continuum Model (PCM) of Cremer, et. al.¥ In the
MCSCRF model, the molecule is placed within a spherical cavity, and the energy of
interaction between the molecule and the continuum is written as a multipolar
expansion. In the IGLO/PCM model, the molecular cavity is more complex; each
atom is surrounded by a sphere, and point charges placed on the cavity surface are

used as a tool to model the interaction of the solute with the continuum. With the
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popularity of QM /MM methods, such as the EFP method described in some detail
in Chapter 1, there have been attempts to use these types of methods to calculate
chemical shifts. The main focus has been on molecular dynamic techniques using
empirical potentials; see the Helgaker review for details and references.

The purpose of this chapter is to show in detail how the EFP method can be
coupled with Ditchfield’s GIAO formalism to predict NMR chemical shifts in
solution. Section II will give a modified derivation of the GIAO equations, and
Section III will derive the relevant antisymmetric perturbation theory equations for
field dependent non-orthogonal basis sets that are needed to calculate the first
derivative of the density matrix. Section IV will describe how the one- and two-
electron integrals derived in Section II are calculated within a hybrid McMurchie-
Davidson/Dupuis shell structure scheme, and Section V wﬂl describe various

strategies for incorporating solvent effects using effective fragments.
II. Chemical Shifts and Gauge-Invariant Atomic Orbitals

The derivation found here is based entirely on that presented by Ditchfield in
1974.* Tt has been modified slightly into a form which is more consistent and formal
than the original. In order to facilitate a smooth presentation without neglecting the
details, the reader will be referred repeatedly to Appendices B (vector identities) and
C (GIAOs) for explicit derivations. The notation (B.4) will refer, for example, to
Appendix B, part 4.

The electronic Hamiltonian describing a closed-shell molecule in the total
i’nagnetic field due to a uniform external magnetic field H and the dipole fields
arising from nuclear magnetic moments p., Wy, situated at fixed nuclear positions

R.,R,, - has the form

}[(H,u):—;—Z{(—iVj+-}A’(rj)) —22%}+2%+2% BNCE)
C 1j j CD

j C j#l 'ji C#D

where r; is the distance vector between electron j and an arbitrary origin, and
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(3.2)

nuclear magnetic
moments

uniform external
magnetic field

Fig. (3.1) Definitions of vectors and notation in Eq. (3.1).

Note that A’(r))is the vector potential representing the total magnetic field at the
position of electron j, and A(r;) is the vector potential without the contribution from

the nuclear magnetic moments, p,:

, Mg XT;
Alr)=A@m)+ Y 5
B (3.3a,b)

Ar) = %Hx I;

Although the vector potential A’(r;) is completely defined by the above

expressions - the first term representing the effect of the external magnetic field at
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the electronic coordinates, and the second term represenﬁng the magnetic field that
results from the nuclear dipole, (C.1) - some discussion of its form and properties is
both appropriate and necessary. In 1864, Maxwell introduced his electromagnetic
theory, which can be summarized by four equations. One of these states that the
divergence of a uniform magnetic field vanishes; i.e. V-H =0, where H represents
the magnetic field vector. A vector with this property (zero divergence) is said to be
solenoidal, and as such, can be represented as the curl of another so-called vector

potential, in this case represented by A:
H=VxA (3.4)
since, for example,

1

V><A=V><(%er)= VxHXxr

2
=%[(I"V)H—(H-V)r*r(V'H)+H(V'r)]

1 1
= E[—(H-v)r +3H] = —2—[~H +3H|=H

using (B.10) and the solenoidal property of H. The difficulty is that the vector
potential, A, is not uniquely determined by the magnetic field, H. Consider a vector
potential modified by the gradient of a scalar function, f

A” = A+Vf(r) | (3.5)

The curl of this modified vector potential also gives the original magnetic field:

Vx(%er+Vf(r))=H+V><Vf(r):H - (3.6)
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using (B.5). Consider a spécific scalar function, f(r) =%H>< I, -r, where r, is an

arbitrary point in space. The gradient of this function is %ero, and Eq. (3.5)

becomes:
7” ]‘
A =—2—H><(r+r0) (3.7)

This modification in effect moves the coordinates of the nucleus in question by a
distance 1, The physical implications of the vector potential’s mathematical
properties are as follows: one can modify the vector potential without changing the
external magnetic field, and therefore without changing the physical system.
However, the description of the physical system, the Hamiltonian, depends on the
vector potential, not the resulting magnetic field. Changing the vector potential as,
for example, in Eq. (3.7), will change the Hamiltonian and thus the observable
energy, but since the physical system has not in fact changed, the observable
eigenvalue should also remain unaffected. This means that the wavefunction must
change by some complex phase factor to cancel out the change to the Hamiltonian,
leaving the observable unchanged. Modern quantum chemical techniques
formulate an approximate wavefunction expanded in an appropriate basis set, (see
Chapter 1) and unless it is unusually large, this basis is not flexible enough to allow
for the necessary changes in the wavefunction.

The factor of r, can be referred to as the gauge origin, and the resulting
dependence on the choice of this origin is called gauge dependence. For atoms, this
origin is easy to choose to give constant results: the nucleus. For molecular systems,
the gauge origin cannot be chosen so easily. To compensate for this, Ditchfield,
following London,” used gauge invariant atomic orbitals (GIAOs) which act to
cancel out the gauge dependence in the wavefunction:

—Hleur

Z,(H) =e % . ¢j (3.8)
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We will return to the use of these GIAOs later, but for now simply note that the
phase factor is a function of the external magnetic field and contains the ultimate
integration variable r just as the unperturbed basis function, ¢;, does. [See Egs.
(1.34) and (3.66).] First, let us return to the form of the Hamiltonian.

Eq. (3.1) can be expanded (C.2) to give

ff(H,u)=—-21-Z{V?—Z Ghysliss s

j B 1 ]¢l D B#D
i i (1‘,1; XV. )a
2c HaZ( Vi), ZMBaZ = 09)
+—2H 2}:(1 ap Tjarjﬁ)ﬁﬂ
2c2 2 H E(r] r,35aﬂ3 T,J,Bﬁ)uw

B,ap 7 Tig
Where the subscript greek indicies are tensor notation, and refer to any one of the x,

- ¥, or z Cartesian directions. One can then use the following definitions to simplify

the above expression:

}[(O)z_%Z{V?_zé}+z rl+22%z_v (3.10)
: 12,

a}[a‘I(_IH/p') — 21 ;(r] XV ) — _2LC2LIG — i?’[‘éll.o) (311)
a 0 7
97 (H,p) 1
OH,oH, % 22(] w0~ Tialip) = SHG" (3.12)
0H (H, r; XV o '
a/iB . :‘ﬁz.(ir,gﬁ)*‘ﬁ e =iH g (3.13)
@ 0 j j i




47

0H (H,p) l Z(r rJBSaﬂ rJaTIBﬁ) }[él,;)

(3.14)
aH anuBﬂ | 2 ]B
These definitions allow the Hamiltonian in Eq. (3.9) to be written as
) = (S HH 0 +i5 5,0
| (3.15)

+= EHﬂ-f “OHy+ Y HyH 5™ gy

B,a,B

The most critical point here is that the first order terms are pure imaginary, which is
a result of expanding the NMR Hamiltonian in an exact Taylor-like series® (The
perturbation is therefore said to be “antisymmetric” to first order.) The energy

associated with this Hamiltonian is given by Schrédinger’s equation:

H (H, 1) ¥ (H, ) = E(H, p, ) ¥(H, ) (3.16)

For small values of H and p;, we can similarly expand the wavefunction and energy
in a Taylor series about their zero-field values. Again, it is critical to note that since
the Hamiltonian has pure imaginary terms at first order when expanded, so will the
wavefunction and the energy, which allows us to exploit a similar notation: (a

superscript “+” denotes adjoint)

0¥ %],

i IR

OHl, ™" o), (3.17)
=¥ +iy H P + i g PO+

\P(H,IJ.B) =90+ H-
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OF OE| 1., &E 1 OE
EM,p)=E9+H - —=| +p, —| +-H"- +-H"  — .
(Ho 1) i, Mo, "2 o), T2 amap)
+1u" 0’E ' +1u* 0’E -
ETh RN I+ U IR
27 dmoH|, 2°° opl| (3.18)

=EQ+iy HEF +0 Y g ESD + %E H,EG"H,
o o aoff

1w .
1) (0,2)
+ Zﬁ‘, H,Egop tgs + 52;, MooEpos g+
o [04

The following is a qualitative, experimental expression for the energy of a molecular

system in the presence of a uniform external magnetic field:
. ,
E(H7HB) =E? - ZHaya - ZnuBaHa - EzHaZaﬁHﬂ + 2 Hao'Bap.uBﬁ +-e- (319)
. o o af aff

Where y,is the permanent magnetic dipole of the molecule, Xop 18 the molecular
diamagnetic susceptibility tensor, and O, 18 the magnetic shielding tensor on
nucleus B. Comparison with the expan'ded expression for the energy, Eq. (3.18),

allows for the identification of the shielding tensor with a second derivative of the

energy:
. Opep =E5) | (3.20)

Therefore, the task of calculating the shielding constants has been reduced to
the evaluation of the second derivative of the energy with respect to the external
magnetic field and the nuclear magnetic moments at zero total field strength. Note
that Eq. (3.20) is ultimately a definition, and the above comparison has been given as
a physical justification. | v

At this point, we return to the use of GIAOs, and construct molecular orbitals

from_ them:
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i (H, 1) = D' e, (H,py) 7, (H) (3.21)
2 (H) =6, = £, (3.22)
A, =%H YR, (3.23)

Note that the molecular orbitals (MOs) are complex and field-dependent. One can
then use these orbitals in standard closed-shell Hartree-Fock theory and arrive at an

analogous Roothaan equation:

Z(E/A —£€5, )C/xj =0 : (3:24)
Where_
S = {21 22) (3.25)
Fv/l = HVA.+ Gv,‘{ (326)
and further,
1/ . 1 2 4
H, =(x, |{§(—ZV + —A’(r)) - Z—B}I 2) (3.27)
'C B rB . ' . .
* * 1 * *
G, = ZPPU[(mema) - -2—(xvxg|x,,xl)} =Y P G (3.28)
oo 00

Note that in the matrix elements of the core Hamiltonian, Eq. (3.27), we integrate
over r, the coordinates of electron 1. See, for example, the reasoning leading to Eq.

(1.23). Following through with HF theory, the energy of the system is given by

E= EPW{HW1 + %GM) (3.29)
vA
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which is the result of introducing a basis set into Eq. (1.31).

With the introduction of Eq. (3.29), and recalling the definition of the
shielding tensor, our task is well-defined: we must take the second derivative of Eq.
(3;29) with respect to the external niagnetic field and the nuclear magnetic moments,
a dependence Which‘appears in the GIAOs and Hamiltonian. In practice, we will
evaluate this derivative to first-order, and in order to do this, we expand the various
fundamental quantities in ekpansions similar to the Hamiltonian, Eq. (3.15), energy,

Eq. (3.18), and wavefunctibn, Eq. (3.17). Just as with these prior expansions, the first

order terms will be pure imaginary:

Cy(Hoy, thpe) = + iHa(cf,}"’))a + iuBa(cg’W”)a +-e
Po(Hor tye) = P +iH, (PSP, + ity (PY), +--

(3.30a,b,c,d)
G (Ho o) = G +iH,(G5)  +ittyy(GOR) +-+- |
Hv}.(Hal.uBa H(O)+1Ha(H(1 0)) +i:uBa(Hg3//ll)) e
where we note that (C.3)
(P4), =23[(c6), e - e (e®) ]
. 2 (3.31a,b)
(), =25 (), 0 -2,
and (C.4);
(G), = 2 (B5) G, (3.32)

po

results which will be handy later in the derivation.
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To begin, substitute the expansions, Egs. (3.30b,c,d) into the energy
expression, Eq. (3.29), and differentiate with respect to the nuclear magnetic

moments: (C.5)

JE
Ofdz

=% {(BS), F + PO(H) )} (3.33)

VA

0

This can be simplified if we note that (C.6)

S Seimsa=a) > S0l (@), wpo=0 e

a.uBﬁ

This, along with the explicit derivative of the density matrix, Eq. (3.31b), and the
Roothaan equation, Eq. (3.24), gives: (C.7)

=iy, PO(HEY), (3.35)
a.uBﬂ o v
Recall the definition
. oE
E<° D = PO(HOD (3.36)
a g ) ; ( BvA )ﬁ

- which allows us to easily take the second derivative and find the expression for the

shielding tensor:
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(1,1) aEglgl) d (0) (0,1)
GBaﬁ = EBaﬂ = aH I = aH ZAPVA (HBVA )ﬂ
A o 0 [44 \Z
(0) o(HLD
:‘g{g%(ffg’v’f’)ﬁpff)__( . )ﬂ} - 337)

= > {(eeo) (He), + PO(HE2),

VA

()

Note that %— # i(PV(;’O))a since Py’ # P,;, and in the last line, P is now totally field

independent, whereas it still depended on H before the derivative was taken. The

specific derivatives in the shielding expression are then given by (C.8)

1 1, L '
(Hl(;%a))ﬁ =—_C—<¢v|;;§-|¢,l> (3.38)

where Ly = (1; x V), and (C9)

B

1 L
(H by )aﬂ sy {<(Tw1 )a o,

Lg
7
1
+
2¢? <¢"

where T,; =R, xr,and Q,, =R, xR,. (Note that these matrices are antisymmetric;

¢A>+(QVA),,<¢V é‘i ¢>}

[rA 130, — (r,l )a (55 )ﬂ]

3 ) ¢/‘L>

Ty

(3.39)

ie. T =-T,, which is to be expected for an antisymmetric perturbation.) The
remaining piece of the shielding tensor is the first derivative of the density matrix

with respect to the external magnetic field. This is the subject of the next section.

II. Self-Consistent Antisymmetric Perturbation Theory for Perturbation

Dependent Non-Orthogonal Basis Sets
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The first derivative of the density matrix is given by Eq. (3.31a), and depends

on the perturbed coefficients, (Cf;’o))a. Rather than calculate these quantities, as

Ditchfield does, we instead wish to derive a direct expression for the full matrix
(PV(;’O))O‘. In order to do this, we must consider antisymmetric perturbation theory

for non-orthogonal, field dependent basis sets, of which GIAOs are an example. The
term “antisymmetric” is used because to first order, perturbations due to the external
magnetic field and nuclear moments are pure imaginary, as seen in the previous
section. The following will be a summary of two papers; the first is a general work
by Dodds, McWeeny and Sadlej™ which treats the general symmetric problem, and
the second by Wolinski, Hinton and Pulay,” which deals specifically with GIAO
‘chemical shift calculations. As in the previous section, the reader will be referred to

Appendix C and D for detailed derivations.
Consider a closed-shell system with n singly-occupied orbitals {y,,y,, -, v,}

constructed from m basis functions {)(1, Xores xm}-—-x, where this set is not

orthonormal. It is always possible to make the set orthonormal, however, by

multiplying by an appropriate unitary matrix:
% =xU (3.40)
where the bar denotes an orthonormal basis. Since (X|X) =1, we have

- 1=(x|%) = (xU[xU) = U'x'xU = U*SU (3.41)

1
where we are free to choose U =8 ?, which is known as Lowdin orthonormalization.

This has the feature that

-1
2

1 |
U'=8"2=82=U (3.42)

since the overlap matrix is always Hermitian.
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The SCF Fock equation in matrix form is given by
FT=STe (3.43)
where T is an m x n matrix of basis function coefficients, and T = U™'T, thus
FT = STe = FUT = SUTe = UFUT = USUTe = FT = Te (3.44)

where we have identified T=U"T and F=U'FU. The density matrix can thus be
defined as

R=TT" (3.45)

Note that we have previously defined the density matrix as P =2TT", (see C.3) but

these two definitions are simply related by R = %F. Note that since R =TT", where

T is an m x n matrix, R is therefore m x m, where only n of the orbitals are singly
occupied. It can be written in terms of column vectors of T, ¢, in the following

way: (Note that ¢, is a vector of length m.)
R=TT' =) ¢3 (3.46)
I

To find the perturbed SCF equations, we assume a solution to the

unperturbed problem has been found, and allow for a perturbation to the system:

S=804+8M4...
F=F%+F"Y 4... (3.47a,b,c)
H=H?+H +...
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where the superscript (0) indicates an unperturbed quantity. (Note again that for
{the specific case of a magnetic field perturbation, the perturbation is pure imaginary,
or antisymmetric. This characteristic will arise naturally in the following derivation.) The
first order terms can be expressed using the same general expansion as in the

previous section:

Sy = {2, (8D)| 2, () = (£ £,9,|9,)
Sp = Sr(f?l) + Ha(Sr(v;)) +

= (S“’

Pq)azaH <ff¢|¢>

L

J

0

where f, was defined in Eq. (3.22). Then, using (C.9.3),

(S;’}i))a - <§lg [(qu)a * (Qw)a]d)" ¢ > B 2ic[<(Tm)a %, |¢q> + (qu)a<¢rf |¢4 >]
(50). =Sk,

(3.48)

Note that since T, andQ,, are antisymmetric, [see Eq. (3.39)] S is also
antisymmetric.

Similarly, the first order term of Eq. (3.47b) can be evaluated (C.10):

(), =1 (1), + 3 {7) 5. + 2 (et) )
. po )

(3.49)
-(5),
which includes the first order term of Eq. (3.47c), given by (C.11)
1
(HE), = o [{(Ta) 010, + (Qu) {0, [l 6.) ~ (9, ILE]0,)] (3.50)
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where we have used the notation [c.f. Eq. (1.17)]
Hee = Ly -25 (3.51)
2 Ty

The final remaining piece is the first-order derivative of the two-electron
integrals, (Gf,}l;;)a in Eq. (3.49), which can be constructed from the individual two-

electron derivatives: (C.12)

(1,0) _ i [(QW )a + (QrS)a ](¢P¢q|¢r¢s)
- % +((TP'1 )a ¢P¢ql¢r¢5 ) + (¢F¢q|(Trs )a ¢r¢5)

(x2,l%.2.) (3.52)

(Ditchfield omits the factor of 1/2 - this is most likely due to a typographical error.)

Note that the expression for the first order Fock matrix contains the first order
density matrix, which is the quantity we wish to calculate. Therefore we see that
this will be an iterative procedure. We have yet to write down the form of the
perturbed SCF equations, so let us do this now, and then write them in an
antisymmetric form, as presented by Pulay. Begin with Eq. (3.47) and substitute in
Egs. (3.47), then separate orders: (D.1)

0% order. FURVS® = SORF©
1% order. FORO§D 4 FORMGO FOROgO — SORO@OED 4 SORMEO 4 SR OE©)
284 order. FORMSD 4 F(l)R(O)S(l) + FORMGO) — SORMED 4 SUOROF® 4 SORDEO
3" order. FPRUS® = SORWE®

Similarly, begin with Eq. (3.49) and substitute in Eqgs. (3.47), and separate orders:
(D.2)
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0™ order. ROSOR® = R©®
1% order. R(O)S(O)R(l) + R(0)8(1)R(0) + R(I)S(O)R(O) — R(l)
znd order. R(0)5(1)R(1) + R(I)S(O)R(l) + R(l)S(I)R(O) + R(I)S(l)R(O) — R(Z)_

The other orders have been presented for completeness, but we are only interested

in first order expressions;

FOROSM 4 RORMGO) L RIR OGO _ SOROFED | gORMEO 4 SOROEO

In order to solve these equations, we define projection operators that are constructed

from the unperturbed density matrix:

R, =RY=Y¢z occupied orbitals
I

unocc . (354a,b)
R,=1-R@=Y&&  unoccupied orbitals
]

As an example, consider an orthonormal space of two occupied orbitals and two

unoccupied:

1000 1000y (1000 (0000
f{—R_(O)—Oloo'f{—lﬁ“”—OlOO 0100 0000
7 Joo0 o0 of? 0010|0000 (0010

0 00O 0 001,10 0 0 0) {00 01
The first order equations in the orthogonal basis are (D.3)

FOROD L FORM 4 FORO — ROFED o ROFO) , SOROFO)

FPR™SY + FVRY + FPR™ =RYFY + ROF® + SOROFE (3.55,b)

f{(o)f{(l) + R(O)S(l)R(O) + f{(l)f{(o) — f{(l)
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since 8 is simply the unit matrix. Then define the projection of an arbitrary

matrix, where 7, j =1, 2:

M. =RMR. | (3.56)

Apply this to the second first-order equation, Eq. (3.55b), to obtain the four
projections: (D.4)

(11) projection: R{) =-S%
(1,2) projection: R =R{Y (357

(2/ 2) prOjECtiOnZ 0= f{(zzl)

note that (1,2) projection is undetermined, and further that

(R2) = (R.R¥R,)" = RIRO"R; =R R*R, = R o5
(R®) =(RROR,)" =R;ROR; = R,ROR, =RQ

In order to fix RY, we use the first first-order equation above, Eq. (3.55a), and take
the (1,2) projection: (D.5)

FO%-xF® =F) -FOS® (3.59)
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where we have replaced X for Rf). This equation can be solved by expanding % in

the space of orthonormal coefficients, T, and solving for the unknown coefficients
Ay. Its solution is (D.6)

. . <+[R0 _ {Om )z
0CC Hnoce occ unocc C I (F12 - F SIZ )C ]
~ ~ o~ L~ o~
X= 2 2 Aycicy = 2 (Y (3.60)
T 1 g €y~ €

where ¢, is the energy of orbital I. Then pull out the projection operators:

OcC UNnoce E;f{l(ﬁ(l) - F(O)é(l) )RZEI .

X = Z;, D e ¢c; | (3.61)

I

and recall that these projection operators can also be expressed in terms of the
column vectors, Eq. (3.54a,b), such that (D.7)

ocC unocc E; (f:(l) — ng(l) )EL

>~<=;§LZ (eK_eL)

&t (3.62)

Then the first-order density matrix is given by the sum of the four projected terms,
where here we note that a perturbation due to a magnetic field should be pure
imaginary; i.e. antisymmetric; one can demonstrate this is true by explicitly pulling

out the imaginary parts of Egs. (3.48) and (3.49) - we have (D.8)

RO _RO L RO L BO L RO _ &M o, S(L0) , sm  [im\F
R =R{ +R{ +RE +RY) =87 + %+ X" — —iS{? +ix + (%)

. ~ occ unoce ¢ (F(l,O) —e S(l,O) )E (363)
= —iROSWOR® 4y $' 2 e (T
K L (eK - eL)

At this point, let us take a moment and consider what we have derived. In starting
with the expansions in Egs. (3.47), we have written the perturbations in a general

way. Since the we have seen that the first-order perturbation due to a magnetic field
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is pure imaginary, i.e. antisyriunetric, it has been shown that the resulting first-order
density matrix, Eq. (3.63) is also pure imaginary. We therefore follow Ditchfield’s

notation by using an expression exactly analogous to Eq. (3.11):

g_ll; -~ R® = jROY = ROO = iR

And so to obtain the full perturbation due to the magnetic field, we multiply Eq.
(3.63) on the RHS by -i:

occ unoce F(I'O)'_ 5(1,0) ~
- oo STHE s ) e
K~ ‘L

L

then convert to the usual density matrix using R = =P:

[ NN

- occ unoce F(l'o) — S(LO) p »
B = -~ pOSO0RO +22 Y {7 oS, (& - 2,61) (3.65)
2 (eK - eL)

L

Note that this result is not exactly that given by Wolinski, Hinton, and Pulay, but
this is because of an error in the original publication, discovered in the course of this
derivation, and confirmed by Wolinski.® (The factor of two in the second term has
been confirmed; the sign change in the first term has not, but is consistent with the
antisymmetric nature of the perturbation.) Eqg. (3.65) is for the case of an orthogonal
basis set, but an exactly analogous expression is found for the nonorthogonal set
using the transformation Eq. (3.52b). Therefore, in the notation used earlier [see, for
example, Egs. (3.48-6)], Eq. (3.65) has the form

occ unoce @ (F(l ,0) EKS(I'O) )CL
a
reo - Lpospopo 25 3T S
2 (ex —e)
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IV. McMurchie-Davidson Integrals

In order to evaluate the wide variety of one- and two-electron integrals given
by Egs. (3.38, 3.39, 3.48, 3.50, and 3.52) we require a very flexible integration scheme.
The current section will outline the theory of McMurchie-Davidson® integral
evaluation, and describe a modified coding algorithm that incorporates the shell
structure of integral evaluation due to Dupuis. As in the previous sections, the

reader will be referred to Appendix E for detailed derivations.
A. One-Electron Integrals |

A standard unnormalized Cartesian Gaussian basis function centered on

point A¥ in space is given by the general formula
01 = Xyypzie (3.66)

where r, =/x; +y, +2z; andxr, =r—A. Note that the angular momentum is given
by the prefactor of the Gaussian; i.e. if n+1+m =0, it is an s-function; if n+I+m=1,
it is a p-function, etc. A common quantity then is the charge distribution of two

functions centered at different points:

_ nlmaArAnlmaBrg'
=00y = X,Y424€ M XpYpzge

a b I m_fi (aA’A+0‘B’B)
= XpX5YaYpZsZp €

(3.67)

Where we then note that the product of two Gaussians is another Gaussian, as

shown by Boys:

%a%p
2 2 ——f—|A-
“(O‘A’A +a3f3) —pg %4 +aB| B optap)rs

e (3.68)

— —apré

AB€
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where

_a,A+o,B
o, +0p

P (3.69)

At this point, we introduce an operator, which when acting on a Gaussian

function, is the main feature of the McMurchie-Davidson method:

. (aY .
A, et E(apj g~arh (3.69)

The power and utility of the above definition is exposed when we relate it to the

Hermite polynomials, given by the following generating function:

j
H(x)=(-1y e"’(—a—) e (3.71)
ox
it follows that (E.1)
A; e = ol H (oif?x, ) e o (3.72)

Using the recurrance relations for Hermite polynomials, we can further derive the
relation (E.2)

x,Ay =NA,_, +PA A, + /;—Nl (3.73)

Op

where it is understood that the operators act on Gaussian functions, and

PA, =P, - A, where P, is the x-coordinate of point P.



63

Since these operators are a function of a complete set of orthogonal functions,
we can expand the Cartesian products in Eq. (3.67) in terms of them: [note that an n™
degree function of x requires an expansion space of Hermite polynomials also no

greater than degree n, since H, = H,(x" x"2x™%, etc.)]

n+n

xXpxp =Y du Ay | (3.74)
N=0

Where it is understood that 4 =0 unless 0SN <(n+7), and d° =1 since A,=1.

Using the above recurrence relation, Eq. (3.73), we can find a similar relation for the

coefficients of the expansion in Eq. (3.74). Consider

n+i+1 n+n

g = Y A A =Y dix Ay (3.75)

N=0 N=0

which allows us to identify (E.3):

Ay =dy (N +1)+d7PA,_ +

s
— 3.76
o 376)
therefore one can use the above expression to quickly calculate a table of d’* for use

in later summations. Eq. (3.76) is specific to the x-coordinate; there are exactly

analogous expressions for y and z, introduced here:

1+] m+i

yhyh=DelA, ; 2iZl =Y fiTA,, (3.77;3.78)
L=0 M=0

Thus the original charge distribution, Eq. (3.67) can be written as
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1 d Q12 +aprs
Q=00 = x;x;yAszzzl'Sn earksaurd)

nin I+l M {aar? +ar?
=(2 d;,"ANJ(EeﬁALJ( y fA’}"’AM))e (aarkrasri) (3.79)
N=0 L=0 M=0
n+#t I+] m+i

_ nii I i . —optE
= ABZZZdNeLM AyA Ay e ™"

N=0L=0 M=0

We will return to the integral of the charge distribution in a moment. Consider first

the more complex integrand

PaV Py . (3.80)

and its x-component: (E.4) |

Oa oy = by Xk o
(3.81)

= 2 2
n A1\ 1] O‘A’A+0‘3r8)

n . 1-1 m_m '"(
(n‘xAxB — 205X X )yAszAZBe

Then, using Eq. (3.75), we see the utility of the recursion relation for the coefficients:

a & n,fi— &t n,fi+ m,.m aﬂﬁ**%n?
D4 ‘é;% = {n 2 dy 1AN) - 20‘3( 2 dy IAN)}yfﬁleZAZB e A )
R N=0

N=0
n1§1§m+2m|:( dn -1 — 2o, dl n+1)e i } (3.82)
L=0 M=0 XAN(xP)AL(]/p)AM(ZP)e aprd

since d,.5" =d;;7 = 0. This illustrates the basic method for modifying integrands.

The next step is to integrate over all space. Consider the integral of the

charge distribution:
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ntf 1+l miim

.[ drQ = Idr Ep 2 z 2 d""e’L’ fom A A AMe“"P’P

N=0L=0M=0

n+f 4+l m+m

=Ep Y, 2, O, duelful [drAyA A e e e et gmaech (3.83)

N=0L=0 M=0

n+7 1+l mim

=E DY) el i [ dx Aye [y Aye o [ dz A e

N=0L=0M=0

where we note that, for example,

N
) a (3.84)

Idx Ao ok = fdx( 8?’

can easily be evaluated since the Hermite polynomials are orthogonal under a

Gaussian weighting function:
[ dx e Hy(x)H,,(x) = 2V N! V7 8, ,, (3.85)
Therefore, using Eq. (3.72),

J.dx Aye ot = jdx odPH,, (o¥?x, )e

(94 x -
_J.{ P P)aII;I/ZHN(a;/ZxP)e opxs

2 (3.86)
= ;0" [ d{ox, ) Hy (P, ) Hy (P, Je o

12
C o - T
- apllza;]/ZZN N! 'J}; 6N,0 = N/Oapl/z,\/;z'— = 5N’O(_a_j
P

where we have noted that H,(x)=1. This result simplifies Eq. (3‘.83):



n+7 1+ mm T v T v 7 "
I R

N=0L=0M=0

3/2
= 10 | TT
=E dnnell mm
AB¥0 *0J0 o

P

(3.87)

and the overlap integral is thus evaluated. Note that the same procedure can be

used for the derivative integrand, Eq. (3.80):

n+fi+1 1+l m+m

Idr¢A%¢B =E 43 2 22( dym ! —2065dy "“ e fdrA A AMe_a"rP

N=0 L=0M=0
U3 Y nE L e n,A-1 n,n+1\ Ul rmm

=E, — (™" — 200,85 el fim Sy, o8, o0rse  (3:88)
aP N=0 L=0M=0

32
T = - -
= EAB(—] (g™ —20,d; ™ el frr

One can also make use of the general recurrence relation, Eq. (3.73) to

evaluate the more complex dipole moment expectation value: (E.5)

32
) il pmim Yal
J-dr ¢Axc¢3 = EAB(OT) 2 dN e(l)l 0 [51\1,1 + PCx6N,0 (3-89)

P N=0

Two applications of the recurrence relation leads to an evaluation of the second

moments: (E.6)

2, o o L
.[ dr ¢, xc¢p = EAB(—ZZ—) D diefl™ |:26N,2 +2PC, 0y, +(P sz + _1—J6N,O:| (3.90)
p) N=0 20,

Note that a similar procedure can be used for x.y.,y.z.,yZ, etc.

Consider now a one-electron integral of the form
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n+# [+ m+7

J.df (S 2 z 2 d;’fe’[ ﬁﬁjdrrglAN(xP)AL(yP )AM(ZP)e—apn?

N=0L=0 M=0

n+w 1+l m+m P a N _1 e
-Mzzz%LM() ( )wr ot

N=0L=0 M=0

(3.91)

Boys has shown,” and we can easily verify that (E.7)
y y

_[dr rleee = (%{F—]ﬂda v :(i—ﬂjFo(aP@Z) (3.92)
P P

we then define

() (22 s
RNLM_(an) (apy] (ap} £ (0, CF) 6.9

Fy(x) is related to the incomplete Gamma function, for which standard methods of

evaluation are available.” Using these definitions, Eq. (3.91) becomes

[ar g0, =E 212"12‘:"61 i "”"(ZEJR (3.94)
A'C B AB aP NLM :

N=0L=0M=0

Note that the values of Ry, can also be obtained with the help of a recursion

relation, since they are related to the Hermite polynomials: (E.8)

Roome1 = CRo omjr1 T MRy o4 L+l (3.95)
Ropimj =bRy 1 ajs1 T LRy 11 i+l (3.96)
Rywim;= aRN,L,M,j+1 +NRy_1 1,01 (3.97)

Electric and magnetic field integrals typically involve factors of x./7S, and

these can be evaluated using the above method if we note that
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orz' [ ox. |\ or. | ot o X)) xe
aC, _(acx)(axc or, =(-1) 7, 2 .—rg (3.98)

then the géneral integral is given by

a n+i I+ mym
[ar ¢A ¢B jdr v rc EABZZ N arel """(Z”JRNLM (3.99)
x N=0L=0 M=0 aP

But since Ry, is a function of (c, @2) , which itself depends on C, — P,, we have

f(e,CP*) = A(T)
L _OT o oTof o (3.100)
dC, dC, doT ap oT an

" since

T ) or
=2 C -P)l=—— 3.101
oC, % oC, (C.-E) oP, | (3.101)
for any function of T. So then Eq. (3.99) becomes
7 1+l m+m p 2 9 N ) L 3 M
Idr ¢A ¢B ABE 2 2 dnn mm( )(BP ] 517 ('a?J Fo(T)
x N=0L=0 M=0 X y z (3102)
n+7 1+l m+m T 272, .
=7Lyp 2 2 2 dN erfm RN+1,L,M
N=0L=0 M=0 ap

where F,(T) was deﬁned in Eq. (3.92). | |
We have now developed the theory to the point where the needed integrals

given by Egs. (3.38, 3.39, 3.48, 3.50, 3.52) can be evaluated. Consider the x-

component of the matrix element of the one-electron spin-orbit operator
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<¢A|( )I¢B Idw TV)%

—jdr@(yc )¢B [ar ¢A(

(3.103)

Jo

We can explicitly treat just one of these integrals to define the general procedure:

[ar m(y

] = [ar0, 2200 = [drg, %50, [ ¢Agg;¢

- 3.104
=a_C—;'[dr ¢Arcla_¢3 ( )

m+7i+1 d""eg (m m,m-1 __ zanm m+1)
XA (xp)AL (Y )A (25 )J. dr rc‘le-apn?

2E, 33
N=

L=0 M=0

using Eq. (3.82). For convenience, let us define F} ( mfy ™~ 20, fir ”‘“)

\v/ n+n I+l m+im+1 I 27T .
jdr ¢A[ycg 2)% =—Ezp dy eILlFM(_)RN,LH,M (3.105)
Tc N=0L=0 M=0 *p
where we have used Egs. (3.92), (3.93), and (3.101).
The next class of integral is given by

V.. \%

(Zv¢v | yz;3 : '¢1> = Idl‘ ZA¢A( y(;3 z)q)g (3106)
B C

which is simply the previous integral with a higher angular momentum on basis
function A. In this case, m should be replaced by m+1 to account for the extra z on

function A:

N=0L=0 M=0 p

yCVz n+# I+l me+2 I M
Jdr 2494 73 95 =—Egzp 2 2 2 dy'e Fy :x— RN,L+1,M (3.107)
C
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The final class of integral is given by

(.| I, X305 — (rz)a (rB)ﬁ 16,)

3 (3.108)
3
If we take the xx-component of this, wé have
TaxTey + T Toy + Taley = ToyTeo, :
(9, | Bl T Cyr3 BT ™ Tl |¢B>=<¢A|yigc|¢B)+(¢A|Ei—§9|¢3) (3.109)

C C C

which is analogous to Eq. (3.102) with a higher angluar momentum on function B.

