DIA REPORT
AND2002-0770
nlimited Release

Situ Monitoring /
\queous

r, and Randal FlLﬁckhart

es
0 87185 and Livermore

 Corporation,

ram laboratory operat !
_ . Department of

 Company, for the U

A disclosure of invention relating to the subject of this publication has
been filed with the U.S. Department of Energy.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their
contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

SAND2002-0770
‘ Unlimited Release

—— Printed April 2002

Development of an In-Situ Monitoring /
Recording Device for Aqueous Processes

Michael E. Partridge, Tedd A. Rohwer, and Randal R. Lockhart
Telemetry and Instrumentation Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-0986

Abstract
The /n-Situ Monitoring and Recording Device for Aqueous Processes was developed under a Cooperative Research
and Development Agreement (CRADA) with The Procter & Gamble Company. The device is a miniaturized data
recorder that measures and records temperature, pH, conductivity, and three-axis acceleration. Intended to
autonomously record process data for up to two weeks, the device is tennis-ball-sized, waterproof, has the density of
water, contains non-volatile memory, and is powered by a commercially available 9-V battery. The design details
are presented, including explanation of circuit function, schematics, and microcontroller code listings.

Acknowledgements
The authors thank Willard B. Hunter, who was the initial Sandia point of contact and was responsible for initial
interactions with Mike Rothgeb and Jim Jordan, of The Procter & Gamble Company, resulting in this development.

Ed Henry assisted in the design development, and Dennis Wilder constructed the prototype electronics. Bill
Flounders provided invaluable advice regarding pH sensors and pH measurement. Ron Akau completed thermal
transport modeling to improve the temperature sensor placement. Our Procter & Gamble counterparts Kris Gansle,
Mark Cipollone, and Jonathan Joyce conducted the laboratory validation of our design, and uncovered challenging
design problems as the prototypes were evaluated. Keith Fanta, also at P&G, helped correct an electronic design
problem late in the project. Tony Mittas took over project responsibility in its final months and provided
modifications to the pH, accelerometer, and conductivity circuits.

The authors also thank Toni Kovarik, who negotiated the original CRADA, and Vic Weiss, who took over CRADA
management from Toni and negotiated the follow-on extensions.

Table of Contents

INErOAUELION....cciitieirirreesinneniiisassienisssssstesssstssssssenssssnsnesertssassssnsssensssssasssssrssssseresssssssestssnessonssssrase |
SeNSOr Ball FEALUTESvoiiiiiicieeecieicee ettt ettt sttt an e e asaseseseseesenenenene 7
Measurement DAta LISt..........ccoiviiiiiiiimiriiic sttt ettt et ee s s s s e ses e s anenretes 8
Battery OPerating TIINEc.c.oivoieeeiuiiieeee ettt bttt ee s e s e e e se et ssamemenenenesesneeseeees 8

Project FOrmation........ceeersiessensaeenseesssens T oy T — e —
CRADA TIMEIINEoiiiiieiii ittt ea s se s eb bbbt enem s enesaas e e bttt eemseaenas 9
REQUITEIMENES SUMMATYcicieiieiiiiitiaci ettt esese s esesesea s e esesetebeseseseseses et e sesessasaseteteteseeseesnsereresans 9

Measurement Transducers and CirCUIIY coo.oceeeeinreessierrecnnesesnsnessesessesssssesesserasassnsssssssessesers] 0

PH Sensorcoicnisnnesnsssisanssssssssssasaass COIOCCOAE OO CCECDOCCOCOCCOET rrorrrorod b
DH Probe DEailS.........c.oiiiiiiiiiiii it eenninsesasesssssessesnse s sass s s m s st et es s s enas e sstsn e semeeeees 10
Ag-AgCl Reference EICCIIOAecucviuieiiiieiieieiciieisnienses sttt se st es sttt saesannnens 11
PH Sensor Electronics INTEITACE.cc.iviuciiiciciiisii ettt m st ettt an s 12
PH Sensor Electronics Design ISSUES...........cccoreriiiiierimieeiiesierseemeects et cassse et ssa s ettt sanseseeeas 13

Conductivity Probe.......ccccrsernsriranne COFTOCCCICCaTE e CEOCOCNCrNEETT cocoPonODEETs 14
Explanation of Cell Constant’s Relationship to Conductivity Measurementscocooeevevereeesrereenn. 14
CONAUEEIVIEY CITCUITY 11.vuiuicreriieiiecece e eresee et s sttt b sem et s asas s st sms e ms et ssassnaen et 14
A Four-Electrode DesiZi OPtion ..ottt s senap s s eseseseresrasesen 15

Accelerometers.............. crocncrno: (OCEDOCE P COTOEToe erPCoTTCoOEEaT cecnoompomonaDe CPOCTOOCEACDOoEET, AOOCOCCCON TRCrracE 16
Integrated Accelerometer and Signal ConditionIng........cc.ovovvivivivieerieiieeiie et ear e 16
ACCEIETOMETET CIICUIL.c.cvirivriiiiieieinirirereiaetstie s sttt st e et et s s s ca e sm et et se st e eseneasesssesatesasesmemsnermnas 17

Temperature Transducer.......coiieseenon. COOOt OO e COCOEDRCTOOED CPOTOCCOACrOOET D 18
Active Device for Temperature MeaSUIrEmMENt..........cc.evveiviiieceeeeeeeseet oo resssssesse s e eereres e e e srarane 18
Thermal TTANSPOIToviiriereiireer ettt s bbb eresat et e ettt esan s b ese st e sere et eeneresatane 18
TEMPETATUIE CINCUIL....c.ivivicicciciiirte ettt ettt et ee e eres e se s st eeeesenesene e et eseseseamesnseensnasasseneeseas 18

Electronic DesigIc.cocvenrisereecssrnssssaeseeessssssaeseasssnsnessssssneses T P TP e)

Hardware.......cuieininninssssncsnissssnsonss oeEaEETG SOUCCoIOCTRTTG e e — - resens 19
MECTOCOMITOMET ...ttt ettt ettt e e s ene e seenae 19
FIASH IMIEIMIOTY ...ttt et ettt ettt ene e ee e e s et sneseeeeenanasasesesessesssssssesesssasasesssresess 1O
RE-232 INEEITACE ...ttt sttt et ettt n e en et s s st saeesme s s nenenesnenaneneens 20
Linear Regulators and VORage MONILOLS........ ..o eoieieinirisceesessarsmiasessssessesereserssessessssenesesssssesesesssnsnsnsnes 21
Circuit Board Detailsoocoiiiiiiiiieiicinteie ettt st b sttt ee et 22
CommuniCation CabIEccc.ciiiiiiiiiiiicensct et sa ettt sa e snsaetenae 23

Microcontroller Firmware............ errooreacrres e — " e — s,
Main Code Module, BAlLasimccueuiuieiiiieeuiieros ettt oo st s s e ses e esaseseseseeeeeesssssemnaseseseseseeseeens 23
Delay Timing Loop 0f Ballasm ..ot cecesresss s s sesessasis s rseseeseseraes 25
Data Collection Section of Ball.asml............cccoeviirerirniiieinsiesceece st eeenass et nessenas 25
Command Processing Section of Ballasmco.cooviiiiiiiiisieecsees ettt 26
Serial Interface Module, Ser Hand @S5Icceuieveveueeverieieieeeeeeeeeeer oo ee oo e s s e et es e ees s s e eeeensessseseseaes 26
Text String and Character Transmit and Serial Interface Configuration ROUHNESco.cvvevereierrereinns 27
PC Interface Command Processing Module, Cmd Hand.asmccovevevererororsrisieeseee e see s 27
Flash Memory Control Module, FIASH.ASINc.ooviiiiieiecre et e se e e e ee e e 28
Data Upload Module, Rd HANA.ASM.........o.ociioiiiiiiieicictceeteee ettt en st es e ne e an v e v e e 29
Sensor Ball Status Reporting Module, St Hand.asm................cocoerieriieicremieeiieoosessiessscee s sssenns 30
AUKIHATY FIIES ..ottt ettt ettt e et e enateen e e s eseresaenes 30

Mechanical DESIZNicuseuiriiimsesisisiussnmsaessisssssnsensassssnssssarssssssssssssssssssssensrorsssssssssessssesensassssssasse 30
Shock @nd VIDTALION ..ottt sttt r et e et en e nesenes 30
Water and Chemical RESISTANCEcw.ccimiiimrrrmineeeieeeeee ettt e st st en st ses oo esetsasiren 31
Sensor Ball Density and Center 0f GIAVILY..........co.ccceuriiuieiiiieieiceseeiseseceeas et esesass s seseseseseseseenseees 32

DeSigN REVISIONS....couuuiruerreesrirnnririsenseriinesesissssesssessssssssssssssnsssssssssssnssssssssassnsassesasssssssssosasassosnsnssnen 33
Substantial Changes in Sensor Ball VEISIOn 2...........covvuiuiviiirieseseeeeeeeeree oo ieses et evesesesesesenereres e eresnarens 33
Primarily Firmware Changes for VEISION 3......c.o.oiiviriiiceeecveiseese et n ettt er s s s e e aene 33
Minor Circuit and Firmware Changes to Produce VErsion 4..............c...ormevemeiosierereerossesesemsesssensssesesens 34

Suggested Changes for a Future Design Revisioncc.eueue. T — eee 34

ACCEPIANCE TESTINE oovvvererreereiirernirisesisenitisisissesssisssssnssssstssssssesssssessssssssssasasssnsassssenssssssssassans 36

Testing During ASSEMDIY c....ccvviieriiieniiisiieniienssmisisiisisissisnisssssssssssssssssssassssassnssssssssass 36
Functionality and Calibration Testsccouuvereiisinsisiinsinssssiossissssissssssessisansnssessessassasessssassasnsens 36
P&G Laboratory and Field Tests.......cuiiiiiniinicnnnisnscsniissssnssrsissssrmsssssrsssssssssssssssssesssssessssssesssss 37
Appendix A: P&G Background and Initial Proposal.............cinecnninnineccninnessnnsnesssesssees 39
Appendix B: Requirements DOCUMENLcocevrievrisrnririssssssssascsisnssassasssssssassaesssssssassssssessessesses 41
Appendix C: PC Interface Software Guide.......ccinvcciiinccnsnscnsiscnnsiscensnninnssnnsssisisesiee 47
Appendix D: Sensor Ball Test Procedureiiiceniininininiinieiimeieesiossessessessssnesse 49
Appendix E: SChematics......cvcceiiiisnrinsseninsseniisniisnniinisiieiiiessisescessesessssssssssssssssssssssssssassns 52
Appendix F: Assembly Drawings and Electronics Materials LiSts.......cceseercrneracsrresncsseernesnes 58
Controller Board Bill of Materialscccceeismrsssiseessserissssssssnsssssssssssesssssessssssssssesssssssessosssaessesssnes 65
Signal Conditioner Board Bill of Materials...........cocvceiiicnnissennesnsassssssssssassssssssssssssssassessssssassssssnss 67
Microcontroller Programming StEPS.......ccouvsvisueissossnsssssesssrssossssssisssssasssssassssssssssssnssaassssassnsensssaasasns 68
Appendix G: Circuit Board Connector Pin Definitions........c.cccoceerrrreesensersvesssssvesessnesacesessens 69
Appendix I: Mechanical Components...........cecieiisnnsniscssnssscssnissscsssssssssssnssssssssssssasssssssssssssas 70
Appendix J: Mechanical Assembly Procedure.....ccniennenciimems 72
Appendix K: Microcontroller Code LiStingcccoovevcninsciiinscnnsnnsnnsncssssascssesnessesssensessessssnssss 73
Appendix L: PC Interface (SensorBall) Code Listing........ccccoceeciiinncvrscnsunenssrensassnesassnssasens 145
DIStEIDULION.c.cciiiirciie ittt sssssssssssstsssssssssssnsssssnssnssnssssnssssenesssssensanssannes 173
Figures
Figure 1. Wire-Frame and Solid Views of the Sensor Ball........cccvcevcennnsnniecsnsssnsssrnssssssesnessssssesssssnsssseses 10
Figure 2. Construction of the Honeywell pH Probe Tip (figure has errors and needs text)c.creeereene 11
Figure 3. pH DUraFET Drive CirCUit. .. cicoiiciicmcnnisnmmmonossmommsiseimssssssssssssssssessssssssssssssssssessssses 12
Figure 4. pH Monitoring CiFCUIt ...ouiiveciiniivessiiinisinncsnisssesssisssssnessissssssssnssasssssssssssssssnssssssssssssassasssssssssssns 13
Figure 5. Conductivity Measurement CirClit.......ccocveirisisancrnssessrissnssssstessisessasssss 15
Figure 6. Axis Definitions in the Sensor Ball.........iiiiiiniiiiiiniinsnsssnissnssssssssssssssssssssssss 17
| AT T ANERE RO ER (RS A foomeormmemommemm oo oo oo e OO P O O O SO OO OO T 17
Figure 8. Connections to the RS-232 Driver CirCUit.....c.cccciisesiesssseesissessssssssssssssssssssasssssssssssssssassasssssssssss 21
Figure 9. Battery Terminal Inputs and Battery Voltage MONItorcccocuviiinisiiisssisssnsacsssesssnssssssssssossane 22
Figure 10. Voltage Regulator Circuits with Voltage MONItOTSccorvcvesrsssssesnssesnsrssasssssssssssssssssassesassnese 22
Figure 11. Flowchart for the Sensor Ball Firmware, Main Module.........ccococueiisiennscsnnissnessssnssssssnsassnnas 24
Figure 12. Sensor Ball View Showing the Sensor-Protecting CAgecccvveerircssssnsensenssssesessassesassassnsaees 31
Figure 13. P&G Staff Evaluating Sensor Ball Characteristicsc.ccieisnnincsssinssisisisssissssssssssessenses 38
Figure 14. Component Detail, Sensor Ball EXploded VIeW ..o 70
Figure 15. Exploded View of Disassembled Unlit.......ccciieinissnisiorisossisssrisenssessssssesssnssssssssnssssssssessssssssss 72
Figure 16. Assembled Uitcuiciieniicnninieniisinsiisessniicsnseesisssssisassrsssssisssssssnsassassstsnsssssssssssossssssasssssassessess 72
Tables
Table 1. DAata LiStcccouiuiieeniseenicensscssssoesissssssessssissssissssssssssssssssssssssonssssesssssssssessssssssasssasssssssssssossassessesssassasses
Table 2. Sensor Ball to PC Connection Cable Pin Definitionsccoceevereernsnernssessessssnsnssssassssssssssssssssnsens 23
Table 3. Directly Wired CONNECHIONSucovviseriinsistisesisssissssisss 69
Table 4, TeSt POINES c..ciicuiiiiiiniiiiniiccciistiisnsssessnssssssesassssnssssssasessesssssssassssesasossassssssasessesasessassssassesssassnsesasossens 69
Table 5. Sensor Ball Mechanical Bill of MAterialsccucccvnieceniennsrecsrssenssenssssensonsasessssssnsasssasssssssssssssss 71

Development of an /In-Situ
Monitoring / Recording Device for
Aqueous Processes

Introduction

The In-Situ Monitoring/Recording Device for Aqueous Processes will provide The Procter & Gamble Company
(P&G) with non-intrusive instrumentation that will accelerate in-house product development. The device,
developed and fabricated under CRADA SC00/015835, records chemical and physical parameters during normal
washing machine conditions. The data will assist P&G in evaluating consumer practices and the impact of those
practices on product performance.

In order to stay competitive in today's market, P&G must develop better test methods to shorten the development
time of new technologies. One way to accomplish this is to develop “smart™ sensors that communicate what is
occurring in consumers’ homes. For example, by monitoring parameters such as wash temperature, pH,
conductivity, turbidity, water hardness, available chlorine, available oxygen, product consumption, and washing
machine agitation through a wash cycle, a more comprehensive understanding of consumer laundry practices and
the impact of these practices on product performance can be developed.

The technological basis for this project is the earth penetrator instrumentation developed by Sandia National
Laboratories (Sandia). This instrumentation has aspects similar to the requirements of this project, however, none of
those previous instrumentation designs monitored aqueous chemistry. The P&G application is essentially a
reformatting of the earth penetrator instrumentation concept with new features added to acquire additional
measurements and somewhat different approaches for memory management. This project provided proof of concept
for an autonomous monitoring device that can measure and record certain chemical and physical parameters. The
work may lead to additional cooperation to develop novel chemical sensors that could have application to national
security issues.

Sensor Ball Features

The instrumentation developed, the Sensor Ball, measures wash water pH, conductivity, temperature, and agitation
(3-axis acceleration). The watertight device is approximately a sphere three inches in diameter weighing about half
a pound — essentially the weight of water displaced by the ball. The shape and size are very similar to Procter &
Gamble’s Downey fabric softener dispenser ball. By monitoring the conductivity measurement once every minute,
the Sensor Ball automatically determines when it is immersed in water and should begin collecting data. Once a
data collection cycle starts, measurements are recorded about 2.6 times per second for 45 minutes. The data are
stored in non-volatile, flash memory with a 32M-byte capacity. Each data collection cycle uses 128k-bytes memory,
so the battery life is the limiting factor on how much data can be collected. Depending on battery life, the Sensor
Ball should be able to collect about 54 data cycles over a two-week period, considerably beyond the minimum 20
data cycles defined in the Sensor Ball requirements shown in Appendix B.

Following the data collection period in a test-consumer’s home, the Sensor Ball is returned to P&G. Simple
disassembly allows access to an interface connector to upload data and to replace the battery. After removing a
single security screw, the top half of the Lexan case can be unscrewed. Either a fresh battery must be installed or a
separate supply must be connected to power the Sensor Ball for data uploading. Data are transferred serially using a
cable between the Sensor Ball and a personal computer. To facilitate data extraction, a user interface program was
developed that can upload the data, check current status of Sensor Ball parameters, and erase the memory in
preparation for another data collection period. Following reassembly, the Sensor Ball is ready to return to the field
to repeat another data collection period.

The design was intended for use in top-loading washing machines. The mechanical environment in front-load
washing machines includes high shock impulses when a solid object strikes the lifting bars in the machine, and high

acceleration forces during the spin cycle. These environments exceed the design goals for this version of Sensor
Ball. In addition, the conductivity and pH sensors require continuous immersion in water for valid measurements.
A Sensor Ball design compatible with a front-load washing machine must abate the repetitious, high impact shock
and provide some mechanism for stable water chemistry measurements given intermittent immersion.

Measurement Data List

The Sensor Ball data list with channel numbers and names, resolution, sample rate, and nominal calibration factors
is shown in Table 1 below. In addition to acceleration, pH, conductivity, and temperature, the Sensor Ball data
includes measurements and other information to help validate and interpret data. For example, voltage monitors
indicate if the 3V and 6V reference voltages are stable, which may indicate the quality of the measurements. The
battery voltage can be used to monitor battery performance and indicate potential circuit failures as revealed by
increased power consumption. Record number and Frame number help separate data sets. The Time Most-
Significant Word (MSW) and Least-Significant Word (LSW) are included to provide a rough time measure. This
will assist data interpretation by noting when a data set was collected. Time measurement inaccuracy occurs
because the watchdog timer delay is not exactly 2.4 seconds, and because the microcontroller oscillator frequency is
not exactly 3.686 MHz. In addition, the time measurement is reset whenever a microcontroller reset occurs.
Finally, the Flash memory address was included to help diagnose Flash memory and related problems.

Table 1. Data List

Data Rate | Calibration Factor

Chan Title Bits (sps) Slope Offset
1 X Axis Acceleration 12 2.655 0.03212 G/Cnt 2048
2 Y Axis Acceleration 12 2.655 0.03212 G/Cnt 2048
3 Z Axis Acceleration 12 2.655 0.03212 G/Cnt 2048
4 pH 12 2.655 -0.00205 pH/Cnt 5350
5 Conductivity 12 2.655 3.495 uS/Cnt 1010
6 Temperature 12 2.655 0.09318 °C/Cnt 2932
7 6V Voltage Monitor 12 2.655 0.00354 V/Cnt 0.0
8 3V Voltage Monitor 12 2.655 0.00354 V/Cnt 0.0
9 Battery Monitor 12 2.655 0.00354 V/Cnt 0.0

10 msb Record Number 8 0.095 1 0

10 Isb Frame Number 8 0.095 1 0
11 Time MSW 16 0.095 72.83 seconds/Cnt 0
12 Time LSW 16 0.095 1.111 ms/Cnt 0
13 Memory Address 16 0.095 1 0

Note: the above table uses the equation Engineering Units = Slope * (Counts — Offset)

Battery Operating Time

The hardware and firmware for the Sensor Ball have been designed to maximize battery life. To minimize power
consumption, the Sensor Ball remains in a low power, “sleep” mode unless collecting data. In this state the Sensor
Ball draws less than one-half milliamp. Once a minute, the Sensor Ball powers all circuitry and checks whether the
conductivity measurement is above a set threshold, about 6% of full-scale range. If this threshold is exceeded, then
the Sensor Ball remains fully powered and begins a 45-minute data collection cycle, filling 128k-bytes memory.
During full-power operation, the Sensor Ball draws about 25mA. Following the data collection cycle, the
conductivity measurement is checked again, and if less than the threshold the Sensor Ball returns to the low-power
state.

To achieve more than the minimum 20 data cycles over a two-week period, care must be taken when selecting a
battery. The capacity of a standard, 9-V alkaline battery is about 600 mA-Hr. This is barely adequate to meet the
desired duration of data collection. The appropriate battery, the Energizer Model L522 for example, has about a
1200-mA-Hr capacity and uses a lithium / manganese dioxide chemistry. Calculations below show that with this
capacity battery, the Sensor Ball should be capable of acquiring about 54 data collection cycles over a two-week
period. Similar calculations for an alkaline, 600-mA-Hr battery reveals that only about 23 records can be collected

using that type of battery. Actual battery performance is a function of the current draw among other factors, so these
calculations are estimates only.

Low Power Sensor Ball Operation:
0.5 mA * 14 days * 24 hours/day = 168 mA-Hr

Full Power Sensor Ball Operation:
25 mA * 45 min * 54 cycles / 60 min/hr = 1013 mA-Hr

Total Battery Capacity Needed:
168 mA-Hr + 1013 mA-Hr = 1181 mA-Hr

Because the Sensor Ball uses non-volatile memory to hold the collected data, battery failure or battery voltage
dropping below the minimum 6.5 V electronics operating voltage does not result in lost data.

Project Formation

P&G determined that a miniaturized data-logging device meeting their needs was not commercially available, so
Sandia’s assistance was sought to develop this device. The background on P&G initial involvement and their design
concept are detailed in a P&G document included in Appendix A. Although P&G wanted a device that would
measure more than temperature, pH, conductivity, and acceleration, the features of the device proposed for
development were reduced to this set to demonstrate proof of concept for the approach. Further, sensors for some of
P&G’s measurements of interest were not available at all, or at least not in the size needed for the proposed
instrumentation to be practical.

CRADA Timeline

Discussions regarding the creation of the recording device began May 1999, when P&G requested project timing
and funding proposal from Sandia. This was followed by a P&G visit to Sandia on 25 June 1999 to discuss proposal
options. As a result of those discussions, a CRADA was executed 11 January 2000 with P&G that provided $225k
funding from P&G. This was a “funds-in” CRADA, with no funding contribution by the Department of Energy.
The first joint P&G and Sandia project meeting, which began the detailed design requirements negotiation, occurred
February 8, 2000.

Because the project start was delayed somewhat waiting for funds transfer, P&G requested a CRADA amendment in
April 2000 that shortened the delivery time of the first prototype by two months but increased the cost by about
$30k. This was intended to compensate in part for the month-long delay from CRADA execution until receipt of the
initial funds at Sandia.

Sandia delivered the first Sensor Ball prototype to P&G in September 2000. After P&G tested this prototype,
Sandia implemented substantial revisions in the Sensor Ball’s mechanical, electronic, and firmware design, resulting
in the Version 2 design that was delivered to P&G in December 2000. Following additional test experience with the
Version 2 prototype, P&G requested further improvements to the Sensor Ball functionality that required minor
electronic and substantial firmware changes. This Version 3 design was delivered in June 2001. The final prototype
design, Version 4, required additional electronic modifications and minor firmware changes. Design Versions 2, 3,
and 4 used the same circuit board design, but with some signal re-routing and component changes as a result of the
circuit changes. The board was not redesigned to minimize costs. Five copies of prototype Version 4 were
delivered to P&G in January 2002. To accommodate building these additional prototype units, P&G requested a
second CRADA amendment that increased funding by $50k. Two time-only CRADA extensions were also
executed to provide P&G additional evaluation time before finalizing requirements for the Version 4 design.

Requirements Summary

The final design requirements are detailed in a document prepared for P&G by Sandia, which is included in
Appendix B. In addition to defining the basic parameters to be measured, requirements negotiations covered issues
like the impact resistance of the completed Sensor Ball, the basic shape and chemical properties of the case,
measurement ranges, and operating requirements. The requirements document also discussed human interface
details such as how the Sensor Ball would indicate various operating modes. Deliverables were specified to be a

prototype Sensor Ball, interface cable, user interface software, and documentation. P&G intended to seek a
manufacturing entity to produce the Sensor Ball in quantity after the concept was adequately proven. At P&G’s
request, Sandia produced five additional prototype units to facilitate concept evaluation.

The final form of the Sensor Ball is shown in Figure 1. The design is ballasted to maintain orientation with the
chemical sensors on the bottom, where they will remain immersed. The cage protects the pH and conductivity
transducers from damage by clothing in the washing machine, but was primarily intended to protect these
transducers in the event the Sensor Ball is accidentally dropped. After a tamper-prevention fastener is removed, the
top half of the Sensor Ball can be unscrewed to access the battery, serial interface connector, and “Attention” button.
Only P&G personnel are intended to access these, not the consumer product tester.

Figure 1. Wire-Frame and Solid Views of the Sensor Ball

Measurement Transducers and Circuitry

To measure the four parameters specified in the requirements, the Sensor Ball included four types of transducers.
First, a Honeywell DuraFET pH sensor combined with a Microelectrodes Inc. pH reference was used to measure
pH. Microelectrodes, Inc. also provided the conductivity probe, which consists of an array of four, platinum pins.
The three-axis acceleration measurement relied on the recently developed, integrated accelerometers produced by
Analog Devices. Finally, a semiconductor temperature transducer manufactured by Analog Devices was selected to
simplify circuit design and data interpretation. The sensors represent a significant fraction of the Sensor Ball cost,
totaling about $600 per Sensor Ball in small quantities. Each of the transducers is described in detail below.

pH Sensor

The wash water pH significantly affects product performance. The measurement range in the Sensor Ball is pH 5 to
11. The pH sensor was selected by P&G based upon their laboratory experience. The Honeywell DuraFET pH
sensor is a robust process-monitoring probe that uses a field-effect transistor (FET) as the monitoring element for
hydrogen ion concentration. The probe was available from Honeywell only as a complete assembly in the process-
monitoring configuration. This seven-inch long cylinder required modification at Sandia to fit within the tennis-ball
sized Sensor Ball.

pH Probe Details

Details of the probe construction is proprietary information that Honeywell was not inclined to share. From our
observations and Honeywell (formerly Leeds and Northrup) conference papers’, the pH probe consists of a quarter-
inch diameter FET silicon window embedded in a Ryton cylinder. The cylinder side opposite to the FET contains a

'], G. Connery, R.D. Baxter, and C. W. Gulczynski, “Development and Performance Characteristics of a New pH
Electrode™, 1992 Pittsburgh Conference, 10 March 1992

10

conductive Ryton plug. The Ryton is conductive to provide the counter-electrode connection to the liquid being
monitored. Figure 2 shows a diagram of the pH sensor construction.

The DuraFET is part of a class of ion-selective field-effect transistor, or ISFET, devices. The substrate is a p-
channel, enhancement-mode FET, with the gate insulator exposed to the solution to be monitored. The
recommended operating mode is to maintain a constant drain-source current through the DuraFET by driving the
potential of the solution with respect to the DuraFET with a counter-electrode. For the Honeywell device, the
counter electrode is a region of conductive plastic on the probe body (the Ryton cylinder). With the voltage sensed
at the source of the DuraFET as the negative feedback, an amplifier circuit modifies the solution’s potential to keep
the DuraFET drain current constant. Then, the overall potential of the solution is sensed using a silver / silver
chloride reference electrode. The Honeywell conference paper indicated that the potential on the DuraFET gate

decreases about 60 mV for every one-unit increase in pH.
/ Ryton probe tip

Conductive

elastomer
\ z& DuraFET

Conductive

Ryton plug Sy, .

Figure 2. Construction of the Honeywell pH Probe Tip (figure has errors and needs text)

l"—— Circuit board

A Honeywell Model 51204976-002 pH probe was used”, which is configured without an integral reference electrode
but has the same outer diameter as that type. Modifications to the Honeywell probe included sawing the probe apart,
leaving about a one-inch section of Ryton tube holding the DuraFET. In the first attempts to modify the probe, the
original thin circuit board that made electrical contact to the DuraFET was replaced with a Sandia-designed version,
A conductive elastomer, present in the original and retained in the modified unit, makes the final connection
between the circuit board and the DuraFET. A small gasket seals the DuraFET to the Ryton body. During the step
replacing the original board with the Sandia version, the gasket seal was broken, and the probe leaked. The
pracedure was modified to leave the original Honeywell board in place, and then making the electrical connection to
the Sensor Ball by soldering fine wires to the circuit traces on that board. Modifying the probe is a very time-
consuming step. When considering higher-volume production versions of the Sensor Ball, some agreement with
Honeywell should be attempted to procure the probe tip or some variation configured specifically for the Sensor
Ball.

Ag-AgCl Reference Electrode

Although the probe-only configuration was used for the Sensor Ball, the pH sensor from Honeywell can be supplied
with an integral reference electrode configured as an annulus around the probe body. The annulus is a passage into
the probe body, which contains a potassium-chloride gel saturated with silver chloride into which a silver wire is
immersed. The reference electrode is an attractive feature of the Honeywell probe, but unfortunately it could not be
used when the probe was modified to fit the Sensor Ball. Instead, the reference electrode function was filled by a
slightly modified version of the model MI-402 Dip-type Reference microelectrode from Microelectrodes
Incorporated®. This electrode, a 2-mm outside-diameter flexible tube closed on the immersed side with a glass frit,

? http://content.honeywell.com/sensing/control/pdf/sales_lit/70-82-58-66.pdf, page 3, column 1.
* http://www.microelectrodes.com/Products/MI_402 htm The pH reference electrode cost about $124 each when

first ordered June 2000.

11

http://content.honevwell.com/sensine/controUudWsales

is filled with a 3 molar KCI gel solution saturated with AgCl. The silver contact wire that is immersed in the KCI
gel is soldered directly to the main Sensor Ball circuit board.

One problem with the reference electrode is that it provides a passage to the inside of the Sensor Ball. When a
pressure differential of more than a few pounds / square inch occurs between the interior and exterior of the Sensor
Ball, the reference electrode solution is likely to leak by moving towards the lower pressure. This should not be a
problem at the bottom of a two-foot column of water (as in a washing machine) because the pressure at that depth is
less than 1 psi. Similarly, atmospheric pressure variations due to weather should be less than 3%, or about 0.5-psi
variation. However, we found that a problem does occur when the Sensor Ball is assembled at one altitude, and then
shipped to a significantly different altitude. The elevation at Sandia in Albuquerque is higher than 5000 feet, while
P&G’s Cincinnati location is about 500 feet, a differential of about 2 psi. When shipped via air, a pressurized
shipping compartment may drop to about 11-psi absolute pressure, whereas an un-pressurized compartment would
be about 3 psi absolute. This pressure-induced leakage problem was resolved by shipping the Sensor Ball partially
disassembled so that no pressure differential occurs across the reference electrode.

pH Sensor Electronics Interface

Figure 3 and Figure 4 show the DuraFET drive circuit and the pH-sensing circuit, respectively, used in the Sensor
Ball. Rather than use a switch-mode power converter to produce a negative supply voltage, the reference voltage for
the pH circuit is shifted from ground (zero volts) to 3 V. The DuraFET source is connected to terminal X2, and the
drain at X4, where the signal connects to ground through resistor R24. The DuraFET substrate is tied to the 3-V
reference voltage at terminal X5. The non-inverting input of the OPA4343 operational amplifier, component
number U1D, is connected to the 3-V reference voltage. The inverting input monitors the voltage at the DuraFET
source, with current to the source provided through resistor R16 from the 6-V supply. Approximately 0.3 mA
current flows through the DuraFET device. The output of operational amplifier U1D drives the counter electrode,
with the voltage increasing as the current through the DuraFET decreases.

BV

R19
15K

R16
11.8K R20
100K

X2
[:£}4§QURCE

TH

X3
[1] COUNTER ELECTR
T

X4

[1 DRAIN

TH R24
5.36K

X5 v
- SUBSTRATE

iG]

Figure 3. pH DuraFET Drive Circuit

12

R&7 TH

200
. <pH

OPA4342

TH c3
c2 0.47ufe
0. 1ufd

a1ufd

R8 c7
1Meg 01ufd

L—AAN—— Rz
365K

Figure 4. pH Monitoring Circuit

The solution potential, which is proportional to pH, is measured by the microcontroller after signal conditioning by
operational amplifiers U1A, B, and C. The first stage using U1A is a unity-gain buffer to accommodate the high-
impedance input signal from the reference electrode. The second stage using operational amplifier U1B corrects for
the circuit reference voltage shifted to 3 V from ground, allows offset adjustment via R13, and signal amplification
adjustment using R4. The nominal gain is about 15 (negative), which is then divided approximately in half by the
subsequent resistor-divider network formed by R11 and R71. The subsequent operational amplifier U1C acts as a
unity-gain buffer that supplies the signal to the analog-to-digital converter (ADC) included in the microcontroller.
The intended range is pH 5 to pH 11.

pH Sensor Electronics Design Issues

Late in the evaluation of the Sensor Ball, we discovered that the pH voltage supplied to the microcontroller ADC
exceeded 3 V, especially when the pH probe was not immersed. This caused problems as described later in the
“Electronics Design” section, under “RS-232 Interface”. To ensure that the voltage supplied to the microcontroller
does not exceed 3 V, all of the needed gain was implemented in the first amplification stage using operational
amplifier U1B. Its output cannot exceed the 6-V supply voltage. Then, dividing that intermediate signal by slightly
more than two using a resistor-divider ensures a maximum final output voltage less than 3 V.

A problem with the delay between valid pH measurements and pH circuitry power-up was only partially resolved.
Whenever analog power is removed from the Sensor Ball circuitry, a transient error occurs in subsequent pH
measurements. The time before the error is negligible seems to increase with longer power-off time. After a one-
minute low-power period, the transient usually lasts two to three minutes, while after an hour with power off, the
delay may be five minutes. The problem was corrected partially in the Version 4 Sensor Ball firmware by
eliminating the inter-record, one-minute delays, thus removing the discontinuity during a period of interest. The
problem will still exist whenever the Sensor Ball goes from a low-power, shutdown state to a data collection mode.
However, this delay is considered tolerable because the reference electrode is not completely functional for a few
minutes after it has been left in air long enough for the tip to dry.

Based on observations during P&G tests, the delay until valid pH measurements was not seen with the Version 2
Sensor Ball. Three changes were made subsequent to the Version 2 Sensor Ball design. First, the microcontroller
code was extensively revised. Changes in the way the microcontroller acquires data or does some other related
function could have been a cause. Second, the specific pH probe and reference electrode were replaced. There
could be some variation in the performance of individual units. And third, the process for modifying the pH probe
for use in the Sensor Ball changed. We determined that the microcontroller was not a possible cause by creating a
test setup that isolated the pH probe, reference electrode, and associated signal conditioning circuitry with the
microcontroller excluded. Using a voltmeter to monitor the conditioning circuit output, we observed the delay
whenever power was restored to the circuit. The discontinuity did not occur when the Sensor Ball remained
powered, but was moved among various pH buffer solutions, demonstrating that the circuit response time was
adequate. Therefore we concluded that the issue could be pH probe variation, or perhaps differences between the
original Honeywell connection board and the Sandia version.

