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ABSTRACT

This is the third annual report for contract DE-AC26-99BC15211. The report describes
progress made in the various thrust areas of the project, which include internal drives for
oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids
with yield stress. The report is mainly a compilation of previous topical reports published
in the third year of the project, which ended on May 6, 2001. Advances in multiple

processes and at various scales are described.

In the area of internal drives, significant progress was made in the modeling of gas-phase
growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in
internal steam drives. The works reported here pertain to the continuum scale, although
we have also conducted studies at the pore-network scale, to be reported in the final
report. In the area of vapor-liquid flows, we develop further a novel method for the
mobilization of trapped phases using boundary integral methods. In the area of
combustion, we report on the propagation of combustion fronts in heterogeneous
(layered) porous media in the presence of heat losses. We show that layering affects
significantly the extinction limits of the process, and therefore is a key limiting factor to
the application of the process in realistic systems. Finally, we present a study of the flow
and displacement of non-Newtonian fluids with Bingham plastic rheology.






EXECUTIVE SUMMARY

This is the third annual report of an investigation of the various multi-phase and
multiscale transport and reaction processes associated with heavy oil recovery. As in the
past two reports, the thrust areas include the following: Internal drives, vapor-liquid
flows, combustion and reaction processes, fluid displacements and the effect of
instabilities and heterogeneities and the flow of fluids with yield stress. These find
respective applications in foamy oils, the evolution of dissolved gas, internal steam
drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated
with thermal methods and steam injection, such as SAGD, the in-situ combustion, the
upscaling of displacements in heterogeneous media and the flow of foams, Bingham
plastics and heavy oils in porous media and the development of wormholes during cold

production.

In many processes associated with heavy oil recovery, internal drives, namely these
driven by applied supersaturation in dissolved gases or heat content, are common. The
main result is the growth of a gas phase, which is driven by mass or heat transfer,
depending on the kind of the applied supersaturation. We have conducted various studies
of this multifaceted problem. In this report, we present results in two areas, one
associated with the nucleation and growth of a gas phase from a supersaturated liquid,
and another on internal steam drives. The first study describes a mathematical model of
the dynamics of gas evolution as a function of the rate of application of the
supersaturation for solution gas drive. Both constant rate of pressure decline and constant
rate of liquid withdrawal are discussed. The second study is an extension of the process to

internal steam drives. It is the first time, that such a study is reported in the literature.

The simultaneous flow of vapor and liquid phases is common to steam injection, counter-
current flows are encountered in Steam-Assisted-Gravity-Drainage (SAGD), and in steam
injection in horizontal wells. Concurrent flows are found in typical displacements, in
solution gas-drives near wells, and various other contexts. In this section we report on the

dynamics of two-phase flows in heterogeneous media where capillarity induces a trapped
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phase. We expand and complete a new approach, introduced for the first time in the
previous report, based on what we term Darcian Dynamics, to describe the dynamics of
the flow of a disconnected phase, in the form of ganglia, in the flow field of a displacing
continuous phase. It is a computationally fast approach for the evaluation of quantities in
concurrent and counter-current flows, such as the critical capillary number for
mobilization, the subsequent movement of the mobilized phase, and its possible stranding

and/or coalescence.

A well-established method for the recovery of heavy oils is in-situ combustion. Two
particular aspects are analyzed in this project: The description of the process at the pore-
network scale, and its upscaling at the large scale for field applications. A detailed pore-
network simulator was described in our last report. The effort in this direction is
continued. Here, we report on an extension of our previous work using an asymptotic
approach to describe the movement of combustion fronts in porous media. This approach
is essential for the upscaling of the process at the field scale. We apply this method to the
problem of in-situ combustion in a heterogeneous reservoir. We show how heterogeneity,
combined with heat losses, can lead to extinction phenomena, otherwise absent in

homogeneous systems.

Heavy oils and heavy-oil associated recovery processes involve non-Newtonian rheology.
Of specific importance is that of Bingham plastics, which characterize the flow behavior
of foams, for enhanced recovery, heavy oils, containing asphaltenes, as well as the
theological behavior during the formation of wormholes in sand production. In this report
we present new approaches for the simulation of this type of rheology in flow and

displacement including Bingham plastics.
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INTRODUCTION

This project is an investigation of various multiphase and multiscale transport and
reaction processes associated with heavy oil recovery. The thrust areas of the project
include the following: Internal drives, vapor-liquid flows, combustion and reaction
processes, fluid displacements and the effect of instabilities and heterogeneities and the
flow of fluids with yield stress. These find respective applications in foamy oils, the
evolution of dissolved gas, internal steam drives, the mechanics of concurrent and
countercurrent vapor-liquid flows, associated with thermal methods and steam injection,
such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous
media and the flow of foams, Bingham plastics and heavy oils in porous media and the
development of wormholes during cold production. Funding of the project is for three
years, from May 6, 1999 to May 5, 2002. The project was extended at no-cost to the
agency to January 5, 2003.

In this report, progress made in the various areas outlined above during the second year
of the project is described. Work was conducted in all areas, with progress being greater
in some areas compared to others, for a variety of circumstances. During the reporting
period, a total of up to 8 students were supported by the project. A number of
publications and 13 technical reports have resulted from this effort. A cumulative
publication list is given below. The report is essentially, but not exclusively, a

compilation of the various topical reports.

This report is organized as follows: For each of the four first thrust areas, namely internal
drives, vapor-liquid flows, combustion dynamics, and flow of yield-stress fluids, we
provide a brief summary of the work performed, followed by various reports. Work in the
thrust area of heterogeneity and upscaling will be reported in the final report, along with

other progress reports.
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L. INTERNAL DRIVES

In many processes associated with heavy oil recovery, internal drives, namely these
driven by applied supersaturation in dissolved gases or heat content, are common. These
include, but are not limited to the evolution of gas in foamy oils, internal steam drives,
the evaporation of volatile components during gas injection or the injection of steam, and
other processes. The main result is the growth of a gas phase, which is driven by mass or
heat transfer, depending on the kind of the applied supersaturation. We have conducted
various studies of this multifaceted problem. In this report, we present results in two
areas, one associated with the nucleation and growth of a gas phase from a supersaturated
liquid, and another ascociated with internal steam drive. The first study describes a
mathematical model of the dynamics of gas evolution as a function of the rate of
application of the supersaturation for solution gas drive. The two problems of constant
rate of pressure decline and constant rate of liquid withdrawal are treated. This part is the
final version of a report, a preliminary version of which was presented in our report last
year. The second study is an extension of the same approach to the problem of internal
steam drive, which is driven by heat transfer. This problem refers to the phase change of
liquid to wvapor in single-component systems, and appears in processes where the
production of high-temperature liquid leads to a supersaturated condition and the
subsequent phase change. It is also related to boiling in porous media, under these
conditions. Both applications emphasize the role of nucleation on the onset of phase
change, and the subsequent mass or heat transfer on the growth of the resulting new
phase. They find applications in foamy oil flow as well as in steam injection and
“blowdown” for the production of oils from fractured reservoirs. We need to mention that
work in this area has also been conducted at the pore-network scale. It will be reported in

the final report of this project.






A Model for the Gas Evolution in a Porous Medium Driven by Solute Diffusion
By

loannis N. Tsimpanogiannis and Yannis C. Yortsos

I. INTRODUCTION

The liquid-to-gas phase change in a porous medium and the subsequent growth of the
gas phase is encountered in many applications driven by mass or heat transfer. These span
various fields of scientific interest and a range of length scales. Examples include the solution
gas-drive process for the recovery of oil from oil reservoirs (Sheng et al., 1999a, 1999b), boiling
in porous media (Thome, 1990; Satik and Yortsos, 1996), thermal methods for oil recovery
(Prats, 1982), nuclear waste disposal (Doughty and Pruess, 1990), soil remediation (Ho and
Udell, 1995) and others. In this chapter, we focus on the isothermal gas phase growth from
a supcersaturated, slightly compressible, binary liquid in a porous medium. This is driven by
mass transfer, the extent of which is controlled by the application of either a constant-rate
decline of the system pressure or the withdrawal of the liquid at a constant rate.

Consider the removal of an initially supersaturated liquid from a porous medium of a
fixed volume (Fig. 1). As the pressure continuously declines, due to liquid expansion, the
bubble point of the liquid is eventually reached. Then, nucleation of a gas phase starts,
at rates depending on the nucleation properties of the medium. Nucleation is manifested
either in the release of pre-existing gas bubbles, trapped in hydrophobic cavities, or in the
form of heterogeneously nucleated nuclei. Emphasis will be placed on the former mechanism,
although the conventional model will also be used. Because of the competing processes of
bubble growth, which depletes the solute from the liquid, thus reducing the supersaturation,
and the liquid withdrawal, which reduces the pressure, thus increasing the supersaturation,
a supersaturation maximum is attained, following which, nucleation terminates. Identifying
the maximum supersaturation and its dependence on process parameters is a key issue.
The subsequent gas evolution is controlled by the available supersaturation, the solute mass
transfer from the liquid to the gas and the capillary characteristics of the porous medium.

The gas phase appears first in the form of small bubbles growing within the confines of single



pores (Fig. 2a), but ultimately takes the form of large clusters, spanning a number of pores
(Fig. 2b). Competition for mass transfer between the growing bubbles or clusters, capillary
effects at pore constrictions, viscous and gravity forces, and the possibility of coalescence
or the snap-off of gas-liquid interfaces are important factors in determining the gas-phase
evolution.

Eventually, gas flows as a bulk phase. The onset of flow is signaled when the gas pore-
volume fraction, S,, becomes equal to the so-called critical gas saturation, S, a value which
depends on the underlying growth and flow mechanisms. If viscous or gravity gradients are
negligible, gas flow occurs for the first time when isolated gas clusters connect to form a
sample-spanning (percolation) cluster (Yortsos and Parlar, 1989). If they do not, gas flow
and production occur through the continuous motion of finite-size gas clusters, subject to
various mechanisms of interaction, including coalescence. This simultaneous flow of gas and
liquid is quite complex, particularly under strong pressure gradients, for example in the case
of high-viscosity oils, where “foamy” oil flow takes place (Smith, 1988; Maini, 1996, 1999).
In this chapter, we will only consider the stage before the onset of gas flow, however, and in
the absence of significant gravity or viscous gradients.

A number of studies have been reported on this problem. A review of the early literature
can be found in Li and Yortsos (1995a, 1995b). Experimental work for the case of constant
pressure decline rate in consolidated porous media using light oils was reported by Moulu
and Longeron (1989), Moulu (1989) and Scherpenisse et al. (1994). Sheng et al. (1999b),
Wong et al. (1999) and Urgelli et al. (1999) conducted experiments with heavy oils. Vi-
sualization experiments with light oils were reported by Li and Yortsos (1995a), Hawes et
al. (1997), Mackay et al. (1998) and Dominguez et al. (2000). Bora et al. (2000) reported
experiments with heavy oils. These studies have shown that the critical gas saturation is
an increasing function of the liquid withdrawal rate, a finding explained by the increasing
number of nucleation centers at larger depletion rates. Scherpenisse et al. (1994) provided
useful, but qualitative, scaling arguments showing that maximum supersaturation and crit-
ical gas saturation are power-law functions of the depletion rate. A theoretical analysis of
bubble growth by solute diffusion in which mass transfer and porous medium capillarity

dominate, was provided by Li and Yortsos (1995a, 1995b). The authors conducted visual-
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ization experiments in glass micromodels and pore-network simulations to explain patterns
and rates of growth of the gas phase at the pore-network scale. Along similar lines, Du and
Yortsos (1999) provided a pore-network analysis of the critical gas saturation, in the absence
of gravity/viscous gradients. They confirmed an earlier hypothesis by Yortsos and Parlar
(1989) that in the absence of spatial gradients, the onset of critical gas saturation coincides
with the percolation threshold of an invasion percolation process, originating from multiple
nucleation centers. They also showed that S, is a power law of the final nucleation fraction
(defined more precisely below), f,¢, namely

Spe=for " ¢
Here, F (equal to 2 or 3) is the (Euclidean) dimension of the pore network and Dy is the mass
fractal dimension of the percolation cluster (equal to 1.82 for 2-D Invasion Percolation (IP)
with trapping, and 2.53 for 3-D IP with or without trapping, Feder, 1988). The dependence
in (1) was established regardless of the nucleation sequence (instantaneous or sequential) or
the particular regime of bubble growth (see Li and Yortsos, 1995a, 1995b).

The presence of gradients will affect the above scaling. Pore-network simulations con-
ducted by McDougal and Sorbie (1999) and Wang and Mohanty (1999) in the related topic
of gas condensation, showed that S,. decreases as the hydrostatic pressure gradient increases,
a trend also anticipated in Scherpenisse et al. (1994). In a parallel study (Tsimpanogiannis
and Yortsos, 2002), we have analyzed the effect of gravity and/or viscous forces on S,., and
developed scaling laws [or the dependence of Sy on f,; and on two dimensionless parameters,
the Bond and capillary numbers, defined respectively as

Apgk

B=—"— and Ca:% (2)
Y Y

Here Ap denotes the density difference between liquid and gas, k is permeability, v the
liquid-gas interfacial tension, ¢ the liquid flow rate and p the liquid viscosity. Equation (1)
is obtained in the limits B < 1 and C'a < 1 (more specifically, B < 107° and Ca < 1077),
which are the regions of interest of this chapter.

In many practical cases, pressure depletion is due to liquid withdrawal at a constant

flow rate. Experimental work in consolidated porous media with light oils was reported by
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Firoozabadi et al. (1992), Firoozabadi and Aronson (1999) and Egermann and Vizika (2000).
These studies focused on the critical gas saturation, which was found to be an increasing
function of the liquid withdrawal rate. As before, this finding was explained by the increasing
number of nucleation centers, from which gas clusters grow, at larger depletion rates. Sheng
et al. (1999a) and Renard et al. (2000) in two recent reviews focused on aspects of solution
gas drive related to the primary recovery of heavy oil.

A modeling attempt to capture the gas phase growth, but not the preceding nucleation
period, in an experiment at a constant rate of withdrawal, was made by Firoozabadi and
Kashchiev (1997). These authors used an effective continuum model with bubble growth
driven by diffusion. The gas phase is modeled as a collection of effective bubbles, mass
transfer to which is approximated by simple expressions. Although the paper discusses rate-
dependent nucleation using classical expressions (see also below), the nucleation issue is in
fact bypassed, in that nucleation fraction, the maximum supersaturation, or the effect of
depletion rate on the number of bubbles nucleated, are not actually predicted or calculated.
Rather, the latter quantities are inferred from the experimental results, and subsequently
used as parameters for the gas phase growth following the nucleation period.

Experiments on pressure depletion driven by constant liquid withdrawal rate, particularly
with heavy oils, were reported by Pooladi-Darvish and Firoozabadi (1999), Tang and Firooz-
abadi (1999), Kumar et al. (2000), Andarcia et al. (2001), Arora and Kovscek (2001) and
Kamp et al. (2001a, 2001b). In two very recent studies, which appeared at the same time
this work was being written, Kamp et al. (2001a) and Arora and Kovscek (2001) presented
effective continuum models to interpret the pressure depletion of heavy oils, focusing, in par-
ticular, on the foamy oil issue. Because of the high viscous forces in these experiments, these
models must also account for two-phase flow, which was done using conventional relative per-
meability functions. In the present context, these studies are of interest insofar as nucleation
is concerned. The latter is incorporated in the form of rate-dependent nucleation in Kamp et
al. (2001a), and in the form of activated cavities in Arora and Kovscek (2001). Nucleation
parameters were estimated to match experimental data (see more discussion below).

The objective of this chapter is to provide a comprehensive model both of the nucleation

and the gas-phase growth periods, until the onset of the critical gas saturation. For this
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purpose, an effective continuum model will be developed. If used to model the later stages
of bubble growth, where gas occupies several pores and is influenced by the pore geometry,
topology and capillarity (e.g. see Li and Yortsos, 1995a, 1995b), effective continuum models
have obvious drawbacks. However, they may be adequate for describing nucleation and the
early stages of bubble growth. The last two, particularly the nucleation sequence, are the
main areas of interest of this chapter. We focus on the effect of the nucleation characteristics
on the maximum supersaturation, the nucleation fraction and the critical gas saturation,
and provide an analysis of the effect of various parameters, such as pressure decline rate, on
these quantities. Results for the gas phase growth following the conclusion of nucleation are
also presented.

The chapter is organized as follows: First, we formulate the problem. A scaling analysis
allows to recast the problem in a more useful form, to be used for direct predictions. Then,
numerical results are analyzed. It turns out that for their interpretation, a simplified model
of the nucleation and growth periods can be developed. We use the simpler model to obtain
expressions for the maximum supersaturation as a function of geometric, thermodynamic and
process parameters. This allows to obtain useful relations for the dependence of the final
nucleation fraction and the critical gas saturation on process parameters. The theoretical

predictions are then compared against experimental results.

II. MATHEMATICAL FORMULATION

Consider the heterogeneous nucleation and growth of multiple bubbles from a binary
liquid, within an effective porous medium. The process is driven by the continuous increase
in the supersaturation of the system, KCy (t) — P,(), where we have assumed for simplicity

linear thermodynamic equilibria using Henry’s law

P, = KC.(1) (3)

Here, K is the solubility constant, C.(t) the time-varying mass concentration, P stands
for pressure, and subscripts g and [ denote gas and liquid, respectively. More complex

thermodynamics can certainly be incorporated, but the salient features are manifested with
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the simpler model (3). As noted above, the change in supersaturation can be imposed in two
different ways, one in which the pressure declines at a constant rate, and another in which
the liquid is withdrawn at a constant rate. Because gravitational and/or viscous effects are
not included, the pressure is spatially uniform. Instead, emphasis is placed on nucleation

and on the effect of the increase of supersaturation on the growth of the gas phase.

a. Nucleation

As the liquid pressure declines, nucleation sets in. Yortsos and Parlar (1989) reviewed
the gas-liquid phase change in porous media and concluded that heterogeneous nucleation
is the most plausible mechanism in solution gas drives (see also more recent reviews by
Laaksonen et al., 1995, and Jones et al., 1999). In one model, nucleation occurs when a gas
bubble, either pre-existing or nucleated inside a cavity at the pore walls, becomes unstable
and detaches or otherwise occupies the host pore body (Fig. 3). This type of mechanism is
in agreement with visual observations from micromodel experiments (Li and Yortsos, 1995a;
El Yousfi et al., 1991, 1997; Bora et al., 2000, and Dominguez et al., 2000). In the cavity
model, the condition for the activation of a nucleation site is when the trapping capillary
forces are overcome for the first time (Fig. 3). This occurs when the following condition is

satisfied between the radius of the nucleation cavity, r., and supersaturation,

2~cosb

= KCw(t) — Pi(t) (4)

Te
where 0 is the contact angle (0 < 6 < 7/2). In this model, the onset of nucleation is
not kinetically related to the degree of supersaturation, as for example, in conventional
approaches (Firoozabadi and Kashchiev, 1997), but rather depends on the size distribution,
a.(r.), of the nucleation cavities.

Consider, now, the activation of nucleation sites. With the decrease in the liquid pressure,
the right-hand side of (4) increases, eventually becoming positive. Then, various cavities
satisfying (4) become activated and their corresponding host pore bodies occupied by gas.
At any time, the current nucleation fraction, f,, defined as the number fraction of pores that

contain sizes which have been activated, is
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fi= [ aulrydr (5)
where r. is an implicit function of time, through (4). Equation (5) implies a zero nucleation
fraction at zero supersaturation (r. — oo) and a nucleation fraction of one at infinite super-
saturation (r. — 0). The cavity size distribution, a., pertains only to the largest cavity in
any given pore (as this cavity will be activated first). The actual number of bubbles contained
in a given pore may be larger. We will assume that a number of bubbles, npg, are contained
in each activated pore. Parameter ng will be taken equal to 1, for the cavity model, as this
is suggested in the micromodel experiments, but will be kept arbitrary for rate-dependent
heterogeneous nucleation. Equation (5) slightly overestimates the true nucleation fraction,
since pores containing sites to be activated later, may already be occupied by gas, due to
the growth of gas clusters from neighboring pores. A more appropriate expression in such a

case would be

% = (1 - Sg)% [/:O ozc(r)dr] (6)

where S, is the gas saturation. However, in most cases, nucleation terminates well before
gas bubble growth has occurred to any substantial degree (S, < 1), thus (5) should be an
excellent approximation.

It is interesting to illustrate the dependence of f, on the various cavity size distributions.

For a Rayleigh distribution

mr 7TT'2
oulr) = rze (~ 155 )

where r¥ is a characteristic (here the mean) cavity size, equation (5) reads

2 2
fi=ew (<55) e |t =7 ®
This exponential relation bears a superficial resemblance to classical nucleation (see below),
a result, however, which is purely due to the form of the Rayleigh distribution. Different
distributions will result in different functionals. For example, we will also consider stretched-

exponential or log-normal expressions of the form
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fq =exp (— ar}”) or f,= §erfc (\/%CU) (9)
respectively, where n is a positive exponent and o is a measure of the variance. The type of
assumed distribution influences the results to be obtained, as will be demonstrated below.
In comparing with the experimental results, we postulated a size distribution and then
determined its parameters by fitting with the experimental data
As long as the level of supersaturation increases with time, the right-hand-side of equa-
tion (8) also increases, implying that additional sites become activated, and the nucleation
fraction continuously rises. This is consistent with experimental evidence of sequential nu-
cleation reported by Li and Yortsos (1995a), Hawes et al. (1997), Mackay et al. (1998) and
Bora et al. (2000). After the supersaturation reaches a maximum (local or global), equation
(8) predicts a decreasing f,, which is unphysical. Therefore, in segments of decreasing su-
persaturation the nucleation fraction is assumed constant. When the supersaturation goes
through a global maximum, it signals the end of the nucleation period, in which case the
fraction of pores ultimately activated, f,, will be given by equations (8) or (9) at the time
of the maximum supersaturation.
The fraction f,; can be directly related to the number of bubbles nucleated per unit pore
volume, Ny, a quantity used in Firoozabadi and Kashchiev (1997) to quantify nucleation.

Assuming ng = 1, we have

(10)

q where N7 is the total number of pores and V, is the total pore volume. By noting that

V, = NrVj, where Vj is a typical volume of a pore (site), we can further write

qu
Ny = 11

q This allows us to relate the nucleation fraction to experimental values of Ny (see below).
We note, in advance, that in typical experiments, f,s is very small, of the order of 1072 —107°.
A different approach is to use rate-dependent heterogeneous nucleation. Consider the

nucleation rate expression
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dNy B 167> f
dt 3kBT([(COO — P1)2

where K. is a heterogeneous rate constant, f is a dimensionless number expressing the

= Kperexp

(12)

wettability of the medium vis-a-vis nucleation (ranging between 1 and 0 for perfectly ho-
mogeneous and perfectly heterogeneous rate-dependent nucleation, respectively), and kg is
Boltzmann’s constant. Both K}.; and f can be determined from the matching of experimen-

tal data. Using the equivalent of (11) we can express (12) in terms of the nucleation fraction

fas

dfy — KpetVs 167~ f

dt np xP _3kBT([(Coo — P1)2

Compared to (8), equation (13) contains an explicit rate dependence, while the dependence

(13)

on parameters, such as +, is different from the previous, as expected. Both these models will
be considered below.

Through the nucleation process, nucleation centers are activated sequentially, giving rise
to evolving gas clusters, which grow by mass transfer from the liquid to the gas. Sequential
nucleation results into clusters of different ages (the time passed since a particular class
of gas clusters has been nucleated/activated). Let w(7) be the number density of clusters
nucleated per total number of pores. Then, w(7)dr is the number of new clusters per total

number of pores that become activated in the time interval between T and 74 dr. Evidently,

w(T)dr = ngdf, (14)

This relation will be used below to simplify the expressions for the gas phase growth.

b. Gas phase growth

During the growth of the gas phase we can roughly distinguish two periods, one in which
the growth is within single pores and another corresponding to gas clusters spanning several
pores (Figs. 2a, 2b, respectively). The first period extends throughout and following the
nucleation stage, the second is the later stage of growth. In either, growth is driven by

diffusive mass transfer of the dissolved gas. During the first period, mass transfer results
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mostly in the increase of the volume of the gas. During the second, it also leads to an increase
in the gas pressure, in case the interface becomes pinned at pore throats (Fig. 2), until the
time when the smallest capillary threshold at the throats is overcome. Following this, the gas
cluster volume expands accordingly. In general, different clusters compete for the available
solute in the liquid, the relative mass transfer rates depending on their geometry and relative
position. These dynamics were analyzed in Li and Yortsos (1995a, 1995b).

In the absence of competition between adjacent clusters, an isolated cluster j grows at
a rate which is proportional to its effective radius, R;(¢,7), and the driving force Co, — C;
where (', is the far-field concentration and C; the equilibrium concentration at the gas-liquid
interface. We will proceed, therefore, by assuming that mass transfer is by quasi-steady-state
diffusion and that the gas is ideal. Then, we can write the following mass balance for a

growing cluster

My\ d o .
(R T) = (PV,) m ATAR D(C = () (15)
g

where M, is the molecular weight of the gas, R, the ideal gas constant, 7' the temperature,
V, the gas cluster volume and D the diffusion coefficient. The mass transfer term in (15) was
obtained assuming quasi-steady-state diffusion to a spherical bubble. This is true even for
ramified fractal clusters, as was verified by Satik and Yortsos (1996) for a percolation cluster.
Dimensionless parameter A is an O(1) geometric constant to account for possible corrections
to the mass transfer model depending on the growth period (see below). In equation (15)
we have neglected the capillary pressure, P., which in typical applications is small compared

to the liquid pressure. From Henry’s law, we also have

PU_PI—I'PCNPI

Oi:K_ K K

(16)

where the second equality is again an excellent approximation in the typical applications
examined here.
The gas volume V; takes a different expression in the two different periods. For growth
within a single pore, V, = V. (%)3, where V. is a characteristic cavity volume (defined here
4 B

. Dy
as 5mr2?). For growth of a cluster spanning several pores, we have V, ~ A*V; (r—*) , where
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Vi is the average site volume, r7 is a characteristic pore body size, Dy is the mass fractal
dimension, equal approximately to 2.5 for a 3-D cluster, and A* is a dimensionless geometric

prefactor. To capture both periods with the same equation we write

AV d [ (B
R, ) dt |"'\

* «\ D
with the understanding that D; varies between 3 and 2.5, and A between 1 and AVVS (r—c) f,

== 47T)\R]D(COO — CZ) (17)

during the nucleation period and growth periods, respectively.

The nucleation period and the early part of the growth period are adequately represented
by equation (17). However, growth during the later stages of the second period, where gas
clusters span several pores, cannot in reality be captured by (17). Competing clusters affect
growth rates in a non-trivial manner. The latter would still be proportional to a mean
driving force, C'y, — C;, where now C', is the volume-averaged concentration in the liquid,
and R, stands for the average size of a cluster. However, the mass transfer coeflicient A
may be variable in time and space, while coalescence of clusters will also occur. Accounting
for these complexities is a difficult problem, the solution of which requires a pore-network
approach (Li and Yortsos 1995a, 1995b).

Under the above assumptions, the gas phase will be described as a collection of clusters

of size R(t,7), the dynamics of each of which is described by equation (17), with R; replaced

( )
T.C

subject to the initial condition R(7,7) = r.(7), where r, satisfies (4). In the formulation of

by R, namely

(AVCMw) 0 — ATARD(Cy — () (18)

R, T ) Ot

Firoozabadi and Kashchiev (1997), the equivalent of equation (18) was integrated under a
number of simplifying assumptions to obtain an explicit dependence of R on time. Such an
approximation will not be used here.

Consider, next, the mass balance for the solute in the liquid phase. We have
[Vo(1 —5,)Cs] = =47 AD(Co, — Ci)NT/ R(t, )w(r)dr — CouQ(1) (19)

d t
dt 0
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where the integration is over all existing clusters and Q(t), the volumetric flow rate of the
liquid out of the porous medium, is in general a function of time. Equivalently, we can

rewrite (19) as

d
dt
where we introduced the notation ]%(t, f(m)) = R(t, ), for the radius of a cluster at time ¢,

[V,(1 = S,)Co] = —47AD(Co — C:)Nyng /0 " R r = c.00) (20)

nucleated when the nucleation fraction was f(7). For the case of instantaneous nucleation,
e.g. as postulated in Firoozabadi and Kashchiev (1997), ]%(t,fq) = R(t)6(f, — fyr), where
fqr 1s the final nucleation fraction and ¢ is the Dirac delta function. Then, the above integral
reduces to R(t)f,;. However, f,; is the very quantity we must determine, is not known a
priori, and needs to be computed as part of the overall process, as discussed in detail below.