We therefore modify Eq. (3.102) accordingly:

=I

n+

Q! nii L1+ rmm 2
<¢A I yByC |¢B Z d l I+1 (O:Z'JRN,LHIM (3110)

N= M=0 P

B. Two-Electron Integrals

In order to calculate the needed two-electron integrals, one follows a nearly
identical formalism as given for the one-electron case. Because of the strong
similarity, we need only summarize the important equations. The basis functions

are given by

Oa = XRY4Zie 9y = xfypape s
n U om —oerd ~aprh (3111)

Pc =XcYcZc e ° ¢D=nyDzD P

Typically, these functions are constructed as a linear combination of so-called

primitive Gaussian functions. This is also true for the one-electron case, although it

“was not explicitly included in the derivations. We include it here, however, for

completeness and to make a point on the algorithm later on:
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I .
_ n, . m, —alr: 7,0 m —alr?
¢A“‘2dmxAyAZA 2 BXpYpZg€ "
:

c .

_ wo 1m' —adrd "7 o}

oc = 2 ecXcYcZc € ¢ zthxD Ypzpe "
g

(3.112)

where the d;, are the contraction coefficients. Note also that the exponents can vary

from primitive to primitive. We thus have the following charge distributions; the

first for electron one, and the second for electron two:

n+d 14+l m+im

I I e —_ _ 2
ZZd,AijEj{B YN frmeldit A A A, e
j

i N=0L=0M=0

G H
Qcp = szgcdh
g h

U H‘
1 M§|

2 i mm lldnnA AAMeOthQ

such that the general two-electron, four-center integral can be written as

(¢A¢B|¢C¢D) = J.dl‘ Q515 Qo

G H n+n m+An +7 U+’ m’

1) 47
= 2 2 2 ZdlAd]BdgcthEcoE;aB 2 2 2
i j g h N=0L=0 M=0 N’
N L M
J2) (22
oF,) | opP, ) (P,

=0L
[ 9Q, ]
However, Boys has shown that®

+
3|

ni Il mm n'n’ Il m'm’
de ay’ ey fur

M

0

(an f dr e et e et

[=}

@ ?

- 2 27"
J‘ dr 7,121 aprp ~ogry _ — E) (T)
apQ, (O(P + O(Q)

where T = 2% —*70 PO*. And since Tisa functlon of P-Q,
oy + g

(3.113)

(3.114)

(3.115)
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oY ()
_[5}:) g(T)—( anJ g(T)

in a manner similar to Eq. (3.101). Therefore

I ] G H . s
(Pa®sl0cdp) = 1222; D DD M Ry e v e
] g

i k K

where we have used the abbreviations

=
2
Bl
—
T
E
E
¥
Bl

i ij gna M omF
D} = diAijEABdN € m Z =
k N=0L=0 M=0
, w AR U m
Dgh =d d Egh dn’ﬁ‘el’l’ mm’ =
k' T YecUppcpbne Cr v
K N'=0L'=0 M'=0
572
P 27"

72
ap0l, (ap + aQ)

The desired integrals are then an easy modification of this result;

wntl

(xA¢A¢B]¢c¢D) A 2 ZDU(MI)Dgh( 1)N oM Ryanporr pemr

.

+
_b-'?t‘

(¢A¢B|xc¢c¢o) 2 ’IDgh('l +1)( 1)N LM o

N+N’,L+L', M+ M’

’“M

(3.116)

(3.117)

(3.118)

(3.119)

In implementing Eq. (3.119), a modified version of the algorithm given by
McMurchie and Davidson has been used, in that the shell structure advocated by

Dupuis is introduced at the highest level. This allows for efficient evaluation of the

contraction coefficients and other quantities related to a given shell.

illustrates the basic approach schematically.

Fig. 3.2
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—— A shell, B shell, C shell, D shell
— I primitives, J primitives

zero “I”
mm

)
compute dy, e, fi

— G primitives, H primitives

compute F(T), Ry, A, dy., e{?',fﬂfﬁ'
— loop over g, h

count NN
compute d, dy,

— loop over i, j
count MM

- loop over k’
loop over k

I(k, MM, NN) = I(k, MM, NN) + (1) M DgRy

— loop over g, h
— loop over i, j

compute dm,dﬁ
loop over k

X(MM, NN) = X(MM, NN) + D¥ 1(k, MM, NN)

Fig. (3.2) Loop structure for two-electron integrals.
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V. Strategies for Incorporating Solvent Effects

There are several potential approaches for incorporating the EFP method (see
Ch. 4) and the GIAO chemical shift formalism. A few of these methods will be
discussed in this section.

The simplest approximation is to take the previously derived expression for
chemical shifts, Eq. (3.37), and substitute the density matrix modified by the
presence of the EFPs for its ab initio counterpart:

Ouas = DA(PS), (HER), + PO (HS2) )
vA

- (B (), + 22 (r260),, )

(3.120)

where the first order density matrix, Eq. (3.65) has been similarly modified:

(1,0) _ , Q(LO))}~
POLEFP _ 1 ~ PEFPGOPERP zi ugfc c (F exS )C
2

2 (eK _eL)

- -er)  (3121)

In fhis way, solvent effects are certainly introduced; it remains to be seen to what
degree this approximation is reasonable.

In addition to the above, a second level of approximation is to modify the
vector potential as it appears in the HF core Hamiltonian, Eq. (3.27), after application
of the commutator Eq. (C.9.1), such that it includes contributions from the

fragments:

H, = A'(r,) = —erl 2"3 1AL, (3.122)

rB

From this point, one might envision several approximations to A;pp; a relatively

simple form is to consider the effect of the nuclear magnetic moments of the “nuclei”

of the fragments:
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. X1,
Appp = 2 __—ulg; : (3.123)

where I counts the EFP nuclear points. This formulation would lead to the following

simple modification of the vector potential [c.f. (C.9)]:

abinitio &
: EFP nuclei Xr
SHxp+ P EXE g, Y XY (3.124)
2 5 1 2 7 f

where | counts over all the ab initio nuclei, as before, in addition to the-EFP nuclei.
Since this term in the end depends only on the location of the nuclei (the integrals
are taken at zero field strength) this would incorporate the nuclear magnetic
moment contribution of the fragments to the chemical shifts in an ‘exact’ (although
incomplete) way. The next level of approximation would be to find an analogous
form for the first term of Eq. (3.122) - the interaction of the external magnetic field
with the fragments. For the ab initio case, the magnetic field is crossed with vectors
associated with the centers of the Gaussian basis functions, 4. For the EFP case, it is
tempting to choose either the points of expansion for the DMA [see Fig. (4.1)], or the
centroids of the localized orbitals [see Fig. (4.2)] instead of the Gaussian centers of
the basis set and proceed as in the ab initio case, but this will lead to difficulties. For
the ab initio case, the factor 1, ultimately leads to an integral where the angular
. momentum on basis function A has been increased, i.e. s—p, p—d, etc. Since the
EFP points are not associated with the ab initio basis set, choosing these points will
lead to integrals with no physical meaning. Clearly, this would not be a productive
path for future work. |

| Instead, one might consider calculating the effect of the external magnetic
field on the fragment when the fragment is constructed; i.e. during a “MAKEFP”
run. Such a calculation is an ab initio one, and therefore the standard GIAQO method
may be used. The difference would be to omit the second term of the vector

potential. Thus the Hamiltonian would have the form
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1
H, <A'(r,)= EH X1, (3.125)

There are two problems with this approach; first, the removal of the second term
removes the dependence on the nuclear magnetic moments, and thus makes a
straight—fofward evaluation of the second derivative tensor difficult. Second, this
formulation does not allow for ab initio - fragfnent interaction in terms of magnetic
properties. Therefore, one must be aware of the need to represent cross-terms
between the ab initio and fragment parts of the system.

The final method for integrating the EFP method with the GIAO formalism is
simple to describe, but quite possibly difficult to execute. The electrostatic and
polarization terms of the EFP potential are ultimately constructed from a finite basis
set, as described in the previous paragraph. One could replace this basis set with
GIAOs, rederive the EFP terms, and take the second derivative of the full ab initio -
EFP Hamiltonian, Eq. (4.1). While simple on paper, this most likely has several
hidden difficulties that may even make the method intractable. Certainly further
research would be required to answer the feasibility question; In its present form,
the exchange repulsion/charge penetration term of the EFP method is fitted, and

this would also have to be redone for the GIAQO case.
VI. Summary and Conclusions

The gauge invariant atomic orbital method has been rederived in an alternate
way and presented in detail. The resulting one- and two- electron integrals have
been evaluated using a modified algorithm for the McMurchie-Davidson method.
The previously published expression for the first-order density matrix has been
rederived and corrected in the context of antisymmetric perturbation theory for
field-dependent, nonorthogonal basis sets. Several approaches have been presented
for incorporating the GIAO method with the Effective Fragment Potential method,

in order to achieve the ultimate goal of predicting chemical shifts in solution.
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CHAPTER 4: THE SOLVATION OF FORMIC AND ACETIC ACIDS

A paper to be submitted to the Journal of the American Chemical Society

Abstract

The solvation of formic and acetic acids has been studied by treating the weak
acid with a restricted Hartree-Fock (RHF/ 6-31++G(d,p)) ab initio wavefunction, and
the solvent waters with the Effective Fragment Potential (EFP) model for discrete
solvation. The acidic O-H bond length, frequency, and Mulliken charges are
measured at each local minimum as a function of added éolvent molecules.
Boltzmann averages of these data allow for the calculation of a potential of mean
force, which can give a quantitative description of the mechanism of dissociation.
Monte Carlo or molecular mechanics methods are necessary to adequately sample

the configuration space if more than four or five waters are present.

I. Introduction

The purpose of this chapter is to examine the solvation of formic and acetic
acids. There are several questions to be answered in a study of this kind; namely,
what is the effect of solvation on an electrolyte? In other words, how does the
electronic structure of the electrolyte change as an increasing number of discrete
solvent molecules are added to the system? What is the mechanism of dissociation?
Being an electrolyte, we expect a certain fraction of the solute molecules to dissociate
into ions at equilibrium. Can we propose a mechanism for this ionization? Finally,
how does the physics of dissociation differ between strong and weak electrolytes?
The current study focuses on weak acids, but we can compare with previous studies

on sodium chloride” and ongoing studies of strong acids such as HCl and NaOH.

II. Theoretical Methods



78

Our task is to obtain a quantitative description of the dissolved state of the
electrolyte. This will be done via the so-called potential of mean force, for which

there are two approaches: first, consider Fig. (4.1).

Fig. (4.1) Sodium chloride with a single solvent molecule.

In this approach, the bond distance between the two atoms of the diatomic solute,
sodium chloride, is fixed at a certain value. Then the system of solute and solvent
(shown as a single water molecule) is optimized under the restriction of the fixed
Na-Cl bond length. Then, the bond length is increased slightly and fixed again,
followed by optimization. This is repeated until the ions Na" and CI" are dissociated,
and the entire procedure is repeated for two solvent molecules, then three, etc. At
each step, the potential and other physical properties such as Mulliken charges are
calculated. This is a computationally demanding and time consuming procedure.
The second approach is to measure the bond length, potential, vibrational
frequencies, and other physical properties as a function of the number of solvent
molecules added. For an increasing number of solvent molecules, there is an
exponential increase in the number of minima on the potential energy surface. For
this study, an attempt is made to find as many possible minima manually, and then

average the results using Boltzmann’s method:
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N AG;

Avg(f) = %Zé e KT @

where ¢ is the value of some physical property (Mulliken charge, vibrational

frequency, etc.) for the i minimum on the potential energy surface, and further,

AG; =G, -G,
G, = Eg, +E_.(298.15) for i structure (4.2a,b,c)
Gy = Egpa +E(298.15) for lowest - energy structure

Here, G represents the Gibbs free energy, Eg,, is the electronic energy of the system,

~and E,, is the the temperature correction to the electronic energy based on the rigid
rotor, ideal gas, and simple harmonic oscillator approximations. It should be noted
that for systems with such a shallow potential energy surface, the simple harmonic
oscillator is a poor model, and this calls into question the validity of this traditional
thermodynamic calculations on small clusters of molecules. For the purposes of
averaging, however, we will use these approximations as shown in Eqs. (4.2).

The manual technique used for finding the maximum number of minima in
configuration space is as follows: Consider a coordinate system centered on the
carbonyl carbon in the weak acid. The x-axis is represented by a line from this
origin to the nucleus of the oxygen bonded to the acidic hydrogen, as seen in Fig.
(4.2).
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— N

Fig. (4.2) Definition of the coordinate system and initial fragment points. The

fragment shown is at point a.

With this coordinate system in place, six points can be defined, as shown in
Fig. (4.2). These points are roughly 3.0-3.5 A from the origin, and they are the
starting points for the introduction of fragment solvent molecules. The procedure is
as follows:" an isolated solute molecule’s geometry is optimized, and then six
independent optimizations are run with a single water fragment at each of the six
points in Fig. (4.2). Of these optimizations, the unique geometries obtained are taken
as the starting point for optimizations with two fragment waters, introducing the
second water at each of the six positions, as before. This procedure is then repeated
for three, four, and five waters. The number of unique geometries increases

exponentially, as shown in Table (4.1)

Formic Acid Acetic Acid
Waters Total unique Struc. w/ 1 Struc. w/ >1 Total unique Struc. w/ 1 Struc. w/ >1
structures saddle pt. saddle pt. structures saddle pt. saddle pt.
1 2 0 0 3 0 1
2 6 2 0 8 4 1
3 18 3 0 32 13 4
4 62 13 4 105 38 6
5 241 69 16 - - -

Table (4.1) Number of unique geometries with increasing number of fragment water

molecules. Those structures with saddle points are indicated.
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Note that this manual method quickly becomes intractable, as formic acid with six
waters would require (241 x 6 =) 1,446 input files. For the Boltzmann averages to
follow, only positive definite geometries are inclu'ded in the averaging. For all
calculations, the ab initio solute is treated with RHF/ 6-31++G(d,p) and all solute
molecules are represented by fragments.

III. Preliminary Results

With only four and five solvent molecules for acetic and formic acid,
respectively, it is unrealistic to draw major conclusions, as full dissociation is not
nearly approached. As seen in the last section, it is not feasible to continue to search
for minima manually, and so this work is waiting for Monte Carlo or molecular
dynamics codes written explicitly for use with the EFP method to become available.

Preliminary results can be presented, however.

waters (R) (A) (v) (em™”) Mull.Ch.O Mull.Ch.H
0 0.9484 4125 -0.5201 0.4035
1 0.9526 4013 -0.5436 0.4486
2 0.9527 3964 -0.5543 0.4608
3 0.9527 3905 -0.5825 0.4815
4 0.9527 3893 -0.5902 0.4866
5 0.9534 3864 -0.5951 0.4965

Table (4.2) Boltzmann averages over the positive definite structures of solvated and

“unsolvated formic acid.
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waters (R A)  (v) (em?) Mull.Ch.O Mull.Ch.H
0 0.9459 4111 ~0.5100 0.5000
1 0.9512 4043 -0.5561 0.4538
2 0.9497 4038 -0.5451 0.4370
3 0.9475 3974 -0.5745 0.4608
4 0.9491 3932 -0.5916 0.4810

Table (4.3) Boltzmann averages over the positive definite structures of solvated and

unsolvated acetic acid.

In Tables (4.2) and (4.3), the distance (R) is the Boltzmann average of the
bond length between the oxygen and the acidic hydrogen in the weak acid. (v) is the
Boltzmann average of the vibrational frequency of the same bond. Next is the
Mulliken charge on the oxygen on the pair in question, followed by the acidic
hydrogen. Note that all these quantities evolve as one would expect for a bond
undergoing dissociation; the bond length generally increases, the vibrational
frequencies decrease, indica;cing a more loosely bound system, and the Mulliken
charge on oxygen decreases towards -1, whereas the hydrogen charge increases
towards unity. One could also note that the Gibbs free energy also decreases, but
the approximations that go into calculating this quantity, especially the harmonic
oscillator approximation, break down badly for a system with so shallow a potential
energy surface. It is for this reason that we exclude these values at this time.

Although in general the quantities discussed above proceed in an expected
way, there are bumps along the road; see for example the increase in bond length in
going from three to four waters for acetic acid. This may be due to an incomplete
sampling of the configuration space by the manual method described, and results of
Monte Carlo and molecular mechanics routines should be quite revealing, and we

hope to continue this study in the near future.
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CHAPTER 5: TOWARDS MULTI-REFERENCE EQUIVALENTS OF
THE G2 AND G3 METHODS

Taken from a paper that has been published in the Journal of Chemical Physics.
Reprinted with permission from the Journal of Chemical Physics 115(19),
November 15, 2001, pp 8758-8772.

Copyright 2000 American Institute of Physics

Theis I. Selling, David M. Smith and Leo Radom
Mark A. Freitag and Mark S. Gordon

Abstract

The effect of replacing the standard single-determinant reference wave
functions in variants of G2 and G3 theory by multi-reference (MR) wave functions
.based on a full-valence complete active space has been investigated. Twelve
methods of this type have been introduced and comparisons, based on a slightly
reduced G2-1 test set, are made both internally and with the equivalent single-
reference methods. We use CASPT?2 as the standard MR-MP2 method and MRCI+Q
as the higher correlation procedure in these calculations. We find that MR-
G2(MP2,5VP), MR-G2(MP2) and MR-G3(MP2) perform comparably with their
single-reference analogs, G2(MP2,SVP), G2(MP2) and G3(MP2), with mean absolute
deviations (MADs) from the experimental data of 1.41, 1.54 and 1.23 kcal mol?,
compared with 1.60, 1.59 and 1.19 kcal mol?, respectiveiy. The additivity
assumptions in the MR-Gn methods have been tested by carrying out MR-
G2/MRCI+Q and MR-G3/MRCI+Q calculations, which correspond to large-basis-
- set MRCI+Q + ZPVE + HLC calculations. These give MADs of 1.84 and 1.58 kcal
mol?, réspectively, i.e. the agreement with experiment is somewhat worse than that
obtained with the MR-G2(MP2) and MR-G3(MP2) methods. In a third series of
calculations, we have examined'pure MP2 and MR-MP2 analogs of the G2 and G3
procedures by carrying out large-basis-set MP2 and CASPT2 (+ ZPVE + HLC)
calculations. The resultant methods, which we denote G2/MP2, G3/ MP2, MR-
G2/MP2 and MR-G3/MP2, give MADs of 4.19, 3.36, 2.01 and 1.66 kcal mol?,
respectively. Finally, we have examined the effect of using MCQDPT? in place of
CASPT2 in five of our MR-Gn procedures, and find that there is a small but
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consistent deterioration in performance. Our calculations suggest that the MR-
G3(MP2) and MR-G3/MP2 procedures may be useful in situations where a multi-

reference approach is desirable.

I. Introduction

The prediction of thermodynamic properties, such as atomization energies,
ionization energies, electron affinities and heats of formation, to "chemical accuracy"
has long been a goal of quantum chemists, and there has been great progress in this
direction in recent years.” Methods that have been developed in an attempt to
achieve this goal, include the Gaussian series (Gn, n = 1, 2 or 3) of model chemistries
developed by Curtiss, Raghavachari, Pople and co-workers, % the cbmplete—basis—
set (CBS) methods of Petersson and co-workers,* the BAC-MPX (X = 2 or 4) methods
due to Melius and co-workers,® the W1, W2 and related methods of Martin,® and
the extrapolation procedures due to Dunning, Feller, Dixon, Peterson and co-
workers.” The G2 and G3 methods and their variants,®* in particular, have become
very popular among both theoreticians and experimentalists, because of their ability
to predict accurate thermodynamics for a wide variety of chemical compounds.

One potential drawback of the Gn approaches is that they are based on the
presumption that the chemical species of interest can be well described by a single
configuration, i.e. it can be well represented by a single Lewis structure. There are,
however, many systems for which this assumption may not be appropriate.®
Important examples include transition structures for many chemical reactions,
regions of potential energy surfaces in which bonds are dissociating or forming near
conical intersections, as well as the vast majority of electronic excited states.®® In
addition, first-row transition metal complexes and unsaturated compounds that
contain transition metals are also often not well described by a single-determinant
wavefunction. For such species with pronouriced multi-reference character, the Gn
methods may not provide accurate thermodynamic ql'lantities.68

The aim of the various Gn models is generally to estimate energies at a high
correlation level, typically quadratic configuration interaction (QCISD(T)),* with a

large basis set. This is achieved by starting with a modest-basis-set QCISD(T)
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calculation and estimating the effect of moving to a larger basis set at the MP?2
and/or MP4 levels, i.e. assuming the additivity of basis set and correlation effects.
In addition, a zero-point vibrational energy correction is incorporated, as well as a
- "higher level correction”, which is intended to account for any remaining
deficiencies in level of theory and basis set. In a multi-reference (MR) Gn approach,
the analog of MP2 would be MR-MP2 while the analog of QCI would ideally be MR-
QCI. Unfortunately, codes for carrying out MR-QCI (or related coupled cluster
(MR-CC)) calculations are not widely available at the present time. We have
selected multi-reference configuration interaction with single and double
substitutions (MR-CISD) as the best current alternative.

In the following, we present multi-reference analogs of both the G2 and G3
methods using reduced Moller-Plesset orders, based on the MR-MP2 and MR-CI |
levels of theory and the same basis sets that have been used in the original G2 and
G3 methods. Since the multi-reference methods (outlined in Section II) are largely
untested with respect to their ability to reliably predict accurate thermodynamic
quantities in the manner of the Gn methods, Section III contains a detailed
assessment of their performance on a slightly modified G2-1 test set. We also
examine the performance of pure MP2 and MR-MP2 analogs of G2 and G3 theory.

Conclusions that emerge from our study are presented in Section IV.
II. Methods

A. Relationship between the Gn and MR-Gn methods

The simplest vetsion of the G2 method, referred to as G2(MP2,SVP),# is based
on the following additivity approximation to estimate the QCISD(T) energy for the

extended 6-311+G(3df,2p) basis set:

E[QCISD(T)/6-311+G(3df,2p)] = E[QCISD(T) /6-31G(d)] +
E[MP2/6-311+G(3df,2p)] - EIMP2/6-31G(d)]  (5.1)

The G2(MP2,SVP) energy is derived by adding to this, firstly a zero-point
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vibrational energy (ZPVE) obtained from scaled (by 0.8929) HF/6-31G(d) vibrational
frequencies, and secondly a "higher level correction" (HLC). The HLC is an
empirical correction which is determined by minimizing the mean absolute
deviation (MAD) between experiment and theory for the thermochemical quantities
in a test set of molecules (see below).

The multi-reference versions of the Gn schemes are based on the same
premise as the single-reference version, namely that the effects of improvements in
the basis set and treatment of electron correlation are additive. In our initial set of
MR-Gn procedures, we retain the same geometries (MP2(full)/6-31G(d)) and ZPVEs
(scaled HF/6-31G(d)) as in the Gn methods and these are thus taken from the G2

“data base.” This makes it easier to identify inherent MR-Gn differences. The current
single-configuration levels of theory are replaced by multi-reference analogs as

follows:

SCF => MCSCF | (5.2)
MP2 = MR-MP2 (5.3)
QCISD(T) = MR-CISD (5.4)

MCSCEF refers to multi-configuration (MC) self-consistent-field (SCF) calculations
based on the CASSCF”! or FORS™ prescription. We include all valence electrons and
valence orbitals in the "active space”. For example, the active spaces for methane,
ammonia and water are [8,8], [8,7], and [8,6], respecti\?ely, where the first number is
the number of active electrons and the second number refers to the number of active
orbitals. By choosing a full-valence CASSCF approach, we obtain a procedure that is
well-defined for any species, but the downside is that the cost rises very rapidly
with molecular size. Our standard MR-MP2 multi-reference second-order
perturbation theory method is the CASPT2 procedure developed by Roos and co-
workers.”” We also examine results obtained with the multi-configuration quasi-
degenerate second-order perturbation theory method, MCQDPT2, developed by
Nakano.” We note that analytic gradients for MCQDPT2 have been derived, also by
Nakano,” and are currently being implemented into the electronic structure code

GAMESS.” This may be important in more refined versions of MR-G# in which the
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geometries are re-optimized at MR-MP2 (rather than simply using the MP2
geometries of Gn theory).

The remaining step in the MR-Gn model requires a multi-reference energy
calculation at a level of theory that is comparable to QCISD(T). The obvious choice
would be MR-QCISD(T). While several groups have worked on multi-reference
coupled cluster methods,” there are no efficient, general MR-CCSD(T) codes
available at the present time. So, while in the long term it is desirable to use MR-
QCISD(T) or MR-CCSD(T) for this step of the method, in the short term we will use
the internally-contracted MR-CISD (of Werner and Knowles)” with the Davidson
cluster correction (Q). We will refer to this method as MRCI+Q throughout the
present work. |

In this manner, we have constructed the MR-G2-type and MR-G3-type
methods defined by Egs. (5.5), (5.6) and (5.7):

E[MR-G2(MP2,SVP)] = E[MRCI+Q/6-31G(d)]
+ (E[CASPT2/6-311+G(34df,2p)] - E[CASPT2/6-31G(d)])
+ ZPVE + HLC (5.5)

E[MR-G2(MP2)] = E[MRCI+Q/6-311G(d,p)]
+ (E[CASPT2/6-311+G(3df,2p)] - E[CASPT2/6-311G(d,p)])
+ ZPVE + HLC (5.6)

E[MR-G3(MP2)] = E[MRCI+Q/6-31G(d)] _
+ (E[CASPT2/G3MP2large] - E[CASPT2/6-31G(d)])
+ AE(SO) + ZPVE + HLC (5.7)

The spin-orbit correction (AE(SO)) used in our MR-G3(MP2) calculahons (Eq.
(5.7)) is the same as that used in G3 theory.®

In order to investigate the additivity assumptions in Egs. (5.5)~(5.7), we have
also constructed the multi-reference equivalents of the G2/QCI method®®® and its
G3 analog® [Egs. (5.8) and (5.9)]:
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E[MR-G2/MRCI+Q] = E[MRCI+Q/6-311+G(3df,2p)] + ZPVE + HLC  (5.8)
* E[MR-G3/MRCI+Q] = E[MRCI+Q/G3MP2large] + AE(SO) +
'ZPVE + HLC (5.9)

In a third set of calculations, we have investigated the performance of pure
MP2 and MR-MP2 analogs of G2- and G3-type procedures, denoting such methods
as G2/MP2, G3/MP2, MR-G2/MP2 and MR-G3/MP2.8" For example, the multi-

reference versions correspond to large-basis-set CASPT? calculations:

E[MR-G2/MP2] = E[CASPT2/6-311+G(3df,2p)] + ZPVE + HLC (5.10)
énd

E[MR-G3/MP2] = E[CASPT2/G3MP2large] + AE(SO) + ZPVE + HLC (5.11)
The single-reference ahalogs are obtained as:

E[G2/MP2] = E[MP2/6-311+G(3df,2p)] + ZPVE + HLC (5.12)
and

~ E[G3/MP2] = E[MP2/G3MP2large] + AE(SO) + ZPVE + HLC (5.13)

Finally, we have examined for five of the methods, the effect of using
MCQDPT2 in place of CASPT2. For example, MR(QD)-G2(MP2,SVP) is defined by:

E[MR(QD)-G2(MP2,SVP)] = E[MRCI+Q/6—31G(d)]
+ (E[MCQDPT2/6-311+G(3df,2p)] - EIMCQDPT2/6-31G(d)])
+ ZPVE + HLC (5.5a)

Similar definitions apply to MCQDPT2 analogs of MR-G2(MP2), MR-
G3(MP2), MR-G2/MP2 and MR-G3/MP2.
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Unless otherwise noted, all energy calculations were carried out using
MOLPRO 96% and MOLPRO 98.” MOLPRO is currently the most efficient code
available for such calculations. The MCQDPT? calculations were performed with
GAMESS.” The total energies for all the systems investigated in the present study,
as well as the MCQDPT? tables of relative energies, are available in Appendix F.

B. The higher level correction

The G2 and G3 methods involve different forms of higher level corrections.
The derivation of the parameters involved in the G2 and G3 methods are therefore
discussed separately below. The justification and possible problems associated with
the use of the higher level correction have previously been discussed by Pople et al.**

A slightly reduced version of the G2-1 test set®? was used to obtain the higher-
level-correction parameters and to assess the performance of the various methods.
The reduced set includes 123 of the 125 energy comparisons of the standard G2-1 set.
The heats of formation of ethane and disilane were omitted because the [14,14] full-
valence active space in these two cases makes the MR-CI calculations
computationally too demanding.

The G2 higher level correction has the form shown in Eq. (5.14), where 7, and

n, are the number of & and B valence electrons, respectively:
HLC =-An; - Bn, (5.14)

 We have used this form in all the G2-type methods examined in the present
study. The B parametér is constrained to be 0.19 mHartrees in all cases so as to give
the correct energy for the hydrogeh atom, while the A parameter is chosen to give
the smallest mean absolute deviation from experiment for the 123 energy
comparisons in our slightly reduced G2-1 test set. We have employed the same
minimization procedure as Curtiss,” and we are able to reproduce the higher level

cotrection and the mean absolute deviation reported by Curtiss et al. for the
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G2(MP2) method from the raw electronic energies.? The optimized A parameters
for the various G2-type methods are listed in Table (5.1).

In the G3 method, there are separately optimized higher-level-correction
terms for molecules and atoms. They have the form shown in Eq. (5.15) (molecules)
and Eq. (5.16) (atoms):

HLC = -An, - B(n, - n,) (5.15)
HLC = —Cn, ~ D(na - nﬂ) | . (5.16)

We have used the same form of the HLC for all the G3-type methods
examined here. The A, B, C and D parameters are all obtained by minimization of
the mean absolute deviation between experiment and theory for the 123
thermochemical quantities in the reduced G2-1 test set. Again, we have employed
the same minimization procedure as Curtiss.® The optimized parameters for the six
G3-type methods are listed in Table (5.2). Starting from the raw electronic energies
of the 299 energies in the entire G2/97 test set, our procedure reproduces (for both
G3(MP2) and G3) the higher-level-correction parameters and the mean absolute
deviations reported by Curtiss et al.®

IIL. Results and Discussion

Having optimized the higher-level-correction parameters for 12 different MR-
Gn procedures (as well as two related single-reference Gn procedures), we are now
in a position to assess their performance. Thermochemical properties that are
examined include heats of formation (AH’), ionization energies (IE), electron
affinities (EA) and proton affinities (PA).

A. MR-G2(MP2,SVP), MR-G2(MP2) and MR-G3(MP2)

Relative energies calculated at the MR-G2(MP2,SVP), MR-G2(MP2) and MR-
G3(MP2) levels are presented in Tables (5.3-5), while a statistical analysis, including
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a comparison with corresponding single-reference (SR) methods, is shown in Tables |
(5.6) and (5.7).

Examination of Table (5.6) shows that, in comparison with the corresponding
single-reference methods, results for the three MR procedures are all slightly worse
for heats of formation, significantly better for ionization energies and electron
affinities, and significantly worse for proton affinities. The overall mean absolute
deviations (MADs) are quite similar for MR-G2(MP?2) compared with G2(MP2) and
for MR-G3(MP2) compared with G3(MP2). However, MR-G2(MP2,SVP) produces
better overall results than G2(MP2,SVP). |

Of the 123 energy comparisons, there are 10 cases of deviations of > 3 kcal
mol’ for MR-G2(MP2,SVP), 15 cases for MR-G2(MP2), and 11 cases for MR-
G3(MP2). Of these, eight are common to all three methods: the heats of formation
of Li,, Na, and SO,, the ionization energies of Be, Na and S, the electron affinity of
CH, and the proton affinity of H,O. In comparison, there are 21 cases of deviations
of > 3 kcal mol™ for G2(MP2,SVP), 12 cases for G2(MP2), and 10 cases for G3(MP2).
Six of the eight deviant cases with the MR-Gn methods are also poor with G3(MP2):
the heats of formation of Li,, Na, and SO,, and the ionization energies of Be, Na and
S. The poor results obtained for SO, in G2-type calculations have been shown
previously by Martin® to be the result of inadequate basis sets.

Notably poorer performance by the MR procedures (compared with SR) is
observed for the electron affinity of CH,, and for the proton affinities of NH,; and
H,0O. The electron affinity of CH, is calculated to be ne.gative by all the MR
procedures, in contrast to the SR methods that all correctly predict a positive
electron affinity. Likewise, the proton affinities of NH, and H,O are consistently
poorly predicted by the MR procedures. In fact, because the errors for NH; and H,0
are of opposite sign, the error in the proton-transfer reaction between H,O* and NH,
is a substantial 7.2-7.5 kcal mol™. In contrast, the corresponding SR procedures
predict this proeton-transfer energy with an accuracy of 1.9-2.2 kcal mol™.

MR-G3(MP2) performs best of the MR methods examined in this study. It
gives results comparable to those of G3(MP2) for heats of formation, ionization
energies and electron affinities, but much poorer results for proton affinities. There

are significant improvements for a small number of cases for which G3(MP2) gives
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larger errors: the heat of formation of CS, the ionization energy of O,, and the
- electron affinities of C, O and NH.

B. MR-G2/MRCI+Q and MR-G3/MRCI+Q

The MR-G2(MP2,SVP), MR-G2(MP2) and MR-G3(MP2) procedures aim to
approximate the results of MRCI+Q/6-311+G(3df,2p) or MRCI+Q/G3MP2large
calculations (together with HLC and ZPVE corrections) by assuming the additivity
of correlation and basis set effects. It is of interest to examine the reliability of such
additivity approximations by carrying out the large-basis-set MRCI+Q calculations
explicitly. This gives rise to the MR-G2/MRCI+Q and MR-G3/MRCI+Q
procedures, defined by Egs. (5.8) and (5.9), which are analogous to the G2/QCI
procedure examined previously.”” Relative energies at the MR-G2/MRCI+Q and
MR-G3/MRCI+Q levels are presented in Tables (5.8) and (5.9), with statistical
summaries included in Tables (5.6) and (5.7).

Quite unexpectedly, MR-G2/MRCI+Q and MR-G3/MRCI+Q show larger
overall deviations from experiment than MR-G2(MP2) and MR-G3(MP2),
respectively. This means that the additivity approximations in Egs. (5.6) and (5.7)
are actually helpful in improving the results (which become worse if the additivity is
removed), which must surely be a fortuitous situation. There are now 23 (MR-
G2/MRCI+Q) and 15 (MR-G3/ MRCHQ) cases for which the deviations from
experiment exceed 3 kcal mol™. The MR-Gn/MRCI+Q procedures perform
significantly worse than the corresponding standard MR-Gn methods for heats of
formation and electron affinities, slightly worse for proton affinities and comparably
for ionization energies.