13

Conductivity Probe

The conductivity measurement provides an indication of ionic content, which in turn can indicate the water
hardness. The calcium and magnesium ions that cause hard water combine with the product and deactivate it.
Generally, if the concentration of ions is doubled, the conductivity is doubled, or in the case of magnesium and
calcium ions, quadrupled because each has an ionic charge of two. The conductivity of a material is an inherent
property - that is; pure water at a particular temperature will always have the same conductivity. The SI unit of
conductance is the Siemen (S) or Q . This unit has also been known as Ohm spelled backwards, or mho.
Conductivity is measured in units of Siemens / m. The Sensor Ball conductivity measurement appears to be linear
in the zero to 3000-pS/cm range, which is the expected conductivity range in a consumer's wash. The maximum
conductivity that the circuit can report is about 10000-uS/cm.

A secondary use of the conductivity measurement is to initiate a data collection cycle. The design originally used a
tilt-switch to detect placement in the washing machine, and automatically initiate data collection. The switch was
deleted because it contained mercury, a potentially hazardous material when included in a consumer appliance.
Although non-mercury tilt switches are available, the units are much larger. In any case, using the conductivity
measurement is an elegant approach to sense Sensor Ball placement in the washing machine. The design was
revised so that the Sensor Ball periodically “wakes up” and checks the conductivity reading. The measurement is
essentially zero when the probe is in air. If the value indicates immersion in water, a data collection cycle begins.
The cost of this approach is slightly higher power drain, resulting in about a 10% reduction in the potential recording
time of the Sensor Ball.

The Sensor Ball conductivity probe uses a two-electrode arrangement. The electrodes are 1 mm diameter, platinum
rods coated with colloidal platinum, or platinum black, and obtained from Microelectrodes, Inc*. The coating is
intended to absorb gas products resulting from water electrolysis. Current is sensed from a fixed-amplitude, square-
wave voltage that is applied across the probe pair. The probe voltage is coupled using a capacitor to avoid electrode
polarization and electrolytic build-up on the electrodes that in turn would affect measurement accuracy. An equally
important consideration is to avoid affecting the solution potential as detected for the pH measurement. The
capacitors block direct current, and thus do not cause a bias shift in solution potential. To create an alternating
current, the conductivity probe voltage is pulsed at 7.2 kHz.

Explanation of Cell Constant’s Relationship to Conductivity Measurements

The cell constant, K, for a conductivity measurement device is related to the area of an electrode and the distance
between electrodes in the cell. K is defined for two flat, paralle]l measuring electrodes as the electrode separation
distance divided by the electrode area. We need to be concerned about the cell constant when using a 2-electrode
conductivity cell, as the response becomes non-linear outside of the electrode working range. For wash solutions, a
cell constant of 1 cm™ is sufficient. This cell constant provides a working range of zero to 2000 pS/cm. When the
expected solution conductivity is large, for example 8,000 uS/cm, a larger cell constant such as 10 cm™ is necessary.
A four-electrode conductivity cell with a single cell constant can cover large concentration ranges from 0.1 to
10,000 pS/cm that would normally take three ordinary 2-electrode cells with three different cell constants. In a four-
electrode cell, two electrodes drive current and two electrodes sense voltage. An alternating voltage is applied
across the drive electrodes, resulting in an alternating current flow that is measured at the sensing electrodes. The
voltage measured at the sensing electrode controls the amplitude of an alternating voltage applied across the drive
electrodes; hence, the cell constant is continually being adjusted depending on the solution being analyzed and the
cell field strength is maintained constant. The current flow at the drive electrodes is directly proportional to
conductivity.

Conductivity Circuitry

The circuitry takes a root-mean-square measurement of the alternating current flowing through the wash water at the
conductivity electrodes. The current is proportional to the solution conductance. Figure 5 shows the conductivity
circuit described below.

* http://www.microelectrodes.com A four-electrode set of conductivity probes cost about $225 from
Microelectrodes Inc. when first ordered June 2000,

14

http://httu:llwww.microelectrodes.com

To generate the alternating voltage applied to the conductivity electrodes, the Sensor Ball divides the approximately
1-MHz “Instruction Clock” produced by the microcontroller by 128 using CMOS counter U10, resulting in a
7.2-kHz square-wave signal. (The instruction clock is actually closer to 920 kHz.) Resistors R48 and R50 attenuate
the 3V-clock signal, and operational amplifier U6D buffers the resulting 1-V square wave for application to the
conductivity electrode via 10uF capacitor C44. This electrode is connected at X11. Matching 10pF capacitor C51
connects the second electrode at X10 to current sensing resistor R52, which is in turn connected to signal return.
The alternating voltage across the resistor is proportional to the current, and also proportional to the conductivity.
The conductivity probes connected to X12 and X13 are not used. They were originally included to accommodate a
4-probe conductivity measurement.

0. 1ufd
R48 o usb C44 c51 c37
20K OPA4343 10ufd 10ufd 10ufd .
D’““ (2 2\ -
1 2 _2 1 ki
1 Ay T _V\Il +Vs 15 R51
H % L3 NG g X 20K
R52 -Vs NC X
¥12 1K Cav NC j—X
) H—p— dB COMMON
BUF OUT RL [RS J‘c«
BUF IN loul
TH 8 NE NG (] 39.2K Q. 1ufd
MX636 |
u7D
R54 OPA4343
30.9K R&9
74AC4040 200
ki% 8 CONDUCT < CONDUCT

<]—— GND Q12

(3K
Blvec ano 2“,2’5

Q9

c38 Q8 7.2kHz

0. 1uld ar
g Q6
Qs

11

. FET S RE0
™ b
I 2 104, ar 2 248K

Figure 5. Conductivity Measurement Circuit

To convert the alternating voltage into a steady value acceptable to the analog-to-digital converter, a specialized
component, Maxim part MX636 (component U12) calculates the root-mean-square voltage. The MX636 data sheet’
describes a configuration for single-supply operation. Using the recommended configuration, the equivalent supply
voltages become +2 V / -4 V, and the maximum input signal is +2 V. Because the voltage driving the conductivity
electrode is 0.5 V, this maximum input signal value cannot be exceeded. Therefore, the output of the MX636 is at
most 0.5V. The gain circuit including operational amplifier U7D amplifies that output by about 8, soa 4 V
maximum signal would be produced with zero resistance between the conductivity electrodes. Although this would
exceed the 3-V maximum, zero resistance is unlikely in normal Sensor Ball operation.

A Four-Electrode Design Option

With four electrodes, the sensing current for the conductivity measurement can be adjusted to compensate for
electrode fouling. Essentially, the current is adjusted across the outer iwo electrodes to maintain a constant potential
between the inner pair. The resulting current is proportional to the conductivity. Unfortunately, the circuitry to
implement the four-probe approach could not readily be implemented to meet the size and power constraints of the
Sensor Ball. Instead, the two-electrode arrangement described above was used that places a fixed voltage potential
across the pair and measures the current,

To implement the 4-probe conductivity design, the drive voltage amplitude would be continuously adjusted to
maintain a constant potential across the sensing electrode pair. This could be accomplished by amplifying the root-
mean-square value (or absolute value) of the sensing electrode pair potential, and chopping that signal through a
transistor before connecting it to the driven electrode. The 7.2kHz signal that directly drove the existing 2-electrode

* http://pdfserv.maxim-ic.com/arpdf/MX 536 A-MX636.pdf, page 8.

15

http:ilpdfserv.maxim-ic.codarpdfiMX536A-MX636.pdf

circuit, or a separate oscillator, would provide the transistor-switching signal. The resulting drive current indicates
the conductivity.

If power consumption and component count is an issue, an alternative two-electrode measurement could be
developed that applies a voltage pulse to the electrode pair and measures the current. Using a 10uF capacitor
produces a pulse time constant of many tens to hundreds of milliseconds, depending on the conductivity. This time
constant would produce less than one bit error in the 12-bit measurement as a result of signal droop in the 10us
required by the ADC to acquire the measurement. An advantage to using a pulse is reduced interference of the pH
measurement, fewer components, and lower power consumption. But a disadvantage is further difficulty converting
to a four-electrode measurement, should one be required in the future.

Accelerometers

The accelerometer measurement indicates the degree of agitation during the wash cycle. This may imply how
tightly packed the clothes are in the wash. The measurement was implemented using three, single-axis
accelerometers. The acceleration range on each axis is +/-50 g. Although the accelerometers could have measured
the spin cycle acceleration, which implies the residual moisture in the clothes, the spin-cycle acceleration in a typical
washing machine will exceed 100 g and is therefore beyond the range of the accelerometers used. However,
duration of the spin cycle is available from the measurement.

Tri-axial acceleration measurements were selected because the orientation of the Sensor Ball to the acceleration
vector is unpredictable, and an acceleration magnitude is desired. P&G laboratory measurements included a
significant amount of data on load size and relative rate of agitation based on single-axis vibration measurements.
But tri-axial acceleration measurements were expected to provide more insight than single-axis acceleration into
how the clothing tumbles, bends and moves during the wash. The additional circuit board space and higher power
consumption were considered when making this design trade-off. P&G’s standard single-axis laboratory vibration
measurements employed a piezoelectric crystal sensor that has no DC response. The transducer used in the Sensor
Ball, however, can measure constant acceleration.

Integrated Accelerometer and Signal Conditioning

The acceleration transducer used, an Analog Devices model ADXL150°, is a third-generation, 50 g surface-micro-
machined accelerometer. The ADXL150 is a single-axis accelerometer with signal conditioning included on a single
monolithic integrated circuit. The sensitive axis of the ADXL150 is in the same plane as the silicon chip. Thus,
producing a 3-axis measurement requires a second circuit board oriented orthogonally to the primary board. Inthe
Sensor Ball, the x-axis accelerometer is located on the main circuit board while the y- and z-axis accelerometers are
placed on the secondary board. In Figure 6 below, the circuit boards are shown in green.

® http://www.analog.com/productSelection/pdffADXL150 250 0.pdf,

16

+Z

Figure 6. Axis Definitions in the Sensor Ball

Typical signal-to-noise ratio for the ADLX150 is 80 dB, allowing resolution of signals as low as 0.01 g within a
+50 g full-scale range. However, the signal conditioning gain selected and the 12-bit resolution of the analog-to-
digital converter in the Sensor Ball limits resolution to about 0.03 g. The device scale factor is 38 mV/g when a 5-V
supply voltage is used. Because the scale factor and zero-g output are ratiometric with the supply voltage, the
Sensor Ball scale factor is 46 mV/g. The supply voltage in the Sensor Ball is 6 V. Zero g drift is 0.4 g over 0°C to
70°C, and power consumption is 1.8 mA.

Accelerometer Circuit

The accelerometer output signal can range from 0.25 V to 5.75 V, while the microcontroller’s internal analog-to-
digital converter is limited to a zero to 3 V input range. The ADLX1350 accelerometer produces a reference signal
output that is essentially half the supply voltage. As shown in Figure 7, operational amplifier component U6A takes
the difference between the accelerometer reference signal and the acceleration measurement signal, and then reduces
both the zero acceleration output and the measurement by 50% to ensure that the 3-V limit on the microcontroller is
not exceeded. The intent of the circuit is to center the ADC input at 1.5 V to get the maximum dynamic range.

&Y
& R25
499K
c43
0 1ufd
us R27 B
o—3H Ne vs |4 100K, -
0—2{ nc Ne [HE— -3
B3 ne NG 7O 100K
B—g NC NC g TH
o—3-{ N vouT g — ACCEL X
L= NC SELF-TEST [g—11 - —————{ ACCEL_X
Jir COMMON ZERD ADJ |
~7

c18
ADXL150 0 1ufd

Figure 7. Accelerometer Circuitry

‘ 17

Temperature Transducer

Temperature is an important factor in product performance. The Sensor Ball uses an Analog Devices model AD590
temperature transducer, a two-terminal integrated circuit that produces an output current proportional to absolute
temperature. The Sensor Ball’s temperature measurement maximum is 100°C.

Active Device for Temperature Measurement

The AD590” acts as an ideal high-impedance, constant-current source passing current proportional to temperature,
1 pA/K. The device is trimmed by the manufacturer to calibrate the device to produce 273.2 pA output at 273.2K,
which is 0°C. The AD590 uses a fundamental property of silicon to realize its temperature proportional
characteristic. This relationship is if two identical transistors are operated at a constant ratio of collector current
densities, r, then the difference in their base-emitter voltage will be:

V= Eln(r)

q
Since both &, Boltzman’s constant and g, the charge of an electron, are constant, the resulting voltage is directly
proportional to absolute temperature. The AD590 was chosen instead of a thermistor because of its inherent linear
response to temperature, but it is much more expensive. A thermistor may be desirable to reduce component costs
of a production design.

Thermal Transport

The location of the sensor was moved from the main circuit board, where it was initially placed for easy assembly in
Version 1, to a machined pocket inside the Lexan case. This provided faster response to temperature changes.
Limited modeling of the Sensor Ball temperature measurement response time guided the selection of the revised
temperature sensor location. The issue is how fast heat can move from one material to the next. The modeling
showed that placing the AD590 in a milled pocket of the Lexan case should work well, and would not be much
different than direct contact with the water. Lexan wall thickness around 0.05 to 0.10 inches was expected to be
acceptable. However, the contact between the temperature sensor and the Lexan must be tight. For comparison, a
0.001-inch air gap between the AD590 and the Lexan produces a heat flow resistance factor of 2.0, while the 0.050
inch thick Lexan has a resistance factor of 0.2. The resistance is directly proportional to the thickness, so would
double for double the thickness. For this reason, a thermal compound should be considered to improve the contact
of the AD590 to the Lexan. The Sensor Ball assembly included epoxy to provide good thermal contact between the
AD590 and the Lexan wall. The response time may still be inadequate; see the “Suggested Changes™ section.

Interestingly, a major factor for affecting the temperature measurement response time may be the conduction from
the water to the Lexan, Different flow rates of water past the ball can account for two orders of magnitude
difference in the heat flow resistance factor. A resistance factor of 17 was used for model calculations, and equates
to a low liquid flow such as would be likely with the sensor floating in sloshing water. But if laboratory
measurements monitor temperature in a rapidly flowing environment, such as the temperature sensor on a pump
line, the response time would be much faster when compared to the Sensor Ball.

Temperature Circuit

The temperature circuit consists of the AD590 device and a 7.87k(Q) resistor, R28, as shown in Appendix E:
Schematics. The 6-V supply voltage biases the AD590. Since the AD590 acts as an ideal current source, the
voltage across R28 is proportional to the current, and also the temperature. The resistor value was selected to
produce a 3-V output at about 100°C. Although at the expense of slightly more complex circuitry, higher
temperature measurement resolution could be achieved with an operational amplifier circuit that inserts a voltage

offset so that 0°C produces a zero volt output.

Electronic Design

The Sensor Ball electronic design can be divided into a few functional areas. The transducer interface and signal
conditioning functions were described above with each transducer used. These circuit elements, and the other

7 http://www.analog.com/productSelection/pdf/1186_b.pdf

18

http://www.analog.com/productSelection/pdf71186-b.pdf

electronic components can be lumped into the category, “Hardware”. The remaining Sensor Ball functionality is
achieved using the algorithms encoded in the microcontroller, which is the “Firmware” category. Details for each
are described in these sections below.,

Hardware

A microcontroller incorporates the intelligence needed to control recording data from these transducers, and the user
interface to extract the data. The algorithms for this functionality are described later in the “Firmware” section. The
recorded data are held in a non-volatile, Flash memory. An RS232 interface component facilitates uploading the
data to a computer. Linear regulators reduce the 9-V nominal battery voltage to levels acceptable to the circuitry,
and permit portions of the design to be powered only as needed to conserve power. The complete schematics for the
Sensor Ball are included in Appendix E: Schematics.

Microcontroller

The Sensor Ball operations are controlled by a Microchip PIC16C774° microcontroller, an 8-bit, reduced-
instruction-set device designed to consume very little power. The microcontroller has a built-in oscillator circuit
with the frequency set by an external resistor and capacitor. The Sensor Ball oscillator frequency, 3.686 MHz, was
selected to be an integral multiple of the 19.2k Baud and 115.2k Baud serial communication rates. The frequency is
set by R46 and C40. A universal, synchronous / asynchronous receiver / transmitter (USART) in the
microcontroller facilitates serial communication. The PIC16C774 also includes a 10-channel, 12-bit Analog-to-
Digital Converter (ADC). This is used to digitize all the measurements recorded by the Sensor Ball. To reduce
power consumption even further, the low-power “Sleep” mode is used while waiting to initiate a data collection
cycle. Inthis mode, a separate internal oscillator measures a 2.4 second (nominal) delay period, during which the
microprocessor is virtually powered down. Following this “Sleep” period, normal processing continues. This delay
timer function also is the basis for a Watch-Dog Timer, used to reset the microprocessor in the event the device
stops normal operations. The microcontroller code is written in assembly language using Microchip’s instruction
set, and developed using MPLAB Version 5.40. The code is divided into six main routines plus three support files
that reserve memory for program variables, define equivalence statements, and store message text. The code is
described in the Sensor Ball Code section.

The inputs to the microcontroller include six analog sensor data channels (ACCEL X, ACCEL Y, ACCEL Z, pH,
CONDUCT, TEMP); three analog voltage monitor channels (3V MON, 6V MON, 9V MON); a pushbutton
depressed signal (ATTENTION); and a serial receive input (RX). The outputs from the microcontroller include
LED control (LED); power control (POWER ON); memory interface (I/01-I/08, CLE, ALE, WP~, R/B~, RE~,
CE~, WE-~); and a serial transmit output (TX).

Flash Memory

Design requirements stated that sufficient memory capacity was needed to record 20 data measurement cycles, each
cycle 45 minutes in duration. Further, the memory should be non-volatile so that battery power is not necessary to
retain the information. The requirement translates into a 4 M byte minimum memory size. A Toshiba TC58256FT
Flash memory device was selected. The device is a 3.3V, 32 M byte Electrically Erasable and Programmable Read-
Only Memory (EEPROM) organized as 2048 blocks of 32 pages, each page containing 528 bytes (512 bytes plus
extra 16 bytes extended area). For the Sensor Ball application, only 512 out of the 528 bytes are used on each
memory page. The device has a 528-byte static register that acts as a buffer for programming functions. Data are
written to the buffer and then transferred to the non-volatile memory when commanded.

The Toshiba TC58256FT is a serial-type memory that uses eight I/O pins for command and address input as well as
data input / output. A typical command consists of a command byte followed by three address bytes. Once a read
or write command is executed, the device can continue to read or write 528 bytes without an additional command
step. In addition to read and write, the memory commands are Program, which transfers the 528-Byte static register
to the memory cell array; Erase followed by Erase Confirm, which erases a 16k-Byte memory block; and Status, to
determine whether a programming function has completed and report reading or writing malfunctions. The Program
operation can take a maximum of 1 millisecond, and the Erase operation a maximum of 20 milliseconds.

% http://www.microchip.com/1 000/pline/picmicro/families/16¢c77x/devices/16¢774/index.htm

19

http:llwww.microchip.com/1000lplinelpicmicrolfamiliesll6c77x/devices/l6c774lindex.hhn

According to a note on Toshiba’s data sheet, the TC58256FT memory is not guaranteed to have the entire 2048
blocks of 16k byte each available to write. Some blocks may contain malfunctioning memory cells and be
unavailable for use. For this reason, the Sensor Ball code was revised in Version 3 to detect bad memory blocks,
and compensate for them by skipping over them. The Sensor Ball uses 128k bytes to record 45 minutes of data, so
if a 16k block were lost it would represent over five minutes of data. The down side of this feature is somewhat
more complex code.

During the Flash memory erase function, the memory is tested superficially and an attempt made to mark bad
blocks. During data storage, the first bytes of each new block are examined, and the entire block is skipped if the
bytes are not in the erased state, a value of FF hexadecimal. The first bytes written to each 512-byte page during
recording is a 16-bit synchronization pattern. Then when data are uploaded, the memory is first checked to see if the
memory section is blank, or was marked as malfunctioning. If so, the data are skipped and the next memory section
is read. If no more data are available during data upload, the Sensor Ball begins uploading zeroes for the data. In
Version 2, the same situation would have resulted in apparently full-scale data since erased memory bytes contain a
value of FF hexadecimal. A more extensive Flash memory test is included in the Sensor Ball firmware, but is not
implemented in the SensorBall PC interface software. The extensive test takes about 30 minutes.

Adequate delay time must be provided between powering the Flash memory and first access, otherwise the memory
will appear to be malfunctioning. About a quarter-second delay is currently implemented in the Version 4 Sensor
Ball firmware.

Although the Sensor Ball data are recorded in 512-byte increments, this is expanded to 560 bytes during data upload
to a personal computer. The expansion occurs because the variables for frame number, record number, time, and
Flash memory address are stored only once for every 28 samples of the other analog channels, but must be expanded
to create a symmetrical data structure that meets the Inter-Range Instrumentation Group Standard 106. This
standard is followed in all instrumentation designs at Sandia, and allows previously developed software to be used
for support functions like data uploading and plotting. When the data are uploaded, seven groups of 80 bytes are
formed for each 560-byte “Block™ uploaded. Within the 80 bytes are 4 sets of measurements: 9 channels, two bytes
per channel, for 18 bytes per set and 72 bytes total. The remaining 8 bytes in the 80-byte group contain the frame
number, record number, time (four bytes), and Flash memory address (2 bytes).

RS-232 Interface

The serial interface designed into the Sensor Ball allows data to be rapidly and easily extracted following a data
collection cycle. A three-wire cable connects the Sensor Ball to a personal computer COM port. Special software
on the personal computer sends commands to the Sensor Ball and receives data returned from the Sensor Ball. Two
data rates are supported: a default speed of 19.2k Baud, plus a 115.2k Baud high-speed that can be selected to reduce
the time needed to upload data. Checksums are used to ensure data integrity. A problem with the link was
discovered and corrected as one of the final design changes.

The RS-232 communication standard specifies voltage levels for signaling a “1” or “0” bit. Because these voltages
are outside the range of the Sensor Ball supply voltages, a Maxim MX3221 device (component U11) is used to
translate signal levels from the zero to 3 V level of the microcontroller to RS-232 levels. Only conductors for
transmit, receive, and ground signals are connected. The MAX3221°s internal power supply consists of a regulated
dual charge pump that provides output voltages of +5.5V (doubling charge pump) and -5.5V (inverting charge
pump) even though the Sensor Ball provides only +3V to the device. The supply voltage range for the device is
+3.0V to +5.5V. Each charge pump requires a flying capacitor (C38, C39) and a reservoir capacitor (C33, C42) to
generate the V+ and V- supplies. The level translators that convert CMOS-logic levels to RS-232 levels guarantee a
120k bit per second data rate with worst-case loads of 3k ohms in parallel with 1000pF, providing compatibility with
PC-to-PC communication software. Figure 8 shows the connections used for the Sensor Ball. The three-pin Molex
connector, U3, provides a direct RS-232 communication connection to a PC.

20

a¥|_ 3V
! —— (33
u11 0.1ufd
MAX3221
C35 16 1
+ FORCEOFF~ EN~
ol L8 vee ci+ |2 1 —
13 | GND Y+ 0.1ufd
12| T10UT Cl- [3 C3g
XTJ FORCEON C2+ g "]— B
MicrocomrollerTX((10 T1IN c2- 7 :
g INVALID~ V- g
Microcontroller Rx << R1QUT R1IN caz
Q; 0 Aufd
R57
1K
XRX
A XTX 3
2
1 U3

3-pin Connector

Figure 8. Connections to the RS-232 Driver Circuit

Although the PIC16C774 processor can support a maximum serial data rate of 230.4k Baud, the Maxim part limits
the communication speed to the next lower standard speed of 115.2k Baud. This speed should be adequate for the
Sensor Ball, since at this rate 4M bytes of memory can be uploaded in about 6 minutes. Using the slower, but more
robust, 19.2k Baud rate would take 36 minutes to upload the same 4M Bytes. Each symbol exchanged consists of 8
data bits plus one start and one stop bit.

To ensure consistent communication performance with Baud rates matching standard speeds, the microcontroller's
RC oscillator must have less than 3% error from 3.6864 MHz. In the design problem that affected communication,
the microprocessor supply voltage shifted from 3V to nearly 5V. (The pH measurement output into the
microcontroller’s analog-to-digital converter exceeded the 3V supply voltage, effectively powering the
microcontroller at a higher voltage.) This voltage shift also changed the microprocessor’s oscillator frequency, and
thus also changed the communication clock frequency. RS-232 transmits least- to most-significant bits. If the
frequency shift is sufficient, the higher-order bits will not be sampled at the proper time and the symbol sent will be
significantly misinterpreted.

Minimizing power consumption in the Sensor Ball design is very important to maximize recording time. Although
the microprocessor receives power whenever a battery is installed, power to the RS-232 driver chip, the Flash
memory, and the analog circuitry is switched on and off under program control. But even though power is applied
to the RS-232 chip during the data recording process, the MAX3221 draws only 1pA supply current in this mode
because of a special feature. If the device does not sense a valid signal level on their receiver inputs, the power
supply and drivers on board the device shut down. This would be the situation when the Sensor Ball is collecting
data with the RS-232 cable disconnected, the normal mode of operation. The RS-232 chip turns on again when a
valid signal level is applied to the RS-232 receiver input.

Linear Regulators and Voltage Monitors

A commercial 9V battery supplies the raw power and is wired directly to the PCB at X14 and X15 as shown in
Figure 9. The battery voltage monitor circuit reduces the voltage to be within the maximum 3-V for the
microcontroller’s analog-to-digital converter. The diode, D1, is intended to prevent damage to the Sensor Ball in the
event the battery connection polarity is accidentally reversed.

] 2

———<{avx

D1 RS R38
%14 100k PS5 38.3K
P VX ’ 9VBUS BAT MON 1 SVBUS

———<{9v_MON

i MMBRI540 T
X15
1
TH N

Figure 9. Battery Terminal Inputs and Battery Voltage Monitor

The conditioned power to run the system is supplied by three, low-dropout linear regulators, U13, U2, and U3
shown in Figure 10. With the battery connected, U13 is continuously powered and supplies 3V to the
microcontroller on the VDD net. U2 and U4 remain powered down until the POWER_ON line is driven high by the
microcontroller. When low, the POWER_ON line inhibits U2 and U3 through those devices’ shutdown function.
VDD powers only the microcontroller, while the 3V and 6V regulated voltages supply all other devices. When the
microprocessor is in the low-power mode, less than 0.5 mA is required, as compared to about 25 mA when the

Sensor Ball is fully powered.

Lo2985 LEEl)
9VBUS, VD
3 out VoD pRo
-] r 5 TAP SENSE .
FEEDSACK ERR-~ [-—X gyaus - S -
——{GND SHTDWN~ JL) "

45 =~ Ui3)
ol 100k c50
o 10ufd

L ~ R4t uTC
. LP2988 TP7 OPA4343
avBUS ; N QuT 3V _PROBE
- — SENSE Rz S
R FEEDBACK ERR~ g~ power on T 100 T
LoD sHTDWN- - L o " cas
3 v & — 0 1ufd
ol 10uks 5]
ol 10ufd
11
1
R17 c12
200K 22pfd

TP8

€Y _PROBE .
R15

LP2986

IN out
TAP SENSE
FEEDBACK ERR~
GN

4
x|
ToND SHTDWN~
< | -
37322
511K

Figure 10. Voltage Regulator Circuits with Voltage Monitors

Operational amplifiers U7A, B, and C buffer the battery voltage, the regulated 6 V supply, and the regulated 3 V
supply, respectively. The monitor circuits are identical and produce identical scale factors, about 21% of the
monitored voltage. This voltage divider brings the monitored level within the range of the analog-to-digital

converter.

avBuUs

< Bv_MON

mﬁimuu

POWER_ON |+ ¢11 100k TH
10utd

- Cuo

10ufd
;

POWER_ON (-

ey

Circuit Board Details

The Sensor Ball circuitry is contained on two printed-circuit boards (PCBs), named the Controller Board and the
Signal Conditioning Board. The Controller Board, R62111, is constructed as a circular disk, is populated on both
sides with components, and contains six circuit planes. The top plane includes surface mount integrated circuits,
capacitors, resistors, a 3 pin Molex connector, and a push button switch. The switch, SW1, provides the user with
control over the mode of operation of the Sensor Ball. An LED is directly wired to the PCB at X8 and X9 but is
mounted at the bottom of the Sensor Ball. The LED provides an external indication of the status of the Sensor Ball.
The bottom plane is populated with surface-mount passive components. The internal planes are from top down:

22

signal trace, ground reference, 3-V supply (analog only), and 6-V supply. The 3-V Vdd supply connects only to the
microcontroller so is not allocated a routing plane.

The rectangular Signal Conditioning Board, R62110, is populated on both sides and contains four circuit planes.
The top plane includes the accelerometer integrated circuits. The ground reference plane is the next layer under the
top plane, followed by the 6-V supply plane, and then the bottom signal-routing plane. The bottom plane is
populated with operational amplifiers and passive components for signal conditioning.

The two circuit boards are wired together at through-hole terminations F1 through F4. Terminations F1 and F2
provide the power and ground, respectively, to the Signal Conditioning board, while F3 and F4 are the Y- and Z-axis
acceleration levels measured and conditioned on the Signal Conditioning board. Details showing the circuit plane
layout and component placement for each board is contained in Appendix F: Assembly Drawings and Electronics
Materials Lists.

Communication Cable

To extract data and perform other maintenance functions on the Sensor Ball, the communication cable is required. It
is the only cable used with the Sensor Ball. One end of the cable attaches to the keyed, 3-pin connector on the
Signal Conditioning board, and the other connects to COMI1 on a personal computer. The 54-inch cable has a resin-
filled fiberglass sheath protecting the wiring, which is firmly attached to the terminating connectors using cable
lacing and hard epoxy. Definitions for the signals and pin numbers at each connector are listed in Table 2 below.

Table 2. Sensor Ball to PC Connection Cable Pin Definitions

Signal Sensor Ball, Personal Computer,
3-Pin Molex (U3) 9-Pin D Subminiature
Signal Return (Ground) 1 5
Transmit at SB, 2 2
Receive at PC
Receive at SB, 3 3
Transmit at PC

Microcontroller Firmware

The microcontroller code is almost 4k Words in size, nearly filling nearly all the available program memory space.
Because the microcontroller is a one-time programmable device, any changes to the code will require replacement of
the device. The code is divided into six modules plus three auxiliary files. A complete listing of the code is
contained in Appendix K: Microcontroller Code Listing. The content and function of each of the modules is
described here.

Main Code Module, Ball.asm

Ball.asm is the main section of code that controls the operation of the Sensor Ball. It provides four main functions:
microcontroller initialization on reset, a loop monitoring the conductivity measurement, data acquisition and storage
into memory, and a user-interface loop that communicates with the PC-based interface software.

23

———»!

\ Reset _//’ \ B Loop /«

Initialize Variables and Power all circuitry

Operating Parameters Turn on LED
Initialize serial to 19.2k Baud

[; | - ; .
— —— R

I'/ Power Up \)] Command \

Set Wait Flag as Complete | | nitialize 5-minute Timer |
I s i
\
. No
Command "No 5 Mins w/o
Received? Command?
» .
Yes
. | -
Process Command W Yes
No ‘ Initialize M
< <Yes Command?
No
Acquire
i «No Command? ~Yes
Finished 60 Yes
Second Wait?
No | Power all circuitry and
l wait 1 second [
Sleep (Low-Power
Mode) for 2.4 Seconds ‘
« Y - <+ No—
|
Yes
Collect 45-minute data |
record, 7168 samples

- I S P

Figure 11. Flowchart for the Sensor Ball Firmware, Main Module

The initialization code sequence contained in Ball.asm executes whenever the Sensor Ball is reset by any of: initial
power application, the initialize command from the PC interface software, or an interrupt from the Watch-Dog
Timer. The latter would only occur in an error condition such as if the microcontroller was not executing the proper
code or if it takes longer than was anticipated to compete a function. The first step in the initialization sequence is
configuring input and output parallel ports. Next the serial port and A/D module are initialized. The outputs are
then set to the desired level for operation. A short phrase, the Sensor Ball version and unit number, is transmitted on
the serial interface as a debug test.

24

After initialization, the code then enters the main operating loop. For the majority of the time in this loop, the
microcontroller is operating in a low-power state and other circuitry is not powered. Immediately upon entering this
loop and every sixty seconds thereafter, the microcontroller powers up the rest of the Sensor Ball and interrogates
the conductivity sensor. If the conductivity is above a preset threshold (about 6% of full-scale range), the recording
process begins and one record is collected. If the threshold is not reached, then the microcontroller returns to the
low-power loop.

A flaw in the firmware design causes the Sensor Ball to begin the recording process whenever the battery is initially
connected. This happens because after power-up initialization, only a quarter-second delay occurs between power
application to the conductivity circuitry and checking its output. From circuit tests, the conductivity circuit requires
a half-second power-up delay, and the normal conductivity check loop waits over one second before acquiring the
conductivity measurement. A simple movement of the starting label for the conductivity checks process would
correct the problem. The work-around is to press and hold the “Attention” button until the LED remains on. This
will terminate the data collection cycle.

Delay Timing Loop of Ball.asm

Two types of timing are accomplished in the microcontroller. The first, a watchdog timer, is based upon a special,
internal oscillator with a frequency set at the time of manufacture. This timer controls the time that the Sensor Ball
is in the low-power, “Sleep” mode. The second is based upon the instruction cycle clock, which is derived from an
oscillator that is programmed with an external resistor and capacitor. This timer is used to establish the delay
between sets of measurements during data collection and perform other delays as needed in the code. The time
variable created to provide a pseudo-real-time clock is dependent upon both timers.

From the microcontroller data sheet’, the typical value for the Watch-Dog Timer timeout period (Twdt) ranges from
7 to 33 milliseconds, with 18 milliseconds typical. This is measured with VDD = 5V, and over the temperature
range -40°C to +85°C with the typical value measured at 25°C. However, Microchip states that these parameters are
for design guidance only and are not tested. For the Sensor Ball, the PIC16C774 microcontroller is powered with a
3-V supply voltage. The delay seems to be very close to the typical, 18 millisecond value in the Sensor Ball. The
Sensor Ball firmware applies a 1:128 scale factor on the watchdog timer delay, resulting in an incremental timing
value of about 2.3 seconds for the “Sleep” delay loop. Thus, twenty-six passes through the loop are required to
accumulate the desired 60-second delay between conductivity measurement checks. Once the Sensor Ball is
operating in full-power mode, the instruction clock timer is used.

Resistor R46, 7.87kQ) and capacitor C40, 22pF set the instruction clock frequency. The desired frequency is
3.686MHz, which was selected to be an integral multiple of the 19.2k Baud rate. This frequency can vary
somewhat, but should not be more than 3% from the desired target or serial communication will be affected. This
primary oscillator frequency is divided by four to produce the instruction clock frequency. Then, a 1:4 scale value is
applied to form the basis for Timer 1. Each increment of the Timer 1 clock represents about 1.11 milliseconds, and
this is also the increment of the Time Least Significant Word that is stored with the recorded data. The Time value
is adjusted each time the WAIT delay subroutine is called.

Data Collection Section of Ball.asm

If the conductivity check indicates that the Sensor Ball is immersed in water, that is, that the conductivity
measurement is above a set threshold, a data collection cycle will begin. The data collection code loop controls the
Analog-to-Digital Converter (ADC), reads the ADC result, and stores the information into the Flash memory. The
microcontroller then waits a short delay before acquiring another data set. Pressing and holding the Attention
button, accessible only when the Sensor Ball is opened, can halt the data collection cycle.

First, the Flash memory is interrogated to verify that the location pointed to by the current memory address value is
actually blank. This value is cleared when the microcontroller is initialized, but a search routine find the first blank

? http://www.microchip.com/1000/pline/picmicro/families/16¢77x/devices/16c774/index.htm PIC16C773/4
Datasheet, Table 15-7: Reset, Watchdog Timer, Oscillator Start-Up Timer, Power-Up Timer, And Brown-Out Reset
Requirements, page 163.

25

section where data has not been stored. If the microcontroller has not been re-initialized since the previous data
collection cycle, the memory address value will already point to the next usable Flash memory location. If the
memory is full (unlikely since the 32 MB can contain 256 records), the data collection loop ends and he
microcontroller returns to the low-power state.