The volumetric flow rate Q(t)/V;, is related to the pressure decline rate through the mass
balance on the liquid, which reads

Gl = 5] = 4 21

where p; is the liquid density. For a slightly compressible liquid,

pr = pyexple(F — B;)] (22)

where the liquid compressibility, ¢, takes values in the range 1.45 x 107* — 1.45 x 10~3MPa "
Then,

Q) P, ds,
T 2 TR

Finally, the gas saturation is related to the radius of the growing clusters and the nucleation

(23)

fraction through the relation

S, = Av /Ot (@) v w(r)dr = Avng /qu (M)Df df, (24)

7

(&

where we introduced the volume ratio v = % This parameter can be calculated from

knowledge of the average cavity and pore sizes. Subject to the relevant initial conditions,
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the system of equations (18), (20), (23) and (24) can be integrated. Integration proceeds

until the time when the critical gas saturation (1) is reached.
c. Dimensionless formulation and scaling

For the solution of the problem, we recast the equations in dimensionless form. Denote
dimensionless quantities by subscript D and scale concentrations by C}, = %, pressure by

Py. where subscript b refers to the bubble point, and cluster size by r%. The choice of the

characteristic time depends on the process. We will take ¢* = %, where @ is the pressure
decline rate, for the case of constant pressure decline rate and t* = %, for the case of liquid

withdrawal at constant volumetric flow rate ().
For the case of constant pressure decline rate, the dimensionless mass balances for the

solute in the gas and liquid phases read

aégf H2 - ADf
(1= to)=g; = 7, (Cpe = Po)p + B (25)
and
dCpeo 1 Ja 4
(1= 8) =22 = - (Cowe = Por) [ Binlto, f)df, = Ts(1 = 5,)Chc (26)
D 1 0

where we used the equilibrium relationship

Cpi = Ppi(tp) (27)

and assumed that the process begins ({p = 0) when the pressure is at the bubble point. In

the above, we have defined three dimensionless groups,

B Voa B Via I — R,T
N Ar XD P, Npr N 4r XD Pyngr:’ 2T vngM, K

1T, and I3 =P, (28)

Parameter II; expresses the ratio of the characteristic times for diffusion at the pore scale to
that for the decline of pressure. Although a small number in typical applications (see Table
1), it plays a key role in determining the nucleation fraction and the critical gas saturation.

Parameter I1; is the product of the geometric constant vng with a thermodynamic constant,
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expressing the ratio of the equilibrium concentrations in the liquid and the gas phases. These
parameters are either known or can be estimated from comparison with experimental data.

For the case of constant liquid withdrawal rate the analogous equations read

ORI 5 dPp 1L A
Ppi(t D ! = —(Cpes — P 2
pi(tD) dip + Rj T AH4(CD pi)Rp (29)
and
dCpes 1 fa A dS
(1= S22 = = (Cpoe = Poi) [ Bop(t f)df, = Cowe + Con T2 (30)
dtD H4 0 dtD
where
Vs
11, © © (31)

- ArAXDNrnprs: - Ar XDV, ngr:
Here, parameter Il expresses the ratio of the characteristic time for diffusion to that for the
emptying of the pore volume. Typically, this is also a small number (Table 1). As will be
shown below, I1,/115 plays a role equivalent to II;.

Finally, in both cases, we have the following relations: The liquid mass balance becomes

dPp; 1 ds,
- 1 32
dtp  T5(1—S,) (dtp ) (32)

The gas saturation is

fa 4
S, = Avng /0 Rtp, £,)P1df, (33)

The cavity size that becomes activated at a given time is

"~ Opeo(tp) — Poi(tp)

where we introduced the dimensionless cavity capillary pressure threshold, 11, = %. The

(34)

TDq

latter is an important parameter in the overall dynamics. In terms of the supersaturation

S = CDoo(tD) — PDl(tD) (35)

or, more conveniently, in terms of the rescaled supersaturation
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Sp = —/— (36)

equation (34) can be further expressed as rp, = sp'. The nucleation fraction is then given

by the various expressions

T 1 1 Insp
fq=exp (—Q) , Jq=exp (_US”D) , o= 561{0 (—E) (37)

depending on the size distribution used, or by

dfy _ ha
% = hlexp (_3_2) (38)

in the rate-dependent nucleation case. In the latter we introduced the dimensionless param-
eters
Kpet* Vs 16m~3 f

hy = — "~ d hy = —F—— 39
" ng an ? 3P02kBT ( )

Parameter hy is inversely proportional to II; or Il4. If this dependence is extracted, then
equation (39) reads as

¢ ¢

hy =—=— or h; ==, where (=

I, I’

SIRTE
% (40)
The initial conditions for the simulations were Cp., = 1, Pp; = 1 and Rp(7,7) = sp' (7).
The above system contains one key parameter, Iy or Il4, describing the effect of the rate
of increase of the supersaturation. Because it is small, a further rescaling of the nucleation
fraction and the cluster size is necessary. After some analysis, it is not difficult to show that
for the cavity nucleation model, Ehe following scaling is valid (for example, for the constant
pressure decline rate), f, ~ HlDf—f_l and f,RPs ~ O(1) (where, given that the nucleation
fraction varies only during the first period, Dy = 3). This scaling contains the main effect

of the pressure decline rate on the nucleation fraction. Thus, we may define a rescaled

nucleation fraction

b= 1 o oy, (B2) (41)
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and rescaled cluster sizes

1. 11 % A
PD = H12 RD or pp = (H—4) RD (42)
3

in the two different cases. In the new notation, the governing equations become as follows:

For the case of constant rate of pressure decline,

(1 —tp) =2 = —2spp + pp’ (43)
D

and

ds

(1— Sg)%

= s [ poltpsdn)dey — (51— ) (1= S 415, (44)

while for the constant liquid withdrawal rate,

8,0? p,dPp; 1y
s Pry(Lp) 220 4 [1,p0r 200 _ 122 4
sPpi(lp) ot + lspp dip 4 5Pp (45)
and
ds bq ds
a1l = S) o = = [ pnltn,6,)do, + (—g - 1) [s(Poi+5)=1]  (40)
tp 0 dtp

The last two equations are also accompanied by equation (32). The gas saturation expression

for either case becomes

Sy = Avns [ pltn 60)"rds, (47)

For the case of rate-dependent nucleation, the rescaled nucleation fraction reads as

d¢q Lk h2
Tt hiexp (——) (48)

_2 -2
where h] = hqll; > or A} = Iy (g—;‘)) * in the respective cases. The solution of the system of

the rescaled equations will be sought numerically in the following sections.

III. NUMERICAL RESULTS
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The system of differential equations was solved numerically using a fourth-order Runge-
Kutta method (Press et al., 1994). A typical calculation requires the time to be marched
forward. A difficulty is that the total number of classes of gas clusters is not known a priori,
but it is an outcome of the computation during the nucleation process. In theory, this
number is infinite, and the problem becomes one of solving an infinite system of differential
equations. In practice, the number of equations is constrained by the size of the time step.
At each time step we examine whether nucleation of a new class of gas clusters is possible,
namely whether the supersaturation is increasing. If so, a new class of gas clusters is added.
Then, the simultaneous growth of all different classes of clusters is computed. When the
supersaturation reaches a maximum, further nucleation stops. Computations during the
nucleation process were also facilitated with an asymptotic analysis, to be described in more

detail later.

a. Constant Pressure Decline Rate

In the typical case, parameters which can vary over a significant range are 11; and II.
(and possibly 1I3). An additional variable is the type of the cavity size distribution used in
the calculation of the nucleation fraction. The sensitivity to these parameters was examined
in the simulations.

The effect of II; and II. on the rescaled nucleation fraction, ¢,, the mean rescaled radius,
pPD.m, the rescaled supersaturation, sp, and the gas saturation, S, is shown in Figs. 4-7.
In these calculations, we used a Rayleigh size distribution, Il; and II3 were kept constant
to the values 2.33 x 10° and 8.7 x 1072, respectively, while II; varied over several orders of
magnitude (from 107 to 107%).

The variation of ¢, as a function of the dimensionless time, {p, and of the parameters
II; and II. is shown in Fig. 4. It is found that ¢, increases very rapidly in a small time
interval, and then stabilizes to a final value at the conclusion of nucleation. Such behavior is
characteristic of nucleation processes, and has features similar to those reported by El Yousfi
et al. (1991, 1997). It is demonstrated here for the first time for the case of nucleation from
pre-existing, trapped gas. The rapid variation of ¢, is approximately a stretched exponential

of the form
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for the different cases, as during the early nucleation period we have s ~ tp (see below).

Equation (49) suggests that, e.g. for the Rayleigh distribution case, a plot of —Ing, vs.

{5 is linear with slope ﬂ:g. Because of the resulting very sharp rise, this process can be
interpreted as instantaneous nucleation (IN). However, proceeding with such an assumption
does not allow for the computation of the final nucleation values. Instead, we must consider
the details of the approach to the final values using the progressive nucleation model, used
here. Fig. 4a shows that for constant II., the effect of II; on the rescaled nucleation fraction
is not very significant at small II;, but that it becomes stronger (roughly a power law) as
IT; takes larger values. The relatively weak dependence on II; verifies the correctness of
the scaling (41). At the same time, the stronger dependence at larger 11y is significant, and
as shown below, is needed in order to explain experimental data. In terms of the actual
nucleation fraction, these findings imply that an increase in II; leads to an increase in the
final fraction, f,;, according to a power law scaling, namely f,; ~ ng at very small 1I;,
and f,; ~ II; at larger II;. The effect of II. is also significant. As II. increases, the final
nucleation fraction ¢, (hence f,s) decreases (Fig. 4b). The increase of f,; with an increase
in II; and a decrease in II. is expected. Larger values of II; result from a faster decline
rate, a greater departure from equilibrium, the establishment of a greater supersaturation,
hence the activation of more nucleation sites. Likewise, smaller II. imply that nucleation is
facilitated at increasingly smaller supersaturations, as larger size cavities can be activated.
An approximate analysis shown below will provide an explanation of the behavior observed.
Fig. 5 shows the corresponding effects on the mean rescaled size pp,,. There are two
regions, one corresponding to the nucleation period, and another to growth after nucleation.
The two periods can be roughly approximated as power-law regimes (as a function of time)
with slopes approximately equal to 1 and 0.63, respectively. The effect of 1I; is relatively
insignificant at small II;, confirming the validity of the scaling (41). The effect of Il. is
more significant. Smaller values of 11, lead to an increase in the nucleation fraction, and a
corresponding decrease in the size of the gas clusters at the conclusion of nucleation.

Fig. 6a shows plots of the rescaled supersaturation sp as a function of time for different
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IT; and II.. At the beginning of the process and during nucleation, the supersaturation
increases with time almost linearly, suggesting that C'p., does not vary significantly in that
period. As nucleation and growth take place, the rate of supersaturation increase slows
down and, at some point, sp reaches a maximum value, sp,. It is at that point where
nucleation terminates. Following this point, the supersaturation decreases monotonically.
The value sp,, is plotted in Fig. 6b as a function of II; and IlI.. Note that sp,, is in
general of the order of 107!, The dependence on the parameters is weak at small II; and
large II., but becomes stronger at larger II; and smaller II.. This behavior is consistent
with that of the nucleation fraction discussed above. From a compilation of experimental
results, Scherpenisse et al. (1994) suggested that sp,, behaves roughly as a power law of
the pressure decline rate with exponent 1/4. Our analysis indicates that such a power law is
not universally valid, although it may apply in a certain range of Il;. It is interesting that
the sensitivity of sp,, to Il. and II; (and in particular to the latter) is not as large as one
might have intuitively anticipated. Nonetheless, its effect on the nucleation fraction can be
significant, due to the exponential dependence, as can be seen for example in the following

expression (for a Rayleigh distribution)

m Df
Ash, (Dy—1)

®q = exp InIly (50)

Because of the exponential dependence on s5° and because sp,, is of the order of 107!, even
small changes in sp have a very large effect on the nucleation fraction. This large sensitivity
enhances the weak sensitivity of sp,, on II; and  and leads overall to a non-trivial effect.
The evolution of the gas saturation is shown in Fig. 7. It follows that of f,, during
the nucleation period, and that of pp,,, during the period of growth. The latter gives a
power-law segment of slope 0.63. The effect of Il. is indirect, in that smaller values of II.
promote larger values of S, due to an increase in both f,; and pp. The difference between
equilibrium and actual curves depends on the value of Il, increasing as the latter increases,
but remaining constant following the end of nucleation. Fig. 8 shows the effects of 1I; and
II. on the critical gas saturation Sy.. In our work, the latter pertains to the formation of a
sample-spanning cluster, in the absence of viscous or gravity effects. Thus, Fig. 8 actually

reflects the variation of f,;. Fig. 8 shows that S, can be considered a power-law both
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of II; and of II. with exponents that vary between 0.16 and 0.25 with respect to II; and
between -0.33 and -0.22, with respect to Il., respectively. The trends are consistent with the
experimental evidence (Scherpenisse et al., 1994; Bora et al., 2000). In Fig. 8 we allowed
Sye to take values that may be larger than what is required for the validity of our model.

This was done only for the shake of parametric sensitivity.

b. Constant Rate of Liquid Withdrawal

Except for the evolution of pressure with time, similar results are obtained for the case
of constant rate of liquid withdrawal. The effect of the parameters is also very similar to the
constant pressure decline rate, subject to the change II; — II;/Il; and to the rescaling of
time by II3. Thus, we anticipate a scaling of the form: f,; ~ H§ at small Iy, and f,; ~ Il4
at larger Ily; and of the form: f,; ~ II7% at large Il., and f,; ~ 17! at smaller IT,. The
critical gas saturation has the analogous scaling: S,. ~ I15* at small I1,, and S,. ~ I15*¢ at
larger Il4; and S, ~ I17%% at large II., and Sge ~ 1799 at smaller I14. The discussion and
interpretation of the findings is similar to the case of constant pressure decline rate and will
not elaborated further. Additional figures and discussion are presented in Tsimpanogiannis
(2002).

What is different in the case of constant rate of liquid withdrawal, is the evolution of
pressure with time (Fig. 9). In the calculations, shown in Fig. 9 we used a Rayleigh size dis-
tribution, II; and II3 were kept constant to the values 6.84 x 10° and 1.5 x 1072, respectively,
while I, varied over several orders of magnitude (from 1072 to 107°). During the nucleation
period, the pressure declines almost linearly with time, Pp; &~ 1— 1%), following equation (32).
This decrease slows down as nucleation sets in, and when the maximum supersaturation is
approached, the pressure reaches a local minimum. Following this minimum, the pressure
increases, reaches a maximum and subsequently decreases, roughly paralleling the equilib-
rium curve. The pressure minimum decreases as 114 increases (Fig. 9), the dependence being
roughly the same as that of sp,,, namely weak at small [I; and stronger at larger 114 (where
the 1/4 power law may be applicable).

The non-equilibrium behavior reflects the competition between mass transfer and solute

availability and can be explained as follows. The ideal gas law requires P,V, = nR,T". The
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rate of change, dn/dt, of the moles in the gas phase is dictated by the mass transfer rate. At
the end of the nucleation period, near sp,,, this rate is the highest. Now, if the rate by which
the gas volume expands, dV,/dt (which is almost equal to @), is not sufficiently large, the
increase in volume due to mass transfer cannot be compensated, thus the pressure, P,, must
increase. An increasing pressure leads to a successively decreasing supersaturation (since C;
increases), thus to a continuous decrease of the mass transfer rate. Eventually, this decrease
becomes sufficiently large for the volume expansion rate to balance mass transfer. Then, the
pressure goes through a maximum, following which it begins to decline.

In the above, we used the cavity-based nucleation model. We must stress that qual-
itatively similar results were obtained for the model based on rate-dependent nucleation.
These will not be shown. In a subsequent section, the numerical solutions obtained will be
compared against available experimental results. However, before doing so it is beneficial to

provide an interpretation of the main findings, using a simpler model.

IV. INTERPRETATION USING A SIMPLER MODEL

To interpret the results obtained we consider a simpler model that captures the essential

features of the problem. Consider, first, the nucleation period.

A. Nucleation

a. Constant Pressure Decline Rate

To approximately describe the nucleation period, we simplify as follows the equations for

the gas phase growth and the supersaturation

dpi)
— = [l 51
ot 28PD ( )
and
dS bq(s)
R 3/ ppdo, (52)
tD 0
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respectively. These are subject to the initial conditions

e
0)=0 and = — 53
) =0 and pofr.7) = 53
At early times and for small II;, the approximate solution of (51)-(53) is
11 H2 11 2 _ 2 %
s~ tp and pp ~ e 2|s” — s(7)7] (54)

s2(T) 3
The dimensionless supersaturation is equal to the dimensionless time and the mean cluster
size becomes eventually a power-law of time with exponent 1. These results are consistent
with the numerical results during the nucleation period (Figs. 5 and 6).
We will use (52) to approximate the approach to the maximum supersaturation. The
ds

latter is reached when £ = 0, namely when
D

¢q
s . ppdo, ~ 1 (55)

1

From (54) we approximately read, pp ~ (%) ? s(tp). Then, using the definition of ¢, leads
to an algebraic equation for the rescaled maximum supersaturation, sp,,. For example, for

the case of Rayleigh distribution we have the equation

s

1 3
Py — 2lnsp, ~ InA — §1n3 - §1HA (56)

where we introduced the combination of variables
A =1011.°10, 2 (57)

and for the case of constant pressure decline rate, A = 1. Likewise for the case of a stretched

exponential, and of a log-normal distribution, we have

1
U_lsl_)?n —2lnsp,, ~ InA — §1n3 - glnA (58)
s2 erfc % ~ 2\/§A%A_1 (59)
Dm \/50_
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where, again, for the constant pressure decline rate, A = 1. Equations (56)-(59) represent
key findings of this chapter. First, they suggest that the dependence of the maximum
supersaturation on the various parameters, other than the thermodynamic ones, enters only
through A. The solution of (56) for the Rayleigh distribution is plotted in Fig. 10, as a
function of A. We see that sp,, varies weakly, in the range 0.1 — 1, as A varies over several
orders of magnitude (between 107'° and 10°). For small A, the maximum supersaturation
is practically constant. As A takes larger values, sp,, increases weakly and eventually more
strongly, as A approaches the order of one (compare also with Fig. 6). Also shown in the
logarithmic coordinates of Fig. 10 is a line with slope 1/4, corresponding to the 1/4 power law
postulated by Scherpenisse et al. (1994) to describe several experimental data. Although the
power law does not capture the overall behavior, it can approximate the results in a certain
window of A. Plotted in the same figure are also the results of the numerical solution
of the full problem for a number of different parameter values. The agreement between the
numerical results and the simple analytical model is remarkable and demonstrates the validity
of the simple equation (56). For the stretched exponential nucleation model, the variation
is much stronger in the logarithmic plot. The solution of (56), (58) and (59) corresponding
to different distributions was investigated in detail in Tsimpanogiannis (2002). As the tail
of the cavity size distribution becomes longer (which occurs for smaller values of n > 0
and/or for larger o) the dependence of sp,, on A becomes stronger. In addition, the region
where a power-law scaling with exponent & 1/4 tentatively fits the results, increases and
also corresponds to a range with smaller values of A.

Equations (56)-(59) can be used to approximate the final nucleation fraction, ¢,f, and

the time (or pressure) at the end of nucleation. For all cases we have

NI

Gos R SpllT (%)_ AT (60)

thus, the final nucleation fraction reads

I, "%
fur TN (S2) A7 (61)

This equation represents another important result of this chapter and leeds to the following

conclusions:
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(a) In the region where sp,, varies weakly with A (at small A) the final nucleation fraction
varies as a power law of II;, with slope equal to 3/2. This is consistent with the anticipated
increase in the nucleation fraction as the rate of pressure decline increases. The equation
suggests a power-law dependence on the capillary properties of the cavity. One should
interpret this carefully, however, since information on the cavity properties is included in all

three parameters 11, Il and II. (through r* and v). For example, if we were to consider only

*

=, we would find the power-law scaling f,; ~ 7%, indicating a smaller

the dependence on r
nucleation fraction as the cavity size decreases. This is as expected.
(b) In the region where sp,, may be approximated by a power-law dependence on A, e.g.

as Spm ~ A™. we have the scaling

Jap ~ AR (62)

Such a dependence on A leads to a decrease in the exponent in the power-law scaling of f,;

on II;. For example, if we take m ~ 1/4 (as suggested by Scherpenisse et al., 1994), we read

4

qu ~ 11 and qu ~ T:E (63)

A linear dependence of the rate on II; was postulated in Scherpenisse et al. (1994) and
McDougal and Sorbie (1999), to fit available experimental data.
(c¢) The time, hence the pressure, P,,, when nucleation ends can be approximated using

(54). We find

% ~ .spm (64)
thus, the supersaturation at the end of nucleation is directly related to sp,,. It follows that
in the region where sp,, is insensitive to A, the pressure supersaturation varies only linearly
with II.. A rate dependence, observed experimentally in some cases, enters only insofar as
Spm varies with A. Assuming again a power-law variation with m =~ 1/4, the maximum
pressure supersaturation varies as follows

P, — P, 1 P, — P, —2

Pb ~ Hil and T ~ Tc s (65)
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The 1/4 power-law dependence was found to fit well experimental data (see below). It
is interesting that the maximum supersaturation relative to the bulk bubble point is only
weakly dependent on the rate of pressure decline, for example varying by only a factor of 2

when the pressure decline rate varies by two orders of magnitude, in the range considered.

b. Constant Rate of Liquid Withdrawal

A similar analysis applies for the case of constant liquid withdrawal. After various sim-

plifications, the equations for the gas phase growth and the supersaturation read

dp?
1,20~ Tyspp (66)
dtp
and
ds K ¢q
i— ~1—(1+———k]s d 67
Ydip <+H3 w)s [ enis, (67)
respectively, where we have introduced the thermodynamic parameter k = % These are
subject to the initial conditions
(i)
s5(0)=0 and pp(r,7)= (68)
sp(T)
At early times and for small g—;‘), the solution is
o M, 12 T2 —s(r)?]]?
N — d A ——F5 69
T, P ln3 2(7) 3 ()

The early-time behavior is identical to the constant pressure decline rate, if ¢ is replaced
by tp/1l3 and II; with g—;‘) We note again, that the linear scaling of the cluster size with
time is consistent with the full numerical solution.

Proceeding as previously we find that the maximum rescaled supersaturation, sp,,, is

now given by

S5ppOg R — (70)
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where pp satisfies Eq. (69). Thus, the solution of (70) is the same as that obtained for the
constant pressure decline rate problem, except that one must replace II; with g—;‘), and take
A = g/ll;. For exactly the same reasons, the final nucleation fraction can be directly obtained
from (61). The previous analysis for the constant pressure decline rate applies directly to
the constant rate of liquid withdrawal, subject to the aforementioned substitution.

A comparison between the solution of the full problem (for the cases of the Rayleigh
distribution and a stretched exponential with n = 0.5 and ¢ = 1.0) and of the approximate
equation (70) is also shown in Fig. 10. We note an excellent agreement. The scalings
obtained are also consistent with the solution of the full equations. Additional comparisons
with stretched exponential cavity distribution, which have lower values of n and o, will be
presented below.

As noted above, a difference for the problem involving a constant rate of liquid with-
drawal, is that the pressure reaches a local minimum. To identify it, we will proceed as

follows. Integrating equation (32), we obtain

H3PD1 ~ Avqbqp% —ip+ H3 (71)

where we made the same approximation for the integral, as in (67). Finding the minimum in
pressure requires equating the derivative of (71) to zero. Using (69) for pp, it is not difficult
to show that the following equation is satisfied by sp, at that point,

st 3)~ i) (1)
: — | — (= — 2
@ (5517” " 2) Av \IT,/ \1I, (72)
where we used a Rayleigh distribution. For the stretched exponential case we have,
2-n 2 2
b ) = () (i)
qbq (38Dn —I_ o ) ~ AU H2 Hc (73)

Based on these equations, one can show that the pressure reaches its local minimum before
the supersaturation reaches its maximum, suggesting that nucleation continues slightly after
the minimum in pressure, albeit for a very brief period of time. We can solve the above to

determine the pressure minimum. For the Rayleigh distribution, we approximately find
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Pb'_Pn 23% +£
Do g, (P23 74
j2) D (35§M+g— (74)

and for the stretched exponential,

P - P, 208}, +n
—— ~Il.sp, | —=—
3 °D (303%71 + n) (75)

Given that sp, is generally of the order of 0.1, equations (74) and (75) are very similar to
those for the maximum supersaturation in the constant-pressure decline rate case (equation
(64)). Furthermore, because of the closeness of sp, to spm, we may use the sensitivity
analysis we conducted before to assess the dependence of P—"—;—f—" to the various parameters.
Thus, in the region where sp., is insensitive to A, the supersaturation % varies linearly
with II.. When sp., is more sensitive, with an assumed power-law variation with an exponent
1/4, the supersaturation at the minimum pressure varies roughly as

P, — P, (H4>% 2 1
5 ) L (76)

3
Such a dependence can be used to guide the matching of the experimental data, as discussed

below.

c. The Rate-Dependent Nucleation Model

We close this section by applying a similar analysis, but now for the rate-dependent

nucleation model. We recall the rescaled expression

" ha .
T - hiexp (—;3) (77)

_
where k] = hyII; 2. We proceed as before to evaluate the time when the maximum super-

saturation is reached. For this, we first use the relation s &~ tp, to obtain

dog .. ho
-~ hjexp (— —83) (78)

the solution of which is readily found
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en(8) ()]

The maximum supersaturation occurs when the right-hand-side of (52) vanishes, which in

this model approximately occurs when the following equation is satisfied

1 2
s1 exp (— *12 ) — 832 «/merfc <*—) = AZAT! (80)
SDm SDm
Here, we defined the reduced supersaturation s} = s/+/h; and the dimensionless parameter
- R | 5 2, _j—% H4§ 2, 1t
Ay =1Lk Ph7 0, | =115¢73RI,° or =1 (T3hy 1L, ° (81)
3
For relatively small s%, , the solution of the above reads
1 . 1 3
—— — Slnsh,, & InA — -In3 — In2 — SlnA, (82)
S$Dm 2 2

A plot of the solution of (80) is shown in Fig. 11. We note features very similar to the
cavity nucleation model, namely a region of weak sensitivity at small A, and of stronger
sensitivity at higher A,. The rescaled supersaturation for the rate-dependent nucleation
model is slightly higher in the region of small Ay, but its rate of increase at higher Ay is
weaker than for the cavity model. Given the dependence of Aj on rate, the dependence
of the maximum supersaturation could, at first, be considered stronger. For example, for
$h, to vary as a power-law of the rate with exponent m, it suffices for it to follow a power
law with respect to A, with exponent 3m/5. Interestingly, however, this higher sensitivity
is counterbalanced by the lower sensitivity to Ay at higher values of A, compared to the
cavity model. For example, if we were to demand m = 1/4, then we should consider a range
of Ay in Fig. 11 where the exponent is of the order of 3/20. As shown in the Figure, this
roughly corresponds to the same range as that of A, for the cavity model (Fig. 10).

The nucleation fraction at the time of the maximum supersaturation can be estimated

as before. We find
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As expected, the nucleation rate increases with a decreasing hy, namely with smaller values
R

of the interfacial tension v and the nucleation parameter f. The combination h{hj plays

here the role of II.. For the same reasons as before, the pressure at the end of nucleation,

which is also approximately the minimum pressure, is given by

P, - P, ,
_b'T ~ \/hashm (84)

In matching experimental data using this model, we would need to infer two parameters, the
rate constant Kj.; and the heterogeneous parameter f. This is discussed below.
Working likewise for the case of constant liquid withdrawal rate we find that the previous

equations are valid if we replace II; with %:, and take A = x/I15.

B. Gas cluster growth

The modeling of the growth regime, where nucleation has terminated, can also be sim-
plified if we consider only one class of clusters. For the case of constant pressure decline rate

we approximate

dCpes
d;; ~ —(Cpoo — 1 +tp)z — Cpoolls (85)
and
dzPs
(1= 1) = 1 (Cpm = 1+ ) + 27 (56)

where, we introduced the variable

Z = ¢qfpD (87)
and the parameter
-D
bor
ki = L (88)

The final value of the rescaled nucleation fraction, ¢,y, as well as the initial values for Cpe,
and pp needed for the calculations, are obtained from the previous analysis. Likewise, for

the case of constant liquid withdrawal rate, we have similar equations
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dCpeo 1 d=Ps
2% & ——(Cpe — Ppi)z — Cpos + CDoo/ikgz—

dtp s dtp
and
dzPs dzPs _
H3PD1 dtD + ZDf (l‘ékQ dtD - 1) = kg 1(CYDoo - PDI)Z
along with

and where we defined

(91)

(92)

To use the simplified growth model, we take initial values for Cpes, pp, Ppi, and ¢,y corre-

sponding to the time the local minimum pressure is reached. Note that Pp; might be known

experimentally, while one can take Cp., = 1 without introducing significant error.

