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Abstract 
Two GAO reports have  questioned the utilization of computing  resources 

in the Department of Energy.  While  Jones  and  Nitzberg  have  observed that 
utilization peaks at 60-80% for a  variety of architectures and allocation  policies. 
This investigation  examines the theoretical  and  observed  average  maximum  effi- 
ciencies of  massively parallel  computers, and shows that the observed  efficiency 
at Sandia  is very  nearly  optimal. 

Here, the average  maximum  efficiency is defined as the expected  utilization 
or efficiency  when the queue  is  nonempty. We have  developed a model that 
allows us to compare the observed  efficiency with the average  maximum  effi- 
ciency, and allows us to forecast the expected  maximum  efficiency  given the 
average  size of the smallest task, S, waiting  in the queue. The model  predic- 
tions are in  excellent  agreement  with the measured  efficiencies  obtained  from 
the Sandia data. 

The average  number of idle  processors  may  be  estimated by analyzing the 
embedded  renewal  process. We let Y ( t )  denote the number of idle  processors, 
and we set S equal to  the random  variable  representing the size  of the smallest 
task  in the queue. The stopping  time T* denotes the time  when  exactly S 
processors  become  available; the process Y ( t )  is  reset to zero  when the level 
S is attained. Also, we let N denote the number of processors, y = E [ S / N ] ,  
and'we set p(y)  equal to the efficiency  when E [ S / N ]  = y; that is, p(y) is the 
maximum  efficiency  when the smallest  waiting  task  requires,  on  average, yN 
nodes. We  show that p(y) = X- 'E[S/N] /E[T*] ,  where X-' is the mean of the 
exponentially distributed completion  times. 
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1 Introduction 
Two GAO reports (see [2] and [3]) have questioned the utilization of computing 
resources in the  Department of Energy. While Jones  and Nitzberg (see [5]) have 
observed that utilization  peaks at SO-SO% for a  variety of architectures and allocation 
policies. This investigation examines the theoretical and observed average maximum 
efficiencies of massively parallel  computers, and shows that the observed  efficiency at 
Sandia is  very nearly optimal. 

Here, the average maximum efficiency  is defined as  the expected utilization or 
efficiency when the queue is nonempty. We have developed a model that allows us to 
compare the observed efficiency with the average maximum efficiency, and allows us to 
forecast the expected maximum efficiency  given the average size of the smallest task, 
S, waiting in the queue. The dependence on the smallest task reflects the scheduling 
policy of not blocking the smallest  task in the queue; this is  the policy at Sandia.  The 
model predictions are in excellent agreement with the measured efficiencies obtained 
from the  Sandia  data. 

The 'average number of idle processors may  be estimated by analyzing the em- 
bedded renewal  process. We let Y ( t )  denote  the  number of idle processors, and we 
set S equal to  the  random variable representing the size of the smallest task  in  the 
queue. The  stopping  time T' denotes the time  when  exactly S processors become 
available; the process Y ( t )  is reset to zero  when the level S is attained, see Fig. 1. 
Also, we let N denote  the  number of processors, y = E [ S / N ] ,  and we set p(y) equal 
to  the efficiency when E [ S / N ]  = y; that is, p(y) is the maximum efficiency when the 
smallest waiting task requires, on average, yN nodes. 

In  terms of the renewal process, we define the average  maximum efficiency, p(y), 
O < y < l , b y  

where we assume that  the average, for t, = jAt, At > 0, 

(1.2) 

converges in  mean  square (the limit in expression (1.1) is convergence  in mean  square). 
Assuming that  the completion times (the  time required for a processor to complete a 
task)  are  independent,  exponentially  distributed  random variables, S 2 1, and that 
S is constant between renewal times , it can  be  shown that YM converges.  Also, 
under the  same assumptions on the completion times and S, it is possible to derive a 
theoretical expression for p ( y ) ,  namely, 
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where X-' is the mean of the exponential  random  variable.  Expression (1.3) allows 
us to make a  comparison between theoretical  and  experimental efficiencies. 