Because the basic unit in the Flash memory is a 512-byte page, data are stored in this increment. The first two bytes
on the page form a synchronization word that indicates the page contains valid data. This is followed by six bytes
containing the record number, the frame number, and four bytes representing the time. The remaining 504 bytes
hold 28 sets of measurements, with each set consisting of 9, 16-bit measurement values. Table 1 lists the data
collected.

After collecting each complete set of 9 values, the microcontroller pauses for about 368 milliseconds (data collection
takes about 9 milliseconds), producing a data collection frequency of 2.66 samples per second. Collection proceeds
for about 45 minutes, filling 128 kB memory, and then control is returned to the main loop starting with an
immediate check of the conductivity measurement. If the conductivity is still above the set threshold, the data
collection loop is immediately re-entered. Otherwise, the low-power loop begins, with the conductivity
subsequently checked every 60 seconds.

Command Processing Section of Ball.asm

The command processing section of the Ball.asm module is a simple loop that waits until the Sensor Ball receives a
complete command sequence, then calls the command processing routine, Cmd_Hand.asm. The characters are
captured by an interrupt routine contained in the Ser Hand.asm module, which also provides the indication that a
complete command is ready for processing. The only other function of the command loop is to monitor how long
ago the last command was entered and return to the low-power mode if more than five minutes have elapsed since
the last command. This ensures that a spurious “Attention” signal won’t halt the Sensor Ball for too long. The
command mode can be entered at any time by pressing and holding the Attention button. Response times vary
depending upon the Sensor Ball’s operating mode before the Attention button was pressed. In the low power,
“Sleep” mode, response is within 3 seconds. At the other extreme, the response may be as long as 11 seconds if the
Sensor Ball is acquiring data.

Serial Interface Module, Ser_Hand.asm

The serial interface module contains all code associated with the serial interface. It includes the interrupt service
routine that captures and processes control characters, and that captures a command phrase and indicates to the main
routine that a command sequence is complete. Also included are interface configuration, character and string
transmit routines.

The Sensor Ball’s microcontroller is configured to generate an interrupt whenever a character is received on the
serial interface, and code execution changes to the interrupt service routine. This routine includes hardware error
processing to clear buffer overflow or framing errors, The Sensor Ball expects serial data using the format of one
start bit, eight data bits, and one stop bit. Because the least-significant bit is transmitted first, timing errors receiving
the serial data affect the most significant bit to the greatest extent. Either 19.2k Baud or 115.2k Baud may be used,
but the Sensor Ball must be commanded to expect the higher data rate.

In the ASCII character definition, control characters have numeric values of hexadecimal 1F or lower. The Sensor
Ball recognizes only eight control characters: Control-C, line feed, carriage return, X-off, X-on, Acknowledge, and
Negative Acknowledge. If a control character other than these eight is received it is ignored. Control-C stops any
command phrase in progress and is also used to abort the data upload process. Line feed and carriage return are
used to terminate a command phrase, and may occur in either order. X-on is used to signal the Sensor Ball to begin
transmitting data during a Status command or data upload. X-on also clears X-off, which may be sent by the PC to
temporarily suspend data transfer if the X-on / X-off protocol is used. The Acknowledge and Negative
Acknowledge are used during data upload, at the end of each 560-byte block that is transferred. The Sensor Ball
calculates a 16-bit checksum for each block, and transmits it when finished sending the block. The PC does a
similar calculation, and transmits an Acknowledge control character if the checksum calculated by the PC matches
what the Sensor Ball sent. Otherwise, the PC returns a Negative Acknowledge control character, and the Sensor
Ball retransmits the data block.

26

A command phrase consists of the following character sequence:
1. A “07, the zero character, must be sent first by the PC interface.
2. An alphabetic command character (A through Z), either upper or lower case, follows.
3. Optionally, any parameters can follow the command character. These characters must have numeric
equivalents of hexadecimal 20 or greater; otherwise they would be interpreted as a control character.
4. Finally, carriage return and line feed are sent in either order.

Following receipt of a complete command phrase, the Sensor ball echoes the phrase back to the PC. This provides a
check to ensure the command and its optional parameters were received properly. If the command is echoed
properly, the PC sends a command phrase including the “V” command character, indicating the expected command
phrase was echoed. In response to this command phrase, the Sensor Ball echoes the previous command phrase, with
the parameters processed so that the upper and lower nibbles are combined into one character. Because control
characters cannot be included as parameter values, the parameters are encoded with only the least significant nibble
in each parameter character used to represent a value. The nibbles from two sequential characters are required to
represent an eight-bit value. Therefore, the parameters echoed back to the PC in this stage can include control
characters. Following this second echo of the command phrase with processed parameters, the Sensor Ball
processes the command. If the phrase initially echoed to the PC is incorrect, sending Control-C control character, or
just repeating the intended command can cancel the incorrectly received command. If the Sensor Ball receives an
incorrect command sequence, it replies with an error phrase: “0?x”, where “x” represents the incorrect character.

Once a command phrase is complete and verified, the interrupt routine sets a flag and returns control to the
previously running code, usually the command processing section of the main code module Ball.asm.

Text String and Character Transmit and Serial Interface Configuration Routines

The serial interface code module Ser_Hand also contains other related routines such subroutines to retrieve text
strings, to transmit a character, and to configure the interface.

Text strings are recovered using a code “trick™ that loads the starting location of the string into the program counter,
and jumps to that location. This program location contains a return instruction with the desired character loaded in
the working register. Each character of the string is recovered in turn by incrementing the program address location
that is jumped to. This character is passed to the serial transmission subroutine, which checks to see if the serial
output buffer is full, and moves the character to the buffer if it is empty. If the register is full, the serial transmission
routine loops through its instructions to wait until the buffer is empty. When a single character is transmitted, it is
simply loaded into the working register followed by a call to the serial transmission subroutine.

The serial interface configuration function was placed in a subroutine because it is called during power up / reset
initialization, whenever the “Attention” button is pressed, and in response to the PC interface Baud Rate command.
The routine selects the Baud rate based upon the value passed in the working register: a zero indicates 19.2k Baud,
and a non-zero value 115.2k Baud.

PC Interface Command Processing Module, Cmd_Hand.asm

The Sensor Ball recognizes seventeen commands. After the serial interface module sets the command received flag,
the command processing loop in the main code module Ball.asm calls the command handler subroutine. This is the
only routine in the Cmd_Hand.asm module. Using a look-up table, the command handler subroutine matches the
received command character with the associated instructions. Following execution of these instructions, the
command handler subroutine returns control back the command-processing loop in the main code module. The
actions taken by the six commands available through the PC interface software, “SensorBall”, are described in
Appendix C. The Read and Status command instructions are contained in separate code modules, Rd_Hand.asm and
St_Hand.asm, respectively. These routines are described later in later sections. Each of the other commands is
described below.

The Acquire command associated with command character “A” sets a flag that results in program control jumping to

the data recording instructions. Control will not be returned to the command-processing loop after the data record is
collected. Pressing the “Attention” button is required to allow other PC interface commands to be processed. The

27

action taken by the Acquire command is the same as if the Sensor Ball detected a conductivity measurement above
threshold in normal operation.

Command character “B” is associated with the Baud-rate change instructions. The default data rate is 19.2k Baud,
and the high-speed rate is 115.2k Baud. The current data transmission rate is determined from the configuration
registers, and the rate is toggled to the other value. The change is accomplished by calling a subroutine in the
Ser_Hand.asm code module.

The Sensor Ball’s Flash memory is erased using the “E” erase command. The entire 32M-byte memory is erased by
this command.

Command “F”, memory fill, is not available using the Sensorball PC interface software, but requires HyperTerminal
or another similar software package that allows direct control of the PC’s COM port. This command is intended for
testing Sensor Ball operation. Two parameters following the command determine the number of 128k-byte Flash
memory records to be filled with values. The default, if no parameters are attached, is one record.

A PC interface session can be terminated using the “I”” initialize command. The result is equivalent to removing
power from the Sensor Ball. All variables are cleared, including those that track time. In the initialization sequence,
the Flash memory is inspected to determine the last record number and memory location used. The “P” command,
included as a legacy command, results in the same actions. The PC interface uses only the “I” command.

The Data Read command “R” is implemented in the Rd_Hand routine, described below.

Sensor Ball status is returned in response to the “S” command. This function is implemented in the St_Hand
routine, which is described below.

The “T” test command is also unavailable using the Sensorball PC interface software. It is intended to be used
during Sensor Ball check out. Two tests are run using two different data values in which the entire Flash memory is
filled with the data value and read back to ensure the memory is operating properly. The routine attempts to mark
any bad memory by writing the incorrect synchronization pattern into the start of the memory block. The test takes
a little more than half an hour to complete. An error value is returned for each 1M-byte memory section tested.

Several lower-case commands in addition to the “r” and “‘s” commands described above are implemented as a first
step towards standardizing the interface to Sandia’s memory-based instrumentation systems. The only command in
this group that is used by the Sensorball PC interface software is “w”, which requests the device name and unit
number. The Sensor Ball returns the phrase, “Sensor Ball Version 4 Unit nnn”, where “nnn” represents the unit
number. The complete list of these extended commands with their associated function is as follows:

b — replies with the high-speed data transfer rate represented in ASCII characters

¢ — lists the upper-case commands recognized by the Sensor Ball, “ABEFIPRST”

m — send the number of each type of channel: analog, bilevel, and self-test

n — transmit the name for the channel specified

r — as discussed above, uploads the contents of the Sensor Ball memory without checking for blanks, etc.

s — reports the status of each data channel in data frame order

w — described above, identifies the unit as a Sensor Ball with the version and unit number

z — replies with the total memory size and the upload data block size

Flash Memory Control Module, Flash.asm

The Flash memory module contains all the functions needed to read, write, and erase the Toshiba TC58256FT Flash
memory. Using the functions instead of in-line code or macros conserved program memory space and made the
code somewhat easier to read and maintain.

The Flash memory uses the same eight connections to accept a command, an address, and read or write data. The
code functions were organized around the memory commands, and support the following commands:
0x00 Read Mode 1, Address bit A8=0. Allows sequential reads through a 512-byte memory page.
0x80 Write with Address bit A8=0, writes to the 528-Byte static register.

28

0x10 Program, transfers the 528-Byte static register to the memory cell array

0x60 FErase, erases a 16k-Byte memory block. Must be followed by Erase Confirm
0xD0 Erase confirm command

0x70 Status, provides Ready / Busy~, and write fail.

When transferring measurements to the Flash memory, the code must keep track of how much data has been written.
After a 512-byte memory page is filled, a separate programming command must be issued to transfer the data to
non-volatile storage. The erase command also requires two steps, but this combination is designed to reduce the
change that a spurious command will accidentally erase the memory.

After a program or erase command, the memory device will be busy for a period and should not be interrupted with
additional commands or data. A special memory status inquiry function was used to monitor the status. The status
can also be ascertained by monitoring the Ready / Busy line on the memory chip. However, that occupies an
additional input connection on the microcontroller. The memory datasheet notes that up to 1 millisecond is required
for the program function, and as much as 20 milliseconds for the erase function. A read access requires 10
microseconds maximum, but that delay was achieved by padding the code with NOP (no operation) instructions.

Because the TC58256FT memory is not guaranteed to have the entire 2048 Blocks available to write, functions were
included in the Sensor Ball firmware to detect a memory failure and hopefully avoid it. The status command returns
an error indication along with the Ready / Busy information. If any write or erase operation returns an error
condition, the code attempts to mark the memory block as bad. When that block is subsequently selected for writing
or reading, the code skips ahead to the next functional memory block.

Two functions are included in the memory subroutines to assist testing the memory. Neither are accessible using the
SensorBall personal computer interface software. The first, the memory fill command, “F”, creates simulated data
and writes it to memory. This can be used to generate data records to test the serial interface. Otherwise, uploading
blank memory is not particularly taxing since the data are all zero. The second command, “T”, or memory test,
writes values to the memory then reads back and compares the read value with the intended value. The test is
conducted page-by-page. First, the memory is totally erased. Then, pattern one is written to memory, which is a
value of hexadecimal 0xAA. After the memory is filled, the memory is erased and a second value, hexadecimal
0x55, is written. Finally, the memory is erased again. Any errors are reported as messages using the serial interface.
The memory test function takes about 30 minutes to complete.

Data Upload Module, Rd_Hand.asm

The Rd_Hand.asm routine is called from Cmd_Hand when the “R” or “1”” command is processed. This routine reads
the contents of the Flash memory and transmits it to the PC interface. The PC interface software allows increments
of 128k bytes to be uploaded. The start of each block of Sensor Ball memory is examined to ensure that the correct
synchronization pattern is stored in the first 16 bits of the memory page. Blank memory (values of hexadecimal FF)
and memory pages with a bad synchronization pattern are skipped. An incorrect synchronization pattern indicates
that the 16k-byte memory block failed and so should be skipped during data upload.

The Sensor Ball calculates a checksum for each block of data uploaded, and transmits it as the last two bytes before
waiting for a response from the PC. The PC interface software also calculates a checksum, and compares the two
values. If the values match, the PC interface software sends the Acknowledge control character and the next Flash
memory block is read and transmitted. If the checksums do not match, the PC sends the Negative Acknowledge
control character, and the block is re-read and re-transmitted by the Sensor Ball.

A variation of the read command is implemented that does not inspect the memory, so does not check for blank or
invalid memory and therefore uploads these with the known good data. This command, “r”, is not implemented in
the PC interface software. It may be helpful to attempt data recovery if the Flash memory became faulty.

Both the “R” and “r” commands allow additional parameters to select where in the Flash memory data upload

begins. The PC interface software does not use this feature. The parameter is loaded as two ASCII alphabetic
characters, with the lower nibble of each combined to indicate the 128k-byte memory section of interest. The data

29

uploads continues from that point until terminated by the PC interface software, just like when no parameters are
used.

Sensor Ball Status Reporting Module, St Hand.asm

The status handler routine St Hand.asm acquires real-time data from each of the six sensors, the three voltage
monitors, and the current Flash memory location. These data are then transmitted to the interfaced PC. Once
complete, the code returns control to the Cmd_Hand routine, which passes control to the command-processing loop
in the main code section, Ball.asm.

Data are acquired using the 16-sample averaging algorithm implemented in the Sensor Ball data acquisition code.
The same subroutine is used for normal data acquisition, but a averaging flag bit is set to no averaging for the data
stored in Flash memory. The last-used Flash memory address is also sent so that the number of 128k-byte sections
of memory available for uploading can be gauged. This information is helpful to know so that time is not wasted
attempting to upload blank memory. The status command as implemented in the PC interface software follows the
“S” command with the “w” command, which requests the unit to identify itself. The unit identification number will
become more important since multiple Sensor Balls will be collecting data.

A second version of the status command is available, but is not implemented in the current PC interface software.
The “s” command uploads data in the order that it is defined in the data frame. Thus, the record and frame number,
the time variables, and the current Flash memory address all follow the analog channels. This is intended to be a
simpler format that can be discerned by using the other “standardized” commands.

Auxiliary Files

Three additional files are used to build the Sensor Ball firmware, and are inserted into the code as “include” files.
The Ball_Equ.inc file contains equivalence definitions for the various single-bit programming flags that are used, as
well as the constants and assembly-time definitions. Ball Dat.inc reserves memory for all the variables needed in
the code including the data stack structures. Finally, Ball Msg.inc holds the message text strings. The majority of
the text strings are used to define error messages and measurement names that are not accessed by the present PC
interface software. These were included in anticipation of an improved interface software development.

Mechanical Design

The mechanical design of the Sensor Ball offered a number of challenges. The primary role of the Sensor Ball
housing is to protect the electronics and transducers from potentially damaging mechanical shock and vibration.
The housing must also maintain a dry interior while simultaneously permitting easy access for data extraction and
battery replacement, and a passage to the water to allow pH and conductivity to be measured. Operational
considerations in both the intended consumer environment and the laboratory were important. Finally, the design
must closely match the density of water while maintaining an orientation favorable for pH and conductivity
measurements. The final prototype design achieved all these design goals.

Sandia provided a non-functional Sensor Ball mass mock-up to P&G in June 2000. Because electrical components
were not included, the weight was slightly less than the functional recorder and the mock-up was provided unsealed
to allow easy disassembly. The early mock-up also did not include conductivity probes, although their location on
the flat surface next to the pH sensor was noted. Scrap circuit boards were cut to the expected size because
functional boards had not been fabricated when the mock-up was produced.

Shock and Vibration

The requirements stated that the design must survive certain levels of shock and vibration while operating and a
higher, non-operational mechanical shock level. These shock and vibration levels were not quantified but were
intended to be the maximum environment expected during a wash cycle. A more difficult condition was described
for non-operational mode, in that the Sensor Ball must survive a six-foot drop onto concrete. The latter requirement
was meant to consider the possibility of a consumer dropping the unit while transferring it to or from the washing
machine.

30

A major consideration when designing to meet the shock and vibration requirements was protection of the pH probe,
its reference electrode, and the four-element conductivity probe. These must penetrate the housing wall to make
contact with the wash water. But direct impact on any of the sensors would likely destroy them, so some
mechanism for protecting them while still permitting adequate flow of wash water past the sensors was required.
The solution selected was to build a cage over the sensors. Options for the cage included solid plastic and welded
spring-wire, as well as machined steel. Initially, a plastic cage was designed, but that design proved too weak to
withstand the required six-foot drop onto a hard surface. And, the spring structure did not attach well to the main
Sensor Ball housing because any impact tended to push the spring wire hold-down points away from the housing. A
machined cage was tried using Type 17-4 stainless, tempered, spring steel that was selected for its spring constant,
but the material choice was unfortunate due to corrosion susceptibility when combined with the Type 303 stainless
steel fasteners. A rust problem developed around the fasteners attaching the metal cage to the Sensor Ball case.
Following an investigation that showed a material with a lower toughness was acceptable; the cage material was
changed to Type 303 stainless steel to match the fasteners. Still, concerns were raised that any metal cage might
mar the surfaces inside a washing machine. The edges of the cage were polished to minimize damage to the
washing machine.

The stainless-steel cage, shown in detail in Figure 12, includes a ring that makes full contact with the housing. The
steel is also strong enough to permit large open areas for good wash-water contact with the sensors. One of the six
arms on the cage is positioned directly over the conductivity probe grouping. This prevents abrasion of the
conductivity probes by clothing during the wash cycle. The same approach also protects the pH reference electrode.
The pH probe, located on the center axis of the Sensor Ball, is covered by the center of the protective cage. The
center location maximizes the internal height available to contain the pH probe body, which is about 2 inches long.

Figure 12. Sensor Ball View Showing the Sensor-Protecting Cage

Six, flat-head number 6 fasteners attach the cage to the Lexan housing. Numerous cracks were discovered in the
Lexan case surrounding the fasteners in the first prototype. These were likely caused by several cycles of assembly
and disassembly of the Sensor Ball. Since this was considered a severe problem, the case was replaced with an
older, but unused case from a previous design version to allow laboratory testing to continue.

Water and Chemical Resistance

The primary design environment for the Sensor Ball is submerged in wash water, so the design must be watertight as
well as insensitive to the chemicals in the wash water. Any exposed metallic components must not react with these
chemicals, which would otherwise cause a potential failure mechanism or even stain the clothing with oxidation
products. Testing of the first prototype design revealed material incompatibilities, which were corrected as
described above. The selection of Lexan for the housing material was predicated on its resistance to the expected
wash water chemicals as well as its good machining properties — a consideration primarily for the prototypes rather
than potential production units.

31

The first Sensor Ball prototype developed a leaking problem, which could have been caused by three factors. The
first issue discovered was that the Honeywell pH sensor admitted water. We determined that a broken seal between
the DuraFET and the pH probe body caused this. Our previous assembly practice was to remove the original circuit
board that contacted the DuraFET, and replace it with our own board design to make the electrical connections. We
now leave the as-supplied Honeywell board in place, and attach wires to traces on the board. Although this
unfortunately requires careful, detailed disassembly of the pH probe to re-use the board, the seal is preserved.

The second leak was more a potential issue than a confirmed one. The o-ring used to seal the two halves of the
Lexan case together seemed to be inadequate. A change was made to replace the 0.103 square inch cross-section
material with 0.139 square inch material. The groove holding the o-ring in the Lexan case was also deepened to
accommodate the thicker material. This resulted in a very snug seal between the case halves.

Finally, we observed that the reference electrode could not tolerate a pressure differential, and admitted water.
During the pH sensor retrofit, the probe orientation was mistakenly placed with the DuraFET away from the
reference electrode. This was corrected to have the DuraFET facing the reference electrode.

All circuit board surfaces were conformally coated with a silicone rubber compound. A silicone rubber seal was
also added inside the case around the pH probe and the conductivity probes. The temperature sensor was held in
place with a thin layer of epoxy, and then covered with silicone rubber. Finally, the serial interface connector was
attached using epoxy.

Sensor Ball Density and Center of Gravity

Finally, the Sensor Ball mechanical design sets the density of the unit to approximately that of water, and maintains
the unit’s orientation when it is floating in water. To accurately measure the conditions imposed on the clothing in

the washing machine, the Sensor Ball must move through the column of water with the clothing. Also, the pH and

conductivity sensors must be continuously submerged to collect valid measurements.

The Sensor Ball’s volume was dictated in part by the space required for the electronic components. The original
intent was to have a tennis-ball sized unit, but that volume was not quite sufficient to hold all the components. The
battery location was a particular problem because it had to be accessible for replacement. Thus, it could not be
placed under the circuit board where its mass would have helped orient the Sensor Ball. To offset the battery weight
above the necessary center of gravity, we placed additional steel ballast below. But then the displacement of the
Sensor Ball had to be increased to maintain the desired specific gravity. In its final form, the Sensor Ball closely
resembled the shape of the P&G Downey Ball fabric softener dispenser. The resulting weight of the unit, which is
essentially the equivalent weight of water displaced by the unit, is 269.1 grams as calculated by the mechanical
computer-aided design software, and including a medical-grade lithium battery. The volume is 272.0 cubic
centimeters, which results in a 0.997 specific gravity. The specific gravity of water varies from 0.9997 at 10°C to
0.9880 at 50°C. In actuality, the specific gravity of the Sensor Ball as assembled is somewhat lower than calculated,
so that the unit is slightly buoyant. The measured weight of the Version 4 Sensor Ball and battery averages 269.8
grams with a standard deviation of 0.4 grams, resulting in a 0.9917 specific gravity.

In addition to steel ballast, the steel cage protecting the transducers helped shift the center of gravity. Because the
Sensor Ball is free-floating, maintaining the orientation that keeps the pH and conductivity sensors continuously
submerged requires very little center of gravity offset. This offset is the difference between the center of buoyancy
and the center of mass. The mechanical computer-aided design software was used to model the weight and center of
gravity location for each component in the Sensor Ball. Based on these calculations, we adjusted the Sensor Ball’s
center of gravity to about 0.266 inches below the displacement center, sufficient to maintain proper orientation. The
lateral center of gravity locations were within 0.01 inches of the Sensor Ball centerline so that the unit did not list
noticeably.

During tests at P&G in a special transparent washing machine, the Sensor Ball moved through the column of water
with the clothes, and maintained the proper orientation. This validated this aspect of the mechanical design.

32

Design Revisions

The first prototype design, Version 1, was delivered to P&G in early September 2000. A number of requirements
changes were identified once researchers used the device. Subsequent deliveries of each design version were as
follows: Version 2 in December 2000, Version 3 design in June 2001, and the final prototype design, Version 4, in
January 2002. Five units of Version 4 were produced, but only one each of the earlier versions. The Version 2
housing was damaged during testing and replaced, then the new housing reused when the design was transitioned
from Version 2 to Version 3.

Substantial Changes in Sensor Ball Version 2

Version 2 included revisions to the circuit board design, and production of a new board. The mercury tilt switch
was nixed because it could potentially be hazardous to the consumer. The switch was intended to detect consumer
placement of the Sensor Ball into the washing machine, because moving the Sensor Ball would trip the switch with
high probability. The design was revised to use the conductivity measurement as the trigger to collect data. Using
the low-power feature of the microcontroller keeps power consumption very low while the Sensor Ball is not in a
data collection mode. This produces a slightly shorter, but tolerable, data collection life.

The conductivity sensor in Version 1 was intended to be a 4- conductor design, but we realized that the circuit did
not actually accomplish this. Part of the problem was the realization that the conductivity measurement would affect
the pH measurement unless the conductivity detection signals were coupled to the water using capacitors. Including
the feedback circuit required to implement the 4-conductor conductivity measurement seemed to add too much
complexity to the design. Thus, we compromised and used a 2-conductor probe.

In Version 1, the temperature sensor was located on the main circuit board. However, this location caused
unacceptable delays in acquiring an accurate temperature measurement. The design was modeled, and as a result a
more appropriate location for the sensor was selected in the wall of the Lexan case. This change required a minor
mechanical modification to cut a pocket in the Lexan.

P&G became interested in measuring the spin-cycle acceleration, so they requested that the accelerometer range be
changed from a +/-50g device to a +/-100g device. This caused a circuit error that was only discovered later. The
ADXL150 accelerometer operates at 6 V maximum, which is compatible with the Sensor Ball. However, the 100-g
device, ADXL190, accepts only 5.5 V supply power maximum. We suspect that this resulted in slightly higher
power consumption but otherwise seemed to be tolerated. This decision was later reversed, back to a 50-g
accelerometer in Version 3.

A major mechanical design revision was undertaken in Version 2 to simplify the assembly and disassembly of the
Sensor Ball. The changes were also intended to reduce the chance that the Sensor Ball would disassemble in the
washing machine. In Version 1, six screws distributed around the circumference of the Sensor Ball held the case
halves. Also, the battery case was attached to the upper case half, which made working with a disassembled unit
clumsy. The Version 2 design included mating threads on either half of the case, so that they screw together. A
single security screw was added to prevent consumer tampering. The cage covering the aqueous sensors was rotated
to better protect the reference electrode and conductivity probes. The battery mount was moved to a structure above
the circuit boards in the lower half of the case, removing all components from the top case half.

The serial interface connector for Version 1 used a Nanonics, 9-pin miniaturized connector. This connector is quite
expensive and can be difficult to use. It was replaced in Version 2 by an inexpensive, simple, 3-pin Molex
connector. However, this connector had to be epoxied to the board to keep it steady. Finally, the battery monitor
measurement was not considered important, so was removed to allow the measurement set to fit better into the Flash
memory format.

Primarily Firmware Changes for Version 3

Changes for Version 3 primarily included substantial revisions to the firmware. The code changes included a
second, high-speed serial interface speed intended to reduce data upload times, a time-stamping feature to help
determine when the data records were collected, a Flash memory failure detection and compensation to minimize
potential data losses, addition of additional record information to more clearly separate data collection periods, and a

33

revision to the general code structure intended to make it easier to maintain. Because the 100-g accelerometer range
was insufficient to monitor the spin cycle, the +/-50 g range accelerometer replaced it to provide better resolution.
The connection board modifications to the Honeywell pH probe caused it to leak, so these modifications were
revised. Instead of removing the original circuit board that connected to the DuraFET, the board was cut and
connectors soldered to the board traces. Also, the material selected for the sensor cage was changed to Type 303
stainless to be compatible with the fasteners used. Previously, a material incompatibility caused corrosion. Because
the additional data in the Flash memory made the format a non-integral multiple of the memory size, deletion of the
battery monitor measurement was no longer justified and it was restored. The overall data collection frequency was
reduced to 2.66 samples per second, but the 128k-byte total memory used for each data record was retained. This
means fewer samples were collected but this was acceptable to P&G.

Minor Circuit and Firmware Changes to Produce Version 4

The final five prototypes produced were Version 4, sent to P&G on January 16, 2002. The first copy of this version,
Unit 3, was sent to P&G January 4 to verify the design changes prior to the construction of the remaining four units.
This test verified that the firmware and circuitry changes performed nearly as expected. One remaining firmware
issue that was not deemed important enough to correct was the initial powering of the Sensor Ball. Immediately
after a battery is installed, the Sensor Ball begins a data collection cycle. This flaw and how to correct it is
discussed in the Microcontroller Firmware section.

Several circuitry flaws were discovered and corrected. Because the analog circuitry operates on 6 V and the
microcontroller on 3 V, there is a possibility that the analog circuit could apply a voltage greater than the 3-V
maximum allowed by the microcontroller. This situation existed on the pH and accelerometer measurements. The
most noticeable impact was disruption of the serial data link during data uploads, primarily at the high-speed rate but
to a lesser extent at the low-speed data rate as well. Applying the greater than 3-V signal increased the effective
microcontroller voltage, which caused the microcontroller oscillator to shift frequency, thereby causing
communication failures during data upload. A less noticeable result of the circuit changes was a reduction in power
consumption from 35 mA to 25 mA during data collection. Power during low-power, “Sleep” mode remained at
300 microamps.

Finally, we discovered that the reference electrode gel will empty if the pressure differential inside-to-outside of the
Sensor Ball exceeds more than a few pounds per square inch. This required a few attempts to correct. The final
approach secured the reference electrode with hard epoxy in addition to silicone adhesive to make a leak less likely.
A longer term, and better solution would be to replace the type of reference electrode, but this would have required
additional mechanical design modifications. This option is discussed in the next section.

Suggested Changes for a Future Design Revision
A number of potential improvements were identified for the Sensor Ball, but we lacked time and funds to implement
them. Several of these are discussed here.

Improve the pH Transducer

The most likely source of leaks into the Sensor Ball is the reference electrode. Using a reference electrode that is
sealed on the inside of the Sensor Ball would help withstand pressure changes caused by shipping the unit, so that it
can be shipped completely assembled. Perhaps pinching the tube closed with a wire clip or some other mechanism
to plug the tube inside the Sensor Ball could stop the potential leak. A better seal between the reference electrode
material and the Sensor Ball case would also help considerably. The reference electrode dries out when it is not
submerged in solution, causing a delay in producing an accurate pH measurement, so perhaps a completely different
reference electrode design should be used. Other reference electrode manufacturers provide electrodes that are
virtually sealed, although they are much longer than the electrode currently used. From the P&G perspective, a
reference electrode with larger AgCl-saturated KCl gel capacity is desirable to increase the useful life of the
electrode.

Another issue is the pH probe. Modifying the pH probe as it is supplied from Honeywell requires the most skill of

the Sensor Ball assembly process. We recommend negotiating with Honeywell to have them produce a shortened
probe tip for the Sensor Ball that can be used without modification. Finally, the selection of capacitors in the pH

34

signal conditioning circuit may not be optimized for best performance. Some of the high values are probably too
high, which may slow the pH measurement response time or could even cause the measurement signal to oscillate.

Use Connectors for the Transducers

All the transducers, excluding the accelerometers, are currently soldered directly into the main circuit board. This
makes disassembly of the Sensor Ball for maintenance very difficult. Use of a connector that is accessible from the
top of the main circuit board would correct this. However, connector mounting would need to be carefully
considered to ensure that the connector did not come loose.

Select a Different Communication Connector

To extract data from the Sensor Ball, a simple, 3-wire cable is attached between the Sensor Ball and a personal
computer. However, the connector is somewhat difficult to use. Further, the Attention button is difficult to reach
and the LED, used to indicate operating mode, is difficult to view when interfacing to the Sensor Ball. Changing the
connector to a standard circuit board header type with a 0.1-inch spacing between leads would make connections
simpler to make. This type of connector would also allow adding more wires to automatically put the Sensor Ball in
“Attention” mode whenever the connector is attached, add a reset button, allow external power to be applied, and
make the LED more readily observable.

Add a True, Real-Time Clock

Sensor Ball Version 3 added code to emulate a real-time clock, allowing the data records to be time-stamped. This
emulation is flawed in that the time variable is reset whenever the Sensor Ball is reset, and it does not provide the
time in a format readily translated to day, hour, and minute. It measures time in 1.11 millisecond units since the last
time the Sensor Ball was reset. Adding a real-time clock will require circuit changes to reallocate microcontroller
input pins, but four unused connections to the microcontroller are already available to accomplish this. The Flash
memory ready / busy signal is no longer used, so that connection would raise to five the spare signals available.

Combine the Accelerometer Measurements

The three accelerometer channels probably do not provide more information than a single, combined measurement
would, and in fact, are combined by P&G during data analysis. The three measurements can be summed into a
single channel if an absolute or root-mean square value was first derived for each. Incorporating circuitry that
captured an average value of the combined result may also be helpful, and provide more information than the
extremely under-sampled measurement that is now implemented. A further enhancement could be adding two
ranges of accelerometers, one with high resolution to monitor agitation and a second set with lower resolution but
higher full-scale range to monitor the spin cycle. Acceleration can be calculated from:

A=rxw’

where r is the washing machine tub radius and the rotation rate in radians per second. For a 2-ft diameter
washing machine tub and a 500-RPM spin cycle speed, the acceleration is about 85 g. Analog Devices produces a
+100-g accelerometer that uses the same pin-out as the device used, but circuit changes would be required in the
Sensor Ball to reduce the supply voltage from 6 V to no higher than 5.5 V.

Include a 4-Probe Conductivity Measurement
As discussed in the Conductivity Transducer section, the present 2-probe conductivity measurement should be
replaced with a 4-probe version. This will allow linear measurement over a much broader range of conductivity.

Improve the Response Time of the Temperature Transducer

The temperature measurement takes too long to stabilize when the water that the Sensor Ball is immersed in
suddenly changes temperature. This was a problem with the initial prototype, and was thought corrected when the
sensor was moved from the circuit board to a pocked milled in the Lexan case. P&G reports a time constant of
about 5 minutes. An additional change could be use of a less expensive sensor, although the resulting measurement
would be non-linear. The AD590 costs about $10 each, while a thermistor costs less than $1. The Honeywell pH
probe contained a thermistor in the probe tip, so this might provide faster response.

Use a Flash-Memory Based Microcontroller
If changes are needed to the Sensor Ball firmware, the microcontroller must be removed and replaced, a fairly
invasive and expensive operation. But, a design that incorporated a microcontroller with code held in Flash memory

B 5

could be easily reprogrammed as new data collection opportunities are presented. When the Sensor Ball was
originally designed a Flash-based microcontroller with a built-in, 12-bits resolution Analog-to-Digital converter was
not available, and still may not be available. The design could be revised to use an external analog multiplexer and
ADC. Using this option, a 16-bit resolution or higher is ADC is readily available.

Modify the Mechanical Design for Manufacturability

The Sensor Ball’s mechanical design will be modified extensively when the transition is made to produce the units
in higher volume. The prototype was machined from a solid rod of Lexan, an operation that is too expensive to be
practical for more than just a small quantity of prototype units. The mechanical changes should also consider ways
to reduce the skill level and time required to assemble the units, and should consider features that simplify
transducer maintenance. An issue for P&G is adjusting the weight of the Sensor Ball to accommodate variation in
battery weight, which results in a variation in Sensor Ball buoyancy. Also, P&G’s test consumers were concerned
that the steel cage protecting the sensors has sharp edges that may mar fabrics. The cage was supplied with polished
edges, but that seems to have been inadequate to allay these concerns.

Acceptance Testing

The evaluation of the Sensor Ball must accomplish three objectives. First, because the Sensor Ball is still in
prototype status, the design must be verified. This shows that the engineering design meets the stated requirements.
A particular concern is whether the firmware is operating as intended. Second, the testing must show that the design
was assembled properly and that all components are functional. This second objective is the only purpose of testing
when designs are produced in volume, but this is not the case for the Sensor Ball prototypes. While the first two
objectives can be accomplished with tests at Sandia, the third objective, design validation, must be done at P&G.
Design validation will demonstrate that the Sensor Ball design, which meets the design requirements and is
functional, will achieve the intended result. Many of the revisions to the Sensor Ball design during the course of this
project resulted from P&G testing that showed the design requirements needed adjustment to meet the overall
objective. The Sandia test process did not distinguish between tests intended to verify the design or to prove that it
was assembled properly. The testing steps and associated data sheet are contained in Appendix D: Sensor Ball Test
Procedure.

Testing During Assembly

A few resistor values are considered adjustable to meet functionality goals. Values are recorded for the gain and
offset resistors used for the pH measurement circuit, and for the resistor selected to set the microcontroller oscillator
frequency. The appropriateness of the values is determined by measuring the circuit response to different pH buffer
solutions, and by measuring the microcontroller instruction clock frequency. Error-free serial communication
between the Sensor Ball and a personal computer is an indirect indication that the clock frequency is correct.