Comparison of the full solution with the approximate model is shown in Fig. 12. We

note a good agreement. In particular, the approximate model captures well the pressure

increase, following the minimum, its subsequent leveling and the gradual decline paralleling

the equilibrium curve. The system in consideration has parameters corresponding to the

Berea sandstone experiments of Firoozabadi et al. (1992) with Q@ = 1.44 e¢m®/day. This

system will be discussed in further detail in the next section.

V. COMPARISON WITH EXPERIMENTS

a. Constant Pressure Decline Rate

The above models were subsequently checked against published experimental results. We

attempted to match the following quantities and their dependence on parameters, particu-

larly on rate: the final nucleation fraction, the maximum supersaturation, sp,,, the critical

gas saturation, Sy, and the evolution of pressure or saturation as a function of time.
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Experimental data for the maximum supersaturation, for the case of constant pressure
decline rate, were reported by Moulu and Longeron (1989) and Scherpenisse et al. (1994).
In these experiments, the maximum estimated value for the capillary number was approx-
imatelly 10~® which is well within the range of the validity of the model. In addition, the
macroscopic capillary number, Ca,, = Ca%, where L is the length of the core, was of the
order of 10~ indicating negligible viscous pressure gradients. Matching the results requires
the use of a window in the sp,, vs. A relationship, where a 1/4 power-law is approximately
observed. The corresponding windows were identified in Fig. 11 both for the rate-dependent
nucleation model and the cavity model. The combination A contains a number of geometric
variables, which are not known a priori. The cavity size distribution is also unknown. We
used best estimates for V, and a range of values for the cavity size characteristics, to indicate
the range of A where the various experimental results fall for various size distributions con-
sidered. Theory and experiments for the mixture C1/C5 in the Berea sandstone experiments
by Scherpeniesse et al. (1994) match well, assuming a stretched exponential distribution with
values n = 0.215 and o = 0.045. In these experiments we used for r} and r} the suggested
values by the authors. For the experiments involving the mixture C1/C3/C10 in a lime-
stone core, reported by Moulu and Longeron (1989), the corresponding best-fit values were
n = 0.152 and o = 0.049, respectively. These indicate a significantly stretched (long-tailed)
cavity-size distribution, with small characteristic sites (see also Table 2 for additional data
regarding the experiments).

The predictions of the rate-dependent nucleation model were also tested. Here, the

parameters to be estimated include f and the heterogeneous nucleation rate Kj.:, since

Ap~ Ko £ (93)
Matchiﬁg of the experiments of Scherpenisse et al. (1994) required the following parameter
values: f = 2. x 107* and K = 0.02119 (em3s)™! (Fig. 11). Correspondingly, for the
experiments by Moulu and Longeron (1989) the following best-fit parameter values were
found: f = 3.6 x 107® and Ky = 6.45 x 107® (ecm3s)™*. Both these sets of values are

extreme for the heterogeneous model considered.

Estimates for the final nucleation fraction for the experiments by Scherpenisse et al.
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(1994) are shown in Fig. 13. The final nucleation fraction in the experiments was estimated
as suggested by Scherpenisse et al. (1994). Then, f,; was calculated using equation (11).
As anticipated, f,s is quite small, of the order of 1071°-10~". The power-law scaling with
exponent 1, predicted by the theory in this range, is well supported by the data. Finally, a
comparison of the evolution of the gas saturation, S, as a function of the dimensionless pres-
sure Pp; = P/ P,, using the full solution for the Berea sandstone experiments of Scherpenisse
et al. (1994) is presented in Fig. 14. Good agreement is observed for the early part of the
curve, namely before the gas saturation starts to approach an asymptotic value. The latter
stage corresponds to flow of gas out of the sample, which the present theory does not take
into account. The dependence of S,;. on f,; was tested against the data of Scherpenisse et
al. (1994). Shown in Fig. 15 are predictions for both the critical gas saturation as a function
of A from the simpler model and from the full solution. Although there is a slight tendency
for the theory to underestimate the data, we note a quite good agreement. In particular,
the power-law scaling with exponent 0.16, predicted by the theory, is well supported by the
data.

One of the most interesting effects is that of the pressure decline rate. Quantifying its
effect is significant, as one can then control the extent of nucleation, the value of the critical
gas saturation, and the time of the onset of bulk gas flow, which for practical purposes
signifies the end of the liquid production. An important result of this work has been the
derivation of simple algebraic equations (for example (56)-(59), (80)) that relate the critical
supersaturation to a combination of dimensionless parameters, which involve the rate, given
the particular nucleation characteristics of the system. The model developed shows that the
effect on the nucleation fraction, hence on the critical gas saturation, is a power law, with
an exponent which is equal 3/2 at low rates, decreases to 1 at higher rates, and ultimately
becomes zero at very high rates. The critical supersaturation was predicted to be independent
of the rate at small rates and to depend as a weak power law (with an exponent equal to 1/4
or larger) at higher rates. It can be also readily shown that for very large depletion rates,
the maximum supersaturation is insensitive to the particular size distribution, scaling as a
power law with exponent 3/4. In that limit, the final nucleation fraction is also independent

of the rate of depletion.
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It interesting that for the experimentally reported rate effect to be matched requires a con-
siderably stretched (long-tailed) cavity size distribution and small cavity sizes. Equivalently,
if the hetefogeneous, rate-dependent nucleation model is used, matching the experiments
requires very small values of the wetability parameter and of the nucleation rate constant.
A long-tailed cavity size distribution leads to a larger nucleation fraction, provided that the
decline rate is not extremely large. Then, more cavity sizes are nucleated at the early stages
of the process, as (large) sizes are available for activation even under very small supersat-
urations. It is possible that this is due to the nucleation of large cavities, exposed at the
openings of the core for which a very small supersaturation is needed. Because of the exis-
tence of nucleated bubbles early during the process, the maximum supersaturation obtained
for a long-tailed distribution is smaller than for a narrow distribution (such as a Rayleigh),
when the rates are not too large. Because as the rate of depletion becomes very large, the
supersaturation becomes eventually the same for all distributions, there is a large window
in the rate dependence, where the behavior is like the experimentally reported 1/4 power
law. A similar explanation holds for the case of the rate-dependent heterogeneous nucleation
model, where a very small value of the wetability parameter favors the nucleation of bubbles

even at small supersaturation.

b. Constant Rate of Liquid Withdrawal

The model was also compared against experimental results for the case of constant rate
of liquid withdrawal. We matched the local minimum pressure and the related the maximum
supersaturation, P, and sp, respectively, the critical gas saturation, S,., and the evolution
of pressure as a function of time.

Consider, first, matching the minimum pressure and its rate-dependence. Using the

*
s

simpler model, this can be done by fitting parameters r7, ¥ (if not available) and the cavity
size distribution. We first performed this matching for the mixture C1/C10 in the Berea
sandstone experiments of Firoozabadi et al. (1992). In these experiments, the estimated
values for Ca and Ca,, were 10~° and 1073, respectively, well within the assumptions of our

theory.
Best-fit values r> = 1.0 x 1072em, 7% = 2.0 x 1073¢m, n = 0.1014 and ¢ = 0.0339 (for
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a stretched exponential cavity distribution) were found for a good match. The calculated
minimum pressures, Py, using the full solution and the above parameters are very close to
the experimental, as shown in Table 3. Comparison of the evolution of the system pressure
as a function of the dimensionless time, ¢, = ¢p, using the full solution, and the Berea
experiments of Firoozabadi et al. (1992) is presented in Fig. 16. A good agreemént is also
observed.

A comparison with the chalk experiments of Firooiabadi et al. (1992), for two different
reported volumetric flow rates, was also undertaken. Again, Ca ~ 107 and Cap, = 10~2
are within the assumptions of our model. Here, the effect of rate is rather weak, and a
Rayleigh distribution was found to be adequate. Based on r} = 1.0 x 107%cm, a value of
r* = 1.98 x 10~%cm is needed to match the minimum pressure supersaturation. Figure 17
shows a comparison of the evolution of the liquid pressure as a function of the dimensionless
time, t, = tp, using the full solution. Again good agreement is observed for the pressure
evolution, while an excellent match is achieved for the minimum pressures (see Table 3). In
both Figs. 16 and 17, the predictions from the simpler model closely follow the full solution.

Finally, the theory was tested against the sand-pack experiments of Kumar et al. (2000).
In contrast to the previous, the estimated values for Ca and Ca,, are considerably higher
(equal to about 10™* and 10, respectively). This sugests that our model may not adequately
capture the physical processes particularly at later times Using the best-fit values of r; =
1.0 x 10~%cm and ¥ = 1.0 x 1073cm, and a stretched exponential cavity distribution, with
parameters n = 0.3466 and o = 0.0134, provides for good matching. With these parameters,
the ability of the full problem to predict the minimum pressure is good, as can be seen in
Table 4. The evolution of the pressure as a function of dimensionless time, ¢,,, and for different
flow rates is shown in Fig. 18, based on the simpler growth model. With the exception of the
high rate curve, which is not perfectly matched, agreement is good, considering the scatter
of the experimental data.

A feature that is not well matched in either of these experiments, however, are the values
of Sy.. The predicted values, using the full solution, are shown in Tables 3-4 respectively.
The theory systematically over-predicts the experimental data. This disagreement may be

due to the different definition of S,.. In this chapter, the critical gas saturation is defined
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as the gas saturation, when a sample spanning cluster is formed, in the absence of gravity
or viscous gradients in the system (which will result in increasing Sg.). In the experiments,
however, bubbles can be mobilized due to the presence of gradients before the onset of a
sample-spanning cluster. The disagreement is more profound for the cases of the Berea
sandstone or the sand-pack, than it is for the chalk. It is also very pronounced in the Kumar
et al. (2000) experiments, as explained above. This is consistent, since chalk is a tighter
porous medium, the capillary and Bond numbers are smaller and the earlier mobilization of
the gas bubbles is less likely.

For completeness, we also estimated the wetability parameter, f, and the heterogeneous
nucleation rate, K., assuming a rate-dependent nucleation model. We found the following:
for the Berea sandstone experiments (Firoozabadi et al., 1992), f = 3.305x 10~° and Kj.: =
7.219 x10~7 (em3s)™1; for the chalk experiments (Firoozabadi et al., 1992), f = 1.240 x 10°
and Kper = 2.299 x 10* (em®s)~!; and for the sand-pack experiments (Kumar et al., 2000),
f=1.790 x 107® and Kp.; = 1.683 x 107* (cm®s)~1.

As in the case of constant pressure decline rate and with the exception of the experiments
in chalk, matching of the experimental results with the theory required the use of either
stretched, long-tailed cavity size distributions, or very small wetability parameters in the
rate-dependent nucleation model. Such distributions offer the ability to nucleate bubbles
even at small supersaturations, and can provide the reported experimental dependence on

rate.

VI. CONCLUSIONS

In this chapter we developed an effective continuum model to describe the nucleation
and subsequent growth of a gas phase from a supersaturated, slightly compressible binary
liquid in a porous medium, driven by solute diffusion. The evolution of the gas results either
from the reduction of the system pressure at a constant rate, or from the withdrawal of the
liquid at constant rate. The model addresses two stages before the onset of bulk gas flow,
nucleation and gas phase growth. We assume negligible gradients due to gravity or viscous

forces, thus the critical gas saturation, which signals the onset of bulk gas flow, is only a

43



function of the nucleation fraction.

We showed that the important quantities characterizing the process, such as the frac-
tion of pores that host activated sites, the deviation from thermodynamic equilibrium, the
maximum supersaturation in the system and the critical gas saturation depend crucially on
the nucleation characteristics of the medium. We used a heterogeneous nucleation models
primarily in the form of pre-existing gas, trapped in hydrophobic cavities, but also in terms
of a rate-dependent nucleation, to investigate in detail the nucleation behavior. Using scal-
ing analysis and a simpler analytical model we showed that the relevant quantities during
nucleation can be expressed in terms of a simple combination of dimensionless parameters,
which include rate effects, for either type of nucleation model.

The theory predicts that the maximum éupersaturation in the system is a weakly in-
creasing function of rate, which in the region of typical experimental parameters, can be
approximated as a power law with a small exponent. This function depends sensitively on
the probability density function of the nucléation cavity sizes. It also predicts that the final
nucleation fraction, thus the critical gas saturation, is a power law of the decline rate (or
the withdrawal rate). The theoretical exponents were shown to fit the experimental data

provided that a stretched exponential distribution for the cavity size distribution is used.

44



References

1]

[4]

[5]

[6]

8]

Andarcia, L., Kamp, A.M., and P. Vaca, “Heavy Oil Solution Gas Drive in the Venézue—
lan Orinoco Belt: Laboratory Experiments and Field Simulation” paper SPE 69715,

presented at the SPE International Thermal Operations and Heavy Oil Symposium,

Margarita Island, Venezuela (12-14 March 2001).

Arora, P., and A.R. Kovscek, “Mechanistic Modeling of Solution-Gas Drive in Viscous
Oils,” paper SPE 69717, presented at the SPE International Thermal Operations and
Heavy Oil Symposium, Margarita Island, Venezuela (12-14 March 2001).

Bora, R., Maini, B.B., and A. Chakma, “Flow Visualization Studies of Solution Gas
Drive Process in Heavy Oil Reservoirs Using a Glass Micromodel,” SPE Res. Eval.
Eng., 3, 224 (2000).

Dominguez, A., Bories, S., and M. Prat, “Gas Cluster Growth by Solute Diffusion
in Porous Media. Experiments and Automaton Simulation on Pore Network,” Int. J.

Multiphase Flow, 26, 1951 (2000).

Doughty, C. and K. Pruess, “A Similarity Solution for Two-Phase Fluid and Heat
Flow Near High-Level Nuclear Waste Packages Emplaced in Porous Media,” Int. J.
Heat Mass Transfer, 33, 1205 (1990).

Du, C., and Y.C. Yortsos, “A Numerical Study of the Critical Gas Saturation in a
Porous Medium,” Transport in Porous Media, 35, 205 (1999).

Egermann, P., and O. Vizika, “Critical Gas Saturation and Relative Permeability
During Depressurization in the Far Field and the Near-Wellbore Region,” paper 63149,
presented at the SPE Annual Technical Conference and Exhibition, Dallas, TX, 1-4
October 2000.

El Yousfi, A., Zarcone, C., Bories, S. and R. Lenormand, “Mécanismes de Formation

d’une Phase Gazeuse par détente d’un liquide en Milieu Poreux,” C.R. Acad. Sci.

Paris, Série II, 313, 1093 (1991).

45



[9] El Yousfi, A., Zarcone, C., Bories, S. and R. Lenormand, “Physical Mechanisms for
Bubble Growth During Solution Gas Drive,” paper SPE 38921 presented at the SPE
Annual Technical Conference and Exhibition, San Antonio, TX (5-8 October 1997).

[10] Feder, J., Fractals, Plenum, New York (1988).

[11] Firoozabadi, A., and A. Aronson, “Visualization and Measurement of Gas Evolution
and Flow of Heavy and Light Oil in Porous Media,” SPE Res. Eval. Eng., 2, 550
(1999).

[12] Firoozabadi, A., and D. Kashchiev, “Pressure and Volume Evolution During Gas Phase
Formation in Solution Gas Drive Processes,” SPE Journal, 1, 219 (1997).

[13] Firoozabadi, A, Ottesen, B, and M. Mikkelsen, “Measurements of Supersaturation and
Critical Gas Saturation,” SPE Form. Fval., 337 (December 1992).

[14] Jonmes, S.F., Evans, G.M., and K.P. Galvin, “Bubble Nucleation from Gas Cavities - A
Review,” Adv. Colloid Interface Sci., 80, 27 (1999).

[15] Hawes, R.1., Dawe, R.A., and R.N. Evans, “The Release of Solution Gas from Water-
flood Residual Oil,” SPE Journal, 2, 379 (1997).

[16] Ho, C.K., and K.S. Udell, “Mass Transfer Limited Drying of Porous Media Containing
an Immobile Binary Liquid Mixture,” Int. J. Heat Mass Transfer, 38, 339 (1995).

[17] Kamp, A.M., Joseph, D.D., and R. Bai, “A New Modeling Approach for Heavy Oil
Flow in Porous Media,” .paper SPE 69720, presented at the SPE International Thermal
Operations and Heavy Oil Symposium, Margarita Island, Venezuela (12-14 March
2001a).

[18] Kamp, A.M., Heny, C., Andarcia, L., Lago, M. and A. Rodriguez, “Experimental
Investigation of Foamy Oil Solution Gas Drive,” paper SPE 69725, presented at the
SPE International Thermal Operations and Heavy Oil Symposium, Margarita Island,
Venezuela (12-14 March 2001b).

46



[19] Kumar, R., Pooladi-Darvish, M., and T. Okazawa, “An Investigation Into Enhanced
Recovery Under Solution Gas Drive in Heavy Oil Reservoirs,” paper SPE 59336, pre-
sented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK (3-5 April
2000).

[20] Laaksonen, A., Talanquer, V., and D.W. Oxtoby, “Nucleation: Measurements, Theory,
and Applications,” Annu. Rev. Phys. Chem., 46, 489 (1995).

[21] Li, X., and Y.C. Yortsos, “Visualization and Simulation of Bubble Growth in Pore
Networks,” AICRE J., 41, 214 (1995a).

[22] Li, X., and Y.C. Yortsos, “Theory of Multiple Bubble Growth in Porous Media by
Solute Diffusion,” Chem. Eng. Sci., 50, 1247 (1995b).

[23] Mackay, E.J., Henderson, G.D., Tehrani, D.H., and A. Danesh, “The Importance of
the Interfacial Tension on Fluid Distribution During Depressurization,” SPE Res. Eva.

Eng., 1, 408 (1998).

[24] McDougall, S.R., and K.S. Sorbie, “Estimation of Critical Gas Saturation During
Pressure Depletion in Virgin and Water-flooded Reservoirs,” Petroleum Geoscience, 5,

229 (1999).

[25] Maini, B., “Foamy Oil Flow in Primary Production of Heavy Oil Under Solution Gas
Drive,” paper SPE 56541, presented at the SPE Annual Technical Conference and
Exhibition, Houston, TX (3-6 October 1999).

[26] Maini, B., “Foamy Oil Flow in Heavy Oil Production,” J. Canadian Petroleum Tech-
nology, 35(6), 21 (1996).

[27] Moulu, J.C., “Solution-Gas Drive: Experiments and Simulation,” J. Pet. Sci. Eng., 2,
379 (1989).

[28] Moulu, J.C., and D.L. Longeron, “Solution-Gas Drive: Experiments and Simulation,”
Proc., Fifth European Symposium on Improved Oil Recovery, Budapest, Hungary
(April 1989).

47



[29] Pooladi-Darvish, M., and A. Firoozabadi, “Solution-gas Drive in Heavy Oil Reser-
voirs,” J. Canadian Petroleum Technology, 38(4), 54 (1999).

[30] Prats, M., Thermal Recovery, SPE Monograph, Dallas, TX, 1982.

[31] Press, W.H., Teukolsky, W.T., Vettering, S.A., and B.P. Flannery, Numerical Recipes,
2nd ed. Cambridge University Press, (1992).

[32] Renard, G., Nauroy, J.-F., Deruyter, Ch., Moulu, J.-C., Sarda, J.-P., and J.-F. Le Ro-
mancer, “Production Froide des Huiles Visqueuses,” Oil & Gas Science and Technology

- Rev. IFP, 55, 35 (2000).

[33] Scherpenisse, W., Wit, K., Zweers, A.E., Shoei, G., and A. van Wolfswinkel, “Predict-
ing Gas Saturation Buildup during Depressurization of a North Sea Oil Reservoir,”

paper SPE 28842, presented at the European Petroleum Conference, London, UK
(25-27 October 1994).

[34] Satik, C., and Y.C. Yortsos, “A Pore Network Study of Bubble Growth in Porous
Media Driven by Heat Transfer,” ASME J. of Heat Transfer, 118, 155 (1996).

[35] Sheng, J.J., Maini, B.B., Hayes, R.E., and W.S. Tortike, “Critical Review of Foamy
Oil Flow,” Transport in Porous Media, 35, 157 (1999a).

[36] Sheng, J.J., Hayes, R.E., Maini, B.B., and W.S. Tortike, “Modeling Foamy Oil Flow
in Porous Media,” Transport in Porous Media, 35, 227 (1999b).

[37] Smith, G.E., “Fluid Flow and Sand Production in Heavy-Oil Reservoirs Under
Solution-Gas Drive,” SPE Prod. Eng., 3, 169 (1988).

[38] Tang, G.-Q., and A. Firoozabadi, “Gas and Liquid-Phase Relative Permeabilities for
Cold Production from Heavy Oil,” paper SPE 56540 presented at the SPE Annual
Technical Conference and Exhibition, Houston, TX (3-6 October 1999).

[39] Thome, J.R., Enhanced Boiling Heat Transfer, Hemisphere Publishing Co., New York
(1990).

48



[40]

[41]

[42]

[45]

Tsimpanogiannis, I.N. ; PhD Dissertation, Univ. of Southern California, In preparation

(2002).

Tsimpanogiannis, I.N., and Y.C. Yortsos, “A Numerical Study of the Critical Gas
Saturation in a Porous Medium in the Presence of Viscous or Gravity Gradients,” In

preparation (2002).

Urgelli, D., Durandeau, M., Foucault, H., and J.-F. Besnier, “Investigation of Foamy
Oil Effect from Laboratory experiments,” paper SPE 5/083 presented at the SPE
International Thermal Operations and Heavy Oil Symposium, Bakersfield, CA, 17-19
March 1999.

Wang, X., and K.K. Mohanty, “Critical Condensate Saturation in Porous Media,” J.
Colloid Interface Sci., 214, 416 (1999).

Wong, R.C.K., Guo, F., Weaver, J.S., and W.E. Barr, “Heavy Oil Flow Under Solution-
Gas Drive: Pressure Depletion Tests,” J. Canadian Petroleum Technology, 38, 31
(1999).

Yortsos, Y.C., and M. Parlar, “Phase Change in Binary Systems in Porous Media:
Application to Solution Gas Drive,” paper SPE 19697, presented at the SPE Annual
Technical Conference and Exhibition, San Antonio, TX (8-11 October 1989).

49



Parameter CPDR CLWR
MW (g/mol) 18.6 16.0

D (em?/s) 2.40 x 107° | 1.35 x 107
v (mN/m) 8.2 13.0

T (K) 314.6 314.6

P, (MPa) 6.0 7.384

K (MPa m®/kg) | 8.604 x 1073 | 1.537 x 107"
¢ (MPa™) 1.45 x 1073 | 2.17 x 102
rs (cm) 9.0 x107* | 1.0 x 1072
r. {cm) 8.0x107¢ | 2.0 x 1073
A* 1. 1.

ng 1. 1.

A 1. 1.

a (Pa/s) 26.82 -

Q (em®/s) - 1.67 x 10~°
V, (em?) - 132.24
I, 5.859 x 107° -

II, 2.327 x 108 | 1.330 x 10°
IIs 8.700 x 1072 | 1.603 x 1072
I1, - 1.559 x 10~°
I, 3.417 x 1072 | 1.760 x 10~*

Table 1: Characteristic values of the various parameters. CPDR: Constant Pressure Decline

Rate; CLWR: Constant Liquid Withdrawal Rate
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FIGURE CAPTIONS

Figure 1: Schematic of a gas cluster growth in a porous medium, driven by the decline
of pressure at constant rate.

Figure 2: Micromodel snapshots indicating: (a) Gas bubbles confined within single pore
throats/bodies; (b) a gas bubble spanning several pore bodies.

Figure 3: Schematic of a nucleation cavity in a host pore body.

Figure 4: The variation of the rescaled nucleation fraction, ¢,, as a function of the
dimensionless time, tp. (a) Effect of II; = 5.86 x 10~™, for II. = 3.41 x 1072, I, = 2.33 x 10°
and II5 = 8.7x1073. (b) Effect of I, = 0.34x10™™, for Il; = 5.86x10~* and II3 = 8.7x1073.

Figure 5: The variation of the mean rescaled dimensionless radius, ppn,, as a function of
the dimensionless time, tp. Effect of II; = 5.86 x 10™™, for Il = 3.41 x 1072, II, = 2.33 x 108
and II; = 8.7 x 1073.

Figure 6: Numerical results for: (a) The variation of the rescaled supersaturation, sp, as
a function of the dimensionless time, tp. Effect of II; = 5.86 x 10™™, for II, = 3.41 x 1072,
I, = 2.33 x 10 and II3 = 8.7 x 1072, (b) The effect of the dimensionless parameter II; on
the maximum rescaled supersaturation, spn, for II. = 0.34 x 107™. Points correspond to
the full numerical solution, solid lines correspond to the simpler model.

Figure 7: The variation of the gas saturation, Sy, as a function of the dimensionless time,
tp. Effect of II; = 5.86 x 10~ for II, = 3.41 x 1072, II, = 2.33 x 108 and I3 = 8.7 x 1073,

Figure 8: The effect of the dimensionless parameter II; on the critical gas saturation,
Sye, for TI. = 0.34 x 10~™. Points denote the full numerical solution, solid lines correspond
to the simpler model.

Figure 9: The variation of the dimensionless pressure, Pp;, as a function of the dimension-
less time, tp, for the case of constant liquid withdrawal rate. Effect of II, = 0.4631 x 107",
for I, = 1.67 x 107, TI, = 6.84 x 10° and II3 = 1.52 x 10~2. Shown in dashed-dotted line
is the thermodynamic equilibrium curve.

Figure 10: The maximum rescaled supersaturation, sp,,, as a function of A for the cases
of constant pressure decline rate (dotted lines) and constant liquid withdrawal rate (solid

lines). Comparison between the simpler model (dotted or solid lines) and the full numerical
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solution (denoted by triangles for the stretched exponential cavity size distribution with
n = 0.5 and ¢ = 1.0, and by squares for the Rayleigh cavity size distribution).

Figure 11: The maximum rescaled supersaturation, sp,,, as a function of Ay for the
simpler model (solid line). Triangles denote s}, values calculated using experimental data
from Scherpenisse et al. (1994). Also plotted are the predictions based on the cavity model
(dashed lines for the simpler model, squares denoting spn, values for the same experimnets).

Figure 12: Comparison of the full numerical results (denoted by solid lines) with the
approximate model (denoted by triangles) for the case of constant liquid withdrawal rate.
Shown in dashed-dotted line in the last panel is the thermodynamic equilibrium curve.

Figure 13: The final nucleation fraction, f,s, as a function of A, for a stretched expo-
nential (n = 0.215 and ¢ = 0.045) cavity size distribution. The solid line corresponds to the
simpler model, squares denote values calculated using experimental data from Scherpenisse
et al. (1994).

Figure 14: The evolution of the gas saturation as a function of the dimensionless pressure
for three depletion rates for the Berea sandstone experiments of Scherpenisse et al. (1994).
Points denote experimental values, solid lines correspond to the full numerical solution, the
dashed-dotted line corresponds to the thermodynamic equilibrium curve.

Figure 15: The critical gas saturation, Sy, as a function of A, for a stretched exponential
(n = 0.215 and o = 0.045) cavity size distributions. The solid line corresponds to the simpler
model, triangles denote the full solution, squares denote experimental data (constant pressure
decline rate) from Scherpenisse et al. (1994).

Figure 16: Evolution of pressure as a function of time for the Berea stone experiments
of Firoozabadi et al. (1992) for two different withdrawal rates. Solid lines denote the full
solution, dotted lines denote the simpler growth model, the dashed-dotted line denotes the
thermodynamic equilibrium curve, symbols denote the experimental results.

Figure 17: Evolution of pressure as a function of time for the Chalk experiments of
Firoozabadi et al. (1992) for two different withdrawal rates. Solid lines (both coincide)
denote the full solution, dotted lines denote the simpler growth model, the dashed-dotted
line denotes the thermodynamic equilibrium curve, symbols denote the experimental results.

