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1. Introduction
The Common Object Request Broker Architecture (CORBA)-based Simulator was a 
Laboratory Directed Research and Development (LDRD) project that applied simulation 
techniques to explore critical questions about advanced distributed control system 
architectures.

A three-prong approach comprised of a study of object-oriented distribution tools, 
computer network modeling, and simulation of key control system scenarios was used in 
the LDRD project. This input report describes the first of the three approaches — the 
study of object-oriented distribution tools together with measurements, and predictions 
of use within the National Ignition Facility (NIF) and some aspects of CORBA which 
remain to be resolved.

For the last several years LLNL has been developing the Integrated Computer Control 
System (ICCS), which is an abstract software framework for constructing distributed 
systems. The framework is capable of implementing large event-driven control systems 
for mission-critical facilities such as the NIF. Tools developed in this project were 
applied to the NIF example architecture in order to gain experience with a complex 
system and derive immediate benefits from this LDRD.

The ICCS integrates data acquisition and control hardware with a supervisory system, 
and reduces the amount of new coding and testing necessary by providing prebuilt 
components that can be reused and extended to accommodate specific additional 
requirements. The framework integrates control point hardware to a supervisory system 
by providing the services needed for distributed control such as database persistence, 
system startup and configuration, graphical user interface, status monitoring, event 
logging, scripting language, alert management, and access control.

At the heart of advanced distributed control system architectures is some form of 
interoperability services. Today, the most common services for object distribution are 
the COM/OLE component infrastructure and object bus by Microsoft, and CORBA 
which is a relatively new world-wide standard specified by the Object Management 
Group (OMG). Most people believe that CORBA is much better than COM/OLE, at 
least technically.

CORBA defines object interfaces with a standard language (IDL) then establishes 
transparent interoperability among objects developed with many kinds of languages and 
residing on a network of many kinds of distributed computers. The key word in this 
definition is ‘transparent’. Neither the Client nor the Server knows that they are 
separated by a network in a distributed system. This greatly simplifies the development 
of the application portion of the Client and Server given that the code that provides the 
extensive supporting services is well organized and tested, is not in the way of the 
application developer, and is yet still available for understanding and diagnostic purposes.
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The even more recent popularity of the Java language, whereby the same language will 
operate unchanged on different kinds of computers, may in time reduce the overall 
learning curve for major projects. The performance cost of using an interpretive language 
such as Java will be offset over time by more powerful machines. At this date however, 
close integration of Java with CORBA is just developing and selection of Java for use in 
mission critical control system applications such as the NIF would be problematic.

Many products are available that build ‘common’ services for different languages 
including Java. Selection of the particular form of interoperability convention for a 
project is still quite controversial and sets the tone of future work, capabilities, and 
support for each particular project. Considerable effort is being expended by many 
companies in the marketplace to advance these opposing conventions.

Every kind of interoperability convention that adds support to the interaction between 
distributed objects suffers from additional complexity and slower speed of performance 
than can be obtained from traditional point-to-point communications. In the case of 
CORBA, a performance difference of roughly three-fold was established and is well 
recognized in an early paper on the subject by A. Gokhale and D. Schmidt.

However, the power / cost ratio of computers and networks continues to increase and is 
now well beyond the point where it is of primary concern for many systems. 
Comparisons however, with point-to-point communications (typically sockets via 
TCP/IP), continue to provide a useful performance metric for calibration of design and 
modeling efforts.

The ICCS architecture is based upon CORBA and is being implemented principally in the 
Ada95 computer language.

Designers of large, powerful, complex control system must actively deal with 
performance questions. For the ICCS, the completeness of suitable functionality, the 
speed of performance and utilization of machine and network resources, and the 
developing nature of the commercial CORBA products themselves, presented a certain 
risk. This LDRD thus evaluated CORBA in general, and a particular implementation, to 
determine its features, performance, and scaling properties, and to optimize its use within 
the ICCS. Both UNIX and real-time operating systems were studied. Awareness of 
CORBA products and services, and the status of world-wide developments, continues to 
guide software optimization as NIF software is being implemented and tested.

2. CORBA in the Literature
In this section the history of CORBA, competing paradigms, requirements of a 
Component, the Object Management Group, product organization and general services, 
the Interface Definition Language, the Client and Server side interfaces, the Object 
Adapter, the Interface Repository, initialization and connections, and some performance 
data are summarized from the views of several authors listed in the references.
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Some of the references conflicted with each other, and we now see that some of the 
comments made by other authors were misunderstandings, in error, or were superceded 
by product developments that took other paths. Features of the product that we are 
currently using (and many others) have expanded over time but still do not complete all of 
the goals and expectations of CORBA, the OMG and world-wide user community.

With all of its capability and promised advantage, CORBA is a complex package of 
technologies and products which require quite a concentrated effort to master. 
Fortunately, we can successfully use a well-developed, well-tested, and robust subset of 
CORBA and its services for any particular system.

The current Ethernet era of client/server — which began about 10 years ago — is ending. 
Its being replaced by webs influenced by the exponential increase of low-cost bandwidth 
and a new generation of network-enabled multithreaded desktop operating systems with 
plug-and-play architecture. Millions of machines on the global ‘information highway’ can 
be both clients and servers.

The best way to think of CORBA is as the universal “software bus” where the 
connection between distributed objects is transparent and appears just as if the objects 
were locally connected.

CORBA provides a standard interface by which distributed objects can “plug and play” 
to interoperate with one another. Even when made by different vendors, at different 
times, the object interfaces are standard enough to coexist and interoperate. The interface 
types and methods between the Server Objects and the Client are defined using an 
industry standard Interface Definition Language (IDL). An IDL compiler provides all of 
the necessary interface code and templates into which use-specific statements are added.

2.1 Important Elements for Near Term Use

The important elements for our near term use are illustrated in the following figure.
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Figure 1 Important elements for our near term use

In summary of our literature search and prototype work, we decided that CORBA is the 
most likely candidate for the improved infrastructure required to implement large-scale, 
mission-critical, object-oriented, portable applications that will span palm-top to 
supercomputers over the next 5 to 10 years.

2.2 The History of CORBA

The design of CORBA was derived from the inputs of many people representing the 
various technologies, developments, and competing paradigms of the past. The 
‘Common’ in CORBA stands for the combination of two original submittals to the OMG 
on its Request for Proposal — a static approach by Sun and HP and a dynamic approach 
by Digital and HyperDesk.