Significantly larger errors (compared with standard MR-Gn) are observed for
both MR-G2/MRCI+Q and MR-G3/ MRCI+Q for the heats of formation of SiH,('4,),
SiH, and SO,. In addition, MR-G2/MRCI+Q shows large errors for the heats of
formation of S,, Cl,, SO and CIO, while MR-G3/MRCI+Q performs poorly for NaCl.
Both. MR-G2/MRCI+Q and MR-G3/MRCI+Q significantly underestimate electron
affinities, with a noticeable deterioration in the predictions for O, F, OH, O,, NO and
PO. The proton affinities of NH, and H,O continue to be poorly predicted.
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C. G2/MP2 and G3/MP2

The G2/QCI procedure® obtains relative energies on the basis of
QCISD(T)/6-311+G(3df,2p) calculations together with ZPVE and HLC corrections.
It is of interest to see how the corresponding MP2 calculations fare. With this in
mind, we have analysed results corresponding to MP2/6-311+G(3df,2p) + ZPVE +
HLC and MP2/G3MP2large + ZPVE + HLC. These procedures are designated
G2/MP2 and G3/MP2, respectively, and are defined by Egs. (5.12) and (5.13).
Calculated relative energies are presented in Tables (5.10) and (5.1 1), with statistical
summaries again included in Tables (5.6) and (5.7).

It is immediately clear from Tables (5.6) and (5.7) that G2/MP2 and G3/MP2
are not particularly useful levels of theory from the Viewpoiht of thermochemical
reliability. The mean absolute deviations are 4.19 and 3.36 kcal mol?, with 69 and
53, respectively, out of the 123 energy comparisons showing deviations exceeding 3
kcal mol™. The only area where the errors are modest is for proton affinities. The
G2/MP2 and G3/MP2 methods are not recommended for general use.

D. MR-G2/MP2 and MR-G3/MP2

The multi-reference analogs of G2/MP2 and G3/MP2 use large-basis-set MR-
MP2 (specifically CASPT2) calculations together with ZPVE and HLC corrections.
They are designated MR-G2/MP2 and MR-G3/MP2 and are defined by Egs. (5.10)
and (5.11), respectively. Results are presented in Tables (5.12) and (5.13).

Examination of the statistical summaries in Tables (5.6) and (5.7) shows a
~number of interesting points. In the first place, MR-G2/MP2 and MR-G3/MP2
perform significantly better than G2/MP2 and G3/MP2, with MADs of 2.01 and 1.66
kcal mol™ compared with 4.19 and 3.36 kcal mol™. They are only slightly worse than
MR-G2/MRCI+Q and MR-G3/MRCI+Q (MADs of 1.84 and 1.58 kcal mol?,
respectively). However, they do not perform as well as the standard MR-Gn
procedures. For example, the MADs are larger than with MR-Gn(MP2) for virtually
all the thermochemical propertiés in Table (5.6).
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There are 31 (MR-G2/MP2 ) and 23 (MR-G3/MP2 ) out of 123 energy
comparisons for which the error exceeds 3 kcal mol™. Large errors occur for most of
the systems that were noted in connection with the standard MR-Gn procedures.
However, there are additional cases for which there are noticeable errors. In the
case of heats of formation, CO,, SiO, NH, and O, now show significant errors, and
the error for SO, has moved from large negative to small positive. The MR-Gn/MP2
ionization energies are significantly worse than corresponding MR-Gn(MP2) values, .
and significant errors now occur at both MR-Gn/MP2 levels for the additional
systems B, NH; and O,. In the case of electron affinities, there are very large
deviations for CH; (+6.4 and +5.9 kcal mol?, respectively), and F, PO and Cl, also
have large errors. The errors in the H;O*/NH, proton-transfer energy are now 9.0-
9.2 kcal mol™. Despite these shortcomings, the MR-G3/MP2 procedure may prove
useful in situations for which single-reference methods are inadequate, especially
since the use of large active spaces is more limiting for MR-CI than for MR-MP2
methods.

E. MCQDPT2 vs CASPT?2

Our default MR-MP2 method is the CASPT2 procedure of the MOLPRO suite
of programs.”* However, it is of interest to see how the alternative MCQDPT2
procedure that is available in the GAMESS program” compares. Results analogous
to those of Tables (56.3), (5.4), (5.5), (5.12) and (5.13) are available in Appendix F.
Statistical summaries are included in Table (5.6).

The general observation is that the CASPT2-based results and MCQDPT2-
based results are normally very similar. With MR-G2(MP2,SVP), there are nine
cases where the difference lies between 1 and 3 kcal mol™ and just one case (NaCl)
where the difference is greater than 3 kcal mol™. With MR-G2(MP2), there are eight
cases where the difference lies between 1 and 3 kecal mol?, two cases (NaCl and
CH,SH) where the difference lies between 3 and 5 kcal mol?, and one case (Cly)
where the difference exceeds 5 kcal mol®. For MR-G3(MP2), there are five cases
where the difference lies between 1 and 3 kcal mol™ and one case (NaCl) where the

difference exceeds 3 kcal mol™®. The differences are larger with MR-G2/MP2 and
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MR-G3/MP2, with 33 and 30 cases, respectively, of differences lying between 1 and
3 keal mol”, and two and three cases, respectively, of differences exceeding 3 kcal
mol™. '

Although the differences between the results of the CASPT2-based methods
and MCQDPT2-based methods are relatively small, it may be seen from Table (5.6)

that the CASPT2-based methods virtually always perform slightly better
statistically.

F. Timing comparisons and additional comments

Because the choice of method in quantum chemistry studies often involves a
compromise between accuracy and computational expense, it is important to
examine the relative timings of the various MR-Gn procedures introduced in the
present article and to make corhparisons with corresponding standard single- -
reference Gn methods. It should be emphasized that the timings depend on many
factors and so the present data are intended largely to enable qualitative conclusions
to be drawn.

We can see from Table (5.14) that for active spaces of up to about 8 orbitals,
all methods are very cheap. For 10 and 12 active orbitals, the times increase rapidly
for the MR-Gn procedures that involve MR-CI calculations, while for 14 and 16
active orbitals, such procedures are starting to become intractable. Elimination of
the MR-CI component, as in the MR-G2/MP2 and MR-G3/MP2 methods, leads to a
substantial reduction in CPU time. The cost of the standard (SR) Gn methods goes
up much more slowly than the MR methods. We should emphasize that in this
initial implementation of MR-Gn procedures, we uniformly use a full-valence active
space and this leads to the very rapid increase in computational cost with size of
molecule. Clearly this will be modified in implementations that use smaller active
spaces.

The relative costs of the MR methods for the larger active spaces follow the
pattern:® '

MR-G2/MP2 ~ MR-G3/MP2 << MR-G2(MP2,SVP) ~ MR-G3(MP2)
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< MR-G2/MRCI+Q ~ MR-G3/MRCI+Q (5.17)

There is a large increase in CPU time in going from MR-G3/MP2 to MR-G3(MP2)
but a much smaller further increase in going to MR-G3/MRCI+Q.

The single-reference methods show the same pattern:

G2/MP2 ~ G3/MP2 << G2(MP2,SVP) ~ G3(MP2) < G2/QCI ~ G3/QCI
(5.18)

The MR-G2/MRCI+Q and MR-G3/ MRCI+Q procedures are the most
demanding of the methods investigated in the present work in terms of both
‘memory and CPU usage. However, our results show that these two methods are by
no means the most accurate. This is not an overly comforting situation, since the
aim of the other methods that we have examined is to approximate their large-basis-
set MRCI+Q counterparts by means of additivity. It turns out that the MR-G2 and
MR-G3 schemes that we have devised do not succeed very well in mimicking the
MR-Gn/MRCI+Q results. This state of affairs fortuitously results in cheaper
methods (MR-G2(MP2,SVP) and MR-G3(MP2)) that are more accurate than their
more expensive counterparts (MR-G2/MRCI+Q and MR-G3/MRCI+Q).

The two MR methods for which the correlation correction is based on the 6-
31G(d) split-valence basis set (MR-G2(MP2,SVP) and MR—G3(MP2)) give the most
accurate results. Table (5.15) lists the ten worst predictions of the G3(MP2) method
together with the corresponding MR-G3(MP2) values and vice versa. It can be seen
that five out of the ten cases are common to the two lists, and that both methods give
poor predictions in most of the remaining ten cases as well. Individual results have
been discussed in previous sections.

Overall, the agreement between theory and experiment is best in the case of
the MR-G3(MP2) method, and since this is also one of the more efficient methods in
terms of resources, we recommend the use of MR-G3(MP2) for future studies of
systems with significant multi-reference character., MR-G3/MP2 does not perform

as well as MR-G3(MP2) but is significantly less expensive. It may be useful in
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situations that would benefit from a MR treatment but for which the MR-CI

calculations are not tractable.
IV. Conclusions

We have introduced twelve multi-reference equivalents of the G2 and G3
methods using reduced Meller-Plesset orders and assessed their performance on a
slightly reduced G2-1 test set. Whereas single-reference Gn-type procedures aim to
approximate large-basis-set QCISD(T) calculations through additivity
approximations, the MR-Gn methods aim to approximate large-basis-set MRCI+Q
results. |

We find that models based on explicit large-basis-set MRCI+Q calculations
(together with ZPVE and higher level corrections) do not perform particularly well.
In addition, our results indicate that the Gn-type additivity approximations hold less
well for the MR-Gn methods than they do for the parent single-reference Gn
methods. This leads to the somewhat fortuitous situation in which incorporation of
‘additivity approximations in the MR-Gn procedures results in an accuracy which is
better than that of MR-Gn/MRCI+Q and is generally comparable to that of the
corresponding single-reference methods.

MR—GB(MPZ) is the most accurate of the MR-Gn methods that we have
examined and it is also one of the least computationally demanding. The mean
absolute deviation between calculated and experimental values for the test set of
(123) energies is 1.22 kcal mol”, compared with 1.19 kcal mol® for standard
G3(MP2). MR-G3(MP2) performs comparably to G3(MP2) for heats of formation,
ionization energies and electron affinities but significantly worse for proton
affinities. _

The present test set involves systems for which a single-reference treatment is
reasonably adequate. It is encouraging that MR-G3(MP2) performs comparably to
G3(MP2) for such systems. However, the main purpose of the present study was to
develop procedures that could handle systems for which a single-reference

treatment is not adequate. It is likely that the performance of MR-G3(MP2) will
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improve relative to G3(MP2) for situations of this type. Studies of such systems are
in progress. _

The MR-G3/MP2 procedure (MAD = 1.66 kcal mol™), which corresponds to a
large-basis set CASPT2 + ZPVE + HLC treatment, does not perform as well as MR-
G3(MP2) but it is computationally much less expensive because it does not require
an MR-CI calculation. It may prove useful in circumstances where a multi-reference
treatment is desirable but the MR-CI calculation is not affordable.
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Table (5.1) Higher-level-correction
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parameters (in mHartrees) for the MR-G2-

and G2-type methods.

Method A
MR-G2(MP2.SVP) 8.250.
MR(QD)-G2(MP2.SVP)  8.731
MR-G2(MP2) 7.542
MR(QD)-G2(MP2) 7.820
MR-G2/MRCI+Q 6.469
MR-G2/MP2 8.802
MR(QD)-G2/MP2 9.437
G2/MP2 4.246
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Table (5.2) ‘Higher-level-correction parameters (in mHartrees) for the MR-G3- and
G3-type methods.

Method A B C D

MR-G3(MP2) 11.086 7.493 10.368 1713
MR(QD)-G3(MP2) 11.575 2.705 10.697 1.822
MR-G3/MRCI+Q  11.158 3.605 9.564 2.912
MR-G3/MP2 12.900 1.799 13.099 1.915
MR(QD)-G3/MP2  13.135 1.819 13.177 1.749

G3/MP2 7.579 4.157 : 9.970 0.573




101

Table (5.3) MR-G2(MP2,SVP) heats of formation, ionization energies, electron

affinities and proton affinities. Values in parentheses are the differences between

experimental and MR-G2(MP2,SVP) values.?

_ Species Species Species

Heats of  LiH 30.3 (+3.0) PHs 31(-18) F, 0.5 (-0.5)

formation  BeH 84.2(-2.5) HsS -52(+0.3) CO; -96.5 (+2.4)

‘ CH 141.6 (+ 0.9) HCI -232(+1.1) Naz 29.4 (+ 4.6)
CH; °B4 949 (-1.2) Li 47.4 (+4.2) Sip 139.7 (+ 0.2)
CH2 "Aq 100.8 (+ 2.0) LiF -80.5(+0.4) P 35.3(- 1.0)
CHs 34.5(+0.5) CyH, 54.4(-0.2) S 32.6 (- 1.9)
CHy -20.0 (+2.1) CzH4 15.2(-2.7) Ch 1.1(-1.1)
NH 85.9(-0.7) CN 106.8 (- 1.9) NaCl -46.1 (+2.5)
NH2 44.7 (+0.4) HCN 31.6(-0.1) SiO -225(-2.1)
NH3 -91(-19) CO -285(+2.1) CS 64.5 (+ 2.4)
OH 8.7(+0.7) HCO 9.5(+05) SO 3.5(-2.3)
H20 -57.7(-0.1) HCHO -26.4 (+0.4) CIO 26.2 (-2.0)
HF -65.6 (+ 0.5) CH3OH -48.4 (+04) CIF -125(+0.7)
SiH, 'Aq 62.9 (+2.3) N -0.2(+0.2) CHiCI -21.4 (+1.8)
SiH; °B; 87.2 (-1.0) NaHq4 23.8 (-1.0) CHasSH -7.4(+1.9)
SiH3 48.2(-0.3) NO 20.6 (+1.0) HOCI -17.8 (+ 0.0)
SiHa4 75(+0.7) O 12(-1.2) SO, -65.8(-5.2)
PH; 33.5(-0.4) H02 -32.5 (+0.0)

lonization  Li | 123.4(+0.9) CI 296.2 (+2.9) HCI 293.2 (+ 0.8)

energies Be 219.3 (-4.4) CHy 293.0 (-2.0) CzHz 262.3 (+ 0.6)
B 189.2 (+2.2) NHs 233.0 (+1.8) CaHy 240.8 (+ 1.5)
c 257.8 (+1.9) OH 300.1 (-0.1) CO 324.1(-1.0)
N 334.1 (+1.2) OHq 291.2(-02) N 23! 359.0 (+ 0.3)
o) 313.0 (+0.8) HF 371.1(-1.2) N I, 384.1 (+ 1.0)
F 402.4 (-0.7) SiH4 2535 (+0.2) O, 279.8 (- 1.5)
Na 114.1 (+ 4.4) PH 233.0 (+1.1) P2 243.2 (- 0.4)
Mg 178.7 (-2.4) PH; 2248 (+16) S 213.1 (+ 2.7)
Al " 137.2(+0.8) PHs 228.4(-0.8) Cl, 265.0 (+ 0.2)
Si 186.9 (+ 1.0) SH '237.7(+1.4) CIF 291.6 (+ 0.3)
P . 241.4 (+0.5) H,S?B; 2404 (+1.0) CS 262.9 (- 1.6)
S 234.4 (+4.5) HyS A4 294.0 (+ 0.7)

Electon C 316(-25) CHs -1.7(+3.5) SH 532 (+1.2)

affinites O 336 (+0.1) NH 79(+0.9) 02 11.1(-1.0)
F 81.0(-26) NH; 17.5(+0.3) NO -0.9 (+1.4)
Si 32.2(-0.3) OH 429(-0.7) CN 91.7(-2.7)
P 142 (+3.0) SiH 27.7(+1.7) PO 24.5 (+ 0.6)
S 46.3 (+1.6) SiH, 232(+2.7) S 37.5(+0.8)
Cl 83.9(-0.5) SiHz 336(-11) Cly 53.9 (+ 1.2)
CH 274 (+12) PH 22.0 (+1.8) :
CH- " 16.0(-1.0) PHy 28.7 (+ 0.6)

Proton NH; 205.4 (-2.9) SiH4 153.5 (+ 0.5) HCI 133.1 (+ 0.5)

affinites  H20 160.8 (+ 4.3) PHs 185.3 (+ 1.8)
C2Ha 153.5 (- 1.2) H.S 167.6 +1.2)

*Values in kcal mol™.

remaining quantities refer to 0 K.

The heats of formation are 298 K values whereas the
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Table (5.4) MR-G2(MP2) heats of formation, ionization energies, electron affinities

and proton affinities. Values in parentheses are the differences between experimental

and MR-G2(MP2) values.?
Species Species Species

Heats of  LiH 30.6 (+2.7) PHs 1.3(+0.0) F, 12(-1.2)

formation  BeH 83.0(-1.3) H.S -59(+1.0) CO -95.0 (+ 0.9)

" CH 141.4 (+ 1.1) HCI -235(+1.4) Nay - 29.8 (+ 4.2)

CH2 °B4 94.5(-0.8) Li. 47.9 (+3.7) Si; 140.4 (- 0.5)
CH2 'Aq 100.0 (+2.8) LiF -81.3(+1.2) P, 36.7 (-2.4)
CHs 33.8 (+1.2) CyHa 55.9(-1.7) 'Sz 33.3(-2.6)
CHq4 -20.9 (+3.0) CoHq4 11.4(+1.1) Ch 15(-1.5)
NH 85.7(-0.5) CN 108.4 (-3.5) NaCl -45.7 (+2.1)
NH, 44.2 (+0.9) HCN 32.9(-14) SiO -224(-22)
NHs -98(-12) CO -278(+1.4) CS 65.7 (+1.2)
OH 8.5(+0.9) HCO 10.2(-0.2) SO 4.0 (-2.8)
H20 -58.2 (+ 0.4) HCHO -26.3(+0.3) ClO 26.6 (-2.4)
HF -65.5(+0.4) CHsOH -48.9 (+0.9) CIF -11.9(-1.3)
SiH; "Aq 61.4 (+3.8) N 1.0 (-1.0) CHsCl -21.3(+1.7)
SiH, °Bq 85.7 (+ 0.5) NzHy4 23.2(-0.4) CHsSH -5.2(-0.3)
SiH3 458 (+2.1) NO 21.3(+0.3) HOCI -17.7(-0.1)
SiH4 40(+42) O 1.5(-1.5) SO, -64.6(-6.4)
PH. 324 (+0.7) Hz0: -32.6 (+0.1)

lonization  Li 123.4 (+0.9) CI 295.5 (+3.6) HCI 202.9 (+1.1)

energies Be 218.9(-4.0) CH, 293.4 (-2.4) CuH; 262.0 (+0.9)
B 190.2 (+ 1.2) NHs 2329 (+1.9) CaHs4 2446 (- 2.3)
c 258.5(+1.2) OH 299.5(+0.5) CO 324.1 (- 1.0)
N 334.1 (+1.2) H0 291.0 (+0.0) Nz 23! 358.5 (+ 0.8)
o} 3123 (+1.5) HF 370.3(-0.4) N *, 383.6 (+ 1.5)
F 401.4 (+0.3) SiH4 2546 (-0.9) O 279.3 (- 1.0)
Na 114.1 (+4.4) PH 2329 (+1.2) P 2426 (+0.2)
Mg 178.2(-1.9) PHa 2246 (+1.8) S 212.9 (+2.9)
Al 137.2 (+ 0.8) PHs 228.3(-0.7) Ch 264.4 (+0.8)
Si 187.0 (+0.9) SH 237.3(+1.8) CIF 290.9 (+ 1.0)
P 241.2 (+0.7) HaS*B, 2401 (+1.3) CS 262.9 (- 1.6)
S 233.8 (+5.1) H,S 24, 294.0 (+0.7) :

Electron C 31.6(-2.5) CHs -1.8(+3.6) SH 52.6 (+1.8)

affinittes O 326 (+1.1) NH 74(+14) O, 10.1 (+ 0.0)
F 79.4 (-1.0) NH; 17.2(+0.6) NO -1.3(+1.8)
Si 32.3(-0.4) OH 421(+0.1) CN 91.6(-26)
P 13:9 (+3.3) SiH 278 (+1.6) PO 24.1 (+1.0)
S 457 (+2.2) SiH2 23.1(+28) S, 36.6(+1.7).
cl 83.0 (+ 0.4) SiHs 33.4(-09) ChL 52.9 (+2.2)
CH 27.2(+1.4) PH 216 (+2.2)
CH, 16.1 (-1.1) PHy 28.1(+1.2)

Proton NH; 205.6 (-3.1) SiH4 153.4 (+0.6) HCI 133.8 (- 0.2)

affinites  H20 161.0 (+ 4.1) PHs 186.3 (+ 0.8)
CoH> 153.9 (- 1.6) H,S 168.4 (+ 0.4)

*Values in kcal mol™.

remaining quantities refer to 0 K.

The heats of formation are 298 K values whereas the
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Table (5.5) MR-G3(MP2) heats of formation, ionization energies, electron affinities

and proton affinities. Values in parentheses are the differences between experimental

and MR-G3(MP2) values.?

Species Species Species

Heatsof  LiH 30.5 (+2.8) PHs 37(-24) F, -15(+1.5)

formation BeH 83.3(-1.6) HsS -49 (+0.0) CO, -94.8 (+0.7)
CH 141.2 (+ 1.3) HCI -23.1(+1.0) Nay 29.5 (+4.5)
CHa °B; 93.9(-0.2) Li 475 (+4.1) Si 138.7 (+ 1.2)
CHa 'A4 101.3 (+ 1.5) LiF -80.3(+0.2) P, 35.7 (-1.4)
CHs 34.3 (+0.7) CzH: 547 (-0.5) S; 31.5(-0.8)
CHa -19.3 (+ 1.4) CzHq4 15.8 (-3.3) Ch 0.0 (+0.0)
NH 85.0 (+0.2) CN 107.3 (-2.4) NaCl -46.6 (+ 3.0)
NH. 448 (+ 0.3) HCN 324 (-0.9) SiO -23.7(-0.9)
NH3 -84(-26) CO -272(+0.8) CS 64.9 (+ 2.0)
OH 8.2(+1.2) HCO 10.2(-0.2) SO 22(-1.0)
H.O -575(-0.3) HCHO -253(-07) Cilo 256 (-1.4)
HF -65.6 (+ 0.5) CH3OH -47.3(-0.7) CIF -125(-0.7)
SiH, 'Aq 63.0(+2.2) N 0.7 (-0.7) CHsCl -20.5(+0.9)
SiH, ®B; 86.0 (+ 0.2) NaHg4 252 (-2.4) CHsSH -6.7 (+1.2)
SiHs 475 (+0.4) NO 21.3 (+0.3) HoCI -17.8 (+0.0)
SiH4 7.4(+0.8) O, 0.2(-0.2) SO, -66.0 (- 5.0)
PH; 33.2(-0.1) H0, -326 (+0.1)

lonization  Li 1242 (+ 0.1) CI 296.7 (+ 2.4) HCIi 293.7 (+ 0.3)

energies Be 219.6 (-4.7) CH4 293.2(-2.2) CoH2 264.3 (- 1.4)
B 189.9 (+ 1.5) NHs 232.7 (+2.1) CzHa 241.0 (+ 1.3)
c 258.5(+1.2) OH 2996 (+04) CO 3245 (-1.4)
N 3345 (+0.8) H,0 291.0 (+ 0.0) N ’3 359.1 (+0.2)
(6] 3129 (+0.9) HF 370.6 (-0.7) N 1, 384.2 (+0.9)
F 401.7 (+0.0) SiH4 254.1(-04) O, 280.9 (- 2.6)
Na 115.1 (+ 3.4) PH 2348 (-0.7) Py 243.7 (- 0.9)
Mg 178.9 (- 2.6) PH, 226.7(-0.3) S, 215.1 (+0.7)
Al 138.5 (- 0.5) PHs 228.9(-1.3) Ch 265.9 (- 0.7)
Si 187.9 (+ 0.0) SH 238.6 (+0.5) CIF 292.0 (-0.1)
P 241.8 (+0.1) H.S 2B 2412 (+02) CS 263.2 (- 1.9)
S 235.9 (+3.0) HaS %A 294.6 (+ 0.1)

Electron C 312(-21) CHs -25(+4.3) SH 54.2 (+ 0.2)

affinities 0] 318 (+1.9) NH 6.6(+22) O, 104 (- 0.3)
F 78.6 (-0.2) NH: 16.7 (+ 1.1) NO -0.3(+0.8)
Si 332(-1.3) OH 41.4(+0.8) CN 91.6 (- 2.6)
P 159 (+1.3) SiH 29.7(-0.3) PO 26.2(-1.1)
S 47.5(+0.4) SiH, 252 (+0.7) S; 38.7 (- 0.4)
Ci 83.7(-0.3) SiH3 34.3(-1.8) Cl 57.4 (-2.3)
CH 27.7(+0.9) PH 23.3(+0.5)
CHa 15.1 (-0.1) PH 29.8 (-0.5)

Proton - NHs 206.0 (- 3.5) SiHg4 153.3 (+ 0.7) HCI 132.7 (+ 0.9)

affinies ~ H,0 161.1 (+ 4.0) PHs 184.9 (+ 2.2)
CoH2 153.1 (- 0.8) H2S 167.0 (+ 1.8)

*Values in kcal mol™.

The

remaining quantities refer to 0 K.

heats of formation are 298 K values whereas the
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Table (5.6) Comparison of the mean absolute deviations (kcal mol™) from

experimental data for multi- and single-reference G2- and G3-type methods.

Test set AH, E EA PA - Total
Number of comparisons 53 38 25 7 - 123
G2(MP2,SVP) 1.36 1.87 2.05 0.81 1.63
MR-G2(MP2,SVP) 1.38 1.38 1.40 1.76 141
MR(QD)-G2(MP2,SVP) " 1.55 1.42 1.32 1.93 1.48
G2(MP2) 1.33 1.88 1.98 0.64 1.59
MR-G2(MP2) 1.56 1.49 1.55 1.54 1.54
MR(QD)-G2(MP2) 1.76 1.47 1.56 1.43 1.61
G3(MP2) 1.13 1.29 1.23 0.93 119
MR-G3(MP2) 1.23 1.13 1.12 1.98 122
MR(QD)-G3(MP2) 1.35 1.13 1.13 2.07 1.28
G2/QCI* 1.19 111 1.22 117 1.17
MR-G2/MRCI+Q - 1.95 1.35 2.33 1.87 1.84
MR-G3/MRCI+Q 1.67 1.20 1.84 2.07 1.58
G2/MP2 5.61 3.45 294 1.81 4.19
MR-G2/MP2 1.69 2.29 2.32 1.70 2.01
MR(QD)-G2/MP2 2.26 2.25 2.53 2.00 2.29
G3/MP2 4.24 2.80 2.74 1.97 3.36
MR-G3/MP2 1.60 1.63 1.77 1.85 1.66

MR(QD)-G3/MP2 2.00 1.77 1 1.84 2.07 1.90

* Unless otherwise noted, all data refer to the 123 energy test set. In the case of
the standard Gn methods, this involved re-optimization of the HLC
parameters for the reduced set, leading to results that differ slightly from
published values based on the full G2-1 test set.>*

® Data obtained from Ref. 3b and refer to the full 125 énergy G2-1 test set.



105

Table (5.7) Comparison of mean absolute deviations (MAD, kcal mol™) from

experimental data for multi- and single-reference G2- and G3-type methods.?

Method _ MAD Method MAD
G2(MP2,5VP) 1.60 MR-G2(MP25VP) 141
G2(MP2) 159 MR-G2(MP2) 1.54
G3(MP2) 1.19 MR-G3(MP2) 1.23
G2/QCI 117 MR-G2/MRCI+Q  1.84
G3/QCI - MR-G3/MRCI+Q  1.58
G2/MP2 4.19 MR-G2/MP2 2.01
G3/MP2 . 336 MR-G3/MP2 1.66

* All data refer to the 123 molecule test set. In the case of the standard Gn
methods, this involved re-optimization of the HLC parameters for the reduced
set, leading to results that differ slightly from published values based on the
 full G2-1 test set. ™ ‘

®Data obtained from Ref. 3b and refer to the full 125 energy G2-1 test set.
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Table (5.8) MR-G2/MRCI+Q* heats of formation, ionization energies, electron

 affinities and proton affinities. Values in parentheses are the differences between

experimental and MR-G2/MRCI+Q values.”

Species Species A Species

Heats of  LiH 31.3(+2.0) PHs ~1.0(+23) F2 2.0(-2.0)

formation  BeH 83.1(-14) H2S -6.4 (+15) CO; -94.2 (+0.1)
CH 141.0 (+ 1.5) HCI -23.1 (+1.0) Na 30.5 (+ 3.5)
CH: °B; 943 (-16) Liz 48.5 (+3.1) Sip 140.1 (- 0.2)
CH; A 99.5 (+3.3) LiF -825(+24) P 34.0 (+0.3)
CHa 33.8 (+1.2) CaHa 55.8 (-1.6) S 36.3 (-5.6)
CHq -20.6 (+2.7) CoH4 116 (+0.9) Clk 42(-4.2)
NH 85.2(+0.0) CN 107.4 (-2.5) NaCl -46.4 (+2.8)
NH: 43.7 (+1.4) HCN 31.7(-0.2) SiO -21.8(-2.8)
NH; -10.0(-1.0) CO -278(+14) CS 65.7 (+ 1.2)
OH 8.6 (+0.8) HCO 10.3(-0.3) SO 6.7 (- 5.5)
H20 -57.9 (+0.1) HCHO -26.9 (+0.9) CIO 28.6 (4.4)
HF -65.0(-0.1) CHsOH -48.0 (+0.0) CIF -10.4 (+ 2.8)
SiH2 'A 60.7 (+ 4.5) N> -0.2(+0.2) CHyCI -19.9 (+ 0.3)
SiHz °By 85.2 (+ 1.0) NaH4 23.0(-0.2) CHsSH -6.2(+0.7)
SiH3 453 (+2.6) NO 21.2(+0.4) HOCI -16.1(-1.7)
SiH4 3.8(+44) O, 3.0(-3.0) SO, -60.3 (-10.7)
PH; 30.5 (+2.6) Hx0: -31.4(-1.1)

lonization  Li 1234 (+0.9) Ci 296.6 (+2.5) HCI 293.1 (+0.9)

energies  Be 218.3(-3.4) CHq4 293.1 (-2.1) CoHa 261.4 (+1.5)
B 189.9 (+ 1.5) NH3 2325 (+2.3) CoHs 2439 (-1.8)
C 258.2 (+ 1.5) OH 299.4 (+0.6) CO 323.4 (- 0.3)
N 333.5 (+ 1.8) H20 290.6 (+ 0.4) N 2y* 358.6 (+ 0.7)
o 312.7 (+1.1) HF 369.5 (+ 0.4) N2 *m, 383.2 (+1.9)
F 401.2 (+0.5) SiH4 2550 (-1.3) O2 278.2 (+0.1)
Na 114.1(+4.4) PH 232.7(+1.4) P, 242.3 (+0.5)
Mg 1775 (- 1.5) PH; 2244 (+2.0) S 211.8 (+ 4.0)
Al 138.0 (+ 0.0) PHs; 2288 (-1.2) Ch 265.1 (+0.1)
Si 187.0 (+0.9) SH 238.5(+06) CIF 291.3 (+ 0.6)
P 240.2 (+1.7) HgS %Bq 240.8 (+0.6) CS 263.0 (- 1.7)
S 236.1 (+2.8) H,S A 294.0 (+0.7)

Electon C 27.0(+2.1) CHs -23(+4.1) SH 52.6 (+ 1.8)

affinites O 30.6 (+3.1) NH 59(+29) O 8.1 (+2.0)
F 75.8 (+2.6) NH 15.8 (+2.0) NO -4.3 (+4.8)
Si 30.5(+1.4) OH 38.9(+3.3) CN 91.0 (-2.0)
P 166 (+1.6) SiH 27.1(+2.3) PO 20.8 (+4.3)
S 46.3 (+ 1.6) SiH: 23.0(+29) S 36.9 (+1.4)
Cl 82.7(+0.7) SiHs 34.1(-1.6) Cl 50.8 (+ 4.3)
CH 255(+3.1) PH 224 (+1.4)
CHa 16.5(-0.5) PH: 28.7 (+ 0.6)

Proton NH3 205.7 (-3.2) SiH4 152.7 (+1.3) HCI 133.4 (+0.2)

affinites  H.0 161.1 (+ 4.0) PHs; 185.5 (+ 1.6)
CoHy 154.2 (-1.9) H,S 167.9 (+ 0.9)

*Corresponding to MRCI+Q/ 6-311+G(34f,2p) + ZPVE + HLC.

®Values in kcal mol™.

remaining quantities refer to 0 K.

The heats of formation are 298 K values whereas the
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Table (5.9) MR-G3/MRCI+Q" heats of formation, ionization energies, electron

affinities and proton affinities. Values in parentheses are the differences between

experimental and MR-G3/MRCI+Q values®

Species Species Species
Heats of LiH 31.9(+14) PHs; -0.1(+14) F. -27 (+2.7)
formation BeH 81.7 (+0.0) H.S -6.6(+1.7) CO; -93.9(-0.2)
: CH 140.6 (+ 1.9) HCI -24.3 (+2.2) Nay 30.9 (+3.1)
CH. °B; 93.5 (+0.2) Li. 49.0 (+2.6) Si 138.5 (+ 1.4)
CH, 'A, 100.5 (+ 2.3) LiF -83.0(+29) P, 34.2 (+0.1)
CHs 341 (+0.9) CyH, 56.1(-19) S 33.6(-2.9)
CHg4 -19.2(+1.3) CoH4 12.8 (-0.3) Cl 0.5 (-0.5)
NH 844(+08) CN . 107.8 (-2.9) NaCl -48.4 (+ 4.8)
NH2 44.1 (+1.0) HCN 32.8(-1.3) SiO -240(-0.6)
NHs -85(-25) CO -27.2(+0.8) CS 65.3 (+ 1.6)
OH 7.4 (+2.0) HCO 104 (-04) SO 3.7(-2.5)
H20 -57.9(+0.1) HCHO -26.0(+0.0) CIO 258 (- 1.6)
HF - -66.2 (+1.1) CHsOH -46.7 (-1.3) CIF. -132(+0.0)
SiH, ,1A1 60.7 (+4.5) N> 1.0 (- 1.0) CHsCI -19.1 (- 0.5)
SiHz "B 83.7 (+ 2.5) NaH4 25.6 (-2.8) CHsSH -5.5 (+0.0)
SiHs 445 (+ 3.4) NO 21.2 (+0.4) HOCI -17.9(+0.1)
SiH4 39(+4.3) 0O 0.4(-04) SO, -62.7 (- 8.3)
PH, 30.3 (+2.8) Hy02 -32.4(-0.1)
lonization  Li 1249 (-0.6) CI 297.1 (+2.0) HCI 294.0 (+ 0.0)
energies Be 218.4 (-3.5) CH,4 2937 (-2.7) CzH» 263.8 (-0.9)
B 191.4 (+ 0.0) NHs 2326 (+2.2) CoH4 2446 (- 2.3)
C 259.7 (+0.0) OH 2995 (+05) CO 3243 (-1.2)
N 334.8 (+0.5) H0 290.8 (+0.2) Np 2y} 359.3 (+0.0)
(o} 3125 (+1.3) HF 369.4 (+ 0.5) N2 11, 383.9 (+ 1.2)
F 400.4 (+ 1.3) SiHs 256.1(-24) O 2802 (-1.9)
Na 115.8 (+2.7) PH 2352 (-1.1) P, 243.4 (- 0.6)
Mg 1776 (-1.3) PH2 2270(-06) S, 2145 (+ 1.3)
Al 139.9(-1.9) PHs3 2298 (-2.2) Cl; 266.6 (- 1.4)
Si 188.6 (-0.7) SH 239.9(-0.8) CIF 292.3 (- 0.4)
P 241.3(+0.6) H.S 2B, 2421 (-0.7) Cs 263.7 (- 2.4)
S 237.5(+ 1.4) HS %A, 295.0 (- 0.3)
Electron C 27.7(+1.4) CHs -2.7(+45) SH 54.0 (+ 0.4)
affinities (0] 28.5(+52) NH 51(+3.7) O2 7.8 (+2.3)
F 73.1 (+5.3) NH; 15.4 (+ 2.4) NO -27(+32)
Si 32.1(-0.2) OH 37.9(+43) CN 91.5(-2.5)
P 17.2(+0.0) SiH 296(-0.2) PO 23.3(+1.8)
S 47.4(+05) SiH, 257 (+0.2) S, 38.7 (- 0.4)
Cl 82.2 (+1.2) SiHs 35.2(-2.7) Clz 54.9 (+0.2)
CH 26.7(+1.9) PH: 242 (-0.4)
CHa 15.0 (+ 0.0) PH> 30.3 (- 1.0)
Proton - NH3 206.3 (- 3.8) SiH4 1525 (+ 1.5) HCI 1329 (+0.7)
affinities H.O 161.4 (+3.7) PHs 185.2 (+ 1.9)
CoH» 153.7(-1.4) H.S 167.2 (+1.6)

*Corresponding to MRCI+Q/G3MP2large + ZPVE + HLC.