We have observed,  from  empirical  studies, that  the distribution of S approximately 
obeys a Beta law (see Fig. 2), 

where n = 1,. . . , N ;  a, p 2 1, r(z) denotes the  gamma function  and is the 
approximate  normalization  constant. The mean of S/N is given by y = E[S/N]  k 

a/(. + p);  that is, the average number of nodes required  for the smallest  task is 
approximately (a1 N .  At Sandia,  there  are two possible values for N depending 
on  whether the  mac ine  is in large  or  small  configuration. 

If a is an integer  and p is "large" (but  not  too large since we also  require that 
IWL + 0, as N --t co) we have (see Fig. 3) mwra 

In  particular, if E[S /N]  k .2 the model predicts  a  maximum efficiency of 90%; 
p(.2)  FSI -.2/1n(l- .2) .9, which is  in excellent agreement  with the measured max- 
imum utilization of approximately 90%. Here, the measured  maximum efficiency  was 
obtained by computing  the efficiency  over periods in  which the queue was nonempty. 

The  ratio of the average maximum efficiency and the observed utilization may be 
used to provide  a  relative efficiency.  Using the relative efficiency as a figure of merit, 
we found that  the Sandia  computers  performed better  than expected. The  Sandia 
data may be  summarized as follows: 

Measured maximum efficiency is 90% over  73% of snapshots 
Measured low efficiency is 49%  over  27% of snapshots 
Observed efficiency is approximately 79%  over 100% of snapshots 
Relative efficiency .79/.9 k .88 or approximately 88% 

The key point  is that  the  ratio of the observed efficiency, 79%, to  the maximum effi- 
ciency, 90%, or the relative efficiency is  approximately  88%, which is  nearly  optimal. 
Additionally, the curve for p(y)  (see Fig. 3) may be used to predict the maximum 
utilization for other values of the  parameter y, provided  estimates of the expected 
value E[S/N] are  available for the  time period of interest. We further broke out  the 
smallest job waiting in  the  Sandia queues into  fourteen  ranges and collected the corre- 
sponding efficiencies. Fig. 4 shows the  top seven ranges.  Note that not  all the ranges 
are  populated  in  both  the  small  and  large  configurations.  The difference between the 
predicted  and observed values could be  due to  the sparsity of the observed values. 

The  Sandia  data also revealed some trends for average  daily usage, see Fig. 5. 
The highest average daily usage occurs on Fridays, 94%. The average daily usage 
decreases steadily over the weekend with 83%  on Saturdays  and 75%  on Sundays 
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before reaching the lowest average daily usage on Mondays, 70%. A similar trend 
occurs during  the work week with 80% on Tuesdays, 76% on Wednesdays, and 75% 
on Thursdays.  These  trends could  be the result of the  Sandia queues being loaded 

' with production jobs before the weekend, but  the  job queues being exhausted before 
the work  week begins and the Sandia queues being loaded with development jobs 
shortly  after the work week begins: but  the development work diminishing over the 
work  week going into  the next weekend  cycle. 

In the second section, we define the embedded renewal process more precisely, 
and derive relation (1.3). The  third section presents an asymptotic  analysis for the 
distribution of the smallest  task size, and, in turn;  this expansion provides an  estimate 
for P(Y) .  

2 Expected Maximum Efficiency 
In this section we present an outline of the proof that mean  square  limit of PM exists 
and equals X-'E[S/N]/E[T']  so that p ( y )  = X-lEIS/N]/EIT*]. The key idea is that 
the number of idle processors may be represented by an embedded renewal process. In 
turn, we use the renewal theorem and the fact the process  is approximately covariance 
stationary  to derive convergence. 