Figure 18: Evolution of pressure as a function of time for the sand-pack experiments of
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Kumar et al. (2000) for four different withdrawal rates. Solid lines denote the simpler growth
| model, the dashed-dotted line denotes the thermodynamic equilibrium curve, symbols denote

the experimental results.
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Figure 1: Schematic of a gas cluster growth in a porous medium, driven by the decline of

pressure at constant rate.
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Figure 2: Micromodel snapshots indicating: (a) Gas bubbles confined within single pore
throats/bodies; (b) a gas bubble spanning several pore bodies.
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Figure 3: Schematic of a nucleation cavity in a host pore body.
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Figure 4: The variation of the rescaled nucleation fraction, ¢,, as a function of the dimen-
sionless time, tp. (a) Effect of II; = 5.86 x 10™™, for II, = 3.41 x 1072, II, = 2.33 x 10° and
II; = 8.7 x 1073, (b) Effect of II, = 0.34 x 10~™, for II; = 5.86 x 10~* and II; = 8.7 x 10~3.
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Figure 5: The variation of the mean rescaled dimensionless radius, ppn, as a function of the
dimensionless time, tp. Effect of II; = 5.86 x 10™™, for II, = 3.41 x 1072, II, = 2.33 x 10°
and II; = 8.7 x 1073.
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Figure 6: Numerical results for: (a) The variation of the rescaled supersaturation, sp, as a
function of the dimensionless time, {p. Effect of II; = 5.86 x 107™™, for II. = 3.41 X 1072,
I, = 2.33 x 10° and I3 = 8.7 x 1072. (b) The effect of the dimensionless parameter II; on

the maximum rescaled supersaturation, sp,,, for II. = 0.34 x 10™™. Points correspond to
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Figure 7: The variation of the gas saturation, Sy, as a function of the dimensionless time,

tp. Effect of TI; = 5.86 x 10~™, for II, = 3.41 x 1072, I, = 2.33 x 10® and II3 = 8.7 x 1073,
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Figure 8: The effect of the dimensionless parameter II; on the critical gas saturation, S,
for II. = 0.34 x 10~™. Points denote the full numerical solution, solid lines correspond to

the simpler model.
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Figure 9: The variation of the dimensionless pressure, Pp;, as a function of the dimensionless
time, tp, for the case of constant liquid withdrawal rate. Effect of II; = 0.4631 x 10~™, for
I, = 1.67 x 107!, II, = 6.84 x 10° and II3 = 1.52 x 1072. Shown in dashed-dotted line is the

thermodynamic equilibrium curve.
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Figure 10: The maximum rescaled supersaturation, spn, as a function of A for the cases of
constant pressure decline rate (dotted lines) and constant liquid withdrawal rate (solid lines).
Comparison between the simpler model (dotted or solid lines) and the full numerical solution
(denoted by triangles for the stretched exponential cavity size distribution with n = 0.5 and

o = 1.0, and by squares for the Rayleigh cavity size distribution).

66



10°
10"}
-
0
»
S
5
U)1OO :
-1
10 1 s —_ o . | 2 " . ; 1
-10 -5 0
10 10 10
A (orA)

Figure 11: The maximum rescaled supersaturation, s},,, as a function of A, for the simpler
model (solid line). Triangles denote s}, values calculated using experimental data from
Scherpenisse et al. (1994). Also plotted are the predictions based on the cavity model

(dashed lines for the simpler model, squares denoting sp., values for the same experimnets).
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Figure 12: Comparison of the full numerical results (denoted by solid lines) with the approx-

imate model (denoted by triangles) for the case of constant liquid withdrawal rate. Shown

in dashed-dotted line in the last panel is the thermodynamic equilibrium curve.
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Figure 13: The final nucleation fraction, f,;, as a function of A, for a stretched exponential
(n = 0.215 and o = 0.045) cavity size distribution. The solid line corresponds to the simpler

model, squares denote values calculated using experimental data from Scherpenisse et al.

(1994).
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Figure 14: The evolution of the gas saturation as a function of the dimensionless pressure
for three depletion rates for the Berea sandstone experiments of Scherpenisse et al. (1994).
Points denote experimental values, solid lines correspond to the full numerical solution, the

dashed-dotted line corresponds to the thermodynamic equilibrium curve.
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Figure 15: The critical gas saturation, Sy, as a function of A, for a stretched exponential
(n = 0.215 and o = 0.045) cavity size distributions. The solid line corresponds to the simpler
model, triangles denote the full solution, squares denote experimental data (constant pressure

decline rate) from Scherpenisse et al. (1994).
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Figure 16: Evolution of pressure as a function of time for the Berea stone experiments of
Firoozabadi et al. (1992) for two different withdrawal rates. Solid lines denote the full
solution, dotted lines denote the simpler growth model, the dashed-dotted line denotes the

thermodynamic equilibrium curve, symbols denote the experimental results.
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Figure 17: Evolution of pressure as a function of time for the Chalk experiments of Firooz-
abadi et al. (1992) for two different withdrawal rates. Solid lines (both coincide) denote the
full solution, dotted lines denote the simpler growth model, the dashed-dotted line denotes

the thermodynamic equilibrium curve, symbols denote the experimental results.
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Figure 18: Evolution of pressure as a function of time for the sand-pack experiments of Kumar
et al. (2000) for four different withdrawal rates. Solid lines denote the simpler growth model,

the dashed-dotted line denotes the thermodynamic equilibrium curve, symbols denote the

experimental results.
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An Effective Continuum Model for the Gas Evolution in Internal Steam Drives
By

Ioannis N. Tsimpanogiannis and Yannis C. Yortsos

I. INTRODUCTION

The liquid-to-gas phase change in a porous medium and the subsequent growth of the gas
phase is enco‘untered in a plethora of applications driven by mass or heat transfer. Typical
examples include the solution gas-drive process for the recovery of oil from oil reservoirs,
boiling in porous media, thermal methods for oil recovery, nuclear waste disposal, soil reme-
diation and others. In this report, we examine the gas phase growth from a supersaturated,
slightly compressible, liquid in a porous medium, driven by heat transfer and controlled by
the application of a constant-rate decline of the system pressure. A characteristic example
of such a process occurs dyring cyclic steaming for the recovery of oil from low permeability
reservoirs through hydraulic or natural fractures (Dehghani et al., 1997). During injection
and soaking, steam condenses in the fracture and hot water imbibes into the matrix. During
production, the pressure of the system constantly declines, and when it falls sufficiently be-
low the vapor pressure, it results in the appearence of steam in the matrix (in-situ boiling).
The in-situ production and subsequent growth of the steam phase inside the matrix are of
interest because they result in expelling additional oil from the matrix.

Dehghani et al. (1997) conducted a series of core experiments in order to study the effect
of in-situ steam drive on fluid displacement in porous media. Subsequently, Dehghani and
Kamath (1999) conducted experiments with a vuggy carbonate core using a recombined oil
to study the contribution of the various recovery mechanisms (thermal expansion, thermally
enhanced solution gas drive, dry distillation, and in-situ steam drive) during steam injection,
followed by pressure reduction.

While of interest both from theoretical and applied viewpoints, a more fundamental
understanding of the basic aspects of this process has not been obtained, to our knowledge.
It is the objective of this report to bridge this gap, by providing a model both of the nucleation

and of the gas-phase growth periods. Internal steam drive has many similarities with the
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process of solution gas-drive. They both describe the evolution of a gas phase due to the
increase of the supersaturation of the system, through a relatively slow pressure decline.
Nucleation and subsequent phase growth play a key role in both processes. An important
difference is that solution gas drive involves a binary system and it is controlled by mass
transfer, while internal steam drive is fundamentally a single-component system, controlled
by heat transfer. In two recent publications (Tsimpanogiannis and Yortsos, 2001a,b) we
developed a comprehensive effective continuum model to model solution gas-drive under
various conditions. In this report, we extend that approach to the specific problem of internal
steam drive.

As discussed in Tsimpanogiannis and Yortsos (2001a,b), the effective continuum model
is best suited during the early part of the process, where nucleation and the early stages of
bubble growth are dominant. The latter two, particularly the nucleation sequence, are the
main areas of interest of this report. We focus on the effect of the nucleation characteristics
on the maximum supersaturation and the nucleation fraction (and the critical gas saturation)
and provide an analysis of the effect of various parameters, such as pressure decline rate,
on these quantities. Results for the gas phase growth following the conclusion of nucleation
are also presented. It is assumed that the pressure decline rates are sufficiently slow so
that inertia and spatial gradient effects on bubble growth are negligible. Under the same
conditions, the model can in principle be applied to describe the onset of boiling in porous
media, driven by the application of a constant heat flux. This application is left for a future
study, however. |

At later stages of bubble growth, where the various gas clusters compete with each other
through a combination of pore geometrical and topological effects, the present continuum
model will have obvious drawbacks. In the latter stages, a pore-network model should
instead be used. Pore-network models of bubble growth in single-component systems, driven
by heat transfer w ere developed by Satik and Yortsos (1996). In principle, these contain all
the necessary physics for a rigorous modeling of the process, particularly when significant
spatial gradients develop. Such an effort can be pursued in pérallel.

The report is organized as follows: First, we formulate the problem closely following

Tsimpanogiannis and Yortsos (2001a,b). A scaling analysis of the resulting equation allows
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to recast the problem in a more useful form, to be used for direct predictions. The numerical
results are analyzed. It turns out that for their interpretation, a simplified model of the
nucleation and growth periods can be developed. We use the simpler model to obtain
expressions for the maximum supersaturation as a function of geometric, thermodynamic
and process parameters. This allows us to obtain useful relations for the dependence of
the final nucleation fraction (and the critical gas saturation) on process parameters. The

theoretical predictions are then compared against experimental results.

II. MATHEMATICAL FORMULATION

Consider an effective porous medium occupied by a single-component liquid. At the
beginning of the process, the system is subcooled at the initial temperature, T;, and pressure,
P,, where P, > P**(T,) and P**(T) denotes the equilibrium vapor pressure at temperature
T. In the practical application discussed by Dehghani and Kamath (1999) this state is
achieved by steam injection, followed by steam condensation. Then, the pressure of the
system is slowly decreased. Nucleation and subsequent bubble growth are driven by the
continuous increase in the supersaturation, P***(T,,) — Fi(t), where T, is the far-field system
temperature and subscript ! denotes liquid. To describe phase equilibria, we will assume a

Clausius-Clapeyron equation

din [P**(Ty)] L. Q)
dT..  R,T%

where R, is the ideal gas constant and L, the molar latent heat of vaporization. Equation

(1) does not include Kelvin vapor pressure lowering effects. However, these can be readily
incorporated by replacing L, in (1) by L, + P.v,,, where P, is the capillary pressure and vy,
the molar liquid volume. More complex thermodynamics can certainly be incorporated (Reid
et al., 1986), but the salient features are manifested with the simpler model (1). Conversely,
at a specified liquid pressure, P, a degree of superheat is present in the system, given by the

difference

AT = T, — T**(P) 2)
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where T°%(PF;) denotes the equilibrium temperature corresponding to F;. The change in
supersaturation (or superheat) is here driven by a constant rate of pressure decline. As
mentioned, we will proceed with the assumption that the rate of decline is sufficiently slow,
so that inertia effects as well as effects of spatial gradients (gravitational and/or viscous)
are negligible. This requires sufficiently small Rayleigh, Bond, capillary and Peclet num-
bers. Instead, emphasis will be placed on nucleation and on the effect of the increase of

supersaturation on the growth of the gas phase.

a. Nucleation

As the liquid pressure declines, nucleation sets in. Yortsos and Parlar (1989) reviewed
the gas-liquid phase change in porous media and concluded that heterogeneous nucleation is
the most plausible mechanism under sufficiently slow rates of supersaturation. In one model,
nucleation occurs when a gas bubble, either pre-existing or nucleated inside a cavity at the
pore walls, becomes unstable and detaches or otherwise occupies the host pore body. This
type of mechanism is in agreement with visual observations from micromodel experiments in
solution gas drive (Li and Yortsos, 1995a, El Yousfi et al., 1991, 1997, Bora et al., 2000 and
Dominguez et al., 2000) and will also be assumed here. In the cavity model, the activation
of a nucleation site occurs when the trapping capillary forces are overcome for the first time.
Then, the following condition is satisfied between the radius of the nucleation cavity, r., and

the (local) supersaturation,

2~cosf*

P = = P**(T) — Fi(t) 3)

Te
where §* is the contact angle (0 < 6* < 7/2). In the present model, the onset of nucleation
is not kinetically related to the degree of supersaturation, as for example, in conventional
approaches for solution gas drive (Firoozabadi and Kaschiev, 1997), but rather depends on
the size distribution, a.(r.), of the nucleation cavities.
Consider, now, the activation of nucleation sites. With the decrease in the liquid pressure,
the right-hand side of (3) increases, eventually becoming positive. Then, various cavities

satisfying (3) become activated and their corresponding host pore bodies are occupied by
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gas. At any time, the current nucleation fraction, f,, defined as the number fraction of pores

that contain sizes which have been activated, is

0 ,
fo= [ adrydr (4
where r, 1s an implicit function of time, through (3). Equation (4) implies a zero nucleation
fraction at zero supersaturation (r, — o0) and a nucleation fraction of one at infinite su-
persaturation (r, — 0). As elaborated in Tsimpanogiannis and Yortsos (2001a), the cavity
size distribution, a., pertains only to the largest cavity in any given pore (as this cavity will
be activated first). Also, equation (4) slightly overestimates the true nucleation fraction,
since pores containing sites to be activated later, may already be occupied by gas, due to
the growth of gas clusters from neighboring pores. However, in most cases, nucleation termi-
nates well before gas bubble growth has occurred to any substantial degree (S, < 1), thus
(4) should be an excellent approximation. |
It is apparent that f, will have a different dependence on parameters, depending on the
assumed cavity size distribution. In the present report, we will consider distribution of the

Rayleigh type,

mr? Y2 ]

h=oo (~55) = |-t —r )

where 77 is a characteristic (here the mean) cavity size, as well as a stretched-exponential

fy=exp (— e ) (6)

or:”
where n is a positive exponent and ¢ is a measure of the variance. The type of distribution
influences significantly the results to be obtained, as will be demonstrated below.

As long as the level of supersaturation increases with time, the right-hand-side of equa-
tion (5) also increases, implying that additional sites become activated, and the nucleation
fraction continuously rises. This is consistent with experimental evidence of sequential nucle-
ation reported by Satik and Yortsos (1996). After the supersaturation reaches a maximum
(local or global), equation (5) predicts a decreasing f,, which is unphysical. Therefore, in

segments of decreasing supersaturation the nucleation fraction is assumed constant. When
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the supersaturation goes through a global maximum, it signals the end of the nucleation pe-
riod, in which case the fraction of pores ultimately activated, f,s, will be given by equations
(5) or (6) at the time of the maximum supersaturation. We note that in typical solution
gas-drive experiments, f,; is very small, of the order of 102 — 107°.

Through this process, nucleation centers are activated sequentially, giving rise to evolving
gas clusters, which grow by heat transfer from the liquid to the gas. Sequential nucleation
results into clusters of different ages (the time passed since a particular class of gas clusters
has been nucleated/activated). Let w(7) be the number density of clusters nucleated per
total number of pores. Then, w(7)d7 is the number of new clusters per total number of

pores that become activated in the time interval between 7 and 7 4 d7. Evidently,

w(r)dr = df, (7)

This relation will be used below to simplify the expressions for the gas phase growth.

b. Gas phase growth

During the growth of the gas phase we can roughly distinguish two periods, one in
which the growth is within éingle pores and another corresponding to gas clusters spanning
several pores (Tsimpanogiannis and Yortsos, 2001a). The first period extends throughout
and following the nucleation stage, the second is the later stage of growth. In either, growth
is driven by heat transfer. In general, different clusters compete for the available heat in the
liquid, the relative heat transfer rates depending on their geometry and relative position.

In the absence of competition between adjacent clusters and under the assumption that
heat transfer is conduction-controlled (namely that the Peclet number is sufficiently small),
an isolated cluster j grows at a rate which is proportional to its effective radius, R;(t,7), and
the driving force T,, — T°**( P;) where Tt is the far-field temperature. This is true even for
ramified fractal clusters, as was verified by Satik and Yortsos (1996) for a percolation cluster.

Assuming that the gas is ideal, we can write the following mass balance for a growing cluster

M,\ d ke sa
(R 7 ) (B4 PV =~ 4,TRJ.%(TOO = T*(Ry)) ®)
99

v
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where M, is the molecular weight of the gas, T, the temperature in the gas phase, V; the gas
cluster volume, k.ss an effective conductivity and L, the mass latent heat of vaporization
(L, = L,M,). In equation (8) we have also included the capillary pressure, P., which in
the application of interest can be significant. To simplify, we linearize the phase equilibria

around P,,

deat
dP

T*{(P) = T*(F,) + (P — P) (9)

and take without significant loss T, ~ T,,.
The gas volume V, takes a different expression in the two different periods (Tsimpanogian-
\3
nis and Yortsos, 2001a). For growth within a single pore, V, = V; (%}) , where V, is a char-

acteristic cavity volume (defined here as $7r*®). For growth of a cluster spanning several

3
Ei Df . . * * . .
=2} ", where V; is the average site volume, r{ is a characteristic

pores, we have V, = A*V, (
pore body size, Dy is the mass fractal dimension, equal approximately to 2.5 for a 3-D clus-
ter, and A* is a dimensionless geometric prefactor. To capture both periods with the same

equation we write

(AVCMw) d

R, T, ) dt

with the understanding that D; varies between 3 and 2.5, and A between 1 and A =

R;\™ kesy :
(B +P) (T) = 4R ST, — 7 (10)

c v

* * D . . . .
A?Z/‘ (%) f, during the nucleation period and growth periods, respectively.

Under the above assumptions, the gas phase will be described as a collection of clusters
of size R(t,T), the dynamics of each of which is described by equation (10), with R; replaced

by R, namely

(AVCMW) 0

R, T, ) Ot

subject to the initial condition R(7,7) = r.(7), where r. satisfies (3).

mery(5)”

c

= 47rRkEff (Too — T*%) (11)

k2

Consider, next, the heat balance for the entire system. We have

dT

Vo [8(1 = Sg)piCp + (1 = ¢)prCpr] a A ks p(Too — Tsat)NT/ R(t,7)w(7)dr

t
0

4 hAgurf(Ty — Too) (12)
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where the integration is over all existing clusters, C}, denotes heat capacity per unit mass,
¢ is porosity, h is the heat transfer coefficient to the surroundings, assumed at temperature
T,, and Ay, is the corresponding surface area through which heat is exchanged.

The gas saturation is related to the radius of the growing clusters and the nucleation

fraction through the relation

S, = Av /f( tfq) d, (13)

where we introduced the volume ratio v = -V—i and the notation R(t, f(7)) = R(t,), for the
radius of a cluster at time ¢, nucleated when the nucleation fraction was f(7). Note that the

liquid mass balance can also be expressed and reads as

QM) _ _q_ g\, 95
= (U= Ser g

where ¢ takes values in the range of 1.45 x 107% —1.45 x 10~3MPa~". However, in the present

(14)

problem it is not used. Subject to the relevant initial conditions, the system of equations
(11), (12), (14) and (13) can be integrated. Integration proceeds until the time when the
critical gas saturation is reached. In the present approach, we assume that the critical gas
saturation, S,., can be predicted given the nucleation fraction and the capillary and Bond
numbers (Du and Yortsos, 1999, Tsimpanogiannis and Yortsos, 2001a,b, Tsimpanogiannis
and Yortsos, 2002). Therefore, for the purposes of estimating S, it only suffices to model

well the events during the nucleation period.
c. Dimensionless formulation and scaling

For the solution of the problem, we recast the equations in dimensionless form. Denote
dimensionless quantities by subscript D and scale temperature by T, pressure by P,, clus-
ter size by r}, and time by t* = %, where a is the constant pressure decline rate. The
dimensionless mass balance for the gas phase is given by
dRY! I,

Jdtp All,

while the dimensionless heat balance for the system reads

(1—tp+1L) (Tpe — T5) Bp + Rp (15)
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1 — ¢\ dTpes 1 saty [0 2

+ HH(]. "vTDoo) (16)

1-35,) (np+

In the above, we have defined the dimensionless groups

o — ViprCpra VpprCpra
T A7 Pokeysrs - 47 P,Nrkessr*’
_ RTY peCpr _ AP
2T oML, Po 7 VepCpad’
p1Cpi 2~ycosb*
= d I, =
I, o an =y (17)

Parameter II; expresses the ratio of the characteristic times for heat diffusion at the pore
scale to that for the decline of pressure. Although a small number in typical applications, it
plays a key role in determining the nucleation fraction and the critical gas saturation.

In addition, we have the following relations: The gas saturation is

Sy = Av ,/qu R(tDa fq)Dfdfq (18)

Using the linearized phase equilibria, the dimensionless superheat is

0= TDoo — Bat = TDoo - (1 - 'thD) (19)
where ¢ = BETTD or Y = f%;;, when Kelvin effects are important. The cavity size

that becomes activated at a given time and temperature can be expressed in terms of the

supersaturation

1 —Tpe

s = PBat(TDOO,tD) — PDl(tD) =1ip — " (20)
or, more conveniently, in terms of the rescaled supersaturation
s
Sp = — 21
D= (21)

Then, the nucleation fraction is
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fo=exp (—ﬁ) , Ja=exp (— ai%) (22)

depending on the size distribution used. In the solution of the problem, we assumed that
the process begins (tp = 0) when the pressure is at the bubble point corresponding to 7.
Initial conditions for the simulations were Tpe, = 1, Pp; = 1 and Rp(7,7) = sp'(7).

The above system contains one key parameter, II;, describing the effect of the rate of
increase of the supersaturation. Because it is small, a further rescaling of the nucleation
fraction and the cluster size is necessary. After some analysis (Tsimpanogiannis and Yortsos,

2001a), it is not difficult to show that for the cavity nucleation model, the following scaling

D

is valid, f, ~ II,”™" and f,RP’ ~ O(1) (where, given that the nucleation fraction varies
only during the first period, Dy = 3). This scaling contains the main effect of the pressure
decline rate on the nucleation fraction. Thus, we define a rescaled nucleation fraction and

rescaled cluster sizes

¢, = fli* and pp =TI} Rp (23)

In this notation, the governing equations become

T |
(1-tp+ Hc)ai—i = —20pp + P (24)
and
1-— dTpeo bq
1-5,) (n,, 4 7¢) 22 = =9 [ polto, 6)dds + (1~ Tow) (29
while
bq
Sy = Ao [ plt, &)1 do, (26)

The numerical solution of the system of the rescaled equations is described below.

III. NUMERICAL RESULTS
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The system of differential equations was solved numerically using a fourth-order Runge-
Kutta method (Press et al., 1994). At each time step we examine whether nucleation of a
new class of gas clusters is possible, namely whether the supersaturation is increasing. If so,
a new class of gas clusters is added. Then, the simultaneous growth of all different classes
of clusters is computed. When the supersaturation reaches a maximum, further nucleation
stops. In the typical case, parameters which can vary over a significant range are II; and 11,
(and possibly II;). An additional important variable is the type of the cavity size distribution
used in the calculation of the nucleation fraction. The sensitivity to these parameters was
examined in the simulations.

The effect of II; and II. on the rescaled nucleation fraction, ¢,, the mean rescaled radius,
pPD.m, the rescaled supersaturation, sp, and the gas saturation, S;, is shown in Figs. 1-
4. In these calculations, we used a stretched exponential (n = 1.0 and o = 1.0) cavity size
distribution, II, was kept constant to the value 0.9697 x 10®, we assumed an adiabatic system
(Il = 0), while II; varied over several orders of magnitude (from 107'* to 1077).

The variation of ¢, as a function of the dimensionless time, {p, and of the parameters
IT; and II. is shown in Fig. 1. The nucleation fraction increases rapidly in a small time
interval, and then stabilizes to a final value at the conclusion of nucleation. Such behav-
ior is characteristic of nucleation processes, and has features similar to those reported by
Tsimpanogiannis and Yortsos (2001a, b) for solution gas drive. There is a slight effect of
Iy, which basically demonstrates the correctness of the scaling (23). The effect of II. is
significant. As I, increases, the final nucleation fraction ¢,; (hence f,;) decreases, while the
onset of nucleation is delayed (Fig. 1b). The increase of f,; with an increase in II; and a
decrease in Il is expected. Larger values of 1I; result from a faster decline rate, a greater
departure from equilibrium, the establishment of a greater supersaturation in the system,
hence the activation of more nucleation sites. Likewise, smaller II. imply that nucleation is
facilitated at increasingly smaller supersaturations, as larger size cavities can be activated
more easily.

Fig. 2 shows the corresponding effects on the mean rescaled size pp,,. There are two
different regions, corresponding to the nucleation period, and another to growth after nucle-

ation. The first period can be approximated as a linear function of time. The effect of II; is
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relatively insignificant at small II;, confirming the validity of the scaling (23). The effect of
II. (not shown) is more significant. Smaller values of 1. lead to an increase in the nucleation
fraction, and a corresponding decrease in the size of the gas clusters at the conclusion of
nucleation.

Fig. 3 shows plots of the rescaled supersaturation sp as a function of time for different II;
and II.. During the nucleation period (straight line segment in Fig. 3a), the supersaturation
increases with time almost linearly, suggesting that Th., does not vary significantly in that
period. Eventually, the rate of supersaturation increase slows down and, at some point, sp
reaches a maximum, sp,,, at which point nucleation terminates. Following this point, the
supersaturation decreases monotonically. The maximum value sp,, is plotted in Fig. 3b as
a function of 11 for two different values of II.. Note that sp,, is in general of the order of
107* — 107", The dependence on the parameters becomes stronger at larger II; and smaller
IT..

The evolution of the gas saturation is shown in Fig. 4. It follows that of f,, during
the nucleation period, and that of pp,,, during the period of growth. The effect of II. is
indirect, in that smaller values of II, promote larger values of 5, due to an increase in both
fqr and pp. All these trends are similar to the case of solution gas drive, as explained in
Tsimpanogiannis and Yortsos (2001a, b). We refer the reader to these publications for other
effects, including the effect of II; and II. on the critical gas saturation S,.. Because the latter
pertains to the formation of a sample-spanning cluster, in the absence of viscous or gravity
effects, S,. actually reflects the variation of f,;. Thus, S,. can be considered a power-law
both of II; and of 1. with exponents that vary between 0.16 and 0.25 with respect to II; and
between -0.33 and -0.22, with respect to Il., respectively (see Tsimpanogiannis and Yortsos,
2001a, b).

The effect of IIy on the rescaled nucleation fraction, ¢, and the gas saturation, S,, is
shown in Figs. 5-6. In these calculations, we used a stretched exponential (n = 0.2233
and o = 0.1364) cavity size distribution. As Iy increases, the level of superheat and thus
the level of the supersaturation in the system is higher. This leads to an earlier onset of
nucleation, as well as a higher degree of nucleation. Note, however, that the effect of 115 on

the maximum superheat and on the rescaled final nucleation fraction, ¢,, is not significant.
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A change of Il by three orders of magnitude, results in a change of ¢,; by a factor of less
than 2. The gas saturation increases faster as the heat transfer coefficient increases. This is
due to the maintaining of a higher level of superheat, therefore a larger driving force for gas
volume growth. Interestingly, as the heat transfer coefficient decreases the gas saturation
growth slows down at larger values of the gas saturation. A noticeable difference, however,
at higher values of Ily, is that the superheat is not be completely depleted before the gas
saturation becomes equal to one, as happens with the lower values of 1lg.

The numerical solutions obtained will be compared against available experimental results.
However, before doing so it is beneficial to provide an interpretation of the numerical findings,

using a simpler model.

IV. INTERPRETATION USING A SIMPLER MODEL

To interpret the results obtained we will consider a simpler model that captures the
essential features of the problem, just like in Tsimpanogiannis and Yortsos (2001a, 2001b).