The following figure illustrates some of the historical developments that lead to CORBA
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Figure 2 Historical developments that lead to CORBA

2.3 Competing Paradigms

An extensive literature review of competing paradigms for distributed interactions was 
conducted at a time when we had little experience with CORBA. There are four 
competing paradigms for developing new client/server applications:

• SQL (System Query Language) databases — by encapsulating SQL commands 
in named and compiled procedures that reside on the same server as the 
database (referred to as TP lite or stored procedures). SQL database servers 
are the dominate model for creating client/server applications today. SQL is 
poor at managing processes — hence the event of SQL front-end tools like 
Power Builder. Also, different vendors SQL based products do not 
interoperate well.

• TP (Transaction Processing) Monitors
Transaction Processing Monitors have been used for many years on 
mainframes to manage processes and orchestrate programs by breaking 
complex applications into pieces called transactions and to make large 
applications act in unison to service thousands of clients. They are injected 
between the remote clients and the server resources in a middle tier, provide 
routing, load balancing, tunneling (dealing with a subset of 1000’s of clients at 
any particular time) and restart. They can manage transactional resources 
across multiple servers and can cooperate with other TP Monitors in federated
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arrangements. The architecture is similar in many ways to that needed for the 
distributed object era.
TP Monitor vendors were slow to adapt to the Ethernet era and shrink-wrap 
market realities, and their products were overkill for the singl e-server/single­
vendor, departmental sized applications that dominated the Ethernet era. TP 
Monitor vendors have a solid technical background to dominate in the 
distributed object era, and have been heavily involved in creating the CORBA 
standards.

• Groupware
Groupware is a collection of technologies that allows representation of complex 
processes that center around collaborative human activities. It includes:
• multimedia document management
• workflow (automatic routing of events of work)
• e-mail
• conferencing
• scheduling
Groupware collects highly unstructured data — text, images, faxes, mail, and 
bulletin boards — and organizes it into a ‘document’ which can then be viewed, 
stored, replicated and routed anywhere on the network. The premier 
groupware product in industry is Lotus Notes.

• OpenDoc
In recent years OpenDoc appears to be almost totally replaced by web browsers 
with Java capability. OpenDoc has been called “a CORBA object with desktop 
smarts”. OpenDoc is object-oriented and ‘network-distributed’ to its core. It was 
designed to operate over wide area networks on completely different types of 
computers. It also has interoperability with Microsoft’s OLE as a primary design 
goal. OLE objects can be embedded into OpenDoc documents.
OpenDoc is important because it will be a primary way for CORBA to get to the 
desktop of non-Microsoft platforms (the other path is Netscape’s support for 
the Internet InterOrb Protocol in future browers).
OpenDoc documents can contain any number or variety of text, spreadsheets, 
video and audio clips, graphics, CAD/CAM drawings — even other compound 
documents. The fact that OpenDoc is designed to be independent of specific 
operating system is a critical difference with Microsoft’s OLE/DCOM.
The OpenDoc standard was developed by the Component Integration Laboratory 
— a non-profit industry association started in 1993 by Apple, IBM, SunSoft, 
Oracle, Novell, WordPerfect, Xerox, and Taligent. An independent certification 
program now exists to assure developers of compatibility with the standard. 
Certified parts are called ‘Live Objects’.
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• Distributed Objects or Components
Components are objects designed and implemented by any of many 
methodologies, combined with other objects using distribution technology to 
become standalone distributed objects that provide the unit of work and 
distribution in a plug-and-play manner across networks, applications, languages, 
tools, and operating systems.

2.4 Requirements of a Component

Components are Objects (in the object-oriented design sense) with provisions and 
enhancements for distribution over many kinds of computers that can be operated with 
various languages, operating systems, windowing systems, networks, tools, and hardware 
platforms.

In principal, the important requirements of a Component are listed in the following table. 
Note that these are goals and that no present implementation of CORBA provides the 
total set.

• Self-contained — it is a self-contained, shrink-wrappable, marketable entity.
• Clean Interface — it has a well specified interface providing all necessary 

information for client use.
• Limited tasks — it performs a limited set of tasks.
• Unanticipated combinations — it can be combined in unanticipated ways with 

other Components to form a complete application.
• Extendible - it can be extended by inheritance from other Components and by 

polymorphism.
• Security - it protects itself and its resources, authenticates itself to its clients 

and vice versa. Keeps audit trails of its use.
• Licensing - it enforces licensing policies including per-usage metering.
• Versioning - it provides some form of version control and insures that its 

clients are using the expected version.
• Life cycle management - it must manage its creation, destruction, and archival; 

be able to clone itself, externalize its contents, and move from one location to 
another.

• Support for Open tool palettes — a component is imported within a standard 
tool palette to be assembled with other components using drag-and-drop and 
other visual assembly techniques.

• Event Notification - it must be able to notify interested Components when 
something of interest occurs.

• Configuration and Property Management - it provides an interface to 
configure its properties and scripts.
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• Scripting — a component permits itself to be controlled via scripting languages 
by being self-describing and supporting late binding.

• Metadata and Introspection — provides information about itself upon request 
including a description of its interface, attributes, and methods it supports.

• Transaction Control and Locking — it transactionally protects its resources 
and cooperates with other Components to provide all or nothing integrity. It 
provides locks to serialize access to shared resources.

• Persistence — it must be able to save its state and later restore it.
• Relationships — it must be able to form dynamic or permanent associations 

with other Components and control other Components.
• Self Testing — it provides and runs its own diagnostics.
• Semantic Messaging — it must be able to interact with the vocabulary of the 

particular methods and domain-specific extensions it supports.
• Self Installing — it must be able to install itself and automatically register its 

factory with the Component Registry.

“Objects excite programmers (and geeks) who write software systems and applications 
for a living. Components excite users who have projects to finish as soon as yesterday, 
but who don’t care about programming languages or protocols — they just want the 
components to be functional, fast, easy to use, seamless, and self-contained.”