®Values in kcal mol?. The heats of formation are 298 K values whereas the

remaining quantities refer to 0 K.
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Table (5.10) G2/MP2* heats of formation, ionization energies, electron affinities and
proton affinities. Values in parentheses are the differences between experimental and
G2/MP2 values.

Species Species Species

Heats of LiH 38.4 (-5.1) PHs 12.1(-10.8) F» -3.4(+34)

formation. BeH 79.1 (+ 2.6) H.S -08(-4.1) CO: -120.3 (+26.2)
CH 146.1 (- 3.6) HCI -222(+0.1) Na; 37.0(-3.0)
CH, 3By 95.5 (-1.8) Lis 56.5(-4.9) Sic 144.0 (- 4.1)
CHy A4 107.8 (-5.0) LiF -86.7(+6.6) P, 34.0 (+0.3)
CHs 38.4(-3.4) CuH, 48.1 (+6.1) S» 294 (+1.3)
CHg4 -13.9(-4.0) CoH4 12.5 (+0.0) Cl» -1.7 (+1.7)
NH 89.8(-4.6) CN 114.2 (-9.3) NaCl -46.8 (+3.2)
NH, 49.3(-4.2) HCN 21.6 (+9.9) SiO -34.7(+10.1)
NH3 -78(-3.2) CO -40.2(+13.8) CS 60.1 (+ 6.8)
OH 9.6 (-0.2) HCO 0.3(+9.7) SO -4.4 (+ 5.6)
H.0 -60.4 (+2.6) HCHO -34.8 (+8.8) CIO 279(-3.7)
HF -69.5 (+4.4) CH;0H -516(+3.6) CIF -18.0 (+4.8)
SiH» _‘A1 70.3(-5.1) N2 v -9.9(+99) CHsCI -212(+1.6)
SiH, °B, 89.2 (-3.0) NzH4 258 (-3.0) CHsSH -29(-2.6)
SiH3 53.7 (-5.8) NO 14.3 (+7.3) HOCI ~-22.8 (+5.0)
SiH4 16.2(-8.0) O, -9.1(+9.1) SO, -89.2 (+ 18.2)
PH> 40.5(-7.4) Hy0, -376(+5.1)

lonization  Li 123.2(+1.1) Ci 2958 (+3.3) HCI 294.7 (-0.7)

Energies Be 205.8 (+9.1) CH4 . 291.7 (-0.7) CoHz 266.8 (- 3.9)
B 190.6 (+0.8) NH3 236.7(-1.9) CzH4 2440 (-1.7)
C 259.6 (+ 0.1) OH 300.3(-0.3) CO 329.8 (-6.7)
N 336.7(-1.4) H0 295.0 (-4.0) Nz 23 355.2 (+4.1)
0 309.8 (+4.0) HF 375.3(-5.4) Nz ’m, 394.1 (-9.0)
F 401.7 (+0.0) SiH4 2512 (+2.5) O 270.3 (+ 8.0)
Na 114.1 (+44) PH 2332 (+0.9 P, 2472 (-4.4)
Mg 169.6 (+6.7) PH» 2251 (+1.3) S2 - 212.8 (+ 3.0)
Al 134.3 (+3.7) PHs 2245 (+3.1) Cl; 265.5 (- 0.3)
Si 185.3(+2.6) SH 236.6 (+2.5) CIF 293.8 (-1.9)
P 241.4 (+0.5) HaS *Bq 2405(+09) CS 279.9 (- 18.6)
S 232.0 (+6.9) H,S Aq 293.7 (+1.0)

Electron C 28.7 (+0.4) CHs 08(+1.0) SH 54.4 (+ 0.0)

Affinities (0] 329(+0.8) NH 69(+1.9) O, 8.1 (+2.0)
F 84.3(-5.9) NH> 209(-3.1) NO -34 (+3.9)
Si 31.3(+0.6) OH 474 (-5.2) CN 108.9 (- 19.9)
P 11.7 (+5.5) SiH 26.8 (+2.6) PO 22.5 (+ 2.6)
S 457 (+2.2) SiH; 23.1(+2.8) S; 37.3(+1.0)
Cl 85.5(-2.1) SiHs 29.2 (+3.3) Ch 55.3 (-0.2)
CH 28.3(+0.3) PH 20.7 (+ 3.1)
CH; 128 (+2.2) PH, 28.4 (+0.9)

Proton NH3 201.4 (+1.1) SiH,4 162.6 (+1.4) HCI 131.0 (+ 2.6)

Affinities H20 162.1 (+ 3.0) PHs 186.5 (+ 0.6)
CyHy 161.1 (+1.2) H.S 166.1 (+2.7)

*Corresponding to MP2/6-311+G(3df,2p) + ZPVE + HLC.

*Values in kcal mol™. The heats of formation are 298 K values whereas the remaining

quantities refer to 0 K.
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Table (5.11) G3/MP2? heats of formation, ionization energies, electron affinities and

proton affinities. Values in parentheses are the differences between experimental and

G3/MP2 values.?

Species Species Species ‘

Heats of . LiH 36.9 (-3.6) PHs 9.3(-8.0) F, 4.9 (-4.9)

Formation BeH 78.4 (+3.3) HsS -0.3(-46) CO, . -113.6 (+ 19.5)
CH 144.2 (-1.7) HCI -18.0 (-4.1) Na 35.3 (- 1.3)
CH. °B; 91.2 (+2.5) Li 54.9 (-3.3) Si 1414 (-1.5)°
CH2 "A 106.9 (- 4.1) LiF -82.1(+2.0) P, 33.0 (+1.3)
CHs 35.0 (+0.0) CoHa 47.3(+69) S, 30.7 (+ 0.0)
CH4 -16.4 (-1.5) CxH4 . 10.2 (+2.3), Ck 72(-7.2)
NH 85.6(-04) CN 113.5 (-8.7) NaCl -43.2 (-0.4)
NH2 46.2 (-1.1) HCN 21.4 (+10.1) SiO -33.4 (+8.8)
NHs -10.1(-0.9) CO -36.2(+9.8) CS 62.7 (+ 4.2)
OH 9.5(-0.1) HCO 19(+8.1) SO -3.1(+4.3)
H.O -59.5 (+1.7) HCHO -326(+6.6) CIO 33.6 (-9.4)
HF -65.2 (+0.1) CH3OH -51.1(+3.1) CIF -8.0(-5.2)
SiHz _1A1 68.7 (-3.5) N2 -10.0 (+10.0) CH3ClI -17.6 (-2.0)
SiH; *B4 84.6 (+1.6) NoHa 22.8 (+0.0) CHsSH' -3.3(-2.2)
SiH3 496 (-1.7) NO 15.8 (+5.8) HOCI -16.4 (-1.4)
SiH4 127 (-4.5) O -7.6 (+7.6) SO, -82.7 (+11.7)
PH. 36.9 (-3.8) H0; -34.8 (+2.3)

lonization  Li 123.5(+0.8) ClI 299.3 (-0.2) HCI 294.4 (-04)

energies Be 208.9(+6.0) CH4 291.1 (-0.1) CzH; 266.2 (- 3.3)
B 190.6 (+ 0.8) NH3 2356 (-0.8) CzH4 2434 (-1.1)
c 259.7 (+0.0) OH 299.1 (+0.9) CO 329.5 (- 6.4)
N 336.5(-1.2) H0 294.0 (-3.0) Nz 2¥¢ 354.7 (+ 4.6)
0] 3128 (+1.0) HF 3741 (-4.2) N; 11, 393.4 (- 8.3)
F 404.1 (-2.4) SiH,4 2511(+26) O, 272.6 (+5.7)
Na 114.4 (+4.1) PH 236.0(-1.9) P, 2471 (- 4.3)
Mg 172.8 (+3.5) PH; 2279(-15) S2 215.8 (+ 0.0)
Al 134.8 (+3.2) PHs; 2243 (+3.3) Ch 265.8 (- 0.6)
Si 185.5 (+2.4) SH 2366 (+2.5) CIF 293.5 (- 1.6)
P 241.1 (+0.8) HS 2B, 2405 (+0.9) CS 279.6 (- 18.3)
S 236.4 (+2.5) HaS %A, 293.6 (+ 1.1) :

Electron C 28.1(+1.0) CHs -0.9(+2.7) SH 54.7 (- 0.3)

affinities 0] 34.1(-0.4) NH 50(+3.8) O, 6.6 (+ 3.5)
F 84.7 (-6.3) NH: 19.2(-14) NO -1.5(+2.0)
Si 315(+04) OH 451 (-2.9) CN "108.0 (- 19.0)
P 16.2 (+1.0) SiH 30.2(-0.8) PO 252 (-0.1)
S 49.9(-2.0) SiH, 26.0(-0.1) S, 37.8 (+ 0.5)
cl 88.4 (-5.0) SiHs 29.1 (+3.4) Ch 58.6 (- 3.5)
CH 30.0(-14) PH 212 (+2.6)
CH2 111 (+3.9) PH» 28.8 (+ 0.5)

Proton NH3 201.9(+0.6) SiH4 152.4 (+ 1.6) HCI 130.6 (+ 3.0)

affinities H20 162.4 (+2.7) PHj; 186.2 (+ 0.9)

) CoH, 160.6 (+1.7) H-S 165.5 (+ 3.3)

*Corresponding to MP2/G3MP2large + AE(SO) + ZPVE + HLC.

*Values in kcal mol™. The heats of formation are 298 K values whereas the remaining

quantities refer to 0 K.
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Table (5.12) MR-G2/MP2* heats of formation, ionization energies, electron affinities

and proton affinities. Values in parentheses are the differences between experimental

and MR-G2/MP2 values.?
Species Species Species
Heats of LiH . 30.0(+3.3) PHs 49(-36) F, -1.4 (+1.4)
formation BeH 856 (-3.9) H.S -3.7(-1.2) CO, -101.6 (+ 7.5)
CH 142.2 (+0.3) HCI -22.7(+0.6) Naz 29.0 (+ 5.0)
CH2 381 94.3 (-0.6) Li; 47.1 (+4.5) Siy 139.1 (+ 0.8)
CHz 'A4 102.4 (+0.4) LiF -825(+24) P, 35.3 (- 1.0)
CHs 352(-0.2) CyH, 524 (+18) S, 28.9 (+1.8)
CHa -18.3(+0.4) CyH,4 11.0(+1.5) Clo 0.5 (-0.5)
NH 86.1(-0.9) CN 104.9 (+ 0.0) NaCl -48.5 (+4.9)
NH>2 456 (-0.5) HCN 30.8 (+0.7) SiO -19.9 (-4.7)
NH3 -72(--3.8) CO -27.3(+0.9) CS 64.7 (+2.2)
OH 8.3(+1.1) HCO 96(+04) SO -14 (+26)
H20O -57.1(-0.7) HCHO -26.1 (+0.1) ClO 239 (+0.3)
HF -66.7 (+1.6) CH3OH -472 (-0.8) CIF -13.3 (+0.1)
SiH, A1 63.5(+1.7) N2 0.4 (-0.4) CHCI -215(+1.9)
SiH, *B; 86.2 (+0.0) NoHa 254 (-2.6) CHsSH -42(-1.3)
SiH3 48.1(-0.2) NO 19.5 (+ 2.1) HOCI -17.9 (+ 0.1)
SiH4 80(+0.2) O, -45(+4.5) SO, -741 (+ 3.1)
PH; 34.4(-1.3) H20;, =336 (+1.1)
lonization Li 1234 (+0.9) CI 295.6 (+ 3.5) HCI 2929 (+1.1)
energies Be 219.5(-4.6) CH4 2914 (-04) C.H. 261.7 (+ 1.2)
B 186.5 (+4.9) NH3 230.6 (+4.2) CyH4 2440 (- 1.7)
C 256.1 (+3.6) OH 2994 (+0.6) CO 319.7 (+ 3.4)
N 334.0(+1.3) HO 290.1 (+0.9) N *y! 3556 (+3.7)
0 312.0(+1.8) HF 3722 (-2.3) N ’11, 383.7 (+1.4)
F 402.7 (- 1.0) SiH4 2521 (+1.6) Oo 283.1 (-4.8)
Na 1141 (+4.4) PH 232.5(+1.6) P, 243.2 (- 0.4)
Mg 178.7(-2.4) PH» 2240(+2.4) S 215.2 (+ 0.6)
Al 134.1 (+3.9) PH; 2259 (+1.7) Ci, 263.3 (+1.9)
Si 185.2 (+2.7) SH 236.5(+2.6) CIF 290.0 (+1.9)
P 2414 (+0.5) H.S 2By 2389 (+2.5) CS 259.7 (+ 1.6)
S 233.6 (+5.3) H.S 2A4 293.1 (+ 1.6)
Electron C 314 (-2.3) CHs3 -46(+6.4) SH 527 (+ 1.7)
affinities (¢} 34.3(-0.6) NH 69(+19) O 10.6 (- 0.5)
F 83.5(-5.1) NH; 16.0 (+ 1.8) NO 3.0(-2.5)
Si 31.7(+0.2) OH 439(-1.7) CN 88.6 (+ 0.4)
P 13.4 (+ 3.8) SiH 26.8 (+2.6) PO 28.8(-3.7)
S 45.7 (+2.2) SiH; 220(+3.9) S 36.6 (+2.7)
Cl 84.2 (-0.8) SiH3 30.8(+1.7) Ch 58.2 (-3.1)
CH 27.0 (+1.6) PH 20.7 (+ 3.1)
CHa 13.4 (+ 1.6) PH; 27.0 (+2.3)
Proton NH3 207.6 (-5.1) SiH4 154.6 (- 0.6) HCI 133.1 (+ 0.5)
affinities H20 161.2 (+ 3.9) PH3 186.9 (+ 0.2)
CoH» 153.6 (- 1.3) 168.5 (+ 0.3)

*Corresponding to CASPT2/ 6-311+G(3df 2p) + ZPVE + HLC.
"Values in kcal mol™. The heats of formation are 298 K values whereas the remaining

quantities refer to 0 K.
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Table (5.13) MR-G3/MP2* heats of formation, ionization energies, electron affinities

and proton affinities. Values in parentheses are the differences between experimental

and MR-G3(MP2)/MP2 values.?
Species Species Species

Heats ofLiH 29.7 (+ 3.6) PHs; 44(-3.1) F -0.4 (+0.4)

formation BeH 85.9 (-4.2) H.S -34(-1.5) CO -98.5 (+4.4)
CH 142.4 (+ 0.1) HCI -215(-06) Na; 28.6 (+5.4)
CH: °B; 94.5(-0.8) Lip 46.7 (+4.9) Si 139.8 (+ 0.1)
CH, "Aq 102.4 (+ 0.4) LiF -81.1(+1.0) Py 35.2 (- 0.9)
CHs 35.1(-0.1) CzHa 521 (+2.1) S 30.7 (+ 0.0)
CHy -18.7 (+0.8) CzHa4 106 (+1.9) Ch 24(-2.4)
NH 86.3(-1.1) CN 106.0 (- 1.1) NaCl -479 (+4.3)
NH; 45.7 (-0.6) HCN 31.1(+04) SiO -20.6 (- 4.0)
NHs -75(-35) CO -253(-1.1) CS 65.7 (+1.2)
OH 8.9 (+0.5) HCO 115(-15) SO 0.1 (+1.1)
H20 -56.8 (-1.0) HCHO -248(-12) ClO 26.2 (- 2.0)
HF -65.6 (+0.5) CH3OH -465(-1.5) CIF -10.4 (- 2.8)
SiH, A4 63.1 (+2.1) Nz 0.9(-0.9) CHsCl -20.0 (+ 0.4)
SiH2°By . 86.1 (+ 0.1) NaHg4 25.3(-2.5) CHsSH -3.9(-16)
SiH3 475 (+0.4) NO 21.3 (+0.3) HOCI -16.1(-1.7)
SiH4 69(+13) O -26(+26) SO, -72.4 (+1.4)
PH; 342 (-1.1) H.0: -33.0 (+0.5)

lonization  Li 124.3 (+0.0) Cl 297.3 (+ 1.8) HCI 294.6 (- 0.6)

energies Be 221.0(-6.1) CHq4 292.9(-1.9) CoHs 265.0 (- 2.1)
B 187.4 (+4.0) NHs 231.5 (+3.3) CoH4 2454 (-3.1)
c 256.8 (+2.9) OH 300.2(-0.2) CO 321.4 (+1.7)
N 334.4(+0.9) H0 291.1 (-0.1) Np 3¢ 357.0 (+2.3)
o} 313.1 (+0.7) HF 373.0(-3.1) N 21, 385.1 (+0.0)
F 403.3 (- 1.6) SiHs4 253.9(-02) O 283.8 (- 5.5)
Na 115.2 (+ 3.3) PH 233.9(+0.2) P 2449 (- 2.1)
Mg 180.2 (-3.9) PH. 2255(+0.9) S 216.7 (-0.9)
Al 135.5 (+ 2.5) PHs; 2276 (+0.0) Ch 265.5 (- 0.3)
Si 186.3 (+1.6) SH 238.6 (+0.5) CIF 291.7 (+ 0.2)
P 242.0 (-0.1) HaS 2By 2409 (+0.5) CS 261.1(+0.2)
S 236.3 (+ 2.6) H.S 24, 294.9 (- 0.2)

Electon C 31.1(-2.0) CHs -41(+59) SH 54.9 (- 0.5)

affinies O 33.7(+0.0) NH 6.8(+2.0) O 11.1 (- 1.0)
F 82.4 (-4.0) NH; 16.3 (+ 1.5) NO 32(-27)
Si 32.8(-0.9) OH 43.7(-1.5) CN 89.7 (-0.7)
P 16.3 (+ 0.9) SiH 28.4(+1.0) PO 30.1 (-5.0)
S 48.2 (-0.3) SiH 236(+23) S 38.1 (+ 0.2)
cl 85.2(-1.8) SiHs 327(-02) Ck 61.3(-6.2)
CH 27.0(+1.6) PH 231 (+0.7)
CH; 137 (+ 1.3) PH» 29.3 (+0.0)

Proton NHz 208.1 (-5.6) SiH4 154.3 (- 0.3) HClI 132.6 (+ 1.0)

affinies ~ H,0 161.5 (+ 3.6) PHs 186.5 (+ 0.6)
CoH2 153.1 (- 0.8) H,S 167.8 (+ 1.0)

*Corresponding to CASPT2/G3MP2large + AE(SO) + ZPVE + HLC.

"Values in kcal mol™. The heats of formation are 298 K values whereas the remaining

quantities refer to 0 K.
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Table (5.14) MR-Gn and Gn timings.

Method NH, CH, HCHO
MR-G3/MP2 119 2354 3823
MR-G2/MP2 12.0 235.8 385.1
MR-G3(MP2) 68.5 3047.0 4160.4
MR-G2(MP2,SVP)  68.6 ' 3047.4 41632
MR-G2(MP2) 84.4 3197.8 4958.3
MR-G3/MRCI+Q 909 3440.0 4500.9
MR-G2/MRCI+Q  93.5 3487.7 4606.4
G3/MP2 3.9 4.0 4.1
G2/MP2 3.9 4.0 4.3
G3(MP2) 27.6 29.6 32.8
G2(MP2,SVP) 27.6 29.6 33.0

- G2(MP2) 40.0 1329 41.0
G3/QCI 34.1 51.0 70.6
G2/QCI 37.6 49.6 87.7

“In seconds using MOLPRO 98 on a single processor of a VPP300 with 1700 Mb
memory. The active-space sizes for NH;, C,H, and HCHO are (8,7), (10,10) and
(12,10) for NH,, C,H, and HCHO, respectively. The Gn tlmmgs refer to Gn(CCSD)
calculations, i.e. in which CCSD(T) is used in place of QCISD(T).
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Table (5.15) Comparison of the ten largest deviations between experiment and the
values calculated by MR-G3(MP2) and G3(MP2).2

Quantity MR-G3(MP2)’ Quantity G3(MP2)©
AH{S0,) 5.0 (- 3.9) TE(Be) | -54(-47)
IE(Be) -47(-54) EANNH) +4.5(+22)
AH'(Na,) +45(+33)  IEO,) -4.0(-2.6)
EA(CH,) +43(+17)  AHYSO) -39 (-5.0)
PA(H,0) +40(+18)  IE©S) +3.6 (+3.0)
PA(NEH,) -35(-04) EA(C) +3.6(-2.1)
IE(Na) +34(+32)  EA(O) +33(+1.9)
AH'{C,H,) 233(+07)  AH'(Na,) £33 (+45)
AH'(NaCl) +30(+15)  AH(CS) +3.2 (+2.0)
IE(S) + 3.0 (+ 3.6) IE(Na) +32(+3.4)

“In kcal mol™. "Values in parentheses are the corresponding G3(MP2)
deviations from ref 4b. “Taken from ref. 4b; values in parentheses are the

corresponding MR-G3(MP2) deviations from the present work.
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CHAPTER 6: ON THE ELECTRONIC STRUCTURE OF BIS(r°-
CYCLOPENTADIENYL) TITANIUM

A paper to be submitted to the Journal of the American Chemical Society

Mark A. Freitag and Mark S. Gordon

Abstract

Prior to the first reported synthesis of the titanium analog of ferrocene,

bis(n’-cyclopentadienyl)Ti, there was theoretical speculation as to the electronic
structure of what would become known as “titanocene.” In time, the original report
of a successful synthesis was apparently shown to be incorrect, and a dimeric form
of the substance was postulated as the correct structure. In the present work, high
level ab initio and DFT calculations are performed on the titanocene monomer to
help answer these structural questions, and to compare with early theoretical and
experimental efforts. The need for a multi-configurational wavefunction is analyzed
and found to be unnecessary. The present calculations predict that the ground state
of titanocene monomer is a linear triplet with freely rotating cyclopentadienyl rings,
which further suggests that experimentally synthesized “titanocene” is indeed some

form of the dimer.
I. Introduction
A. Historical Background

The historical account given here is presented from a distinctly theoretical
point of view. For an experimental perspective, see the recent review by Beckhaus.*

Even before Fischer and Wilkinson reported the first synthesis of what they
called di(n-cyclopentadienyl)titanium(Il) in 1956, there was theoretical speculation
as to the electronic structure of what would come to be known as "titanocene."

From 1953 to 1954, Dunitz and Orgel, ®*® Jaffé,® and Moffitt,” in the light of
molecular orbital theory and motivated by the recent discovery of ferrocene,”

considered the electronic structure of all bis-cyclopentadienyl compounds in general.



115

Modffitt assumed a Dsq structure for the "beautifully symmetric” ferrocene, and broke
the molecule into the iron atom and cyclopentadienyl (Cp) ring fragments to
- evaluate the bonding. For the rings,' he used a simple p-orbital basis on each carbon
atom to derive a linear combination of 10 MOs: gty +e, +e, +e, +e,,. Moffitt
then chose to describe the iron atom using its 4s (a,5) , 3d (ay, e, €,,) , and 4p (e;,, 4,,)
orbitals. From there, qualitative arguments were used to estimate the orbital
energies, and the resulting orbital interaction diagram was derived: in order of
increasing ehergy, the frontier orbitals for titanocene were (e,,)* (a,,)° (a,,)* [a,,(4s)]
(en)* (e3)°, where the e,, and e,, orbitals are nearly degenerate. In his model, the
stability of ferrocene was accounted for by significant overlap of the &, orbitals of
the Cp rings and the corresponding d,, and d,, orbitals of the iron atom. By
extrapolation, Moffitt suggested that titanocene, with its four valence electrons,
should be a diamagnetic singlet, with the two non-bonding titanium electrons
assigned to the a,,(4s) orbital. However, Moffitt also suggested that if the Hund
stabilization was significant, the paramagnetic triplet, with one electron in the
metal's e, orbital, would be more stable. Titanocene had yet to be synthesized
experimentally at the time of Moffitt's paper, so these predictions could not be
tested. |

A year later, Dunitz and Orgel® modified Moffitt's qualitative approximation
into a "semiquantitative” model, approximating overlap integrals between the metal
atom and Cp ring orbitals. These calculations changed ferrocene's MO frontier
orbital energies (for titanocene occupation) from Moffitt's order to (a,,)? (a,,) (e1)*
(e5)” .[ 1,,(4s)1° (e,,)* in order of increasing energy, the last three orbitals being
"uncertain,” and approximately degenerate. This in turn changed the prediction for
titanocene from a singlét to a triplet, since the two non-bonding metal electrons were
assigned to the degenerate e,, orbital.

Also in 1955, Fisher and Wilkinson® reported the first synthesis of titanocene.
They were aware of the predictions of Moffitt, Dunitz and Orgel, and since they
found their substance to be diamagnetic, they used Moffitt's scheme to support their
observation that there were two forms of the compound: a green paramagnetic
(triplet) form that converted spontaneously to a brown diamagnetic (singlet) form.

Based on magnetic susceptibility experiments, they proposed that for unsolvated
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titanocene, the excited triplet state must be at a level at least kT (~0.75 kcal) above
the singlet ground state.

In 1957, another theoretical paper appeared on metal aromatic structures by
Liehr and Ballhausen.” They followed Moffitt's basic treatment, and improved on
Dunitz and Orgel's calculations by using one-electron Hamiltonians and the
variational principle, applied to each of the important molecular orbitals. They
further estimated orbital energies using crystal field theory, allowing positive point
charges on the Cp rings to interact with electrons in the metal's e,, orbital to simulate
bonding interactions. Anti-bonding interactions were modeled with negative point
charges on the Cp ring interacting with the same metal e, electrons, and non-
bonding interactions were between negative point charges on the ring and electrons
in the metal's a,,(4s), a,,, and e,, orbitals. Using this method, they found the order of
increasing energy in MOs to be (a,,)” (4,,)* (e1,)* (e5)* [a,,(45)]% This also suggested a
singlet ground state for titanocene, but the authors used an adjustable parameter
and the experimental results of Fischer and Wilkinson to generate this result after
the fact.

Two years later, Matsen™ used a "strong-field, ligand-field model" to predict a
singlet ground state for titanocene, again in support of the known experimental
evidence at the time.

In 1960, Robertson and McConnell,”® in a magnetic resonance study, noted
that based on Fischer and Wilkinson's work, titanocene shouid be diamagnetic, but
they argued that this does not fit their ionic model well. The model represents the
Cp ligands using circular line charges, which create a field potential. This potential
splits the 3d orbitals, and an energy difference could be calculated. Based on
experimental magnetic susceptibility data, the authors assumed that of the metal's d
orbitals, a,, and e,, should be nearly degenerate, and lie much lower in energy than
the e;,. The authors noted that titanocene, with two electrons in these orbitals, does
not fit this assumption, since it would then most likely be paramagnetic by Hund's
rule. They suggested that the observed magnetic properties may be a result of
interaction with neighboring molecules in the crystal, which may "quench" the spin.

They also suggested lowering the energy of one of the three d-orbitals, but
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ultimately did not adopt this since the other metallocenes studied fit their model
quite well. They considered titanocene an exception to their general conclusions.

An excellent review of the above theoretical approaches as they apply
specifically to ferrocene is given by Scott and Becker.® They also include the
Yamazaki” reference, which is the first theoretical treatment to use SCF theory,
although that paper makes no specific reference to titanocene.

In 1964, Watt and Baye” reported properties of FeCp,, NiCp,, and CrCp,, and
questioned Fischer and Wilkinson's synthesis of TiCp,: “[Wle have been unable to
produce (CsH;),Ti by their procedure, by any modification thereof, or by other
methods that might reasonably be expected to provide this compound.” In a later
paper,” these same authors along with Drummond noted two other reported
syntheses of titanocene, but suggest that the characterizations of each were quite
weak. They used IR data to support their claim that they had indeed produced
titanocene, and reported that the substance is more stable thermally than had been
reported by Fischer and Wilkinson. When their diamagnetic singlet green form is
heated to 200°, it turns black and appears to decompose, but then dissolves in
benzene to form a green solution of titanocene which can be recrystallized. Their
magnetic susceptibility experiments showed that all samples of titanocene were
diamagnetic. They found the molecular weight (cryoscopically in benzene) to be
346, compared to 178.07 for (CsH;),Ti. (178.07 x 2 = 356.14)

Calderazzo, Salzmann, and Mosimann,' based on the above results,
suggested a dimeric formula for titanocene, although they were not specific
regarding the details of such a structure. In a later paper, Salzmann and
Mosimann'® suggested that the IR spectra of Watt, Baye and Drummond's
compound is too complex to be consistent with a simple ferrocene-like sandwich
structure. They note the spectrum has characteristics of both sigma- and pi- ring-to-
metal bonding, but were unsure as to the stability of this structure in solution.

In 1969, Brintzinger and Bartell'™ proposed that both Watt, Baye, and
Drummond®, and Salzmann and Mosimann'® indeed had a compound C,,H,,Ti, but
it in fact exists as a dimer and does not have the traditional sandwich structure of
metallocenes. They used IR and NMR data to confirm Salzmann and Mosimann's

suggestion that the Cp rings are ¢ bound as well as 7 bound to the titanium atom.
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Finally, in 1978 Clack and Warren'® used INDO SCF calculations to come to

the same conclusions as Hoffmann about the relative frontier orbital energies.

B. The Present Approach

It is clear that there has been much interest and speculation regarding the
nature of the electronic structure of "titanocene.” (Here we will take "titanocene" to
mean a single bis(n°-cyclopentadienyl)Ti fragment, abbreviated as TiCp,.) There
seems to be general agreement that attempts to prepare titanocene in the laboratory
result in some form of the dimer, with or without hydride bridges, as discussed
above. Still, the TiCp, fragment, while possibly not stable as the monomer, is still an
important component of many useful catalysts, and a knowledge of its electronic
- structure will aid in the understanding of the chemistry of these species. Of course,
it'is also important to obtain an understanding of the molecular and electronic
structure of TiCp, itself. We anticipate that future work will focus on the electronic
structure of possible dimers.

Our approach will be to re-examine previous conclusions using high-level ab
initio and density functional theory (DFT) theories to determine the structure and
relative energies of the lowest energy singlet and triplet states of TiCp,. First, the
use of multi-configurational wavefunctions will be analyzed, in order to assess the
need for such a wavefunction. Once it is established that single reference methods
should be reliable, DFT, second order perturbation theory (MP2) and coupled cluster
[CCSD(T)] methods are employed to elucidate the low-energy form of TiCp,.

II. Methods

The all-electron 6-31G**'"° and GAMESS PVTZ'! basis sets were used for all
atoms, including titanium.">"™ Geometries and numerical Hessians were obtained
at the Hartree-Fock, DFT and MP2 levels of theory. For the MCSCF wavefunction, a
- (2,2) active space is used, where the two orbitals are the HOMO and LUMO based
on the MP2 natural orbitals. Larger active spaces sets were also tested with similar
results. MCSCF, ROHF, RHF, DFT (B3LYP)™ and closed-shell MP2 calculations
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were carried out using the GAMESS'™ suite of programs, unrestricted MP2 (UMP2)
calculations were performed using Gaussian 94,"® and Molpro was used for the
CCSD(T)"” and UCCSD(T)"® calculations. The notation RHE/6-31G** refers to a
geometry optimization at this level of theory, while RHF/PVTZ//RHF/6-31G**
refers to a single-point RHF/PVTZ calculation at the RHF/6-31G** geometry.
Numerical Hessians were evaluated throughout, using the double-difference
method, and projected to eliminate rotational and translational contaminants.’*’

For C,, and C; geometries, the Cp-Ti-Cp angle is measured by defining the
plane of each Cp ring in terms of three points: the nuclei of the symmetry unique
carbon and the two carbons furthest away from it in the same Cp ring. The angle

between the two vectors normal to these planes is defined as the Cp-Ti-Cp angle, 6.
III. Results and Discussion
A. Preliminary Considerations

Let us first consider the symmetry characteristics of the molecule in more
detail. If the Cp rings are parallel to one another and staggered, TiCp, has Dy,
symmetry; if the rings are parallel but eclipsed, the symmetry is D;,; decreasing the
Cp-Ti-Cp angle 0 from 180° in Dy, symmetry gives C,,, and similar bending from Dj,
gives a C, geometry. Fig. (6.1) shows the orientation of these four point groups
relative to Cartesian coordinates. For the C, geometry, the xy plane is the mirror
plane. Note that upon feducing symmetry from (Ds,/Dyy) to (C,,/ C,), the molecule
is rotated from (y, z, x) to (, y, z) in order to maintain the z-axis as the principle axis.
Consequently, orbital designations change also. For example, a d,, orbital in C,isa

d,, in Dy,. For ease of reference, Table (6.1) summarizes this information.
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Orbital Orbital
Dqy Dy, Cy C, designations designations
for Dy, Dg, - for C,,, C,

Ay, A A, A z Y
A, A, B, A"
Ey, E," A,+B, A'+A" Xz, Yz ;/z, xy

2 E, A+B, A'+A" x>y, xy x*-z22, xz
A, A" A, A"
Ay A" B, A’ z Y
E., E' A+B, A'+A" XY Z, X
E,, E," A,+B, A'+A"

Table (6.1) Relative symmetries and labels for TiCp,. See text for a note on the

rotation of the Cartesian axes.