Consider, first, the nucleation period.

a. Nucleation

We use the following equations for the gas phase growth and the superheat

dpi)

(1 +Hc)%

and

AN 1—¢ 44(5)
(Hp + 7) ey (Hp + 7) - 0/0 ppdé, + Uy(vtp —0)  (28)

These are subject to the initial conditions

1
2
117

sp(T)

6(0)=0 and pp(r,7)= (29)

At early times and for small 11, the solution is approximately
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Note that the heat transfer term does not affect the early behavior (compare also with Figs.
5-6). The dimensionless superheat is linearly proportional to the dimensionless time and the
mean cluster size becomes evantually proportional to time. Both are consistent with the
numerical results during the nucleation period (Figs. 2 and 3).
We will use (28) to approximate the approach to the maximum superheat. The latter is
df

reached when it = 0, namely when

9/0% ppdd, ~ (Hp + %) " (31)

Following a similar approach as in Tsimpanogiannis and Yortsos (2001a, b) we can combine
(30) and (30) with the definition of ¢, to obtain an approximate algebraic equation for the
rescaled maximum supersaturation, sp,,. For example, for the case of Rayleigh distribution

we have the equation

s

1 1-— 1 3
— 2Ilnsp,, ~ §lm/) —1In (Hp + 7¢) — §1n3 — §lnA (32)

2
4sy

where we introduced the combination of variables

_4 11, -5
AEHHCS< ) 33
! I (33)

Likewise for the case of a stretched exponential we get

1 1— 1
o~ lsp! — 2nsp, ~ §lm/) —1In (Hp + 7¢) - §1n3 — glnA (34)

These equations suggest that the dependence of the maximum supersaturation (hence the
maximum superheat since § = ¢Il.sp) on the various parameters. The solutions of (32) for
the Rayleigh distribution and of (34) for two different cases of a stretched exponential are
plotted in Fig. 7, as a function of A. For the Rayleigh distribution, sp,, varies weakly, in the
range 0.1 — 1, as A varies over several orders of magnitude (between 107'* and 107°). For
small A, the maximum supersaturation is practically constant. As A takes larger values,

Spm 1ncreases weakly and eventually much more strongly, as A approaches the order of
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one (compare also with Fig. 3). On the other hand, for the stretched exponential, the
variation is much stronger in the logarithmic plot, and almost approximates a straight line.
Stronger dependence on A is observed for the case when the tail of the cavity size distribution
becomes longer (smaller values for n). Plotted in the same figure are also the results of the
numerical solution of the full problem for a number of different parameter values. The
agreement between the numerical results and the simple analytical model is very good and
demonstrates the validity of the simple model.

Equations (32)-(34) can be used to approximate the final nucleation fraction. For all

cases we have

11, ]‘%

A ST AH%H_2 —_—
qu SD 1 c [3(1+Hc)

m

(35)

where

_ L=¢) -t
A_(Hp—l— 3 )¢ (36)

The behavior of the maximum supersaturation as a function of the parameter A is very
similar to that in solution gas drive (Tsimpanogiannis and Yortsos, 2001a, b). In particular,
(a) In the region where sp,, varies weakly with A (at very small A) the final nucleation
fraction varies as a power law of II;, with exponent equal to 3/2.
(b) In the region where sp,, may be approximated by a power-law dependence on A, e.g.

as Spm ~ A™, we have the scaling

far ~ AAZTET (37)

Such a dependence on A leads to a decrease in the exponent in the power-law scaling of f,;
on II;. For example, if we take m ~ 1/4 (a value examined in more detail in Tsimpanogiannis

and Yortsos, 2001a, b), we read

qu ~ 1L and qu ~ ri (38)

b. Gas cluster growth
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The modeling of the growth regime, where nucleation has terminated, can be simplified

if we consider only one class of clusters and simplify the heat and mass balances as follows

do y —0z + HH(¢tD — (9)

— — + 9 39
i ™ 0, + 550 — ol 77 @
and
dzPr _ kflﬁz + 2Py (40)
dtp (1 —tp+1L)
Here, we introduced the variable
Z = Q41pD (41)
and the parameter
1-D;
- (42)

I,
The final value of the rescaled nucleation fraction, ¢,s, as well as initial values for Th., and

pp needed for the above calculation, are obtained from the previous analysis.

V. COMPARISON WITH EXPERIMENTS

The theoretical model was next compared to the experimental results of Dehghani et
al. (1997). In these experiments, the pressure at the open end of a Colton sandstone core,
saturated with water and embedded in a constant temperature bath, was slowly reduced at
the rate of 0.7448 bar/h (10.8 psi/h). The other end of the core was kept closed to flow.
Properties of the core of interest to this report were taken as follows: ry = 3.0x107° ¢m, r. =
3.0 x 1077 em. Additional physical parameters and values of the dimensionless parameters
used in the calculations are shown in Table 1.

The gas saturation as a function of time for the single-component experiment and for
various axial positions along the core are shown in Fig. 8. It is worth noting that the evolu-

tion of the gas saturation is slower as the distance from the entrance of the core increases. In
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a way, this reflects a reduced rate of pressure decline, or a decrease in the heat transfer coef-
ficient as the distance from the open end increases. For a better comparison of the data, we
attempted to collapse all data into a single curve. By replotting the data using as time origin
the time the boiling point in the bulk is reached (which is ¢, = 84 minutes), and by rescaling
time by a factor b(L), where L is the distance from the open end, we were able to collapse
satisfactorily all data in a single curve, as shown in Fig. 9. The less satisfactory collapse of
the data at the early times could be the result of poor CT-scan resolution in the low porosity
sandstone used in the experiments (Dehghani et al., 1997). The variation of the factor b(L)
which allows this collapse is shown in Fig. 10. It is a linear function of the dimensionless
distance and the best fit line describing the data is given by: b(L) = 1.0106 + 5.1513 (L%)?
where L, is the core length. We then attempted to match this universal curve using our
model. As shown in Fig. 9, a very good match was obtained, using a stretched exponential

cavity size distribution with n = 0.35 and o = 1.0.

VI. CONCLUSIONS

In this report we developed an effective continuum model to describe the nucleation and
subsequent growth of a gas phase from a supersaturated liquid in a porous medium, driven by
heat transfer. The evolution of the gas results from the reduction of the system pressure at a
constant rate. The model addresses two stages before the onset of bulk gas flow, nucleation
and gas phase growth.

We used heterogeneous nucleation models in the form of pre-existing gas, trapped in
hydrophobic cavities to investigate the nucleation behavior. Using scaling analysis and a
simpler analytical model we showed that the relevant quantities during nucleation can be
expressed in terms of a simple combination of dimensionless parameters, which include rate
effects. The subsequent evolution of the gas phase were also described using numerical and
analytical models.

The theory predicts that the maximum supersaturation in the system is a weakly increas-
ing function of the decline rate. This function depends sensitively on the probability density

function of the nucleation cavity sizes. It also predicts that the final nucleation fraction,
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thus the critical gas saturation, is a power law of the decline rate. The theory was then
compared with available experimental data of internal steam drives, such as the blowdown
experiments in carbonate rocks (Dehghani et al., 1997) and a good match is obtained by

appropriate fitting of the nucleation characteristics of the medium.
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Parameter Value

a (bar/h) 0.7448

Co (J/(KgK)) | 5954.7

Cpr (J/(KgK)) | 850.0

k (um?) 4.145 x 10~
kegs (W/(mK)) | 1.0

L, (em) 11.354

L, (J/mol) 37294.8
MW (g/mol) 18.016

P, (bar) 9.276

re (cm) 3.0 x 1077
rs (cm) 3.0 x 1073
T, (K) 449.4

v (mN/m) 55.0

1T, 1.333 x 1071
11, 9.697 x 107
1T, 3.901 x 101
11y 2.697 x 102
11, 2.981 x 10°
pr (Kg/(m?®)) | 2350.0

v 1.x107°

& 0.111

o 1.002 x 10~

Table 1: Characteristic values for the various parameters.
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Figure 1: Variation of the rescaled nucleation fraction, ¢,, as a function of the dimensionless
time, tp. (a) Effect of II; = 1.485 x 10™™, for Iy = 9.6972 x 107, II, = 2.981 and Iy = 0.
(b) Effect of II. = 0.117 x 10™, for II; = 1.485 x 1078, I, = 9.6972 x 107, II, = 2.981 and
Iy = 0.
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Figure 2: Variation of the mean rescaled dimensionless radius, ppm, as a function of di-

mensionless time, tp. Effect of II; = 1.485 x 10™™, for II, = 9.6972 x 107, II, = 2.981,
II. = 0.117 x 10! and I = 0.
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Figure 3: Numerical results for the rescaled supersaturation, sp: (a) Variation as a function
of dimensionless time, tp. Effect of II; = 1.485 x 10™™, for I, = 9.6972 x 107, II, = 2.981
and [l = 0. (b) Effect of the parameter II; on the maximum rescaled supersaturation, sp,,,

for II, = 0.117 x 10™. Points correspond to the full numerical solution, solid lines correspond
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Figure 4: Variation of the gas saturation, S, as a function of dimensionless time, tp. Effect

of I} = 1.485 x 10™™, for I, = 9.6972 x 107, 1, = 2.981, I, = 0.117 x 10" and 11y = 0.
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Figure 5: Variation of the rescaled nucleation fraction, ¢,, as a function of dimensionless
time, tp. Effect of Iy = 107, for II; = 1.485 x 107%, I, = 9.6972 x 107, II. = 0.117 x 10!
and II, = 2.981.
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Figure 6: Variation of the gas saturation, S, as a function of dimensionless time, tp. Effect

of My = 10™, for IT; = 1.485 x 1078, 11, = 9.6972 x 107, I, = 0.117 x 10" and II, = 2.981.

101



wWe——/————————————
A M
-1 ° ° - )
10 ¢ ]
£
[
1/p]
107} _:
-3
10 D
T 1070 107
A

Figure 7: Maximum rescaled supersaturation, sp,,, as a function of A for various cavity size
distributions. Solid lines correspond to the simpler problem, points correspond to the full
numerical solution [denoted by circles for the Rayleigh cavity size distribution, by triangles
for a stretched exponential (n = 0.2233 and o = 0.1364) and by squares for a stretched

exponential (n = 1.0 and o = 1.0)].
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Figure 8: Gas saturation profiles for single-phase flash experiment as a function of time and

for various axial positions along the core, L. Experimental data from Dehghani et al., (1997).
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Figure 9: The evolution of the gas saturation as a function of a rescaled time for the ex-
periments of Dehghani et al., (1997). Points denote experimental values and the solid line

corresponds to the full numerical solution.
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1. VAPOR-LIQUID FLOWS

The simultaneous flow of vapor and liquid phases is common to steam injection.
Counter-current flows are encountered in Steam-Assisted-Gravity-Drainage (SAGD), and
in steam injection in horizontal wells. They also appear in the context of heat pipes in a
variety of processes (from geothermal to high-level nuclear waste disposal). Concurrent
flows are found in typical displacements, in solution gas-drives near wells, and various
other contexts. The interaction between heat transfer, heat flux, buoyancy and fluid flow
affects the occupancy of phases and the flow characteristics, such as relative
permeabilities. In this section we report on one specific study, based on what we term
Darcian Dynamics, to describe the dynamics of the flow of a disconnected phase, in the
form of ganglia, in the flow field of a displacing continuous phase. This effort parallels
the analogous effort in Stokes flows, called Stokesian Dynamics. It was first described in
last year’s report. The method was further developed during the period elapsed, and the
findings are described in detail in the section that follows. The method provides a
computationally fast approach for the evaluation of quantities such as the critical
capillary number for mobilization, the subsequent movement of the mobilized phase, and
its possible stranding and/or coalescence. The study does not address phase-change or

heat transfer issues, which are currently under consideration.
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Darcian Dynamics: A New Approach for the Mobilization of

Ganglia in Porous Media

Pouya Amili and Yanis C. Yortsos

INTRODUCTION

Two-phase flow i porous media has been the subject of many studies due to its
importance in applications such as oil recovery, geothermal reservoirs, nuclear waste
repositories and so on. The original motivation for this study was the modeling of co-
current and counter-current vapor-liquid flows in porous media!. In many of these
applications, due to capillary forces, one of the phases (and particularly the gas phase)
becomes disconnected. The resulting bubbles (generically referred to here as ganglia)
can be mobilized, if the flow rate of the other phase is sufficiently large, otherwise they
become stranded. The existence of trapped ganglia perturbs the flow, which in tum

affects trapping and mobilization conditions of other ganglia.

Modeling of trapping, mobilization, and or coalescence of disconnected ganglia in porous
media has been investigated using two models, percolation theory and pore-network

2345 are computationally fast, however they only apply

simulations.  Percolation models
to very small flow rates where the process is quasi-static. In fact, they theoretically
correspond to a zero capillary number. On the other hand, pore-network simulations do
not have this disadvantage and apply to general dynamic flow conditions®’-®. However,

they can be computationally intensive.

In this work, we provide an alternative approach, which utilizes the fact that at the small
scale, fluid flow is in fact described by Poiseuille’s equation, which then leads to a Darcy
law macroscale description. We use homogeneous flow conditions to describe the flow
of the flowing phase, and account for the pore microstructure only in so far as capillary
forces are concerned. In this approach, therefore, the governing equation is the Laplace

equation, for the solution of which we can use the many advances made in potential
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theory. Specifically, the linear character of the equation allows us to apply a boundary
integral method in which all the relevant flow information is mapped onto the boundaries
of the two phases. (We should note that pore-network models essentially solve the same
equation, except that they can also account for heterogeneity in the pore conductances.

This cannot be captured by the present method.)

An analogous situation arises in the bulk flow of a suspension of particles, droplets or
bubbles, where viscous forces predommate. A significant advance for the understanding
of the flow properties of such systems is the method of Stokesian Dynamics, developed
by Brady and Bossis®. Stokesian Dynamics is based on the linearity of the problem at
small Reynolds numbers, where Stokes equations apply, and relies on a boundary integral
method to compute the hydrodynamic forces between hydrodynamically interacting
particles, as transmitted through the flowing fluid. In fluids in the bulk, these forces are
driven by wviscous shear, which compete with thermal and interparticle forces. In fluid
flow through porous media, on the other hand, the relevant forces are pressure forces,
expressed through Darcy’s law, and capillary forces. Their competition determines the
mobilization, coalescence, break-up and stranding of the various ganglia. The method we

propose in this study, and which we will term Darcian Dynamics, is the analogue of

Stokesian Dynamics to flow in porous media.

The use of a boundary mtegral technique enables us to investigate with relatively small
computational requirements the interaction in a porous medium between flowing and
dispersed phases, held trapped by capillary forces. With this approach, the pressure
distribution on the interface of the various ganglia 1s directly obtained as a function of
parameters, such as ganglion size and shape, their position and relative distance, and their
population. Thus, the net effect of the viscous forces on each ganglion can be calculated
and compared to the capillary forces to determine the possibility of mobilization and the
subsequent movement. Effects of gravity can be included in a straightforward manner.
Thus, Darcian Dynamics provides a fast way to model the flow behavior and its

dependence on the various geometric and flow parameters.
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The report is organized as follows: First, we present the theoretical foundation and the
development of the Darcian Dynamics approach. Then, a numerical technique is
introduced to solve the resulting boundary integral equation. Numerical results are
presented that test the validity of the method and subsequently address the conditions for
ganglia mobilization, probabilities of break-up and stranding, the effect of gravity and the

effects of ganglia interaction.

DARCIAN DYNAMICS

1. Boundary integral formulation

We consider the flow of a fluid in a homogeneous porous medium in the presence of
another phase, which is disconnected in the form of ganglia. We assume that the flowing
fluid is an incompressible viscous liquid, while the disconnected phase is an inviscid fluid
(e.g. vapor or gas). Under the assumptions noted above, the governing equation for the

flowing fluid is described by the Laplace equation

Vip=0 (1)

As pointed out above, pore-network simulators also solve a discrete form of the above
equation. Hence, with the exception of the fact that in pore-network simulation the flow
conductance can be heterogeneous, the fundamental premises of the two approaches are

identical in this respect.

In this report, we consider the solution of Egn. (1) in a two-dimensional geometry, in
which the injected fluid flows with a far-field velocity u, aligned, with no loss of
generality, along the direction of the x-axis. The existence of the ganglia of the other
phase perturbs the flow, thus, we will take the pressure and flow velocity as the

superposition of a base flow and a perturbation
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=p, +
pt pd .p() (2)
u, =u, +|10

where p, = —u xu/kand subscript ¢ denotes the perturbation due to the presence of the

ganglia. At the far field the perturbed flow rate and pressure vanish
pa—0,u,—0 and  u,—u,,

while at the ganglia interface, the normal flow velocity is zero

u -n=0

f

where n is the outer normal to the ganglia interface (see Figure 1). In appropriate

dimensionless notation, the above can be rewritten as follows

Vip, =0 A3)
ap, .
— = 7] tt terf:
= cos on the interface @)
u =1 at far — field

4

and where 0 is the angle between the normal n and the x-direction.

Flowing

Figure 1. Schematic of the problem considered.
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To solve (3) we will use an integral equation approach following advances from

electrostatic potential theory. In that terminology, the free-space 2-D potential at location

p due to a point sink (source) at p’ is

¢(p)=2iln|p—p'| (5)
T

For sources or sinks distributed on any contour C (here the ganglia interface) with density

0y, the potential at point p is then given by superposition

P.(p)= JQ’(p In|p-p'|dl, 6)

Differentiating the abowe equation by carefully accounting for the removable
singularities' and using the boundary condition (4) results in

OS(P p,m)
2n |p-p|

i ap,

" on, dl . = cosd (7)

=—Q,(c> +[.2.6)

This is a Fredholm integral equation of the second kind for (). For its numerical solution
we apply the method of moments' which reduces the equation into a linear matrix

equation. From the calculated ), the pressure follows readily using Eqn. (6).

The Green’s function in Eqn. (5) is based on an infinite system. For different geometries,
the appropriate Green’s functions must be used instead. For example, for flow confined
between two impermeable boundaries parallel to the x-axis, the corresponding Green’s

function is'
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¢(xay;xoayo): ;_ﬂm%[COSh%(x—XO) —COS%()/— yo)] +

I 1 n /4 ©
—In —[cosh —(x—x,)—cos—(yv+y, — d)]
4t 2 d d

where d is the distance between two boundaries. This equation provides the potential at
{(x, ) caused by a point source at vy, yp). If the system is periodic in the flow direction,

we have'

1 1 2r 2
O(x,y; x5,,)=—In —[cosh— (y—y,)—cos—(x —x, )} )
a2 a a

where a is the period length. This geometry is useful when the number of ganglia is large
and a periodic distribution along the flow direction may be assumed. Results will be
provided for a number of cases in the various geometries, in the next section of this

report.

2. Mobilization Conditions

To simulate the flow behavior in a system containing a dispersed and a disconnected
phase, conditions for ganglia mobilization must be formulated. Specifically, we need to
know if the pressure difference across a ganglion is sufficient to overcome the capillary
forces, which hold it trapped. The pore microstructure gives rise to capillary thresholds,
which are in general randomly distributed, following the distribution of the pore throats.
Thus, we can assign dimensionless capillary pressure thresholds to all ganglia segments,
which in the present notation will be expressed in terms of the capillary number of the

problem. We find that the capillary threshold at any segment is'

B .
= 10
P = (10)
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16In( p, )

where parameter § = YT is related to the percolation threshold of the lattice, p,

and the formation factor, F, and we defined the capillary number Ca=u u/y, where y is

the interfacial tension. The dimensionless radius 7p is in general a random variable,

which in the following illustrations was distributed using the Rayleigh distribution

2

a(r) =rexp(—%) (1D

The movement of a ganglion is decided by the difference between the viscous pressure
and the capillary pressure threshold. At every step of the simulation, we first determine
the segments of the ganglia subject to mobilization. For this, we form the pressure
difference between pairs of ganglia segments i and j, belonging to the same ganglion, and

subtract the capillary pressure threshold of the segment with the smallest pressure,
Api,v/ =P, PP (12)

For a given ganglion, the maximum of Ap;; over all i and j is found. If it is positive,
segments / and j are advanced one pore, such that segment i moves outward and segment
j inward. Otherwise the ganglion remains stationary. The procedure is repeated at every
step, leadng to new ganglia configuration, with different shapes, geometry and
orientation, from which the fluid pressure can be comouted again. We note that this
approach is essentially a quasi-static one, in that only one set of interfaces is advanced at
any step. Given that time is not explicit in these calculations, however, this limitation is

not significant.

The above were obtained in the absence of gravity. Buoyancy forces can play an equally
important role to viscous, however. In the presence of gravity acting along the x-
direction, the determination of the pressure field is as above, except that the base pressure

must also include the hydrostatic contribution. The effect of gravity actually enters in the
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mobilization condition (12), which must now include the gravity contribution /;; Ngx,

where we introduced the gravity number

Ng =—L"8 (13)

and /;; is the projection of the distance between the two segments along the xaxis. The

gravity number is also equal to the ratio between the Bond number, Bo=Apgk/y, and the

capillary number. Gravity effects will be analyzed below.
NUMERICAL RESULTS

Using the method of moments, the integral equation was solved for a variety of situations
of interest. In this section we first demonstrate the validity of the method by comparison
with an analytical solution. Then, we consider the conditions for the mobilization of a
single ganglion as a function of its size, confinement, flown rate, capillary environment
and gravity. We analyze the sensitivity of the critical capillary number, above which a
ganglion is mobilized to various parameters. We also investigate the effect of ganglia

interaction.

1. Validity of the Method

To test the validity of the method, we compared the numerical predictions with some
analytical results. In 2-D, analytical solutions exist for potential flow around a cylinder
in an unbounded domain. Then, the dimensionless pressure at the interface is given by
the simple equation

p=-cosb. (14)

(see Lamb'®). Figure 2 shows a comparison between
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Figure 2. Comparison between analytical and numerical solutions for flow around a circular

ganglion.

analytical and numerical results, using Darcian Dynamics, in which the circle was
discretized in 50 segments. In Figure 2 the ordinate indicates the location of a segment,
numbered clockwise from the downstream end. An excellent agreement is observed.
Similar agreement was found for the case of an elliptical shape ganglion, for which an
analytical solution is also possible’. Having confirmed the validity of the method, we

then proceeded to investigate the sensitivity of the flow to various parameters.

2. Single Ganglion

First, we studied the mobilization and subsequent movement of a single ganglion. The

first parameter studied was the ganglion size.
Ganglion size

The mobilization of a ganglion depends principally on its size. Increasing the size,
increases the pressure gradient across the ganglion, resulting in a higher probability of
mobilization. Figure 3 shows the variation of the critical capillary number as a function
of size for a square-shaped ganglion of size nxn in a homogeneous capillary environment

with the same capillary thresholds in each segment. As expected, there exists a critical
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capillary number for ganglia mobilization, which is of the order of 107. This value is
consistent with what is typically assumed regarding the importance of viscous forces in
porous media. The critical capillary number decreases as the ganglion size increases, and
becomes asymptotically inversely proportional to the linear ganglion size (and in Figure 3
inversely proportional to the square root of the ordinate, except for the periodic geometry
case, which limits the ganglion size). The effect of confinement is also apparent. When
the flow is confined, the critical capillary number decreases, due to the increased viscous
pressure. This is more clearly illustrated in Figure 4. It is shown that the spacing of the
confinement has a significant effect as long as it is smaller than a value, which is about 5
times the ganglion size. For larger spacings, the effect is not significant and the critical
capillary number approaches its value in an infinite system. We add that the above
behavior is qualitatively similar for ganglia of different shapes, although the shape and

orientation of a ganglion does affect the numerical value of the critical capillary number.

X 10‘3 Constant Capillary Pressure
2.5 T T T T

—#— Infinite System
—©— Semi-infinite System, (d=12)
—&— Periodic System, {(a=12)

Critical ¢
0.5

0 10 20 30 40 50 60 70
Size of the ganglion; {nxn)

Figure 3. The dependence of the critical capillary number for mobilization on ganglion size for

three different geometries: infinite, semi-infinite and periodic.
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Figure 4. Critical capillary number for the mobilization of a square-shaped ganglion of size 4x4

confined between two parallel plates, plotted versus the distance between the plates.

Effect of flow rate

Following the onset of mobilization, ganglia undergo shape changes, break-up,
coalescence and/or stranding. The applied flow rate (capillary number), the capillary
threshold distribution and the original ganglion shape are important variables for these
events. Figure 5 illustrates successive snapshots of the movement of a ganglion n a
random capillary environment for a capillary number equal to 8x10, which is larger than
the critical for this size. It is apparent that the mobilization and subsequent motion is
accompanied by deformation, break-up and stranding of daughter ganglia of smaller size.
The resulting ganglia interaction is quite complex and dynamic. Typically, ganglia
movement occurs in a random capillary threshold environment, due to the randomness in
the pore structure. In a random domain, the critical capillary number is also a random
variable. Equivalently, we may define a probability of mobilization, given a value of the
applied capillary number.  Likewise, we can determine probabilities for break-up,
stranding of all ganglia generated, etc. as a function of the capillary number. Figure 6
shows the curves obtained by simulating the motion of a ganglion of size 45, for several
realizations of the random capillary thresholds. The key features of the curves obtained
are as follows: (i) mobilization, break-up and stranding are stochastic processes; (it) the

variation of the probabilities for these events vary in a rather narrow interval of the
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capillary number, of the order of 10-107, the width of which also depends on the
variance of the threshold distribution; (iii) the probability of break-up becomes one for
sufficiently large capillary numbers; (iv) the probability of stranding becomes negligible
if the flow rate is sufficiently large. It is important to mention here that although a
ganglion can go through several break-ups during its movement, the data presented
correspond to the first break-up only. It is also important to mention that a value of unity
for the probability of stranding in this case means the stranding of all daughter ganglia.
Similarly, a value of zero means that at least one daughter ganglion is still mobile before

leaving the domain of the simulation.

Size=20; Ca=8.0e4 1% step 4" step
o - -
Fad step 118 step 13th step
e 5 vr— e
15th step 17th step 19th step
serE P | H 1

Figure 5. Snapshots of the movement of a ganglion of size 20 in a random capillary threshold

environment for Ca=8.0e-4.
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Figure 6. Probabilities of mobilization, break-up, and stranding after the mobilization of a single

ganglion of size 45 in a heterogeneous medium, plotted as a function of the capillary number.

Effect of gravity

When buoyancy forces are considered, both the magnitude and the direction of the
gravity vector are important. If gravity aids viscous forces, mobilization is facilitated,
and the critical capillary number decreases with an increase in the Bond number. In such
cases, the critical capillary number is a decreasing linear function of the Bond number, as
can be readily shown. Figure 7 shows the corresponding relationship, obtained from
simulations n a homogeneous capillary threshold environment, with a ganglion of size
45. There exists a critical Bond number of the order of about 3x10™, above which the
ganglion is mobilized by gravity forces alone. In the opposite case, when gravity opposes
mobilization (for example, when flow and gravity act in the same direction), the situation
is a bit more complex. Now, the critical capillary number increases with the Bond
number. Furthermore, when the velocity is small, for sufficiently large Bond numbers,
the ganglion is mobilized in the direction opposite to the flow. In other words, there
exists now a critical Bond number, which depends in a straight-line relationship on the
capillary number. In-between the two lines is the regime where the ganglion remains
stationary. The two lines intersect at a critical point, beyond which a single line separates

two regimes, one in which mobilization is in the direction of flow (higher Ca) and
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another in which it is in the opposite direction (lower Ca). Subsequent to mobilization,
the ganglion undergoes a sequence of events similar to the previous, except that when
gravity effects are significant, there is a preference for the ganglion to elongate along the

gravity direction’.

4
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0.2 r . . . r
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Figure 7. Regimes of mobilization in a diagram involving the capillary and the Bond numbers, for

the case when gravity aids the mobilization.
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Figure 8. Regimes of mobilization in a diagram involving the capillary and the Bond numbers, for

the case when gravity aids the mobilization.
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3. Ganglia interaction

The mobilization and subsequent evolution of a ganglion depends also m the presence of
neighboring ganglia. A “crowding” effect has been postulated by previous authors'', in
which the increase of the population density of ganglia increases the viscous forces on the
system, thus making it easier to mobilize ganglia, even at relatively small capillary
numbers, where viscous effects are not expected to be significant.  To investigate such
phenomena, we considered the effect of distance and orientation of one ganglion on the
mobilization of another identical ganglion. For simplicity, we assumed two identical
circular ganglia confined between two parallel plates, as shown in the insets of Figures 9
and 10. First, we examined the case in which the ganglia are stacked in a direction

perpendicular to the boundaries (Figure 9).

Critical capillary number for a
single circular ganglion=1.4e-3

Crmoa{ (;] iflary number O
1.05 O
1 : : : : r
o] 5 10 15 20 25 30

Distance between two circular ganglia

Figure 9. Critical capillary number for ganglia mobilization plotted versus the distance between
the two ganglia confined between two parallel plates and stacked perpendicular to the plates (see

inset). Homogeneous capillary environment.

Figure 9 shows the critical capillary number for the mobilization of the ganglia (both are
mobilized simultaneously due to the symmetrical location) as a function of the distance
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between them. In this configuration, it is apparent that the presence of the neighboring
ganglion increases the viscous forces in the system, thus making the mobilization of the
other ganglion (and itself) easier. Indeed, there is approximately a 40% reduction in the
value of the critical capillary number as the two ganglia approach one another. A

crowding effect is indeed present, leading to enhanced viscous forces.