2.5 Object Management Group (OMG) and Contributors

There are two opposing methods of providing the distributed object bus and support that 
Components need to meet the above requirements. One method is Microsoft’s approach 
with the COM/OLE and ActiveX component infrastructure and object bus. The other is 
the OMG’s CORBA

Since 1989, a consortium of object vendors — The Object Management Group (OMG) 
— has been developing specifications for an open software bus on which object 
components written by different vendors can interoperate across computers, networks, 
and operating systems. Some of the principal contributors to the specification were: 
Expersoft, IBM, IONA, DEC, HP, HyperDesk, NCR, Novell, Object Designs, Sun 
Microsystems and SunSoft. The resulting core concept is CORBA. The final CORBA 
2.0 specification was released by the OMB in March 1996.

There are many CORBA implementations on the market, some of which are listed in 
section 2.12. There are over 500 vendors working on CORBA-compliant software 
products. As in any product line there are various versions — the latest and best 
standard from OMG at the time this material was reviewed was CORBA 2.0, which these 
notes are based upon.
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2.6 CORBA product Organization and General Services

Flexibility of overall system architecture while maintaining standard conventions is 
enhanced by using CORBA, since the object implementations can be configured to run 
locally and/or remotely without affecting their implementation or use.

The presence of object-oriented methodology in CORBA is the result of necessity, not of 
choice. CORBA supports the important aspects of object-oriented design 
(polymorphism, data encapsulation, and inheritance) between the boundaries of 
distributed objects.

The total CORBA architecture is illustrated in the following figure.
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Figure 3 CORBA architecture

2.6.1 Object Bus

The object bus connects it all together. It supports nested transactions that span multiple 
servers, long-lived transactions that execute over long periods of time as they travel from 
server to server, queued transactions that can be used in secure business-to-business
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transactions, roaming agents that look over business interests, active multimedia 
compound documents that can be moved, stored, viewed, and edited-in-place anywhere 
on the network, and sniffer agents which sit on the network at all times collecting 
information for system management, looking at trends, and gathering statistics.

2.6.2 Object Request Broker

The Object Request Broker (ORB) (also called an object bus) is the middleware that 
supports Component interoperations across machines, languages, operating systems, and 
networks. It makes different objects (and their associated data sets) reusable by different 
applications. The ORB intercepts calls of the Components, finds another Component 
that can implement the request, passes parameters, invokes its methods, and returns the 
result. Data encapsulation occurs because each client object knows little about the data it 
accesses when making requests of the respective objects through the ORB. Components 
exchange Metadata and discover each other by using services of the ORB. If one 
description of an object is designed to interface with the ORB, any object derived from 
that parent object will preserve its parent’s interface. Note that the ORB itself is a self­
describing Component whose description is contained within the Interface Repository 
(described below) and following the CORBA conventions.

A gateway infrastructure allows linkage of different ORBs. An integration path allows 
linkage between CORBA ORBs and other object-oriented approaches such as 
Microsoft’s COM with OLE.

2.6.3 Object Services

In the design of any particular system, application objects are independently developed 
then CORBA services are mixed in by subclassing the original class and inheriting the 
services needed to make a Component. This is accomplished via IDL.

Object Services are provided by their own objects to support interactions between other 
objects. Note that not all of the important characteristics of Components (listed above) 
are supported yet in CORBA. In particular, there is currently no explicit support for 
real-time guarantees, recovery from partial failures, group communications, or causal 
ordering of events (see “Reliable Systems with CORBA” below). Currently an 
inconsistent set of available features is supported within the various implementations of 
CORBA. For example, although it receives great attention in the literature, the Dynamic 
Invocation Interface is not yet supported in the Objective Interface System ORBexpress 
(OIS)/Ada95 product used in the NIF control system.

Fortunately, many of the object services planned in the future are not required in any 
particular application and the important elements of it can be developed for that 
application. It seems that some of these planned services will lead to heavy machine 
loads and extra complexity for particular applications.

14 UCRL-ID-133254



The object services include:
• Life Cycle — operations for creation, copying, moving, and deleting objects or 

groups of objects where groups are defined by the Relationship Service including 
containment and referential relationships.
To create a new object, a client must find a factory object (meaning an object that 
is capable of instantiating an object of the desired type, allocating resources, 
obtaining an object reference, and registering the new object with the Object 
Adapter and Implementation Repository).

• Persistence — a single interface for storing components persistently.
• Naming — allows components to locate other components on the bus by name. 

Each named Component is a structure with an identifier string and a descriptive 
string such as a type definition. More than one name can be optionally associated 
with an object reference. Naming hierarchies can be created and clients can 
navigate through naming context trees in search of needed objects. To bind a name 
is to create a name-to-object association for a particular context. Names can be 
registered with the Properties Service allowing searches on properties such as 
time_last_modified, etc.

• Event Notification — allows components to dynamically register or unregister 
interest in specific events. Provides asynchronous interactions between 
anonymous objects (i.e. notification when things happen) using standard CORBA 
requests. Interactions are between suppliers and consumers through an event 
channel and can be either by pushing or pulling (aka polling). Features such as 
priorities, filtering, transaction protection, reception confirmation, time-to-live 
stamps, or queue management are important considerations.

• Concurrency Control — provides lock manager for transactions or threads.
• Transaction — provides two-phase commit coordination among recoverable 

objects using flat or nested transactions
• Relationship — creates dynamic associations (a.k.a. hyperlinks) between objects. 

Provides mechanisms for traversing the links that group objects. Can be used to 
enforce referential integrity constraints, track containment relationships, and other 
actions with any type of links between objects.

• Externalization — provides standard stream-like mechanism to get data in and out 
of an object. Mechanism is implemented in two steps: copy to stream, copy form 
stream to receiving object. And vice versa.

• Query — a superset of SQL for objects based upon the Object Query Language. 
Returns a collection of objects that satisfy the criteria specified via a select 
operation. Three interfaces provide operations on the result of a query:

1. Collection Factory creates a new instance of an empty collection,
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2. Collection defines operations to add, replace, retrieve, and remove members of 
a collection and insert at a particular location and create a movable pointer to 
navigate through the collection, and

3. Iterator provides operations to traverse a collection with Reset_to_start, 
Next_element, and a test for More_actions.

The Query Service also provides a Framework consisting of interfaces for dealing 
with the preparation and execution of a query.

• Licensing — meters the use of objects for charging to insure fair compensation. 
Provides a model for usage control of objects. Metering is per session, per node, 
per instance creation, and per site.