Z

Fig. (6.1) Relative geometries of the four possible point groups of TiCp,.
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B. Hartree-Fock Analysis

Preliminary calculations were carried out at the Hartree-Fock level. As
shown in Table (6.2), the ROHF/6-31G** B, (C,,) and *A” (C,) optimized geometries
are nearly degenerate, and both lie 18.6 kcal/mol below the analogous °A, (Ds,)
state, which itself is nearly degenérate with the A, (D,,) state. Similarly, the RHF A,
state in C,, symmetry lies just 0.1 kcal/mol below the A’ (C,) state, and 9.4 kcal /mol
below the 'A; (Ds) and 'A; (Dj,) states, where the latter two are essentially
degenerate. The 'A; (C,,) state is 39.3 kcal/mol above the *B, (C,,) state at this level
of theory. All of the geometries at the HF level have the Cp rings within roughly 6
degrees of being parallel. Of course, Dy, and D;y symmetries force the rings to be
exactly parallel. Inefficient overlap of the cyclopentadienyl p, orbitals is the most
likely cause for the lack of bending of the Cp-Ti-Cp angle in C, symmetry.
Numerical Hessians performed at this level show imaginary frequencies for the C,,
and C; geometries, while for higher symmetry (except triplet Dy, which has a small
imaginary frequency) the geometries are posifive definite. All attempts to step off
these imaginary modes (as one does in an intrinsic reaction coordinate calculation,
for example) and isolate a positive definite geometry failed. This may suggest that
the numerical Hessians are very sensitive to step sizes due to the low-frequency ring
modes.

For the triple-zeta basis set, one sees qualitatively similar behavior. It is
especially revealing that the relative RHF/PVTZ//RHF/6-31G** energies are
essentially identical to those for the full RHF/PVTZ optimization, as seen in Table
(6.3). This suggests that the 6-31G** geometries are adequate at the Hartree-Fock
level. Based on the results in Tables (6.2) and (6.3), we conclude that HF theory
predicts TiCp, has a triplet ground state with C,, symmetry (°B,) that is ~40
kcal/mol below the lowest singlet (C,, 'A,).
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C. MCSCF/GVB Theory

Based on previous calculations for TiH,,™**" and Ti,H,,'2 one might expect

TiCp, calculations to require a multiconfigurational wavefunction. To assess the
need for such a wavefunction, the singlet MP2 natural orbitals were used as a
starting point for a TCSCF calculation with the MP2 HOMO (34,,) and LUMO (4p,)
as the (2,2) active space. The resulting natural orbital occupation numbers (NOONSs)
in the active space show very little multiconfigurational character: 1.992 and 0.008
electrons in the HOMO and the LUMO, respectively. Using triplet TCSCF orbitals
as a starting guess for singlet TCSCF results in the same occupation numbers. Even
after TCSCF optimization starting from the bent MP2 structure, the NOONSs
changed very little: 1.995 and 0.005. For the triplet TCSCF, NOONS are 1.000 and
1.000. A second diagnostic are the NOONS resulting from a MP?2 calculation itself.
It has been shown' that if these occupation numbers are significantly unphysical,
i.e. much greater (less) than two (zero), the system is likely to require a multi-
configurational wavefunction, since this behavior suggests the single-reference
Hamiltonian has broken down. In the case of TiCp,, the MP2 NOONs range from
2.0018 to -0.0075, where we have included all four geometries. These are not
significant deviations from the physical expectations. We therefore conclude that a

single-reference wavefunction is appropriate for TiCp,.
D. Density Functional Theory

Density functional theory calculations shown in Table (6.2) show a
quantitative, but not qualitative shift relative to the Hartree-Fock results.
Comparing double-zeta results, the lowest energy structure is still the B, state, but it
now lies only 15.0 kcal/mol below the lowest singlet (C,, 'A,), and the A, states lie
9.0 kcal/mol above °B,. The triplet geometries remain within nine degrees of linear,
but the singlet C,, and C, geometries bend by an additional 15.0° and 12.9° - to 158.9°
and 167.06°, respectively. The imaginary frequencies remain qualitativély similar to
Hartree-Fock, with some exceptions. Both the singlet and triplet C,; geometries

display three imaginary frequencies using the default DFT grid size in GAMESS;
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however, these become similar to the Hartree-Fock values when a tighter grid is
used. Similarly, all but one (Ds, °A,) of the imaginary frequencies, with zero or very
small intensities calculated using the default grid for the D, and D, géometries,
disappear when the tighter grid is used - again similar to Hartree-Fock.

There are very small quantitative changes in going from a double-zeta to a
triple-zeta basis set; ~2° in the geometries, ~1-5 kcal/mol in the relative energies, and
~10-15 wavenumbers in the imaginary frequencies. It appears that very little is
gained by increasing the size of the basis set, although the splitting between the
triplet geometries is reduced to 5.9 kcal/mol. Single-point energies at double-zeta
geometries agree with full triple-zeta optimizations to within 0.3 kcal /mol.

While the singlet-triplet splitting is reduced to ~13 kcal/mol, compared with
~40 kcal/mol for HF, DFT still predicts a triplet ground state for TiCp,.

E. Second Order Perturbation Theory

The MP2/6-31G** results [Table (6.2)] are very similar to those summarized
above for DFT: The °B, (C,,) ground state is predicted to be ~15 kcal /mol below the
higher symmetry triplets and ~21 kcal/mol below the lowest energy ‘A, (C,,) singlet
state. One again finds small (~15i-50i cm™) imaginary frequencies, due to
instabilities of the numerical hessians. This picture is significantly altered when the
larger triple zeta basis set is used, as shown in Table (6.3). Now, all of the triplets are
within ~1 kcal/mol of each other, with the higher symmetry Ds, and Dy, structures
slightly lower in energy. The ground state is still predicted to be the triplet, but now
only by ~6 kcal/mol relative to the C,, ‘A, singlet. The latter is still predicted to be
the lowest energy singlet structure.

F. Coupled Cluster Theory

To further evaluate the relative energetics, CCSD(T) [UCCSD(T)] calculations
were performed at the singlet [triplet] MP2/6-31G** [UMP2/6-31G**] geometries
using the 6-31G** and PVTZ basis sets. The results are qualitatively similar to the

perturbation theory results, as seen in Table (6.3). Note that because of program
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limitations, the restricted Dy, (Ds,) energy is evaluated using the Abelian C,, (Cy)
point group. Based on MP2 and HF calculations, the Abelian energy is artificially 0-
10 kcal/mol low due to split degenéracies. This is not an issue for the unrestricted
triplet calculations. For the 6-31G** basis set, all the triplet geometries are more
stable than the lowest singlet, and the splitting between triplet C,,,C,/Ds4,Ds, is 12.8
kcal/mol. As in the MP2 case, there is a qualitative shift when the PVTZ basis set is
used; the triplet geometries are all still lower in energy, but in this case the lowest
energy structure is the °A, (Ds,). This further suggests that the lowest energy
geometry of the monomer is indeed linear. As for MP2, there is also a significant
basis set effect on the singlet-triplet splitting. The triplet is lower than the lowest
energy singlet, ‘A, (C,,), by only ~8 kcal/mol at this level of theory.

IV. Conclusions

At all levels of theory, the triplet geometries are all lower than the lowest
energy singlet, and as a general rule, the splitting between the high symmetry and
low symmetry triplets becomes less as the level of theory is increased. In all of the
above calculations where double- and triple-zeta optimizations are feasible, it is
found that triple-zeta energies at double-zeta geometries reproduce the results of
full triple-zeta optimizations to within 0.3 kcal/mol. At all applicable levels of

_theory, Hartree-Fock, B3LYP (with sﬁfﬁciently tight grid) and MP2, the numerical
Hessians show the high symmetry, linear geometries are positive definite or have

imaginary frequencies with wavenumbers less than 20 cm™. Based on these data, we

conclude that bis(n’-cyclopentadienyl)Ti is a paramagnetic {riplet with freely
rotating Cp rings. All attempts to synthesize this compound in the literature result
in a diamagnetic singlet, which lends support to the suggestion that the true
structure is some form of the dimer.

- Itis particularly enlightening to compare these results with those of the early
theorists introduced in the Introduction. Recall that before Watt and Baye’s failed
synthesis of Fischer and Wilkinson’s "titanocene," this compound was assumed to
have a molecular formula of (C;Hj),Ti, which allows us to compare directly with the

early results. Fig. (6.2) shows the UHF orbital energies (in hartrees) for the A, (Dsy)
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state at the UMP2/PVTZ//UMP2/6-31G** level. Compared with these are the
relative orbital energies given by Dunitz and Orgel in 1955 using approximate overlap
integrals, and building from the group theoretical presentation given by Moffitt in
1954. Tt seems that their only error was an overestimation of the stability of the
metal orbitals, in particular the metal’s a;, valence orbital. This profound and-

striking result is a testament to the power of group theory in the hands of clever
chemists.

3A, UMP2/PVTZ (D5 Dunitz & Orgel:

0.152 e
0.148 B a}g Tu
0.103 A1 (4s)
14 (e48)
Ig
é’ H & 1
_ A 4 4 4 g
0-297 | T €z | ! €2¢
-0.324 T ' T ' €,
—-0.338 A%, AV e u A ol e
- ¥ v Cig v Iy Ig

A
T A
‘TE electron associated with Cp ring
Ts electron associated with Ti atom
Fig. (6.2) Orbital interaction diagrams for the present work and for that given by

Dunitz and Orgel in 1955. Energies are given in hartrees, but the drawing is not

strictly to scale.
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CHAPTER 7: GENERAL CONCLUSIONS

Schrédinger’s equation, Eq. (1.1), represents the first principles of non-
relativistic quantum mechanics, and is the starting point for all the studies contained
in this dissertation. Let us briefly review the thread that ties this volume together.

In the General Introduction, we saw how one can integrate out the time
dependence of Eq. (1.1) to leave the time-independent form of Schrédinger’s

equation:

Hly)=Ey) , (1.5)

Using the Born-Oppenheimer approximation, the Hamiltonian, H, was simplified,
and using the orbital approximation and the antisymmetric property of the
electronic wavefunction, we arrived at the Hartree-Fock equations, Egs. (1.37). To
make the resulting problem tractable, it was described how the wavefunction is
further approximated by expansion in terms of well-defined basis sets. Using
Hartree-Fock theory as a starting point, we explained how the method relates to
unrestricted Hartree-Fock theory, MP2 perturbation theory, CI theory, MCSCF
theory, coupled cluster theory, and DFT. |

| For many problems, especially large ones such as discrete solute/solvent
interactions, the methods described in Chapter 1 become unsuitable because of the
computational time required. In order to study such systems, hybrid quantum
mechanics/molecular mechanics techniques have been developed, such as the
Effective Fragment Potential, described in Chapter 1. One of the interactions that
must be accounted for'using this method is charge penetration between distributed
multipolar expansions, and this is derived and tested in Chapter 2.

The Hamiltonian derived in Chapter 1, Eq. (1.7), is for an isolated system, free
from the effect of perturbing fields. A powerful experimental spectroscopy, nuclear
magnetic resonance (NMR) measures the so-called chemical shifts of nuclei in the
presence of a magnetic field. In order to account for the effect of the magnetic field

theoretically, an appropriate vector potential must be added to the Hamiltonian; this
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was done in Eq. (3.1). It was described how the use of a vector potential leads to a
gauge dependence in the solution of the Hartree-Fock equations when a finite basis
is used, and how this dependence can be removed using Ditchfield’s gauge-
invariant atomic orbitals. It was explained how the physical property of chemical
shifts can be defined as a second derivative of the energy with respect to the external
magnetic field and the nuclear magnetic moments, and this derivative was
evaluated in detail. The resulting integrals were further evaluated using the
McMurchie-Davidson method, and coded into GAMESS using the modified
algorithm described. The chemical shifts were also shown to depend on the first
derivative of the density matrix, whose evaluation was seen to require
antisymmetric perturbation theory for nonorthogonal, perturbation-dependent basis
sets. This formalism was also derived in Chapter 3. Finally, it was explained how
our ultimate goal is to predict chemical shifts in solution, so several possible
approaches were given on how to integrate the EFP method with the GIAO
formalism. The next step in future research should be to replace the ab initio density
matrix with the density matrix in the presence of fragments and investigate the
influence of the fragment solvent at this level of approximation.

A conventional application of the EFP method was given in Chapter 4, which
studied the solvation of formic and acetic acids. Although the preliminary results of
this study were promising, it was noted that further progress in this area awaits an
appropriate Monte Carlo or molecular mechanics code because of the currently

inadequate method for sampling configuration space. Once this code is available,
the presented work should be repeated to investigate the degree to which the
sampling of configuration space is complete. If the Monte Carlo sampling is
“adequate, more solverit molecules should be added until dissociation of the weak
acid is achieved and can be studied in detail.

The theoretical methods described in Chapter 1 rely on various levels of
approximation. It has long been the goal of the quantum chemist to obtain
thermodynamic levels of accuracy; i.e. roughly within 1 kcal/mol of experiment. In
order to accomplish this, many hybrid schemes have been developed, most notably
- Pople’s G2 and G3 methods. Chapter 5 explained how this method is only useful for

systems that are well-described by a single electron configuration, or loosely
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speaking, a single Lewis structure. It was further explained that many interesting
- chemical systems require a multi-configurational wavefunction, and the chapter
went on to describe multi-reference versions of several G2 and G3 techniques and
reported their performance in detail. The results indicate that the Gn-type additivity
approximations hold less well for the MR-Gn methods than they do for the parent
single-reference Gn methods. This leads to the somewhat fortuitous situation in
~ which incorpbration of additivity approximations in the MR-Gn procedures results
in an accuracy which is better than that of MR-Gn/MRCI+Q and is generally
comparable to that of the corresponding single-reference methods. MR-G3(MP2) is
the most accurate of the MR-Gn methods that we have examined; the mean absolute
deviation between calculated and experimental values for the test set of (123)
energies is 1.22 keal mol”, compared with 1.19 kcal mol™ for standard G3(MP2).

Finally, Chapter 6 discussed the electronic structure of the complex
organometallic molecule titanocene. The history of the study of this species was
discussed, and the results of many high level calculations such as DFT and MP2
with a triple-zeta basis set were evaluated. At all levels of theory, the triplet
geometries are all lower than the lowest energy singlet, and as a general rule, the
splitting between the high symmetry and low symmetry triplets becomes less as the
level of theory is increased. At all applicable levels of theory, Hartree-Fock, B3LYP
(with sufficiently tight grid) and MP2, the numerical Hessians show the high

~symmetry, linear geometries are positive definite or have imaginary frequencies

with wavenumbers less than 20 cm™. Based on these data, we conclude that bis(n°-
cyclopentadienyl)Ti is a paramagnetic triplet with freely rotating Cp rings. All
attempts to synthesize this compound in the literature result in a diamagnetic
Singlet, which lends support to the suggestion that the true structure is some form of
the dimer. Similar calculations carried out on the suggested forms of the dimer
should lead to further understanding.

As was noted earlier, all of the above results can be considered approximate
solutions of Eq. (1.5) which in turn is an exact solution of Eq. (1.1). It should be
noted, however that this form of Schréodinger’s equation itself is approximate, as it
does not incorporate relativistic effects. It has been further argued that the

relativistic form of this equation, the Dirac equation, is also approximate, since in



132

their present state, quantum mechanics and general relativity are mutually
inconsistent. (Dirac himself spent his later years searching in vain for an alternate
formulation for quantum electrodynamics.') Having said that, however, it should
be noted that quantum mechanics is the most precise physical theory known to man,
and as such is unlikely to be superceded for chemical applications - it has been, and

will continue to be, the quantum chemist’s first principles.
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APPENDIX A. CARTESIAN VS. SPHERICAL HARMONIC
FUNCTIONS

There are several ways to approach the idea of spherical harmonic functions.
A particularly elegant way introduced to me by Prof. David Hoffman takes
advantage of the idea of a tensor, and shows the relationship between spherical and

Cartesian functions very well.

Consider a Taylor expansion of a function f(x,y,z):

_ oS Y LY
f(x,y,2)=f, +(xax0+yay0+zazo)
\ , , (A1)
XA i Y5 | I
+2[x ax20+xyaxayo+ e 0z’|, *

where in total there will be three linear terms, nine quadratic terms, 27 cubic terms,
etc., and each derivative is evaluated at the ofigin. Note that since the order of
' differentiation is irrelevant, several of the terms given above are equivalent. The
"coefficients” (components) preceding each derivative can be found using the

following;:
x'y"z" (A.2)

where I+m+n=N, (cf. the original Taylor expansion given above: for the single
derivative terms, N = 1; for the second derivative terms, N = 2, etc.) Further note that
although there are 3" total components, some are identical, as noted above. In fact,

only

(N +1)(N +2)
2

(A.3)

components are distinct.
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Consider now an arbitrary vector r=7(x,y,z). [In general, (r---r) can be
thought of as one long vector with 3" components, N being the number of r's. c.f.

Eq. (4.5).] If this vector is rotated in some way, then its new coordinates can be put

in terms of its old coordinates:

x'=x'(x,y,2)

y'=y'(x,y,2) (A4)
z'=2'(x,y,2)

Unintrusive rotations are described by a unitary (or, if all the elements of the vector

are real, as in this case, orthogonal) transformation. For example:

x=U x"+U y +U,z
y=U,x"+U,y" +U,z or Ur=r (A.5)
z=UW,x"+U,y +U,z

Since the equations given above are linear, it follows that the old components

of r, (x' , y"’,z”) can be written as some linear combination of the new set
(x”',y’"",z’"') where as before, I’ +m’+n’ = N.

So in effect, the 3" components of (r---7) form a 3"-D basis for the full rotation
group. Further, since the matrix that relates r to ' is unitary, (as shown above) then
the 3" x 3" matrix that relates the components of (r---#) to (r"---r’) is also unitary.
This is important because the 3V elements of (r---r) form the basis of a
representation of the full rotation group with dimension (N +1)(N +2)/2, called the
Cartesian representation.

Sets of components that form the basis for unitary representations of the full
rotation group are called tensors. Tensors are then eigenvectors of the Hamiltonian

and I? if the potential of the system is spherically symmetric, as it is with the

hydrogen atom.
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Referring back to the original Taylor expansion, a zeroth rank tensor is a

scalar (fy), a first rank tensor can be written as a vector:

(A.6)

A second rank tensor can be written as a matrix,

x> xy xz

yx Yy yz _ (A7)
zx zy 2°

and a third rank tensor can be imagined as a cubical structure. It should be
remembered that this is just a nice way to keep track of the components of the
tensor; all are properly viewed as the elements of one long vector.

Here's where we make the connection to chemistry. If N = 0, we have a 1-D
representation of the rotation group. As a constant (e.g. f,) , this represenation is
independent of any angle, and thus forms the basis for the totally symmetric
representation, and is an eigenfunction for the hydrogen atom Hamiltonian. This
function is called an s-function, which corresponds to the s-orbital an average
chemist is familiar with. '

If N =1, the first-rank tensor has three components which form the basis of a
3-D irreducible representation. (The representation must be irreducible since each of

the rotations around the x, Y, and z axes don't commute with one another.) These

elements are the eigenfunctions of the Hamiltonian and I? that form the 3-D p-

functions, which have the following angular dependence:

X =rsinfcos¢
Yy =rsinfsing (A.8)
z=rcosf '



136

Finally our story comes back to GAMESS and the work I've been domg If N=2, the
second rank tensor forms the basis of a

(2+1)(2+2)

=6 (A9)

.dimensional representation of the full rotation group. The question then becomes, is
this 6-D representation irreducible? The answer is no, as one can demonstrate: write

the second rank tensor as

yx Yy -— yz +? 010 (A.10)

. Since the second term only depends on 7, it is invariant under rotations, and so is a

representation of the totally symmetric group (s-functions) . The remaining tensor

has five independent components since x* +y* + z* = r?, thus

2 2 2
(xz_%)+(y2_%J+(zz_%)=r2——r2=0 (All)

And so the third component (usually the z) can be written in terms of x and y. (i.e. It
is not linearly independent.) Note that the remaining tensor is both symmetric and
traceless; it can be shown that tensors with these characteristics always form the
basis of irreducible representations. And so we have a 5-D irreducible
representation of the full rotation group, and the familiar d-functions and orbitals. In
effect, we have used a spherical harmonic basis to form the 5-D representatidn,
whereas a 6-D representation was required for Cartesian space. Historically, it was

easier and faster to use Cartesian functions in quantum calculations, and those
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functions were used rather than spherical harmonics. My project was to provide the
option to use the spherical functions in GAMESS.

This was accomplished using code written by Michel Dupuis at IBM that was
already used in his quantum chemistry package HONDO. GAMESS in large part
grew out of HONDO, and much of the code is the same. Dupuis' code removes the
linear dependencies found in the Cartesian basis, and leaves the spherical harmonic
functions.

This removal of linear dependence is accomplished as follows: This is a
summary of what can be found in E. Hollauer, and M. Dupuis, J. Chem. Phys. 96,
5220, (1992). ' _

Similar to HONDO, GAMESS obtains all the symmetry information on a
given molecule by way of its Schoenflies point group symbol, and the specification
of its coordinates relative to a given axis. (e.g. In GAMESS, the z-axis is the principal
roatation axis, and xz is the o, plane, etc.) Once these data are given, GAMESS will
use the appropriate character table to generate a Symmetry Adapted Linear
Combination (SALC) of atomic orbitals; the atomic orbitals being the given basis set.
In effect, linear combinations of the basis functions are formed such that the new
functions obey the symmetry of the molecule. This is accomplished by means of a
so-called SALC matrix, W.

Let S be the overlap matrix of the given basis set:

Su =[dr 60, = (9,

8,) (A.12)

Then W is constructed such that the overlap matrix, Q, of the SALC orbitals can be

written as
S=W'SW (A.13)

Once this is done, the overlap matrix of SALC orbitals is block diagonal, each block

corresponding an irreducible representation of the point group of the molecule. In
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this form, it is easy to diagonalize this matrix and find the eigenvalues and

eigenvectors:
SU=30 (A.14)

It is at this point that the elimation of linearly dependent functions occurs. U is a

~ matrix of eigenvectors of S with eigenvalues §. If any of the SALC functions are
linearly dependent, then a corresponding eigenvalue § will be 'very close to zero.
(The closer to zero, the greater the degreee of linear dependence.) Any
eigenfunctions whose corresponding eigenvalue is below a certain threshold are
dropped, and in this way, the linearly dependent functions are removed. In
GAMESS, this threshold is 1.0 x 10°. From this point, a matrix Q is defined and used
to bring us back to the familiar pseudo—eigenvalue problem that arises from a

Hartree-Fock formalism. (See Szabo and Ostlund, Section 3.4.4., p- 140.):

1

O=WUs 2-

. . A L L

Q'SQ=| WUs 2) S(WU§ 2)
+ 1

1

=5 2| U'W*'SWUs 2 (A.15)
N Lt

=|§ 2| U'SUs 2
BER R

=|§2|82=1

If one redefines the Fock matrix and its pseudoeigenvectors in terms of this Q

matrix, then the above can be used to modify the Roothaan equation:
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F=Q'FQ ; C=QC

= FC =SCe

= FQC = S0Ce (A.16)

= Q'FOC = 0'SQCe

= FC=Ce
Q is block diagonal like S, so that the transformed Fock matrix is also now a block
diagonal L, x L, matrix, where L, is the number of linearly independent functions
(MO's). (Q is L, x L, where L, is the original number of linearly dependent
functions.(AQ's))
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APPENDIX B. GRADIENTS (v), DIVERGENCE(V-) AND CURLS(V x)

The following vector identities are relevant to the derivations contained in
this dissertation. Many can be found in any text on vector calculus, although two
(B.17 and B.18) were derived by the author in the course of his research. Short
proofs are provided for clarity for those dealing specifically with the positional
vector r. F, G, H, and I are general vectors. |

Some definitions:

1

- A A A A A a a a
r=(x*+y*+2*)2  r=(Rx+yy+zz i=1 v=lxZL+v L4352
(< +y*+2) (x+yy+2z)  E=- S Ak

A~ A A 2 2

FXV:Fx Fy Fzz Fz%_‘anaz

9 2 2 9 9

% w u by Lz

B1) FxG=-GxF

B2) F-(GxH)=(FxG)-H=G -(HxF)=H-(FxG)

B3) Fx(GxH)=G(F-H)-H(F-G)

B.4) (FxG)-(HxI)=(F-H)(G-I)—(F-I)(G-H)
_ZP(G 18,5~ G, 1, )H,

B5) VxVf=0

B.6) V-(fF)=f(V-F)+F-Vf

B7) VX(fF)=f(VxF)+VfxF

B.8) V-(FxG)=G(V.xF)-F(VxG)

B.9) Vx(VxF)=V(V-F)-V°F

B.10) Vx(FxG)=(G-V)F—(F-V)G-G(V-F)+F(V-G)
B.11) V(F-G)=(F-V)G+(G-V)F+Fx(VxG)+Gx(VxF)

B.12) Vr=%

Proof:
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)(x2 +y? +zz)% |

8 2 2 2l Aa 2 2 2l
(x +vy +z) §—(x +y +z )2+z$(x +y +z )2

<
~
I
>
&l
+
>
&l
+
N>
¥l

| 3

]
>
NI»—!

I
>

(x*+y*+2%) 22x+y;(x2+y2+zz)—

= —:rl-(fcx+§ry +2z) = ; =t Q.ED.

N R Nl QJ

]
>
+
>
S e
+
N>
=~ N

B.13) Vf(r)= f%

Proof:

Jd .0

vf(r) —[x— Var 2i)f<r>

=i$f(r)+§’5y‘f(r)+25;f(f)

_(HO)3r ) dr . af ) dr
dr ox dr dy dr oz

(G L)
== (xax +yay + zaz) I Q.ED.

B.14) Vrf(r)=3f(r) +r df(r)

Proof:

Vref(r)=V(Xx +§y +2z)f(r) +(Xx + §y + 22)Vf(r)

=(i%+§r%+'z%](xx+yy+zz)f(r)+(xx+yy+zz)[x%+y%+zga—)
—3f(r)+(xx+yy+zz) f( 7)
:3f(r)+(§<x+§ry+iz)(xx+Y3/+ZZ) d];(r)

r r

_ (2 +y* 42" )df(r) r df(r) df(r)
= 3f(n)+1— = 3f(r) + = 3f(r) + QED.

B.15) V=2

r
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Proof:
'Vf=V£=~V—£+rvl=§+rvl=§+rfir‘l
r o r ror ror T
3 1) 3 rr(1) 3 (1) 2
= ——rr(—;) = -———(—2] = ——-(—2) == QED.
7 r r r\r r r\r r

B.16) V’rr"'=ft (n+2)n-1)r"?

Proof:

Vipr! =V(Vr iV r”‘l) =V(3 "y ri'—d—r”‘l)
dr

=V[3 " r(n- 1)r"”2] = V[S " (n— 1)r"“1] =(n+2)vr*?
=(n+2)Vr't =f(n+2)(n-1)r"> Q.ED.

B.17) V af(r) _ o d’f(r)

dr dr*

Proof:

eH0) s 4 i) 80 o
dr dr dr dr

B.18) Vzrf(r)zf-[4 dl;(r)_wdzf(r)}
r

dr?

Proof:

Virf(r)=V[Vrf(r)]= v[s f(r)+ rid(;l]

=3Vf(r)+ Vr dj; (:) +7rV ()

dr
=3t 4f(r) +T 4(r) + 11 dzf(zr)
dr dr dr

_ o (Hf() ()
—r[4 T } Q.ED.
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APPENDIX C. GAUGE INVARIANT ATOMIC ORBITAL
DERIVATIONS

C.1) The general expression for the magnetic field induced by a current distribution

in atomic units is given by the Biot-Savart Law:'®

1 j Xt '

where j is the current density (with SI units of A m?), r is the point where the field is
observed, and dv is an element of volume. Therefore the volume current element is
defined as j dv. We can further modify the form of Eq. (C.1.1) as follows:

H=—12-j do v x1 (C.1.2)
¢ r ‘
since
j Y . r . jXxr
V e —IX1=—=-— = . C.1-3
Xr V(r) j r3><] 3 ( )

such that the curl can be pulled out of the integral to easily identify the vector
potential:

H=V><l2j dod
c v r

L (C.1.4)

I =
C

1 j
=2A==]|dv<=
cz'l.v 7 7

c

where we have applied the specific case for which the current is constrained to flow
along a thin wire, and it is convenient to replace the current element j do with I dl,
where I is the current and dl is a element of length. The current physical situation is

given by Fig. (C.1.1):
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C

Fig. (C.1.1) Physical representation of Eq. (C.1.4)
The integration is around the closed circuit, C. Then, using Stokes’ Theorem:
§§C¢d1 = js dSx V¢ (C.15)

where S is the surface area; then

1 1
A==1 js ds x VQ(;) (C.1.6)

The physical picture is now given by Fig. (C.1.2):
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Fig. (C.1.2) Physical interpretation of Eq. (C.1.6). f is a unit vector normal to the

volume element d8.

Note that

Vé(lj = —vp(l) =% (C.1.7)

Then if we assume the current loop is very small, as in an atomic nucleus, we can

assume r and r to be constant, and pull them out of the integral:

1 pxr

1 r
A= ?(I [, ds) x =B (C.1.8)

where the nuclear magnetic moment has been defined as

| u:ffgdS:IjgﬁdS:%I§crxd1 (C19)

[Note that Ditchfield does not associate the factor of 1/c* with this term; instead, he
uses a factor of 1/c before the total vector potential in Eq. (3.1), following many

authors. See footnote after presentation of Eq. (3.1).]

C.2)
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If we expand the kinetic and magnetic parts of the Hamiltonian, Eq. (3.1), and
evaluate the resulting terms:

S VUSN I (P v Lo
(—sz + ZA (rj)) =(—1Vj +ZA (rj))(—zvj + ZA (rj))
3 ’ 3 4 1 ’
=V - %(Vj A(r))- %(—A (6)V,) + =A%) (C2.1)
2 1 ’ 200, 1
=V} ——(v,-A'(r)) - =(A'(r) -V, ) + A" (x)
C c C
and since we are using the coulomb gauge, which by definition requires
V,-A'(r)=0 (C.2.2)

The other terms are

, 1 Rp XF,
A(l‘j)'Vj=|:?2-HXl'j+§ Br3 jB]'Vj
jB
. v
=—1-H><r V. +2 ]
2 r]B

xV
=—2':H r; XV. +2&3“—J‘B——

B '}B

=_2H (r XV, ) +2—————ﬂ3a( XV )

'}B

(C.2.3)

using (B.2), and
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A%(r,) = { Hxr, +2u8r }{;er +2u3xr’BJ

jB jB

(1H><r) (;er) (%fo])(g%&i)

[ ) (oo g2 g cas

1 ( 1 1 (1' r]B5aﬁ rjaerﬁ)
= —H (1 16,5 =17, ) Hg,+ » —H, U
g je'ip B 3 BB
2 ’ 2 B,o,B 2 er ’
“E0ys — T “Xig0 5 — 7,
( Tip ap ~ TjBal, Jﬂ) ( Lip " TjgOap jBalBp )
+ 2 Hng ; SHet X u wp
B,a,B g BB a,p erer'

using (B.4). Note that the last term here has been dropped since it corresponds to
# ?, which is not included in this discussion. (It is the mutual interaction of the

nuclear magnetic moments, which is related to spin-spin coupling.) Therefore,

Tp0 o — T T
A/Z(rj) — %ZHa(’}zévaﬂ _ Gar'jﬂ)Hﬁ + 2 Ha (r_/ Tip af r}a’}Bﬁ) :uBﬁ (C.25)
a.p

3
B.a,B er

All of which makes Eq. (3.1)

ﬂ(H,u)z—;—Z{(-Vf 2’(A'( 5)-V,)+ lA'%r,-))— 22 B}+Z 32

] 'B gl ]I B+D RBD

Vi- %[%;Ha(rf xV;), + 2_____u3a(r,-33>< Vj)“]

«,B er

==VJ| 1|1 S R A 1 Zy
2 +?£Z§Ha(,}25aﬂ—riarjﬂ)Hﬂ+B§a:ﬁ1—[a(1 jB :g j ]Bﬁ)'uBﬂ}>+§ﬂ +;)

_22_?1
- B U

Zp

BD
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1 i i .uBa(r'BXV')

_EV?——Z—C- > Ha(rijj)a—Zg___”f;_”&

_ { 1 | D R O | 1 ZyZp
;< +@%Ha(’125aﬁ—’farfﬁ)Hﬁ+_2_073,Z.,pHa(] - "‘% J ]Bﬁ)uBﬂ +§7.’ﬂ +l§D Ryp
, .
| ; I 7

_ 1 VZ ZB Z Z J ( *, )a
S-S B S B LS (), LS, 5

7 B j#l ]1 B+D BD J jB

r,-r.0 r]arﬂ,ﬁ)

1 1 5= Tl
ZHaZ(J aﬁ ’}'a"jﬂ)Hﬂ-I_-z_cszaE(] ,]B ﬂ3 tuBﬂ

J B,a,p j ’}B

C.3) Begin by using definitions similar to that in Eq. (3.11, 13) for first order terms,
PVA — i(PtS/%IO))a:

oH

ie.

[+4

0

OP,(H,, . d oce s
(), = PGt < oSt )

[24

0
—-i° (2§(c<°>+iH (), +-- e - i, () +)J
aHa 7 ki NY o A 4 Ja
= —izi—ic(o)(cg °’)a +z( & 0)) ¢y

]
- Zﬁi(c(w)) &9 - c0(ca”)

aP (H u )l occ .
o) _ w\tiqrMBg
(PBVl )ﬂ - B,uBﬂ ' lo la s Z;CW‘(Ha/.uBﬁ )C,lj(Hal.uBﬂ)

0

0

) a [22( g +ip Bﬁ(c‘g%l))ﬂ i )(cﬁ?’ ~H Bﬂ(cé&’n)ﬁ +)}

aﬂsp F

oce

— ) { 0.1 ©DY) 0
= 212 zc (cmj) +z(cBV, )ﬂ b

— (0, 1) o _ (0) (0,1)
2z:(CBW ) (CBA! )ﬁ

0
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C.4) Using Eq. (3.28):

©.1) __-aG{,a(Ha/Iv‘Bp)| _ .0 (
(GBVA )ﬁ - 8.“3;5 IO— ZaﬂBﬂk;Ppa(Ha,ﬂBﬂ)Gv G(Ha?

0
= —i N4 poD) (0)
- —12 I(PBpO' )a GV}.pO'
po

— (0,1) ()
- (PBPU )a G

vApo
po

Since Gy, does not depend on the nuclear magnetic moments.

C.5)

oE
a.uBﬁ

apl( 1 ) OH, 193G
= VA HV + _GV + PV VA 4 vA
0 % {aﬂsﬁ a2 A( a:uBﬂ ‘ 2 a.usﬂ

. 1 . i
- 3 o), (1 3o (i), + o), )|
then, using Egs. (3.28) and (3.32),

oE
Oldg

2 - Bpo 8 vApo

= 5‘1 {i(Pé‘v’f’) ﬁ(HSR’ + %2 P,ﬁ?c;iﬁl,a] + Péf’(i(Hg’;}’)ﬁ sy (PS2) G& )}
o Vi po .