When the configuration was changed, however, such that the two ganglia were aligned
along the flow direction, parallel to the plates, the effect was in fact opposite to the
previous (Figure 10). In this case, increasing the distance between the ganglia resulted in
a decrease of the critical capillary number, which asymptotically approached the critical
capillary number for a single ganglion as the distance becomes sufficiently large. It
appears that as the ganglia approach each other, such configurations lead to a better
streamlined object, which offers smaller viscous resistance, hence an increase in the
critical capillary number.  This unexpected effect is opposite to the conventional
crowding effect. The effect was confirmed using a different numerical technique, as
well.  One concludes that not only the density, but also the relative position and

orientation of the ganglia are important factors in ganglia mobilization.

An illustration of the non-trivial aspects of these effects is shown in Figure 11, where the
effect of the orientation of the two ganglia on the critical number for the mobilization of
the upstream ganglion is portrayed. As in Figure 10, the critical capillary number of a
single isolated circular ganglion in this geometry is 14x107. The second ganglion is then
rotated counter-clockwise around the reference one, while maintaining the same distance.

Clearly, the configuration in which the ganglia are stacked perpendicular to the flow is
the one with the strongest crowding effect, while the alignment along the flow direction
in fact favors the trapping of the ganglion. Additional work in this direction, including
the subsequent evolution of the mobilized ganglion is discussed in Amili' and is also

actively pursued at this time.
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Figure 10. Critical capillary number for ganglia mobilization plotted versus the distance between
the two ganglia confined between two parallel plates and stacked perpendicular to the plates (see

inset). Homogeneous capillary environment.
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Figure 11. The critical capillary number for the mobilization of the upstream ganglion for
different positions of the two ganglia. (Note that the lower two panels are mirror images of the

top two.) Homogeneous capillary environment.
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CONCLUSIONS

In this report we developed a new method, which we termed Darcian Dynamics, in
analogy with Stokesian Dynamics for flow of bulk fluids, to study and simulate two-
phase (liquid-gas) flow in porous media, when the gas phase is disconnected in the form
of ganglia. The method assumes homogeneous flow conditions for the flowing liquid
phase, but heterogeneous capillary thresholds. Using techniques from potential theory,
we describe the hydrodynamic interaction in terms of the solution of an integral equation,
valid over the ganglia interfaces. We use this method to explore the conditions for the
onset of ganglia mobilization and their subsequent motion. Break-up, coalescence and
stranding are simulated. The interaction between ganglia and the flowing phase is
influenced by many parameters, several of which have been studied in this work. In
particular, we examined effects of size, orientation, gravity, and ganglia interaction. The
latter does not always enter as a crowding effect, as intuitively expected. The technique

is currently being further developed in order to address a variety of interesting problems.
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1HI. DYNAMICS OF IN-SITU COMBUSTION AT VARIOUS SCALES

A well-established method for the recovery of heavy oils is in-situ combustion. Despite
its long history, however, many aspects of the process are not well understood. In our
previous report we described two particular aspects: The description of the process at the
pore-network scale, and its upscaling at the large scale for field applications. In
particular, we applied an asymptotic approach to describe the movement of combustion
fronts in porous media as gas-dynamic discontinuities and in the presence of heat losses,
but only for homogeneous systems. This approach is essential for the upscaling of the
process at the field scale and for the assessment of the effect of macrcoscale
heterogeneity on issues such as sustained front propagation, extinction, efficiency, etc. In
this report, we extend the effort to account for the effect of heterogeneity in the form of a
layered reservoir on the propagation of combustion fronts. It is found that heterogeneity
plays an important role in setting extinction criteria for combustion and should be very
carefully considered in the design of combustion projects. These findings were also
supported by pore-network simulations, which will be reported in the final report.
Progress was also made to the upscaling of reaction fronts using hybrid algorithms. This

will also be reported in the final report.
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The Effect of Heterogeneity on In-situ Combustion:
The Propagation of Combustion Fronts in Layered Porous Media

I. Yicel Akkutlu and Yanis. C. Yortsos

1 Introduction

The sustained propagation of a combustion front is necessary for the recovery of oil using in
situ combustion. Compared to other methods, in situ combustion involves the complexity of
exothermic reactions and temperature-dependent reaction kinetics. The combustion dynam-
ics are influenced by the fluid flow of injected and produced gases, the heat transfer in the
porous medium and the surroundings, the rate of combustion reaction(s) and the heterogene-
ity of the porous medium. In the presence of heat losses, the possibility exists of extinction

(quenching) as well as the necessity of ignition for sustained propagation.

Combustion fronts in porous media have been studied extensively in the context of filtration
combustion. Analytical treatments of the combustion front dynamics is possible, by using
methods similar to the analysis of laminar flames (gaseous phase combustion in the absence of
porous medium). Using the property that the activation energy of the overall reaction is large
in comparison with the thermal enthalpy [1], Britten and Krantz [2, 3] provided an asymptotic
analysis in one-dimensional systems of reverse combustion in coal gasification. In detailed
works, Schult et al. [4, 5] investigated the adiabatic combustion of a homogeneous porous
medium, in the contexts of fire safety and the synthesis of compacted metal powders (SHS
processes). More recently, forward and reverse filtration combustion in a non-reacting porous
medium was studied using a pore-network model by Chuan and Yortsos [6]. In parallel,
a detailed analysis of the propagation of planar combustion fronts in porous media was
undertaken by the present authors [7]. They addressed the issue of steady-state propagation
under both adiabatic and non-adiabatic conditions, but emphasized the effect of heat losses to
the surroundings. The latter were modeled both by conduction (for subsurface applications)

and by convection (for laboratory applications). A number of important results were obtained,
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which are briefly summarized in the next section.

In this chapter, we consider the use of the same type of approach in an attempt to answer
the important question of the effect of the porous medium heterogeneity on the sustained
propagation of combustion fronts. As in other contexts, a simple representation of hetero-
geneity is through the use of layers. For example, layered systems have been employed to
investigate heterogeneity effects on processes such as miscible and immiscible displacement
[8]. In the latter processes, the effect of heterogeneity typically enters through fluid mobility
(where the displacement in a more permeable layer is further accelerated in the case of unfa-
vorable mobility ratio, and conversely retarded in the case of a favorable mobility ratio). In
the combustion case of interest here, however, the coupling enters through the heat transfer
between the layers, to be expressed by a simple convective-type model. The assumnption is
rigorously valid if the layers are sealed from one another, or if the fluid mobility remains con-
stant through the process, which is a good assumption, when the net rate of gas generation is
small. Then, the injection rate in each layer is constant in time, and proportional to the layer
permeability. The analysis will be conducted for two simple geometries, a two-layer system
and a symmetric three-layer system, under both adiabatic and non-adiabatic conditions. Our
emphasis is on understanding how the heat transfer coupling affects the front propagation in
the different layers, on whether or not a state of coherent traveling fronts develops and on
whether or not a sufficiently sharp permeability contrast can lead to the extinction of the pro-
cess. Throughout the chapter, we will use methods similar to the single-layer problem of [7].
Because of the relevance of those results to the present problem, they are briefly summarized

below.

2 Preliminaries: Combustion in a Single Layer

Under adiabatic conditions, it is found that there is always sustained propagation, where the

front temperature is given by

Qpf

O =T¢/T,~1+¢q, where ¢= —"——
d d (1 - ¢)CspsTo
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we denoted the heat of reaction by ), the initially available fuel content per total volume by
p} and the volumetric heat capacity of the porous medium by (1 — ¢)csps. Clearly, equation

(1) shows that the front temperature is practically independent of the front velocity.

Under non-adiabatic conditions, however, front temperature and front velocity are coupled.
When the heat losses are modeled by heat conduction in semi-infinite surroundings, the
temperature of the front is obtained from the different equation

20
H (5

where w

and 2y is the positive root of the algebraic equation

-2 _ , N 2/3
- (1+ fiz1)?, with = — (%) : (3)

1

In (2), H is the thickness of the porous medium, v; the injection velocity, Vp = V/v; is the
dimensionless front velocity normalized with the injection velocity, and a, = A/(1 — )¢, is
the effective thermal diffusion coefficient. A similar equation applies for the convective heat

losses case.

In all cases, the front velocity is related to the front temperature through the following

equation

, N (L1-#VD
i = avges () (15252 !
D JEXp 0, 1+ 11,V (4)

where v = FE/RT, is the Arrhenius number, F is the activation energy, K the universal gas
constant, p and gy = pg, — p are dimensionless stoichiometric coefficients for oxygen and

produced gas due to reaction, respectively (see [7] for more details), and

b

AsCg ko};pz

(]
- ( )7) dn.
qEL v}

1
where I, = /0 -

A =
()

(5)

In addition, in Equation (5), a, is the specific surface area per unit volume, k, the pre-
exponential factor, p; the initial gas pressure, n = 1 — py/ p} the extent of fuel conversion

depth and ¥(n) is a dimensionless function representing the dependence of reaction on 7.
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In the adiabatic case, there is always a solution for the front velocity as a function of the
injection velocity. This relation is plotted in Figure 1 for typical parameter values. It shows
that the front velocity is proportional to the injection velocity at sufficiently small injection
rates, and increases more slowly as the injection velocity becomes larger. In thermally decou-
pled layers, under adiabatic conditions, we should expect, therefore, that combustion fronts
in high permeability layers would travel faster, according to the dynamics portrayed in Figure

1, for example.

On the other hand, in the non-adiabatic case, the coupling between velocity and temperature
has significant implications. Figures 2 and 3 show results obtained for the front temperature
versus the injection velocity for a varying thickness of the porous medium. The corresponding
variation of the front velocity with the injection velocity is shown in Figure 4. For fixed
thickness and injection velocity, the system typically shows multiplicity in the solutions, and
for sufficiently thin layers, extinction and ignition points, F. and /., exist in temperature
(Figures 3, 2). As H decreases, the extinction threshold rapidly increases, namely it requires
an increasingly larger injection velocity for the reaction to be sustained, as shown in the
Figures. Between these thresholds, there exist three separate solutions for given injection
and reservoir parameters, consisting of a stable low temperature (and velocity) branch in
the vicinity of the initial conditions, a stable high temperature (and velocity) branch, where
rigorous combustion takes place, and an unstable intermediate branch connected to the latter.
Such behavior is typical of multiple solutions in other areas in reaction engineering. The upper
branch is the solution corresponding to a proper combustion front. It approaches and runs
parallel to the adiabatic solution. For a given H, the sensitivity of the front variables to the
injection velocity is very large near the threshold, but becomes almost negligible above it.
Likewise, the sensitivity of the extinction threshold E, to the reservoir thickness is significant
for values of H the order of 1 m or less, for the parameters assumed here. As H decreases,
the extinction threshold rapidly increases, namely it requires an increasingly larger injection
velocity for the reaction to be sustained, as shown in the Figures. Conversely, at larger H,

the threshold decreases, and for sufficiently large values, multiplicity disappears altogether.
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Figure 1: Steady-state front velocity versus injection velocity for different injected oxyen concentration for

a single layer porous medium under adiabatic conditions.
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Figure 2: Frout temperature versus injection velocity for a single layer under non-adiabatic conditions.

1,1=(9.45,140.0), E.1=(5.9,190.0).
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Figure 3: Front temperature versus injection velocity for a single layer under non-adiabatic conditions.

Eoy=(19.7,260.0), Ee3=(102.1,320.0).
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Figure 4: Front velocity versus injection velocity for a single layer under non-adiabatic conditions.

E.»=(19.7,260.0), E.3=(102.1,320.0).
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Figure 5: Schematic of the notation used for the propagation of combustion fronts in a two-layered porous

medium.

Analogous results are obtained when the heat losses are of the convective type, which would
be appropriate for a laboratory application. In fact, in such cases, the system equations are
simpler. One can combine the two applications [7], to obtain an expression for the effective
heat transfer coefficient k in a system controlled by heat conduction. In terms of the Nusselt

number, we have

4 1/3 3/2 5/3 =
NUET:E(%/ 22+ 2wz +<~'i/ T W 1) ©)

Further details can be found in [7].

3 Combustion in a Two-Layered Porous Medium

Consider, now, the application of the same approach to a layered porous medium. The first
geometry to be considered is a two-layered system, as shown in the schematic of Figure 5.
The steady-state propagation of combustion in the two layers ¢ and j is considered. The layers

are homogeneous, but with different permeabilities (with layer j being more permeable), and
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hence different injection velocities. In the absence of mobility variation effects, these are
proportional to the layer permeability. We assume only thermal coupling across the layers,
which will be expressed in terms of a convective-type heat model. Due to thermal coupling,
it is apparent that isolated front propagation in each layer with front velocities dictated, e.g.
by Figure 4, cannot take place. Indeed, we expect that the faster traveling front in layer j
will slow down due to heat losses to layer i the front of which will accelerate until a coherent
state is reached and the front velocities are the same in each layer. In the moving coordinate
with respect to the combustion front, £ = x — Vpt , where z = Z/l, and ¢ = £/t, are the
dimensionless space and time variables with I, = «/v; and t, = l,/v;, the dimensionless

thermal energy balances for the two layers read

Aﬂ; = 9;,[ -+ 0'(911 — HJ) — hj(gj — 1) (8)

where prime denotes derivatives, and we have introduced

/’L‘ = Qpv; — VYD = —‘VD, ‘4]' = apv; — ‘/]) = —‘/]) (9)

The dimensionless parameter a < 1 represents the ratio of the volumetric heat capacity of
the gas to the solid matrix, ¢ is the non-dimensional coefficient for the heat exchange between
the two neighboring points in the direction transverse to the propagation, and we have also

allowed for heat loss to the surroundings using the heat loss coeflicients

; 2
o \? o
h; =N ° ., h; = Nu = 10
I u(HZ'Ui) ' U.(vaj) ( )

The solution of this problem will be considered in the two different cases of adiabatic and

non-adiabatic conditions.
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3.1 Adiabatic conditions

In the adiabatic case, equation (8) simplifies to

6,=0,+ (A8 o). (11)
o

Inserted into equation (7) this gives the following differential equation

0\ — BV + DO + o BY, = 0, (12)

where we defined

B=A;+ A, D= A4 — 2 (13)

Its solution is readily obtained,

0; = Go + E1e"% + Goe™?E + Gy’ (14)

where r1 > 0, 79,73 < 0 are the real roots of

7  — Br*+ Dr+0B=0 (15)

The solution for #; follows using equation (11), namely

0; = Go + C1e"C + Gpe™® + Gz

1 v .
4 — (Aj (617’16”5 + Gorge™ Egr3e”§)
o

—& 7% — Eyrient — 837‘?2)6"35) (16)

Because of the jump conditions at the two combustion fronts, it is convenient to consider

three different regions, as shown in Figure 5. Using the far-field boundary conditions
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we then have

1. Region I

1
92' el 9[ -+ C,ler16 + — (14.7‘(317'16’,“6 — e
o

Py
9]' = 9[ -+ C1€'1s

I1. Region 11

0, = c, + c2€™E + c3e™5 + cqe™

1 A ; )
+— (Aj (627'161T1{ + (379"t + (147‘36”6)
g

—c-grfe”g — 637‘56”5 — cu‘éemg) (21)
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)

(18)

(19)

(20)

(22)

v , 1 ,
0; = 1+ c5e™€ 4 g™ + = (Aj (C5T2€72£ + 067’36”5)
o

2 o€

—cyrhe Zerst

— Cgri3e )

0, =1+ c5e 4 cpe™E.

(23)

(24)

To complete the problem requires formulating jump conditions across the combustion fronts.

These read as follows:

At €= 0:

Jee

=0+ =0t
[‘%E:of - [gj]f = [9’ £=0-

£=0- J
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o+ ,
[Hﬂgzg— = —qVpi, (26)

and at & = &,:
=65 _ g g=tt _gees :
015 = [0, =05 =0, (27)
SE=€f .
[Hj:|£:£*— = —qVpj;. (28)

Because the fronts travel with the same speed (V; = Vj), both the front and the distance
&ibetween them must be determined. In essence, these constants are the eigenvalues of this
system of ten equations (seven integration constants, &, Vp, and 6;). In general, the system is
non-linear, due to the intricate dependence between front velocity and heat transfer. The ten
equations required for its solution consist of the 8 jump conditions, and the application of the
expression (4) for the front velocity twice (note that this equation remains valid, regardless
of the coupling between the two layers). Details for the solution are given in [9]. Numerical

results will be discussed in a later section.

3.2 Non-adiabatic conditions
Working likewise, we can formulate the problem in the presence of heat losses. Now, additional
terms describing the interaction with the surroundings must be included. Using equation (8)

to substitute ¢; in terms of ¢;, we have

hy;

1 14 M ¢
9,1 = (1 + o )9] + E (;4]9‘]- — Hj — hj) (29)
Inserting into (7) and re-arranging we get

0\ — BOY + B0 + FO, + GO, — G =0 (30)
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where

E = 441‘44]‘ — 20 — (hi -+ /’IJ)
F = Aj(o+h;)+ Aj(c+h) (31)
G hihj -+ U(h,‘, -+ hJ)

the general solution of which is

0; = 1+ &€ + Gpe™t 4 E3e™8 4 getit (32)
where we have identified the real roots 7y, ro >0 and r3, r4 <0 of

r* — Br® + Er* 4+ Fr + G = 0. (33)

Again, we have to distinguish different expressions in different regimes, which are as follows:

1. Region I

h; ! . 1 ,
g, =1+ (1 o ﬁ) (e 4 cpe) 4 — (Aj (clrlerlf
o o

+CQT26”5) — et — cyriet — hj) (34)
0, =1+ 1678 + cpe? (35)
I1. Region 11

1y
0; =1+ (1 + —]> (c3€™C + c4e™ + c5e" + cge™)
o

1 . ,
+— (Aj (C;3T16T1§ + a2+ cr3€" +- C(;T4€T4§)
o

—carlent — yriett — Csr3 3l cgraet — hj) (36)
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0; = 1+ c3e™ + e + cze"® + coe’* (37)
I1]. Region 111:

h; . ! 1 ,
g, =1+ (1 + ﬁ) (c7€™ 4 cge”) + — (Aj (C7T3€r3§
o g

+CST4€”£) — cqraet 4 cgriet — h]-) (38)
0; = 1+ c7e™ + cge™* (39)

Application of the same jump conditions as before gives rise to a set of ten equations in terms
of the ten unknowns (integration constants, the distance between the fronts and the front

velocity). Details of the solution are found in [9)].

3.3 Non-adiabatic, symmetric, three-layered porous medium

The same approach can be applied to the solution of a symmetric three-layered medium,
when the two outer layers have the same properties. This type of geometry is useful in the
investigation of the effect of a middle layer that plays the role of a permeable thief zone.
Because of the symmetry assumed, velocity and temperature of the outer reaction fronts are

taken to be identical, as shown in Figure 6.

Then, the governing energy balances become

Al = 0] +0,(0; — 6;) — h:(0;, — 1) (40)
A0 =07 + 0;(0; — 0;) (41)
Working as before, equation (41) gives 6;,

0= 0; + Oij(Aje; o) (42)
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Figure 6: Schematic of the notation used for the propagation of combustion fronts in a two-layered porous

mediurmn.

Inserted into (40) gives

9](:rv) — BH;” -+ EQ;’ -+ F@; -+ Uhigj — O'h,‘ = 0 (43)
where

E = 441‘;4]—0'1',—0'3'—!%‘

ol

= BU]' -+ A]'h,i

the solution of which is obtained as before, in terms of a combination of exponentials, with

exponents the real roots ry, ro >0 and r3, r4 <0 of the characteristic equation

vt — Br? + Er® + Fr + ojh; = 0. (44)

The mathematical procedure is similar to the previous and will not be repeated (see [9] for

more details).
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4 Results

The numerical solution was studied using typical in situ combustion data [7, 9]. Results
were obtained for the temperature Ty and velocity V' of the fronts as well as their distance
& = & x I, in terms of the velocity (hence, permeability) ratio R = v;/v;, the thermal
coupling coeflicient o, the velocity of the layers, and, in the non-adiabatic cases, the layer
thicknesses H; and H;. We considered two velocity cases, one in which the larger velocity is
fixed to v;=100m/day (case j), and another in which lower velocity v; is fixed to v;=100m/day

(case i). In either case R was varied between its limits 0 and 1.

4.1 Adiabatic Two-layer Case

The procedure applied during the calculations is explained in detail in [9]. Figures 7 and 8
show the effect of R on the temperature profiles and the front velocity for constant o, and
case j. We note the following: The system recovers the single-layer solution (with V'=1.7346
m/day) in the single-layer case R = 1 (Figure 7). Here the two fronts collapse, and their
distance is nil. When R = 0.5 (Figure 8), the separation between the fronts is clear. The
front in layer ;5 has slowed down, and has a lower temperature than that of layer i, which
has accelerated to a common velocity (equal to V=1.0033 m/day). The temperature profile
is more diffuse than in the single-layer case, with heat being transferred from layer 7 to
layer ¢+ downstream and from i to j upstream. Interestingly, the temperature profile in
the lower-permeability layer has a peak, which is not present in the single-layer problem.
Nonetheless, the far-field temperature upstream is equal to the adiabatic temperature. The
common front velocity is much closer to the single-layer velocity for the lower-permeability
layer (corresponding to an injection velocity of 50m/day, rather than the arithmetic average
injection velocity of 75m/day). This reflects strong non-linear coupling effects. The effect
of the thermal coupling parameter ¢ is shown in Figure 9. Interestingly, as o decreases the
coupling is not weakened, but rather enhanced. Clearly, the front separation has increases,
the temperature peaks increased, while the common front velocity has further increased

(V=1.0161 m/day).
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While these results point out to an important effect of R, the latter also depends on the actual
velocity values. Figures 10-12 show two sets of the front temperatures, front velocities and
front distance, as a function of R for ¢=0.01 and the two cases j and i, respectively. Recall
that case j corresponds to fixed v;=100 m/day, while case i to fixed ©;=100 m/day. Of course,
ideally one would like to have a three-dimensional plot with v; and v; as the independent
variables. However, these computations can be time consuming and in the present we will

restrict ourselves to only a few slices of this diagram.

It is clear from Figure 10 that the effect of the actual velocity levels is not great on the front
temperatures (except for that of the leading front at small values of R). In fact, the far-field
temperature behind the two fronts is not influenced at all by the variations in I or o as
its value is always the adiabatic temperature, as pointed out above. Thus, for the adiabatic
case, the temperature is roughly only a function of R. However, the effect is significant on
the front velocities and the front distance. In case j. where it is the larger injection velocity
which 1s kept fixed, the front velocity decreases as the smaller injection velocity decreases,
almost proportionally to it, while in case i, where the smallest velocity is fixed, the variation

is insignificant. Analogous is the effect on the front distance.

These results suggest that essentially the behavior of the system is controlled by the layer with
the smallest injection velocity, with the front velocity in particular almost being a slave of that
variable. The implications of this finding are important. For the adiabatic case they simply
affect the rate of front propagation. However, for the non-adiabatic case, discussed below,

they may have more dramatic consequences, regarding the possibility of process extinction.

4.2 Non-adiabatic Two-layer Case

Using the formulation described in the previous sections, numerical results were obtained
for the non-adiabatic case in the two-layer system. Now, in addition to the previous, an
important additional parameter is the layer thickness, which was taken in all simulations

shown as the same for the two layers.

When the layer thickness is sufficiently large (approximately 2m, for the parameters shown
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here) the solution of the problem and its sensitivity to R and the velocities is qualitatively
the same as in the adiabatic case. Unique solutions exist and the main difference is that
the temperature profile is more spread out, has somewhat more structure and, of course,
asymptotically tends to the initial value. Characteristic examples are shown in Figures 13-
15. The observed similarity of the non-adiabatic model results when H=2m to the results
of the adiabatic case is consistent with the results of single layer analysis — the combustion
fronts propagate as if the system is in the adiabatic mode, given that sufficient gas is injected

into the layers.

On the other hand, when the thickness becomes small, the qualitative picture changes. As
in the single-layer case, the possibility of multiplicity arises. Figures 16 and 17 show features
very similar to the single layer. Thus, for case j, where the lower injection velocity can become
sufficiently small in magnitude, extinction and ignition limits arise. The multiplicity arises
simultaneously in both fronts, and both fronts ignite and get extinct simultaneously. The
corresponding curves for case j are similar both qualitatively and quantitatively to the single
layer case. The results for case i are somewhat different. Here, because the lowest velocity
remains fixed (at 100 m/day), multiplicity does not arise until the layer thickness is sufficiently
small (contrast Figures 16 and 17). By comparing with the single-layer results, this effect is
somewhat unexpected. If we were to assume that the front basically follows the front velocity
corresponding to the lower injection velocity, the curves corresponding to case i could be
interpreted from the single-layer results as those corresponding to the upper branch. This
would mean that intermediate and lower branches would also exist. These do not appear in
Figure 16, although they do in Figure 17, which corresponds to a smaller thickness layer. One
infers that when the velocities are sufficiently large, the composite, two-layer system behaves
as one with an effectively larger thickness, compared to the case when the layer velocities
are relatively small. This interpretation is also supported in the velocity and front distance
curves shown in Figures 18 and 19. However, and contrary to the adiabatic case, another
effect is also present here, namely, an intrinsic heterogeneity effect through the parameter R.
For example, the above figures illustrate through case i, that by increasing the heterogeneity

of the layers, extinction will eventually set in, even though the lower-permeability laver has
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a fixed injection velocity. This effect is non-trivial and unexpected. For completeness, we
examined the sensitivity of these results to the thermal parameter o. Very small differences

were found as o was decreased by a factor of 10.

The implications of these results are important. They point out that increasing the permeabil-
ity contrast between the layers can have dramatic effects on the propagation of a combustion
front. Namely, given an overall injection rate, and for sufficiently small layer thickness, there
is a sufficiently large permeability contrast, such that the process becomes extinct. Depend-
ing on the parameters, this contrast can be as low as 10. Strongly layered (and by extension,
strongly heterogeneous) systems may thus be not good candidates for in-situ combustion.
The above results gave only one indication of the ballpark values for this to occur. A more
systematic analysis would require the development of 3-D plots using the two velocities as

coordinates and the resulting identification of extinction and ignition limits.

4.3 Non-adiabatic Three-layer Case

For completeness, we also analyzed the symmetric, three-layer geometry. Now, the middle
layer is shielded and does not lose heat directly to the surroundings. The results obtained were
qualitatively similar to the previous non-adiabatic problem. In this geometry. we investigated
the sensitivity of the results to the ratio of the thickness of the two layer, which here were
taken unequal. In the calculations, we also kept the injection velocity of the surrounding
layers fixed, and varied v; (case i). Front temperature results are shown in Figure 20. It is
shown that when the shielding layers are thick enough (dashed lines in Figure 20) the behavior
approaches the adiabatic case, where there exists a unique solution. If the layer thickness

decreases, then multiplicity sets in, with characteristics similar to the ones discussed above.
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Figure 13: Temperature profiles for the non-adiabatic two-layer model. H;=H;=2m, R=0.20, 0=0.01,
calculated V'=0.4070 m/day.

