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ABSTRACT

The Mine Mountain area is a small range of hills on the west side of the central
Yucca Flat basin on the Nevada Test Site, Nye County, Nevada. This map portrays the
very complex relationships among the pre-Tertiary stratigraphic units of the region.
Rocks and structures of the Mine Mountain area record the compounded effects of: 1)
eastward-directed, foreland-vergent thrusting; 2) younger folds and thrusts formed by
hinterland vergence in a general westerly direction; and 3) low-angle normal faulting
formed by extension along a northeast-southwest trend. All of these structures are older
than the oldest middle Miocene volcanic rocks that were deposited on the flanks of the
Mine Mountain terrane. High-angle faults that post-date these volcanic rocks locally

show displacements of several hundred meters, but do not strongly affect patterns in the
pre-Tertiary rocks. :

INTRODUCTION

The low range of hills in west-central Yucca Flat known as Mine Mountain exposes
a significant structure designated the Mine Mountain thrust. This fault is most
conspicuous in the northern Mine Mountain area where, as viewed from Yucca Flat on
the east, it is marked by a prominent subhorizontal contact between red-brown clastic
rocks of the Eleana Formation and overlying light gray carbonate rocks of the Sevy and
Laketown Dolomites. Johnson and Hibbard (1957) recognized the stratigraphic inversion
represented by Devonian strata on top of Mississippian clastic rocks, and interpreted the
Mine Mountain thrust fault as part of a zone of east-vergent thrusts noted in several
localities along the western margin of the Yucca Flat basin (fig. 1).

More detailed geologic mapping by Orkild (1963, 1968) supported the same
interpretation that the Devonian carbonates were emplaced toward the east, as
summarized in Barnes and others (1963) and Barnes and Poole (1968). Carr (1974, 1984)
interpreted the Mine Mountain structure as a folded relic of the east-vergent thrust system
to account for his evidence that still-older rocks lay eastward of the Mine Mountain area
in the subsurface of Yucca Flat. Robinson (1985) concluded that thrusting was relatively
minor, based on a regional analysis of patterns in the pre-Tertiary rocks, and that most of
the structural relations could be explained by broad folding followed by displacement of
fragments of fold limbs by low-angle extensional normal faults. Caskey’s study of the
CP Hills south of Mine Mountain (fig. 1; Caskey and Schweickert, 1992) confirmed the
inference of McKeown and others (1976) that the principal thrusting there was toward the
west, rather than toward the east. Caskey emphasized that the major overturning in the
footwall Pennsylvanian strata indicated significant contractional strain.

Our initial mapping, along with reconnaissance work by Guth (1981, 1990) and
detailed fault-kinematic studies by M.R. Hudson (Hudson and Cole, 1993; Cole and
others, 1989, 1994) showed that extension on low-angle normal faults was a significant
part of the overall strain signature in the pre-Tertiary rocks of the Mine Mountain area.
The nature and scope of the earlier thrusting was indecipherable, however, until detailed
biostratigraphic analyses and sedimentological study showed that the middle Paleozoic
rocks in this area belonged to different facies assemblages and could not all have been
emplaced in the same thrust sheet from a single direction (Trexler and others, 1996; Cole



and Cashman, 1997). Additional field work and detailed analyses of small-scale folds
and bed-facing directions, documented in this map, show that the complex relations at
Mine Mountain result from the combined effects of major foreland-vergent deformation
related to the Belted Range thrust, and substantial folding and faulting due to later
hinterland-vergent contraction in the CP thrust system (fig. 1; Cole and Cashman, 1997).
The extensional normal faulting, although undeniably present, does not appear to have a
significant effect on the present-day locations of major tectonic pieces of the Mine
Mountain puzzle.

Detailed stratigraphic documentation, regional paleogeographic analysis, and
stratigraphic synthesis are contained in Trexler and others (1996) and Trexler and
Cashman (1997) and summarized in Cole and others (1994). The structural context of the
Mine Mountain area is shown schematically in fig. 1. Discussion of the regional
structural interpretation and evidence for timing and direction of emplacement of

principal thrust plates is contained in Cole and Cashman (1997) and in Cole and others
(1997) and Cole (1997).

The excavations for which Mine Mountain is named consist of four shallow shafts
and four adits that explore parallel silicified sheared zones in quartzites in the Devonian
carbonate rocks (Cornwall, 1972; Quade and others, 1983). Barite, quartz, and very
minor sulfide minerals are noted in the dumps. Microprobe analyses and assays indicate
the presence of lead, silver, zinc, antimony, arsenic, and mercury (Quade and others,
1983). A well preserved mercury retort sits on the northeast slope of the Mine Mountain
ridge next to the road, but there is on record of mercury production from this area (Quade
and others, 1983).