=i {(P), HY + 3 (RE), PG, + RO (), + 1P (B2), G0 |

Bpo 8 vipo
vApo
recognizing dummy indices, we combine:

oE
Oldgg

=i 3 {(B), HY + (), PGS, + PO(HS), ]
0 vVApo

=1 (0.1} (0) (0~ (0) ©) [ 17(0,1)
=1, {(PBVA )ﬁ(Hv}. + Ppa Gv/lpa) + Pv}. (HBV/'L )ﬁ}

vApo
=3 {(B), (Y +69)+BY(HEP), |
vA
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Finally, using Eq. (3.26),

JE | _. ©1) 10 . pO( 1701 }
a‘uBﬂ , - l;{(PBS)} )ﬁPv/l +P (Hij )ﬁ
C.6)

0 .

since the overlap matrix does not depend on the nuclear magnetic moments.

( c® l.uBﬁ

(0,1)
(CBW ) - )

(0) (0 1)
(C,u +1.u3ﬂ Cra +)

2[ (cgy)) ¢ +ic O)(cg’ 1)) ]532’ =

VA

(0) (o, 1) (0,1) 0) (0)__
’Z[ CB,u (CBV] )ﬂc iISv). =

VA

=>Z

C.7)
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> {(B2), E + PO(HEP), |

vA
(0.1} (0 cOf 0D (0) 0 17(0,1)
(CBVJ )ﬂc’ll (CB"J )ﬂ}F + B (HBW1 )ﬁ}

12{ )Y
OD) 0 060) _ 40 0cO( 01 O £7(0,1)
(CBV] )ﬂc &Sy —C, €S, (cB] )13:|+PV,1 (HBwl )ﬂ}

a.qu

VA
AT

2122
VA -
- © © (0.1 ©D) O lc© © (gD
_—225 120 (cm] ) (cB‘7 )ﬂ%}s +1ZPW1 (HM)
]
— o[g O g o
=2 &[0 +12;Pwl (HS )ﬂ
] \Z

=3 RO(HY),
v,

C.8) Compare the first parts of this derivation with (C.2). Begin with Eq. (3.27):

]. . 1 2 1 2 ] ’ 1 ’ 1 ’2
E(—-zV+;A'(r)) =5V —QLC(V-A(r))—%(A (1)-V)+ =5 A”(r)

where, as before, V-A’(r) =0, and

A'(x) V= lEHa(r x V), + 2————” Bo (rBsx V),
2 o o,B rB
and
1 (r 150, — raTBB)
A%(r)= -—ZHa(r26aﬂ - rarﬂ)Hﬂ + ) H, - g
4 o,pB . B,a,p rB
such that

%(—iV+%A'(r))2 =——V2——( Y H,(rx V) +2___HB" i XV)J

o . rB

+ Tiz(—‘i—gHa(r26aﬂ - rarp)Hp + Z H, (r ' rBéaﬁg_ rarBﬁ) nu’BﬂJ

B,a,B 3
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such that the derivative with respect to the nuclear magnetic moments is evaluated:

R s e (5 “f(—‘—““w(rigx V')‘ﬂj"g% ‘)
=—%<¢V f—‘* ¢A>
C.9)

>H,, | P 1 oo 1,V «Z
wny - va - —| = ~A’ — My B
(HED),, 9H,dMps|  OH, bty (xvl{z( zV+CA(r)) grg }Ix;)

then, using the following commutation relation:

: ] 1 , “i‘Al'r

[=f,]= —zV+ZA (r)e *
1 “'i'A)."' ’iA;." 1

=| —-iV+ —A’(r))e €7 -ec (—iV + —A’(r))
¢ : ¢ (C9.1)

i 1., Lar Slaafg ,
= —(——Ax) +—-A (r)}e €’ —ef€ (—A (r))
| c c c

1, a1
=—=Aje " =——A,f;
c C

we can move the point of reference of the vector potential from electron 1 to the

origin of the second basis function:



153

+ 1
/. 51"79‘;1|¢l>
« 1 1
1 5"(13“—;]31&1)%)

(et

1,
<ZVIE7E IZ/1> = <¢v

=(9,

= <¢v

S )

which can be simplified:

w-La, <o lae-La,
C C C

—iV4o| tExr s YR X g

c|2 5 I 2

—_iv+l le(r—Rl)+2uB—>3<rB}
cl2 G

— v+l -1—erl+2%r—3}
c|2 5 Iy

-V iAr)
C

[note that we have not used the strict definition of A’, Eq. (3.3a)] to finally leave

(lvl%‘ﬂ?ﬁ) =8 |15 %(—IV + %A'(ra)) 16.)=(££:9, %nil%) (C9.2)

Returning to the derivative, we thus have
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> ,
aHaayBﬁ<_| ) = aHa Vf*

LAY

aff}.(bvlz 1 om 1za¢
-2 K kL > <ffm o > <ffa au;ﬂ
<ff¢ 1 om; ¢>,

AYV
gl | A\ e - am e
‘< OH, (20, ")\ 258 a0, | % )\ (2 3 [oH
_ [y Ofi|1 Om; g |19 -
_<¢" 9H,, |2 Oty ¢l>+<fo‘¢" 2 0H 0y, 2

The first term is then evaluated as the following, using a analogous form of Eq. (3.9):

[See also (C.8).]
Nhi|1om, $h 1_@_—(_- 1, )2
<¢V OH, |2 Optgg P > <¢V oH, {2 gy | ZV+cA @) 119
v zz(lH (5 9), + P ) ]
c Ty
ot fll1 9 1
< aH;1 EB‘uBﬂ 1 ZH"‘ T'lzaaﬁ (rl)a(rl)ﬂ]Hﬂ f ¢).>
T2 CHL [1‘,1 150, —B(rl)a(rB)ﬂ]uBﬁ
L rB
afjj1L 1 _g(rg x V), Ly [rl-rBSaﬂ—(rl)a(rB)ﬁ] )
BH 2 ¢ # e 72 A

' 0H,

(s af_f{.%. Ly [fa-rsﬁaﬁ-(r»a(r»ﬁ]}

and since the derivative is taken at zero field strength,

¢/1>= <¢ afﬁl ¢/1>

oH,

1 9n;

Wha
<¢ 2 Oty

Y 3H,

IB
B
3
Tg
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Then
aﬁf;_ =_a__ e%[Av-AA]‘r
0H, O0H,
i
= -1A,—-A
dH, c[A i )
= i[(lHXRV)"(lHXRaH‘T)
oH, c{\2 2
= -i-[(—l-Hva-r)—-(leRl-r):D
oH, cl\2 2
continuing,
Ny _ i (1 . )_(l . )
OFL, E)H xp( [ 2H R, xr 2H R, xr

o) ()

=(ef[Av—AA]rJZaI‘:’I K H,{R, r}a)—(%HQ{Rlxr}an (C.9.3)
o) -y )] - B, ], =B ),
= 5o[(m), +(Qu).]

Where we can verify the last step with the help of Margenau and Murphy, p. 139

(actually just the distributive property as applied to the vector products) and zero
field strength for the derivative:



el (o) + (@), ] = 3[R ) + (R, <R )]
- 2ic[(RV ~R;)x(r-R,)+(R, xR, )]
zzic[(R" xr)-(R, xR,)- (R, xr)+(R, xR,)+(R, xR, ]
=2L.c[(R” xr)-(R, xr)-(R, xR,)+(R, xR,)]
_ ZL'C[(RV xr)- (R, xr)]
= [(R,~R)xr],
=L (R,, x¥)

Such that the total first term is

B
Ly

%

iy hha
c<¢v JH,

¢A> --H{o (L), +(@4).]

(T

B
3
T3

B

Ly
) ¢/1> :

¢A> +(Q.1), <¢V

B

3
B

B

Ty

Then the second term in the original derivative is

1 om;
2 0H,duy,

<ﬁﬁ¢v

Cc

;V2
1
2 0H 0z,

<

[y 1
—<fvf;1¢v 1 Z

t3

[}

¢,1> = <f\:f,1¢

v

+H

o

1

|

1

2

15}

2 0H,,d1,,

—Hw(r,1 xV)a +

k

Ha[ 8up — (1‘1

[1‘1 'rBaaﬂ -

1

-1V +-=A'(x,
c

Hp(1: X V),

3
T

a(rl)ﬁ]Hﬂ

rl)a(rB )ﬁ]

- HUgg

o)

J]
|

o



> 1 9 2if (13 XV) 1 [rx T50, (rz) (rB)ﬁ]
_<f;;f;1¢v EaHa [_?( 7’; } Cz [ T; ¢A>
. '1 1 [rA rBaaﬁ_(rl)a(rB)ﬁ]
=<ﬁ,ﬁ1¢v ‘5[;{ m ¢A>
1 ir,l 10,5 — (1, )a(rB)ﬁ]
= 2C2 <¢v T; ¢A>

Since in the end we take the derivative at zero field strength, which removes f*.

Finally, then, we see that

/. Offi|1om; 1 o°m
(12), = (0 2 2 0.+ e, [ o
1 L by
el (T B0 )@, (0|2 ¢>}
1 [r,l 1500 — (1, )a(rB)ﬂ]
+2C2 ¢V rBB ¢},
C.10)
OF %)
FG9) =—2| = H, +G,)
(E2"), 0H,|, aH( g
__.anl +E&_
~ OH, oH,
3
aH [H(O) ZH (HS//IIO)) +z.uBa(Hl(3(id%)) +]

" aI?I [Gig)”HaZ{(P,f},‘”) GO, +P‘°)(G§}1/§’;) }+iuBaZ(P,§2;’) GO, +
po

o po

=i[(Hf,}1'°))a+2{(Pl§},°’) a8, +BO(G0n). }}
2

C.11)
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Consider the derivative resulting from (C.10):

el el it - )
1 ) Z a 1 ZB
el gl 2 et
- [(ffl ( —iV+= A(rl)) fﬁ Bl‘i’x)}
<fffz AN < Bl‘p‘
(%A1 Py 2o
_<8Ha re > <f"f*¢“ 23H ¢> §<3Ha ¢" T ¢A>
=<3ﬁ?ﬁ¢v %ni —zf— ¢l>+<ﬁfa¢v %%_ ¢1>
Then using (C.9.3),
OH., . 1, Z, . 1,3152
Hy =<—21—C[(Tw1)a Qo |-V -2 ¢a>+<fva¢V 20H, ¢ﬂ>

Since
1, 1

1 . 1 2 field 1 ~7\2 2
—q; == -iV+=A’(r,). i&_)_ —iV)Y =—--V
274 2( c (A)) 2( ) 2

Finally, again using the analogous form of Eq. (3.9), we have
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oH,,
oH, |

~(3lm, +(@u)Jo -7~ 3 %1

B
v %l.[% H (s, xv), + 25 Va V)ﬁ}

1 0 1
s |1l

c’ [ra 13005 — (rA )a (1‘3 )ﬂ]

+<ﬁfa¢v

)

+H,

=2ic<[(Tm)a #(Qu).Jp |-V~ ¢l>—2ic<¢v (5 xV), ¢a>
sellim). s @ io) -to i)
= 52T 016.) +(Qu), 0.1 10) - (020

Such that finally, the first derivative of the core magnetic Hamiltonian is given in
terms of familiar one-electron integrals:

0, (H|6,) +(Q.1), (8, [H™|0,) — (8, |L29; >H

O 0:)+ (Qu) (0, H™(:) - (9, ]L%10,)]

C.12)

+  \(L0)
XTZS) + cen

(rltx)=(onlix) +iH %,

= (2%, x;'xs)m) +H a; (%2, n) +

0

Thus
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(Galrr) " = aﬁl (2 x, ) (ﬂ]ﬁ,¢p¢qlﬁ*ﬁ¢,¢s)
( %h SIS ¢] [f;ﬁ,¢,,¢,, Sehigs,

then using (C.9.3), we have

PRATAA N (( ) )}¢¢|¢,¢s)+(¢p¢qK%){(T,s)a+(Q,s)a}¢,¢sJ

{Q (6,0000.)+((T,) 9,0000.0,) + (2. (0,010.0.)+ (6,6,/T.) 0.0.)]
~-l(2n), (@) (e 0do..) T) 00000+ (0,0/(T.).00)

1

2
1
T2
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APPENDIX D. ANTISYMMETRIC PERTURBATION THEORY FOR
FIELD-DEPENDENT NON-ORTHOGONAL BASES

D.1)
FRS =SRF
N (F(O) +F‘”)(R‘°) +R‘1))(S‘°) + S(l)) — (S(O) + S‘”)(R(O’ +R(”)(F(°’ +F‘1))
-. FOROGO) L FOROGM 4 FORMDGO | RORMGH | FOROGO |
FOROGM  FORMGO  FORWGM
= GOROEO | GOROED 4 GORWVEO 4 GORMDED | GOROEO L
SOROFD 4 ORDEO® | GURMED

D.2)
RSR=R
N (R(O) + R(”)(S(") + S(l))(R(O) +R‘”) — (R(") +R‘1’)
- ROGORO® L ROGORM L ROGOR®O | ROGHRM
+ROSORO L ROGORD L ROGORO L ROGOR O
—R©® L R®

D.3) _
UFPUU'ROUUSYU + UFQUUROUUSOU + UFPUUROUUSOU
=USPUU'ROUUFYU + USPUURPUUFYU + USPUUROUTUFOU
UROUIUSOUURAUT + UTROUWUSPUUROU™ + UROUIUSOUUROU
=U'RYU™
= F(O)f{(o)g(l) + F(O)R(l)g(o) + i:(l)f{(o)g(o) — g(o)f{(o)i::(l) + g(O)f{(l)i:(O) + g(l)R(O)F(O)
R(O)Q(O)ﬁ(l) + R(O)g(lif{(o) + R(1)§(0)R(0) — f{(l)
= F(O)f{(ﬂ)g(l) + i;-(O)f{(_l) + F(l)f{(o) — ﬁ(o)ﬁ(l) + f{(l)f:(o) + g(l)f{(o)f;(o)
1”{(0)1”{(1) + R(O)g(l)ﬁ(o) + I"{(l)f{(O) = 1“{(1) '

Since S© =1.

D.4) The (1,1) projection:
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RRORPR, + RROSVROR, + R,RPROR, = R,RR,

= RRYR,+RS®R, +R,RPR, =R{Y
. R+ 80+ RY - R
=

R _ _q®
Rn - _Su

The (1,2) projection:
RRORUR, + R, ROSOROR, + RROROR, - R ROR,
.y Rglz) + Rls(l)R(O) _ Rls(l)R(O)R(O) + RIR(I)R(O) - RlR(l)R(O)R(O) _ R(llz)

= RY +RSVR® -R,SVR® + R,RPR® - R RVR® = RO
= | RO - RY
The (2,2) projection:
R,ROROR, + R,ROSOROR, + R,ROROR, = R, RR,
= R,RORVR, = RY
= RORD - RORORD - RORDRO® 4+ RORORORO® = RO
— ROR® - ROR® - RORPR® + ROROR® = RY
= 0=R{)

D.5) Start with Eq. (3.62a) and the (1,2) projection:

R,FOROSOR, + R FOROR, + R EVROR, = RROFOR, + R,ROFOR, + R SPROFOR,
= FORROZUR, + FORRUR, = R FOR, + RROR,FO + R SVROR,FO
- FOR,SOR, + FORY = FY + ROFO
= O30 4+ FOR® = FO + ROFO
. FOR® - ROFO = FO - FOZ0
-

FO% _ 3FO _ O _ FOGO
F7x-xF" =F;, -F"S})

D.6)

This equation can be solved by expanding X in the space of orthonormal coefficients,
T:
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where ¢, is the I" (occupied) column of T, and ¢, the J* unoccupied column of T,

since we are dealing with the occupied /unoccupied (1,2) projection. Then

0 _ =50 _ 50 _ w0
FO% - xF© = F® - O3
occ unocc 0cc unocc

F(0) o ot & HEO) — O _ FOEO
= F 2 2 Aycc; —Z 2 Ay, & FY =, -FYS;};
. I T ]

0cC unoce

FOg o+ _ 2 2+R@) - FO _ FOQW
= X A (FO% e E0) = B - FOS
r 7

0CC unocc ~(1) ~(0)~( )

~ =t =~ . 1

= 2 Z AU(eIcIc, —c,c,e,) =F, -F"S],

rj
0CC unocc ~(1) ~(0)~(1)
‘ e

= > Y, Agle,— e R =B - FOS

rj

where we have used F”¢, = e/, and its adjoint. Then, to find A}, we multiply on left

and right by specific column vectors, ¢ and c,, resp.:

0cC unocc ~(1) ~(0)~(1)
b e~ ~
2 2 A,I(e, —e,)cKc,cIcL = cK(F12 o ) )cL
I 7
0cC unocc ~(1) ~(o)~(1)
— ot ~
2 AI](eI - e])aKlajL = CK(FIZ -F"S;, )CL
=+ (1) _ RSO\
C1<(Flz -F"S5; )CL

(ex —er)

= Ay =

which can be substituted back into the original expansion:

0cC Unocc ) 0cC unoce E; (Fl(;) - F(O)g(llz))E ]

< < <~
x=3 DAL =Y (e _ ) ¢y
T 7 176

rj
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oce

unocc
~+ Q% =+ (R0 0g®) ~ g
occunoccCIZCKCK(F —F S )ZCLCLCJ
L

- e S
g Z 21: (ez —e]) B

0CC UNOCC 0CC UNOCC IKE; (F(l) — F(o)é(l))ELé‘L

PIDIPY -
I '] K L (el—e])

occ unocc E; (F(l) — ng(l))EL .

_ ~
- ; EL: (eK - eL) K

Il

since FO%; = e, ct.
D.8) If the imaginary parts of F” and § are explicitly pulled out, we have

RO _RD LROD L RO L RO &M 4 34 3+ — _:QL0) , -~ AL
RY =R{ + R} +RE) +RE) = =8 + X+ X" = ~iS{;? +iX + (i)

i§( o, iﬁi uf‘:c E;‘((F(Lm _ eKS“'O))EL . .,ch unoce az(i:(w) _ ng(l,O))EL o

=—iSt . —|1i €, C

11 k€L kCL
K L (eK - eL) K L (eK - eL)

(LY _, a0z 2 =+ = =i+ (RO, &10))x
_ _ROGIORO 4 iﬁ ufic c K(F exS )ch L &C KcL(F exS )c X
K L (eK "eL) (eK _eL)

¢ (13(1,0) - eKS‘l"’))'éK is a scalar...

— EZ (F(1,0) _ eKS(LO))ELEKEZ ELE}QE} (F(Lo) - ng(l,O))EL

— _iR(o)g(LO)R(O) + 12 2 _
K L (eK - eL) (eK —eL)
) =+ (F(,0) _ , QLO)\% = =+ =+ [1(1,0) _ , QLO)\x = =+
= _{ROGLOR® 4 iﬁ uﬁ‘jc ‘x (F &S )CLC‘KCL _ CK(F &S )CLCLCK
K L (eK - eL) (eK - eL)
~+ (1:(1,0) Q(1,0) \~
s 5 .occ unocc CK(F ﬂeKS )CL o o
=—ROSTR +iY' Y (cKc{ — ch;)
K L (eK - eL)
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APPENDIX E. McMURCHIE-DAVIDSON ONE- AND TWO- -
ELECTRON INTEGRALS

E.1) We can show in general that Eq. (3.79) holds by staring with the result and
substituting in the definition for the Hermite polynomials:

(B (v 3

_85 ]2aaa g2
= ax) (-1) g(aéa)e —e'f

= 3_59_?_ -1y 62(_3_)j —52-_ -&
“\ox ag] {( Ve 5 ¢ i

- g") {( 1y 52( ;ﬂ )]e"éz ]e"‘fz

since for a general function of two variables,
og 35)
(32 (%
then let £ be constant, and divide by da:
=R R GRSGREIE
0= (ax) (aa) (811 “ o), \x)\3a),” o ).

then since &= &(x —a), (g_a) =1, and we have
X/¢




(ag) H(&)e™® = [ 1) aa)‘e ¢ }e"fz
(e

Specifically, for & =&(x — P,) = af*x,, this implies thaf

(%)jHi(f)e‘ﬁz = (.‘%)i -

d ! —apxl —otpx}
aT) e =A]~€

X

(E.1.1)

= afH (oo (

which was to be demonstrated. Note that for the simpler case where &= £(x), we

simply require

( 35) H(&)e™® = ( ag)( 1y 5[[ aaglje-éz}e-ﬁz
| . 1)](35) 1y {( aJe - }8_52

(E.12)
= (-1(-1ye” [(%% a%)’e-:z }e—?
3
E.2) The recursion relation for Hermite polynomials is
EHy(8) = NHy (&) + HN+1(§) (E.2.1)

and, using Eq. (3.79), substitute in a’*x, or each term in Eq. (E.2.1):
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XpAy
N-1
o2
NA,
N-T
op?

agszHN(alllexP) =
NHN—I(aI]’ﬂxP) =

1 A
EHNH(al]D/ZxP) = "—Nil‘f

20,2

to make Eq. (E.2.1)
XpAy _ NAy, 4 Ay

N1~ N1 N+
olp? ap? 20,2
= %A, = NA,,_, +2nst
. PAEN N-1 zap
DA 1\N+1
= (x,—PA)Ay =NA, , +
P
= %, Ay = NAy_; + PAA, +2u0
AN T N-1 x" N
A 20,

where we have used

xp=x,-PA =x,-(P,-A)=x-A,-P,+A =x-P,.

E.3) Consider

ntn
x,x5 = Y du' Ay, and by application of this,
N=0

n+f+l
n+l A _ n+1,7
X, Xp = E dy Ay

N=0

which can also be written as

n+i

n+l n _ nn
Xa Xp = ZdN XAy
N=0

(E3.1)

(E.3.2)
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Using this and Eq. (3.80), we have

n+n

xital = 2 d""(NAN ,+PA A, + AN“)

N=0 20,
n+i n+i n+i
= Zd""NA o Zd”"PA Ay + Y dir el Ansy
N=0 Op
nin-1 i nif+l A
= Y A (N+1)Ay + Y diPA A, + Y, dif N
N=-1 N=0 N=1 Cp
_ nifi+l
=47 (0)AL+ X, dTA(N+ DAy a5 (4 T+ 1A, 5~ dil (4 T+ 2)A,
N=0
nif+l — - n+i+l ~ A
+ 1\’2:0 dN PAxA dn+n+1PA2-cAn+n+1 + 2 d;\t’n 1 zap | f;l _2_&0:

then from Eq. (E.3.2), dy =0 unless 0> N > (n +7), such that

n+n+1 n+n+1 n+n+l A
Xyt = 2 a7 (N +1)A, + 2 AT PA A, + Y, dif 2N
N=0 P
n+n+l _ e dnn )
= Y |dy (N+1)+dy PA, + D=L A,
N=0 20

then, using Eq. (E.3.1),

n+f+l n+n+l _ nn
g = Y Ay Ay =Y [d;‘,"+1(N+1) +dy PA, +ZN l]AN
N=0 _N=0 Up

such that we can easily identify the recursion relation

ni
dN 1

" =dy (N +1)+diTPA,_ + =L
N N+1( ) zap

E.4) Very quickly, but included for completeness:
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i —oprs

Oas ¢B Oas xByLzB

7 "ZB(XB“WB"ZB)
— I dx B ‘O‘B”B n a
= z" +xn

9 4Y3pZg E B Ew

R
= byl e + e ()

Xy + Y5 +723)
ox

=¢Ayngﬁ(ﬁx§ e o —2ax3 e ""B’B)

2 2
n n+1) I m iy (aArA+0‘BfB)

Y - DT
= (nxAxB 20023 X5" Y aYpZaZp €

E.5) For the dipole moment expectation value:

n+d I+l meii

Idr OuxcPs=Ess D D Y, dmel Idr X A A A, €%

N=0L=0 M=0

n+7 [+l m+m

=Ew Y, > > diefn fdr[NAN _+PCA, +’2‘2+1) AA, e

N=0L=0 M=0 P

= EAB _ 2 i 2 nH ll mﬁSL/O(SM'OJ‘dX(NAN_l +ﬁx—AN + g‘g+1)e~apx§

Qp JN=01-0 M=0 p

T nafl Il mm _ T 12 L - 12 S - 12
=Eum| —— 2 2 2 ey M 01,000 N5N—1,o(a_) + PC:ﬁN,o(E") + L0 (-—)
P P

Xp JN=0L=0 M=0 20, \ ap

32 =
ntd 1+l 6
=E,; z 2 2 d""e” 0, O O[NSN 1o +PC 6N ot ;’“ °}

(XP N=0 P

=EABl Zd"" fim[8y 1+ PC0y, ]

the last line is true since N cannot be less than zero by virtue of its definition in Eq.

(3.81) and in its relation to the Hermite polynomials.

E.6) The second moments can be evaluated by inspection if we note that
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Xc(xcAy)=NxcAy_ + PCoxcAy + %

Op

- (N(N ~1)A,_, +NPCA,_, + ZZ Ay

) +[W:;NAN_I FPCIA, + MN_)

P 20,

+ (N—+_1)AN + P& Ayt AN+22
20, 2a, da,

~ N(N-1)Ay., +2NFCA,, + [zi +PC 4 @’z—“L—l)}AN ; {ch ]A A
(04

2
P aP P 4aP

and when taking the integral, for reasons outlined in (E.5), any terms with lambda

indexed greater than zero will vanish, such that

xcxcAy =N(N-1)Ay_, +2NPC Ay, + A BT+ (N+1) A,
o 2at, 20,
=26y, +21TC:5N1+[P—sz +L:|6N0
' ’ 20, |

then the equation analogous to dipole integral is

P ) N=01=0 M=0 200

 \HE 1+] m+7 - - — 1
Idr ¢Axé¢3 = EAB(a_) 2 2 Z dy elLlfM 81,0000 |:26N,2 +2PC. 6y, + {P sz + _}61\1,0}
P

P

3/2 2 o . .
:EAB(E) ¥ diel O"'m[zam +2PCx6N,1+[PCx2 1 ]5”}
Up N=0 20

with a similar procedure for x.y.,y.z.,yZ, etc.

E.7) Our task is to show that

A cag? |21, TP
jdl‘ rcle apry _ | 277 J' due apCPu
o, )70

To see this, transform to spheroidal coordinates™'® where
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_CP CP
Te = 5 (’1_ ) ’ TP=—2"'(’1+”)

dr=%€?%f—1fﬁmau¢;1sx<an ~1<pu<1,0<¢<27

2wy
2y __ < 4
”)cp(x-u)e

27: (A- ,u)(),+,u) —ap (l+u)
T e 0

Jae e =f:°f;f:“ww§@w -

ey ey
ﬂ:CP J‘ J' dM‘LL l-}-”) Op 1 (l+#)
Then let
E=A+u
dé=du
1 —a,,ipz(lﬂt)z A+l —apipzf
=>_f_1du(2,+u)e . =), 458e ¢
A+l 2 d 'O‘PC—P"fz
= 5 |l——e ¢
A-1 «,CP" | dé
2 A+l ap—-é
el
2 | T o
= 5 e
o, CP
such that
CP> oo - E -1)2 - EP?' + 2
J'dr _1 aPrP :”CP J. dﬂ( -2_——2 e P 4 (A’ 1) _e P 4 (}' 1)
2 1 @,CP
_i mdﬂ,|: Pii(l 1) _ - CP (/’L+1) :|
aP
Then let
2
u? =(/1+1) duzld/l
4 2
2
vzz(l—l) dvzld/l
4 2

such that
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a- 2n[ >, _a T [ —a, T2
J.dr 1, aprp _ £ J‘ dov e~@°CP v _J‘l dy e~ CPu
Op 0

o, Y0

Q.E.D.

E.8) The recursion relations for Ry, can be shown by considering the general
definition:

() (5] () v (3 (35 (3 oo e

where T = ofa® + b* +¢?). Then using the general relation of the derivatives of the
g g

Hermite polynomials, Eq. (E.1.2), we have

: Y e Y el Y e
RNLM]"_"("Za)]J.O ]( ) e ™ (%) e b (-a—c-) e du

d ! .

2

u (—a—al/zua) H, (a"*ua)e™™*
a

H,(aVub)e® |

= (—Za)j J-O { X

H, (aVuc)e™ ™" du

(-]
ab
x(—%a”zuc)
uzf( a"zu)N H,, (" ua)e "
(-
x(-o

=(—2a)jI:< X al/zu) H, (aV?ub)e™™""

) H,,(aVuc)e ™ du

= (—ocl/z)N+L+M —20t) fo UMM (0ua)H, (oub)H,, (o 2uc)e ™ du

From here, we consider Roomszj
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Roomn,i = (_O‘l/z)Mﬂ(‘za)jJ: uMIH, (0 uc)e™ du

then using the recurrence formula &H, (&) = NH,_ (£)+ %H vu(E), we can write

_ 9 \M+1
RO,O,M+1,j - (_0‘1/ )

= (—alfz )Mﬂ(—Za)j CI: UM o L (aVuc)e™ du

irl ;
(-2a) J.O UMl (Vuc)e™ du

— (_al/Z)MH (~20) ioM J‘Ol WM (Otllzuc)e‘T"z i
= (‘“”Z)M(—Za)(—m)" CJOI MU (0% uc)e ™ du

—_ (—061/2 )M—l (_a]lz )2 (—Za)j 2MI: uMHJijHM_l(OCI/ZuC)e_Tuz du
= C(-'(X]’/z )M (_za)i+lj': uM+2+2jHM (al/zuc)e_Tuzdu _

+ M(— al? )M—l (=2 a)j+1 J‘: MR ((X]/Zuc)e'T"z Ju

= CRoo.m,j+1 T+ MRg o 1,41

similarly,

Ropiim, = (—alﬂ )L+M+1(—2a)j fol uHrMR g (@V*ub)H, (e uc)e™™ du
= (-} " (<2a)'b j:u“M*“f2a1/2HL(aV2ub)HM(alﬂuc)e-"”‘zdu
. (_051/2 )L+M+1(—2a)j ZLI: UMM (ub)H, (o uc)e™ du
= (—-ocl/2 )L+M (—ﬁa)(—Za)j bf: Ut (ub)H, (o uc)e™ ™ du
~(-a* )L+M_1(—a1/2 )2 (-2a) ZLJ-O1 utMIIH (o ub)H,, (051/2uc)‘e'T“2 du
= b(—oc]/2 )L+M (—2a) ”J: UM (o Pub)H, (aV?uc)e™™ du
+L{-a?) " (20 [ uM I H, (0P ub)H, (0P uc)e ™ du

= bRO,L,M,j+1 + LRO,L—I,M, j+1
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and now that the method has been established, by an exactly analogous procedure,
the final relation is obtained:

Ry, =Ry 1 jer ¥ NRy_ypomjm
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APPENDIX F. SUPPLEMENTAL TABLES FOR MRG# THEORY
Table (F.1) MR(QD)-G2(MP2,SVP) heats of formation, ionization energies, electron

affinities and proton affinities. Values in parentheses are the differences between
experimental and MR(QD)-G2(MP2.SVP) values.?

Species Species Species

Heats of LiH 30.0 (+3.3) PH; 30(¢-17) Fz 0.3(-0.3)

Formation BeH 84.7 (-3.0) H,S -51(+0.2) CO, -97.6 (+ 3.5)
CH 141.5 (+ 1.0) HCt -232(+1.1) Na, 29.1 (+4.9)
CH, B, 94.7 (- 1.0) Li 471 (+ 4.5) Siy 141.4 (- 1.5)
CH, 'A, 100.6 (+2.2) LiF -79.8 (- 0.3) P, 34.8(- 0.5)
CH, 34.2 (+0.8) C.H, 54.4(-0.2) S, 32.8(-2.1)
CH, -202(+23) C.Hq 14.8 (- 2.3) Cl 1.5(- 1.5)
NH 854 (-0.2) CN 106.3(-1.4) NaCl -49.4 (+5.8)
NH, 44.2 (+0.9) HCN 31.7(-0.2) Sio -22.5(-2.1)
NH; -9.5(-1.5) CcO ~-28.7(+2.3) CS 64.4 (+ 2.5)
OH 8.4 (+1.0) HCO 9.0 (+ 1.0) SO 3.4(-2.2)
H,0 -58.0 (+0.2) HCHO -242(-1.8) clo 26.3(-2.1)
HF -65.8 (+0.7) CH,OH -48.9(+0.9) CIF -12.2(-1.0)
SiH; ‘A, 62.9 (+2.3) N, -11(+1.1) CH,CI -19.6 (+ 0.0)
SiH, °B, 87.5(-1.3) N2H, 22.8 (+0.0) CH,SH -8.0(+25)
SiH, 48.4 (- 0.5) NO 20.1(+ 1.5) HOCH -17.9 (+0.1)
SiH, 7.8 (+02) 0, 1.0(-1.0) SO, -66.5(-4.5)
PH, 33.3(-04) H.0, -332(+0.7)

lonization Li 1232 (+1.1) Cl 296.4 (+ 2.7) HCH 293.4 (+ 0.6)

Energies Be 219.6 (-4.7) CH, 293.0 (-2.0) C;H, 264.2 (-1.3)
B 189.1 (+ 2.3) NH; 233.0(+1.8) C.H, 241.1 (+ 1.2)
C 257.9 (+ 1.8) OH 300.3 (-0.3) CcO 324.1(-1.0)
N 334.0 (+ 1.3) OH;, 291.3 (-0.3) N 25, 359.1 (+0.2)
0 313.4 (+0.4) HF 3710 (- 1.1) Nz T 384.3 (+ 0.8)
F 402.6 (- 0.9) SiH, 252.7 (+ 1.0) 2 279.9 (- 1.6)
Na 114.1 (+ 4.4) PH 233.4 (+0.7) P, 243.3 (- 0.5)
Mg "179.0(-2.7) PH, 224.8 (+ 1.6) S, 213.2 (+ 2.6)
Al 1371 (+ 0.9) PH; 2286 (-1.0) Ch 265.0 (+ 0.2)
Si 187.0 (+ 0.9) SH 237.9 (+ 1.2) CIF 2916 (+ 0.3)
P 2414 (+0.5) HzS 2B, 240.3 (+ 1.1) cs 263.2 (- 1.9)
S 235.0 (+3.9) H.S %A, 293.9 (+ 0.8)

Electron o 29.0 (+0.1) CH, -21(+39) SH 53.2 (+1.2)

Affinities (e} 33.8(-0.1) NH 8.1 (+0.7) 0, 11.7 (- 1.6)
F 81.2(-2.8) NH; 17.4 (+ 0.4) NO -0.3(+0.8)
Si 32.2(-0.3) OH 429(-0.7) CN 91.7(-2.7)
P 14.7 (+2.5) SiH 27.9 (+ 1.5) PO 25.1(+0.0)
[ 46.6 (+1.3) SiH, 227 (+3.2) Sz 37.7 (+ 0.6)
Cl 84.0 (-0.6) SiH, 33.3(-0.8) Cl, 55.4 (- 0.3)
CH 253 (+3.3) PH 21.9(+ 1.9)
CH, 15.8(-0.8) PH, 28.6 (+0.7)

Proton NH; 205.2 (-2.7) SiH, 153.8 (+ 0.2) HCl 133.2 (+ 0.4)

Affinities H,O 160.5 (+ 4.6) PH, 184.9 (+ 2.2)
C.H, 154.6 (-2.3) H,S 167.7 (+ 1.1)

*Values in kcal mol™. The heats of formation are 298 K values whereas the

remaining quantities refer to 0 K.
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Table (F.2) MR(QD)—GZ(MPZ) heats of formation, ionization energies, electron

affinities and proton affinities. Values in parentheses are the differences between

experimental and MR(QD)-G2(MP2) values.?