We begin by defining the renewal process more precisely. We let S1 denote the 
size of the smallest task in the queue for the first renewal period, and we let T; = Ts, 
be the  time for enough processors to become available to accommodate  the  task of 
size S1. For the second renewal period we set Sz equal to  the smallest  task in the 
queue, we let Ts2 be  the  time for Sz processors to become available, and we define 
T .  = Ts, + Ts2. The i'h renewal period is  defined similarly, if Si denotes the size  of 
the  smallest  task  in the queue during  the i'h period; T: = Tsl + Tsz + ... + Tsi, where 
Tsi is the  time  required for Si processors to become available. We let Y ( t )  denote  the 
number of idle processors at  time  t, Y ( t )  = Y ( t  - T;) if t > 27:. Here, we assume that 
the  number of idle processors is immediately reset to zero when enough processors 
become available for the smallest  task  in the queue, and the process begins again with 
another  randomly chosen minimum  task size. Also, we assume that  the size of the 
smallest task  remains  constant  throughout the period. The renewal  process may be 
viewed as a hitting process that begins anew whenever the number of idle processors 
reach a random level S. 

Next, to analyze the  stopping times, we assume that  the time, 7 ,  required for 
a processor to complete  a  task is exponentially distributed with mean X-' (P(T  > 
t )  = exp(-At)),  and is independent of the  other processors' completion times. If k 
processors are idle, the  time, rk, for another processor to  become available is  given by 
the minimum over N - k independent, exponentially distributed  random variables. 
For a given renewal period,  let us denote by; T~ the  time for the first processor to  
become  idle, r0+7' the  time for the second to become available, T k  f 7 0 + 7 1 + . . . + 7 k - 1  

the  time for the kt* processor to become  idle, and for, say, the first renewal period, 
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we note Tsl = 70 + ... + T S ~ - ~ ,  see Fig. 1. 
The following  is a partial list of symbols: 

N = number of processors, 
r k  = duration of time that exactly k processors are idle, 
T k  = r, + . . . + ~ k - 1  = time  that  the kth processor becomes idle, 
Si = size of the smallest task in the queue during renewal period i, 
2'; = Tsl = Ctzi rk = time for exactly SI processors to become available, 
Y(t) = [T&,T~+,)(~) = number of processors idle at time t if t < Ts,, 

The distribution of rk is  given by the minimum of N - k independent, identically 

s-1 I 
where IITh,Tk+,)(t) denotes the indicator  function on the set [ T k , T k + l ) .  

distributed  random variables, ' r k j ,  that is, 

Here, the N - k random variables represent the N - k processors that  are working on 
a  task, so that, exactly k processors are idle. In the  last  step we used the assumption 
that r k j  is exponentially distributed with parameter X. 

Let us est,ablish a renewal equation for 

A(t) = E[Y( t ) ] .  

We condition on the  time of the first renewal, T; = s, and consider two cases; t < s, 
so that T; > t ,  and t 2 s so that Y ( t )  = Y ( t  - T;). We have 

E[Y(t)IT; = SI = 
E[Y(t)IT? = SI, t < s, 
A(t  - t 2 s. 

Invoking the law of total probabilities, we obtain 

A(t)  = J w ( t ) l  
= JpE[Y(t)lT; = s]P(T; E ds)  
= J," E [ Y ( t  - S ) j q  = s]P(T; E ds) + JP" E[Y(t)IT; = s]P(T; E ds )  (2.4) 
= a(t)  + J," A(t - s)P(T; E ds) 

where a( t )  = JtmEIY(t)lT; = s]P(T; E ds) ,  and JeP(T;  E ds)  = P(T; E B )  
denotes the probability  measure for 2';. 