• Properties — dynamically associates named values or properties to any object.
• Trader (soon to be defined) — advertises object services and assists in finding 

them.
• Collections — (soon to be defined)
• Security — (soon to be defined)
• Time — (soon to be defined)
• Change Management — (soon to be defined)

2.6.4 Common Facilities

Support of complete systems is provided by common facilities. Common Facilities are 
collections of Components that provide services of direct use to application objects. 
There are two categories:
Horizontal Facilities

• User Interface Services — in-place editing services similar to those provided by 
OpenDoc and OLE.

• Information Management Services — compound document storage and data 
interchange facilities similar to those provided by OLE and OpenDOC.

• System Management Services — defines interfaces for managing, instrumenting, 
configuring, installing, operating, and repairing distributed object Components.

• Task Management Services — workflow, long transactions, agents, scripting rules, 
and e-mail.

Vertical Facilities
• Provide IDL-defined interfaces for vertical market segments such as health, 

retail, finance, and control systems.
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2.6.5 Interface Definition Language (IDL)

The Interface Definition Language (IDL) allows an object to interact with the rest of the 
world by communicating that object’s methods and parameters to other objects through 
the ORB.

IDL statements specify a components attributes, the parent classes it inherits from, the 
exceptions it raises, the type of events it emits, pragmas for generating globally unique 
identifiers, and the methods its interface supports — including input and output 
parameters and their data types. IDL is a subset of C++ with additional keywords to 
support distributed concepts; however, IDL does not include any procedural structures 
or variables. The goal of CORBA is to “IDL-ize” (sic) all client/server middleware and all 
components that live on an ORB. It is often used to encapsulate legacy software.

The metadata that describes the use of a component is generated automatically by an IDL 
compliant compiler or directly from an object-oriented language or tool.

Pragmas (special instructions to a compiler) are used to set a prefix that is appended to all 
indentifiers (ID), to set a version number, and to associate an arbitrary Repository ID 
with a specific IDL name.

2.6.6 Client Side Interface

2.6.6.1 Client IDL Stubs

The Client IDL Stubs provide a static interface to object services. The stubs act as a local 
call — a local proxy for a remote server object. A client has a stub for each interface it 
uses on the server. The stub includes code to perform marshaling (encoding/decoding the 
operation and its parameters into a flattened message that is sent/received to/from the 
server).

2.6.6.2 Dynamic Invocation Interface (DII)

A Dynamic Invocation Interface (DII) is also provided which allows objects to 
dynamically define at run time the information which would have been provided statically 
by an IDL. DII allows an application to issue requests on objects whose interface may 
not have been defined at the time the application was compiled.

Unlike IDL stubs which only allow Remote Procedure Call (RPC)-style requests, the DII 
also allows clients to make non-blocking deferred synchronous (separate send and receive 
operations) and one-way (send-only) calls.

We are not currently using the DII in the NIF control system but need to be aware of it 
for possible uses in the future.

2.6.6.3 Interface Repository Application Programming Interface

Provides services to obtain and modify the descriptions (metadata) of all registered 
Component interfaces, the methods they support, and the parameters they require.
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2.6.6.4 ORB Interface

A direct interface to the ORB provides a few local services such as conversions from 
object reference to name string, and some language and system bindings to handle 
differences of specific implementations.

2.6.7 Object Adapter

The Object Adapter is how a CORBA object knows of and uses the services of an ORB.

2.6.7.1 Server Side Interface

2.6.7.2 Server IDL Stubs or Skeletons

Provides static IDL interfaces (Skeletons) to each service exported by the server.

2.6.7.3 Object Adapter

The Object Adapter contains the primary mechanisms for an object implementation to 
access ORB services and provides the environment for running the server application. 
The Object Adapter sits on top of the ORB’s core communication services and accepts 
requests for service on behalf of the servers objects. Actions include:

• Registers server object implementation classes with the Implementation 
Repository.

• Broadcasts the services it provides on the ORB, and responds to directory 
type queries.

• Instantiates and activates new server objects at run time. The number of 
instances created is balanced as a function of the incoming client traffic load.

• Authenticates Client making the call. Security actions are left to the specific 
implementation.

• Generates and manages object references. Assigns references (unique IDs) to 
new objects and maps between implementation-specific and ORB-specific 
representations of object references.

• Processes incoming client calls. Peels off requests, and transfers it to the 
interface stub which interprets the request and incoming parameters and 
presents them to the object’s method invocation.

The CORBA specified standard Object Adapter is called the Basic Object Adapter.

CORBA defines four object activation policies:

1. Shared server — multiple objects reside in the same server process (program)

2. Unshared server — each object resides in a different server process (program)

3. Server-per-method — a new server is started for each request
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4. Persistent server — servers are activated by means outside of the Basic Object 
Adapter

2.6.7.4 Implementation Repository

A run-time repository of information about the classes a server supports, the objects that 
are instantiated, and the ID’s. Serves as a common place to store additional information 
associated with implementation, trace information, audit trails, security, and other 
administrative data.

2.6.7.5 ORB Interface

(Identical to that provided on the Client side)

2.6.7.6 Dynamic Skeleton Interface (DSI)

The server side of the Dynamic Invocation Interface (DII) provides run-time binding and 
is used by the ORB to issue incoming method calls to objects that are implemented 
independently and do not have IDL-based compiled skeletons or compile-time knowledge 
of the implementations. They can be used by interpreters and scripting languages to 
dynamically generate object implementations.

But note that static interfaces are easier to program, provide more robust type checking, 
provide better performance, and are self-documenting in that one can tell what occurs by 
directly reading the code.

2.6.8 Interface Repository

Interface Repository — is a run-time database that contains dynamic metadata, machine 
readable (compiled) versions of the IDLs for the objects known by the ORB. These 
definitions may be captured directly from an IDL-compiler or through the Interface 
Repository write functions. Interface Repositories can be maintained locally or managed 
elsewhere. An ORB may access multiple Interface Repositories. An interface (or entry 
in the Interface Repository) is defined for each of the 8 IDL structures:

1. Moduledef — defines a logical grouping of interfaces as a module.

2. InterfaceDef — defines the objects interface, contains lists of constants, 
typedefs, exceptions, and interface definitions.

3. OperationDef — defines a method at an objects interface, contains lists of 
parameters and exceptions raised.

4. ParameterDef — defines an argument of a method.

5. AttributeDef — defines the attributes of an interface.

6. ConstantDef — defines a named constant.

7. ExceptionDef — defines an exception that can be raised by an operation.
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8. TypeDef— defines the named types that are part of an DDL definition.