The Honeywell pH probe requires difficult modifications to make it compatible with the Sensor Ball needs. To
ensure that the DuraFET portion of the probe is properly connected electrically to the attached wires, the device is
tested to show that a diode voltage drop occurs between the DuraFET drain and substrate, and between the source
and substrate. This is tested using the diode check function on a digital multi-meter.

As a final coarse indication of unit functionality, a power supply is connected to the Sensor Ball battery terminals
and the current measured when the Sensor Ball is in the data acquisition mode, the Attention mode, and the low-
power sleep mode. These data are recorded on the test sheet. Anomalous power consumption is a good indication
of malfunction.

Functionality and Calibration Tests

The functionality tests show that the Sensor Ball accomplishes the core, required tasks:
& Communicate with the PC to allow status checks and data upload
& Store data into the Flash memory and retrieve it without error
» Show nominal calibration for temperature, pH, conductivity, and acceleration.

The microcontroller provides the user a means of functionally testing the Sensor Ball without resorting to simply
using the unit in an operational capacity. The Sensor Ball can acquire real-time data and send it to a PC when

36

connected with the interface cable. A status command sent by the PC to the recorder will initiate the microcontroller
to take one measurement from each sensor and voltage monitor and send that data back to the PC. This command
can be repeated as often as necessary to facilitate testing. Because the Sensor Ball case must be opened to access the
interface cable connection, this precludes complete immersion of the unit into the standard solutions. However, all
the calibration tests can be readily accomplished.

In most cases, adequate testing of the Sensor Ball can be achieved using the personal computer user interface
software, SensorBall, which was written specifically for this design. When commanded, this software displays the
measurement value acquired from each Sensor Ball transducer plus some additional status information. However,
better information for testing the Flash memory can be acquired using general-purpose serial interface software such
as HyperTerminal. All of the Sensor Ball interface commands can be executed plus any resulting error messages
can be observed. These test commands are discussed in the “Microcontroller Firmware™ section under
“Cmd_Hand.asm”. The memory test command, “T”, writes and reads two data patterns into the Flash memory, and
reports errors. It also attempts to mark any bad memory so that it will not be used during normal Sensor Ball data
collection. The memory fill command, “F”, inserts simulated data records into the Sensor Ball memory to facilitate
later data communication tests.

Communication tests are best accomplished using the SensorBall interface software. One of the testing steps using
HyperTerminal creates a number of simulated data records in the Sensor Ball Flash memory. The SensorBall
software displays errors that occur during data uploads. Both the 19.2k-Baud low data rate and the 115.2k-Baud
high data rate are tested.

The intent of the calibration tests is to demonstrate that the Sensor Ball calibration is nominal at room temperature.
No attempt is made to make each measurement result consistent to a high degree among the units produced. P&G is
responsible for determining the unique, precision calibration values for each unit. The tests at Sandia check the pH
measurement using pH 5 and pH 12 buffer solutions. The actual range of the Sensor Ball is just short of 7 pH units,
so depending on the measurement offset, one or the other of the pH buffer measurements will be out of range.
Conductivity is checked using a 9.65 pSiemens/cm and a 1417 pSiemens/cm standard solution. The accelerometers
are tested primarily to show that the zero-g offset point is approximately mid-range. The Sensor Ball is positioned
to produce a positive and inverted acceleration measurement for each of the three axes. A difference of 2-g
acceleration between the positive and inverted position is observable.

P&G Laboratory and Field Tests

Although Sandia’s standard practice was to run each Sensor Ball in a washing machine before shipment to P&G,
this test was superficial and primarily focused on ensuring that the Sensor Ball did not leak. P&G ran extensive
laboratory tests to establish accurate calibration factors for the Sensor Ball measurements. The calibration factors
were also collected over a wide temperature range.

P&G has test washing machines that were used to evaluate the Sensor Ball’s performance compared to data
collected previously using specialized instrumentation. During the course of the project, these tests helped establish
needed revisions to the Sensor Ball requirements and design. For the final, Version 4, prototypes, the tests provided
a final check of the Sensor Ball before attempting field trials in consumer test homes.

Field trial results are not yet available, but P&G staff members were very satisfied with the laboratory performance
of the final design version. A total of five, Version 4 Sensor Ball units were produced at Sandia to support the field
evaluation, and allowed some comparisons of unit-to-unit variation. Figure 13 below shows a P&G staff member
testing the mechanical characteristics of the Sensor Ball.

37

Figure 13. P&G Staff Evaluating Sensor Ball Characteristics

38

Appendix A: P&G Background and Initial Proposal

39

F&HC Analytical Sciences - North America
Pc@' Ivorydale Technical Center

Development & Fabrication of a Device for in-sifu Monitoring of Washing-Machine Chemistry

May 5, 1999

The following is a proposal to fabricate a miniaturized sensor-device for following “real time” chemistry and other
key parameters occurring during the wash.

Background: In order to stay competitive in today’s market, we must develop better test methods to shorten the
development time of new laundry technologies. We believe one way to accomplish this is to develop “smart”
sensors that communicate back to us what is occurring in consumers” homes. By monitoring parameters such as
wash temperature, pH, conductivity, turbidity, water hardness, available chlorine, available oxygen, product
consumption and washing machine agitation through a wash cycle, we can develop a more comprehensive
understanding of consumer practices and the impact of these practices on product performance. Ultimately, we can
develop better performance models for speeding in-house development.

A major problem we have encountered in our efforts to develop a smart sensor device is locating commercially
available, miniaturized sensor devices with data-capturing capabilities. In addition, miniaturized sensors for some of
the parameters we wish to measure are not commercially available, nor do we have the expertise to develop these
technologies in-house. Secondary to sensor availability is the need to understand and develop appropriate data-
mining techniques to correlate sensor output with consumer preference (model building).

Proposal: We are interested in working with outside laboratories to develop and fabricate miniaturized, data
logging devices that measure (listed highest to lowest priority): temperature, pH, conductivity,
acceleration/vibration, turbidity, available oxygen/chlorine and water hardness. We would like our initial prototype
devices to measure the first 4 above parameters. Robust macro-scale technologies that we have identified for
monitoring washing-machine chemistry include toroidal and four-electrode conductivity, ISFET pH, thermistor
temperature sensors and piezoelectric acceleration/vibration sensors. Other suitable technologies for measuring
these parameters in a miniaturized device could be investigated, but care must be taken to thoroughly validate them
under wash conditions.

We would like the device to be capable of measuring: temperature from 5 to 95 °C, pH from 7 to 12, conductivity
from 0 to 1500 uS/cm, acceleration from 0 to 100g , and/or vibration from 0 to 50 mm/s. Data capture via telemetry
or self-contained data-logging hardware is also needed. The device should be capable of collecting data on each of
the above 4 (or 5) parameters every 30 seconds (or less) for a period of at least two weeks - the time a product is
typically placed in a consumer’s home for evaluation. We envision a miniaturized device that would be no larger
than a tennis ball, contain non-volatile memory, completely waterproof, and have a density of ~ 1g/cm (so that it
would not sink or rise during the wash). Event marking capabilities are desirable but not required. The sensor
should be easily interfaced with a PC for facile data transfer and manipulation.

We would like to proceed with the fabrication of 10 - 50 of these devices as quickly as possible. The initial
fabrication of this miniaturized sensor is just the first step to better understand washing machine chemistry and to
gain experience in using this device in the hands of a consumer. If the device proves to be successful in these initial
studies, development of more sophisticated devices would be pursued.

Next Steps: Should this be of interest, we would like to request a proposal detailing funding and timing needed to
complete the fabrication of 10 sensor devices. If needed, we are always open to discussing this proposal in more
detail.

Sensors proposal 5-5-99.doc

40

Appendix B: Requirements Document

In-Situ Monitoring/Recording Device for
Aqueous Processes
Requirements Document

Submitted to:
The Procter & Gamble Company
Cincinnati, Ohio

Submitted by:
T. A. Rohwer
Sandia National Laboratories
Telemetry & Instrumentation Department
Albuquerque, New Mexico

Version 4, June 2001

L 41

42

Table of Contents

L@ 1)1 1= 1 OO OO OO USSP SO U SO TO PO TSP 43
1.1 SCOPE..ovviiiieie et UV VSOV USRNSSR 43
122 B2 E S8 anooasoooasmsxsmamnonmnencioonaatnonapsaraeIa0CI0 0O ECIRIEOAON OGN ONNOOCEOBCCICACAO0OGECO0CE 43
112 TEHRY @ O $EFEYET omommomsossecomnonmnmnmsa00onao00sapaEeensaaOoaa e aaOE RO AEOMOAEaE O OCOA OO0 43
1.4 DETIIITIONSt ivieteverecet et ettt ettt ettt st ettt e et e s e b e e st eb e et e nene e s e e s 43
1.5 Customer, Supplier, StaKeholdersceeorriiirieii et 44

R QLTI TT1CTITS PNV UUUOUUPUUEYURYUUUS VOSSN SRS RS S 44
2.1 Electrical REQUITEIMETIEScocveitieriirireenteerienreeere et sme s e sb et sbssnen s e b b besassa e as b sanars 44
2.2 Mechanical REQUITEMENTScvevieriiiieiririeiere ettt sttt eme e b 44
2.3 Environmental REQUITEMENTScccoiiiiiiiiiiiiiiicceciiisis ettt ene e sn e aer e 45
2.4 SOTtWare REQUITEMENESecviveimiieieiiereeie ettt et ee s s s s et sa et sr e nessheabar e e s es e sbs s sbm e n s s aniabene 45
2.5 DeliVery ROQUITEIMICIIS 1. 1t oo eerareresiee et iaresnsacssesasueatasoroncasenssmastteseseomsasaterasassshasesesnsasasotasareressons nnsran 46
2.6 Documentation REQUITEIMENTSc.ecoiiriiiciiiiiiie ittt ettt st sa s 46

1 General

1.1 Scope

1.1.1 This document defines the requirements for a data acquisition system to be used
as a proof of concept In-Situ Monitoring/Recording Device for Aqueous
Processes.

1.2 Description

1.2.1 The data recorder will be based on the existing Miniature Penetrator (MinPen)
design. The small, rugged, self-contained telemetry system developed by
Sandia for use by P&G will measure acceleration, pH, temperature and
conductivity in an aqueous process environment. The data acquired will be
stored in system memory for post-test retrieval and analysis via an external
connection between the data recorder and a PC.

1.3 Theory of Operation

1.3.1 The data recorder can automatically sense placement in the agqueous process,
and begin a data collection cycle for the duration required. During the data
collection cycle, data are measured and stored into memory. Multiple data
collection cycles can be stored. Following retrieval from the monitored
process, all collected data can be extracted. Simple disassembly will allow
access to an interface connector to allow data uploading. Data uploading will
be accomplished with a laptop/PC connected to the interface connector. The
interface also controls memory erasure. After the data have been uploaded,
memory erased, and battery replaced, the data recorder is ready to repeat
another measurement period.

1.4 Definitions

1.4.1 MinPen. Miniature Penetrator Instrumentation. Data acquisition system
developed by Sandia National Laboratories, Telemetry Organizations
specifically for high shock environments.

1.4.2 Resolution. The fineness to which a measurement is reported. For example, a
12-bit system can resolve to about 0.02% of full-scale range.

1.4.3 Accuracy. The relationship between the measured and true value of a signal.

This cannot exceed the resolution, but could also be much worse than the
resolution may imply.

43

1.5 Customer, Supplier, Stakeholders
1.5.1 P&G is the customer with Kris Gansle as the project lead. Telemetry and
Instrumentation Department 2665 is the supplier with Tedd Rohwer as the

project lead. Stakeholders include Technology Partnerships, represented by
Vic Weiss and Willard Hunter.

2 Requirements

2.1 Electrical Require ments

2.1.1 The data recorder will measure 3-axis acceleration, pH, conductivity, and
temperature.

2.1.1.1 The dynamic acceleration range will be +50 g with a resolution of 0.2g. (The
range was +50 g originally, then +100 g for Version 2, then +50 g again
following additional laboratory testing at P&G.)

2.1.1.2 Dynamic temperature range will be 5°C to 60°C with a resolution of 0.05°C.

2.1.1.3 Dynamic pH range will be 5 to 11 with a resolution of 0.01.

2.1.1.4 Dynamic conductivity range will be 0 to 3000uS/cm with a resolution of 3uS/cm.

2.1.2 Will specify a standard off-the-shelf battery specific to the system to power the

data recorder. The recorder will have sufficient power to acquire data for the

periods specified in paragraphs 2.1.4 and 2.1.5.

2.1.3 Data acquisition will be initiated when the monitored conductivity exceeds a
predetermined threshold. An LED will indicate the data recorder status.

2.1.4 The data acquisition routine will sample 3-axis acceleration, pH, conductivity, and
temperature at a minimum rate of 1 samples per second for 40 minutes.

2.1.5 Non-volatile memory capacity will allow the data acquisition routine to be run a
minimum of 20 times before it is necessary to download the data.

2.1.6 Downloading the data will be accomplished by connecting the data recorder to a
PC/laptop.

2.2 Mechanical Requirements

2.2.1 The data recorder will be water tight for use in agueous processes.

44

2.2.2 The density of the data recorder will be that of water + 10 %.

2.2.3 A connector for data download will be accessible after some disassembly.
2.2.4 The battery will be accessible for replacement after some disassembly.
2.2.5 The data recorder will be bright in color.

2.2.6 The external surface of the recorder will be grippable and resistant to identified
chemicals (harshest being bleach).

2.2.7 The mechanical design will incorporate a flat surface to enable stable storage.
2.2.8 The accelerometers will be mounted in a tri-axis orientation.

2.2.9 Conductivity, temperature, and pH sensors will be mounted for direct contact with
environment.

2.2.10 The sensor ball will be permanently marked with an ID number.

2.3 Environmental Re quirements
2.3.1 Operational Requirements

2.3.1.1 Function in agueous processes
2.3.1.2°5C -- °60C

2.3.2 Non-Operational Requirements
2.3.2.1 Survive in aqueous processes
2.3.2.2°5C -- °60C

2.3.2.3 Six-foot drop onto concrete

2.4 Software Requirem ents
2.4 1 Installation software com patible with Windows 95/NT
2.4.2 Download data into an ASCI! file and reset the memory

2.4.3 Analog status of all data channels

45

2.4 4 Computer enabled arming of the recorder for bench testing

2.5 Delivery Requirem ents
2.5.1 One data acquisition sy stem will be delivered to P&G by 8/17/00.
2.5.2 Hardware

2.5.2.1 One (1) sensor ball. (The CRADA was modified to add 5 copies of the final
prototype version.)

2.5.2.2 One (1) interface cable
2.5.3 Software — GUI interface software

2.5.4 Documentation

2.6 Documentation Re quirements

2.6.1 Department 2665 will maintain a Fabrication and Assembly book detailing
assembly and testing issues of the data acquisition system.

2.6.2 User’s Guide
2.6.3 Systems Requirements Document — this document
2.6.4 Critical Design Review documentation

2.6.5 Functional test results

46

Appendix C: PC Interface Software Guide

Establishing Serial Communication

Data are uploaded from the Sensor Ball to a computer using a direct wire connection to the computer’s RS-232
serial port. When the top half of the Sensor Ball case is removed, the 9-V battery, “Attention” push-button, and
serial port are accessible. To access data, the 3-pin connector on the Sensor Ball must be connected with the Sensor
Ball to Computer cable, and the 9-Pin Serial Connector end plugged into the COMI1 serial port on a personal
computer. The cable contains only three wires and uses only receive, transmit, and ground signals of the RS-232
connection. Power must be supplied to the Sensor Ball, either by using the 9-V battery or an equivalent power
supply. To begin the communication process, the small, white “Attention” button must be depressed and held until
the LED near the Sensor Ball cage is illuminated continuously. This is the Command Mode, and will time out with
no input after about five minutes. In autonomous data collection mode, the Sensor Ball serial interface is not
monitored, so no external commands can be executed.

The next step is to run the PC interface software, “SensorBall”, on the computer. This program’s display has
changed to include a debug frame on the right side of the screen. This shows the data exchanged with the Sensor
Ball in hexadecimal format, with some interpretive comments. The “Clear” button below the debug frame clears the
information received to that point.

Sensor Ball Commands
Some of the command options presented in the PC interface software, SensorBall, have changed over the course of
the project. The commands available from SensorBall are listed below with their associated functions.

[[]Initializing — Reset the Sensor Ball, returning it to the power-up state, including returning the default
communication speed to 19.2k Baud and zeroing the time counter. The effect is the same as removing and
reapplying power on the Sensor Ball. The “Attention” button will need to be pressed again to reestablish
communication after this command. The Flash memory is read to determine the number of data collection Records
currently stored in the unit, and identify the next memory location to use when beginning another collection cycle.

[R]JRAM Read — Read, or upload data from the Sensor Ball Flash memory. After the “radio button” is selected on
the SensorBall software screen, additional configuration displays appear that are active after the “Send Command”
button selected. The “Number of Records” dial actually uploads the number of 128kB Flash memory sections
specified. (If an Acquire function were terminated before the complete Record was stored, less than the entire
128kB memory would be used for that one Record.) The computer file name must also be selected. While waiting
for this input, the Sensor Ball LED will flash in a pause-blink-blink pattern. Once the final “Read” button is
selected, the data are uploaded and stored in the specified file. The LED will toggle on or off for each Record
Frame (28 measurement sets) uploaded. If the high Baud rate was selected, uploading 8-MB memory should take
less than 20 minutes.

[A]Acquiring to Flash — Acquire one 128kB data Record, but additional records will be acquired if the Sensor Ball
is in a conductive solution (the normal operation of the Sensor Ball.) This initiates the same recording function as if
the Sensor Ball had detected sufficient conductivity to store a Record. The time to store a complete Record is now
45 minutes (measurement sample rate 2.66 Hz). However, pushing and holding the “Attention” button until the
LED remains on continuously can halt the recording process. This halts the recording process and returns the
Sensor Ball to the command-processing mode.

[S]Status Request —Returns the current values of the Sensor Ball measurements, the number of 128k byte memory
sections containing data, and shows the unit identification (version and unit number). A blank Flash memory would
return a zero for the Record count.

[E]Erase Memory — Erase all 32MB of Flash Memory in the Sensor Ball. The Sensor Ball monitors the result as
each 16kB Flash Memory Block is erased, and if an error is detected, that Block is marked as defective and not used

47

to record data. The LED intensity will dip and flicker slightly during the 10 seconds or so that are required to erase
memory.

[B]Baud Rate Change —This sends a message to the Sensor Ball to toggle between 19.2k Baud (the default speed)

and 115.2k Baud. If the Sensor Ball and computer get out of sync with regard to communication speed, the situation
can usually be corrected by issuing the Baud rate toggle command a couple of times to synchronize the speeds.

48

Appendix D: Sensor Ball Test Procedure
Unit Number: Date:

Assembly information

Microcontroller instruction clock Frequency Test (U10-P10): kHz
R13 Value for offset is: kQ.

R21 Value for Gain is: kQ.

R46 Value for pC Clock is: kQ.

Functionality Tests
The properties of the Sensor Ball that will be verified are as follows:
» Communication with PC
o Flash memory good
& Power consumption nominal
» Nominal pH and conductivity measurements in standard solutions

Connect the Sensor Ball to a PC, start the HyperTerminal program (configured at 19.2k Baud). Set the
supply voltage to 10.0V. Configure a DMM to monitor current supplied to the Sensor Ball. Attach power
clips to the appropriate battery clip terminals. Verify that “Sensor Ball Version 4 Unit _” was received,
with the unit number matching the expected value.

The Sensor Ball should be in Acquisition mode, with the LED blinking at about a 3Hz rate. Record the
supply current. Current in Acquisition mode: (Should be less than 30mA)

Hold the “Attention” button until the LED is steady. This halts the Acquisition mode. Record the supply
current. Current in Attention mode: (Should be less than 30mA)

Use HyperTerminal to send the following commands. The first character is a zero, “0”. In each case, type
the command and hit carriage return. The command should be echoed back by the Sensor Ball. Then send
the “Verify” phrase “0V”, also followed by carriage return.

1. Send the memory Erase command “0E”. Check that erase messages are received after every 4MB
for the entire 32MB of memory. Y /N

2. Send the fill command “0F04”. Check that messages are returned after every Record, and that 4
Records are written. Y /N

3. Send the Memory upload command, “OR”. Verify that the LED has a Blink-Blink-Pause
sequence. Y /N

4. Press the *Attention” button on the Sensor Ball to return it to command mode. The LED should
be on steady. Y /N

Calibration Tests

Exit HyperTerminal, and run SensorBalll12. In response to the Status command, the display should show
“Sensor Ball Version 4 Unit _” was received, with the expected unit number matching the displayed value.
Y/N

Set up pH and conductivity calibration standards. When the Sensor Ball is immersed in the standard, move
it in the solution briefly in a stirring motion. Then, execute the Status command using the SensorBall12
software. Record the values in the table below. After removing the Sensor Ball from each standard, use
the air hose to blow off solution clinging to the sensors.

49

Table 1. pH Standard Test Results

Air (before immersion)
pH 5 Standard pH 12 Standard

pH,
Counts

Temperature,
Counts

Table 2. Conductivity Standard Tests

Air (before immersion) 9.65 uSiemens/cm 1417 pSiemens/cm
Standard Standard

Conductivity,
Counts

Temperature,
Counts

Table 3. Static Accelerometer Tests

Rotate 90° Left — Rotate 90° Back —
Normal Orientation (+Y) / Attention button down battery terminals up (+Z) /
Inverted (-Y) (+X) / Inverted (-X) Inverted (-Z)

Accel. X,
Counts

Accel. Y,
Counts

Accel. Z,
Counts

Table 4. Monitor Channels

Record
Number

Battery, V

+3V Supply

+6V Supply

Data Upload / Memory Tests
Execute the Baud command. The display should show 115.2 k Baud. Execute the Status command to
verify that communication still works. Y /N

Execute the Read command, selecting 5 records to upload. This step assumes that the Functionality tests
were run, which places 4 records into memory. The upload should take about 3 minutes, Note error
messages in right panel of SensorBalll12 screen.

Number of errors:

Exit SensorBalll12, and run HyperTerminal at 19.2 k Baud. Press the “Attention” button to reset the Sensor
Ball serial interface to 19.2 k Baud. The display should increment with a “.” character about every 4
seconds. Y /N

Use HyperTerminal to send the following commands. The first character is a zero, “0”. In each case, type

the command and hit carriage return. The command should be echoed back by the Sensor Ball. Then send
the “Verify” phrase “0V”, also followed by carriage return.

50

1. Send the memory Test command “0T”. This process will take about 40 minutes. Two sets of
messages will be generated. Check that erase messages are received after every 4MB for the
entire 32MB of memory. Then, check that test messages were generated after every IMB. Verify
that all error values are 00. Y /N

2. Make sure the Sensor Ball is in “Sleep” mode. Do this by either letting the interface time out
(about 5 minutes after completing the last command) or send the Initialize command, “01”
followed by Verify, “0V™.

Measure the supply current: (Should be about 300 pA)

End of Testing
Remove power and the serial cable. Screw on the Sensor Ball top half. (Note that the Sensor Ball must be
shipped with the halves separated to avoid a pressure differential across the reference electrode.)

51

Appendix E: Schematics

VoD E— ST ; @) N
T R40 — 2 3
© 20K
€29 €30 NE Altention . . VX Covx
0fufd | 0.1ufd P 31 AMHz
8 § 0SC2/CLKOUT v —
RAQIAND |18 ACCEL X 20K C26 PUSHBUTTON *8
RA1/AN1 ;? 2%55[; <P 0.1ufd Attention ™
RAIANZ -2 WER_ON
Eﬁ:mmMA T RAJANIVREF §§ e ?gg Off-Board LED
- RA4TOCKL 54— coNpucT LED_ON X9
RAS/AN4/SS A q || &
RBOINT |- POWER_ON N Ccas
Eg; 10___3V MON [= 0.1ufd
VDD VDD REs 11 6V_MON 1133
RE2 14 U1 0 1ufd
R46 R47 RES g1 7Y P 1 6
7.87K 499K RB6 47 Wp- cas o] [ROREECREREN Y vo
RB7 et 3 vee C1+ [
: GND (Vg
18 RCOT10SOMICKI Fa2—X | ¢p) {7 3 tiout c1- & e
309 MCLRVpp RCUTI0SICCP2 —3a—Rre T]FORCEON C2+ |2 ‘
b OSC1/CLKIN RC2/CCP1 F—Res o TN C2- [!
RCISCKISCL [35—p e g INVALID~ V- g !
RC4/SDISDA - R10UT R1IN
C40 RCE/SDO [-gg— R53 i XRX
201 RCE/TXICK (5 5 3
RCT/RX/DT 2
38 /01 i U3
ggﬂggg? |39 wO2 3V xﬂ# NC NC ﬁ—)(3-pin Connector
RD2IPSP2 (47— XS INC Tiggsip NC X
RDIPSP3 — o - %—3 NC NC e
RDA/PSP4 |- o A *—¢ NC NG (o o
RDS/PSPS5 | o %—a1 NC 1108 |29 o
RDG/PSPE & o #*—2- GND 107 g5 o8
RD7/PSP7 = & RiB~ V06 g5 b
__ - RE- 1105
s [2T % —ee——gite e L
a8 RE1MR/ANE 57 1] NC NC g 'H_omfc
24 RE2ICSIANT [o 5 NC NG ‘
T < vce Vee ge
Q Bk = vss VSS qg
€7 5| NC NC 7 %
CLE 16 'C‘*EE EE 33
ACCEL X
ACCEL_X ((—ACCEL X = E ALE 1104 gf 58‘31
WE- 1103
Y '~
ACCEL_Y ((—ACCELY Wp 19 1 we- o —c
ACCEL 7 (—ACCEL Z X1 | NC vo1 98
2 #—25 NC NG 5>
1 ¢¢—BH X 93| NC NC g
pHL X—5a NC NC o
NC NC =X
CONDUCT ((—CONDUCT
TEMPC—TEME
ALL RESISTORS ARE SURFACE MOUNT 0402
oV MON <<M -
- v MON 0.01 uF CAPACITORS ARE 0402 itie
aV_MON (—SV MON . i
MON <& o 0.1 uF CAPACITORS ARE 0603 ____Microcontroller, Memory, and RS-232
6V_MON << ize Document Number Rev
10 uF CAPACITORS ARE 3216 A | Re2111 o
ate: Wedne: January 23 2002 Bheet 1 of 1

52

R71 added to board.

147K ;7
R71
R11
150K N uic
o 12 > o
11
OPA4343
C4r —— o
0.47ufd !
R18
0

R21 is gain adjust.

B - R13 is offset adjust.
L C1 R12
0. 1ufd 0 R13
82 5K av
R .
X1 1 Meg U1A 5
REF ELECTR a
1 5
2 -// RN
L c3 |~ opata4a R4
0 Tufd 0.47urd 25K
v e
|
I
Ré 7
TMeg 0.1ufd
R21
]
365K
6v
R16 av
118K R19
R20 14 15K
X2 100K
SOURCE 15
1 R OPA4343
TH
c13
X3 0 fud
|_COUNTER ELECTR
™
x4
DRAIN
TH R24
5 36K
NS
v
X
SUBSTRATE

TH

Tp2
1
R67
200 L
H o

itie

pH Measurement Circuit

ize Document Number ev
A R62111 21
ate: Wednesday, January 23, 2002 heet 1 of 1

53

—————<ovx 3V
c22 -
5 RS R36 0.1ufd o UTA
14 U 100k P5 38.3K ';.; 3| opadaa
[__LIL VX >| 9VBUS A A_BAT MONE VBUS W sm o . 3 . e
V_MON
TH MMBRO540 TH _L 21 -
R37 L1
X15 10K c23
0.1ufd &
TH N
9V_MON
/DD
oBLS LP2986 TP6
) a ouT g o A A VDD _PROBE I
= [5] TAP SENSE = R70
FEEDBACK ERR~ —X =
+ i P R 9VBUS L. 100k TH
C49 ‘{5 13 —~
ol 10ufd v c50
ey 10ufd
- - 3V =
Lift pm 8, U2. T R41 u7e
) LP2986 TP7 38.3K OPA4343
9VBUS _ 4y _ g 3V PROBE E1 | N Ao . 12 0
= | 3 TAP SENSE [R2 % ———<3V_MON
+ FEEDBACK _ERR~ F5—X power ON ~ 100k TH R43
GND SHTDWN~ Lz 10K ©25
c6 %7 U2 ~ 0.1ufd
o 10ufd c5
ol 10ufd
I REG1 MON
i
R17 c12
200K 22pfd
AN By
R38 U7B
LP2986 TP8 OPA4343
9VBUS _ a e AAA—EY PROBE [7 &v
3 6 7
- *—5 1aP SENSE [2—X - R15 ———— 6V_MON
FEEDBACK ERR~ F—X POWER ON 100k
= Gt ;1 GND_ SHTDWN- -2 ORER- ST "
i m
(2] [x
R22 . .
511K Lift pin 8, U4. REG2 MON
[Title
S 4 Voltage Regulators and Monitors
POWER_ON & hort D4. Size Document Number ev
- Short pins 2 and 3, Q1.| » | Re2'" 21
Date: Wednesday, January 23, 2002 Bheet 1 of 1

54

74AC4040

v < 8
18 1 vee

C36

gD Tufd

RST
IMHz{(—MHz 104

11

GND

Q12

>

=
=y

K

Clock is microcontroller
instruction cycle clock,
so about 3.686MHz
divided by four.

7.2kHz

R48 UBD C44 C51
20K OPA4343 10ufd 10ufd
7.2kHz AN 14 X11 X10
1 2 1 2
15 p (| I I - (
R50 TH TH
10K
X13 X12
Lift pin 15, U6. ™ ™
Jumper pins 15 and 16, U6. o
Jumper pins 10 and 11, Ue6. Shart
. W
Jumper pins 12 and 13, Ue.
Y o
=
< UsC 7
) 0PA4343 51,
12
* > 10 "{; OPA4343
11 | ! uUsB
L1
i

8v 6V BV
C37 ca2
10ufd 0.1ufd
u12
2 3\ 1 1 6 ca4
[F 2 | Vin Vs 5 0 1ufd R51
S NC NC X o
4| -vs NC [—=7—X
%7 — 5 Cav NG 55—
R52 518 COMMON [—F
1K | BUF OUT IRL & o lc41
g | BUFIN out 39.2K 0.1ufd
¥—=— NC NC
MX636
TP3
. —+]
RS4 OPA<343 | =
30.9K R69
L AA 143 © 200
T AN <L CONDUCT
R56
2K o
& R58
274K
— A
R60
34.8K
Title
Conductivity Circuit
Size Document Number Rev
A R62111 2.1
Date. Wednesday, January 23_2002 Eheet 1 of 1

55

H To Signal Conditioner Board
F2 for Acceleration Y and Z

Devices
N TH

F3
1 E ACCEL_Y

—<{ ACCEL_Y
o TH
F4
] ACCEL Z 4
o - 1 { ACCEL_Z
49.9K
R26 TH
Jumper pins 13 and 14, U5, c43 P
VAV
U5 0.1ufd
R27
D—; NC vs |3 1008 o
O—35 NC NG R29 m?
O— NC NG (—7—0 100K q R35
i NC NC = ™
5 2 ™ 200
O—3 NC vouT ~AA RN ACCEL X
O— NC SELF-TEST 4 3 AN — <{ ACCEL_X
COMMON ZERO ADJ 4+ L UsA
! I OPA4343
c18 - Y
ADXL150 0.1ufd
cA7
! 0.1ufd
Y
X6
TP4
Off-Board -
Temperature R68 ™
Sensor TEMP
AD590 e

56

itle

Acceleration X and Temperature
ize Document Number ev
A R62111 21

Date: Wednesday, January 23, 2002

heet

F1

Y,
R1
49.9K
R2
Y, 49.9K
g ——AA—— =2
Jumper pins 13 and 14,US. | L _, GND
0.1uF R3
us g 100K ™
x—+{ne vs (4] - U1A
3 NS Ne [z I‘I R4 OPA2343 _
4 Cli > 100K R10
NC NC 5 il 2 200 F3
NG vouT A - ; ACCEL v
X—=1NC SELF-TEST g—X 3 AN q
COMMON ZERO ADJ - + !TH
J; —L o P2 w BV
ADXL150 0.AuF .
ca 2
™ =
0.1uF 5
] m
| .
2
R11 =
49 9K =
- R12 c
av 49.9K]
¢ A ©
. o
Jumper pins 13 and 14, U4. c12 [
0.1uF R13
U4 ;]; 100K
*—i ne vs Ha ~ -
X—Fne NC = 1 R14 < UB
a|Ne NG 43 = 100K OPA2343 R20
6| NC vour |5 IR b 7 20 ACCEL_Z =
NG SELF-TEST [- A 1
COMMON ZEROQ ADJ 7 +
™
c13 P4 ©
ADXL150 g 0.1uF _El
TH

ALL RESISTORS ARE SURFACE MOUNT 0402

ALL CAPACITORS ARE 0402 EXCEPT

0.15 uF & 0.1 uF CAPACITORS ARE 0603

Accelerometer Channels Y & Z

1 uF CAPACITORS ARE 0805 nz:
10 uF CAPACITORS ARE 3216

Document Number
R62110

Date: Thursday, January 17, 2002

— Bheet

1

57

Appendix F: Assembly Drawings and Electronics Materials Lists

[.

2

1

ASSEMBLY NDTES:

1. ASSEMBLE PER J-ST0-9@1. CLASS 2.

2. ORIENT COMPONENTS AS SHOWN.

E ~=>DESIGNATIONS ARE FOR REFERENCE
ORLY AN ARE HOT TO BE_HARKE
ON INDIVIDUAL COMPONENTS.
SOUARE PADS OF MULTIPLE PIN
CEVICES INOICATES PIN ONE.
PUSITIVE S AR
CAPACITORS
SIDE OF DIDDES. PIN ONE OF

A

MULTIPLE PIN SURFACE HOLNT DEVICES
IS INDICATED BY A LONGER PAD.

S .

(GEQHETRIC PRECISION - MA

w3104 MoDCT
AT M

reervees m orscniFTIon sarr om [we

REz1i0-a0a |a |.

RE

Ziﬂﬁ%.lﬂi:&{‘;”“ A

AVES, 2991 /ROHVER, 2665

7991 /AGHVER. 2665 TR

ACCELEROMETER CHANMEL:

R&Z118

s
REVISION .1

BILL OF HATERIALS

ML)

JAHUARY 22,2002

7 REVISED: MONOAY: JAMUARY 21. 2002

17285242 PAGEL

17EM GUANTITY REFERENCE PART PCB FOOTPRINT
1 5 €3.09.C12,C13.C14 8.1UF @E9)
2 e TPL.F1. TPZ.FZ. TP3.F3: TP4. ™
3 4 RLRZLAILAIZ 49,% 0482
4 4 RIA4RIZRI4 188K 9492
5 2 R28.RID 200 2482
5 1 ut OPAZ3I43 HSOP-8
7 2 U4.US ADMLISD S0-14
z
1 PRIN' ¥IRI ARD SHTJ]
A
1
HA|J-ST0-881 REQUIREMENTS FOR SOLDERED ELECTRICAL]
{ | AND ELECTRONIC ASSEMBLIES
i PRATCITROL W poe| 2 | o

e 1jz]alals]e
nae |cicje]. |.

T —

[Peeil s bf a1 IO8
UNCLASSIF1ED

- | SENSOR Sa%h }COND[I’[UNER

e
UNCUASSTFTED | Rez11E.

58

. . [crece 1421 3[emc NONE Jomes 1 o 3
1t SA-CHI- 1721782 Ghisin_SA-vB-va8

5 _

Nmme
C"o
Mme
— .