5 Concluding Remarks

In this chapter we extended the approach of [7] to heterogeneous systems, by considering
the simpler case of in-situ combustion in layered porous media. Two simple geometries were
considered, a two-layer model and a symmetric three-layer model. Analytical models were
developed to delineate the combined effects of fluid flow, reaction and heat transfer on the dy-
namics of combustion fronts in the layers, using as parameters the thermal coupling between
the layers, the heat transfer to the surroundings and the permeability contrast. We find that
in layered systems, the thermal coupling between layers leads to coherent traveling fronts,
propagating at the same velocity. This coupling retards greatly fronts in the more permeable
layer and accelerates only slightly those in the less permeable one, until a common front ve-
locity is attained. In essence, the problem becomes slave to the injection velocity in the lower
permeability layer. As in the single-layer case, there exists a unique solution, under adiabatic
conditions, and multiple steady-state solutions, under non-adiabatic conditions. The latter
lead to ignition and extinction conditions. Importantly, for a sufficiently large permeability

contrast, relatively small layer thickness and under non-adiabatic conditions, steady-state
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propagation in the two layers cannot be sustained, and the process becomes extinct, even
though, under the same conditions, sustained propagation would have been predicted for the
equivalent single-layer problem with the average injection velocity. In a sense, the problem
becomes controlled by the extremes of the permeability distribution. Such behavior can be
detrimental to the success of in-situ combustion in highly heterogeneous layered media. In ad-
dition, it raises serious questions on the ability of conventional reservoir simulators to capture
it. Conventional models average flow and kinetic behavior over substantially large distances,
where effects, such as the above, which are dominated by the extremes of the permeability
field, cannot be adequately represented. Precise conditions for the delineation of the above
behavior need to be further developed. We anticipate that similar conclusions will hold in

the case of heterogeneous media. Work in this direction is currently in progress.
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IV. FLOW AND DISPLACEMENT OF FLUIDS WITH YIELD STRESS

Many applications with heavy oils involve a non-Newtonian rheology. Specifically, the
flow and displacements of fluids with yield stress are common. Examples include the
flow of foams for oil recovery, where the mobilization of foam lamellae requires that a
pressure threshold is exceeded; the flow of heavy oils containing asphaltenes, where a
Bingham plastic-like behavior is exhibited; and the formation of wormholes during cold
heavy oil production, where the flow of sand particles also requires that limiting yield
stresses are overcome. In this section we report on our going efforts to understand these
processes at the pore-network scale and to provide the necessary information for their
representation at the macroscopic scale. The work reported builds on our previously
developed models, including the algorithm of Invasion Percolation with Memory. We
utilize this algorithm in order to facilitate the simulation of flow and displacements of

Bingham plastics.
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Mobilization and Displacement of Fluids with Yield Stress

Min Chen and Yannis C. Yortsos

Introduction

The flow or displacement of fluids with yield stress is an important research area of non
Newtonian fluid studies, which is also encountered in a variety of industry applications.
Examples include the flow of heavy oils, which can be often represented as Bingham
plastics, the production of sand during cold heavy oil production, and the flow and
mobilization of foams in porous media.

Foams are a typical fluid of engineering interest appear to exhibit yield behaviors, which
are widely used in the oil industry in various applications, to improve reservoir sweep
efficiency, block swept channels, and in gas storage and acidizing operations. These
applications rely on the substantial reduction of the gas mobility in rocks obtained in the
presence of foams. Some issues in this regard include whether there exists a minimum
pressure gradient or a critical gas velocity, above which the porous medium can be
mobilized and the relation between the pressure gradient and the flow velocity

In the context of the flow of Bingham fluid, similar problems arise. Typical Bingham
fluids include paint, slurries, pastes and food substances like margarine, mayonnaise and
ketchup. Bingham fluids possess nonzero yield stresses, so that they flow when an
applied stress exceeds some levels of stress, and they show little or no deformation up to
the stresses. Because of the complex property of this kind of fluids, much effort has been
made to study the flow and mobilization processes of these fluids. In addition, due to the
complexity brought out by the combination of the non-Newtonian fluid rheology with the
porous media geometry, the state of the art of Bingham fluid flow is not complete.

Many authors in the Russian literature have approximated the rheology of heavy oils as
that of a Bingham fluid [1, 2]. Some other studies were also carried out, including flow of
foams [3], ground water flow in certain clayey solids, and drilling and hydraulic-
fracturing fluids [4]. Rossen and Mamun [5] proposed a percolation approach, consisting
of occupying elements with thresholds below a certain value. In the study of the foam
flow, Rossen and Gauglitz [3] developed a model for foam mobilization in porous media,
for both continuous and discontinuous gas regimes. In the process, they employed

percolation theory to find the cluster size, and verified the fact that a minimum pressure
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gradient is needed to displace lamellae out of a pore throat. Because of lack of data and
also the complexity of the system, their conclusions are not complete.

Wu et al. [4] investigated the transient flow of Bingham fluids in porous media, including
single- and multiphase flow, using an ad-hoc extrapolation of the single-capillary
expressions for the Bingham flow. In the context of reservoir engineering, most existing
studies are phenomenological and consist of solving effective continuum equations.

Q

Vo v

Fig. 1 Voltage — current relation of an individual resistor
A fundamental and now widely accepted work was done by Roux and Herrmann [6].
They used a 2-D network, which is composed of resistors. Each of the resistors has a
threshold below which it becomes an insulator. The resistors are distributed randomly in
a network. Their results show that the relation between current and the voltage is non-

linear. The macroscopic current ( has the following relation with 7 and v,

Q~W-v.) (1)
where 6 =2 or & ~0.5 for intermediate part (if for each of the resistor, Q is linearly
determined by » when || is larger than threshold, as shown in Fig. 1, and p_ is the
minimum voltage to have current in the network. In their studies, the thresholds of the

resistors are distributed between 0 and 1.

Sahimi [7] used EMA to predict that in a certain range, Q depends quadratically on » .

His Monte Carlo simulation results agree with the prediction quite well. Zhou and Stenby
[8] studied the displacement of oil trapped in water-wet reservoirs using percolation
theory. They obtained the CDC curve based on pore structure of the medium, which is in

good agreement with the measured data.
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Kharabaf et al. [9,10,11] developed a different algorithm for the construction of the
minimum threshold path (MTP), based on which its properties can be studied, such as the
connection of the threshold-lattice problem to percolation and also the relation of the
MTP with the minimum path of percolation. The algorithm has a similar simulation
process as that of an invasion process; the difference is that the advance of the front
depends on the front history. It is referred as Invasion Percolation with Memory (IPM).
They studied the mobilization of Bingham fluid, immiscible displacement of Bingham
fluid by Newtonian fluid and also displacement of Bingham fluid by another kind of
Bingham fluid. The same algorithm is used in the study of foam formation and
propagation in porous media.

Even though some work has been done, the understanding of single- and multiphase flow
of fluids with yield stress in porous media is still limited. In considering and simulating
mobilization of fluids with yield stress, Kharabaf used a static model, which will be
modified further here. In his work, the potential of a pore is only determined by
thresholds, and the pressure distribution effect of the flowing fluid was not considered. In
this paper, a new dynamic algorithm for mobilizing fluids with yield stress based on IPM
is developed, n which the contribution of flowing fluid is taken into account. Simulation
results for different yield stress distributions are compared and discussed. The difference

between the new algorithm and Kharabaf’s static model is shown.
Algorithm

1) Invasion Percolation with Memory (IPM)
Because the IPM process is the basis of the new algorithm, the algorithm of IPM is
described with some details [9].

A network composed of bonds and pores are used, in which bonds have thresholds, 7,

randomly assigned from a distribution in (0,1). The invading front invades one site at a

time. An arbitrary site currently on the front is denoted by F', a site which is a neighbor

of F by F',the site from which the front will advance by F;, the site which will
actually be invaded by F,.. Each site that has been invaded has a value of V,(F).Fora

site ' on the front and one of its neighbors F ,asum S=V,(F)+7 - can be formed.
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The minimum one of all possible S can easily be found, the corresponding F and F'
become F, and F,, respectively, and V,(F;)=V,(F;)+1 R F( If the boundary
condition V,(R)=0 for all sites R on the right boundary is applied, the first site invaded

on the left boundary has the MTP value, which is zfi . By this method, the MTP of the

lattice can be found, and V| of each site is its smallest resistance to the starting side. The

patterns before and after a growth step are shown in Fig. 2.

56 hEAE
SoE b b
S0 S CO 0

(b)
Fig. 2 Description of the invasion rule, before (a) and after (b) a growth step.

2) New algorithm on mobilization of fluids with yield stress

Fluid with yield stress is a kind of special one, belonging to non-Newtonian fluids. A
typical example is Bingham fluids, which exhibit a finite yield stress at zero shear rate
and they correspond to the extreme case of pseudoplasticity. Bingham model is the most
often used model for a Bingham material. The behavior of this kind of fluid described by

Bingham model is shown in Fig. 3. For low stress values, the fluid does not deform, and

above the critical value 7, , it flows like an inelastic non-Newtonian fluid.

7 A

Ty

shear rate y

Fig. 3 Behavior of Bingham Fluid
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T=7,— U,y ,when T>7,
and

¥y =0,when 7<7,
If the viscous forces are neglected for single-phase flow of a Bingham fluid, yield stress
is the only force affecting its flow. While for Newtonian fluids, when the pressure drop
applied is greater than zero, there is flow in the system, for Bingham fluids, the situation
is completely different.
When simulation in network-like porous media is considered, the flow of the fluid in a
single throat (bond) can be expressed by the following equation [12]

4 4
g; = 7 1_i i) +l Yo p; when 7, >1, )
8u 1 3lr, ) 317,

i i

and
g; =0 when 7, <7,
where ¢, is the volumetric flow rate of the fluid in the throat , Ap, is the pressure drop
applied to the throat, and 7, is the wall shear stress
21
Just for simplicity, we use the equation below in the algorithm, for throat i,

q; =Ap; “L when Ap; > l 3)

i 1

and
1
q; =0 when Ap, £ —
Fi
where 7, is distributed with a size distribution, (x(r).
This condition (3) is similar to the one used by Roux and Herrmann [6] for a single
resistor. So it can be described by Fig. 1, too. In equation (3), the variables are all in
dimensionless form. It is clear from the simplified equation that the onset of the flow of

the Bingham fluid in the network is controlled by the flow situation of each of the throats
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in the path. For the first path in the system, there is a minimum pressure difference

between the two boundaries.
1
AP, min 2 ,T (4)

where the summation is over all of the throats in the first single path.
It is obvious that the first path in our algorithm is completely the same as the static one
obtained by Kharabaf et al. But after that, the pressure drop of the system, which is

needed to open a new path is not only determined by the throat radius (or L ), but also by

1

the flow, and more exactly the pressure distribution of the mobilized path, which is the
factor that is not considered in Kharabaf’s mobilization algorithm. In our new algorithm,

the two factors, radius and pressure distribution are combined together to be 7;, which is

updated every time when a new path is open. In the following description, 7, is used,

instead of —, and 7, is corresponding to the size distribution function B(z,).

i
The mobilization of the fluid is the same as finding the paths which connect one side of
the network with the other. Each of the paths is corresponding to a specific pressure drop
across the network. Here, the pressure at the left side of the network is fixed and equal to
zero. As described in previous work, IPM is an effective method to find the minimum
path from the right side of the network to the left side. After we find the first path and the
=P

min *

critical pressure AP,

min

we need a little higher pressure to open a new path. The

new path may be a branch or a loop connected to the old or a separate one. We should
notice that when the new path is just opened, the flow rates in the newly mobilized
throats in the paths are zero and they have no contribution to the total flow rate in the
network. If the new path is just opened and connected to the old (AB) one at point C (Fig.
4), for any bond j in the path CD, the flow rate is

q;=8p; =Ty; =0
therefore, Ap; =1y,
For any bond in the path AC, the flow rate is

gy =Ap; — Ty,
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If we let

Apy = qp +To, =T, )
the pressure drop between the two sides of the network for the new path ACD determined

using IPM is
Picp = 271 + 2701' = ZT{ (6)
AC cD ACD

which is the MTP with updated thresholds 7, , in the new part CD, 7, =7,,, and in the
shared part AC, 1, =1, .

For throats in the old path 7, =1, so for the old path ACB

Piep = 271 = ZT: @)
ACB ACB

From all above, we can see that the apparent way to find the next path to be opened is to

determine the MTP in IPM with updated thresholds. So, in our algorithm, we first use

IPM to find MTP with all initial 7,,. Then we increase the pressure drop P, and at the

0 P
B
A
C
D K
i

Fig. 4 The flow pattern when a new path (ACD) is open
same time update the thresholds of the bonds in opened paths to be 7 according to Eq.
(4). After that, we use IPM again to determine the MTP at this pressure drop to find the
potential (P,.,) of site D at the left boundary. If the pressure drop between the two
boundaries is high enough, we can always find a new path ACD. Then decrease the
pressure drop. These steps are repeated until the new path with smallest P, = P, is

found. Just as mentioned before, the new path is not necessarily connected to the old ones
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like the one shown, it may be a loop or even a new path, but the algorithm is the same for
all of the situations.

In determining the pressure distribution of the mobilized fluid, the fluid is assumed to be

incompressible, and for any site i in the continuous path, the below equation is obeyed,
VA

24;=0 (8)
J

where g, is the volumetric flow rate from site i to its neighbor site j, and Z is the

coordination number, Z =4 for 2-D system and Z =6 for 3-D system. At a site, which
is the intersection of the four bonds, there may no flowing fluid in several bonds, but
because of viscous forces, the static fluid in the throat(s) left may make contribution to
the flow of the fluid in the other throats. But if the Bingham number of the fluid is high
enough, this contribution is negligible. Consequently, in our study, this effect is not
considered. Flow rate in a bond is computed according to equation (3).

In 2-D and 3-D systems, fluids flow from right to left, and periodic boundary conditions

are used for the other boundaries. The size distribution of 7, is ", where B is uniform

in the region (0, 1). Then for 7,, the probability density function (PDF), the arithmetic

mean and standard deviation are

SE= )= O = e ©)
respectively. From Eq. (9), it is apparent that for the existence of the arithmetic mean we
must have n >-1, while for that of the variance, n >~1/2. Therefore, for finite first and
second moments of general threshold distributions, we must restrict Eq. (9) to n >~1/2.
However, the problem with smaller n will also be considered.
Result and Discussion

The result for n =1

The relation between the flow rate of the network and the pressure exerted across the

network is shown in Fig. 5(a) and 5(b). At a certain pressure drop P,

min ?

the first path is

open; this is the onset of the mobilization process. Then with the increase of the pressure,

166



more and more bonds are mobilized and the flow rate increases as well. In Fig. 5(b), we

found that
4 ~ ‘AP"—APmin o
u% Ty ( % 7 oN)

« 1s about 1.9, which is close to 2. In Kharabaf’s work, he showed the mobilized paths of
network without flow. His results are much different from what we have here. Fig. 6 and
Fig. 7 are the mobilized paths at different stages. Under the two situations, the first paths
opened are the same. After that, the static ones have more compact patterns, while with
the new algorithm, we need higher pressure to mobilize the same amount of bonds or to
have the same amount of sites in continuous paths (Fig. 8).

8“%7”*3 4> Which is an indication of the permeability of the fluid, is increasing with the

pressure across the network (Fig. 9a) and so is the fraction of pores in the continuous

paths (Fig. 9b).
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Fig. 6 Patterns with flow at different stages: (a) First path (MTP), (b) One fourth of the
sites in continuous paths, (c) half, (d) three fourths.

Fig. 7 The static situation:
(a) The first path (MTP) (b) One fourth of the sites are in continuous paths
(c) Half (d) Three fourths.
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Because the first path in the system is MTP, the critical pressure to open the first path is

increasing when the lattice gets larger and is totally determined by the threshold

distribution. For different sizes of httices, similar 4”% iy~ A%%N relation to those in Fig.

5 can be observed.
Other Situations for different n
For different values of nin 3", the relations between the flow rate Q and pressure drop P

are similar to that of n =1. The main difference is the flow pattern of the mobilized fluid.
As shown in Fig. 10-Fig. 14, with increase of the absolute value of n, the flow paths are

more tortuous. In Fig. 10 and Fig. 11, the paths are almost straight lines, this is because
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the 7,s are almost the same, close to 1, here we do not need much higher pressures to

open new paths.

Fig. 10 Flow patterns at different stages, n=-0.1

I

==

Fig. 11 Flow patterns at different stages, n=0.1
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Fig. 12 Flow patterns at different stages, n=-1

Fig. 13 Flow patterns at different stages, n=5
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Fig. 14 Flow patterns at different stages, n=-5

In previous simulations, the volumetric flow rate in a bond is calculated based on

equation (3). If we modify the equation to that shown below,

1
q; :ri3(Api__)
]/'i

We can see that the algorithm works well too.

Here, in the simulation process, 7, is updated in the way shown below.

. 1 g,
Tl' :Apl:q—;-}-—:q—;

A

Fig. 15 and Fig. 18 show simulation results and flow patterns. In Fig. 15, the 4“%% and
A%TON relation is not the same as the one we get for n =1, while the qualitative change

of the curve is in agreement with Roux’s result. At most of the part, the curve is more like
a straight line, and there is an intermediate part, where the slope is different. In the
previous discussion for n =1, the pressure need to mobilize the bonds after all of the

pores are in continuous paths are incredibly high, while we can see in Fig. 17, with the
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new equation, all of the bonds in the system can be mobilized with relatively smaller

pressures. The patterns in Fig. 18 are similar to the ones we present before.

In Fig. 19, the interesting patterns of mobilizing the fluid from the center are shown. As
what we can expect, the paths to the corners are open later than other ones. We can see
that even though the distance from the center is not the determinative factor, it still has

obvious effect on the mobilization process.
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Fig. 18 Flow patterns of the fluid at different stages

Fig. 19 Flow patterns of the fluid mobilized from the center of the network

174



Examples on mobilization of Bingham fluid in complex system

In our work, mobilizations of Bingham fluid in more complex system are also
considered. The patterns of confined flows of Bingham fluids in converging and
diverging networks at different stages are shown in Fig. 20 and Fig. 21. To compare the
result to the flow process in complex geometries, the bond size in this part is evenly
distributed in a very narrow interval, from 1.0 to 1.0001. From Fig. 20 and Fig. 21, we
can find that the mobilization process is very similar to the ones shown in Fig. 10 and
Fig. 11, where the bond sizes are very close to 1. The difference between the ones
presented here and characteristics claimed by Lipscomb [13] is that the in our results
yielding is not happening everywhere, which is understandable, because even though the
bond size is very close to one, there is still difference between bond sizes and
consequently the initial yields stresses which leads to the necessity that different paths
need different minimum pressure drop to open. If bond sizes are completely the same,
then yielding would occur over the entire flow field when the pressure difference applied

is high enough to open a

—

S

Fig. 20 Flow in converging network, first path; one quarter, half of all sites and almost all

available sites are in continuous paths
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Fig. 21 Flow in diverging network, first path; one quarter, half of all sites and almost all

available sites are in continuous paths
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Fig. 22 Streamlines of the patterns in converging network
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path. In these figures, black part is the walls, the gray part is the mobilized fluid and
white part is static fluid. Fig. 22 shows the streamlines corresponding to the last three
patterns in Fig, 20.

Next, flow of Bingham fluids in a network with an obstacle at the center is studied. The
mobilization process in network is presented in Fig. 23. The black part at the center is an
obstacle that cannot be mobilized, gray part is the sites with flowing fluid and white part
is static fluid, except for the last figure, where white part is the mobilized fluid. Because
of the size difference between bonds, the paths are open one by one and each at a certain
pressure drop between the two boundaries. In Fig. 24, streamlines at some mobilization
stages are plotted. Because of the Darcian property of the flow in the network, finally all
of the available site in the system can be occupied by flowing fluid, even the ones next to

the obstacle which is a bond away. This stands for the fact that there is no stagnant point
in Fig. 23.

Fig. 23 Flow in a network with an obstacle at the center, first path; About one quarter,

half, three quarters, 85% of all sites and all available sites are in continuous paths
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Fig. 24 Streamlines in a network with an obstacle at the center

Displacement of a Bingham fluid by a Newtonian fluid

The displacement of a Bingham fluid by a Newtonian fluid is encountered widely in oil
recovery processes. The efficiency of the displacement is affected by the properties of the
two fluids. This problem can also be tackled with our new algorithm. In this part, the
capillary forces are neglected.

First, let’s consider a case in which the Newtonian fluid has almost zero viscosity, this
means that the pressure drop is almost zero in the part occupied by Newtonian fluid.
Every time the interface advances, we choose the one which needs minimum amount of
time to get to the next site. Every other interface moves a distance determined by its
velocity and the minimum time known. If we use the same equation as (3) for the non-
Newtonian fluid flow, calculating pressure distribution with the restriction of mass
conservation at each pore in the mobilized path, we can get the following patterns at
different stages, shown in Fig. 25. The algorithm is similar to the one discussed before. In

this case, only the 7;s of the nonrNewtonian fluid are updated. In Fig. 25 and all the

figures in this section, the white part is non-Newtonian fluid, gray part is the mobilized
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Fig. 25 Patterns of displacement process at different stages, viscosity ratio=0
non-Newtonian fluid and black part is occupied by Newtonian fluid. Before the
breakthrough of the Newtonian fluid, the pressure is kept constant as the initial pressure
to open the first path. With time increasing, more and more paths are open and the front
of the Newtonian fluid moves deeply into the lattice gradually.

If we consider the situations with larger viscosity ratios (1 in Fig. 26 and 20 in Fig. 27),
the number of mobilized paths in the system doesn’t increase much. The patterns at larger
viscosity are much different from the one with zero viscosity, while the latter one can
have more mobilized paths. One reason accounting for this difference is the larger
pressure drop in the former case, so the pressures are not enough to overcome the

thresholds.
Mobilization of a Bingham fluid trapped in a Newtonian fluid

In oil recovery processes, waterfloods of Bingham rheology heavy oils are of much

importance. During this kind of displacement process, the Bingham fluid may be trapped
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Fig. 26 Displacement patterns at different stages, viscosity ratio=1

Fig. 27 Displacement patterns at different stages, viscosity ratio=20
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and cannot escape until the pressure is high enough. The immiscible displacement
involves not only the yield stress, but also the capillary brces. Viscous forces in the

Bingham fluid are still neglected, assuming the displacement takes place very slowly.

To use the new algorithm developed to mobilize the trapped Bingham fluid, 7, should be
correspondingly updated every time. For Newtonian fluid, the initial value is 7, = 0, and
Ti* = Ap;

For Bingham fluid, 7, keeps constant,

X

At the interfaces of the two fluids, the capillary condition should be considered,
=2
,

In each bond occupied by Newtonian fluid,

q;, = Ap;

8lu

First, consider the mobilizing process of a single point of Bingham point trapped. Fig. 28
shows the trace of the point. It starts from the right boundary of the network. This is a
quaststeady state process, if the pressure of the Newtonian fluid around the Bingham
fluid is high enough to overcome the thresholds and the capillary effect, the Bingham
fluid moves in the direction of decreasing pressure, otherwise, it stays and the pressure
applied to the system increases. In every step, the pressure distribution of the Newtonian
fluid is computed.

When a block of Bingham fluid trapped in Newtonian fluid is mobilized in the same
approach as described above, the Bingham fluid would go through a spattering process,
and become a bunch of points, which are mobilized almost one by one. This is because
each time we find one path, and mobilize the Bingham fluid in that path. Fig. 29 shows
some patterns of the mobilization process. It is possible that some trapped points can

never be moved out the system.
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Fig. 28 Mobilization trace of a single point
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Fig. 29 Snapshots of mobilization process

Conclusion

A new algorithm is developed, which can effectively solve the problem of the
mobilization of a single fluid with yield stress in a network. The simulation result is in
good agreement with the work done by Roux et al. The model is successfully used in
some different situations and the results are shown. The distribution of the yield stress
has obvious effects on the mobilization process; with the increase of the power n, the
paths are more tortuous. The results of mobilization processes are also obtained for
complex networks.

In the displacement of a mon-Newtonian fluid by a Newtonian fluid, patterns are affected
by the viscosity ratio of the Newtonian fluid to the non-Newtonian fluid.

The model is also employed in the mobilization process of Bingham fluid trapped in
Newtonian fluid. The Bingham fluid block is broken into small parts and mobilized one

by one, which is the typical process found in experiments.
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0; = 1+ c3e™ + e + cze"® + coe’* (37)
I1]. Region 111:

h; . ! 1 ,
g, =1+ (1 + ﬁ) (c7€™ 4 cge”) + — (Aj (C7T3€r3§
o g

+CST4€”£) — cqraet 4 cgriet — h]-) (38)
0; = 1+ c7e™ + cge™* (39)

Application of the same jump conditions as before gives rise to a set of ten equations in terms
of the ten unknowns (integration constants, the distance between the fronts and the front

velocity). Details of the solution are found in [9)].

3.3 Non-adiabatic, symmetric, three-layered porous medium

The same approach can be applied to the solution of a symmetric three-layered medium,
when the two outer layers have the same properties. This type of geometry is useful in the
investigation of the effect of a middle layer that plays the role of a permeable thief zone.
Because of the symmetry assumed, velocity and temperature of the outer reaction fronts are

taken to be identical, as shown in Figure 6.

Then, the governing energy balances become

Al = 0] +0,(0; — 6;) — h:(0;, — 1) (40)
A0 =07 + 0;(0; — 0;) (41)
Working as before, equation (41) gives 6;,

1
0; = 0, + —(A;0, — 0) (42)

gj
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Conductive Heat Losses to the Surrounding Formation
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Figure 6: Schematic of the notation used for the propagation of combustion fronts in a two-layered porous

mediurmn.

Inserted into (40) gives

9](:rv) — BH;” -+ EQ;’ -+ F@; -+ Uhigj — O'h,‘ = 0 (43)

where

E = 441‘;4]—0'1',—0'3'—!%‘

ol

= BU]' -+ A]'h,i

the solution of which is obtained as before, in terms of a combination of exponentials, with

exponents the real roots ry, ro >0 and r3, r4 <0 of the characteristic equation

vt — Br? + Er® + Fr + ojh; = 0. (44)

The mathematical procedure is similar to the previous and will not be repeated (see [9] for

more details).
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4 Results

The numerical solution was studied using typical in situ combustion data [7, 9]. Results
were obtained for the temperature Ty and velocity V' of the fronts as well as their distance
& = & x I, in terms of the velocity (hence, permeability) ratio R = v;/v;, the thermal
coupling coeflicient o, the velocity of the layers, and, in the non-adiabatic cases, the layer
thicknesses H; and H;. We considered two velocity cases, one in which the larger velocity is
fixed to v;=100m/day (case j), and another in which lower velocity v; is fixed to v;=100m/day

(case i). In either case R was varied between its limits 0 and 1.

4.1 Adiabatic Two-layer Case

The procedure applied during the calculations is explained in detail in [9]. Figures 7 and 8
show the effect of R on the temperature profiles and the front velocity for constant o, and
case j. We note the following: The system recovers the single-layer solution (with V'=1.7346
m/day) in the single-layer case R = 1 (Figure 7). Here the two fronts collapse, and their
distance is nil. When R = 0.5 (Figure 8), the separation between the fronts is clear. The
front in layer ;5 has slowed down, and has a lower temperature than that of layer i, which
has accelerated to a common velocity (equal to V=1.0033 m/day). The temperature profile
is more diffuse than in the single-layer case, with heat being transferred from layer 7 to
layer ¢+ downstream and from i to j upstream. Interestingly, the temperature profile in
the lower-permeability layer has a peak, which is not present in the single-layer problem.
Nonetheless, the far-field temperature upstream is equal to the adiabatic temperature. The
common front velocity is much closer to the single-layer velocity for the lower-permeability
layer (corresponding to an injection velocity of 50m/day, rather than the arithmetic average
injection velocity of 75m/day). This reflects strong non-linear coupling effects. The effect
of the thermal coupling parameter ¢ is shown in Figure 9. Interestingly, as o decreases the
coupling is not weakened, but rather enhanced. Clearly, the front separation has increases,
the temperature peaks increased, while the common front velocity has further increased

(V=1.0161 m/day).
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While these results point out to an important effect of R, the latter also depends on the actual
velocity values. Figures 10-12 show two sets of the front temperatures, front velocities and
front distance, as a function of R for ¢=0.01 and the two cases j and i, respectively. Recall
that case j corresponds to fixed v;=100 m/day, while case i to fixed ©;=100 m/day. Of course,
ideally one would like to have a three-dimensional plot with v; and v; as the independent
variables. However, these computations can be time consuming and in the present we will

restrict ourselves to only a few slices of this diagram.

It is clear from Figure 10 that the effect of the actual velocity levels is not great on the front
temperatures (except for that of the leading front at small values of R). In fact, the far-field
temperature behind the two fronts is not influenced at all by the variations in I or o as
its value is always the adiabatic temperature, as pointed out above. Thus, for the adiabatic
case, the temperature is roughly only a function of R. However, the effect is significant on
the front velocities and the front distance. In case j. where it is the larger injection velocity
which 1s kept fixed, the front velocity decreases as the smaller injection velocity decreases,
almost proportionally to it, while in case i, where the smallest velocity is fixed, the variation

is insignificant. Analogous is the effect on the front distance.

These results suggest that essentially the behavior of the system is controlled by the layer with
the smallest injection velocity, with the front velocity in particular almost being a slave of that
variable. The implications of this finding are important. For the adiabatic case they simply
affect the rate of front propagation. However, for the non-adiabatic case, discussed below,

they may have more dramatic consequences, regarding the possibility of process extinction.

4.2 Non-adiabatic Two-layer Case

Using the formulation described in the previous sections, numerical results were obtained
for the non-adiabatic case in the two-layer system. Now, in addition to the previous, an
important additional parameter is the layer thickness, which was taken in all simulations
shown as the same for the two layers.