Species Species Species

Heats of LiH 30.4 (+2.9) PH, 1.7 (- 0.4) F, 1.4 (- 1.4)

Formation BeH 83.0(-1.3) H.S -52(+0.3) Co; -95.4 (+1.3)
CH 141.3 (+1.2) HCI =231 (+1.0) Na; 29.6 (+ 4.4)
CH, *B, 94.4 (-0.7) Li; 47.7 (+3.9) Si, 142.7 (- 2.8)
CH, 'A, 99.9 (+2.9) LiF -81.3(+1.2) P, 36.5(-2.2)
CHs 336 (+ 1.4) C:H, 55.9(- 1.7) S, 33.6(-2.9)
CH, -212(+3.3) C.H, 11.0 (+ 1.5) Cl; 2.2(-22)
NH 85.5 (- 0.3) CN 107.9 (- 3.0) NaCi -48.7 (+5.1)
NH, 440 (+1.1) HCN 33.2(-1.7) Sio -220(-26)
NH; -10.1 (-0.9) co -27.8(+1.4) cs 65.8 (+ 1.1)
OH 8.6 (+0.8) HCO 10.0 (+ 0.0) SO 4.1(-26)
H.0 -58.1 (+0.3) HCHO -23.8(-2.2) cio 26.9 (- 2.9)
HF -65.2 (+0.1) CH;0H -493(+1.3) CIF -11.2(-27)
SiH, ‘A, 61.6 (+3.6) N, 0.5(-0.5) CHLCI -19.4 (- 2.0)
SiH; *B; 86.2 (+ 0.0) NoH. 22.7 (+ 0.1) CH,;SH -8.8(+3.3)
SiHs 46.2 (+1.7) NO 21.2 (+ 0.4) HOCH -17.2(-0.6)
SiH, 4.2 (+4.0) 0, 1.5 (- 1.5) S0, -64.6(-6.4)
PH, 32.7 (+ 0.4) H,0; -32.5(+0.0)

lonization Li 123.4 (+ 0.9) cl 2955 (+ 3.6) HCl 2926 (+ 1.4)

energies Be 219.1(-4.2) CH, 293.3 (- 2.3) C:H. 263.3 (- 0.4)
B 190.1 (+ 1.3) NH; 232.8 (+2.0) CoHs 2457 (- 3.4)
c 258.4 (+ 1.3) OH 299.6 (+ 0.4) co 324.1(-1.0)
N 334.0 (+ 1.3) OH. 291.0 (+ 0.0) N2 23, 358.4 (+ 0.9)
0 312.7 (+1.1) HF 370.3(- 0.4) Nz . 383.9 (+1.2)
F 401.6 (+0.1) SiH, 253.6 (+ 0.1) O, 279.5(-12)
Na 114.1 (+ 4.4) PH 233.3 (+0.8) P, 2426 (+0.2)
Mg 178.3 (- 2.0) PH. 224.5 (+1.9) S, 213.0 (+2.8)
Al 137.1 (+0.9) PH; 228.3(-0.7) cl, 264.2 (+ 1.0)
Si 187.0 (+ 0.9) SH 237.3 (+ 1.8) CIF 290.7 {(+ 1.2)
P 241.2 (+ 0.7) H.S %B, 239.8 (+ 1.6) cs 263.0 (- 1.7)
S 234.0 (+4.9) H,S %A, 294.5 (+ 0.2)

Electron c 29.0 (+ 0.1) CH; -2.1(+3.9) SH 52.3 (+2.1)

affinities o] 32.8 (+ 0.9) NH 7.4 (+14) oY 10.6 (- 0.5)
F 79.6 (- 1.2) NH, 17.0 (+ 0.8) NO -07(+12)
Si 32.4(-0.5) OH 42.1 (+0.1) CN 91.6 (- 2.6)
P 15.5 (+ 1.7) SiH 28.0 (+ 1.4) PO 24.8 (+0.3)
S 457 (+2.2) SiH, 227 (+3.2) S, 36.7 (+ 1.6)
cl 82.9 (+ 0.5) SiH; 33.0 (- 0.5) Cl; 59.1 (- 4.0)
CH 25.0 (+ 3.6) PH 21.3 (+2.5)
CH; 15.9 (- 0.9) PH, 27.8 (+ 1.5)

Proton NH; 205.7 (-3.2) SiH, 153.9 (+ 0.1) HCI 133.8 (- 0.2)

affinities H,0 161.1 (+ 0.5) PH; 186.3 (+ 0.8)
C.H, 153.7 (- 1.4) H,S 168.5 (+ 0.3)

*Values in kcal mol™. The heats of formation are 298 K values whereas the

remaining quantities refer to 0 K.
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Table (F.3) MR(QD)-G3(MP2) heats of formation, ionization energies, electron
affinities and proton affinities. Values in parentheses are the differences between
experimental and MR-G3(MP2) values.?

Species Species Species
Heats of LiH 30.3 (+ 3.0) PH; 40(-2.7) Fa -24(+2.1)
Formation BeH 83.6(-1.9) H.S -4.8(-0.1) CO, -96.0 (+1.9)
CH 141.1 (+ 1.4) HCI -233(+1.2) Na, 293 (+4.7)
CH, B, 93.7 (+ 0.0) Li 47.4 (+4.2) Si, 140.0 (- 0.1)
CH, 'A, 101.3 (+ 1.5) LiF -79.8(-0.3) P, 35.3 (- 1.0)
CHs 34.2 (+0.8) C:H; 54.1 (+0.1) S, 31.3(-0.6)
CH, -19.2(+1.3) C;H, 15.7(- 3.2) Cl, 0.0 (+0.0)
NH 84.4 (+0.8) CN 106.8 (- 1.9) NaCl -50.0 (+6.4)
'NH; 443 (+0.8) HCN 32.7(-1.2) Sio -23.8(-0.8)
NH, -8.5(-2.5) co -275(+1.1) cs 64.8 (+2.1)
" OH 7.6 (+1.8) HCO 9.6 (+0.4) SO 1.7 (- 0.5)
H.0 -57.8 (+0.0) HCHO -23.0(-3.0 clo 25.3(-1.1)
HF -66.0 (+0.9) CH;OH -478(-0.2) CIF -12.6(-0.6)
SiH, 'A, 63.2 (+2.0) N, 0.0 (+ 0.0) CH;Cl -20.6 (+1.0)
SiH, *B; 86.2 (+ 0.0) NoH, 247 (- 1.9) CH;SH -6.9(+1.4)
SiH; 47.9 (+0.0) NO 20.6 (+ 1.0) HOCI -18.1(+03)
SiH, 8.0(+0.2) (o -0.4 (+0.4) S0, -67.0(-4.0)
PH, 33.1 (+ 0.0) H.0, -33.3(+0.8)
lonization Li 124.2 (+0.1) cl 296.8 (+ 2.3) HCI 293.7 (+ 0.3)
energies Be 219.7 (- 4.8) CH, .293.1 (-2.1) C:H, 264.9 (- 2.0)
B 189.9 (+ 1.5) NH, 2326 (+2.2) C:H. 241.1 (+1.2)
c 258.6 (+1.1) OH 299.8 (+0.2) co 3244 (-1.3)
N 334.4 (+0.9) H0 291.0 (+ 0.0) Nz 25, 359.1 (+ 0.2)
(o} 313.1(+0.7) HF 370.5 (- 0.6) N2 T 385.2 (- 0.1)
F 401.8(-0.1) SiH, 254.6 (- 0.9) 0, 281.2 (- 2.9)
Na 115.1 (+ 3.4) PH 2354 (- 1.3) P, 243.7 (- 0.9)
Mg 179.1 (- 2.8) PH, 226.9 (- 0.5) S, 215.3 (+ 0.5)
Al 138.4 (- 0.4) PH; 229.0 (- 1.4) Cl 265.8 (- 0.6)
Si 188.1 (- 0.2) SH 238.6 (+ 0.5) CIF 292.0 (- 0.1)
P 241.8 (+0.1) H.S 2B, 241.1 (+ 0.3) cs 263.3 (- 2.0)
S 236.3 (+ 2.6) H,S %A, 294.4 (+ 0.3)
Electron c 28.6 (+ 0.5) CHs -29(+4.7) SH 54.0 (+ 0.4)
affinities 0 31.8(+1.9) NH 6.6 (+2.2) (oY 10.9 (- 0.8)
F 78.6 (-0.2) NH, 16.5 (+ 1.3) NO 0.5 (+ 0.0)
Si 33.2(-1.3) OH 413(+0.9) CN 91.5 (- 2.5)
P 16.2 (+ 1.0) SiH 30.0 (- 0.6) PO 27.0(-1.9)
S 47.6 (+ 0.3) SiH, 24.9 (+ 1.0) S, 38.9 (- 0.6)
ci 83.6 (-0.2) SiH; 33.8(-1.3) Cl; 57.9 (- 2.8)
CH 27.9(+0.7) PH 23.0 (+ 0.8)
CH, 14.8 (+0.2) PH, 29.5(-0.2)
Proton NH; 205.7 (- 3.2) SiH, 153.6 (+ 0.4) HCl 132.7 (+0.9)
affinities H,0 160.7 (+ 4.4) PH; 184.5 (+ 2.6)
C;H, 153.6 (- 1.3) H,S 167.1 (+ 1.7)

*Values in kcal mol™. The heats of formation are 298 K values whereas the

remaining quantities refer to 0 K.



178

Table (F.4) MR(QD)-G2/MP2a heats of formation, ionization energies, electron
affinities and proton affinities. Values in parentheses are the differences between
experimental and MR(QD)-G2/MP2 values.’

Species Species Species

Heats of LiH 29.6 (+3.7) PH, 6.0(-4.7) Fa -31(+3.9)

Formation BeH 86.1 (- 4.4) H.S -28(-21) CO, -105.0 (+ 10.9)
CH 142.5 (+ 0.0) HCI -224(+0.3) Na, 28.6 (+ 5.4)
CH. °B, 94.5 (- 0.8) Liz 46.7 (+ 4.9) Siy 138.1 (+ 1.8)
CH; ‘A 102.8 (+ 0.0) LiF -81.2(+1.1) P, 34.4(-0.1)
CH, 35.6 (- 0.6) C:H, 53.4 (+0.8) S 28.6 (+2.1)
CH, -17.6 (- 0.3) C,H, 12.1(+0.4) Cl, 0.6 (- 0.6)
NH 85.5 (- 0.3) CN 104.0 (+ 0.9) NaCl -50.7 (+7.1)
NH; 44.8 (+ 0.3) HCN 31.2(+0.3) Si0 -182(-6.4)
NH, -73(-37) CO -271(+0.7) CS 64.5 (+ 2.4)
OH 7.4 (+2.0) HCO 9.5(+0.5) SO -2.8 (+4.0)
H,Q -58.4 (+0.6) HCHO -24.4 (-1.6) Clo 233(+0.9
HF -68.3(+3.2) CH,OH -458 (-2.2) CIF -14.0 (+ 0.8)
SiH, 'A, 64.5(+0.7) N, -0.3(+0.3) CH;Ci -18.8(-0.8)
SiH, *B; 874 (-1.2) NoH, 25.1(-2.3) CH3SH -6.5(+1.0)
SiH, 49.7 (- 1.8) NO 18.2 (+ 3.4) HOCI -19.0(+1.2)
SiH, 10.1 (- 1.9) 0, -6.1(+6.1) SO, -78.5 (+7.5)
PH; 348 (-1.7) H,0, -36.4 (+3.9) _

lonization Li 123.2(+1.1) Cl 295.8 (+ 3.3) HCI 292.7 (+1.3)

energies Be 219.9(-5.0) CH; 291.1(-0.1) CH; 263.5 (- 0.6)
B 186.6 (+ 4.8) NH; 2306 (+4.2) CoHa 244.4 (-2.1)
c 256.2 (+ 3.5) OH 299.8 (+0.2) co 319.1 (+ 4.0)
N 334.0 (+ 1.3) H.0 290.6 (+ 0.4) Nz 2%, 3554 (+ 3.9)
o) 312.4 (+1.4) HF 372.4 (- 2.5) Nz T 384.1 (+ 1.0)
F 403.0 (- 1.3) SiH, 250.7 (+ 3.0) 0, 283.8 (-5.5)
Na 114.1 (+ 4.4) PH 233.6 (+ 0.5) P, 243.4 (- 0.6)
Mg 179.1 (- 2.8) PH, 2245 (+1.9) S, 215.5 (+0.3)
Al 1342 (+ 3.8) PH; 2264 (+1.2) Cl 263.3 (+1.9)
Si 185.4 (+ 2.5) SH 236.3 (+ 2.8) CIF 290.0 (+ 1.9)
P 241.5 (+ 0.4) H.S 2B, 2381 (+3.3) Cs 260.4 (+0.9)
s 234.1 (+ 4.8) H,S %A, 293.6 (+1.1)

Electron C 28.8 (+0.3) CH; -46(+64) SH 52.3 (+2.1)

affinities 0 345(-0.8) NH 7.2 (+1.6) 0, 11.4 (-1.3)
F 83.7(-5.3) NH, - 16.4 (+ 1.4) NO 42(-3.7)
Si 31.7(+0.2) OH 444 (-2.2) CN 88.5 (+ 0.5)
P 13.8 (+ 3.4) SiH 27.4 (+ 2.0) PO 30.2 (-5.1)
S 45.9 (+ 2.0) SiH, 21.9(+4.0) Sz 35.9(+2.4)
Cl 84.2 (- 0.8) Sit, 30.5 (+ 2.0) Ch 59.4 (-4.3)
CH 25.2 (+ 3.4) PH 20.1 (+3.7)
CH, 13.8 (+ 1.2) PH, 26.3 (+3.0)

Proton NH; 206.5 (- 4.0) SiH, 155.0 (- 1.0) HCI 133.2 (+ 0.4)

affinities HO 159.6 (+ 5.5) PH, 185.6 (+ 1.5)
C,H, 1563.7 (- 1.4) H,S 168.6 (+ 0.2)

*Corresponding to MRQDPT2/6-311+G(3df,2p) + ZPVE + HLC.
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Table (F.5) MR(QD)-G3/MP2* heats of formation, ionization energies, electron
affinities and proton affinities. Values in parentheses are the differences between
experimental and MR(QD)-G3(MP2)/MP2 values.”

Species Species Species

Heats of LiH 29.3 (+4.0) PH; 5.6 (-4.3) F. -27(+27)

formation BeH 86.1(-4.4) H:S -26(-2.3) Co;, -102.4 (+8.3)
CH 1425 (+ 0.0) HCl -214(-07) Na, 28.2 (+ 5.8)
CH. B, 94.4 (-0.7) Li, 46.3 (+5.3) Si; 1382 (+1.7)
CH; 'A; 102.8 (+ 0.0) LiF -80.1 (+0.0) P, 342 (+0.1)
CHs 35.3(-0.3) C:H, 52.5 (+ 1.7) Sz 29.9 (+ 0.8)
CH, -17.9 (+0.0) CzH, 11.6 (+ 0.9) Cl, . 2.0(-2.0)
NH 85.4(-0.2) CN 104.9 (+ 0.0) NaCl -50.1 (+ 6.5)
NH, 44.8 (+ 0.3) HCN 31.5(+0.0) Sio -19.1(-5.5)
NH, -75(-3.5) co -25.4(-1.0) CS 65.3 (+ 1.6)
OH 7.7 (+1.7) HCO 1.1 (-1.1) SO -1.8 (+3.0)
H,0 -58.2 (+0.4) HCHO -233(-27) cio 25.1(- 0.9)
HF -67.4(+2.3) CH;OH -454 (- 2.6) CIF -11.6 (- 1.6)
SiH, *Aq 64.0 (+1.2) N2 0.0 (+0.0) CHCI -19.4(-0.2)
SiH, 8, 87.0(-0.8) NzH, 25.0(-2.2) CH,SH -6.1 (+0.6)
SiH; 49.0 (- 1.1) NO 19.7 (+ 1.9) HOCI -17.5(-0.3)
SiH, 8.0 (-0.8) 0, -4.8(+4.8) S0, -774 (+6.4)
PH, 344 (-1.3) H.0, -36.1 (+ 3.6)

lonization Li 124.2 (+ 0.1) Cl 297.3 (+ 1.8) HCl 294.2 (- 0.2)

energies Be 221.1(-6.2) CH, 292.4 (- 1.4) C:H; 265.2 (- 2.3)
B 187.4 (+ 4.0) NH;, 231.3 (+ 3.5) CH, . 2455(-32)
c 256.9 (+ 2.8) OH 300.4 (- 0.4) co 3205 (+ 2.6)
N 334.3 (+1.0) H.0 291.4 (-0.4) N2 25, 356.6 (+ 2.7)
o) 313.3 (+ 0.5) HF 373.0 (- 3.1) N2 . 386.1 (- 1.0)
F 403.41 (- 1.7) SiH, 253.7 (+ 0.0) 0, 284.5(-6.2)
Na 115.1 (+ 3.4) PH 234.9 (-0.8) P, 244.9 (- 2.1)
Mg 180.3 (- 4.0) PH, 226.1 (+0.3) S, 217.0(- 1.2)
Al 135.5 (+ 2.5) PH, 227.8 (-0.2) Cl 265.2 (+ 0.0)
Si 186.4 (+ 1.5) SH 238.1 (+ 1.0) CIF 291.4 (+ 0.5)
P 241.9 (+ 0.0) H.S 2B, 240.0 (+ 1.4) cs 261.6 (- 0.3)
s 236.6 (+ 2.3) H.S A, 205.1 (- 0.4)

Electron o] 28.4 (+0.7) CH; -43(+6.1) SH 54.2 (+ 0.2)

affinities 0 33.7 (+0.0) NH 6.8 (+2.0) 0, 11.7 (- 1.6)
F 82.4(-4.0) NH, 16.6 (+1.2) NO 45(-4.0)
Si 326(-07) OH 439(-1.7) CN 89.4 (- 0.4)
P 16.5 (+0.7) SiH 29.0 (+ 0.4) PO 31.5(-6.4)
S 48.1{-0.2) SiH, 23.5 (+2.4) S, 38.1(+0.2)
Cl 84.9 (- 1.5) SiH, 32.1(+0.4) Ch 61.3(-6.2)
CH 27.3(+ 1.3) PH 222 (+1.8)
CH; 13.8 (+1.2) PH; 28.3 (+ 1.0)

Proton NH; 207.0 (- 4.5) SiH, 154.8 (- 0.8) HCI 1327 (+0.9)

affinities H.0 159.9 (+ 5.2) PH; 185.2 (+ 1.9)
C:H, 152.7 (- 0.4) H,S 167.9 (+0.9)

*Corresponding to MRQDPT2/G3MP2large + AE(SO) + ZPVE + HLC
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Table (F.6) MR-G2(MP2,SVP) total energies (in Hartrees).

Species Energy Species Energy Species Energy

H -0.500 00 HCHO -114.348 23 SH* -397.91290
Li -7.432 20 CH,0H -115.545 13 H.S* #By) -398.552 34
Be -14.625 88 Nz - 109.407 36 H.S* ¢A) - 398.466 95
B -24.605 98 N.H, -111.692 74 HCr -459.877 47
C -37.789 16 NO -129.753 66 CH,' -76.779 62
N -54.524 18 0 -150.164 11 C.H/ -78.037 90
o -74.988 99 H20; -151.379 98 co* -112.673 22
F -99.640 51 F, - 199.339 09 N, 229 - 108.835 29
Na -161.846 13 CO, -188.379 71 N a - 108.795 33
Mg -199.648 70 Na. - 323.726 40 0, -149.718 30
Al -241.934 90 Si; -577.99378 P, -681.444 18
Si -288.937 81 P -681.83176 S, -795.136 07
P - 340.824 19 S -795.47572 cl’ -919.027 11
S - 397.659 19 Ci; -919.449 39 CIF* - 558.950 66
Cl -459.679 98 NaCl -621.685 52 cs’ -435.303 27
LiH -8.026 28 SiO - 364.226 92 (o3 - 37.839 50
BeH -15.196 86 Cs -435.722 28 (o) -75.042 48
CH -38.417 97 SO -472.841 24 F -99.769 57
CH, (°By) -39.073 59 Clo - 534.766 86 Sir -288.989 19
CH, (‘Ay) -39.064 17 CIF -559.415 30 P - 340.846 89
CH, -39.750 92 CH;Cl - 499.563 47 ) -397.733 03
CH, - 40.418 01 CHsSH -438.160 83 Ccr -459.813 68
NH -55.148 92 HCIO -535.418 06 CH -38.461 58
NH, -55.795 68 SO, -548.03 370 CH; -39.099 16
NH; -56.462 15 Lt -7.23548 CHy -39.748 13
OH -75.651 39 Be" -14.276 33 NH’ -55.161 52
H0 -76.338 36 B* -24.304 50 NHz -55.823 64
HF -100.356 82 c -37.378 28 OH -75.71970
SiH -289.550 43 N -53.99170 SiH -289.594 61
SiH, ('Ay) -290.171 34 o' -74.490 17 SiH;” -290.208 25
SiH, (By) -290.132 65 F -98.999 31 SiHy -290.829 22
SiHs -290.775 63 Na’ - 161.664 29 PH -341.468 95
SiH, -291.421 16 Mg* - 199.364 00 PHy - 342.099 84
PH -341.433 82 Al -241.716 31 SH -398.376 60
PH; - 342.054 09 Ssi’ -288.639 93 07 -150.181 77
PH; - 342.683 34 P - 340.439 53 NO” -129.752 14
SH -398.29174 s -397.28564 CN -92.740 67
H.S - 398.935 51 cr - 459.207 96 PO -416.071 52
HCI - 460.344 70 CH -39.951 07 PO -416.032 54
Li; -14.909 19 NH," - 56.090 81 Sy -795.535 41
LiF -107.290 44 OH* -75.173 22 Cly -919.535 28
C:H; -77.197 56 H,0" -75.874 29 NH,* - 56.789 49
C.H, -78.42169 HF* -99.765 49 H:0* -76.594 66
CN -92.594 55 SiH,* -291.017 10 CoH," -77.442 21
HCN -93.295 32 PH' -341.062 45 SiHs* -291.665 85
Cco - 113.189 65 PH," - 341.695 86 PH," -342.978 57
HCO -113.710 29 PH," . -34231937 HsS* -399.202 65

- 460.556 89




Table (F.7) MR-G2(MP2) total energies (in Hartrees).
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Species Energy Species Energy Species Energy
H - 0.500 00 HCHO - 114.346 95 SH* -397.912 66
Li -7.43220 CH;OH -115.544 73 H:S* (¢By) - 398.552 63
Be -14.624 16 N - 109.403 75 H.S* CA) -398.466 73
B -24.60523 NaH, -111.691 97 HCI - 459.876 26
o] -37.787 70 NO -129.749 83 CaH," -76.779 14
N - 54520 47 (01 - 150.160 02 CH/ - 78.039 21
(o] -74.985 42 H.0. -151.376 57 co” -112.670 94
F -99.636 50 F> -199.333 45 Ne' 25, -108.832 49
Na -161.846 13 CO. -188.374 35 N2 . -108.792 48
Mg - 199.646 80 Na; -323.72570 o)y -149.714 90
Al - 241.934 37 Siz -577.991 71 P, -681.441 49
Si ~288.936 96 P, -681.828 11 S, -795.132 68
P - 340.820 83 S -795.47188 cL’ -919.022 95
S - 397.659 24 Ch -919.444 32 CIF* - 558.946 45
cl -459.681 96 NaCl -621.68275 cs' -435.300 76
LiH -8.02570 Si0o -364.224 54 (o3 -37.840 15
BeH -15.198 08 CS -435.71974 (o) -75.039 16
CH - 38.418 99 SO -472.837 28 F -99.764 79
CH. (*By) . -39.074 81 Clo -534.762 23 Si’ -288.988 68
CH, ('Ay) -39.066 05 CIF -559.410 00 P -340.845 62
CH; -39.752 74 CH,CI -499.561 91 s - 397.730 58
CH, -40.420 11 CHiSH -438.156 67 cr -459.810 11
NH -55.148 41 HCIO -535.413 86 CH -38.462 39
NH, -55.795 65 SO, -548.026 81 CHy -39.100 44
NH;3 - 56.462 45 Lt -7.23548 CHy -39.749 95
OH - 75.649 91 Be' - 14,276 33 NH -55.160 13
~ H0 -76.337 43 B -2430371 - NH, -55.823 00
HF - 100.354 39 c -37.377 96 OH -75.717 00
SiH -289.551 00 N* - 53.990 96 SiH -289.595 30
SiH, (‘Ay) -290.173 24 o' -74.489 50 SiH;” -290.210 05
-SiHz (By) -290.134 51 F - 98.998 62 SiHy -290.832 25
SiH, -290.778 96 Na’ -161.664 29 PH - 341.468 30
SiH, -291.426 29 Mg+ - 1989.364 00 PH; -342.099 78
PH -341.433 85 Al -241.71562 SH - 398.374 61
PH, - 342.055 01 Sit - 288.639 33 (07% -150.176 18
PH; - 342.685 36 P* -340.439 10 NO -129.747 77
SH -398.290 80 s’ -397.285 16 CN -92.737 89
H.S -398.935 22 cr - 459.206 86 PO -416.067 52
HCI - 460.342 99 CH,’ -39.952 62 PO -416.029 07
Liz - 14.908 48 NH;" - 56.091 31 S, -795.530 29
LiF -107.289 37 OH* -75.172 56 Cly -919.528 69
CzH, -77.196 60 H.0" -75.87378 NH," -56.790 14
CzH, -78.429 07 HF* -99.764 34 H:0* -76.594 07
CN -92.591 94 SiH,* -291.020 54 C.H,' -77.441 85
HCN -93.293 03 PH* - 341.062 67 SiHs" -291.670 80
CO -113.187 40 PH," -341.697 10 PH,’ -342.982 18
HCO -113.708 12 PH," - 342.32155 HsS’ - 399.203 64
H.CI' - 460.556 22
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Table (F.8 ) MR-G3(MP2) total energies (in Hartrees).

Species Energy Species Energy Species Energy _
H -0.501 53 HCHO -114.358 18 SH* -397.925 68
Li -7.43372 CH;OH -115.558 24 H.S* 3By) - 398.565 48
Be -14.627 80 N, -109.415 55 H.S* CA) -398.480 35
B -24.609 04 NaH, -111.706 17 HCI - 459.891 24
Cc -37.793 30 NO -129.762 04 CH,' -76.787 35
N . -54,529 00 O: - -150.174 86 CH, -78.051 19
(o] -74.993 59 H;0, -151.392 40 co* -112.679 23
F -99.644 67 F. -199.350 53 N, zzg - 108.843 24
Na - 161.847 65 CO; -188.390 27 Nz - 108.803 31
Mg - 199.650 67 Na; -323.729 31 o, - 148.727 24
Al -241.939 01 Si; - 578.008 20 P, -681.462 00
Si - 288.944 21 P2 -681.850 43 S, -795.157 90
P - 340.833 85 S: - 795.500 69 cl’ -919.053 47
S - 397.670 81 Cl, - -919.477 28 CIF* - 558.967 20
Cl - 459.693 08 NaCi -621.701 05 cs’ -435.318 05
LiH - 8.028 98 Sio - 364.239 94 (o} -37.84294
BeH -15.201 72 (o1 -435.737 42 o -75.044 19
CH -38.424 29 SO -472.859 61 F -99.769 96
CH, (°By) -39.082 28 Clo -534.785 51 Si -288.997 13
CH, (‘'A) -39.070 54 CIF - 559.432 60 P -340.859 15
CH;, -39.759 90 CH,CI - 499.583 95 s - 397.746 55
CH, -40.427 19 CH;SH -438.181 54 Ccr -459.826 46
NH -55.156 71 “HCIO -535.437 27 CH -38.468 45
NH; -55.80352 - SO, - 548.054 86 CHy -39.106 29
NH, - 56.470 41 L -7.23584 CHy -39.755 98
OH -75.658 46 Be' -14.277 86 NH - 55,167 26
H0 .-76.345 68 B’ -24.306 42 NHy -55.830 14
HF - 100.362 56 c -37.381 41 OH’ -75.724 50
SiH - 289.559 19 N* - 53.995 99 SiH - 289.606 53
SiH; (A) -290.180 70 o' -74.494 98 SiH; -290.220 91
SiH, (By) -290.144 02 F -99.004 50 SiHy -290.842 38
SiH; -290.787 68 Na' -161.664 29 PH -341.483 83
SiH, -291.433 83 Mg;+ -199.365 53 PHy -342.114 71
PH -341.44676 Al -241.718 32 SH - 398.392 29
. PH; -342.067 27 Sit -288.644 77 o7y -150.191 45
PH; - 342.696 60 P - 340.448 50 NO -129.761 61
SH : - 398.305 88 s -397.294 86 CN -92.748 68
H.S -398.949 83 cr -459.220 24 PO -416.089 65
HCI -460.359 26 CH/ -39.959 90 PO -416.047 96
Liz -14.912 01 NH," -56.099 53 S; -795.562 43
LiF -107.295 79 OH" -75.180 98 Cly -919.568 76
C:H; -77.208 54 H,0" -75.88195 NH," -56.798 61
C.H, -78.435 17 HF* -99.771 95 H;0" -76.602 44
CN -92.60278 SiHg" -291.028 82 CH,' -77.452 46
HCN -93.304 51 PH" -341.07253 SiHs" -291.678 14
co -113.196 29 PH," - 341.705 94 PH, -342.991 18
HCO -113.719 40 PH," -342.331 82 H,S* -399.215 97
: H.CI" -460.570 69




Table (F.9) MR-G2/MRCI+Q total energies (in Hartrees).*
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Species Energy Species Energy Species Energy
H -0.500 00 HCHO -114.344 02 SH' -397.913 00
Li -7.43220 CH;0H -115.539 41 H.S" ¢By) - 398.553 75
Be -14.624 16 Nz -109.399 95 HS* (Ay) - 398.469 06
B -24.60523 NzH, - 111.686 51 Hct* - 459.879 54
C -37.787 70 NO -129.745 44 CHy' -76.775 99
N - 54,520 47 0, -150.154 12 CH{' -78.03578
o] -74.985 42 H;0, -151.371 11 co’ -112.668 27
F -99.636 50 F2 - 199.328 61 N %5, -108.828 46
Na -161.846 13 CO, - 188.367 39 N M, - 108.789 21
Mg - 199.646 80 Na, -323.724 65 o)y -149.71073
Al -241.934 37 Si; -577.991 45 Py -681.440 92
Si - 288.936 96 P, -681.827 12 S, -795.132 44
P - 340.820 83 S; -795.470 03 cL’ -919.025 78
S -397.659 24 Cl, -919.448 32 CIF* -558.945 72
Cl -459.681 96 NaCl -621.688 06 cs* -435.299 88
LiH -8.024 58 Si0o -364.221 42 c -37.83079
BeH -15.196 81 CS -435.719 00 (o) -75.034 14
CH -38.417 42 SO -472.832 65 F -99.757 33
CH, (*By) -39.072 99 Cio -534.761 32 Si -288.985 54
CH; ('A1) - 39.064 65 CIF - 559.409 97 P - 340.845 64
CH, -39.750 55 CHCI - 499.561 69 S -397.733 10
CH, -40.417 53 CH,;SH -438.157 56 Ccr -459.813 71
NH - 55,146 28 HCIO -535.41369 CH -38.458 13
NH; - 55,793 66 SO, - 548.017 80 CH; -39.097 74
NH; -56.459 90 L -7.23548 CHy -39.746 83
OH -75.648 00 Be' -14.276 33 NH’ -55.15576
H,O -76.335 11 B -24.302 62 NH; -55.818 85
HF -100.351 75 c -37.376 30 OH" -75.710 03
SiH -289.551 47 N* - 53.988 96 SiH -289.594 64
SiH; (‘A) -290.174 07 o) -74.487 11 SiH, -290.210 80
SiH, (By) - -290.135 05 F* -98.997 17 SiHy” -290.833 79
SiH; -290.779 45 Na* - 161.664 29 PH -341.469 33
SiH, -291.426 23 Mg* -199.364 00 PHy -342.101 37
PH -341.433 56 Al -241.714 52 SH - 398.376 95
PH, -342.055 58 si* -288.638 94 (o7 - 150.166 96
PH, - 342,686 50 P* - 340.437 98 NO -129.738 67
SH -398.293 10 s - 397.283 00 CN -9273357
H.S - 398.937 52 cr -459.209 24 PO -416.059 25
HCI - 460.346 60 CH - 39.950 47 PO -416.026 14
Liz -14.907 44 NH,* - 56.089 40 Sy -795.528 91
LiF -107.289 57 OH* -75.170 82 Cl; -919.529 20
C.H, -77.192 53 H.0" -75.872 09 NH,* -56.787 75
C.H, - 78.424 51 HF* -99.762 95 Hs0" -76.591 87
CN -92.588 48 SiH,* -291.019 88 C.Hy' ~-77.438 32
HCN -93.289 91 PH" -341.06276 SiHs" - 291.669 63
co -113.18363 PH," - 341.697 91 PH," -342.982 17
HCO -113.703 95 PH," -342.321 85 H:S" -399.205 03
H.CI - 460.559 24

*Corresponding to MRCI+Q/6-311+(3df,2p) + ZPVE + HLC.