We have  shown that A( t )  satisfies the renewal equation 

A(t )  = a( t )  + A(t - s)P(T; E ds).  
t 

0 

By the renewal theorem (see Karlin and Taylor [6]) we obtain 

(2.5) 
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where a( t )  = stw E[Y(t) lT;  = s]P(T; E ds).  
Interchanging the order of integration we arrive at the expression 

J," a(t)dt = Jy E[Y( t ) /T ;  = s]P(T; E ds)dt 
= JFJiE[Y(t) jT;  = s]dtP(T;" E ds)  = E [JOT; Y(t)dt] (2.7) 

The change in order of integration is justified by the  estimate 

E [ Y ( t ) / T ;  = s]P(T; E ds)  = O(e-xt) 

obtained from expression (2.1). We have,  from expressions (2.6) and (2.7), 

where T* z 2';. It follows that 

AS M + 03. Now assuming 

as M + c o ,  it follows that (see Karlin and Taylor [6])  

as n -+ 00, where PM E E,"=, Y(t j ) .  Expression (2.10) follows from the observation 
that for It - SI sufficiently large, Y ( t )  and Y ( s )  are "essentially" independent, see 
Karlin and Taylor [6]. 

We have arrived at  the desired result, 

(2.12) 

as M + c c ;  convergence is in mean square. We have  shown the first half of 
expression (1.3), namely, that v~ converges, and  that  it converges to  the  ratio 
E [JOT' Y ( s ) d s ] /   E [ T ' ] .  It  remains to show that  this  ratio can be  expressed  in terms 
of the  random variable S = SI. 



The expected values E [ J ,  Y(t)dt] and E[T*] (recall that T' F 7';) may be 
expressed in  terms of the  exponential  random variables Q (see expression 2.1); that 
is: 

and 
E [JOT' Y(t)dt] = E [so's Y(t)dt]  

N m-1 

rn=l k=O 

k=O 

(2.13) 

It follows that 

E [JOT' Y(t)dt] = + *P(S > k )  
k=ll .. . 
N-1 

= - &P(S > k )  - P ( S  > k )  

= N E [ T * ]  - X-'E[S]. 

N-1 (2.14) 
x k=O k=O 

Here, we used the  identity CFGIP(S > k )  = E[S] .  Lsing expressions (2.12) and 
(2.14); we have arrived at  the desired conclusion, 

as M -+ c o ;  convergence is in mean square.  This completes the proof of relation 
(1.3). 

This relation allows the experimentalist to  compare  the  statistic FM, obtained 
from observations,  with the theoretical  prediction, provided the  distribution of the 
smallest task  size, S, is  known. 

3 Distribution of the Smallest Task 
We turn, now, to an analysis of the  distribution of the smallest task size, S, and we 
use an  asymptotic expansion for the  distribution  to'  obtain an analytical expression 
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for the  ratio A-'E[S/N] E[T*] = p(A).  As we noted in the  introduction,  our empirical 
studies  indicate that S may be approximately represented by a beta  distribution;  that 
is, 

P ( S = n )  = - - 1-- , n = l , . . . ,  N ,  (3.1) .li 
where  c  is  chosen so that Et==, P ( S  = n)  = 1, (Y > 0,  and p 2 1 (we note that 
P ( S  = 1) = 0). To relate  the  beta  distribution to  the efficiency, p(y),  for a given 
y G E [ S / N ] ,  the  parameters (Y and 4 must be chosen so that E [ S / N ]  = y + O ( l / N ) ,  
for the specified y, 0 < y < 1. For this we use the  beta  integral 

which holds true for o > 0 and p > 0. This  integral  may  also be  used to provide an 
estimate of c; that is, assuming Q > 0 and 13 2 1, we have 

In the  last  step we used the  fact  that c = M + O ( W 1 ) :  and the identity T(z+l) = 
zI'(z). In order that E [ S / N ]  satisfy the relation E [ S / N ]  = y + 0(1/N) x y we set 

r a + ~  

We note that  the  parameters (Y and p are not uniquely determined by this identity. 
To evaluate EIT'] we need an expression  for the incomplete beta integral, namely, 

(:)p"(l - p)'-" = ( T  - k )  (L) / tk( l  - t)'-"-'dt, 
k 1 

v=O P 

where, if T is a real number, 21 a positive integer, we set ( G )  = u ( u - l ) , ~ , ( l )  , (b) E 1, 
and we assume k a positive integer, T - k > 0, 0 < p 5 1. Identity (3.6) may  be 

r(v-1) ... (7-v+1) 
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verified by differentiating both sides with  respect to p ,  see  Feller [l] or Hogg and 
Craig [4]. (By allowing p J. 0 this identity may be used to derive relation  (3.2) for 
integer cy and real p; in this  case, a = k + 1 and p = r - k . )  Using identity  (3.6), we 
have,  for cy = k + 1 and p = T - k ,  