Each Interface Repository is represented by global root object, which contains the 8 
possible IDL structures in a hierarchy illustrated in the following figure.

Reposi tory

TypeDefl Except ionDe InterfaceDefCons tantDef loduleDe

Modu leDe flConst an tDef TypeDef Except! onDef InterfaceDef

Operat ionDefConstantDef TypeDef) Except ionDef AttributeDe

Para mete rDef I nhe r it sExcept ionDef
f rom

Contai ne r
I nheri ts

f rom
Conta ined

Figure 4 Containment & Inheritance Hierarchy for the Interface Repository 
Classes

Navigation and extraction of information from the Interface Repository is accomplished 
with nine methods:

1. Describe — returns a Description structure containing the IDL that describes a 
contained object.

2. Lookup — returns a sequence of pointers to objects within a contained object.

3. Lookupname — locate a named object within a contained object.

4. Contents — returns a list of objects contained or inherited by the contained 
object.
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5. Describe_contents — returns a sequence of pointers to the content descriptions of 
objects within the contained object (a combination of Describe and Contents).

6. Describe_interface — returns a structure describing an InterfaceDef object.

7. Is_a — returns TRUE if contained InterfaceDef is identical to or inherits directly 
from an interface specified in an input parameter.

8. Lookup_ID — look up an object in a Repository.

9. Get_primitive — obtain a reference to a primitive object of a Repository such as 
base data types and codes.

2.7 Initialization and Connections

A Component in a CORBA compliant system performs the following initialization steps 
to bootstrap itself into operation:

• Informs ORB of presence via a CORBA Application Programming Interface 
(API) call to ORB_Init and obtain a reference to the ORB Component.

• Inform Basic Object Adaptor (BOA) of presence via invoking method BOAInit 
within the ORB and to obtain its object reference.

• Invoke method List Initial Services to obtain a list of well-known objects, for 
example the Interface Repository and Naming Services.

• Invoke method Resolve Initial References to obtain references for the services 
required.

2.8 Interconnections of ORB's

The General Inter-ORB Protocol (GIOP) specifies a set of seven message formats that 
cover all the ORB request/reply semantics to provide ORB-to-ORB interconnections 
over any transport protocol. A Common Data Representation (CDR) maps data types 
defined in the OMG IDL into a flat message representation.

CORBA 2.0 specified the mandatory Internet Inter-ORB Protocol (IIOP) which defined 
how GIOP messages are exchanged using TCP/IP connections, making it possible to use 
the Internet itself as a backbone ORB.

For application specific networks, Environment-Specific Inter-ORB Protocols (ESIOPs) 
are specified. The first ESIOP uses Distributed Computing Environment (DCE) where 
IDL and CDR types are mapped directly into DCE’s native Network Data 
Representation (NDR). The DCE ESIOP provides a robust environment for mission- 
critical ORBs with a rich set of features including efficient large data transfers, Kerberos 
security, cell and global directories, distributed time, and authentication. Some of the 
major features within DCE such as Remote Procedure Calls are not currently applicable 
to CORBA and hence, even though very robust, represent unneeded overhead. DCE is 
supported by IBM, Digital, Tandem, and HP who will support it on their ORBs.
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Microsoft is attempting to create COM directly on top of DCE for world-wide (but 
proprietary) use.

2.9 Performance of CORBA in the Literature

The speed of performance of CORBA has been measured as about 1/3 as fast as ‘the best 
C++’ code for small data packets (1000 bytes) between two dual-processor 
SPARCStation Model 712’s connected with an ATM network. The top speed of simple 
non-structure data transfer of large blocks (100K bytes) is about the same for C++ code 
and CORBA (50 Mbytes per second). Reference 8 contains many plots of performance 
of Orbix and ORBeline CORBA versus C++ versions of TTCP and RPC for buffer sizes 
from 1000 bytes to 140 Kbytes. Experience of the authors indicates that present 
CORBA implementations are well-suited for request/response applications over lower- 
speed networks (such as Ethernet) however considerable overhead is obvious within 
CORBA when higher speed networks are used.

Overhead comes from a variety of sources:

1. non-optimized conversions, data copying, and memory management

2. generation of non-word boundary aligned data structures by the CORBA stub 
compilers

3. excessive control information carried in request messages

4. inefficient and inflexible receiver-side demultiplexing and dispatching operations

5. long chains of intra-ORB function calls

6. lack of integration with the underlying operating system mechanisms

(Items 1, 2, 3 and 6 are probably the areas that we need to be aware of for large 
distributed control systems.)

The latency for sending richly-typed data increases rapidly as the buffer size increases 
with Orbix. Two-way transfers of richly-typed structures of 1000 bytes are reported in 
the literature as having a latency of about 45 ms on the test platforms being used. 
Measurements of total transaction time for the LDRD simulation studies were 
significantly less, in the order of 2 ms., which is probably due to the use of more 
powerful processors.

Numerous suggestions are made in the referenced papers for optimizing CORBA 
including revisions of the specifications. It appears that this work is ongoing and could 
well result in optimized versions of CORBA and better interfaces with real-time 
operating systems.

2.10 Reliable Systems with CORBA

Neither the CORBA standard nor conventional implementations of CORBA directly 
address complex problems related to distributed computing such as real-time, high-speed,
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quality of service, partial failures, group communications, and causal ordering of events. 
The CORBA model itself does not provide solutions to the problems of detecting, and 
reacting, to partial failures, and there is need for distributed debugging tools and run-time 
validation tools. The reference proposes extending the ORB (using object-oriented 
extensions) to add appropriate lessons learned from other models to increase the 
reliability and availability of CORBA-based interactions and systems. Again, it appears 
that this work is ongoing and could well result in improved versions of CORBA before 
needed on the NIF.

2.11 Real Time Operating System Interface with CORBA

The performance of current CORBA implementations is not suitable for latency-sensitive 
real-time applications, including real-time systems (e.g. avionics), and constrained latency 
systems (e.g., teleconferencing). The interface between CORBA implementations and 
underlying operating systems is inefficient in many respects. Areas identified for 
improvement include: resource scheduling mechanisms, multiplexing, data copying, and 
byte-order alignment conversions (which often occur at several layers), and the lack of 
ability to select between using compiled code versus interpreted code for conversions.

2.12 Suppliers and Users of CORBA

Vendors are shipping CORBA-compliant ORBs on all major operating systems from the 
Apple Macintosh OS, Windows (all flavors), more than 20 different UNIX operating 
systems, to Digital’s OpenVMS and IBM’s MVS.