Table (F.10) MR-G3/MRCI+Q total energies (in Hartrees).?
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Species Energy Species Energy Species Energy
H -0.50273 HCHO -114.364 97 SH* -97.931 19
Li -7.434 92 CH;OH - 115.565 27 H.S* 3By) -398.573 02
Be -14.627 03 N -109.417 62 HS" FA) - 398.488 62
B -2461057 NzH, -111.712 91 Her - 459.899 41
Cc -37.795 44 NO - 129.764 50 CH,' -76.792 46
N -54.530 25 0O, -150.176 75 CH,' -78.059 25
(o] -74.994 65 H.0, -151.396 62 co* -112.682 80
F -99.644 99 F2 -199.353 10 N 25, - 108.845 04
Na -161.848 85 CO; -188.393 14 N -108.805 76
Mg - 199.649 74 Na; -323.72940 - (o - 149.730 22
Al -241.940 45 Si; -578.012 55 P, - 681.466 28
Si -288.946 22 P -681.854 13 S, -795.163 50
P - 340.834 51 S: - 795.505 27 CL’ -919.063 11
S -397.674 76 Cl, -919.487 90 CIF* - 558.974 04
Cl -459.698 78 NaCl -621.71072 cs* -435.322 69
LiH -8.029 14 SiOo -364.243 40 c -37.839 57
BeH -15.204 68 CS -435.742 90 (o) -75.040 10
CH -38.428 52 SO -472.862 20 F -99.761 46
CH. (’By) - 39.087 59 ClO -534.791 82 Sir - 288.997 32
CH, ('Ay) -39.076 39 CIF -559.439 79 P -~ 340.861 92
CH;,3 -39.766 11 CH,CI -499.593 17 s -397.750 34
CH, - 40.433 91 CH.SH -438.190 59 cr -459.829 71
NH -55.160 16 HCIO - 535.445 36 CH -38.47113
NH; -55.808 19 SO, -548.055 57 CHy -39.111 42
NH; - -56.475 54 Lit -7.23584 CHy -39.761 80
OH -75.661 88 Be' -14.279 06 NH" -55.168 29
H0 -76.349 92 B* -24.305 51 NHZ -5583271
HF -100.364 97 c -37.381 61 OH -75.722 21
SiH -289.564 69 N’ -53.996 71 SiH -289.611 93
SiH; ('Ay) -290.188 78 o) -74.496 68 SiHz -290.229 77
SiH; (By) -290.152 17 F -99.006 88 SiHy” -290.854 12
SiH; -290.798 07 Na' - 161.664 29 PH - 341.490 56
SiH, -291.446 31 Mg* -199.366 73 PH; -342.123 33
PH -341.45204 Al -241.717 49 SH -398.399 47
PH; -342.075 02 si* -288.645 59 (oY -150.189 16
PH, - 342.706 86 P’ - 340.449 95 NO -129.760 20
SH - 398.313 42 s -397.296 21 CN -92.751 15
HzS -398.958 77 cr - 459.225 33 PO -416.088 80
HCI - 460.368 00 CH, - 39.965 83 PO -416.051 71
Li; -14.91210 NH,* - 56.104 80 Sy - 795.566 88
LiF - 107.301 65 OH* -75.184 62 Cly -919.575 36
C.H; -77.212 89 HO" -75.886 49 NH,* -56.804 27
C.H, -78.44900 HF* -99.776 22 H;0* -76.607 13
CN -92.605 40 SiH," -291.038 15 CH,' -77.457 79
HCN -93.308 46 PH’ - 341.077 30 SiHs" -291.689 27
CcO -113.199 65 PH," -341.713 24 PH," -343.001 99
HCO -113.723 51 PH;" - 342.340 68 H,S" - 399.225 30
H.CI’ - 460.579 85

*Corresponding to MRCI+Q/G3MP2large + AE(SO) + ZPVE + HLC.
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Table (F.11) G2/MP2 total energies (in Hartrees).?

Species Energy Species Energy Species Energy
H -0.500 00 HCHO -114.306 70 ‘SH* -397.87774
Li -7.432 22 CH;OH -115.495 30 H.S* (Bs) -398.513 00
Be -14.604 29 N, -109.373 23 H,S* (2A1) -398.428 12
B -24.57970 NzH, -111.639 94 " HCI -459.840 41
C -37.761 67 NO -129.711 53 CoHy" -76.727 54
N -54.499 37 0, -150.125 81 CH,* -77.982 24
(o] -74.961 67 H,0. -151.333 52 co’ -112.627 90
F -99.615 61 Fa -199.295 56 N, 229 -108.807 18
Na -161.846 17 CO, -188.335 55 Nz 2l"l., -108.745 27
Mg -199.634 32 Na, -323.714 31 o, - 149,695 09
Al -241.914 43 Siz - 577.936 03 P, -681.384 10
Si - 288.912 33 P, -681.778 06 S, -795.077 06
P -340.796 32 S, -795.416 19 CL' -918.964 53
S - 397.626 83 Cl -919.387 59 CIF* - 558.898 07
Cl - 459.646 88 NaCl -621.653 55 cs’ -435.223 45
LiH -8.01328 Sio - 364.193 71 c -37.807 46
BeH -15.183 32 - Cs - 435.669 55 o -75.014 07
CH -38.383 35 SO -472.794 12 F -99.749 88
CH; (’B,) -39.045 16 Clo -534.703 65 Si’ -288.962 18
CH; ('A1) -39.025 50 CIF - 559.366 20 P -340.814 92
CH, -39.717 22 CH,CI -499.502 54 g -397.699 72
CH, -40.380 74 CH,:SH -438.093 78 cr -459.783 21
NH -55.117 96 HCIO - 535.365 60 CH -38.428 46
NH, -55.763 57 SO, -547.983 94 CH; -39.065 51
NH; -56.435 24 Li’ -7.23584 CHy’ -39.718 45
OH -75.622 78 Be" -14.276 39 NH’ -55.128 94
H,O -76.315 34 B* -24.276 02 NH; -55.796 82
HF -100.33804 . c’ -37.347 93 OH" -75.698 24
SiH -289.518 89 N* -53.962 86 SiH’ -289.561 57
SiH, ('A1) -290.134 16 o} -74.467 93 SiHy -290.170 90
SiH: (°By) -290.104 03 F -98.975 49 SiHs" -290.787 92
SiH; -290.741 46 Na* -161.664 29 PH -341.43228
SiH, -291.381 83 Mg* -199.364 08 PHz - 342.060 29
PH -341.399 23 Al -241.700 44 SH -398.341 36
PH, -342.01504 si* -288.616 96 07 -150.138 78
PH, -342.641 13 P -340.41165 NO” -129.706 03
SH -398.254 71 s’ -397.257 15 CN’ -92.704 13
H.S -398.896 23 cr -459.175 44 PO -416.027 62
HCI -460.310 00 CH,' -39.915 97 PO -415.991 79
Liz -14.894 74 NH;* - 56.058 08 Sy - 795.475 61
LiF -107.275 37 OH* -75.144 28 Cly -919.47564
CzH, -77.152 73 H.0" -75.845 19 NH," -56.756 20
CoH, -78.371 05 HF* -99.739 89 H,0* -76.573 63
CN -92.530 56 SiH,* -290.981 59 CH,' -77.393 52
HCN -93.258 99 PH* - 341.027 53 SiHs" - 291.625 07
Cco -113.153 50 “PH;" - 341.656 38 PH, -342.938 28
HCO -113.670 15 PH," -342.283 35 HsS* - 399.160 89
H.CI' - 460.518 79

"Corresponding to MP2/6-311+(3d2p) + ZPVE + HIC.,
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Table (F.12) G3/MP2 total energies (in Hartrees).?

__Species Energy Species Energy Species Energy

H -0.50172 HCHO -114.31515 SH* -397.887 01
Li -7.43392 CH;0H - 115.506 54 H.S* ¢By) -398.523 93
Be -14.608 92 Nz - 109.380 30 H.S" (Ay) -398.439 30
B -24.585 80 NoH, -111.65177 Her - 459.851 97
o] -37.769 14 NO -129.717 57 CH,' -76.735 87
N - 54.507 85 02 -150.133 17 CH,' -77.992 91
o -74.972 54 H0, -151.344 35 co* -112.631 48
F - 99.628 59 F; - 199.305 36 Nz" 25, -108.812 62
Na - 161.847 88 CO; -188.344 30 N2" [, -108.750 89
Mg - 199.639 10 Na; -323.717 00 o, - 149.701 82
Al -241.921 52 Si; -577.947 13 P’ -681.399 43
Si - 288.921 87 P2 - 681.795 66 S -795.096 20
P -340.809 24 S - 795.436 90 cl' -918.987 93
S -397.644 26 Ck -919.413 84 CIF* - 558.911 61
ct - 459.667 20 NaCl -621.668 17 cs* -435.23563
LiH -8.01574 Si0 - 364.205 52 C -37.81528
BeH -15.186 49 CS -435.683 67 (o2 -75.024 82
CH -38.387 84 SO -472.808 38 F -99.761 51
CH. (*By) - 39.050 57 clo - 53471963 Si -288.973 32
CH; ('Ay) -39.031 14 CIF - 559.381 82 P -340.832 87
CH; -39.724 13 CH;CI -499.521 40 S -397.721 71
CH, -40.389 02 CH3SH -438.112 92 cr -459.807 23
NH -55.122 60 HCiO -535.38319 CH -38.432 59
NH, - 55.769 33 SO, -548.003 16 CH; -39.070 69
NH; -56.442 57 L -7.23584 CHy -39.725 14
OH -75.627 84 Be' -14.278 10 NH -55.132 90
H.0 -76.321 68 B’ -24.280 69 NH; -55.802 32
HF -100.342 85 c -37.354 04 OH -75.702 11
"SiH -289.524 80 N* -53.970 36 SiH -289.569 82
SiH, (‘Aq) -290.143 00 o -74.476 17 SiHy -290.18125
SiH, (*By) -290.112 04 F -98.986 76 SiHy” - 290.800 27
SiH, -290.751 52 Na* - 161.664 29 PH -341.444 78
SiH, -291.393 89 Mg* -199.365 79 PH; -342.074 25
PH -341.408 65 Al -241.705 42 SH - 398.356 10
PH; -342.025 95 . Sit -288.624 90 Oy - 150.146 08
PH, -342.653 57 P -340.423 77 NO” -129.712 06
. SH - 398.266 54 s’ - 397.269 61 CN’ -92.71094
Hz:S - 398.909 66 cr -459.193 67 PO -416.041 36
HCi - 460.323 62 CH, -39.922 68 PO -415.995 88
Li, -14.897 25 NH," - 56.064 66 Sy - 795.499 61
LiF -107.279 60 OH* -75.148 73 Cly -919.504 11
C:H. -77.162 43 H.0" -75.85072 NH," - 56.764 36
CoH, -78.383 15 HF* -99.744 25 H,O" - 76.580 51
CN -92.536 46 SiH," -290.991 29 CoHs* -77.402 49
HCN - 93.266 96 PH* -341.035 68 SiHs" -291.636 68
co -113.158 97 PH," - 341.665 90 PH," -342.950 32
HCO - 113.676 63 PH;" -342.29379 Hs:S® -399.173 44
H.CI* - 460.531 69

*Corresponding to MP2/G3MP2large + AE(SO) + ZPVE + HLC.



Table (F.13) MR-G2/MP2 total energies (in Hartrees).?
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Species Energy Species Energy Species Energy
H -0.500 00 HCHO -114.332 13 SH* - 397.901 87
Li -7.432 20 CH;:OH -115.527 53 H.S" (B)) - 398.540 71
Be -14.626 12 N -109.390 61 H.S" CA) - 398.454 25
B -24.601 96 NoH, -111.674 42 HCr - 459.864 56
C -37.781 89 NO -129.739 29 CzH> -76.769 21
N -54.516 32 e - 150.156 58 CzH, -78.025 01
o -74.980 67 H20: - 151.365 09 co* -112.662 66
F - 99.635 00 F2 - 199.331 04 N:" 25, -108.823 94
Na -161.846 13 CO; - 188.363 81 N2 -108.779 12
Mg -199.648 72 Na; -323.726 92 0.’ -149.705 47
Al -241.930 13 Si. -577.977 21 P, -681.423 66
Si -288.929 01 P2 -681.811 19 S, -795.11504
P - 340.813 89 S: -795.457 92 cL' -919.005 30
S -397.647 33 Cl, -919.424 85 CIF* -558.936 32
Cl - 459.667 29 NaCl -621.676 75 cs* -435.289 08
LiH -8.026 74 - SiO - 364.205 81 c -37.83191
BeH -15.194 74 CS -435.702 91 o -75.035 29
CH -38.409 72 SO -472.828 94 F -99.768 10
CH, (By) - 39.067 28 Clo -534.749 43 S - 288.979 55
CH, (‘Ay) -39.054 34 CIF - 559.398 45 P -340.835 21
CH; -39.742 56 CH,CI -499.543 74 s -397.720 22
" CH, - 40.408 06 CH;SH - 438.136 61 cr -459.801 43
NH - 55.140 83 HCIO -535.397 24 CH -38.452 81
NH, -55.786 44 SO, -548.018 34 CHy -39.088 70
NH,3 - 56.451 26 Li* -7.23548 CHy -39.73524
OH - 75.643 80 Be' -14.276 33 NH -55.15177
H.0 -76.329 07 B -24.304 71 NHy -55.81187
HF -100.353 06 c’ -37.373 85 OH’ -75.71373
SiH - 289.541 56 N* - 53.984 11 SiH -289.584 32
SiH; (‘Ay) -290.161 62 o* -74.483 50 SiHy - 290.196 66
SiH; (By) -290.125 56 F* -98.993 20 SiHy -290.816 17
SiH; -290.767 05 Na’ - 161.664 29 PH -341.455 97
SiH, -291.411 58 Mg* -199.364 00 PHy - 342,085 32
PH -341.423 05 AP -241.716 42 SH - 398.362 65
PH, - 342.042 31 Si' -288.63390 o7y - 150.173 43
PH, -342.670 16 P* - 340.429 11 NO -129.744 04
SH - 398.278 75 s’ -397.275 14 CN’ -92.72373
H.S - 398.921 39 cr - 459,196 28 PO -416.060 21
HCI -460.331 29 CH, - 39.943 61 PO -416.014 30
Liz -14.909 71 NH," - 56.083 77 Sy -795.514 71
LiF -107.288 04 OH* -75.166 64 Cly -919.517 65
C:H. -77.186 29 H.0" -75.866 84 NH," -56.782 06
C;H, -78.413 89 HF* -99.759 90 HsO" -76.585 93
CN -92.582 51 SiH," -291.009 89 C.Hs" -77.43103
HCN -93.281 48 PH* - 341.052 47 SiHs* -291.657 92
Cco -113.172 22 PH," -341.685 29 PH," -342.967 98
HCO -113.694 60 PH;" -342.310 22 HsS* -399.189 84
HCI - 460.543 42

*Corresponding to CASPT2/6-311+G(3df,2p) + ZPVE + HLC.
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Species Energy Species Energy Species Energy
H -0.50173 HCHO - 114.349 65 SH* -397.91578
Li -7.433 92 CH;0H - 115.549 47 H.S* (By) - 398.556 94
Be - 14.630 21 N - 109.405 11 H.S" (A1) -398.470 74
B -24.607 41 NoH, - 111.696 69 Her -459.881 42
C -37.788 61 NO -129.753 29 C.H,' -76.781 30
N -54.523 93 (7} -150.172 26 CH( -78.04392
(o] -74.990 03 H:0, -151.386 34 co* -112,673 03
F -99.645 91 F. -199.351 32 Ny* zzg -108.836 24
Na -161.847 86 CO, - 188.384 47 N2’ T -108.791 46
Mg - 199.652 86 Na; -323.73109 o, - 149.720 03
Al -241.936 62 Si; -577.994 03 P’ -681.445 84
Si -288.938 00 P2 -681.836 17 S, -795.142 49
P -340.826 33 S, - 795.487 82 CL" -919.038 54
S -397.663 71 Cl; -919.461 57 CIF* -558.959 73
Cl -459.687 13 NaCl -621.697 32 cs* -435.308 21
LiH -8.03070 Si0 - 364.225 13 (o} -37.838 14
BeH -15.200 17 Cs -435.724 37 o -75.04374
CH -38.417 86 SO -472.852 24 F -99.777 21
CH, (3B1) -39.077 11 Clo -534.774 97 Si -288.990 27
CH; ('Ay) - 39.064 49 CIF - 550.424 58 P - 340.852 23
CH; -39.754 63 CH,CI -499.573 05 £y -397.740 47
CH, -40.422 29 CH,;SH -438.166 16 Ccr - 459.822 93
- NH -55.149 76 HCIO - 535.425 28 CcH - 38.460 82
NH; - 55,797 37 SO, - 548.050 85 CHy -39.098 93
NH; - 56.464 57 Li* -7.235 84 CHy -39.748 13
OH -75.653 95 Be' -14.278 06 NH -55.160 61
H,0 -76.341 44 B* -24.308 81 NH, -55.823 42
HF -100.363 85 c -37.379 36 OoH -75.723 58
SiH -289.552 14 N* -53.990 99 SiH - 289.597 38
SiH; (1A1) -290.174 77 o' -74.491 09 SiHy -290.212 41
SiHz (B;) -290.138 07 F* -99.003 16 SiHy -290.834 38
SiH; -290.782 19 Na* - 161.664 29 PH -341.473 94
SiH, -291.429 30 Mg* -199.365 73 PHy -342.105 23
PH -341.437 13 Al - 241,720 61 SH’ -398.383 40
PH, - 342.058 59 Si* -288.641 12 (oY -150.189 99
PH, -342.688 47 P* - 340.440 67 NO” -129.758 43
SH - 398.295 97 s' -397.287 14 CN -92.738 06
H,S -398.940 77 cr -459.213 32 PO’ -416.083 27
HCI - 460.350 90 CH, - 39.955 54 PO -416.035 34
Liz -14.913 80 NH:" - 56.095 58 Sy -795.548 61
LiF -107.298 44 OH* -75.175 53 Cly -919.559 27
C;H. -77.203 58 H,0" -75.877 59 NH," -56.796 23
C.H, -78.434 95 HF* -99.769 45 H,0" -76.598 76
CN -92.595 10 SiH," -291.024 70 CHy' -77.447 59
HCN -93.296 99 PH* - 341.064 38 SiHs" -291.67526
CcO -113.185 17 PH," - 341.699 16 PH," -342.985 64
HCO -113.709 32 PH;" -342.32576 H,S" - 399.208 21
H.CI' - 460.562 27

*Corresponding to CASPT2/G3MP2large + AE(SO) + ZPVE + HLC.
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Table (F.15) MR(QD)-G2(MP2,SVP) total energies (in Hartrees).

Species Energy Species Energy Species Energy
H -0.500 00 HCHO -114.346 31 SH* -397.914 07
Li -7.43220 CH;0OH -115.547 49 H.S" By - 398.553 81
Be -14.626 36 N. -109.409 42 H,S" CA) - 398.468 44
B -24.606 34 N.H, -111.694 94 HCr -459.879 06
C -37.789 63 NO - 129.755 99 C.H,' -76.777 60
N - 54,524 52 O, - 150.166 71 CH' -78.039 14
o] -74.990 12 H:0. -151.383 38 co* -112.675 16
F -99.642 13 F> -199.342 62 N:' %5, -108.837 19
Na -161.846 13 CO, -188.384 20 NS -108.796 99
Mg -199.649 18 Na, -323.726 88 0, -149.720 69
Al -241.93519 Si; -577.992 31 P’ -681.446 16 .
Si -288.938 40 P, -681.833 87 S, -795.138 46
P -340.824 79 S - 795,478 27 cl’ -919.030 05
S - 397.660 57 Cl, -919.452 30 CIF* - 558.953 50
Cl -459.68177 NaCl -621.692 69 cs’ -435.304 86
LiH -8.026 73 Sio - 364.228 65 C -37.83588
BeH -15.196 54 CS -435.724 28 o -75.043 96
CH -38.418 56 SO -472.843 85 F -99.771 49
CH, (By) -39.074 33 Clo -534.769 49 SP -288.989 74
CH, (‘A) -39.064 86 CIF -559.418 22 P -340.848 20
Ha -39.75179 CH;CI -499.562 91 Y -397.734 76
CH, -40.418 71 CH,;SH -438.163 60 cr -459.815 60
NH -55.150 04 HCIO -535.421 10 CH -38.458 80
NH, - 55.796 88 SO, -548.038 49 CHy -39.099 58
NH; - 56.463 15 Lif -7.23584 CHy -39.748 45
OH -75.653 12 Be" -14.276 34 NH" -55.162 91
H,0 -76.340 08 B -24.304 98 NHZz -55.824 65
HF -100.358 74 c’ -37.378 72 OH’ -75.721 46
SiH -289.550 78 N* : -53.992 24 SiH -289.595 16
SiH; ('Aq) -290.171 97 (o} -74.490 70 SiH; - 290.208 18
SiH; (*By) -290.132 79 F - 99.000 56 SiHy -290.828 85
SiH, -290.775 84 Na' - 161.664 29 PH - 341.469 98
SiH, -291.421 37 Mg . -199.364 00 PH; -342.100 59
PH -341.43508 Al -241.716 79 SH -398.377 95
PH, -342.054 94 Sit - 288.640 37 Oy -150.185 41
PH, -342.684 01 P - 340.440 17 NO” - 129.755 50
SH - 398.293 20 s* -397.286 14 CN’ -92.742 37
H.S - 398.936 83 cr -459.209 39 - PO -416.074 35
HCI - 460.346 55 CH, -39.951 80 PO -416.034 30
Liz -14.909 68 NH,* -56.091 85 Sy -795.538 35
LiF . -107.290 90 OH* -75.174 49 Cl - 919.540 64
C.H; -77.198 64 H.0" -75.875 80 NH,* -56.790 10
CoH, -78.423 32 HF* -99.767 43 H,0" -76.595 83
CN -92.596 17 SiH,* -291.018 61 CHs* -77.445 05
HCN -93.295 97 PH' - 341.063 07 SiHs" - 291.666 50
Cco -113.19167 PH," -341.696 75 PH, -342.978 66
HCO -113.71270 PH," -342.31967 HsS* - 399.204 06
H.CI" - 460.558 79




Table (F.16) MR(QD)-G2(MP2) total energies (in Hartrees).
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Species Energy Species Energy Species Energy
H - 0.500 00 HCHO -114.343 85 SH* -397.91328
Li- -7.43220 CH;0H - 115.546 27 H.S* (3By) -398.553 11
Be - 14.625 53 N -109.404 68 H.S* GA) - 398.465 95
B - 24.606 96 NoH, -111.692 92 HCP -459.877 23
(o] -37.789 99 NO - 129.750 88 CoH," -76.777 30
N -54.523 42 O, -150.161 38 CH," -78.038 59
o] -74.987 89 H20. -151.377 79 co* -112,671 93
F -99.639 40 F, -199.335 36 No' 25, - 108.833 50
Na -161.846 13 CO; - 188.376 57 N -108.792 96
Mg -199.648 23 Na, -323.72599 o7y - 149.716 01
Al -241.934 34 Si; -577.988 67 P’ -681.442 52
Si -288.937 61 P, -681.829 21 S’ -795.133 97
P - 340.823 81 S, -795.47343 CL' -919.024 72
S -397.658 82 Cl, -919.445 83 CIF* - 558.948 01
Cl -459.679 07 NaCl -621.688 82 cs' -435.301 58
LiH -8.026 02 Sio - 364.224 89 (o3 -37.836 25
BeH - -15.198 42 Ccs -43572077 (0} -75.040 23
CH -38.41920 SO -472.838 84 F - -99.766 32
CH: (°By) -39.075 15 CIo - 534,763 63 SP - 288.989 31
CH; ('A1) -39.066 39 CIF -559.411 28 P ~340.848 47
CH; -39.753 24 CH,C! - 489.560 26 g -397.731 71
CH, -40.420 67 CH;SH -438.163 54 cr -459.811 23
NH -55.148 81 HCIO -535.415 11 CH ~ -3845897
NH; - 55,796 07 SO, -548.029 23 CHy -39.100 54
NH; - 56.462 94 Lt -7.23548 CHy -39.749 95
OH - 75.650 53 Be' -14.276 34 NH" - 55.160 64
HO -76.337 96 B -24.303 99 NHZ; -55.823 19
HF -100.355 11 c -37.378 21 OH" -75.717 59
SiH -289.550 84 N* -53.991 19 SiH - 289.595 41
SiH, ('Ay) -290.173 23 o' -74.489 64 SiH; - 290.209 36
SiH; (3B1) -290.134 14 F -98.999 35 SiHy ~-290.831 28
SiH; -290.778 67 Na® -161.664 29 PH -341.468 46
SiH, -291.426 26 Mg* - 199.364 06 PH; -342.099 35
PH -341.434 55 Al -241.715 89 SH -398.374 80
PH, - 342.055 00 Si* -288.639 54 (073 -150.178 30
PH, - 342.685 09 P* -340.439 42 NO” -129.749 83
SH -398.291 44 s -397.285 96 CN -92.738 78
H.S -398.935 27 cr -459.208 13 PO - 416.069 09
"HCI - 460.343 59 CHS -39.953 19 PO -416.029 56
Li, -14.908 77 NH," - 56.091 89 Sy -795.531 99
LiF - 107.290 54 OH* -75.173 03 Cly -919.539 94
CzH; -77.196 90 HO" -75.874 30 NH, -56.790 77
CzH, -78.430 10 HF* -99.765 06 H;0* -76.594 67
CN -92.592 87 SiH," -291.022 08 C.H,' -77.44184
HCN -93.292 75 PH" -341.06275 SiHs" -291.671 44
CcoO -113.188 34 PH," - 341.697 24 PH," -342.981 99
HCO -113.709 32 PH;* -342.321 26 HsS* - 399.203 81
H.CI* -460.556 78




Table (F.17) MR(QD)-G3(MP2) total energies (in Hartrees).

191

Species Energy Species Energy Species Energy
H -0.501 64 HCHO - 114.356 37 SH* -397.927 29
Li -7.43383 CH;0H -115.561 02 H.S" ¢By) - 398.567 00
Be -14.628 12 N -109.417 68 H,S* (A1) - 398.482 04
B - 24.609 40 NoH, -111.708 42 HCr -459.893 08
C -37.793 86 NO - 129.764 68 CoH,' - 76.788 65
N - 54.529 52 0O, - 150.177 97 CH,' . -78.05273
(0] -74.994 63 H.0; -151.395 90 co’ - 112.681 42
F - 99.645 95 F. -199.354 12 N" 25, - 108.845 40
Na -161.847 76 CO; -188.394 86 N2 L - 108.803 81
Mg - 199.650 99 Na; - 323.729 80 0. - 149.729 92
Al -241.939 26 Si; -578.007 54 - P, -681.464 29
Si -288.944 87 P, -681.852 66 S, - 795.160 59
P -340.834 63 S -795.503 72 o'y -919.056 69
S -397.672 15 "Ch -919.480 25 CIF* - 558.970 31
Cl - 459.694 58 NaCl -621.708 05 cs' -435.319 91
LiH -8.029 44 Sio -364.24178 (o3 - 37.839 51
BeH -15.201 62 Cs - 435,739 50 (e} -75.045 34
CH -38.42515 SO -472.862 71 F -99.771 28
CH, (By) -39.083 49 ClO -534.788 42 Si -288.997 85
CH, ('A,) -39.071 29 CIF - 559.435 58 P -340.860-44
CH; -39.761 05 CH,CH - 499.586 54 S - 397.748 00
CH, -40.428 01 CH,SH -438.184 20 Ccr -459.827 78
NH -55.158 31 HCIO -535.440 41 CH - 38.469 55
NH, -55.805 00 S0, -548.059 77 CH, -39.107 04
NH; -56.471 42 Li* -7.23584 CHy -39.756 39
OH -75.660 43 Be' -14.277 97 NH -55.168 90
H0 -76.347 47 B* -24.306 75 NH, -55.831 22
HF -100.364 51 o -37.381 80 OH" -75.726 31
SiH - 289.559 75 N* - 53.996 60 SiH - 289.607 50
SiH, ('A1) -290.181 33 (o} -74.495 68 SiHy -290.221 03
SiH, (By) -290.144 58 F - 99.005 65 SiHy -290.841 94
SiH, -290.788 10 Na' : - 161.664 29 PH -341.485 10
SiH, -291.434 06 Mg* - 199.365 63 PHy -342.115 42
PH -341.448 48 Al -241,718 65 SH’ - 398.393 64
PH, -342.068 38 si* -288.645 17 (o) -150.195 39
PH; - 342.697 26 P* -340.449 24 NO’ -129.765 47
SH -398.307 59 s* - 397.295 56 CN -92.750 46
H=S -398.951 18 cr - 459.221 62 PO -416.092 97
HCI -460.361 13 CH,' -39.960 90 PO -416.050 01
Li; -14.912 50 NH,' -56.100 82 S, - 795.565 66
LiF -107.296 31 OH* -75.182 70 Cly -919.572 48
C.H, -77.21074 H,0' -75.883 69 NH," -56.799 23
C.H, -78.436 93 HF* -99.774 10 Hs0* -76.603 63
CN -92.604 66 SiH," -291.028 37 CoHy' -77.455 51
HCN -93.305 19 PH" -341.073 40 SiHs" -291.678 82
(o6 -113.198 38 PH," - 341.706 86 PH, -342.991 32
HCO -113.722 06 PH," -342.33236 H,S* -399.217 40
H.CI' -460.572 61
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Species Energy Species Energy Species Energy
H -0.500 00 HCHO -114.332 35 SH* -397.903 92
Li -7.432 20 CH;OH -115.528 14 H.S* (¢By) - 398.542 62
Be -14.626 75 N2 -109.393 93 H.S* (A) -398.454 31
B -24.602 74 NzH, - 111.677 07 HCr - 459.866 88
C -37.782 99 NO -129.744 19 C.H;' -76.766 89
N -54517 38 0, - 150.162 59 CH," -78.024 90
(0] -74.982 44 H0, -151.373 12 co* -112.666 27
F -99.637 21 F» -199.338 17 N;* zzg -108.827 50
Na -161.846 13 CO, -188.374 03 Nz -108.781 80
Mg -199.649 35 Na, -323.727 55 oy - - 149,710 37
Al - -241.930 84 Si; - 577.981 41 P, - 681.427 57
Si - 288.930 28 P, -681.815 44 S, -795.119 44
P - 340.815 28 Sz -795.462 81 cL* -919.010 26
S -397.649 53 Cl -919.429 84 CIF* -558.942 09
Ci - 459.669 83 NaCl -621.682 71 cs’ -435.291 64
LiH -8.027 31 SiO - 364.206 06 Cc - 37.828 91
BeH -15.194 70 CS -435.706 58 (o} -75.037 43
CH -38.410 37 SO - -472.83503 F -99.770 64
CH. (*By) - 39.068 04 cio - -534.754 63 Si -288.980 72
CH, ('A) -39.054 77 CiF -559.404 24 P -340.837 26
CH, -39.743 05 CH,CI - 499.543 08 s -397.722 68
CH, -40.407 93 CH;SH -438.143 50 cr -459.803 97
NH -55.142 83 HCIO -535.403 18 CH - 38.450 60
NH; -55.788 70 SO, -548.031 22 CHy - 39.089 96
NH; -56.452 48 Lt -7.235 84 CHy -39.73578
OH -75.647 05 Be' -14.276 34 NH -55.154 27
H0 -76.332 95 B* -24.305 34 NH, -55.814 92
HF -100.357 77 c’ -37.374 67 OH -75.717 76
SiH -289.541 71 N* -53.985 16 SiH -289.585 41
SiHz (‘Ay) -290.161 35 o' -74.484 62 SiHy -290.196 25
SiH, (°By) -290.124 91 F* -98.994 96 SiHy -290.814 35
SiH, -290.765 70 Na* -161.664 29 PH - 341.457 07
SiH, -291.409 63 Mg* - 199.364 00 PH, - 342.085 06
PH -341.425 12 Al -241.717 05 SH - 398.363 86
PH, - 342.043 17 Si* -288.634 79 07 -150.180 82
PH, - 342.669 80 p* -340.430 43 NO” -129.750 92
SH - 398.280 52 s* -397.276 45 CN’ ~-92.727 20
- H:S -398.922 13 cr -459.198 52 PO’ -416.067 24
HC -460.333 34 CH,' -39.943 95 PO -416.019 06
Li; -14.910 35 NH;" -56.084 98 Sy -795.520 01
LiF -107.288 29 OH* -75.169 23 Cl -919.524 54
C:H, -77.186 81 H,O" -75.869 84 NH," - 56.781 56
C.Hq -78.414 42 HF* -99.764 26 H;0* -76.587 34
CN -92.586 11 SiH," -291.010 06 C.H;" -77.43173
HCN -93.282 96 PH" -341.052 92 SiHs" -291.656 67
CcO -113.174 79 PH," -341.685 35 PH," - 342.965 60
HCO -113.697 62 PH," -342.309 03 H.S* -399.190 77
H.Cl* -460.545 60

*Corresponding to MRQDPT2/6-311+G(3df,2p) + ZPVE + HLC.
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Species Energy Species Energy Species Energy
H -0.501 57 HCHO - 114.347 52 SH* -397.917 07
Li -7.43375 CH3;OH - 115.547 63 H.S* 3By) - 398.557 49
Be -14.630 29 Nz - 109.406 46 H.S* (*A)) - 398.469 58
B -24.607 50 N2H, - 111.696 52 HCr -459.882 57
C -37.788 85 NO - 129.756 26 CH,' -76.780 46
N -54.523 94 0. -150.176 34 CoH," -78.041 86
(0] -74.990 35 H:0, ' -151.391 61 co* -112.67505
F -99.646 28 2 - 199.355 64 N' 2%, ~-108.838 23
Na - 161.847 69 CO; - 188.391 52 N2’ -108.791 15
Mg - 199.652 93 Na, -323.731 32 o)y -149.722 99
Al -241.936 61 Siz - 577.997 43 P, -681.448 23
Si -288.938 38 P, - 681.838 50 S -795.144 95
P - 340.826 67 S; -795.49076 ckL* -919.041 14
S - 397.664 52 Ch -919.463 76 CIF* - 558.963 13
Cl - 459.687 89 NaCl -621.701 48 cs’ -435.309 22
LiH -8.03087 Sio -364.223 45 (o} -37.834 09
BeH -15.199 75 cs -435.726 07 (o} -75.044 06
CH -38.417 79 SO -472.856 39 F -99.777 53
CH. (By) -39.077 14 Clo -534.777 79 Si -288.990 39
CH: ('A) -39.063 76 CIF - 559.427 57 P - 340.852 90
CH, -39.753 98 CHiCi -499.572 68 s -397.74117
CH, -40.420 64 CHsSH -438.170 07 cr -459.823 24
NH -55.151 03 HCIO -535.428 46 CH -38.461 28
NH, - 55.798 49 SO, - 548.060 19 CH; - 39.099 09
NH; -56.464 16 L -7.23584 CHy -39.747 13
OH -75.656 03 Be’ -14.277 90 NH -55.161 93
H0 -76.343 74 B’ -24.308 89 NH; -55.824 90
HF - 100.366 95 c’ -37.379 46 OH -75.726 02
SiH - 289.551 50 N* -53.991 14 SiH - 289.597 69
SiH; ('Ay) -290.173 27 o) -74.491 14 SiHy’ -290.21076
SiH; (By) -290.136 63 F -99.003 46 SiHy - 290.830 86
SiH, -290.779 64 Na® - 161.664 29 PH -341.473 86
SiH, -291.42574 Mg' - 199.365 56 PH, -342.103 30
PH -341.438 45 Al -241.720 69 SH -398.382 97
PH; -342.058 28 St -288.641 28 Oy -150.195 03
PH; - 342,686 47 P* -340.441 12 NO -129.763 39
SH - 398.296 58 s -397.287 42 CN -92.739 55
H.S - 398.939 89 cr -459.214 14 PO -416.088 35
HCI -460.351 33 CH, -39.954 72 PO -416.038 15
Li, -14.914 03 “NHy" - 56.095 63 Sy -795.55155
LiF -107.297 10 OH* -75.177 37 Cly -919.561 47
C.H, -77.203 16 H.Q0" -75.879 41 NH,* -56.794 10
C.H, -78.433 15 HF* -998.772 60 H;0* - 76.598 54
CN -92.597 13 SiH,* -291.021 49 C.Hs" -77.446 45
HCN -93.296 44 PH’ - 341.064 07 SiHs" -291.67239
CO -113.18577 PH," - 341.698 02 PH,* - 342.981 67
HCO -113.710 36 PH,' -342.323 39 H:S* -399.207 52
H.CI - 460.562 83

*Corresponding to MRQDPT2/G3MP2large + AE(SO) + ZPVE + HLC.
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