STRATIGRAPHIC NOTES

The Eleana Formation at Mine Mountain differs from other documented sections in
the region by being consistently finer grained and by having a younger base (Trexler and
others, 1996). The underlying Guilmette Formation is also anomalous in the region
because it is thin and because it contains thick quartzite beds in its upper part that show
internal brecciation, which we interpret was formed by collapse into karst sinkholes
(Trexler and others, 1996). Evidence for a similar history of non-deposition and karst
dissolution is even better displayed along strike to the southwest at Shoshone Mountain
(fig. 1). Limestone beds in the lower 25 m of the Eleana at both Mine Mountain and
Shoshone Mountain contain late Kinderhookian to early Osagean conodonts. These data
indicate deposition began in these localities about 10 m.y. later than in the type section of
the Eleana north of Yucca Flat (fig. 1; Trexler and others, 1996). The biostratigraphic
data also confirm that the Guilmette-Eleana contact southeast of Mine Mountain Pass is
largely stratigraphic and not a thrust, as previously mapped by Johnson and Hibbard
(1957) and by Orkild (1968). The unusually thin Guilmette is attributed to non-
deposition or erosion coincident with the karst formation (Trexler and others, 1996).

Clastic rocks in the head of Slick Draw consist of uniform, dark green-brown and
red-brown shale, along with sparse folded and dismembered beds of bioclastic limestone,
impure quartzite, and a few beds of chert-granule conglomerate. Outcrop is poor, but



bedding attitudes and stratigraphic facing directions suggest that this lithic assemblage
lies conformably on top of Eleana unit Mei, which crops out west of the head of the
Draw. We show this unit as Chainman Shale based on its distinctive association of
shale, quartzite, and bioclastic limestone (Trexler and others, 1996). If correct, our
interpretation would indicate the Chainman lithotype was deposited over the Eleana
lithotype in this area (shown in cross- section A-A’), whereas the two units are time-
equivalent but mutually exclusive in all other southern Nevada localities (Trexler and
others, 1996). The presence of chert-lithic conglomerate, typical of Eleana clastic source-
areas, in this Slick Draw section may indicate local co-mingling of sources during late
Chesterian time. Due to the extreme structural complications in this area, however, we
cannot preclude the possibility that the Chainman in Slick Draw was emplaced from the
east during hinterland-vergent thrusting as a tectonic slice derived from the pre-existing

Chainman footwall of a foreland-vergent Belted Range thrust element beneath the Eleana
(see cross-section A-A’).

FORELAND-VERGENT STRUCTURE

The principal evidence for foreland-vergent thrusting is implied by map relations
indicated in fig. 1 and by regional stratigraphic arguments. The Eleana Formation at
Mine Mountain was originally deposited west of the Chainman Shale preserved in the
Syncline Ridge area (Trexler and others, 1996). Its present location east and south of the
Syncline Ridge area requires east-vergent emplacement. Drill hole UE-1m, located on
the northeast flank of Mine Mountain north of the 1-6C jeep trail, penetrated about 177 ft
of steeply-dipping Eleana before entering 337 ft of flat-lying Chainman Shale (Cole and
others, 1997). We interpret these relations to indicate UE-1m penetrated an east-vergent
thrust in the subsurface (cross section A-A’). The broad arch of the Mine Mountain
anticline and the diffuse anticline in the Eleana near UE-1m are both thought to have
formed during east-vergent deformation (along with the Syncline Ridge fold), but both
folds have been modified by younger deformation. As a result, bedding does not

statistically define asymmetric fold limbs or an inclined hinge surface that would clarify
the vergence direction during folding.

Small-scale folds and overturned beds in Eleana unit Mei south-and west of Slick
Draw indicate eastward vergence. These structures may be subsidiary folds on the east
limb of the Mine Mountain anticline, or they may have formed during emplacement of a
higher thrust plate. The slab of Sevy and Laketown Dolomite between Slick Draw and
Gray Hill may be a relic of such a plate. Bedding in the dolomites generally dips
westward, as does the fault contact with Eleana on the east, and this is the geometry that
is displayed by foreland-vergent thrust-duplex blocks farther north in the Eleana Range
(fig. 1; Cole and Cashman, 1997). This interpretation is illustrated in cross-section A-A’.



HINTERLAND-VERGENT STRUCTURE

The eastern side of the Mine Mountain area exhibits numerous thrust faults and folds
at various scales that all record the effects of hinterland-vergent deformation, which is
generally toward the west and northwest in this part of the Nevada Test Site. This
deformation regionally overprints the foreland-vergent structures of the Belted Range
thrust system and is referred to as the CP thrust system. Several CP-thrust plates and
overturned folds are stacked up along Eureka Ridge, and both South and North Knobs
and the area from Four Quad Hill to Slick Draw expose hinterland-vergent thrust plates

(fig. 1).