.)
® | L
Nk = oEN
=1 — —
SES, "S-

AR ~
KR g
&l 1 ®
0= !_ﬁ_ui@
o> =
.-m ol M

R

59

- 1 O S l l n

FAGRICATION NOTES:

102
8. SOLDER 6. COrDUCTOR WIDTH AHD SPACIND) V. HANDLE ARTWORK PER 1PC-D-318,
sooen st o PRIMRY AND SECONDARY SIDES OF THE THE HOMINAL COMDUCTOR WIDTH AMD SPACING DN THE FINISHED 4 EA. CONDUCTIVE LATERS
BE PE! nrnkvc mleu. OR CAD DATA- BOARD ls DEsluhEa FORy 2 EA.
o e BME COPPER mn PERMANENT POLTHER 2 EA. SILKSCREEN
FILH PER 1PC-SH- 018 TPE B: e T nismm FOR wiOTH - .00
TNV PAD 76 WASK CLERRRCE 15 PERNISSABL SPACING - B.888 2. WATERIAL®
UANINATE CLASS FIBER EPOXY £LAME RETARDANT PER IPC-4191.
o @] T T ING, SHALL DE PER MARKING ARTVORK. OR CAD DATA. USING e %ﬁi’m OATAL TiFe b PER TPC- A Hu L
— b . X ! 1,
v B WHITE NONCOMIUCT IVE EPOXY THK ua ch:n IN COPPER. BOARD 7. HDLE REGL | REHEN! e o ha !
| SHALL BE KPKED NITH VENDOR LOGD FOLLOVED BY 94V-8 AND HINIMOK R mmLAn RINo SHLL g€ 0,802 JICH (QUTER) AHD 3. coeeeR At
axx DATE CODE OF MANUFACTLRE e 1. 66 & FOUR DIOTT NUWIER 8,881 INCH R) NEASURED AT TRACE PAD ANCTION. P RFACE - TOTAL COPPER ON THE SURFACE IKCLUDING
(GHD PLANE) (FIRST TWD. WEEK: LAST TWO. YEAR) o mLE. LocMmNs YD TE 8,814 INCH GOT. nmmm CLADDING PLUS PLATED COPPER SHALL BE 2.B OUNCE.
~ 5T t L'Etfaoféé“ & m'ﬁ'&?.“s'fp?p‘"ﬁ's",‘“m”“.}?gs AL ©. HOLES - COPPER CORTIMO ON WALL OF HOLES SHALL BE @.a1
835 HIK] 18, HAHUEACTURE 1N ACCOROANCE WITH PERFORMANCE STANDARD s
IPC-E812, TWPE 3v CLASS 3¢ mnr.u.s 3. FINAL FINISH X, 31«%5 f‘!i:‘;‘ mvérﬁ %&L ”wGWIMlm'MfERT AVERAGE- HO VALUE LESS THAN B.0009.
A POSTINE ETCIanc OF PLATED THAOUGH HOLES SHALL e 4, SOLDER:
o o508 . BoB2 10006 BREFERED) F:II.LED unflusia&:n 3;1:5 a. m:w's:::a%fm' HAY € HOLES - SOLDER COAT ON ¥ALL OF PLATED THROUGH WOLES
62+ 8,006 . Fi pnw.n , ELECTR vE F SHALL BE TIN-LEAD teg TIN. o L LEAD) [N ACCORDANCE V1TH
¢ w@»;‘rfnawvs. ¢ G A7 G 0. PLATED THAOUGH HOLE SIZE ANO QURNTLTY ARE AS FOLLOVS! 1€ SoOERABILITY REQUIREMENTS OF J-STD-9@d.
€. COUPDNS REDUIRED.
TIPICAL SECTION 5. GOLD PLATE: N/A
T b Hi 3 -
iR 13, MODIFICATIONS OR REPAIRS SHALL BE IN ACCORDANCE prouhlels
VITH 1PC-R-700.
| 0.0260 -
P 0.0140 Yas 16
0.1040 No 2
[c

B €600

2.104 £.002
[ar[EK- SILKSCREEN
o-naz |SILKSCREEN
A[SH-ne2118 B0z SOLDERMASK 1
H-RE2118 - SOLDERHASK
7| 0D-RE2118-D82 KASTER PATTERN
AR|0D-RE2118-CA2 WASTER PATTERM.
] [4 [00-RE2110-802 HASTER PATTERN - ,_
#R |0D-R62118-A82 TER PATT
FRIALS FOR
Hal1PC-4181/24 ot m &0, Illé'l_lﬂ!“ "EHINTED BORDY
., HIE I
[Ha|TFC-s-648 OF PERMANENT POLTRER| '—‘
Conting O BLDER Hask) FOR FYB-S
WA TPC-R-700C GI.IIIE\.HES FOR HOD, » REWORX O
. PAIR OF PRINTED BOARDS AHD ASSYS
|
WA [IPC-D-318 a\uu:Ln!s FOR PHOTOTOOL GENERAT 10N
; sunemn TECHHIQUES.
waA[TPC-Ea1Z WD PEAF. SPECIFICATION
o Pon ioID PRUNED S0ARDS A
WA | J-STD-83 SOLDERABILITY 1ESTS FOR PRINTED
—— B rarcna = ey ~por| B e

irAnA_SA-CHK-1721/82

60 |

l

H

ASSEMBLY NOTESH [| o
PER J-ST A5 Led B2 CESCGAIPTIom L om | s
I+ ASSEHALE Sl RS REZ111-008 REAVES, 2991 /ROMVER, 2665 oo
2. ORIENT COMPOMENTS AS SHOWN, TR Y e T bl
WES, 2 B T.R
DESICHATIONS ARE FOR REFERENCE D9, B
ONCY AND AAE NOT TO BE HARKED P LR Sl
ON IND] VIDUAL COMPONENTS. € BYES, 2931 MONER: 7665 T
SQUARE_PADS OF MULTIPLE PIN XS0 ExTENSIVELY
DEVICES INDICATES PIN ONE.
POSITIVE SIDE OF POLARIZED
CAPACITORS AND THE CATHODE
SIDE OF DIODES. PIN ONE OF L]
HULTIPLE PIN SURFACE MOUNT 0EVICES
IS INDICATED BY A LOWGER PAD.
HICROCONTROLLERA, MEHMORY.: AND RS-232 REVISED) TUESDAT. JANUNRY 22, 2082
RE2111 REVISIONs 2.1 -
BILL OF MATERIALS SANURRY 22,2882 17104104 PAGE)
TTEK QUANTITY REFERENCE PART PCB FODTPRINT e
1 26 Cl.C2.C7.Ca.C B.IUFD 8603
€22,023,C24. L.
€28,029, 38, C
€35.C36. C38.T
c43
2 2z C3.C47 09.47UFD 0805
3 a C5.C68,C18,C11,C37,C44, 1IBFD 3216
€49.C58,C51
“ 2 C4B.CL2 22PFD @482
s 1 01 HHEAGS4D 500-123
6 27 X1.IPL.F1.X2.TP2.F2. X3. TH
TP3,F 3. XA4 TP4. F4. X5. TPS,
X6, PG+ X7, TP7, X84 TPB. X4,
X1@ X101+ X2, X13,X14.X15
7 2 RB.RL 1 MEG et
8 7 R2,R9.A15.A2.RA27.RZ9. 198K B4Rz
R78
a 1 Rt 5 pB2
123 1 RI1 158K 8482
1 3 R12:R18:R33] B482
12 1 RI13 BZ.5K 8482
13 1 RI6 11,8k 8402
14 1 RIT 208K 9482
L] 1 RI9 15K 8482
16 1 R21 365K @482
7 1 R22 ALK 9482
18 1 R24 536K @482
19 z RZ6.RZ3 49.% @482
F- 2 R48.RZ28 7.87K 8482 8
21 5 RI5.R49,A67.RES.A69 208 B4R
22 3 R36.R36,A41 3B.3k @482
23 4 RI7,A¥,A43.AS 10K @482
24 4 R48.R42.A48.A5] 29 B4D2
25 1 4.9 2482
2 2 RS7,RE2 1K @402
21 1 2.9 Q402
e 1 RSS 392K @482
= z R59.A56 2K [
38 1 RS8 274k a482
3l i R6A 348k @482
2 1 RG1 SHORT @492
n 1 R71 147K 22
34 1 sW) PUSHBUTTON
» 3 ur.ue.u7 OPR4343 SSOP-18
% 3 U2,U4,U13 LP290G $0-6
37 1 ul 3-PIN CONMECTOR —
E] 1 " ADXL158 SO-14
»n 1 w THEEB12 150P-48
o 1 u PICIBCT74A TO TOFP-44
41 e UId 74AC4@4R SOIC- 16 NARROW
az l uiL HAX3221 SS0P-16
43 1 U2 HX638 $0-16 VIDE
z
1 PRINTED WIAING BORAD SHII) 1
A
NA[T-sT0-0a1 | RECUIREMENTS FOR SOLDERED ELECTALCAL]
AND ELECTRONIC ASSEMBLIES
B et [r——— e | 0 | iror

GEQMETRIC PRECISION - NA

61

s [ifz]3]sls 6 MM NTED wiRING ASSEMBLY
me Jclele].].].]senson saL CONTROLLER

[T cLrsbaricaTian
UNCLASSIFIED

o s Lk 8 1A IO “m'r-‘imm R
UNCLASSIFIED | EJ|RE21L1

e 1. Gt 1421 3[#at 10X1 o611 & 3
| gaschk-is2iez Giom_sa-ve-vas

1

2
o
c
[
B8
C2/KanmR59
1
A
cPro surmen
R62111
e
UNCU\SSIFI ED,
K Jeer1421scnr 1961
£ lmec Jomrz o 3]
[Al 5A-CHK-1/21/92

62

8.862+/-0.03E

TYPICAL SECTION
AFTER LAMINATION
SCALLNONE

a.
RlE RN

B.064 +.002-

SOLDER MW

SOLODER musum o Fﬂlmﬂ‘i NIJ SECONDARY SIDES OF THE
BOARD SHALL BE PER ITWORK MASTER. DR CAD DATA.
OVER BARE COPPER I.EING mwlmaﬁuu PERHANENT POLYHER
FILN PER IPC-5H-84@ TYPE B. CLASS 1. RESIZING FOR
MIMIHAL PAD TO MASK CLEARANCE IS PERMISSARLE.

HAAKTHG
MARK [HO BE PER MARK[NG AATWOAK, OR CAD DATA. USING
WHITE NONCOWDUCTIVE Ean' INK OR ETCHED IN COPPER. BOARD
‘SHALL BE HARKED WITH VEI OVED BY 94V-@ AND
DATE CODE OF MAMFACTURE COWSISTING OF & FOUR DIGIT NUMBER
IFIRST TWO: WEEKs LAST TWO, YEAR)
HAHUFACTURE 1IN ACCORDANCE WITH PERFORMANCE STANDWRD
IPC-6B12, TYPE 3 CLASS 3. PROCESS 3. FINAL FINISH X,
A. POSTIVE EICHEACK DF PLATED THADUGH HOLES SHALL

BE .0082 10 .9A1 |.2205 PREFERED].
B. FOR TYPE 3 PRODUCTS. ELECTRICALLY VERIFY FOR

OPENS AND SHORTS.
C. COUPONS REOUIRED.
HOOIF ICATIONS OR REPAIRS SHALL BE IN ACCORDAMCE
WITH IFC-R-708.

P b PPlJI
Fifbep f
i

—]

pep P

//

(2% . 575)—=fe—— 575 ——uf

1140

CONDUCTOR WIOTH AND SPACING:
THE NOMINAL CONDUCTOR WIDTH AND SPACING ON THE FINISHED
BOAAD 15 DESIGNED FORs

- @.008
- 8.088

WIDTH
SPACING

HOLE REQUIREMENTSs
A, MINIHUM ANNULAR Rllli SHALL BE 8.882 INCH {OUTER) AND
9,881 INCH {INNER) HEASURED AT TRACE PAD JUNCTION,
B, HOLE LOCATIONS TD E 9.2814 INCH 0DT.
c. PIJI.ES SIZES APPLY AFTER SOLDER COAT NG AND REFLOV.
ARE PLATED THRU EXCEPT AB]DEHTIF[EDv
HL’LE SIEES IN ll{ DRILL FILE NI llﬂﬂ
A TOLERANCE OF

PLA”'G. ﬂl.l. HOLE SIZE‘S ’45!1 IN:H “:D?KLW HAY BE
F[LLED ¥ITH SOLDER OR SOLDER Mi MATERIAL,
D. PLATED THROUGH HOLE SIZE AND mun ARE AS FOLLOVSH
Through Holes
Symbol Dlometeriin) Plated Quantlty

A 0.0190 Yes 3

L] 0.0260 Yes 27

4 0.0140 Yes 147

Q 0.0640 No 2

5 0.1300 No 2

® 0.2750 No z

@2x .2754.004

OHO[emals G

FABRICATION HOTES:

HANOLE ARTWORK PER 1PC-D-19.
6 M. COMDICTIVE LAYERS
2 £A. SOLDER KASK
2 €A, SILKSCREEN

uulnnTE GLASS FIBEA EPOXY FLAME RETARDANT FER (PC-4181.
TYPE GF. S1ZE AND CONSTRUCTION TN ACCORDANCE WITH CROSS
SECTION. PAEPREG MATERIAL TYPE GF PER IPC-4181.

cuPPEu PLATES
LS ALE AL COPPER ON THE S\Hrﬁﬂ: INCLUDING
ﬁﬁ] IM. G.FI)IJINU PLUS PLATED COPPER SHALL BE 2 ﬂ Dﬂiﬂ.
B. COPPER COATING ON WALL OF HOLES SHALL BE

Av:mﬁ:. ND VALUE LESS THAN @.2089.

SOLOERS
HOLES - SOLDER COAT ON WALL OF PLATED THROUGH HOLES
SHALL OE TIN-LEAD (G@% TIN. 40% LEAD) [N ACCORDANCE WITH
THE SOLDERABIL1TY REQUIREMENTS OF J-STD-883,

GOLD PLATES W/A

SPECIFICATION FON BASE RATERTALS FOm |
Ml 1PC-4101/24 |§) S, MLTILATER PRINTED B0ARDY
HAlTPC-8H-B48 PERF, OF PERNANENT POL
|] COATING (SOLOER HASk) FOR PyB-o
HA [TPC-R-706C GUIDELTHES FOR HOD., REWDRK AND
REPAIR OF PRINTED BOARDS AMD ASSTS
HA{1FC-0-318 mlmu»is FOR PHOTOTOOL GEMERAT 10N
|] 'SUREMENT TECHNIQUES
WA [IFC-sB1Z PERr eFECIFICATION
|] For AIGID PRTNTED B o
NA|J-5TD-883 SOLDERABILITY TESTS rm I‘RlNTEI]
BOARDS
] Paklstimitn w0 CESCRTPT IRTERI M

63

64

This page intentional left blank

Controller Board Bill of Materials

Microcontroller, Memory, and RS-232 Revised: Thursday, January 17,
R62111 Revision: 2.1

Bill Of Materials January 17,2002 8:50:53 Pagel
Item Quantity Reference Part PCB Footprint
1 26 c1,c2,c7,C9,C13,C17,C18, 0.lufd 0603

C22,C23,C24,C25,C26,C27,
c28,C29,C30,C32,C33,C34,
C35,C36,C38,C39,C41,c42,

c43

2 2 c3,C47 0.47ufd 0805

3 9 c5,C6,C10,C11,C37,C44, 10ufd 3216
c49,C50,C51

4 2 c40,C12 22pfd 0402

5 1 c48 230pfd 0402

6 1 D1 MMBRO540 SoD-123

7 27 X1,TP1,F1,%2,TP2,F2,X3, TH
TP3,F3,X4,TP4,F4,X5, TP5,
X6,TP6,X7,TP7,X8, TP8, X9,
¥10,X11,%12,X13,%14,X15

8 2 R8,R1 1 Meg 0402

9 7 R2,R5,R15,R20,R27,R29, 100K 0402
R70

10 1 R4 25K 0402

11 1 R11 150K 0402

12 1 R13 82.5K 0402

13 1 R16 11.8K 0402

14 1 R17 200K 0402

15 1 R19 15K 0402

16 1 R21 365K 0402

17 1 R22 51.1K 0402

18 1 R24 5.36K 0402

19 2 R26,R25 49.9K 0402

20 2 R46,R28 7.87K 0402

21 5 R35,R49,R67,R68,R69 200 0402

22 3 R36,R38,R41 38.3K 0402

23 4 R37,R39,R43,R50 10K 0402

24 4 R40,R42,R48,R51 20K 0402

25 1 R47 4.99K 0402

26 2 R57,R52 1K 0402

27 1 R53 0O 0402

28 1 R54 30.9K 0402

29 1 R55 39.2K 0402

30 2 R59,R56 2K 0402

31 1 R58 274K 0402

2002

65

32 1 R6E0 34.8K 0402

33 1 R61l Shert 0402

34 1 R71 147K 0402

35 1 Swl PUSHBUTTON

36 3 Ul,U6,U7 OPA4343 SSC0P-16
37 3 Uz2,U04,U013 LP2986 SO-8

38 1 U3 3-pin Connector

39 1 Us ADXL150 50-14

40 1 us TH58512 TSOP-48

41 1 uo PIC16C774A TQ TQFP-44
42 1 Ulo T4AC4040 SCIC-16 Narrow
43 1 Ul1 MAX3221 SSOP-16

44 1 Ul2 MX636 SO-16 Wide

Assembly Changes and Patches for R62111

Assembly R62111 contains patches, and has a number of deleted components. The components deleted are
as follows:

Diodes Deleted
D3, D4, D6, D7, D8, D9. (Only D1 remains)

Transistors Deleted (all deleted)
Ql, Q2

Capacitors Deleted
C4, C8 (0.1uF)
C45, C46 (10uF)

Resistors Deleted
R3, R9, R10, R14, R23, R62

Resistors Added:
R71 — Connect from Ul pin 12 to ground (U1 Pin 13)

Patches:

Jumper pads 2 and 3 of the Q1 footprint

Lift pin 8 of U2

Lift pin 8 of U4

Tie U2-pin8 and U4-pin8 to D4

Short pads for the D4 footprint

Jumper U6 pin 10 to U6 pin 11

Jumper U6 pin 12 to U6 pin 12 (ground)

Lift U6 pin 15. Jumper U6 pin 15 to U6 pin 16
Jumper U5 pin 13 to U5 pin 14

66

Signal Conditioner Board Bill of Materials

Sensor Ball Signal Conditioner Revised: Thursday, January 17, 2002
Revision: 00

Bill Of Materials January 17,2002 14:01:33 Pagel
Ttem Quantity Reference Part PCB Footprint
1 5 C3,C9,C12,C13,C1l4 0.1uF 0603
2 TP1,F1,TP2,F2,TP3,F3,TP4, TH
F4
3 4 R1,R2,R11,R12 49.9K 0402
4 4 R3,R4,R13,R14 100K 0402
5) 2 R20,R10 200 0402
6 1 Ul OPA2343 MSOP-8
7 z U4,U05 ADXL150 50-14

Assembly Changes and Patches for R62110

Assembly R62110 contains patches, and has 2 deleted components. The components deleted are as
follows:

Diodes Deleted (all diodes deleted)
D1, D2

Patches:
Jumper U4 pin 13 to U4 pin 14
Jumper U5 pin 13 to U5 pin 14

67

Microcontroller Programming Steps

The Microchip PIC16C774 microcontroller resides on assembly R62111, the Controller Board. The
sequence of steps is listed below to modify the Sensor Ball code for unit identification, and then program a
microcontroller component. The assembly language compiler used for this project was Microchip’s Mplab
Version 5.40. This seems to be a DOS application or at least exhibits those limitations in file name
conventions and so on.

The unit number is encoded in two include files in the code, and must be changed in both locations.
Comments in the files point to the lines to be changed for a new unit number. The file names are:
Ball_msg.inc

Ball equ.inc

Next, compile the complete program set, which consists of the files Ball.asm, Cmd Hand.asm, Flash.asm,
Rd Hand.asm, Ser Hand.asm, and St_Hand.asm. One of the limitations with the Mplab compiler seems to
be the number of characters allowed in the full directory path to the files being compiled. The limit seems
to be about 40 characters.

Following compile, the next step is to program the part. This operation was done on a different computer
than the compile at Sandia. A Microchip Mplab programmer must be connected to the computer. The
programmer must have a PIC16CXX, 44-pin TQFP interface module.

After connecting the programmer, run the Mplab software, and then enable the programmer tool. Be sure
to open the Ball.hex file to ensure that the compile process produced a new executable file. The Unit and
Version numbers are displayed in the ASCII text near the top of the Ball.hex file. Ensure that the
programmer displays the 16C774 part number.

Set the Device ID hex code to equal the Unit number. This is readable only by the verify tool, but may help
track a series of parts before they are installed onto circuit boards.

Install a blank device in the programmer. Select the Blank Check function, and verify that the part reads as
blank. Then, select Program Device. Verify that the process returned error-free. Next select the Verify
device option and ensure that no errors are reported there.

Finally, remove the programmed microcontroller from the programmer, label it, and place it in an
appropriate anti-static container. The leads are very easily bent so need some type of protection.

68

Appendix G: Circuit Board Connector Pin Definitions

Table 3. Directly Wired Connections

Through-Hole Signal
Fl 6V Regulated
F2 GND
F3 ACCELY
F4 ACCEL Z
X1 Reference Electrode
X2 Source — pH Electrode
X3 Counter Electrode — pH Electrode
X4 Drain — pH Electrode
X5 Substrate — pH Electrode
X6 AD590+
X7 AD590-
X8 LED-
X9 LED+
X10 Conductivity Electrode
X11 Conductivity Electrode
X12 Conductivity Electrode
X13 Conductivity Electrode
Table 4. Test Points
Pin Signal
TP1 Acceleration X
TP2 pH
TP3 Conductivity
TP4 Temperature
TPS Battery Monitor
TP6 VDD Probe (uP Power)
TP7 3V Probe
TP8 6V Probe

69

Appendix I: Mechanical Components

15

16

\ |
I\ | \r |
2| NI Yol
i | | | \ \ \ (Y
e ~ = |
“'\”Q [1 L o— W
= R Y (Y| Wy
"'\\l | 1 |
s
i

i \ ; 1

LUy
!
il
'LIH"‘-
\ i
t
=

il
N
\

23

22

11

Figure 14. Component Detail, Sensor Ball Exploded View

70 |

Table 5. Sensor Ball Mechanical Bill of Materials

Nlll:::er 3:;;:'[3 Nfli:ll;er bz 1] X
1 1 Upper Housing (Lexan)
2 l Battery Plate (6061-T6 Aluminum)
3 2 L-Bracket (6061-T6 Aluminum)
4 1 Ballast Plate with £5.0625 x .125 long pins (300 Series Cres)
5 1 Lower Housing (Lexan)
6 1 Cage (300 Series Cres)
7 1 Security Clip (300 Series Cres)
8 4 Screw, 82° Flat Head, #4-40unc x .188 Long (Cres)
9 1 Screw, Button Head, Security, #4-40unc x .250 Long (Cres)
10 12 Screw, Socket Head Cap, #2-56unc x .188 Long (Cres)
11 6 Screw, 82° Flat Head, #2-56unc x .188 Long {(Cres)
12 1 Retaining Ring, Internal, &2.125 (Steel)
13 1 2-232 E540-80 | O-Ring, 2.734 id x @.139 cross-section (Parker)
14 3 2-009 E540-80 | O-Ring, .208 id x ©&.070 cross-section (Parker)
15 1 1295 Battery Holder, Plastic, 9V (Keystone Electronics)
16 1 R62110-001 | Signal Conditioning Printed Circuit Board, Rectangular
17 1 R62111-001 | Controller Printed Circuit Board, Round
18 l L522 Battery, 9V (Energizer)
19 1 LED, T-1, Red
20 1 AD590 Temperature Sensor (Analog Devices)
21 1 51204976-002 | Probe, ph Sensor, Modified (Honeywell)
22 1 MI-402 mod | Reference Electrode (Microelectrodes)
23 4 Conductivity Electrodes, platinum (Microelectrodes)

71

Appendix J: Mechanical Assembly Procedure

The Sensor Ball case separates into two halves, with the electronics and support structure in the lower half and a simple shell
forming the upper half. The halves screw together, producing a watertight seal using a rubber O-ring. A critical issue in the Sensor
Ball assembly is ensuring that the halves have been screwed tightly together while still properly positioning the keyway slot to

accept the security clip. Step-by-step assembly instructions follow.

UPPER
HOUSING

KEYWAYS

O-RING

SECURITY
CLIP

SECURITY

K scrEw

LOWER
HOUSING

Figure 15. Exploded View of Disassembled Unit

Figure 16. Assembled Unit

72

The lower half of the Sensor Ball housing is
provided with an installed O-ring. A small amount
of silicone-based lubricant applied to the O-ring will
reduce the force needed to assemble the unit.

Thread the upper and lower housings together by
tightening in a clockwise direction until no gap
exists between the two halves, and the upper and
lower keyways are aligned.

Place the security clip in the aligned keyways with
the beveled edge facing both up and outwards. The
clip should lay flat in the keyway and the holes in
the clip and the lower housing should align.

Insert the #4-40unc button-head security screw thru
the clips” hole and thread into the lower housing.
Finger-tighten in the clockwise position until fully
seated against the clip’s surface.

Apply a torque value of 4 inch-pounds to the
security screw using a calibrated torque wrench and
the supplied insert bit.

To disassemble, reverse steps 2 thru 4, but remove
the security screw and separate the housings in a
counterclockwise direction.

ot ke
WN—=OOR~IN NN -

14

Appendix K: Microcontroller Code Listing

; File name: "ball.asm”
P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code
; Main microcontroller code for the P&G Sensor Ball

; Date: 11 December 2001
; File Version: 4
; Author: Tedd A Rohwer, Sandia National Laboratories

; Change history:

09 Sep 1998 - Final Tested Code on Emulator and Hardware

10 Sep 1998 - Correct RAMWRIT Timing and updated comments

1999 - vVersion 1 Sensor Ball, Adapted from MilliPen.asm, TA Rohwer

; Nov 2000 - Version 2, TA Rohwer

H 02 Mar 2001 - Version 3 Changes requested by P&G, ME Partridge

; Baud rate from 19.2k to 115.2kBAUD (limited by the Maxim 3221 chip)
; Average 16 samples for each measurement

; Changed WDT to 2.4 seconds for Sleep function
User Timerl for delays in 1.11 millisecond increments to 285ms.
; Times out from "Attention" mode (command download) in about 5 mins.
; 13 Jun 2001 - Add checksum and data retransmit, ME Partridge

These changes were needed to ensure reliable data at 115.2k Baud
12 Aug 2001 - Version 4 Changes per P&G request, ME Partridge

H Anytime ATTENTION button is pressed, reset Baud to 19.2k.

; Change algorithm for 19.2k to Version 2 style, hope errors stop.

; Eliminate 1l-min delay between records: check conductivity first.

H Remove auto-continue during data upload after 0.5 sec.

; Correct MEM FIND call to skip a bad Block appearing blank

H Added string transmit function for messages

; Added "Smart PCM Device" commands b, ¢, m, n, r, s, w, z (CMD HAND)
; Created subroutine for interface timeout check (BALL.ASM)

; Create Flash Page header subroutine (FLASH.ASM)

; 11 Dec 2001 having problem with serial receive -- getting spurious

; characters. Reset receive after each block transmitted in RD_HAND.

; Set RB4 (previously unused) as an output for ISR debug

; Function:

; Initializes processor settings and clears flags & data. Begins a loop to

; check either for commands or for conductivity above the specified threshold.
; Conductivity is checked about once a minute. If Conductivity is detected, a
; data acquisition cycle is initiated, storing 45 minutes of data, then returns
; to the loop. Once every 2.4 seconds nominal (1.5s minimum and 4.4s

; maximum), the ATTENTION button is checked, and if pressed a command

; processing seqguence is started. This mode can be exited by selecting the

; "Re-initialize" command, or, the mode will time out about five minutes after
; the last command is completed. The COMMAND FLG is set after the command is
; echoed to the PC, and the verify ("V") character is received by the sensor

; ball. Then, CMD HAND is called to interpret commands.

; The ATTENTION button can also terminate a data acquisition cycle for lab use.

,-**

; Project Files:

; ball.asm Main Source File, contains code sections

; MAIN INIT at location 0x0Q0, PowerOn Vector

; MAIN_PROG, relocatable, Main code section.

; subroutines Timeout Set, Timeout Chk for PC interface

; subroutines WAIT_Sleep, WAITIMS, WAITXXMS for time delays
; subroutines ADC_Read, Acquire to collect measurements

; cmd_hand.asm Command Handler routines, contains code sections

H CMD_PROG, relocatable
; flash.asm Flash Memory read, write, erase, and test subroutines
; rd _hand.asm Memory read and upload

; ser_hand.asm Interrupt Service Routines (ISR) and Serial Subroutines

73

Code Listing — Ball.asm

68 ; Serial port configuration subroutine with Hi/Lo Baud rate

69 ; PERIPH VEC at location 0x04, Peripheral Interrupt Handler

70 ;

71 ; st_hand.asm Status Handler, uploads current Sensor Ball measurements

72 ;

73 ; Last Compile:

74 ; Program Memory Usage: 0x0000 to 0x07C4, 4038 of 4096 Bytes

75 ;

76 ; Compiler Directives (See MPASM User's Guide) LIST - Listing Options

77 ; Option Default Description

78 ; c=nnn 132 Set column width.

79 H n=nnn 60 Set lines per page.

80 ; p=<type> None Set processor type; for example, PIC16C54.

81 ; r=<radix> hex Set default radix: hex, dec, oct.

82 ; st={ON|OFF} On Print symbol table in list file.

83 H t={ON|OFF} Off Truncate lines of listing (otherwise wrap).

84 ;

85 list P=16C774, C=145, T=ON

86 ;

87 ; CPU Configuration Bits (Register CONFIG, Address 0x2007):

88 ; CP1:CP0O, Code protection bits, protection off

89 ; Vbor Brown-out voltage, set to 2.5V

90 ; BODEN Brown-out reset, disabled

91 ; PWRTE Power-up timer, enabled

92 ; WDTE Watch-dog timer, enabled

93 ; Foscl:Fosc2, Oscillator select, RC oscillator

34 __config (_CP_OFF & _WDT_ON & BODEN OFF & VBOR 25 & PWRTE ON & _RC OSC)
5 ;

96 ; Configuratioin information:

97 ; Compiled using MPLAB Ver. 5.40

98 ; Oscillator internal RC, set to 3.686MHz nominal

188 H Interface designed for SensorBall version 10 and above, 19.2k and 115.2k Baud

101 :-***

102 ; Include files:

103 #include "P16C774.INC" ;Standard Header File for PIC16C773

104 ;Includes all Register Definitions,

105 ;RAM Definitions, & Configuration Bits

106 ;

107 ; Constant definitions

108 #include "ball_equ.inc" ; Flag, Port, and Constant Definitions

109 ;

110 ; Registers:

}}% #$include "ball dat.inc" ;RES Declarations, memory reserve

113 ; Subroutines in this file:

114 GLOBAL INIT UP ; Reset vector routine

115 GLOBAL Timeout_Set ; Sets up timer to monitor PC interface

116 GLOBAL Timeout Chk ; Tests if interface has timed out

117 GLOBAL WAIT_Sleep ; Uses Watch-Dog Timer for a 2.4 second low-power delay

118 GLOBAL WAITXXMS ; Delays for milliseconds set in Wreg

119 GLOBAL WAITI1MS ; calls WAITXXMS to create a 1 millisecond delay

120 GLOBAL ADC_Read ; Acquires ADC channel specified in Wreg

121 GLOBAL Acquire ; Puts all nine measurements in Data stack

122 ;

123 ; Calls:

124 EXTERN CMD_HAND ; Cmd_Hand.asm, Processes command phrase

125 EXTERN TX WREG ; Ser Hand.asm, Transmits contents of Wreg

126 EXTERN TX_String ; Transmit a string message

127 EXTERN Baud Set ; Ser_Hand.asm, Configures serial port

128 ; EXTERN SER_ECHO ; Ser Hand.asm, Uploads command echo

129 EXTERN MEM READ ; Flash.asm, Return value from Flash memory

130 EXTERN MEM WRITE ; Flash.asm, Writes Wreg value to Flash memory

131 EXTERN MEM FIND ; Flash.asm, Locates free Flash memory block

132 EXTERN MEM RD SET ; Flash.asm, called from macro Record

133 EXTERN MEM WR_SET ; Flash.asm, called from macro Record

134 EXTERN MEM Header ; Fills out the once-per-Page values

}gg EXTERN MEM PROGRAM ; Flash.asm, Writes a 512-byte page in Flash

137 ; Public variables:

138 ;

74

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

’

’

I

’

Code Listing — Ball.asm

Flag registers for program control and status

GLOBAL
GLOBAL
GLOBAL
GLOBAL

Flash memory
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

Serial input
GLOBAL
GLOBAL
GLOBAL

PROG_FLAG ; bits COMMAND,ADC_AVG,ACQUIRE_FLG, REINIT, CMDERROR
SER_FLAG ; bits XON,XOFF,ACK,NARK,CNTRLC control characters

MEMORY FLAG ; Memory condition and test result flags, MEM FULL
SER_STATE ; Bits indicating progress building Command Phrase

position data

MEM REC_NUM Current Flash memory Record, 1 - 64

~e

MEM _FRM_NUM ; Current Record Frame (Page), 0 - 255
MEM BAD_NUM ; Bad blocks in Flash memory

ADDO ; Flash Memory address A7 .. AD

ADD1 ; Flash memory address Al6 .. A8

ADD2 ; Flash memory address A24 .. Al7

A8 ; Indicates which 256B half of Page

support for commands and parameters

CMD_CHAR ; Command character for CMD_HAND, in A-Z
RC_CHAR ; ASCII Character Storage
RC_TEMP ; Received Command temporary Storage

Serial output starting location for strings in program memory

GLOBAL
GLOBAL

Look Hi ; Used to load PCLATH value
Look_Lo ; Used to load PCL

Analog-to-Digital results

GLOBAL
GLOBAL

LSBYTE ; Analog Meas. LS Byte. [A7,...A0]
MSBYTE ; Analog Meas. MS Byte. X,%,%,%,4211, .. .A8]

Time registers as data placeholders for an eventual Real-Time Clock chip
Used now as crude recording of time in milliseconds since last reset.
(units in parenthesis Placeholder for Real-Time Clock)

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

TIMEO ; LS Byte, Time in milliseconds (Seconds)

TIME1 ; . . . next significant byte (Minutes)

TIME2 ;. . . next significant byte (Hours)

TIME3 ; . . . next significant byte (Days from Reset)
TIME4 ; =zero, not used yet (Month)

TIMES ; =zero, not used yet (Year)

; Attention mode time-out registers

’

;

7

’

v

GLOBAL
GLOBAL

CMD_TIMEL ; Time-out LSByte, 285ms / bit
CMD_TIMEH ; Time-out MSByte

Temporary values used when reading back files

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

R_Sync_ByteO

R_Sync_Bytel

R_MEM REC_NUM ; Read value of Record #, Temporary value to find Record
R_MEM_FRM NUM

R _ADD1 ; Used in MEM FIND, sequential blanks

R_ADD2

R_TIME3

R_TIME2

R_TIMEL

R_TIMEO

Loop counters, other temporary values

GLOBAL MeasSet_ Cnt ; Loop counter, sets of 9 analog measurements
GLOBAL Channel Cnt ; Loop counter, analog channels 0 to 9 skip 7
GLOBAL Sleep Cnt ; Loop counter, sleep cycles between conductivity check
GLOBAL Loop_ Cnt ; Generic Loop Counter
GLOBAL TEMP ; Temporary Flash value, MEMORY_FLAG (Don't use for
Interrupt routines)

GLOBAL PATTERN ; Test pattern passed in Wreg to MEM TEST
GLOBAL CKSMO ; Checksum LS Byte, used in memory to PC transfer
GLOBAL CKSM1l ; Checksum MS Byte
GLOBAL BLCKO ; Count of Frames uploaded, LS Byte
GLOBAL BLCK1 ; Count of Frames uploaded, MS Byte

Registers to push data during interrupt, accessible regardless of Memory Bank selected.
GLOBAL STACK Wreg ; Working Register holding during interrupts
GLOBAL STACK_Status ; Status Register holding during interrupts
GLOBAL STACK_FSR ; Indirect pointer holding during interrupts