P ( S  > m) = c N c l ( $ ) e - l ( l -  6) 4-1 1 

= c Jmp yk(1 - y)'-k-ldy + 0 (N-1) 
37" 

where p ,  = m/N. For E[T*],  by applying the  estimate (3.7) and expression (2.13), 
we obtain, 

E[T']  = x-' - L P ( S  > m) 
N-l 

rn=l N-m 

The  inner sum in expression (3.8) may rewritten as 

Combining expressions (3.8),  (3.9),  and using the  relation  c = 
since a = k + 1 and b = T - k, we obtain 

r(k+l)r(?-k) 
u r + l  +0(N- l ) ,  

(3.10) 

Using relation  (1.3),  expression  (3.4);  and expression (3.10), we obtain for the effi- 
ciency p ( y ) ;  

(3.11) 

Rewriting expression (3.5)  using the  substitutions a = k + 1 and = T - k ,  together 
with expression (3.11), we obtain  the  relations 

(3.12a) 
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y=- k + l  
T + l ’  

(3.12b) 

where k is an integer, r is a real number, and r - k 2 1. 
We may  approximate  the denominator  in  equation (3.12a) using the expansion 

for harmonic  sums (xi=l = Inn + yo + & + 0 (h), where yo is Euler’s constant), 
provided r - k is sufficiently large, and making  the  substitution y = s, 

x = ln(r) - ln(r - k - 1) + 0 (A) le 

U=O (3.13) 
= - l n ( l - + ) + ~ ( & ) = - l n ( l - y ) + o ( & ) ,  

where r - k >> 1 
It follows that 

P ( Y )  = - 7 - +.(A)= (1+1+3+. . . ) -1+O(-) .  Y Y2 1 (3.14) 
7 )  r - k  

In  particular for y = .2, we have that p Y .9, which  is  in  close agreement with the 
measured efficiency,  see Fig. 3. 

We remark that  the  parameters T and k can not grow too  rapidly since we must 

have M h  = r(k:f&?2-k)h -+ 0; as N -+ c c ,  where $$$j is the normalization 
constant for the  beta  distribution. 

4 Summary 
This work  was motivated,  in part, by an attempt  to explain the observation that 
utilization peaks in the SO-SO% range for a variety of parallel architectures  and allo- 
cation procedures. Our study confirms the  intuition which holds that  the efficiency 
of a parallel  computer is effectively limited by the fact that  the machine must spend 
a significant fraction of the  time  ”draining”  to  accommodate a new task; more im- 
portantly, we have quantified the relationship between  efficiency and  the size  of the 
smallest  task in the queue. We  have  shown that  the average maximum efficiency 
decreases, approximately, as  the  -y/ln(l - 7 )  for increasing y, where the average 
size of the smallest task  equals yN. 

The functional  relationship between the smallest  task size and average maximum 
efficiency  may provide some useful insights into the observed  efficiencies. For 
”small”,  the function -y/ ln(1 - 7 )  is approximately  linear, so the inefficiency as- 
sociated with modest sized tasks is  not significant. On the  other  hand, as y increases, 
the  function -y / ln( l -y)  decreases more rapidly than linear, so that  the incurred in- 
efficiency  becomes more significant. This  may  partially explain the observed uniform 
grouping of efficiencies in the 60-80% range. 

The key idea in the analysis is the observation that  the underlying  stochastic 
process is a renewal process. The renewal theorem and  the  asymptotic covariance 
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stationarity  are used to prove  convergence and to derive an explicit form for the 
limit.  The assumption that  the smallest task size, approximately, obeys a Beta law 
allows us t o  derive an analytic expression  for the expected maximum efficiency. 
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