When the layer thickness is sufficiently large (approximately 2m, for the parameters shown
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here) the solution of the problem and its sensitivity to R and the velocities is qualitatively
the same as in the adiabatic case. Unique solutions exist and the main difference is that
the temperature profile is more spread out, has somewhat more structure and, of course,
asymptotically tends to the initial value. Characteristic examples are shown in Figures 13-
15. The observed similarity of the non-adiabatic model results when H=2m to the results
of the adiabatic case is consistent with the results of single layer analysis — the combustion
fronts propagate as if the system is in the adiabatic mode, given that sufficient gas is injected

into the layers.

On the other hand, when the thickness becomes small, the qualitative picture changes. As
in the single-layer case, the possibility of multiplicity arises. Figures 16 and 17 show features
very similar to the single layer. Thus, for case j, where the lower injection velocity can become
sufficiently small in magnitude, extinction and ignition limits arise. The multiplicity arises
simultaneously in both fronts, and both fronts ignite and get extinct simultaneously. The
corresponding curves for case j are similar both qualitatively and quantitatively to the single
layer case. The results for case i are somewhat different. Here, because the lowest velocity
remains fixed (at 100 m/day), multiplicity does not arise until the layer thickness is sufficiently
small (contrast Figures 16 and 17). By comparing with the single-layer results, this effect is
somewhat unexpected. If we were to assume that the front basically follows the front velocity
corresponding to the lower injection velocity, the curves corresponding to case i could be
interpreted from the single-layer results as those corresponding to the upper branch. This
would mean that intermediate and lower branches would also exist. These do not appear in
Figure 16, although they do in Figure 17, which corresponds to a smaller thickness layer. One
infers that when the velocities are sufficiently large, the composite, two-layer system behaves
as one with an effectively larger thickness, compared to the case when the layer velocities
are relatively small. This interpretation is also supported in the velocity and front distance
curves shown in Figures 18 and 19. However, and contrary to the adiabatic case, another
effect is also present here, namely, an intrinsic heterogeneity effect through the parameter R.
For example, the above figures illustrate through case i, that by increasing the heterogeneity

of the layers, extinction will eventually set in, even though the lower-permeability laver has
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a fixed injection velocity. This effect is non-trivial and unexpected. For completeness, we
examined the sensitivity of these results to the thermal parameter o. Very small differences

were found as o was decreased by a factor of 10.

The implications of these results are important. They point out that increasing the permeabil-
ity contrast between the layers can have dramatic effects on the propagation of a combustion
front. Namely, given an overall injection rate, and for sufficiently small layer thickness, there
is a sufficiently large permeability contrast, such that the process becomes extinct. Depend-
ing on the parameters, this contrast can be as low as 10. Strongly layered (and by extension,
strongly heterogeneous) systems may thus be not good candidates for in-situ combustion.
The above results gave only one indication of the ballpark values for this to occur. A more
systematic analysis would require the development of 3-D plots using the two velocities as

coordinates and the resulting identification of extinction and ignition limits.

4.3 Non-adiabatic Three-layer Case

For completeness, we also analyzed the symmetric, three-layer geometry. Now, the middle
layer is shielded and does not lose heat directly to the surroundings. The results obtained were
qualitatively similar to the previous non-adiabatic problem. In this geometry. we investigated
the sensitivity of the results to the ratio of the thickness of the two layer, which here were
taken unequal. In the calculations, we also kept the injection velocity of the surrounding
layers fixed, and varied v; (case i). Front temperature results are shown in Figure 20. It is
shown that when the shielding layers are thick enough (dashed lines in Figure 20) the behavior
approaches the adiabatic case, where there exists a unique solution. If the layer thickness

decreases, then multiplicity sets in, with characteristics similar to the ones discussed above.
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Figure 13: Temperature profiles for the non-adiabatic two-layer model. H;=H;=2m, R=0.20, 0=0.01,
calculated V'=0.4070 m/day.

5 Concluding Remarks

In this chapter we extended the approach of [7] to heterogeneous systems, by considering
the simpler case of in-situ combustion in layered porous media. Two simple geometries were
considered, a two-layer model and a symmetric three-layer model. Analytical models were
developed to delineate the combined effects of fluid flow, reaction and heat transfer on the dy-
namics of combustion fronts in the layers, using as parameters the thermal coupling between
the layers, the heat transfer to the surroundings and the permeability contrast. We find that
in layered systems, the thermal coupling between layers leads to coherent traveling fronts,
propagating at the same velocity. This coupling retards greatly fronts in the more permeable
layer and accelerates only slightly those in the less permeable one, until a common front ve-
locity is attained. In essence, the problem becomes slave to the injection velocity in the lower
permeability layer. As in the single-layer case, there exists a unique solution, under adiabatic
conditions, and multiple steady-state solutions, under non-adiabatic conditions. The latter
lead to ignition and extinction conditions. Importantly, for a sufficiently large permeability

contrast, relatively small layer thickness and under non-adiabatic conditions, steady-state
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Solid lines denote case j, dashed lines denote case i. o=0.1.

196



450

4001

350

2001

Front Temperature (°C)

1501

100 Il Il Il Il
0 0.2 0.4 0.6 0.8 1

R (vi/vj)

Figure 20: Front temperature versus R for the non-adiabatic symmetric, three-layer case. Solid line denotes

thickness of the shielding layers equal to 0.5 m, dashed lines denote thickness equal to 2 m. ¢;=0.1

propagation in the two layers cannot be sustained, and the process becomes extinct, even
though, under the same conditions, sustained propagation would have been predicted for the
equivalent single-layer problem with the average injection velocity. In a sense, the problem
becomes controlled by the extremes of the permeability distribution. Such behavior can be
detrimental to the success of in-situ combustion in highly heterogeneous layered media. In ad-
dition, it raises serious questions on the ability of conventional reservoir simulators to capture
it. Conventional models average flow and kinetic behavior over substantially large distances,
where effects, such as the above, which are dominated by the extremes of the permeability
field, cannot be adequately represented. Precise conditions for the delineation of the above
behavior need to be further developed. We anticipate that similar conclusions will hold in

the case of heterogeneous media. Work in this direction is currently in progress.
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IV. FLOW AND DISPLACEMENT OF FLUIDS WITH YIELD STRESS

Many applications with heavy oils involve a non-Newtonian rheology. Specifically, the
flow and displacements of fluids with yield stress are common. Examples include the
flow of foams for oil recovery, where the mobilization of foam lamellae requires that a
pressure threshold is exceeded; the flow of heavy oils containing asphaltenes, where a
Bingham plastic-like behavior is exhibited; and the formation of wormholes during cold
heavy oil production, where the flow of sand particles also requires that limiting yield
stresses are overcome. In this section we report on our going efforts to understand these
processes at the pore-network scale and to provide the necessary information for their
representation at the macroscopic scale. The work reported builds on our previously
developed models, including the algorithm of Invasion Percolation with Memory. We
utilize this algorithm in order to facilitate the simulation of flow and displacements of

Bingham plastics.
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Mobilization and Displacement of Fluids with Yield Stress

Min Chen and Yannis C. Yortsos

Introduction

The flow or displacement of fluids with yield stress is an important research area of non
Newtonian fluid studies, which is also encountered in a variety of industry applications.
Examples include the flow of heavy oils, which can be often represented as Bingham
plastics, the production of sand during cold heavy oil production, and the flow and
mobilization of foams in porous media.

Foams are a typical fluid of engineering interest appear to exhibit yield behaviors, which
are widely used in the oil industry in various applications, to improve reservoir sweep
efficiency, block swept channels, and in gas storage and acidizing operations. These
applications rely on the substantial reduction of the gas mobility in rocks obtained in the
presence of foams. Some issues in this regard include whether there exists a minimum
pressure gradient or a critical gas velocity, above which the porous medium can be
mobilized and the relation between the pressure gradient and the flow velocity

In the context of the flow of Bingham fluid, similar problems arise. Typical Bingham
fluids include paint, slurries, pastes and food substances like margarine, mayonnaise and
ketchup. Bingham fluids possess nonzero yield stresses, so that they flow when an
applied stress exceeds some levels of stress, and they show little or no deformation up to
the stresses. Because of the complex property of this kind of fluids, much effort has been
made to study the flow and mobilization processes of these fluids. In addition, due to the
complexity brought out by the combination of the non-Newtonian fluid rheology with the
porous media geometry, the state of the art of Bingham fluid flow is not complete.

Many authors in the Russian literature have approximated the rheology of heavy oils as
that of a Bingham fluid [1, 2]. Some other studies were also carried out, including flow of
foams [3], ground water flow in certain clayey solids, and drilling and hydraulic-
fracturing fluids [4]. Rossen and Mamun [5] proposed a percolation approach, consisting
of occupying elements with thresholds below a certain value. In the study of the foam
flow, Rossen and Gauglitz [3] developed a model for foam mobilization in porous media,
for both continuous and discontinuous gas regimes. In the process, they employed

percolation theory to find the cluster size, and verified the fact that a minimum pressure
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gradient is needed to displace lamellae out of a pore throat. Because of lack of data and
also the complexity of the system, their conclusions are not complete.

Wu et al. [4] investigated the transient flow of Bingham fluids in porous media, including
single- and multiphase flow, using an ad-hoc extrapolation of the single-capillary
expressions for the Bingham flow. In the context of reservoir engineering, most existing
studies are phenomenological and consist of solving effective continuum equations.

Q

Vo v

Fig. 1 Voltage — current relation of an individual resistor
A fundamental and now widely accepted work was done by Roux and Herrmann [6].
They used a 2-D network, which is composed of resistors. Each of the resistors has a
threshold below which it becomes an insulator. The resistors are distributed randomly in
a network. Their results show that the relation between current and the voltage is non-

linear. The macroscopic current ( has the following relation with 7 and v,

Q~W-v.) (1)
where 6 =2 or & ~0.5 for intermediate part (if for each of the resistor, Q is linearly
determined by » when || is larger than threshold, as shown in Fig. 1, and p_ is the
minimum voltage to have current in the network. In their studies, the thresholds of the

resistors are distributed between 0 and 1.

Sahimi [7] used EMA to predict that in a certain range, Q depends quadratically on » .

His Monte Carlo simulation results agree with the prediction quite well. Zhou and Stenby
[8] studied the displacement of oil trapped in water-wet reservoirs using percolation
theory. They obtained the CDC curve based on pore structure of the medium, which is in

good agreement with the measured data.
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Kharabaf et al. [9,10,11] developed a different algorithm for the construction of the
minimum threshold path (MTP), based on which its properties can be studied, such as the
connection of the threshold-lattice problem to percolation and also the relation of the
MTP with the minimum path of percolation. The algorithm has a similar simulation
process as that of an invasion process; the difference is that the advance of the front
depends on the front history. It is referred as Invasion Percolation with Memory (IPM).
They studied the mobilization of Bingham fluid, immiscible displacement of Bingham
fluid by Newtonian fluid and also displacement of Bingham fluid by another kind of
Bingham fluid. The same algorithm is used in the study of foam formation and
propagation in porous media.

Even though some work has been done, the understanding of single- and multiphase flow
of fluids with yield stress in porous media is still limited. In considering and simulating
mobilization of fluids with yield stress, Kharabaf used a static model, which will be
modified further here. In his work, the potential of a pore is only determined by
thresholds, and the pressure distribution effect of the flowing fluid was not considered. In
this paper, a new dynamic algorithm for mobilizing fluids with yield stress based on IPM
is developed, n which the contribution of flowing fluid is taken into account. Simulation
results for different yield stress distributions are compared and discussed. The difference

between the new algorithm and Kharabaf’s static model is shown.
Algorithm

1) Invasion Percolation with Memory (IPM)
Because the IPM process is the basis of the new algorithm, the algorithm of IPM is
described with some details [9].

A network composed of bonds and pores are used, in which bonds have thresholds, 7,

randomly assigned from a distribution in (0,1). The invading front invades one site at a

time. An arbitrary site currently on the front is denoted by F', a site which is a neighbor

of F by F',the site from which the front will advance by F;, the site which will
actually be invaded by F,.. Each site that has been invaded has a value of V,(F).Fora

site ' on the front and one of its neighbors F ,asum S=V,(F)+7 - can be formed.
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The minimum one of all possible S can easily be found, the corresponding F and F'
become F, and F,, respectively, and V,(F;)=V,(F;)+1 R F( If the boundary
condition V,(R)=0 for all sites R on the right boundary is applied, the first site invaded

on the left boundary has the MTP value, which is zfi . By this method, the MTP of the

lattice can be found, and V| of each site is its smallest resistance to the starting side. The

patterns before and after a growth step are shown in Fig. 2.

56 hEAE
SoE b b
S0 S CO 0

(b)
Fig. 2 Description of the invasion rule, before (a) and after (b) a growth step.

2) New algorithm on mobilization of fluids with yield stress

Fluid with yield stress is a kind of special one, belonging to non-Newtonian fluids. A
typical example is Bingham fluids, which exhibit a finite yield stress at zero shear rate
and they correspond to the extreme case of pseudoplasticity. Bingham model is the most
often used model for a Bingham material. The behavior of this kind of fluid described by

Bingham model is shown in Fig. 3. For low stress values, the fluid does not deform, and

above the critical value 7, , it flows like an inelastic non-Newtonian fluid.

7 A

Ty

shear rate y

Fig. 3 Behavior of Bingham Fluid
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T=7,— U,y ,when T>7,
and

¥y =0,when 7<7,
If the viscous forces are neglected for single-phase flow of a Bingham fluid, yield stress
is the only force affecting its flow. While for Newtonian fluids, when the pressure drop
applied is greater than zero, there is flow in the system, for Bingham fluids, the situation
is completely different.
When simulation in network-like porous media is considered, the flow of the fluid in a
single throat (bond) can be expressed by the following equation [12]

4 4
g; = 7 1_i i) +l Yo p; when 7, >1, )
8u 1 3lr, ) 317,

i i

and
g; =0 when 7, <7,
where ¢, is the volumetric flow rate of the fluid in the throat , Ap, is the pressure drop
applied to the throat, and 7, is the wall shear stress
21
Just for simplicity, we use the equation below in the algorithm, for throat i,

q; =Ap; “L when Ap; > l 3)

i 1

and
1
q; =0 when Ap, £ —
Fi
where 7, is distributed with a size distribution, (x(r).
This condition (3) is similar to the one used by Roux and Herrmann [6] for a single
resistor. So it can be described by Fig. 1, too. In equation (3), the variables are all in
dimensionless form. It is clear from the simplified equation that the onset of the flow of

the Bingham fluid in the network is controlled by the flow situation of each of the throats
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in the path. For the first path in the system, there is a minimum pressure difference

between the two boundaries.
1
AP, min 2 ,T (4)

where the summation is over all of the throats in the first single path.
It is obvious that the first path in our algorithm is completely the same as the static one
obtained by Kharabaf et al. But after that, the pressure drop of the system, which is

needed to open a new path is not only determined by the throat radius (or L ), but also by

1

the flow, and more exactly the pressure distribution of the mobilized path, which is the
factor that is not considered in Kharabaf’s mobilization algorithm. In our new algorithm,

the two factors, radius and pressure distribution are combined together to be 7;, which is

updated every time when a new path is open. In the following description, 7, is used,

instead of —, and 7, is corresponding to the size distribution function B(z,).

i
The mobilization of the fluid is the same as finding the paths which connect one side of
the network with the other. Each of the paths is corresponding to a specific pressure drop
across the network. Here, the pressure at the left side of the network is fixed and equal to
zero. As described in previous work, IPM is an effective method to find the minimum
path from the right side of the network to the left side. After we find the first path and the
=P

min *

critical pressure AP,

min

we need a little higher pressure to open a new path. The

new path may be a branch or a loop connected to the old or a separate one. We should
notice that when the new path is just opened, the flow rates in the newly mobilized
throats in the paths are zero and they have no contribution to the total flow rate in the
network. If the new path is just opened and connected to the old (AB) one at point C (Fig.
4), for any bond j in the path CD, the flow rate is

q;=8p; =Ty; =0
therefore, Ap; =1y,
For any bond in the path AC, the flow rate is

gy =Ap; — Ty,
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If we let

Apy = qp +To, =T, )
the pressure drop between the two sides of the network for the new path ACD determined

using IPM is
Picp = 271 + 2701' = ZT{ (6)
AC cD ACD

which is the MTP with updated thresholds 7, , in the new part CD, 7, =7,,, and in the
shared part AC, 1, =1, .

For throats in the old path 7, =1, so for the old path ACB

Piep = 271 = ZT: @)
ACB ACB

From all above, we can see that the apparent way to find the next path to be opened is to

determine the MTP in IPM with updated thresholds. So, in our algorithm, we first use

IPM to find MTP with all initial 7,,. Then we increase the pressure drop P, and at the

0 P
B
A
C
D K
i

Fig. 4 The flow pattern when a new path (ACD) is open
same time update the thresholds of the bonds in opened paths to be 7 according to Eq.
(4). After that, we use IPM again to determine the MTP at this pressure drop to find the
potential (P,.,) of site D at the left boundary. If the pressure drop between the two
boundaries is high enough, we can always find a new path ACD. Then decrease the
pressure drop. These steps are repeated until the new path with smallest P, = P, is

found. Just as mentioned before, the new path is not necessarily connected to the old ones
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like the one shown, it may be a loop or even a new path, but the algorithm is the same for
all of the situations.

In determining the pressure distribution of the mobilized fluid, the fluid is assumed to be

incompressible, and for any site i in the continuous path, the below equation is obeyed,
VA

24;=0 (8)
J

where g, is the volumetric flow rate from site i to its neighbor site j, and Z is the

coordination number, Z =4 for 2-D system and Z =6 for 3-D system. At a site, which
is the intersection of the four bonds, there may no flowing fluid in several bonds, but
because of viscous forces, the static fluid in the throat(s) left may make contribution to
the flow of the fluid in the other throats. But if the Bingham number of the fluid is high
enough, this contribution is negligible. Consequently, in our study, this effect is not
considered. Flow rate in a bond is computed according to equation (3).

In 2-D and 3-D systems, fluids flow from right to left, and periodic boundary conditions

are used for the other boundaries. The size distribution of 7, is ", where B is uniform

in the region (0, 1). Then for 7,, the probability density function (PDF), the arithmetic

mean and standard deviation are

SE= )= O = e ©)
respectively. From Eq. (9), it is apparent that for the existence of the arithmetic mean we
must have n >-1, while for that of the variance, n >~1/2. Therefore, for finite first and
second moments of general threshold distributions, we must restrict Eq. (9) to n >~1/2.
However, the problem with smaller n will also be considered.
Result and Discussion

The result for n =1

The relation between the flow rate of the network and the pressure exerted across the

network is shown in Fig. 5(a) and 5(b). At a certain pressure drop P,

min ?

the first path is

open; this is the onset of the mobilization process. Then with the increase of the pressure,
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more and more bonds are mobilized and the flow rate increases as well. In Fig. 5(b), we

found that
4 ~ ‘AP"—APmin o
u% Ty ( % 7 oN)

« 1s about 1.9, which is close to 2. In Kharabaf’s work, he showed the mobilized paths of
network without flow. His results are much different from what we have here. Fig. 6 and
Fig. 7 are the mobilized paths at different stages. Under the two situations, the first paths
opened are the same. After that, the static ones have more compact patterns, while with
the new algorithm, we need higher pressure to mobilize the same amount of bonds or to
have the same amount of sites in continuous paths (Fig. 8).

8“%7”*3 4> Which is an indication of the permeability of the fluid, is increasing with the

pressure across the network (Fig. 9a) and so is the fraction of pores in the continuous

paths (Fig. 9b).
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Fig. 6 Patterns with flow at different stages: (a) First path (MTP), (b) One fourth of the
sites in continuous paths, (c) half, (d) three fourths.

Fig. 7 The static situation:
(a) The first path (MTP) (b) One fourth of the sites are in continuous paths
(c) Half (d) Three fourths.
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Because the first path in the system is MTP, the critical pressure to open the first path is

increasing when the lattice gets larger and is totally determined by the threshold

distribution. For different sizes of httices, similar 4”% iy~ A%%N relation to those in Fig.

5 can be observed.
Other Situations for different n
For different values of nin 3", the relations between the flow rate Q and pressure drop P

are similar to that of n =1. The main difference is the flow pattern of the mobilized fluid.
As shown in Fig. 10-Fig. 14, with increase of the absolute value of n, the flow paths are

more tortuous. In Fig. 10 and Fig. 11, the paths are almost straight lines, this is because
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the 7,s are almost the same, close to 1, here we do not need much higher pressures to

open new paths.

Fig. 10 Flow patterns at different stages, n=-0.1

I

==

Fig. 11 Flow patterns at different stages, n=0.1
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Fig. 12 Flow patterns at different stages, n=-1

Fig. 13 Flow patterns at different stages, n=5
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Fig. 14 Flow patterns at different stages, n=-5

In previous simulations, the volumetric flow rate in a bond is calculated based on

equation (3). If we modify the equation to that shown below,

1
q; :ri3(Api__)
]/'i

We can see that the algorithm works well too.

Here, in the simulation process, 7, is updated in the way shown below.

. 1 g,
Tl' :Apl:q—;-}-—:q—;

A

Fig. 15 and Fig. 18 show simulation results and flow patterns. In Fig. 15, the 4“%% and
A%TON relation is not the same as the one we get for n =1, while the qualitative change

of the curve is in agreement with Roux’s result. At most of the part, the curve is more like
a straight line, and there is an intermediate part, where the slope is different. In the
previous discussion for n =1, the pressure need to mobilize the bonds after all of the

pores are in continuous paths are incredibly high, while we can see in Fig. 17, with the
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new equation, all of the bonds in the system can be mobilized with relatively smaller

pressures. The patterns in Fig. 18 are similar to the ones we present before.

In Fig. 19, the interesting patterns of mobilizing the fluid from the center are shown. As
what we can expect, the paths to the corners are open later than other ones. We can see
that even though the distance from the center is not the determinative factor, it still has

obvious effect on the mobilization process.
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Fig. 18 Flow patterns of the fluid at different stages

Fig. 19 Flow patterns of the fluid mobilized from the center of the network
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Examples on mobilization of Bingham fluid in complex system

In our work, mobilizations of Bingham fluid in more complex system are also
considered. The patterns of confined flows of Bingham fluids in converging and
diverging networks at different stages are shown in Fig. 20 and Fig. 21. To compare the
result to the flow process in complex geometries, the bond size in this part is evenly
distributed in a very narrow interval, from 1.0 to 1.0001. From Fig. 20 and Fig. 21, we
can find that the mobilization process is very similar to the ones shown in Fig. 10 and
Fig. 11, where the bond sizes are very close to 1. The difference between the ones
presented here and characteristics claimed by Lipscomb [13] is that the in our results
yielding is not happening everywhere, which is understandable, because even though the
bond size is very close to one, there is still difference between bond sizes and
consequently the initial yields stresses which leads to the necessity that different paths
need different minimum pressure drop to open. If bond sizes are completely the same,
then yielding would occur over the entire flow field when the pressure difference applied

is high enough to open a

—

S

Fig. 20 Flow in converging network, first path; one quarter, half of all sites and almost all

available sites are in continuous paths
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Fig. 21 Flow in diverging network, first path; one quarter, half of all sites and almost all

available sites are in continuous paths

wiranis
BERTRE
pmnrinnri RSt
,,,,,,,,,, — RO
S s S S
AT S firrnsassoocssoe

Fig. 22 Streamlines of the patterns in converging network
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path. In these figures, black part is the walls, the gray part is the mobilized fluid and
white part is static fluid. Fig. 22 shows the streamlines corresponding to the last three
patterns in Fig, 20.

Next, flow of Bingham fluids in a network with an obstacle at the center is studied. The
mobilization process in network is presented in Fig. 23. The black part at the center is an
obstacle that cannot be mobilized, gray part is the sites with flowing fluid and white part
is static fluid, except for the last figure, where white part is the mobilized fluid. Because
of the size difference between bonds, the paths are open one by one and each at a certain
pressure drop between the two boundaries. In Fig. 24, streamlines at some mobilization
stages are plotted. Because of the Darcian property of the flow in the network, finally all
of the available site in the system can be occupied by flowing fluid, even the ones next to

the obstacle which is a bond away. This stands for the fact that there is no stagnant point
in Fig. 23.

Fig. 23 Flow in a network with an obstacle at the center, first path; About one quarter,

half, three quarters, 85% of all sites and all available sites are in continuous paths
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Fig. 24 Streamlines in a network with an obstacle at the center

Displacement of a Bingham fluid by a Newtonian fluid

The displacement of a Bingham fluid by a Newtonian fluid is encountered widely in oil
recovery processes. The efficiency of the displacement is affected by the properties of the
two fluids. This problem can also be tackled with our new algorithm. In this part, the
capillary forces are neglected.

First, let’s consider a case in which the Newtonian fluid has almost zero viscosity, this
means that the pressure drop is almost zero in the part occupied by Newtonian fluid.
Every time the interface advances, we choose the one which needs minimum amount of
time to get to the next site. Every other interface moves a distance determined by its
velocity and the minimum time known. If we use the same equation as (3) for the non-
Newtonian fluid flow, calculating pressure distribution with the restriction of mass
conservation at each pore in the mobilized path, we can get the following patterns at
different stages, shown in Fig. 25. The algorithm is similar to the one discussed before. In

this case, only the 7;s of the nonrNewtonian fluid are updated. In Fig. 25 and all the

figures in this section, the white part is non-Newtonian fluid, gray part is the mobilized
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Fig. 25 Patterns of displacement process at different stages, viscosity ratio=0
non-Newtonian fluid and black part is occupied by Newtonian fluid. Before the
breakthrough of the Newtonian fluid, the pressure is kept constant as the initial pressure
to open the first path. With time increasing, more and more paths are open and the front
of the Newtonian fluid moves deeply into the lattice gradually.

If we consider the situations with larger viscosity ratios (1 in Fig. 26 and 20 in Fig. 27),
the number of mobilized paths in the system doesn’t increase much. The patterns at larger
viscosity are much different from the one with zero viscosity, while the latter one can
have more mobilized paths. One reason accounting for this difference is the larger
pressure drop in the former case, so the pressures are not enough to overcome the

thresholds.
Mobilization of a Bingham fluid trapped in a Newtonian fluid

In oil recovery processes, waterfloods of Bingham rheology heavy oils are of much

importance. During this kind of displacement process, the Bingham fluid may be trapped
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Fig. 26 Displacement patterns at different stages, viscosity ratio=1

Fig. 27 Displacement patterns at different stages, viscosity ratio=20
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and cannot escape until the pressure is high enough. The immiscible displacement
involves not only the yield stress, but also the capillary brces. Viscous forces in the

Bingham fluid are still neglected, assuming the displacement takes place very slowly.

To use the new algorithm developed to mobilize the trapped Bingham fluid, 7, should be
correspondingly updated every time. For Newtonian fluid, the initial value is 7, = 0, and
Ti* = Ap;

For Bingham fluid, 7, keeps constant,

X

At the interfaces of the two fluids, the capillary condition should be considered,
=2
,

In each bond occupied by Newtonian fluid,

q;, = Ap;

8lu

First, consider the mobilizing process of a single point of Bingham point trapped. Fig. 28
shows the trace of the point. It starts from the right boundary of the network. This is a
quaststeady state process, if the pressure of the Newtonian fluid around the Bingham
fluid is high enough to overcome the thresholds and the capillary effect, the Bingham
fluid moves in the direction of decreasing pressure, otherwise, it stays and the pressure
applied to the system increases. In every step, the pressure distribution of the Newtonian
fluid is computed.

When a block of Bingham fluid trapped in Newtonian fluid is mobilized in the same
approach as described above, the Bingham fluid would go through a spattering process,
and become a bunch of points, which are mobilized almost one by one. This is because
each time we find one path, and mobilize the Bingham fluid in that path. Fig. 29 shows
some patterns of the mobilization process. It is possible that some trapped points can

never be moved out the system.
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Fig. 28 Mobilization trace of a single point
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Fig. 29 Snapshots of mobilization process

Conclusion

A new algorithm is developed, which can effectively solve the problem of the
mobilization of a single fluid with yield stress in a network. The simulation result is in
good agreement with the work done by Roux et al. The model is successfully used in
some different situations and the results are shown. The distribution of the yield stress
has obvious effects on the mobilization process; with the increase of the power n, the
paths are more tortuous. The results of mobilization processes are also obtained for
complex networks.

In the displacement of a mon-Newtonian fluid by a Newtonian fluid, patterns are affected
by the viscosity ratio of the Newtonian fluid to the non-Newtonian fluid.

The model is also employed in the mobilization process of Bingham fluid trapped in
Newtonian fluid. The Bingham fluid block is broken into small parts and mobilized one

by one, which is the typical process found in experiments.
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