75

Code Listing — Ball.asm

210 GLOBAL TEMP INT ; Temporary for interrupt only
211 GLOBAL LOOP_INT ; Temporary for interrupt only
212 ;
213 ; Command Parameter Stack starting location
214 ; Note: Code does not check to see if stack exceeded, that is beyond address Ox6F
%}5 GLOBAL CMD_PARAMS ; Count of command parameters received
6 ;
217 ; String starting locations transmitting strings (TX_String subroutine)
218 GLOBAL List WhoID ; Unit ID string
219 GLOBAL List Commands ; Valid command character string
220 GLOBAL List_Data0O0 ; First channel name
221 GLOBAL List S1£t00 ; First self-test bit name
222 GLOBAL List Undef ; Request undefined name
223 GLOBAL List_Fail Msg ; String for Memory failure message
224 GLOBAL List_ Stat Msg ; String for Memory fill / test progress
225 GLOBAL List Eras_Msg ; String for Memory erase progress
226 GLOBAL List Mem Flag ; String for Memory Flag value
227 ;
228 ; Macros:
229 ; none ; macro definitions -- not used
230 ;
231 ; Interrupts:
%g% ; Enables Global, Peripheral, and Serial Port Interrupts
234 :-**
235 ;************************** Message String deflnltlon flle R R R R R SR EEEEEEEEEEES
236 ,-**
%gg #include "ball msg.inc" ; Text strings for messages
239 :-**
240 ’-************************** Power_on Reset Start Vector RS E S EEREEEEREEEEEESES]
241 ,-**
242 MAIN INIT CODE 0x00 ; PowerOn Vector
243 Goto INIT UP
244
245 ;**
246 ;************************* Main program Code, relocatable LR RS S SRR EEESEEEEESES
247 ’-**'k*************************************
248 MAIN_PROG CODE
249 ;
250 ;
251 ; Power-on Reset Vector, Initialize Microprocessor
252 INIT_UP
253 Clrw
254 Movwf STATUS ; Cannot directly clear arithmetic flags
255 ; Selects Bank 0 memory
256 Clrf INTCON ; Disable all interrupts
257 Clrf PIR1 ; Clear peripheral interrupt flag bits
258 Cirf PIR2 ; Clear CCP2, etc. interrupt flag bits
259 Bsf STATUS, RPO ; Select Bank 1 Memory
260 Clrf PIEl ; Clear individual peripheral enable bits
261 Clrf PIE2 ; Clear CCP2, etc. interrupt enable bits
262 ;
263 ; I/0 Ports (See PIC16C77X Data Book, sect. 3.0)
264 Bcf STATUS, RPO ; Select Bank 0 memory
265 Clrf PORTA ; Initialize ports by clearing output
266 Clrf PORTB ; data latches
267 Clrf PORTC
268 Clrf PORTD
269 Clrf PORTE
270 ;
271 ; Set Port direction
272 Bsf STATUS, RPO ; Select Bank 1 Memory
273 Movlw OxFF
274 Movwf TRISA ; Set RA(5:0) Inputs, A is 6-bit wide port)
275 Movlw 0x0D
276 Movwf TRISB ; Set RB(7:4,1) outputs, RB{3:2,0) inputs
277 Movlw 0xC5 ; TRISC<7:6> set to configure TX & RX
278 Movwf TRISC ; Set RC(7:6,2,0) inputs, RC(5:3,1) outputs
279 Movlw 0x00
280 Movwf TRISD ; Set RD(7:0) Outputs

76

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

Code Listing — Ball.asm

Movliw 0x07
Movwf TRISE ;

; Set Port outputs

INIT_PORT
Bcf STATUS, RPO ;
Bcf PORTB, WP ;
Bsf PORTB, POWER ;
Bsf PORTC, LED :
Bsf PORTC, CE ;
Bsf PORTC, RE :
Bsf PORTC, WE :

’

Set RE(2:0) Inputs,
If bit 4=1, Conf. Port D as Slave Port

Select Bank 0 memory

WP~ lo, Flash Memory write protected
POWER on analog, RS-232, & Flash

LED hi turns LED on

CE~ high, Flash Memory control lines
RE~ high

WE~ high

; Analog-to-Digital Converter Module (See PICl6C77x Data Book, sect. 11.0)
; ADCONO Register in Bank 0 Memory, ADCON1l in Bank 1

INIT A2D
Bsf STATUS, RPO ;
clrf ADCON1
Bsf ADCON1, ADFM ;
; Bcf ADCON1, VCFG2 ;
; Bef ADCON1, VCFG1 ;
; Bcf ADCON1, VCFGO
; Bef ADCON1, PCFG3 ;
; Bcf ADCON1, PCFG2 ;
; Bcf ADCON1, PCFGL
; Bef ADCON1, PCFGO
Bef STATUS, RPO ;
Bsf ADCONO, ADBCSO ;
Bef ADCONO, ADCS1 ;
Bsf ADCONO, ADON ;

; Watch-dog Timer set up
; See PIC16C77x Data Book, Section 4.0
INIT_WDT

Bsf STATUS, RPO ;
Bsf OPTION_REG, PSA

Bsf OPTION_REG, PS2

Bsf OPTION_REG, PSl

Bsf OPTION_REG, PSO

Clrwdt

; Timer 1 set up - about 1 millisecond
INIT TMR1

Bcf STATUS, RPO ;
Bef T1CON, TMR1ON ;
Bcf T1CON, TMRI1CS ;
Bsf T1CON, NOT_T1SYNC ;
Bsf T1CON, TI1CKPS1 ;
Bcf T1CON, T1CKPSO

Clrf TMR1H ;
Clrf TMR1L ;

; Initialize user-defined registers in
INIT CLRREG

Bcf STATUS, RPO ;
Movlw 0x20 H
Movwf FSR ;
Movlw 0x50 H

Movwf LOOP_INT ;
INIT_Reg_ Loop

Clrf INDF

Incft FSR, f

Decfsz LOOP_INT, £ ;

Goto INIT_Reg Loop

‘

Select Bank 1 Memory

Right justify A/D result
Select voltage reference
using supply and ground

Select to use all 10 analog channels
even though Analog7 is not connected

Select Bank 0 Memory
Set A/D conversion clock Fosc/8

Turn on ADC

Timer (for prescaler), Section 12.13 (Sleep)

Select Bank 1 Memory
; Direct prescaler for WDT use
; Use Prescale 1:128, so WDT is
; about 2.4 seconds
; and so is Sleep

per clock tick (l1.1lms @ 3.686MHz osc.)

Select Bank 0 Memory

Stop Timer 1 if running

Timer 1 clock source Fosc/4
Sleep input not selected

Set Prescale to 1:4 so Fosc/lé

Clear timer contents, hi byte
Clear timer contents, low byte

Memory Bank 0, including Parameter Stack.

Select Bank 0 Memory

Starting address for user memory

Stack pointer

0x50 locations, 0x020-0x06F

Temporary used only by interrupt routine

Loop counter, number of user registers

; Give the power about a quarter-second to stabilize

Movlw 0x00 H
Call WAITXXMS ;

Prepare for delay, value is 0x100
Wait for 285ms

77

Code Listing — Ball.asm

352 ; Find the first blank section of Flash memory, and read the last Record

353 ; number used if the memory is not totally erased.

354 call MEM FIND

355 ;

356 ; Transmit characters on USART, used to verify R$S-232 interface awake for testing
357 INIT_XMT

358 Clrw ; Clear Wreg

359 Call Baud_Set ; if Wreg=0, sets 19.2k Baud

360 ; 1f Wreg<>0, sets 115.2k Baud

361 Clrwdt ; Watch-Dog Timer reset

362 Movliw "w" ; Get character to select Who command

363 Movwf CMD CHAR ; Variable used by CMD HAND

ggg Call CMD_HAND ; Calls the Who command

366 :-**
367 ; Start of main command check - conductivity trigger check - record data - sleep loop
368 MAIN START

369 Bef STATUS, RPO ; Select Bank 0 Memory

370 Clrf INTCON ; Disable all interrupts

371 Clrf Sleep_Cnt ; Sleep_Cnt Zero = check conductivity

372 ;

373 MAIN_ LOOP

374 Bcf STATUS, RPO ; Select Bank 0 Memory

g;g Clrwdt ; Watch-Dog Timer is about 2.4 seconds
377 ; Check to see if computer command, started by pushing Attention button

378 Btfsc PORTB, ATTENTION ; Bit Test of Command Flag

ggg Goto ATTEN START ; Button pushed, begin processing commands
381 ; If the Flash Memory is full (32MB), no point trying to record more data

382 Btfsc MEMORY FLAG, MEM_FULL ; See if have full memory

ggi Goto MAIN SLEEP ; Yes, just minimize power consumption
385 ; Want to check Conductivity first before Sleep, so check the delay counter.
386 Movf Sleep Cnt, w ; Get current count down value

387 Btfsc STATUS, 2 ; See if count-down = zero

ggg Goto MAIN ACQ CHECK ; Yes & power is still on, so check cond.
390 ; Microcontroller Sleep mode saves power. Duration of the Sleep mode is set by
391 ; the Watch-Dog Timer (WDT) delay multiplied by the Prescale from OPTION_REG.
392 ; In the PIC16C77x Timing Diagrams and Specifications, WDT minimum is 7ms,

393 ; typical 18ms, and maximum 33ms. Because the Prescale has been set to 1:128,
394 ; one low-power Sleep cycle is 2.4 seconds.

395 ;

396 MAIN_SLEEP

397 Bcf ADCONO, ADON ; Turn off ADC

398 Bcf PORTB, POWER ; Power off analog, Flash, RS-232

399 Bcf PORTC, LED ; LED low turns the LED off

400 Call WAIT_Sleep ; Wait in low-power mode

401 Decfsz Sleep Cnt, £ ; See if Sleep cycles count = one minute (approximately)
402 Goto MAIN_LOOP ; No, wait some more

403 ;

404 ; Wake up Sensor Ball to check conductivity

405 Bsf PORTB, POWER ; POWER on analog & Flash memory power
406 Bsf PORTC, LED ; LED high, LED on

407 Bsf ADCONO, ADON ; Turn on ADC

408 ;

409 ; The conductivity circuitry takes a little over 500ms to stabilize, so wait
410 ; for about a second before checking the value. Each delay below uses a delay
411 ; value of 0x00, which is translated as 0x100 and about a 285ms delay.

412 Movlw 0x00 ; Prepare for delay, value is 0x100

413 Call WAITXXMS ; Wait for 285ms, returns Wreg=0

414 Bcf PORTC, LED ; LED off, was just a quick flash on

415 Call WAITXXMS

416 Call WAITXXMS

417 Call WAITXXMS

418 ;

419 ; Check to see if Conductivity measurement above threshold to begin measurement recording cycle
420 MAIN ACQ CHECK

421 ;

422 ; ADC_Read subroutine returns the value for the channel specified in Wreg into

78

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

’

’

registers LSBYTE and MSBYTE.
bit is set in PROG_FLAG,

Bsf
Movliw
Call

Code Listing — Ball.asm

PROG_FLAG, ADC_AVG
0x04
ADC_Read

2

’

MSBYTE is also returned in Wreg. If the ADC_AVG
16-sample averaging is used.

Set for 16-bit averaging
Acquire ADC channel 4 = Conductivity

; ADC average in regs. LSBYTE and MSBYTE

A result of measured conductivity greater than or equal to Conduct_Thresh
will set the carry bit in the Subwf instruction below

Movlw
Subwf
Btfsc
Goto

Threshold not exceeded,

Movlw

Movwf

Goto

Conduct_Thresh
MSBYTE, w

STATUS, C

MAIN RECORD_BEGIN
Sleep Cycles
Sleep Cnt

MAIN_LOOP

IN_RECORD_BEGIN
Valid arm signal based on Conductivity detected, Record data to Flash. Can
be interrupted at the end of each 512-byte page by pressing the ATTENTION

button (may need to hold for 10 sec).

2
’
;

’

;
,
;

‘

Conductivity threshold limit
Subtracts reading from threshold

C set says conductivity > threshold
Threshold exceeded, begin record

reset one-minute delay in low-power mode

= # of 2.4 second long Sleep cycles
between conductivity checks

Sleep Cycle Down count from 24 is
about one minute total

Starting with the next 16kB block record pointed to by ADDl and ADDZ, read
the first two bytes to verify that the location is blank. Blank memory

contains OxFFFF,
something other than these two.

a used block begins with O0xEB90, and bad memory may have
If not blank, (perhaps a RESET occurred),

search the start of each 16kB Block until a blank one is found.

Call
Btfsc
Goto

MEM_FIND
MEMORY_FLAG, MEM FULL
MAIN SLEEP

‘
14

’

Search next 128kB Record by 16kB Blocks
See if have captured 32MB data records
Yes, just minimize power consumption

The Frame counter MEM FRM NUM is cleared (set to 0x00, which is effectively
0x100) to record 256 frames of 512 bytes each (128kB total).

Bct
Clrf
Incft

RECORD_LOOP

4

’

’

;

;

’

Check to see
Btfsc
Goto

PROG_FLAG, ACQUIRE_FLG; Clear after acquire, set by CMD_HAND

MEM_FRM NUM
MEM REC_NUM, £

;

’

Clear Memory Page count
Add one to number of records stored

if request to interrupt record collection process

PORTB, ATTENTION
ATTEN_START

’

;

Bit Test of Command Flag
Button pushed, abort data acq. cycle

Set up memory to accept data at the 512-Byte Page address pointed to by
address Bytes ADD1 and 2.

Call

MEM WR_SET

Write information at start of memory Page. Time, etc. written only once per page.

Call

MEM Header

Initialize measurement counter to record 28 analog sets per Frame

Movlw
MovweE

0x1C
MeasSet_Cnt

;

;

Frame contains 28 analog meas. sets
initialize counter variable

Loop to build one data Frame, which also occupies one Flash memory Page
FRAME_LOOP

Clrwdt
Bsf

Acquire one measurement set.

Bcf
Call

PORTC, LED

PROG_FLAG, ADC AVG
Acquire

’

;

;

;

Reset 2.4 second Watch-dog Timer
LED on during data acquire.

Reads all nine value pairs into the Data stack.

Set for no averaging
Get all measurements in Data stack

Now store the measurement set into memory

Movlw
Movwf

Data_start
FSR

7

;

top of memory stack
loaded into the stack pointer

79

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

Code Listing — Ball.asm

Movlw 0xl2 ; 9 channels * 2 Bytes each = 18

Movwf Channel Cnt ; Re-use ADC_Read loop counter
MEAS_LOOP

Movf INDF, w ; recover value from stack

Call MEM WRITE ; Store in Flash memory

Incf FSR, f ; adjust stack pointer

Decfsz Channel Cnt, £
Goto MEAS_LOOP

; End of measurement loop - Wait 368 milliseconds. Using 45 minutes data

; collection per record and 7168 samples / record, so 376.7 milliseconds per

; sample. Sampling 9 analog channels takes about 1l.lms per channel, essentially
; one delay timer clock tick each when the oscillator frequency Fosc = 3.686MHz.

; So, delay for 330 additional delay timer ticks, = 0x14A, = 366.7 milliseconds
Bcf PORTC, LED ; LED off, brief flash during acquire
Clrw ; Starting with Wreg = 0 gives 256
Call WAITXXMS ; counts, about 285 ms delay
Movlw Ox4A ; Gives 74 counts, or
Call WAITXXMS ; about 82 ms delay
; Check if done with frame
Decfsz MeasSet Cnt, f ; sub-frame counter, want 28 sets
Goto FRAME, LOOP ; not done with 28 sets yet

; End of Frame loop. Command transfer of Flash internal buffer to memory
FRAME WRITE
Clrwdt ; Reset 2.4 second Watch-dog Timer
Call MEM PROGRAM ; Transfer internal buffer to Flash
; Note: Maximum write delay is 1 millisecond. The call waits until done.
; Increment memory address to next 512-Byte Page. AddO is the Byte location
; within the Page, so is not incremented.

FRAME INCR
Incft ADD1, £ ; Increment to next Page
Btfsc STATUS, Z ; See if rolled over, overflow
Incf ADD2, £ ; yes, increment next address

; Increment frame counter
Incfsz MEM FRM NUM, f ; Frame counter, rolls to 0x00 from OxFF
Goto RECORD_LOOP

; 128kB Record complete - End of memory acquisition / write. The MEM_INCR
; function sets the MEM FULL flag if it incremented beyond the last Page of the
; 32MB memory, indicating that all acquisition records are complete.

Goto MAIN_START

; - End of command check - conductivity trigger check - record data - sleep loop
,-**

; Command handler loop. Entered when the "ATTENTION" button is pressed. This
; approach is used because the loop above includes a Sleep function, which

; disables the serial interface. The serial interface chip, Flash memory, and
; all analog circuits are also powered down before Sleep is run. This loop can
; be exited by requesting the reinitialize command, or waiting about 5 minutes
; for this mode to time out.

ATTEN START
; Make sure using 19.2k Baud communication

Clrw ; Clear Wreg

Call Baud_Set ; 1f Wreg=0, sets 19.2k Baud

; i1f Wreg<>0, sets 115.2k Baud

; Set up timer for ATTENTION mode time-out
ATTEN TIMER

Call Timeout_Set

Becf PROG_FLAG, LED BLINK ; Keep LED steady, do dot char. heartbeat

80

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

Code Listing — Ball.asm

; Turn on LED to indicate ATTENTION mode started, and power aux. circuitry

Bsf PORTC, LED ; LED high, LED illuminated
Bsf PORTB, POWER ; POWER high, analog, RS$-232, & Flash on
Bsf ADCONO, ADON ; Turn on ADC

; Initialize serial input state registers
Cirf PROG_FLAG
clrf SER FLAG
Clrf SER _STATE

ATTEN_LOOP

Clrwdt ; Watch-Dog Timer is about 2.4 seconds
Call Timeout_Chk ; Test if interface has timed out
Btfss STATUS, Z ; Wreg non-zero if timed out

Goto ATTEN_END ; PC interface timed out

; The Serial Interrupt Handler captures and verifies a command phrase, then sets
; the Command flag bit set and moves the command character to CMD_CHAR.

ATTEN_CMD

Btfsc PORTB, ATTENTION ; Bit Test of Command Flag

Goto ATTEN_START ; Button pushed, reset interface

Btfss PROG_FLAG, COMMAND FLG ; Bit set when command available

Goto ATTEN_LQOP ; No command, repeat arm/command check

; Have a command character available, process

Call CMD_HAND ; Process the Command

Btfsc PROG_FLAG, REINIT_FLG Bit Test on Relnit Flag

Goto INIT_UP ; ==], Restart Program, Reinitialize
Btfsc PROG_FLAG, ACQUIRE FLG; Request to acquire one Record?

Goto MAIN RECORD BEGIN ; . . . then start acquisition

Goto ATTEN_TIMER ; Reset command time-out, and loop

;
; End command. Disable all interrupts. Returns to conductivity check loop
; without resetting processor.
ATTEN END
Goto MAIN_START
;
’-**
,-**************'k***

; Interface Time-Out Set-up Subroutine

; Function:

; Timeout_ Set - Sets up use of Timerl to monitor whether the PC interface has
H been inactive beyond a specified time.

; Calls:
; none

; Registers:
; TIMEO, TIMEl, TIME2, TIME3 - Time since Sensor Ball reset
; CMD_TIMEH, CMD_TIMEL - time since last interface input

; Interrupts:
; Interrupts not used or changed in this subroutine

; Return:

; WREG=0
;**
;

Timeout_Set

Becf STATUS, RPO ; Select Memory Bank 0

Bef T1CON, TMRI1ON ; Stop Timer 1 if running

Bcf PIR1, TMRLIF ; Clear interrupt flag

Clrf TMRIL ; Clear Timer 1 counters

Clrf TMR1H ; Set for maximum time, about 285ms
Bsf T1CONM, TMR1CON ; Start Timer 1

Clrf CMD_TIMEL ; Clear time-out registers

Clrf CMD_TIMEH

Retlw O ; Done with set-~up

;
;3\'***
;**

81

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

i
‘
’

’

Code Listing — Ball.asm

Interface Time-Out Check Subroutine

Function:

Timeout_Chk - Tests whether Timerl has rolled over. If yes, checks if the
total time elapsed exceeds Constant Atten Timeout. Adjusts the TIME
registers in the process.

Calls:
none

Registers:
TIMEO, TIMEl, TIMEZ2, TIME3 - Time since Sensor Ball reset
CMD_TIMEH, CMD_TIMEL - time since last interface input

Interrupts:
Interrupts not used or changed in this subroutine

Return:
WREG=0

,-**

’
Timeout Chk

’
;
;

4

Bcf STATUS, RPO ; Select Memory Bank O

Clrw ; Prepare for Wreg=0 and Z bit set
Btfss PIR1, TMRLIF ; check timer completion

Return ; Timer not elapsed, return with Wreg=0

Attention time-out counter increment expired. Update time registers. Timerl
continues to operate until stopped, so no need to set up again for the
subsequent 285 millisecond increments.

Timeout_Update

2

4

‘

’

Becf PIR1, TMR1IF ; Clear interrupt flag, timer still running
Movlw 0x01 ; set to increment time registers
Addwf TIME1l, £ ; . . . about 285ms / Timel bit

Btfsc STATUS, C
Addwf TIME2, f
Btfsc STATUS, C
Addwf TIME3, £

Addwf CMD_TIMEL, f ; Increment time-out regs, 285ms / bit
Btfsc STATUS, C
Incf CMD_TIMEH, f ; Incremented every 73 sec (256 * 285ms)

; Make LED blink if requested. Otherwise do dot character

Btfss PROG_FLAG, LED_BLINK
Goto Timeout_Dot

Blink LED with distinctive pause-blink-blink pattern, 2-second period

Timeout LED

;

’

;

2

MovE CMD_TIMEL, w

Andlw 0x04 ; Mask to get every four counts, 1 sec
Sublw 0x04 ; Four counts * 285ms

Btfsc STATUS, Z ; check if equal

Goto Timeout Test ; Not even increment of four

Make LED blink
Movlw 0x02 ; LED is PORT C, line 1
Xorwf PORTC, £ ; make LED blink
Goto Timeout Test

Debug - send out dot every 4 seconds

Timeout Dot

I

’

‘

’

Movf CMD_TIMEL, w

Andlw OxOF ; retain bits 0 to 3
Sublw 0x08 ; count on 4s increments
Btfss STATUS, Z ; see if equal

Goto Timeout_ Test

On 4-second increment, send heartbeat character to PC
Movliw "." ; Load dot character
Call TX_WREG ; Transmit serial data and return

Check if timed out

82

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

Timeout Test

’

;

Moviw
Subwf
Btfsc
Goto
Clrw
Return

PC interface

Timeout

Iorwf
Return

Code Listing — Ball.asm

Atten_Timeout
CMD_TIMEH, w
STATUS, C
Timeout

Maximum wait time without a command
Compare with time accumulated

If has timed out, negative (carry set)
Carry set, timed out

Set Zero bit for Wreg

Carry clear, not timed out yet

has timed out. Stop the timer, and return a non-zero Wreqg.

OXFF, w

’

Indicate timeout with non-zero Wreg

R R R E R R R R R R SRR E R RS RS EE RS SRS R Rk

R e R E R E R RS SRES SRS s RS e E R R RS R

WAIT Subroutine

.
‘
;

;

7

;

;
’
y
r
’
r
;
;

’

Function:

TAR

WAIT_Sleep - Long (about 2.4 second) low-power delay using Sleep function
WAITIMS - 1 millisecond delay using Timerl
WAITXXMS - variable delay read from Wreg and using Timerl

Calls:
none

Registers:

TIMEOC, TIMEl, TIME2, TIME3

Interrupts:

Serial Interrupts not processed during Sleep
Interrupts not used or changed in this subroutine

Return:
WREG=0

sk kkkkhkkkhhkrkhhhhkhhkdhhkhhhhkhkkhhkhkhhhdrxhhhdrddddhddrhdhdrrrhhkrhkrhhrrhhhhdhdhhdid

’
’

;

The Sleep function uses the internal WDT oscillator, which can be somewhat
variable. WNominal time with the current configuration is 2.4 seconds, but it
can range from 1.5 to 4.4s.

WAIT Sleep

’

Wait 2.4 seconds

Increment the TIME2 to TIMEO counter by 2400 as a crude count of milliseconds
elapsed. The Sleep function actually has a wide variation because an
internal microprocessor oscillator circuit generates the clock for the

Watch-Dog Timer.

Movlw
Addwe
Movlw
Btfsc
Movlw
Addwf
Movlw
Btfsc
Addwf
Btfsc
Incf

WAIT_SI_GO

i

Clrwdt
Sleep
Retlw

0x60
TIMEQ, £
0x09
STATUS, C
0x0A
TIMEl, £
0x01
STATUS, C
TIMEZ2, f
STATUS, C
TIME3, £

0

’

’

;

’

TIME register maximum is about 50 days.

Adding 0x0960 = 2400ms to Time regs

Prepare for Time 1 addition
If Time 0 overflowed, increment Time 1
by one more

Prepare increment if needed

Look for overflow on Time 1

Time 1 overflow, increment Time 2

Still clear from Time 1, or clear/set by 2
Time 2 overflow, increment Time 3

Watch-Dog Timer is about 2.4 seconds
Low power duration is Watch-dog Timer

;**
Entry at 1.1lms delay (WAITIMS) or variable delay (WAITXXMS with delay in
Wreg). About 1.11 milliseconds per count (with Fosc=3.686MHz) of the high-
order timer byte because the Timer 1 Prescale is set to 1:4 (Fosc/4 then

prescale by 1/4).

instruction cycles, or roughly 4us.
complemented value of the millisecond delay requested, then incremented by 1
because timer counts up to O0xFF, and stops on 0x00 (roll-over). Maximum input

This means the low-order byte is incremented every four

The high-order timer byte is the

83

Code Listing — Ball.asm

778 ; is 0x00, represents about 284ms delay, and minimum 0x01l, a delay of 1.1llms.
779 ;

780 WAIT1MS ; Wait l.lms (with Fosc=3.686MHz)

781 Movlw 0x01 ; set Wreg with delay value

782 :

783 WAITXXMS

784 Clrwdt ; Watch-Dog Timer is about 2.4 seconds
785 Movwf TEMP ; Millisecond delay / time increment value
786 Bcf STATUS, RPO ; Select Memory Bank 0

787 Bcf T1CON, TMRION ; Stop Timer 1 if running

788 Bcf PIR1, TMR1IF ; Clear interrupt flag

789 Clrf TMRIL

790 Movf TEMP, w ; Recover delay to set/clear Z on status
791 Btfsc STATUS, Z ; Value is 0x00, really represents 0x100
792 Goto WAIT _TM_ADJ ; Just increment next significant TIME byte
793 Addwf TIMEQ, £ ; Value in Wreg not zero, so add to LS byte
794 Btfss STATUS, C ; Check if carry from TIMEO addition

795 Goto WAIT COM ; No carry, no need to adjust next bytes
796 WAIT TM ADJ

797 Movlw 0x01 ; Incr command does not alter Carry bit
798 Addwf TIMELl, £ ; Increment time registers, ~1.llms/bit
799 Btfsc STATUS, C ; Look for overflow on Time 1

800 Addwf TIME2, £ ; Time 1 overflow, increment Time 2

801 Btfsc STATUS, C ; Still clear from Time 1, or clear/set by 2
802 Inct TIME3, £ ; Time 2 overflow, increment Time 3

803 ;

804 ; Inversion and increment to set up TMR1H up-counter

805 WAIT_COM

806 Comf TEMP, f ; Millisecond delay value, invert

807 Incf TEMP, w ; Add one, becomes value for up-counter
808 Movwf TMR1H ; Variable delay, = 1.112ms * Wreg

809 Bsf T1CON, TMR1ON ; Start Timer 1

810 WAITXX_LOOP

811 Btfss PIR1, TMRIIF ; Test if Timer 1 overflow occurred

g}% Goto WAITXX LOOP ; Overflow still clear, loop again

814 Bcf T1CON, TMR1ON ; Stop Timer 1

815 Bcf PIR1, TMR1IF ; Clear interrupt flag

g{g Retlw O ; Delay over, return with Wreg=0

818 :-*************'k**
819 '-**
820 ; ADC Read with Average Subroutine

821 ; 4/16/2001 ME Partridge

822 ; Function:

823 ; Sets up the ADC multiplexer channel pointed to in Register W. Calls the
824 ; WAITIMS function to allow time for the ADC multiplexer to stabilize, then
825 ; converts and adds the programmed number of samples together. Finally,

826 ; divides (shifts right) the result by the programmed number of bits.

827 ;

828 ; Note: the ADC is a 12 bit result, but is right justified so the upper nibble
829 ; of MSBYTEO is zero.

830 ;

831 ; Calls:

832 ; WAIT1MS Delays one millisecond

833 ;

834 ; Macros used:

835 ; none.

836 ;

837 ; Registers:

838 ; PROG_FLAG If ADC AVG is set, take a 16-bit average of measurement

839 ; Wreg On entry, has the ADC channel to convert

840 ; LSBYTE On exit, contains the LS byte of the averaged data

841 ; MSBYTE On exit, contains the MS byte of the averaged data.

842 ;

843 ; Interrupts:

844 ; None used.

845 ;

846 ; Return:

847 ; LSBYTE = On exit, contains the LS byte of the averaged data
848 ; MSBYTE = On exit, contains the MS byte of the averaged data

84

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

Code Listing — Ball.asm

H Wreg = On exit, MS byte of data.

; Revisions:

H 3/3/2001 First revision

; 4/16/2001 Change to macro, make averaging selectable

H 9/16/2001 Change to subroutine with ADC_AVG averaging flag

;***‘k

’

; Set ADC multiplexer channel based on
; ADCONQO Bits, MSB to LSB: ADCS1 ADCSO

ADC_Read
Movwf
Movlw
Andwf

Btfsc
Bsf

Btfsc
Bsf

Btfsc
Bsf

Btfsc
Bsf

;

LSBYTE
0zC5
ADCONO, £

LSBYTE, O
ADCONO, CHSO

LSBYTE, 1
ADCONO, CHS1

LSBYTE, 2
ADCONO, CHS2

LSBYTE, 3
ADCONO, CHS3

~o e

.

~e

~

;

channel identified in Register W
CHS2 CHS1 CHSO GO/DONE CHS3 ADON

Use as temporary for channel select
Mask to clear CHS bits
Clear channel selection

LS bit was a 1

Bit 1 was a 1

Bit 2 was a 1

Bit 3 was a 1

; Clear temporary storage for ADC result, prepare for average function
Clear temporary ADC LS Byte
Clear temporary ADC MS Byte

Clrf
Clrf

’

; Averaging function only if ADC_AVG selected in PROG_FLAG.

LSBYTE
MSBYTE

;

’

Match the number

; of values averaged with the number of shifts right to "divide"
Number of values averaged = 16

Movliw
Movwf
Call
Avg Loop
Bsf
ADC_Conv
Btfsc
Goto
Bsf
Movf
Bcf
Addwf
Btfsc
Incf
Movf
Addwf

; Skip remaining routine if averaging is not selected.

Btfss
Goto

’

0x10
Loop Cnt
WAITIMS

ADCONQ, GO

ADCONOQ, GO
ADC_Conv

STATUS, RPO
ADRESL, w

STATUS, RPO
LSBYTE,
STATUS,
MSBYTE,
ADRESH,
MSBYTE,

th € H Q Hh

PROG_FLAG, ADC_AVG
ADC_END

; Check if all samples acquired
Decfsz Loop Cnt, £

Goto

; Need to shift result

Bct
Rrf
Rrf
Bcf
Rrf
Rrf
Bcf
Rrf
Rrf
Bef

Avg_Loop

STATUS,
MSBYTE,
LSBYTE,
STATUS,
MSBYTE,
LSBYTE,
STATUS,
MSBYTE,
LSBYTE,
STATUS,

QB QHHQHRRQ

’

; Wait for ADC multiplexer to settle

;Start A/D conversion

;Check for conversion complete on ADC_ch

;
’
I
;
;
;
;
I

;

’

;

2

Select Memory Bank 1

Get ADC Result

Least significant byte

Select Memory Bank O
ADD and store result in LSBYTE
check if LS byte addition carry

Add one to MSB
Get ADC Result
The 12-bit ADC
justified, so

Test to see if
Skip averaging

if carry

Most significant byte
result is right

upper nibble is zero

averaging requested

Continue average acquisition loop

right 4 bits for 16 samples

; prepare for Rotate Right with carry

;

’

’

Divide by 2

Divide by 4

Divide by 8

85

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
971
978
979
980
981
982
983
984
985
986
987
988
989
990

Code Listing — Ball.asm

Rrf MSBYTE, £ ; Divide by 16
Rrf LSBYTE, f
ADC_END
Movf MSBYTE, w ; Put MS Byte in Wreg
Return ; Return with ADC result MS Byte in Wreg

:.**
akkhk Ak hkhkhkhhk kXX hdhhkkhrhhhrrhkdhr kbbb hkdddkhkdrdhrhkhdhkhkkodhkhhkhkdhrhkhxxrhhkhkrrhhhhkkkhkxxx
Acquire ADC data set Subroutine

; 9/21/2001 ME Partridge

; Function:

Acquires one set of ADC data, and puts the values in the Data_Stack. Channels
; zero through 9, skipping channel seven, are stored in LS Byte, MS Byte order.

; Arguments:

; Instance Unique identifier in the calling subroutine

; AVG Set to 0 for no averaging, non-zero produces averaged results.
; Calls:

; ADC_Read Gets ADC value for channel specified

; WAITIMS Delays one millisecond

; Macros used:

; none.

; Registers:

; Wreg Used in loop to select the ADC channel to convert
; Interrupts:

; None used.

; Return:

; Wreg = On exit, zero.

; Revisions:

; 9/21/2001 First revision

ehkkAk K Ik hkrkdkh kAKX Ik Ik krF Tk hhhhhkdhhkkkkhhhhdhdhdhhkkddkrkddhxrxhkrrhkhhrhdrhkkrdhkdk

; Acguire one set of data. If data are acquired while the serial lines are
; active, the measurements seem to be affected. So the acquire is kept
; separate from the upload function.
Acquire
Movlw Data_Start ; top of memory stack
Movwf FSR ; . . . loaded into the stack pointer
Clrf Channel Cnt

’

Acqg_Loop
MovE Channel_Cnt, w ; analog channel number
Call ADC_Read ; ADC average in regs. LSBYTE and MSBYTE
Movf LSBYTE, w ; Store LSB first, unique to ST_HAND
Movwf INDF ; Push onto stack
Incf FSR, £ ; increment stack pointer

Movf MSBYTE, w
Movwf INDF
Incf FSR, f
Acqg Incr
Inct Channel_Cnt, £
; Check if pointing to Channel 7 (which is not used)
Movlw 0xQ7 ; skip channel 7, not used
Subwf Channel Cnt, w
Btfsc STATUS, Z
Goto Acq _Incr ; is channel 7, just increment to next

; See if all the channels have been read
Movlw 0x0A ; Done if beyond channel 9
Subwf Channel Cnt, w
Btfss STATUS, 2
Goto Acg_Loop

86

991]

993
994
995
996
997

Code Listing — Ball.asm

Acq_END
Retlw O

tEE R E RS SRR S EEESSERESE LSRR EEE SRR SRS R ER RS SRR S RS EEEEEEEEEEEEEEEEEE RS E

S owe s

EEEEE SR EEE RS EEEESEEESESEE S END Of FILE Ball'asm Fhrk Kk rhkhkkkhkhdhhkhkhdhhkhhkdhkkhkhdkhk
;*****************************'k*********‘k*****)\'******3\'*************************

END

87

Nele RN Ko QW IR cN VAR

10

; File name: "cmd_hand.asm"
P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code

Code Listing - Cmd_Hand.asm

; Routines to interpret and execute commands sent to the P&G Sensor Ball

; Date:
; File Version:

; Author: Tedd

11 December 2001

4

A Rohwer, Sandia National Laboratories

; Change history:
1999 - Adapted from MilliPen.asm for Sensor Ball, TA Rohwer
November 2000 - Version 2, TA Rohwer
17 Mar 2001 - Version 3 Changes requested by P&G, ME Partridge
12 Aug 2001 - Version 4 Changes, ME Partridge
Moved Baud change operation into Ser_Hand subroutine Baud_Set
Used new string transmit function for "Who" identification command
Added "Smart PCM Device" setup commands b,c,m,n,r,s,w,z

FhkkkkkhhkhkkhkkhdhkhkhkkhdrhhkArdhrhhkhkdkhhhhodrhkkhdd X Arrrrhhdrkrdkrddhkhkhhrrhkkhhrhhxkhdddhkx

Cmd Hand(ler) Subroutine
Function:
Works in conjunction with RC_ISR (Interrupt Service Routine). The Sensor

Ball must be in ATTENTION mode, set by pressing the ATTENTION button.
CMD_HAND tests the CMD_CHAR variable for the known Sensor Ball commands and
executes the appropriate procedure (see list in CMD Jump below) or else

error.