Identified vendors and CORBA-compliant ORB products include:
• BBN’s (Corbus)
• Component Integration Laboratories (OpenDoc)
• Chorus Systems (CHORUS/COOL ORB)
• Digital Equipment Corporation’s (Object Broker)
• DNS Technologies (SmalltalkBroker)
• Expersoft (PowerBroker CORBAplus)
• Hewlet Packard (ORBplus)
• Iona (Orbix)
• IBM (Distributed System Object Model —DSOM)
• Object Interface Systems (ORBexpress/Ada) (being used on NIF)
• Object-Oriented Technology (Distributed Object Management Environment — 

DOME)
• O/SPACE (CORBA implementation for Java)
• Sun Microsystem (NEO)
• Tandem (nonStop DOM)
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• TRW (Universal Network Architecture Service — UNAS)
• Xerox PARC (ILU)

Recent announcements of important users, applications, and tools include:
• Chevron has announced one of the largest examples to date of plans to use 

CORBA technology to link engineers’ desktop systems with browsers to 
geographical, seismic, and historical drilling information stored in databases on 
many kinds of computer platforms all over the world. They have selected the 
IONA CORBA implementation. (Computer World, April 28, 1997)

• The Gap has 1900 stores around the world and posted $5.3 billion in sales in 
1996. Keeping everyone connected to the most up-to-date information on 
products and sales is important. They use IBM mainframes at the backend, Sun 
Solaris servers at the middle tier, and OS/2 and Windows NT- based desktops. A 
corporate decision was made to go to object-oriented technology and to access 
information with browser technology by using CORBA with Java. They have 
selected the Visigenic’s CORBA software. “Putting this object-oriented system 
together is a big job — a lot of pieces and ways to go wrong” (Phil Wilkerson, The 
Gap Inc., Computer World, June 9, 1997) The switch over to the new system is 
expected in 6-8 months.

• The cover story in the January 1999 Component Strategies magazine “Building 
Large Scale CORBA-Based Systems.”

3. The CORBA Test Package
With all of its capability and promised advantage, CORBA is a complex package of 
technologies and products which requires quite a concentrated effort to master.

We developed three different sets of test software to insure that CORBA, combined with 
the Ada95 programming language, would be viable tools for large distributed control 
systems including the NIF, and to address risks and concerns raised at project reviews. 
The approaches were:

• An extensive “CORBA Test Package” which tests all kinds of CORBA 
interactions between multiple processes with multiple objects on multiple 
machines.

• Small special case programs for measuring the optimum speed of performance.
• A simple Java language Client was constructed to interact with a Server from the 

CORBA Test Package (written in the Ada95 language). This was to illustrate 
interoperability between commercial CORBA products.

The CORBA Test Package fully tests the CORBA ‘middleware’ and associated Ada 
functions, independently from the ICCS control system design, yet using all the features 
of CORBA used in that design. Regression tests can be performed to compare the 
functional capabilities and speed of performance between various versions of the
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operating system, network hardware, compiler, configuration management system, and 
the commercial CORBA software (ORBexpress from OIS).

The CORBA Test Package was used extensively during early use of the commercial 
products to test (a) functionality with a large number of objects and distributed servers, 
and (b) speed of performance. Errors and misunderstandings were reported to the 
supplier and resolved with subsequent releases.

An extensive series of tests of all kinds of interactions between multiple objects on 
multiple computers was conducted. Many interactions with the technical developers of 
the products at the companies involved were organized through the testing process, and 
many problems were found and resolved.

These efforts led to the current state of affairs where the CORBA and Ada products 
selected for the NIF are now successful, well established and being used, and the center of 
concentration is on implementation of the applications themselves. Speed of performance 
of present products appears to be well able to handle the NIF control system 
requirements as presently understood. We may well find the need to resume the 
concentrated attention to CORBA related to configuration and diagnostic capabilities as 
deployment approaches.

3.1 Structure and Capabilities of the CORBA Test Package

The structure and capabilities of the CORBA Test Package are categorized as follows.

Client —_ The Client package is capable of transactions with any number of Objects (1000 
used so far) on any number of Servers (12 used so far) on any number of computers (4 
used so far). It measures and records process and clock time, and memory usage of both 
the Client and Server(s).

Servers — Any number of copies of the Server can be operated from the Client on any of 
the computers in our network with CORBA installed. To date, 12 Servers have been 
operated concurrently on 4 different machines. Operations can be in serial or parallel (i.e. 
the Client is multi-threaded, one or more threads per Server).

Objects — The Servers consist of an ‘initial object’ that has both simple methods and 
‘object factory’ capability. Any number of subsequent objects can be created (with the 
object factory), used, and deleted by the initial object of the Servers. To date, the creation 
of up to 1000 objects per Server has been tested. I/O operations are performed directly 
to the initial object created for each Server and to each subsequent Object created on each 
Server. A small number of very large Objects (1,000,000 bytes) can be created in each 
Server. These creations dynamically allocate memory, which is not part of the built-in 
object data thereby testing this capability for other applications.

Data Transaction Tests — All types of standard CORBA data types including fixed and 
flexible length arrays, structures, and the ‘any’ type are tested. Sequenced and 
Unbounded Strings have been tested up to a length of 10,000 bytes.
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Write, Read, and Write/Read operations can be selected. Unique data is written to each 
Object upon each type of write operation. When Reads are performed on objects which 
have previously been written to, an error check is made to insure that data read from the 
object is the same as was written for each type of data.

Exceptions — Upon command from the Client, exceptions can be raised through the IDL 
interface from both the initial Servers object and from subsequently created Objects 
within the Servers.

Call backs — The Server ‘initial object’ can perform call back operations from the Server 
to the Client that are asynchronous with data transactions and other functional tests.

Binding to Objects — CORBA References for each created Object are kept in the Client, 
but optionally, the Client will erase existing references and perform a Bind operation to 
reestablish connection with Objects using the previously established names of each 
Object. This capability is part of the OIS ORBexpress design but is not utilized in the 
ICCS control system except to establish an initial link at system start up.

Multi-tasking — Both the Client and Server have multi threaded capability and can 
operate with any number of concurrent tasks to test performance / memory tradeoffs.