Westward-vergent folding is also well displayed along the Guilmette-Eleana contact
parallel to the Mine Mountain crest, at several locations within the Eleana Formation (for
example, along Red Ridge), and beneath the dolomite breccia in upper Slick Draw. We
believe, however, that these structures are within thrust plates that were originally

emplaced toward the east over the Chainman Shale, and thus lie in the footwall of the CP
thrust system.

The structure of Eureka Ridge is displayed in cross-section C-C’. Three thin thrust
plates each carry overturned folds toward the northwest over progressively younger units.
The combined effect of these slices is to distribute the total stratigraphic offset between
the Cambrian Nopah Formation and the Mississippian Eleana Formation into imbricate
thrust sheets. At the west end of the ridge, all structural elements bend toward the south-
and progressively verge toward the west. This change of trend is interpreted to have
formed concurrent with folding and thrusting and is consistent with the irregular and local
nature of the CP thrust structures on a regional basis (Cole and Cashman, 1997).

South Knob largely consists of an overturned flap of the Devonian carbonate section
that was emplaced generally westward over the Mississippian Eleana Formation, as
illustrated in cross-section B-B’. The direction of overturning in this upper plate, and in
the footwall Eleana, shows that this flap is a very local feature because it verges toward
the northwest, toward the west, toward the southwest, and toward the south along its
lateral margins. These geometric characteristics (similar to glacial or extrusive flow
forms) suggest the South Knob flap was extruded upward and outward toward the west
and that it flattened and spread over the Eleana wherever resistance was least. A similar
structural style is inferred north of the Mine Mountain Road at North Knob and Four
Quad Hill from the arcuate trends of bedding and overturning directions in the Devonian
carbonates, but the leading edges of these local thrust plates have been displaced by a
younger high-angle fault.

Chainman Shale in the upper part of Slick Draw contains beds of bioclastic
limestone and chert-granule conglomerate that are overturned toward the west, as
indicated by inverted graded beds. We interpret these relations to indicate the overlying
dolomites, which were originally emplaced toward the east as part of the Belted Range
thrusting, have been displaced westward by a younger CP thrust that propagated through
the Glder thrust stack (shown in cross-section A-A’).



EXTENSIONAL NORMAL FAULTS

Dolomites and quartzites in structural blocks above the Eleana Formation locally
preserve small-scale kinematic features on fractures that consistently indicate the latest
slip occurred under dilational stress conditions (Cole and others, 1989; Hudson and Cole,
1993). The extension direction determined from numerous fault-slip measurements at
- each of 25 widely scattered localities is NSSE-S55W, regardless of the dip direction of
the local fault surface between Eleana and the overlying thrust plate (Hudson and Cole,
1993; figs. 6 and 7 in Cole and others, 1994). For example, the exceptionally well
preserved imbricate, mullioned fault surfaces in Slick Draw have small-scale slip-sense
indicators that reflect top-to-the-northeast displacement on east-dipping surfaces. In
contrast, two measurement sites along the easternmost trace of the Mine Mountain thrust,
located less than one km to the east, consistently show top-to-the-southwest
displacements on the west-dipping thrust (Cole and others, 1994). Thus, these results
from opposite sides of a local-scale dolomite thrust plate both show extension along the
same trend but in opposite senses, leading to the conclusion that the dolomite was
extended “in place” over the Eleana (Hudson and Cole, 1993; Cole and others, 1994, p.

73). Stated alternatively, the Eleana may have been extended (extruded) outward from
beneath the overlying dolomite plate.

The results of these fault kinematic studies are based on measurements from the
Mine Mountain thrust trace, from Eureka Ridge, from South Knob, from Slick Draw,
from Breccia Ridge, and from several localities along the Mine Mountain crest. In
several localities, it appears the extensional slip has cut down into the lower-plate Eleana
because overturned folds in Eleana limestone (formed during thrusting) are beheaded or
absent along parts of the Eleana-dolomite thrust contact. These observations formed the
basis for conclusions stated by Cole and others (1989) that most of the low-angle faults
between Paleozoic rock units in the Mine Mountain area were extensional normal faults,
even though they recognized that prior thrusting must have occurred to produce the
original stratigraphic inversion of units. The regional stratigraphic framework, and the
biostratigraphic control on various units, had not been established at that time, and those
conclusions were made in ignorance of the extent of overturned section and the
importance of hinterland-vergent structures in the Mine Mountain area.

The broad picture of structure in the Mine Mountain area documented by this map,
and the supporting studies, shows that the foreland- and hinterland-vergent thrusting are
the major factors in the distribution of rock units. Extension is clearly recorded by the
detailed fault-slip indicators, but the amount of slip does not appear to have translated
major blocks of rock to significantly different positions.
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