; Order of operations:
1 PC sends string to package: 0, Cmd, <Parml>, <Parm2>, <Parm . .> CR, LF

2

’

’

Noy v WN

Subroutines in this file:

GLOBAL

Calls:
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

Registers:
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

Upon receipt of CR,

CMD_HAND

READ_ HAND
STATUS_HAND
SENDDATA
MEM_ERASE
MEM_TEST
FILL TEST
TX WREG
TX_String
Baud_Set

PROG_FLAG
TEMP
SER_FLAG
MEMORY_FLAG
CMD_CHAR
CMD_PARAMS

LF, the ISR routine echoes the completed command phrase
PC checks the echoed command, and sends the verify character if correct.
Verify command received, echoes processed parameter values

MAIN program sees COMMAND FLG is set and calls CMD HAND

CMD_HAND processes the CMD CHAR (which may set REINIT FLG or others)

MAIN program returns to loop checking for CMD CHAR (unless REINIT FLG)

; Memory upload subroutine

; Sensor Ball status upload

; Sends standard completion message to PC
; Erases entire memory

; Writes pattern supplied then erases

; Fills Flash memory with known values

; Transmits on RS-232 serial interface

; Uses TX WREG to send a string

; Sets Baud rate + configure serial port

; bits COMMAND, REINIT,XON,XOFF,CMDERROR

; Temporary for PROG_FLAG

; Includes flag bit to acquire data

; Memory condition and test result flags, MEM FULL
; Command character for CMD HAND, in A - Z

; Count of command parameters received

; Serial output starting location for strings in program memory

88

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

Interrupts:
Global,

Look Hi ; Used to load PCLATH value
Look_Lo ; Used to load PCL

List_Undef ; Request undefined name
List_WhoID ; Unit ID string

List_Commands ; Valid command character string

List_Data00
List S1£t00

Peripheral,

; First channel name
; First self-test bit name

Serial Interrupts are enabled prior to call

Serial Interrupts Disabled for routines responding with data to the PC

Return:

Code Listing — Cmd_Hand.asm

; WREG=0

; dinclude files:
#include "P16C774.INC" ;Standard Header File for PIC16C773
;Includes all Register Definitions,
;RAM Definitions, & Configuration Bits
#include "ball_equ.inc" ;EQU Declarations, equivalence
;
;**
;*'k****k**

CMD_PROG CODE ;relocatable code in Program EPROM

; The command character was verified by SER HAND to be in "A"™ . . “z"
; Now, set Program Counter to select subroutine according to character
CMD_HAND

Clrf PROG_FLAG ; Clear Command Flag register
Movlw high CMD_ Jump ; Get upper Program Counter
Movwf PCLATH ; set in upper 5 bits of PC
Movlw "A" ; Character offset
Subwf CMD_CHAR, w ; Command Character minus Offset "A"
Addlw CMD_Jump ; Adds GOTO series starting address
Btfsc STATUS, C ; Check if address addition overflow
Inct PCLATH, £ : Yes, adjust program counter high byte
Movwf PCL ; jump there
CMD_ Jump
Goto CMD_A ; acquire command, begin acquiring one record
Goto CMD_B ; Baud rate change, increase to 115.2K
Goto CMD_Undef ; command C
Goto CMD Undef ; command D
Goto CMD_E ; E = erase memory command
Goto CMD_F ; command F
Goto CMD_Undef ; command G
Goto CMD_Undef ; command H
Goto CMD_I ; I = initialize command
Goto CMD_Undef ; command J
Goto CMD_Undef ; command K
Goto CMD_Undef ; command L
Goto CMD_Undef ; command M
Goto CMD_Undef ; command N
Goto CMD_Undef ; command O
Goto CMD I ; P = initialize command
Goto CMD_Undef ; command Q
Goto CMD R ; Read Records command
Goto CMD S ; get unit status command
Goto CMD_T ; Test memory and erase
Goto CMD_Undef ; command U
Goto CMD_Undef ; command V - processed in SER HAND, not here
Goto CMD_Undef ; command W
Goto CMD_Undef ; command X
Goto CMD_Undef ; command Y
Goto CMD_Undef ; command Z
Goto CMD_Undef - ; command [left-bracket open-square
Goto CMD_Undef ; command \ left-slash backslash bash
Goto CMD_Undef ; command] right-bracket close-square
Goto CMD Undef ; command ”~ hat circumflex caret up-arrow
Goto CMD_Undef ; command _ UNT underscore underbar
Goto CMD_Undef ; command ' accent-grave backprime backquote
Goto CMD_Undef ; command a alpha
Goto CMD b ; Send high Baud rate
Goto CMD_c ; Send recognized commands
Goto CMD_Undef ; command d delta
Goto CMD_Undef ; command e echo
Goto CMD_Undef ; command f foxtrot
Goto CMD_Undef ; command g golf
Goto CMD_Undef ; command h hotel
Goto CMD_Undef ; command i india
Goto CMD_Undef ; command j juliett
Goto CMD_Undef ; command k kilo
Goto CMD_Undef ; command 1 lima

89

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Code Listing - Cmd_Hand.asm

Goto CMD m ; Send channel numbers: analog, bilevel, self-test
Goto CMD n ; Send name for specified channel

Goto CMD_Undef ; command o oscar

Goto CMD_Undef ; command p papa

Goto CMD_Undef ; command g gquebec

Goto CMD r ; Upload data starting at Page specified
Goto CMD_s ; Status in "Smart PCM Device" format

Goto CMD_Undef ; command t tango

Goto CMD_Undef ; command u uniform

Goto CMD_Undef ; command v victor

Goto CMD_w ; Who are you? Identify this unit

Goto CMD Undef ; command x x-ray

Goto CMD_Undef ; command y yankee

Goto CMD z ; Reply total memory and transfer block size

:-***
; Command error, command character invalid (not in A - z) or command undefined
CMD_Undef

Bsf PROG_FLAG, CMDERROR_FLG ;Set Command Error Flag

Goto CMD_END ; Exit routine

,-***

; Set ARM to create one Record of 256 data frames, each frame one 512-byte page.
; Recording can be interrupted at the end of each 512-byte page by pressing the
; ATTENTION button (may need to hold ATTENTION for 10 sec).

; Received command: "0", "A", CR, LF
CMD_A
Bsf PROG_FLAG, ACQUIRE FLG; Flag - main routine acquire a Record
Goto CMD_END
:-***
; Command B -- Toggle baud rate between 19.2k (default) and 115.2k Baud. Also
; returns to 19.2k anytime "ATTENTION" is pushed or by the "Reset" command.
; Received command: "0", "B", CR, LF
CMD_B
; Need to wait for transmit buffer to empty before doing the Baud change
; SPBRG and TXSTA Registers in Bank 1 Memory

Bsf STATUS, RPO ; Select Bank 1 memory

Btfss TXSTA, TRMT ; Set to 1 when TSR empty

Goto CMD_B ; Loop and wait

Movf SPBRG, W ; Recover value

Sublw 0x01 ; Value for 115.2k Baud

Call Baud_Set ; Wreg zero if now 115.2k Baud

Wreg=0 sets 19.2k Baud

Wreg<>0 sets 115.2k Baud

Bank 0 memory selected at end of Baud_Set
Goto CMD_END
;
;**********'k**

2

; Command E -- Erase all memory. Also marks bad blocks if found.
; Received command: "0", "E", CR, LF
CMD_E
Call MEM_ERASE ;Call Flash Memory Erase routine

Goto CMD_END
:-***
; Command F -- Fill memory with known values starting at the current memory
; location for the number of Records optionally specified. If no parameters are
; provided, one Record is filled.

; Received command: "0", "F", <MSB # Records>, <LSB # Records>, CR, LF
CMD_F
Call FILL_TEST ;Call Fill test in FLASH file
Goto CMD_END

90

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Code Listing - Cmd_Hand.asm

;‘k'k***‘k***~k***********"(**'k**********‘k***

’

; Command I -- Initialize. Exits command mode (entered by pushing ATTENTION button)
; Received command: "Q", "I", CR, LF
CMD I

Bsf PROG_FLAG, REINIT FLG ;Set Re-initialize Flag

Goto CMD_END

;***

‘

; Command P -- Set Re-initialize flag
; Received command: "Q0", "P", CR, LF
CMD_P
Bsf PROG_FLAG, REINIT FLG ;Set Re-initialize Flag

Goto CMD_END

;***

; Command R -- Uploads records starting at block (Frame or Page) optionally
; specified. If no parameters are provided begins at memory start. Waits for
; Ack or Nak character after each block (Frame or Page in this code). If Nak,

; the block is retransmitted.

; Received command: "Q", "R", <MSB Page #>, <LSB Page #>, CR, LF
CMD_R

Bef PROG_FLAG, SIMPLE FLG ; Ensure SIMPLE_FLG clear
Call READ_HAND ; Call Read Handler

Goto CMD_END

/-******‘k**

7

; Command S -- Return status of unit

; Received command: “0%, *s", CR, LF

CMD_S
Bcf PROG_FLAG, SIMPLE FLG ; Ensure SIMPLE_FLG clear
Call STATUS HAND ; Call Status Handler

Goto CMD_END

,.***
; Command T -- Test Flash memory, erasing after each block & marking bad blocks
; Erases entire memory, then writes pattern and erases on a per-block basis
; Received command: "0", "T", CR, LF
CMD_T

Clrf MEMORY FLAG ;Clear Test Result Flags

Call MEM_ERASE
; Writes pattern then erases each block. Attempts to mark block if bad.

Movlw OxAA ; Pattern expected in Wreg

Call MEM TEST ; Test Flash with OxAA pattern

; Next pattern
Movlw 0x55 ; pattern expected in Wreg
Call MEM TEST ; Test Flash with 0x55 pattern

Goto CMD_END

Ihkkhhhkkkhdkdkdhhhkdhhhhhrhkhhddhhbdbhrhhhhdhhkhdhbhhhrrkhhhhhkhkhkhhhrdxhdhhhhkhkhrxrhrrrhhkhk

; Command b -- Send high Baud rate, 115.2k Baud. (Low is standardized as the
; same for all systems, 19.2k Baud.) Sends rate as ASCII string.
; Received command: "0", "b", CR, LF

CMD_b
Movlw i
Call TX_WREG
Movlw "1
Call TX_WREG
Movlw "5"
Call TX_WREG
Movlw "2"
Call TX_WREG
Movlw "o"
Call TX_WREG
Movlw "QO"

call TX WREG

91

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Goto

’

Code Listing - Cmd_Hand.asm

CMD_CRLF

;***

;

; Command ¢ --

Send recognized commands. Sends back a null terminated string

; with each recognized command character (excluding setup commands).
; Received command: "O0", "c", CR, LF

CMD_c
Movlw
Movwf
Movlw
MovwE
Goto

’

High List Commands ; Load starting location of string
Look_Hi

Low List_Commands

Look Lo

CMD String

;***

’

; Command m --—

Send number of each channel type: analog/digital, bilevel,

; self-test bits using four bytes, with the last unused.
; Received command: "0", "m", CR, LF

CMD_m
Movlw
Call
Movliw
Call
Movlw
Call
Movliw
Call

Goto

; Command n --

0x00 ; Byte 2 = bilevels
TX_WREG

0x0D ; Byte 3
TX_WREG

0x00 ; Byte 0 = unused

TX_WREG

0x08 ; Byte 1 = self-test bits
TX_WREG

analog/digital, 13 = 0x0D

CMD_CRLF

R R R R T S S R R S R S R R R R RS S SRR RS E RS R R EEEEEE SRR EETEEEEEE SRS

Send channel name specified in parameters as follows:

H Byte 1 = analog/digital channel name

; Byte 2 = bilevel channel name (not used in Sensor Ball)

; Byte 3 = self-test bit name

; Byte 4 = unused.

; Received command: "0", "n", <byte 1>, <byte 2>, <byte 3>, <byte 4>, CR, LF

CMD_n

’

; Adjust Command Parameter stack pointer to last parameter passed

Movlw
Movwf
MovE
Btfsc
Goto

CMD_Param Start ; Added to count of params CMD PARAMS
FSR ; Put into pointer

INDF, w ; Get number of parameters

STATUS, Z ; Test if no parameters passed

CMD_END ; No parameters, no response.

; The channel and self-test bit name strings are all 16 bits long, padded with
; nulls. So the selected name can be located by adding the appropriate multiple
; of 16 as an offset to the starting name string. Only one of the Bytes will

; be populated,

and since no channel or self-test bit number is greater than

16, a simplified address adjustment can be made.

CMD_n B1
Incf
MovE
Btfsc
Goto

;

FSR, £ ; Adjust stack pointer

INDF, w ; Extract Parameter Byte 1
STATUS, Z ; Will be zero if not selected
CMD_n_B2

; Select string for transmit

Movlw
Movwf
Movlw
Movwf
Movlw
Goto

; Second Byte,

92

High List_Data0o0 ; Load location of first channel string
Look_Hi

Low List_Data00 ; First channel name

Look_Lo ; Store low address

0x0E ; check if beyond 13 (0 to 12)

CMD_n_CHK Msg

bilevel channel name (not used in Sensor Ball)

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

CMD n_B2
Inct
MovE
Btfsc
Goto

; No bilevels defined,

Goto
;
; Third Byte,
CMD_n_B3
Inct
Movf
Btfsc
Goto

’

Code Listing — Cmd_Hand.asm

FSR, f
INDF, w
STATUS, Z
CMD n_ B3

CMD_Undef_ Msg

Self-Test bits

FSR, £
INDF, w
STATUS, 2
CMD_END

; Select string for transmit

Movlw
Movwf
Movlw
Movwf
Movlw

’

; Maximum name value was loaded in Wreg above.

High
Look Hi
Low
Look_Lo
0x09

List S1ft00

List_S1£t00

; Adjust stack pointer
; Extract Parameter Byte 2
; Will be zero if not selected

so send message

; Adjust stack pointer

; Extract Parameter Byte 3

; Will be zero if not selected

; All paramters were zero, noO response

; Load first Self-test bit name location
; Low address of name

; Store low address

; check if beyond 8 (0 to 7)

Now test to see if the name

; exists, and adjust name pointer if it does.

CMD n_CHK Msg
Subwf
Btfsc
Goto
Decft
Swapf
Addwt
Btfsc
Incf
Goto

CMD_Undef Msg
Moviw
Movwf
Movliw
Movwf
Goto

7

INDF, w
STATUS, C
CMD_Undef Msg
INDF, £

INDF, w

Look Lo, £
STATUS, C
Look Hi, f
CMD_String

High
Look Hi
Low
Look Lo
CMD_String

List_Undef

List Undef

; Subwf subtracts name number

; carry set means name number <= defined names
; above maximum name number, error

; Adjust to use as pointer

; Effectively, multiply by 16

; Adjust address to point to proper string

; Check if overflow on address adjust

; . . . was overflow, adjust

; Load location of message string

; Store low address

TR R R R e R S e R SRR RS R R R R R LR R SRR SR EEEEESE]

; Command r -- Uplcoads records starting at block (Frame or Page)
If no parameters are provided begins at memory start.

; specified.

; are made for valid Sync in memory,
; checksum is calculated and transmitted,

; waited for.

; Received command: "0",

CMD_r
Bsf PROG_FLAG, SIMPLE_FLG ;
Call READ_ HAND
Goto CMD_END

’

X-on and X-off are

optionally

No checks
so bad and blank Blocks are uploaded. The
and Ack and Nak control characters are
also still active.

"r", <MSB Page #>, <LSB Page #>, CR, LF

Set for simple upload
; Call Read Handler

;**'k********************************

;

; Command s -- Return status of unit in

; returned in the order contained in command "n"
; all analog/digital channels

H bilevel channels
; all self-test bit data,
; Received command:

CMD_s
Bsf
Call
Goto

r

(not used in

vvovv, "S",

PROG_FLAG, SIMPLE_FLG ;

STATUS HAND
CMD END

"Smart PCM Device" format. Data are
Sensor Ball so none sent)
sent as a 16-bit word.
CR, LF
Set for "Smart PCM Device" status

;Call Status Handler

,-***

;

93

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

Code Listing - Cmd_Hand.asm

; Command w -— Who are you. Sends back a phrase identifying this as a
; Procter & Gamble Sensor Ball and includes the Version number.
; Received command: "0", “w", CR, LF

CMD w
Movlw High List_WholD ; Load starting location of string
Movwf Look Hi
Movlw Low List_WhoID

Movwf Look Lo

Goto CMD_String

;***********‘k***

I

; Command z -- Send memory size. Sends six bytes, with the first four specifying
; the device's memory size, and the last two bytes specifying data block size.
; Received command: "0", "z", CR, LF

CMD_z

; Size is 32MB, with a block size of 560 + 2 Checksum Bytes (2 Sync and 2 Bytes
; with block number not counted). Use 32MB memory = 0x020000, and 562 byte

; block = 0x0232

Movlw 0x00 ; Byte 4, Intel format: LSByte, MSByte
Call TX_WREG

Movlw 0x02 ; Byte 5
Call TX_WREG

Movlw 0x00 ; Byte 2
call TX_WREG

Movlw 0x00 ; Byte 3
Call TX_WREG

Movliw 0x00 ; Byte 0
Call TX_WREG

Movliw 0x00 ; Byte 1

Call TX_WREG

; Block Size

Movlw 0x32 ; Byte 0, Intel format: LSByte, MSByte
Call TX_WREG
Movlw 0x02 ; Byte 1

Call TX_ WREG

Goto CMD CRLF
;
R SRR S e e e A e
;

; End of Command handler routines, clean everything up

CMD_String

Call TX_String ; Call string transmit routine
CMD_CRLF

Movlw "\r" ; Carriage Return

Call TX WREG ; Transmit

Movlw “\n" ; Line Feed

Call TX_WREG ; Transmit
CMD_END

Clrf CMD_CHAR ;Clear CMD_CHAR

‘

; Reset Command Parameter stack in case partial command received

Movlw CMD_Param Start ; Reset command parameter stack
Movwf FSR ; by setting pointer to top.

Clrf CMD_PARAMS ; Clear count of parameters received
Retlw 0 ; Return to MAIN, Wreg=0

;

,-***
;********************** End Of FILE Cmd Hand'aSm ERE R R R R RS R EEEEEEEEEEEEEEEEEEE]
;***

END

94

VRN WN—

10

’
’
I

2

’

12

;

Code Listing — Flash.asm

File name: "flash.asm"
P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code

Flash Memory auxiliary routines

Date: 11 December 2001
File Version: 4
Author: Tedd A Rohwer, Sandia National Laboratories

Change history:
1999 - Adapted from MilliPen.asm for Sensor Ball, TA Rohwer
Nov 2000 - Version 2, TA Rohwer
17 Mar 2001 - Version 3, Revised extensively by ME Partridge
28 Jun 2001 - Minor revisions, ME Partridge
12 Aug 2001 - Version 4, Check for sequential blank Blocks in MEM FIND

R R R R e e P S R RS E R EEEE e E R E e EEE Rt

Flash Memory Subroutines
Function:
Contains all functions needed to read, write, and erase the Toshiba TC58256FT
Flash memory. The device is a 3.3V, 256Mbit (32MB) NAND Electrically
Erasable and Programmable Read-Only Memory (EEPROM) organized as 528 bytes x
32 pages x 2048 blocks.

Page size: 528 Bytes (512 Bytes plus extra 16 Bytes extended area)
Block size: 32 Pages, 16k-Bytes + 512 Bytes
Total memory: 2048 Blocks, 32MB

The device has a 528-byte static register which allows program and read data
to be transferred between the register and the memory cell array in 528-byte
increments. The Erase operation is implemented in single block units (16k
Bytes + 512 bytes). The TC58256FT is a serial-type memory that uses the I/O
pins for command and address input as well as data input / output.

The following commands are supported by the device:
0x00 Read Mode 1, Address bit A8=0, can read sequentially thru entire device
0x80 Write with Address bit A8=0, writes to the 528-Byte static register.
0x10 Program, transfers the 528-Byte static register to the memory cell array
0x60 Erase, erases a 16k-Byte memory block. Must be followed by Erase Confirm
0xD0 Erase confirm command
0x70 Status, provides Ready / Busy~, and write fail.

Special Note ~-- Timing issues
The TC58256FT memory has a few timing parameters that are significant with
respect to instruction step time. Short delays are accommodated by inserting
NOPs into the code. Longer delays are handled by looping on the Status
command to monitor Ready / Busy~. The R/B~ line on the part is not used.
Read address to data available, 10 microseconds maximum, NOP padded
Program - 1000 microseconds maximum. Use Status command to check
Erase - May take up to 20 milliseconds. Use Status command to check

Special Note -~ Number of valid Blocks
The TC58256FT memory is not guaranteed to have the entire 2048 Blocks
available to write. For this reason, checks are made for bad blocks, which
are skipped if found.

Subroutines in this file:

GLOBAL MEM READ ; Return value from Flash memory

GLOBAL MEM_WRITE ; Writes Wreg value to Flash memory

GLOBAL MEM FIND ; Finds the first blank Block

GLOBAL MEM RD_ SET ; Sets Flash address for reading

GLOBAL MEM WR SET ; Sets Flash address for writing

GLOBAL MEM_Header ; Fills out the once-per-Page values

GLOBAL MEM PROGRAM ; Transfers internal buffer to Flash

GLOBAL MEM ERASE ; Erases entire memory

GLOBAL MEM_REC_FIND ; Finds a particular Record number

GLOBAL MEM TEST ; Writes pattern supplied then erases

GLOBAL FILL TEST ; Writes known values to # recs specified
Calls:

EXTERN SENDDATA

EXTERN Fail Msg ; Sends failure text message to PC

95

EXTERN
EXTERN
EXTERN
; Registers:
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

Status_Msg
Erase_Msg
WAITIMS

MEMORY_FLAG
TEMP

PATTERN
R_MEM_ REC_NUM
MEM REC_NUM
MEM FRM_NUM
MEM BAD_NUM
ADDO

ADD1

ADD2

R_ADD1

R_ADD2

A8

; Registers for test routine

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

; Interrupts:

; Global,
; Return:
; WREG=0

CMD_PARAMS
R_MEM_REC_NUM
TIME3

TIME2

TIMEL

TIMEO
R_TIME3
R_TIME2
R_TIMEl
R_TIMEO
MeasSet_Cnt
Channel Cnt
TEMP

Peripheral,

; include files:

#include

#include "ball equ.inc"

MEM_PROG

’

CODE

"P16C774.INC"

Code Listing — Flash.asm

’

;
’

i

Sends PC update message during memory test
Sends PC update message during memory erase

Memory Status and test flags
Temporary MEMORY FLAG and value read
Test pattern passed in Wreg
Temporary value to find Record

Current Flash memory Record, 1 - 64
Current Record Frame (Page), 0 - 255

Bad blocks in Flash memory

Flash Memory address A7 .. AO

Flash memory address Al6 .. A8

Flash memory address A24 Al7
Temporary for ADD1

Temporary for ADD2

Half of memory page, lst (FE) or 2nd (FF)
Loop counter, 28 sets of 9 meas. / page

Loop counter,

analog channels 0 to 9 skip 7

Scratch register for blank check

Serial Interrupts are enabled prior to call

;Standard Header File for PIC16C773
;Includes all Register Definitions,

;RAM Definitions,
;EQU Declarations,

’

& Configuration Bits
equivalence

Relocatable Code

,-**

;**‘k***

; Memory Read subroutine.
; Moves data from Port D
; active-low Read Enable signal.

MEM_READ
Bcf
Movf
Bsf
Return

’

PORTC, RE
PORTD, w
PORTC, RE

to Wreq,

Returns with Wreg containg the data that was read.
(the Flash I/0O lines)

and controls the

On exit, Wreg has the data read.

2
;

‘

RE~,

Read active low

Recover Flash data into Wreg

RE~,

Read active low

Return with value in Wreg

;**

,-**

; Memory Write subroutine.

; lines),

; retains the value written.

MEM_WRITE
Movwf
Bcf
Bsf
Return

’

PORTD
PORTC, WE
PORTC, WE

i

;

r

Moves data from Wreg to Port D
and controls the active-low Write Enable signal.

Write one byte
Active low write enable data

WE~,

(the Flash I/0
On exit, Wreg

Return with written value in Wreg

;*************'k**

96

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Code Listing — Flash.asm

’-**

’

,-**

,-**

; Memory Find Subroutine

; Function:
H data.
; Calls:

MEP

Starting from the last used address ADD2 & ADD1l, checks the start of this
location and subsequent 16kB Blocks find the next blank location to write

H None {(all calls internal to this file)

; Registers:

; MEMORY FLAG(MEM FULL)

; Interrupts:

; None changed

; Return:
H NONE .

MEM_FIND
Clrf
Clrf
Movlw
Andwf

MEM_LOOP
Call

’

; Read first two Bytes.

MEMORY FLAG
A8

OxEQ

ADD1, £

MEM RD_SET

- indicates that all 32MB memory is filled

kkkhkhkkkhhhhkhkArhhkhkh kA A Ak hd XAk krhdkhrdhhh kXA rhhkrdhhddhhhdhhhhhdrhhdrrrrddhdhhhhdhhdr

Search Flash memory to set address ADD2, ADDl to point to next blank Block

; Reset flags, will set accordingly

; Half-page flag, used in ext. blank ck.
; Mask even Block boundary, 16kB=0x20

; Strip off non-integral Block address

; Set up Flash to read Block pointed to

Will equal OxFFFF if blank, OxEB90 if used, and OxAS5A5

; or something else if the Block is bad.

MEM _USED_CK
Call
Movwf
Incf
Btfss
Goto

Call
Sublw
Btfss
Goto

MEM READ
TEMP

TEMP, w
STATUS, Z
MEM SYNC CK

MEM _READ
OxFF
STATUS, 2
MEM BAD BLK

; Hold Value

Blank is OxFF, incf -> 0x00

; Will have become zero if was blank
; Not blank, check if sync

~

; Read second byte in Block

; Check if blank = 0OxFF

; If result zero, was blank

; Was not blank, so memory bad

; Read two first Bytes in Block and both blank. Repeat test on next Block
; to ensure that it wasn't just an isolated Block or was bad.

Btfsc
Goto
Bsf
MovE
Movwf
Movf
Movwf
Goto

’

; The first Byte was not blank,

MEM_SYNC CK
Clrf
Movf
Sublw
Btfss
Goto

I

; First Byte in Block is SyncO.

Call
Sublw
Btfss
Goto

; Memory used,

A8, O
MEM_DONE
Ag, 0

ADD1, w

R _ADD1
ADD2, w
R_ADD2

MEM NXT BLK

A8

TEMP, w
Sync_Byte0
STATUS, 2
MEM BAD BLK

MEM_READ
Sync_Bytel
STATUS, 2
MEM_BAD_ BLK

read Record number

; Bit zero marks previous blank success
; Second Block blank, process done

; Set flag for first Block blank

; Recover memory address

; Hold in temporary

; Next significant memory address

; Hold it also in temporary

; Increment address, loop on next Block

see 1f marked with Sync indicating valid data

; Cancel sequential blank Block flag
; Recover value read

; First Sync Byte if Block used

; Result zero if equals SyncO

; not sync, so memory bad

Now check if second Byte is Syncl.

; Now look for second Sync

; if is second sync, zero
; not sync, so memory bad

97

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Code Listing — Flash.asm

Call MEM READ ; Frame number
Call MEM READ ; Record number
Movwf MEM REC _NUM ; Hold last Record number used

Goto MEM NXT BLK
; Bad 16kB block, so Skip block but don't increment block count
MEM BAD BLK

Incft MEM BAD NUM, £ ; count number of bad blocks
; Assume entire 16kB Block is not blank or is bad - move to next 16k-Byte Block
; and check if advanced beyond 32MB boundary
MEM NXT BLK

Movlw 0x20 ; ADDl increment for 16kB Block
Addwf ADD1, £ ; Store result in ADDI

Btfss STATUS, C ; Carry set if rolled over

Goto MEM LOOP ; No need to check ADDZ2 yet

; ADDl rolled over, so adjust ADD2. If ADD2 rolls over, have incremented past
; end of 32MB memory so set flag to indicate that no more records can be stored.

Incf ADDZ, £ ; Increment ADD2 if ADDl carry
Btfss STATUS, Z ; Check if ADD2 rolled to zero
Goto MEM_LOOP ; Not at end, continue search
Bsf MEMORY FLAG, MEM FULL ; Indicates memory filled
Retlw O ; Leave ADD1 & ADD2 at zero

; Found sequential blank Blocks. Assume OK, restore previous address
; Calling routine must set up memory location found for read or write
MEM_DONE

Movf R ADD1, w ; Recover temporary Address
Movwf ADD1 ; Restore value

Movf R _ADDZ, Ww ; Recover temporary Address
Movwf ADD2 ; Restore value

Retlw O

;
;**
;*********3\'**

; Find a particular record number by first calculating the minimum address

; location for the record, then searching from that point to find the start

; of the Record. ADDl counts the number of 512-Byte Pages, ADD2 the number of
; 128kB Records. A Block-by-Block search is conducted from that point forward
; because a bad Block may have been encountered and skipped, throwing off the
; Blocks / Record. Flash address registers ADD2, ADDl, and ADDO are modified.

MEM_REC_FIND

Btfsc STATUS, Z ; Wreg has Record number, Verify not Zero
Movlw 0x01 ; Wreg=0, default to Record=l

Movwf TEMP ; Hold Record sought for compare

Movwf ADD2 ; ADD2 as minimum is Record number.

Decf ADD2, f ; . . . minus one.

Clrf ADD1 ; Start of Record

Bcf MEMORY_ FLAG, MEM FIND_ FLG ; Record search fail flag

; Begin search with minimum possible address, 128kB per Record.
MEM_FIND_LOOP
Call MEM RD SET ; Set up Flash to Record start
; Read first two Bytes. Will equal O0xEBS90 if used, OxFFFF if blank, and 0xA5A5
; or something else if the block is bad.
Call MEM READ

Sublw Sync_Byte0 ; First Sync Byte if Block used
Btfss STATUS, Z ; Result zero if equals SyncO
Goto MEM FIND_NXT ; Not sync, assume bad block
Call MEM READ ; Now look for second Sync
Sublw Sync Bytel

Btfss STATUS, 2 ; if is second sync, zero

Goto MEM FIND_NXT ; Not sync, assume bad block

; Good block, check if correct Record, which is fourth byte on Page
; This seems to have problems. Found good Sync, so just exit.
Goto MEM FIND_DONE ; Found it, Return

98

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Code Listing — Flash.asm

; Get next block for search
MEM_FIND_NXT

Movlw 0x20 ; ADD1 increment for 16kB Block
Addwf ADD1, £ ; Store result in ADD1

Btfss STATUS, C ; Carry set if rolled over

Goto MEM_FIND LOOP ; No need to check ADD2 yet

; ADD1 rolled over, so adjust ADD2. If ADD2 rolls over, have incremented past
; end of 32MB memory so set flag to indicate that no more records can be stored.

Incf ADD2, £ : Increment ADD2 if ADDl carry
Btfss STATUS, Z ; Check if ADD2 rolled to zero
Goto MEM FIND LOOP ; Not at end, continue search

;
; At memory boundary, set flag to indicate that no more records can be stored.
MEM FIND FAIL

Bsf MEMORY_FLAG, MEM FIND FLG ; Sets Record search fail flag
;
; Return to calling point, That routine needs to set up memory for read or write
MEM_FIND_ DONE

Retlw O
H
;**
’-**

; On entry, ADDl & 2 are set up to point to the 512B memory Page to read.
; Because the Toshiba TC58256FT Flash memory can take up to 10us between
; sending the address and having memory ready, a 10 NOP delay is included.

MEM RD SET
Bcf STATUS, RPO ; Select Bank 0 memory
Clrf PORTD ; Port D is Address / Data bus to Flash
Bsf STATUS, RPO
Clrf TRISD ; Set PORTD=Outputs (memory bank 1)
Bcf STATUS, RPO ; Select Bank 0 memory
Bcf PORTC, CE ; Chip enable CE~, Active low
Bsf PORTB, CLE ; Command Latch Enable

Movlw Qx00 Command 0x00 is Read Mode 1, Address A8=0
Call MEM WRITE
Bcf PORTB, CLE
Bsf PORTB, ALE
Movlw 0x00

Call MEM_WRITE
Movf ADDL, w
Call MEM WRITE
MovE ADD2, W
Call MEM_WRITE
Bcf PORTR, ALE

~

Address Latch Enable
Substitute for ADDO, A7 to A0, always zero

.

Wreg with Al6 to A9

~e

Wreg with A24 to Al7

~

; Get Port D ready for read function. Flash chip is left enabled.
Cirf PORTD

Bsf STATUS, RPO

Movlw OXFF

Movwif TRISD ;Set PORTD=Inputs
Bcf STATUS, RPO

; Delay to allow Flash memory to access data requested, 10us maximum
Nop
Nop
Nop
Nop
Nop

Retlw O

;**

;******************************'k***

; On entry, ADDl & 2 are set up to point to the memory Page to write. Contrary
; to Toshiba documentation, write enable is necessary for both filling the
; buffer and the Program function.

MEM WR_SET

99

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

2

;

Code Listing — Flash.asm

Bsf STATUS, RPO ; Select Bank 1 memory

Clrf TRISD ; Set PORTD=0Outputs

Becf STATUS, RPO ; Select Bank 0 memory

Bsf PORTB, WP ; WP~ high, writes enabled

Bcf PORTC, CE ; Chip enable CE~, Active low

Bsf PORTB, CLE ; Command Latch Enable

Movlw 0x80 ; Command 0x80 Data Input first half-Page
Call MEM WRITE

Bef PORTB, CLE ; End Command write

Bsf PORTB, ALE ; Address Latch Enable, address write
Movlw 0x00 ; Substitute for ADDO, A7 to A0, always zero
Call MEM WRITE

Movf ADD1l, w ; Wreg with Alé to A9

Call MEM WRITE

Movf ADD2, w ; Wreg with A24 to Al7

Call MEM WRITE

Bcf PORTR, ALE ; End Address write

Port D is left ready for write function, and Flash chip is enabled.

Retlw O

LSRR S S SR RS S SRR EEESREEEEREA SR EREEEELESEERE R R RS R EEER SR REEEEERESE SRR

;**

’
2

’

On entry, ADDl & 2 are set up to the start of a blank memory Page. This
routine fills in the values that are written only once every Page, like TIME,
Record number, and so on.

MEM Header

’
’

’

;

’

’

4

Write sync pattern into the first two bytes in each frame (512-byte Page).
This provides a known value to detect used, bad, or blank Flash Memory Pages.
Movlw Sync_ByteO ; Sync Bytes.
Call MEM WRITE
Movlw Sync_Bytel
Call MEM WRITE

Write Frame and Record number.

Movf MEM FRM NUM, w ; Get current frame count, 0 to 255
Call MEM WRITE ; Store in Flash memory

Movf MEM REC_NUM, w ; Record number, 1 to 255

Call MEM WRITE ; Store in Flash memory

Write the TIMEn registers, MS Word, LS Word, with LS Byte first (Intel fmt)

Movif TIME2, w ; Write 4 Bytes of time information
Call MEM_WRITE i . . . - placeholder for RTC

MovE TIME3, w ; Bytes currently incremented w/o RIC
Call MEM WRITE ; Store in Flash memory

Movf TIMEO, w

Call MEM WRITE ; Store in Flash memory

Movf TIMEl, w

Call MEM WRITE ; Store in Flash memory

Retlw O

’-**

;**

;
’
4

‘

Transfer internal Flash write buffer to Flash memory Page. Deselects chip
and set Write Protect on completion. Must follow with Read- or Write-set.
Note: enabling write (WP~ high and inactive) is needed only for the Erase and
Program functions.