Timing Loops — Loops of any duration can be performed on the methods on the initial 
Servers object and on each object subsequently created within the Servers. A maximum 
time to spend in the loop of any particular test can be set. So for example, one can set 
each type of test to be performed for a given time rather than a given number of loops.

Performance Measurements — Clock time, processor time, stack size, heap size, and 
image size are measured for the Client and Servers for each kind of I/O operation, for 
raising exceptions, and for the create, delete, and optional bind operations. A file is 
written containing the conditions and results of each use. Reported times are in 
microseconds per successful loop of each kind of selected operation. Performance 
measurements on many combinations of these operations have been made and reported.

Diagnostics — Switches can be set to turn various levels of trace messages on/off.

CORBA versus Socket level testing: Many of the CORBA test operations also have an 
equivalent socket level test capability to establish a functional comparison and 
performance baseline upon which to judge CORBA.

Test Instructions — The performance of the Client and Server(s) is controlled by an 
instruction file, which is read upon startup.

3.2 CORBA Test Package Instruction File

An Instruction file is used to direct the Test Package Client on the specific tests to be 
performed. Fields in the Instruction File set test parameters for the following purposes:

3.2.1 General Control Parameters:
• Enable CORBA Testing
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• Enable Socket Testing (socket tests are also built in to compare results)
• Set number of Client Tasks (if there are not as many client tasks as Servers, 

transactions to some of the Servers will wait until the others are complete)
• Enable Server Callbacks
• Enable Server Explanations (trace and error messages)

• Enable Server Entries trace messages
• Enable Server Data entry messages

• Set number of Servers Used
• Set number of Concurrent Servers
• List of Server Host Names
• List of type of machine for each Server
• Set Size of Client Tasks — sets amount of memory allocated for each Client task. 

Must be sufficient to store all the data related to a particular Server.

3.2.2 Parameters for testing each Server
• Enables Null OP — the simplest transaction
• Simple Variable I/O — sends a floating point number to / from the Server
• Consume processor time — causes the Server to consume extra processor time
• One Way Operations — tests one way transactions to the Server

3.2.3 Parameters for testing each Objects within each Server
• Number of Objects per Server — each Server creates this many objects for testing
• Number of Objects with Huge Arrays — causes each Server to create this many 

objects with huge arrays (1,000,000 bytes) (use sparingly)
• Simple Variable — send floating point number to/from each Object
• Little Array — send array of 100 octets (bytes) to/from each Object
• Big Array — send array of 10,000 octets (bytes) to/from each Object
• Little Float Array — send array of 100 floats to/from Objects
• Big Float Array — sends array of 10,000 floats to/from Objects
• Structure — sends a simple CORBA structure to/from Objects
• CORBA Any — sends simple CORBA ‘any’ to/from Objects
• The following parameters send unbounded strings to/from Objects. 

Parameters define initial size, and update size for each pass. This is handy for 
measuring transactions of varying size.
• Size of Unbounded Strings
• Add to size of Unbounded Strings on each pass
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• Multiply size of Unbounded Strings on each pass
• Size of Sequences of Longs — Send a sequence of 1000 longs to/from Objects
• The following parameters send Octet arrays to/from Objects. Parameters 

define initial size, and update size for each pass. This is handy for measuring 
transactions of varying size.
• Size of Sequences of Octets
• Add to size of Sequences of Octets on each pass
• Multiply Size Sequences Octets each pass

• The following parameters send unbounded float arrays to/from Objects. 
Parameters define initial size, and update size for each pass. This is handy for 
measuring transactions of varying size.
• Size of Sequences of Floats
• Add to size of Sequences of Floats on each pass
• Multiply Size Sequences Floats each pass

3.2.4 Parameters for testing operations between Clients and Servers
• Enable test of Bind Operations — test CORBA bind operation to Objects by 

deleting references to objects and reacquiring them with the Bind function.
• Enables Exceptions from server — causes CORBA exceptions to be raised from 

Servers and caught by the Client.
• Enables Exceptions from Objects — causes CORBA exceptions to be raised from 

Objects and caught by the Client.
• Delete Objects when completed — deletes Objects from Servers upon completion 

of a test run so that when the next test is begun the Objects are recreated.

3.2.5 Parameters for generating reports
• Enable Statistics — turns statistics reporting on/off
• Report errors — turns error reporting on / off. Errors are detected by comparing 

data returned from each object to data sent to each object, and printing cases 
which do not agree

• Number of Loops for Timing — sets number of loops of each individual test 
functions. Set to 100 for short development, about 10,000 for valid average timing 
tests.

• Record all times of Last Sequence Octets — used to detect a problem with a 
previous version of the product where occasional very long transaction times 
occurred

• Loop forever on Sequence Octets Test
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• Max Duration of Each Loop (in Seconds) — sets maximum time allowed to 
complete a single test function. This allows the tester to go home at a ‘reasonable’ 
time. Statistics recorded about average times are still valid as the actual number of 
completed transactions is used rather than the instructed number.

• Delay between loops (in Seconds)— sets delay between major test loops
• Number of Total Cycles of Test Package — sets number of major test loop cycles

3.3 Tests on Solaris

Multiple Servers can be operated on any Solaris-based computer including the one that 
the Client is operated on.

3.4 Tests on VxWorks

VxWorks testing is immature. Many types of data transactions have not yet been tested. 
Servers have been tested on three VxWorks-based computers with varying results 
probably because the processor and network topology were changing in the test 
equipment area for other reasons.

4. Functionality and Performance Measurements
Many different tests of functionality and measurements of performance for simulation 
studies have been made of CORBA on various computers and network configurations, 
and with various versions of the CORBA product and language compilers being used. 
Some of the results follow.

4.1 Comparison of Speed of various CORBA types

As input to the design of the NIF control system architecture, we measured the relative 
speed of transactions of all CORBA types as provided by the IDL on all versions of the 
product on various machines. Typical comparative results (on medium powered 
processors) are illustrated in the following figure.
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Figure 5 Comparative results of speed of various CORBA types

The X axis is the major loop counter through the program. Sequences and unbounded 
array sizes are changed for each major loop, but the other types remain the same. Plots 
of these other types give some indication of the variability of performance data (as 
described above). Note that, at least for this and all previous versions of CORBA, 
unbounded strings are almost always the fastest method of transmitting data types where 
the length is not known until run time (i.e., dynamic lengths). The anomalies at the 
beginning and end of some curves may be due to long start up times, memory size 
problems at the end, or a strange behavior of the particular version of ORBexpress being 
used at that time periodically pausing. This problem has since been corrected.

4.2 CPU Utilization:

CORBA uses considerably more processor time than socket based communication. Tests 
indicate that for message sizes below about 500 bytes in length the dominate factor in 
speed is the power of the processors on each end of the transaction, not the network 
connecting the processors.

Measurement of CPU utilization has been somewhat illusive. Measurements of process 
time need to be combined with information on the number of multiple processors installed 
on each particular computer to get the percentage of that machine used during elapsed 
wall clock time. Some previously reported results on multiple processors have 
inconsistently factored in this parameter.
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4.3 Predictions of Performance within the NIF

In order to show that the delays and consumption of machine resources by CORBA 
within the ICCS architecture were affordable, we picked a few ‘extreme’ cases of the use 
of CORBA within the established NIF shot timeline. The selected cases were:
• Case 1: The entire automatic alignment of NIF based upon the “Simulation of 

Beamline Alignment Operations” by Mark G. Miller and Cynthia (UCRL-ID-tbd).
• Case 2: The busiest time slice during the countdown immediately prior to a shot, 

based upon the NIF Interface Control Documents, which give expected network 
traffic.

4.3.1 Case 1 : Beamline Automatic Alignment Operations

Measurements of the clock time required for typical CORBA transactions, combined 
with the kinds and quantities of operations planned for within the automatic alignment 
model, indicate that CORBA based transactions with the alignment front-end processors 
will use no more than 2% of the available time on the planned processors.

The total number of CORBA based commands for this case is:

Video requests 17,000

Gimbals adjusted 8,000

Device setup 19,000

Alerts, Status to Supervisory 4,000

Total 48,000

The required maximum total alignment time is one hour. Forty minutes are allowed for 
manual operation, leaving 20 minutes for automatic operations. Two ms per CORBA 
message is a very conservative estimate of CPU utilization. Four processors are used in a 
load sharing arrangement.

2 ms x 48,000 messages / 4 processors = 2% of the allowed 20 minutes.

In this case, since the CORBA messages are small, and are divided between many 
different machines on a switched network, network consumption is minimal.

The ratio of time spent in each of the functions within the automatic alignment is 
illustrated in the following diagram:
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4.3.2 Case 2: Busiest time during shot countdown

The principal activities leading up to a NIF shot are illustrated in the following figure.
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Figure 7 Principal activities leading up to a NIF shot

Review of the NIF Interface Control Documents (ICDs), which give planned network 
traffic indicate that the estimates given are possible (or requested maximum burst rates) 
but are not reasonable longer-term (i.e., minutes) or ‘normal condition’ rates. They also 
include traffic for diagnostic purposes that would not normally occur during a functioning 
shot. Short-term burst requests will simply be spread out over time in an event-driven 
system such as NIF. Unfortunately, the ICDs did not show the estimated total number 
of commands or read operations required to perform a function. Such information within 
the alignment model is easy to extend to various other purposes. Discussions with some 
of those responsible for the ICDs indicated that realistic message traffic during this period 
will not be as extensive as that expected during the automatic alignment case (above). 
However, it was concluded that further review of Case 2 should be conducted after better 
definition (or actual implementation and testing of prototype software) at the application, 
framework, and FEP levels.

Related aspects of this case are fully covered in the companion LORD report 
“Countdown Status Messages Simulation” (UCRL-ID-133242).
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4.4 Conclusions on Performance Measurements

The speed of performance of current versions of CORBA on current machines are 
reasonably well known and can readily be measured for subsequent versions, other 
conditions matching future ICCS software design, and on newer machines and network 
configurations.

Many possible optimizations of the use of CORBA, and improvements to the test 
package and measurements methods, have been identified. The effort of testing the 
performance of CORBA has identified methods in software and hardware for testing the 
planned production prototypes of the ICCS.

Any good prediction of performance of CORBA within a large distributed control system 
depends upon implementation and measurement of prototype versions of the system 
frameworks, supervisory applications, and front-end processors. Particular 
implementations set the level, style, quantity, and frequency of CORBA transactions.

All information available to date indicates that the necessary CORBA portion of the 
speed of performance of the ICCS can be readily obtained with:

• the power of the processors and network being designed into the system,
• the continued close cooperation of the staff at OIS,
• the many opportunities for optimization of software with additional effort as 

implementation proceeds and problem areas are detected, and
• the availability of even more powerful processors, the future.

4.4.1 Recent Performance Measurements

Due to limited resources and the need to rapidly recompile and test software to find 
performance problems, recent performance measurements were conducted with several 
versions of CORBA with the separate smaller software package mentioned above. The 
results of these tests are reported directly in the LDRD Final Summary Report and have 
not yet been replicated in the CORBA Test Package described herein.

5. Lessons from Current Publications Continue
The literature is now full of articles about using CORBA in various applications. One of 
the most relevant recent articles was the cover story in the January 1999 Component 
Strategies magazine “Building Large Scale CORBA-Based Systems” (ref. 13).

In this article, the authors point out numerous aspects of the use of CORBA and lessons 
learned in other systems (large telecommunication and business systems) that may be 
valuable when compared to our designs and current implementation. They describe things 
as confidentiality of data and protection from unauthorized changes, CORBA services 
that are now available with some commercial products. They express a strong belief that 
fine-grained CORBA objects (which we are using) can lead to problems of scale. They 
describe lessons learned from the use of distribution adapters, the Dynamic Skeleton
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Interface, bulk and group operations and other techniques to exploit economy of scale, 
and handling connection failures including monitoring errors. They mention techniques 
related to robust memory management.

Recently the principal author was invited to visit LLNL and spoke with our development 
team for a day. These discussions lead to observations about commercial products in 
general, and several suggestions and observations of shortcomings about our current 
design and prototype implementation, which are now being incorporated and corrected.

Earlier CORBA papers discussed sniffer agents which sit on the network at all times 
collecting information for system management, looking at trends, gathering statistics. In 
the deployment phase of large distributed control systems, the ability to monitor control 
system performance and to actively cause errors at various layers of the hardware and 
software to test responses will be important. Insight into how and where such things have 
been used would be valuable.

Awareness of CORBA products and services, and the status of world-wide 
developments, must continue to guide software implementation and optimization of any 
large distributed control system as it is being implemented and tested.
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