MEM PROGRAM

Clrwdt ; Watch-Dog Timer reset

Bsf STATUS, RPO

Clrf TRISD ; Set PORTD=Outputs

Bcf STATUS, RPO

Bstf PORTB, WP ; WP~ high and inactive, enable Flash Memory write
Bef PORTC, CE ; Chip enable CE~, Active low

Bsf PORTB, CLE ; Command Latch Enable

Movlw 0x10 ; Command 0x10 is Program, transfer buffer Flash

Call MEM WRITE

100

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
438
489
490
491
492
493
494
495
496
497

Code Listing — Flash.asm

Bcf PORTB, CLE

;

Call MEM STATUS ; Reads Flash Status register into Wreg

’

; Check for error condition

Btfsc MEMORY FLAG, MEM ER_FLG ; Set in MEM_STATUS if error
Bsf MEMORY_FLAG, MEM PROG ; Sets condition flag for message

’

; Program function complete

MEM PR_END
H Bcf PORTB, WP ; WP~ low and active, disable Flash Memory write
Bsf PORTC, CE ; Release CE~, Active low chip enable
Retlw O

’

;*~k**
,-**

; Erase the entire 32MB of Flash memory. This function must be done Block-by-
; Block. 1If erase failures are detected, the routine attempt to mark the Block

; bad by writing OxA5A5 and increments the bad Block count.

MEM_ERASE
Clrf ADD1 ; Start at memory beginning
Clrf ADD2
Clrf MEMORY_FLAG ; Clear error condition flags
Clrf MEM_BAD_NUM ; Zero count of bad blocks
call SENDDATA ; Message expected by PC interface S/W

MEM_ER_LOOP
call MEM ERASE BLOCK

; Make LED blink after each Block

Movlw 0x02 ; LED is PORT C, line 1
Xorwf PORTC, £ ; make LED blink

; If error condition, mark block bad
Btfss MEMORY_ FLAG, MEM_ER FLG

Goto MEM_ER_NXT ; Flag not set,

’

Error from erase status

continue

; Block bad. The maximum Blocks in the 32MB memory is 2046, so can overflow.

Inct MEM BAD_NUM, f ; count number of bad blocks

Call MEM WR_SET ; Still pointing to start of block

Movlw OxAb ; pattern to mark bad

Call MEM WRITE ; write out OxABAS

Call MEM WRITE ; . might not be able to write since bad block.
Call MEM PROGRAM 7 Transfer buffer to Flash

Call Fail Msg ; Readable message in HyperTerminal

2

; Increment memory to next 16kB block to erase

MEM_ER_NXT

Clrf MEMORY_ FLAG ; Clear a

Movlw 0x20

Addwf ADD1, f

Btfss STATUS, C

Goto MEM ER_LOOP
; ADD1 rolled over, so adjust ADD2. If ADD2
; end of 32MB memory so set flag to indicate

Incf ADD2, £

Btfsc STATUS, 2

Goto MEM ER_END

; Write message every 4MB erased
Movf ADD2, w
Andlw Ox1F
Btfsc STATUS, 2
Call Erase Msg
Goto MEM ER_LOOP
; Finished with erase function
MEM _ER_END

’
’
;

’

rolls over,

’
'

;

;

ny condition flag

ADD1 increment for 16kB Block
Store result in ADD1

Carry set if rolled over

No need to check ADD2 yet

Increment ADDZ if ADD1 carry
Check if ADD2 rolled to zero
Rolled to zero, all done

Recover ADD2
Strip upper bits on ADD2
Lower ADD2 bits zero?

yes,

send debug message

have incremented past
that no more records can be stored.

; MEM STATUS Loops until Flash status bit Ready is set, which should take 0.2 to 1.0 millisecond

101

Code Listing — Flash.asm

498 Call Status_Msg

499 Retlw O

500 ;

501 ,-**
502 ;**
503 ;

504 ; Erase one 16kB Block of Flash memory. Note: enabling write (WP~ high and

505 ; inactive) is needed only for the Erase, Program, and Write buffer functions.
506 MEM ERASE BLOCK

507 Clrwdt ; Watch-Dog Timer reset

508 Bsf STATUS, RPO

509 Cclrf TRISD
510 Bcf STATUS, RPO

Set PORTD=Outputs

511 Bsf PORTB, WP ; WP~ high and inactive, enable Flash Memory write
512 Bef PORTC, CE ; Chip enable CE~, Active low

513 Bsf PORTB, CLE ; Command Latch Enable

514 Moviw Ox60 ; Command 0x60 is Erase

515 call MEM WRITE

516 Bef PORTB, CLE

517 ;

518 ; Write Block address. Erase function is on 16kB blocks.

519 Bsf PORTB, ALE

520 Movf ADDl, w

521 Call MEM_WRITE

522 Movf ADD2, w

523 Call MEM_WRITE

524 Bcf PORTB, ALE

525 ;

526 ; Send confirm command

527 Bsf PORTB, CLE

528 Movlw 0xDO ; Erase confirm command

529 call MEM WRITE

530 BcE PORTB, CLE

531 ;

532 ; Wait for completion. Takes up to 20 milliseconds. MEM STATUS returns Flash
533 ; Memory status in Wreg

534 Call MEM STATUS ; Loops until Flash sets Ready status
535 Bcf PORTB, WP ; WP~ low, Flash Memory write protected
536 Bsf PORTC, CE ; Release CE~, Active low chip enable
537 Return

538 :

539 ,-*****************************‘k**
540 ;*****************************-k**
541 ;

542 ; Flash Status is in Wreg on return, loops until memory shows Ready

543 ; TC58256FT memory Status Bit definition for the TC58256FT memory:

544 ; Bit 0 Pass = 0, Fail = 1 for a program or erase function

545 ; Bits 1 - 5 are not used and returned as 0

546 H Bit 6 Ready = 1, Busy = 0 for any command

547 i Bit 7 Write protect status, 0 = protect, 1 = write enabled

548 ; Expect result read to be 0xCO when function is complete.

549 ;

550 MEM_STATUS

551 ; Set up to write command

552 Bsf STATUS, RPO ; Select Bank 1 Memory

553 Clrf TRISD ; Set PORTD=Outputs

554 Bcf STATUS, RPO ; Set Bank 0 Memory

555 Bsf PORTB, CLE ; Command Latch Enable

556 Movlw 0x70 ; Command to Read Flash Status

557 Call MEM WRITE

558 Bct PORTB, CLE

559

560 Set up to read result

561 Clrf PORTD

562 Bsf STATUS, RPO ; Select Bank 1 Memory

563 Movlw OxFF

564 Movwf TRISD ; Set PORTD=Inputs

565 Bcf STATUS, RPO ; Select Bank 0 Memory

566 call MEM READ ; Read result in Wreg

567 Movwf TEMP

568 Btfss TEMP, 6 ; Bit 6 is Ready / Busy~, still processing if low

102

Code Listing — Flash.asm

569 Goto MEM_STATUS
570 ;
571 ; Check for error condition
572 Btfsc TEMP, 0 ; Failure flag on bit 0
g;z Bsf MEMORY_FLAG, MEM ER FLG ; Sets condition flag for message
575 Return
576 ;
577 ;****************************‘k***
578 ;**
579 ; Test Hand(ler) Subroutine
580 ;
581 ; Function:
gg% ; On a 16kB block basis, this routine erases the Flash memory, fills the memory
; with the pattern supplied, then erases again. Error and progress update
ggg ; messages are sent to the PC after every IMB.
586 ; The TC58256FT memory includes an auto-verify function that compares the
ggg ; contents of the memory with the buffer after a program operation. If these
; do not match, the Fail bit is set on memory status. The Erase command also
ggg ; does the equivalent with an Erase and Verify function.
591 ; Calls:
592 ; MEM_WR_SET
593 ; MEM_ERASE BLOCK
594 ; MEM PROGRAM
595 ;
596 ; Registers:
597 ; Wreg has the test pattern on entry.
598 ;
599 ; Interrupts:
600 ; Not changed.
601 ;
602 ; Return:
603 ; WREG=0
604 ;
605 ; Execution Time:
606 ; ??M Cycles
607 ; ??sec at 4MHz
608 ’.**
609 :
610 MEM TEST
g}% Movwf PATTERN ; Wreg has Test Pattern on entry
Clrf ADD1
613 Clrf ADD2
614 Clrf MEMORY FLAG
g}g MEM_TSW_LOOP ; Loop per memory Page
617 ; Check to see if computer command, started by pushing Attention button
618 Btfsc PORTB, ATTENTION ; Bit Test of Command Flag
gég Goto MEM TST END ; Button pushed, begin processing commands
621 Clrf ADDO ; Used here to track if Page filled
622 Movlw OxFE ; Set up for two loops
623 MovwE A8 ; Tracks which Page half of 512-byte page
624 Ccall MEM WR_SET ; Starting a new Page, prepare to write
625 MovE PATTERN, w ; Recover test pattern to Wreg
g%g MEM TSW_inner ; Loop per memory Byte
Call MEM WRITE
628 Incfsz ADDO, £ ; Increment after each byte written
2%3 Goto MEM TSW_inner ; Address not rolled over to zero, loop
631 ; Check if finished one page = 512 bytes, or just half-page = 256 bytes
632 Incfsz A8, f ; A8=0 @ 512 Bytes, A8=FF @ 256 Bytes
ggz Goto MEM_TSW_inner ; Page not finished, continue writing
635 ; Have written 512 bytes into buffer
ggg Call MEM_PROGRAM ; Transfer from buffer, captures error
638 ; Now read back page to see if matches.
639 MEM_TSR_LOOP ; Loop per memory Page

103

640
641
642
643
644
645
646
647
648
649
650
6351
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
671
678
679
680
681
682
683
684
683
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

Movlw
Movwif
Call

MEM TSR_inner

Call
Subwf
Btfss
Bsf
Incfsz
Goto

Code Listing — Flash.asm

OxFE ; Set up for two loops
A8 ; Tracks which Page half of 512-byte page
MEM RD SET ; Starting a new Page, prepare to write
; Loop per memory Byte
MEM_READ
PATTERN, w ; Compare test pattern with read value
STATUS, Z
MEMORY_ FLAG, MEM WR FLG ; Did not match
ADDO, £ ; Increment after each byte written
MEM TSR_inner ; Address not rolled over to zero, loop

; Check if finished one page = 512 bytes, or just half-page = 256 bytes

Incfsz
Goto

A8, £ ; A8=0 @ 512 Bytes, A8=FF @ 256 Bytes
MEM TSR_inner ; Page not finished, continue writing

; Check if finished last page in 16kB block. ADD1=0xlF, O0x3F, etc.

’

Movlw
Andwf
Sublw
Btfsc
Goto

Ox1F ; Mask out upper three bits

ADD1, w ; Wreg left with lower five bits
0x1lF ; Address for last page in block
STATUS, Z

MEM TS _ER ; Finished writing Block, so erase

; Was not end of block so increment memory to next Page to test

I

Movlw
Addwf
Btfsc
Inct
Goto

; Set address
MEM_TS_ER

Clrf
Movlw
Andwf
Call

0x01

ADD1, £ ; Increment ADD1 if ADDO overflow
STATUS, C ; See if overflow

ADD2, £ ; yes, increment next address
MEM TSW_LOOP ; Start writing next memory Page

to erase this block, then increment to start of new block

ADDO
0xEO0 ; Retain only upper three address bits
ADD1, £ ; Set ADD1 to start address of this page

MEM_ERASE BLOCK

; Make LED blink after each Block tested

Movlw
Xorwf

Movf
Btfsc

0x02 ; LED is PORT C, line 1
PORTC, £ ; make LED blink
; Check if any failures in this block
MEMORY_ FLAG, w ; recover memory error condition flags
STATUS, 2 ; Should be zero if no errors
MEM TS_NXT ; no errors, go to start of next block

Goto

; Some error in block, send failure message

;

Incf
Call
Call
Movliw
Call
Call
Call

MEM BAD NUM, £ ; count number of bad blocks

Fail Msg ; Message with block address

MEM WR_SET ; Still pointing to start of block
OxA5 ; pattern to mark bad

MEM WRITE ; write out OxA5A5

MEM_WRITE ; . might not write since bad.

MEM PROGRAM ; Transfer buffer to Flash

; Increment memory to next 16kB block to test
MEM_TS_NXT

Clrf
Movlw
Addwf
Btfss
Goto

; ADD1 rolled
; end of 32MB memory so end test.

Incf
Btfsc
Goto

MEMORY_FLAG ; Clear any condition flag

0x20 ; ADD1 increment for 16kB Block
ADD1, £ ; Store result in ADD1

STATUS, C ; Carry set if rolled over

MEM TSW_LOOP ; No need to check ADD2 yet

over, so adjust ADD2. If ADD2 rolls over, have incremented past

ADD2, f ; Increment ADD2 if ADD1 carry
STATUS, 2 ; Check if ADD2 rolled to zero
MEM TST_END ; Rolled to zero, all done

; Write message every 1MB tested

104

Movf
Andlw

ADD2, w ; Recover ADD2
0x07 ; Strip upper bits on ADD2

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

Code Listing — Flash.asm

Btfsc STATUS, Z ; Lower ADD2 bits zero?

Call Status_Msg ; yes, send debug message

Goto MEM_TSW_LOOP
; Done with test
MEM TST END

Call status_Msg

Retlw o]
:-**

,-********'k**1\'****************************

H Fill Test Subroutine

; Function:

; Fills the number of Flash memory Records specified with known values. This

; allows tests of the read routine. Follows the same Frame structure as

; normal written data. Use the HyperTerminal, and Command string:

; "Oo", "F", <parm MSB>, <parm LSB>

; where the <parm ..> is an ASCII character with the least significant nibble

; set to the value desired. The value indicates the number of records to fill.
; For example, to fill 5 records, the command string is:

; OF05

; because the ASCII value for "5" is 35 hex, so the least sig. nibble is a 5 as
; needed. (The serial interrupt routine combines the nibbles into 8-bit values)
; Interrupts:

; No change. Serial Interrupts must be enabled prior to call to allow the PC
; to stop data upload with the Cntl-C character.

;

; Return:

; Wreg=0

:
;**
I-**

FILL TEST

Clrwdt ; Reset 2.4 second Watch-dog Timer
Bcf STATUS, RPO ; Make sure pointing to Memory Bank 0O
Clrf MEMORY FLAG ; Resets memory condition flags

; Locate the next blank memory location. Also returns last Record number used.
call MEM_FIND

; Get parameter passed with command, if any. If no parameters, set to fill one

; Record.
Movlw 0x01l ; Default to one Record fill
Movwf R _MEM REC_NUM ; 0x01 is first 128kB Record
Movlw CMD_Param_Start ; Start of parameter stack
Movwf FSR ; Place into stack pointer
MovE INDF, w ; Recover CMD_PARAMS=parameter count
Btfsc STATUS, Z ; Test if zero parameters on stack
Goto FILL END REC ; no parameters passed, start with default

; Adjust Command Parameter stack pointer to first parameter passed

Incf FSR, £ ; Point to first parameter
Movf INDF, w ; Get value
Movwf R_MEM REC_NUM ; Store as number Records to fill

; Now add to current record number to determine stopping record number.
FILL END_REC

Movf MEM REC_NUM, w ; Get current record count

Addwf R _MEM REC_NUM, f ; Add to number of records to fill
Movlw OxFF ; Does not affect carry bit

Btfsc STATUS, C : See if caused overflow

Movwf R _MEM REC_NUM ; Overflow, set to maximum

’

; Position memory to start filling memory.

FILL_START

Clrf MEM FRM NUM ; Clear Memory Page count

Inct MEM REC_NUM, £ ; Add one to number of records stored
FILL_LOOP

105

Code Listing — Flash.asm

782 ;

783 ; Check to see if computer command, started by pushing Attention button

784 Btfsc PORTB, ATTENTION ; Bit Test of Command Flag

785 Goto FILL_COMPLETE ; Button pushed, begin processing commands
786 ;

787 ; Set up memory to accept data at the 512-Byte Page address pointed to by
788 ; address Bytes ADDO, 1, 2.

789 Call MEM WR_SET

790 ;

791 ; Increment time values for next record, léms per Frame.

792 Movlw 0x10

793 Addwf TIMEO, f

794 Movlw 0x01 ; increment value for subsequent

795 Btfsc STATUS, C ; If Time 0 overflowed, increment Time 1
796 Addwf TIMEl, f

797 Btfsc STATUS, C ; Look for overflow on Time 1

798 Addwf TIME2, £ ; Time 1 overflow, increment Time 2
799 Btfsc STATUS, C ; Still clear from Time 1, or clear/set by 2
38? Incf TIME3, f ; Time 2 overflow, increment Time 3
802 ; Write sync pattern into the first two bytes in each frame (512-byte Page).
803 ; This provides a known value to detect used, bad, or blank Flash Memory Pages.
804 ; BAlso, write all once-per-page values at the start of the page.

805 Call MEM Header

806 ;

807 ; Initialize measurement counter to record 28 analog sets per Frame

808 Movlw Oxl1C ; Frame contains 28 analog meas. sets
g?g Movwf MeasSet_ Cnt ; initialize counter variable

811 ; Set up simulated analog measurement loop

812 FILL_F_LOOP

813 Movlw 0x08 ; Fill 9 channels, 0 to 8

814 Movwf Channel Cnt

815 ;

816 ; Simulate Analog measurement with large value in LSB, small value in MSB.
817 FILL_M_LOOP

818 Comf Channel Cnt, w ; simulates LSB of data

819 Call MEM WRITE ; Store in Flash memory

820 Movi Channel Cnt, w ; simulates MSB of data

821 Call MEM WRITE ; Store in Flash memory

822 ;

823 Decfsz Channel Cnt, £ ; go to next value

824 Goto FILL_M_LOOP

825 ;

826 ; Check if done with frame

827 Decfsz MeasSet_Cnt, f ; sub-frame counter, want 28 sets

828 Goto FILL_F_LOOP ; not done with 28 sets yet

829 ;

830 ; End of Frame loop. Command transfer of Flash internal buffer to memory

831 Clrwdt ; Reset 2.4 second Watch-dog Timer

832 call MEM PROGRAM ; Transfer internal buffer to Flash
ggz ; Note: Maximum write delay is 1 millisecond

835 ; Increment memory address to next 512-Byte Page. Add0 is the Byte location
836 ; within the Page, so is not incremented.

837 FILL_F_INCR

838 Incf ADD1, f ; Incf instruction doesn't set C flag
839 Btfss STATUS, Z ; See if rolled over, overflow

gi? Goto FILL_INC FR ; Not rolled over, don't need to check rest
842 ; Make LED blink

843 Movlw 0x02 ; LED is PORT C, line 1

844 Xorwf PORTC, f ; make LED blink

845 ;

846 ; ADD1 rolled over, so increment next significant address. Check for end of
847 ; memory. If end, both ADDl and ADD2 will have rolled to zero.

848 Incf ADD2, £ ; increment next address

849 Btfsc STATUS, 2Z ; Will have rolled to zero if full

850 Goto FILL COMPLETE

851 ; B

852 ; Increment frame counter

106

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

Code Listing — Flash.asm

FILL_INC_FR
Incfsz MEM_FRM NUM, f ; Frame counter, rolls to 0x00 from OxFF
Goto FILL_LOOP

; 128kB Record complete - See if need to loop again.

FILL_CK_COMP

Call Status_ Msg ; Sends Output location to terminal
Movf R MEM REC_NUM, w ; Get finish Record value

Subwf MEM REC_NUM, w ; Subtract current Record number
Btfss STATUS, C ; Carry set if R_ < MEM REC NUM

Goto FILL_START
H
; End of memory acquisition / write.
FILL COMPLETE

Return
;
;**
;************************ END Of E‘ILE Flash'asm hhhkkhkhkkhkdkdhkdhkdrhkhkhdhdhkhkrrhdhkhhhx
,-**
;

END

107

ORI NN —

10

;

Code Listing — Rd_Hand.asm

File name: "rd hand.asm"
P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code
Routines to read memory and send data via serial interface

Date: 11 December 2001
File Version: 4

Author: Tedd A Rohwer, Sandia National Laboratories

Change history:
1999 - Adapted from MilliPen.asm for Sensor Ball, TA Rohwer
November 2000 - Version 2, TA Rohwer
17 Mar 2001 - Version 3 Changes requested by P&G, ME Partridge
14 Jun 2001 - Include checksum features for data integrity at 115.2k Baud
12 Aug 2001 - Version 4 Changes, ME Partridge
Remove the automatic continuation function during upload. This may
have caused 512-Byte Pages to be missed on upload.
Add reduced-function upload command "r" w/o Sync check
Use interface timeout subroutines
Correct upload of Time LSW
11 Dec 2001 having problem with serial receive -- getting spurious
characters. Reset receive after each block transmitted.

R E R SRS ERSE R R RS EEESE RS EEREE RS SRR RE SRR S EREREEEEEEEEEEEEEEEEESEEEEESE]

Read Hand(ler) Subroutine
Function:
Reads Records from memory from Start Record until either Cntl-C is received
from the PC uploading the data, or the end of the 32MB Flash memory is
reached. Default for Start Record is 1, the first record. Data are stored
in Flash memory as 16-bit words, Least Significant Byte first, and are
uploaded to the PC this way.

Seven, 80-Byte Major Frames are aligned within one 512-Byte Flash memory
Page. The data are stored in the Flash memory Page as follows:

Sync bytes Sync0, Syncl (0xEB90)

Page number and Record number

Time count, 32 bits with LSB first

28 sets of nine, two-byte analog measurements, Channel 0 thru 9 skip 7
These are rearranged to create the seven Major Frames with some values
repeated among the seven Major Frames (Page number, Record number, Page
address LS Byte, Page address MS Byte) to the seven 80-Byte Major Frames
totaling 560 Bytes. The Time variable is incremented for each Major Frame,
based upon the initial value stored in the Flash memory Page. So, the Major
Frame is constructed of the following values:

one set of nine, two-Byte analog measurements

Page number, Record number

next set measurements

Time LS+2 Byte, Time MS Byte

next set measurements

Time LS Byte, Time LS+1 Byte

next set measurements

Flash Memory Page LS Byte address, Flash Memory Page MS Byte address

To accommodate re-transmitting a data Frame if errors are detected, the

Flash memory Page is re-read when a Negative Acknowledge (NAK) is sent. After
each Byte is transmitted, its value is added to the 16-bit checksum value.
Then, the Frame is uploaded to the PC followed by the checksum. If the data
are error-free, an Acknowledge character (hexadecimal 0x06) is sent from the
PC and data transmission continues with the next Flash Memory Page.
Otherwise, the NAK character (hexadecimal 0x15) is sent and the Frame is
transmitted again.

Subroutines in this file:
GLOBAL READ HAND

Calls:
EXTERN TX_WREG
EXTERN Timeout_ Chk ; Tests 1f interface has timed out
EXTERN MEM READ ; Flash.asm, Return value from Flash memory
EXTERN MEM WRITE ; Flash.asm, Writes Wreg value to Flash memory
EXTERN MEM REC_FIND ; Finds a particular Record number
EXTERN MEM RD SET ; Sets Flash memory to begin reading

108

;

’

’

’

’

’

’

Registers:
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

Interrupts:
No change.

Return:
Wreg=0

MEM_REC_NUM
MEM_FRM_NUM
ADDO

ADD1

ADD2
SER_FLAG
MEMORY_FLAG
PROG_FLAG
CMD_PARAMS

R _Sync ByteOD
R _Sync_Bytel

R_MEM REC_NUM
R_MEM_FRM_NUM

R TIME3
R_TIME2
R_TIME1
R_TIMEO
CMD_TIMEL
CMD_TIMEH
CKSMO

CKSM1

BLCKO

BLCK1
MeasSet_Cnt
Channel Cnt
TEMP

Code Listing — Rd_Hand.asm

; Current Flash memory Record, 1 - 64

; Current Record Frame (Page), 0 - 255

; Flash Memory address A7 .. A0

; Flash memory address Al6 .. A8

; Flash memory address A24 .. Al7

; Control character flags Xon, Ack, etc.
; Memory Status and test flags

; Program control, SIMPLE FLG used here

; Values read from memory

; Time-out LSByte, 285ms / bit

; Time-out MSByte

; Checksum LS Byte, data upload to PC

; Checksum MS Byte

; Count of Frames uploaded, LS Byte

; Count of Frames uploaded, MS Byte

; Loop counter, 28 sets of 9 meas. / page

; Loop counter, analog channels 0 to 9 skip 7
; Scratch register for Debug

Serial Interrupts must be enabled prior to call to allow the PC
to stop data upload with the Cntl-C character.

include files:

#include

#include "ball_equ.inc"

"P16C774.INC"

;Standard Header File for PIC16C773

;Includes all Register Definitions,

;RAM Definitions, & Configuration Bits
;EQU Declarations, equivalence

kkkkkhkkhkkkdhhhhkrhhkhhkhkrrhhhhkhkhkhhxhahxxxhhhxkhhxhhrhhdhkkhrxhdhhkdkhkhkhhhrrhhhhrrrxrhkhx

;**

Macro used only in the Rd_Hand routine to extract data from memory and pass

I

v

it on to the

pC.

,-**

shkkk kAR A A hhhhkkhk Ak bk kA rhh kA kkkkkkhkkhkkdhxhhhdrhkdkhkhkdhd kA xhhdddrhhdarxhhhhhdhhhkkhk

Build Minor-Frame Macro

Function:

4/16/2001 ME Partridge

Reads the ADC data from Flash memory in sets of nine, two-byte values and

uploads it to the PC.

Then,

two bytes sub-commutated values are sent. The

Major Frame consists of four Minor-Frames.

Arguments:
Loop
vValueO
Valuel

Calls:
TX_WREG

Macros used:
MEM_READ
ADC_Read

Registers:
Channel_Cnt

Revisions:

Unique identifier for each instance of this macro
The first sub-commutated value sent
The second sub~commutated value

Passes data to the USART to be transmitted to the PC

Handles Flash control signals
Sets up the analog mux and waits for ADC response

Loop counter to read one data set

109

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Code Listing - Rd_Hand.asm

; 4/16/2001 First revision
:-**
Sub_Frame MACRO Loop, Valued, Valuel
Sub_Frame_ #v(Loop)

Movlw 0x12

Movwf Channel Cnt ; Counter to move 9 values x 2 Bytes ea
; Analog data loop: get data for Analog channels 0 to 6, 8, 9 for 9 values total
Sub_Frame_ #v(Loop)_LOOP

Call MEM_ READ ; Analog LSBYTE
Call TX_WREG ; Upload Byte to PC
; Do checksum calculation. TX WREG leaves data in Wreg
Addwf CKSMO, £ ; calculate checksum LS Byte
Btfsc STATUS, C
Incf CKsM1, f ; adjust checksum MS Byte if Carry

; Increment the measurement number, then test if greater than 18. If not, repeat
; with the next analog channel.

Decfsz Channel Cnt, f ; Check if completed one set of data

Goto Sub_Frame #v(Loop)_LOOP ; Acquire and write next channel

; Close with two bytes of other values
Movf Value0, w
Call TX_WREG ; Upload Byte to PC

; Do checksum calculation. TX WREG leaves data in Wreg

Addwf CKSMO, £ ; calculate checksum LS Byte
Btfsc STATUS, C
Incf CKSM1, f ; adjust checksum MS Byte if Carry

; Second value
Movf valuel, w
Call TX_WREG ; Upload Byte to PC

; Do checksum calculation. TX WREG leaves data in Wreg

Addwf CKSMO, f ; calculate checksum LS Byte

Btfsc STATUS, C

Inct CKsM1l, f ; adjust checksum MS Byte if Carry
ENDM

;
;**
’-**

READ_PROG CODE ;relocatable code in Program EPROM
READ_HAND
Clrwdt ; Reset 2.4 second Watch-dog Timer
Bcf STATUS, RPO ; Make sure in Memory Bank O
Bsf PROG_FLAG, LED BLINK ; Setup for LED blink pattern
Clrf CMD_TIMEL ; Time-out LSByte, 285ms / bit
Clrf CMD_TIMEH ; Time-out MSByte
Clrf BLCKO ; LS count of Frames uploaded
Clrf BLCK1 ; MS count
Clrf SER_FLAG ; Clears left-over control characters
Clrf MEMORY_ FLAG ; Resets memory condition flags
Clrf ADD1 ; Flash Page address

Clrf ADD2

; Get parameter passed with command, if any. If no parameters, leave ADDl set

; to 0x00, the start of memory. A "block" of data uploaded is equal to one Page
; of Flash memory (512 Bytes), expanded to 560 Bytes when converted to standard
; telemetry frames. A "block" does not equal a Flash memory Block, which is

; 16k Bytes, rather, it is the term used in the host computer software. One

; "block" contains 7 frames of 80 bytes each. Data are uploaded until stopped

; by the host PC when it transmits a Cntl-C control character.

READ PARM
Movlw CMD Param Start ; Memory location for parameter stack
Movwf FSR ; Place in stack pointer

110

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Code Listing — Rd_Hand.asm

Movf INDF, w ; =CMD_PARAMS, count of parameters sent
Btfsc STATUS, Z ; Test if zero parameters on stack
Goto READ_RECORD ; no parameters passed, start with default

; Read first parameter passed, MS Byte of address
Incf FSR, f ; Adjust stack pointer
Movf INDF, w ; Byte 1, MSByte address
Movwf ADD2

; If no more parameters, proceed with read

Decfsz CMD_PARAMS, f ; Recover number of parameters
Goto READ_2ND_PARM ; Parameter cound still > 0
Goto READ_RECORD ; only one parameter passed

;
; Read second paramter passed, LS Byte of address
READ_2ND_PARM

Incf FSR, f ; Adjust stack pointer
MovE INDF, w ; Recover parameter
Movwf ADDIL ; Place in address

; Position memory to start of Record selected.
READ_RECORD
; Test if "Smart PCM Device" upload, command "r"
Btfsc PROG_FLAG, SIMPLE FLG ; Set if Command "r"
Goto READ XON ; "Smart PCM Device" upload, skip to Read
Call MEM REC_FIND ; Find first valid data Record
; Wait for OK from PC before begining data upload loop. Need WDT reset because
; need operator input to select file name and number of Records to upload.

READ_XON
Clrwdt ; Reset 2.4 second Watch-dog Timer
Call Timeout Chk ; Used to blink LED while wait
Btfsc PORTB, ATTENTION ; Check 1f operator wants to terminate
Goto READ_END ; Button pushed, skip to end of read
Btfsc SER_FLAG, NAK FLG ; Negative acknowledge
Goto READ_LOOP ; . . . take it as Go signal
Btfss SER_FLAG, XON_FLG ; PC sends Xon when ready

Goto READ XON
;
;****************** Start Of E‘lash Memory Read Loop EEE R R R SR RS R SR EE R R RS S R R EE S S

; Begin loop to read Flash memory and write formatted results to the PC.

READ_LOOP
Clrwdt ; Reset 2.4 second Watch-dog Timer
Btfsc SER_FLAG, CNTRLC_FLG ;Test if transfer Interrupt Flag
Goto READ_END ; 1=0, Transfer interrupted by Ctrl-C

; Blink LED for each Memory Page read

Movliw 0x02 ; LED is PORT C, line 1
Xorwf PORTC, £ ; make LED blink
; See if end of memory has been reached, if so will be sending blank records
Btfsc MEMORY FLAG, MEM FIND FLG ; End of memory flag
Goto READ SEND_SYNC ; Yes at end, skip to send sync

; Read the preamble bytes
Call MEM RD_SET ; Position to read next Memory page
Call MEM READ ; Sync Byte 0
Movwf R_Sync Bytel
Btfsc PROG_FLAG, SIMPLE FLG ; Set if Command "r"
Goto READ Syncl ; Simple upload, proceed with Read

; Test if equal to Sync 0. If not, bad memory Page.
Sublw Sync ByteO
Btfss STATUS, Z ; if match, will be zero
Goto Next Page ; no match, skip to next memory page

READ_Syncl

Call MEM_READ ; 8ync Byte 1
Movwf R _Sync_Bytel

111

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Code Listing — Rd_Hand.asm

Btfsc PROG _FLAG, SIMPLE_FLG ; Set if Command U
Goto READ_REST ; Simple upload, proceed with Read

; Test if equal to Sync 1. If not, bad memory Page.

Sublw Sync_Bytel

Btfss STATUS, Z ; 1f match, will be zero

Goto Next Page ; no match, skip to next memory page
; Read remaining preamble data bytes. Need to match sequence written by the
; RECORD macro
READ_REST

call MEM READ

Movwf R_MEM_FRM NUM

Call MEM_READ

Movwf R _MEM_REC_NUM

call MEM READ

Movwf R TIMEZ

Call MEM READ

Movwf R _TIME3

Call MEM_READ

Movwf R_TIMEO

Call MEM_READ

Movwf R_TIMEL
; Send the Sync Bytes and the Frame-group being transmitted
READ_SEND_SYNC

Movlw Sync Byte0 ; Start Frame with sync bytes

Call TX_WREG ; USART Transmit to PC

Movlw Sync_Bytel

call TX_WREG

Movf BLCKO, w ; Count of Frame groups uploaded

Ccall TX WREG

Movf BLCK1, w

Call TX_WREG

; Each Flash memory Page (512 Bytes) contains 28 sets of nine, two-Byte analog
; measurements. The following loop reads the Page to upload 7 Major Frames of
72 analog Bytes (504 Bytes read) plus the previously read eight Bytes of
; preamble data (512 Bytes total read). One set of nine, two-Byte analog
measurements is sent in each sub-Frame plus two Bytes from preamble.

Clrwdt ; Reset 2.4 second Watch-dog Timer

Movlw 0x07

Movwf MeasSet_Cnt ; Set to read 7 Frames on one Flash Page

; Get ready to calculate checksum as data Frame bytes are transmitted
Clrf CRSMO ; Checksum LS Byte
Clrf CKSM1
; Loop to read and upload 80-Byte Major Frames. LS Byte is sent first.
FRAME_LOOP
; Check if at Memory end, if so just send blanks
Btfsc MEMORY_FLAG, MEM FIND_FLG ; End of memory flag
Goto Blank Page

Sub_Frame 0, R_MEM_FRM NUM, R MEM REC_NUM
Sub Frame 1, R _TIMEZ, R _TIME3

Sub_Frame 2, R_TIMEO, R_TIMEl

Sub_Frame 3, ADDl, ADD2

; Skip over blank data transmit
Goto FRAME INCR

; Memory end has been reached, keep sending blank data

Blank_Page
Movlw 0x50 ; 80-byte Frame
Movwf Channel Cnt ; Re~use this counter

; All-zero data add to zero Checksum, so don't need to accumulate here
Blank Frame
Movlw 0x00 ; Send data as all zero

112

Code Listing — Rd_Hand.asm

356 Call TX _WREG ; Transmit blank value
357 Decfsz Channel Cnt, f ; Count of bytes sent in blank Frame
%53 Goto Blank Frame ; not done with 80 Bytes yet
5 ;
360 ; Check to see if all Frames uploaded from current memory Page
361 FRAME INCR
362 Decfsz MeasSet_Cnt, £ ; Frame counter, want 7 ea. 80-byte
363 Goto FRAME LOOP ; not done with 7 sets yet
364 ;
365 ; Having problem with receive function. Reset receive queue to ensure able
366 ; to read the ACK / NAK character.
367 Bcf STATUS, RPO ; Select Bank 0 Memory
368 Bcf RCSTA, CREN ; Momentarily disable receive, clear OERR
369 Movf RCREG, w ; Empty receive buffer, two deep
37? MovE RCREG, w ; Potential second byte from receive
37 ;
372 ; Clear all control character flags.
373 Clrf SER_FLAG
374 ;

375 ; Send Checksum bytes, LS Byte first
376 FRAME CKSM

377 Movf CKSMO, w

378 Call TX_WREG

379 Movf CKSM1, w

380 call TX_WREG

381 ;

382 ; Wait until transmit shift register (TSR) is empty is empty. If the TSR is not
383 ; empty, wait. Note: this bit is only set after the first transmit

384 FRAME TX WAIT

385 Bsf STATUS, RPO ; Select Bank 1 memory

386 Btfss TXSTA, TRMT ; Set to 1 when TSR empty

ggg Goto FRAME TX WAIT ; shift register empty, load new data

389 Bcf STATUS, RPO ; Select Bank 0 memory

38? Bsf RCSTA, CREN ; Continuous receive enable

3 ;

392 ; Having troubles missing ACK character from PC. If missed, PC read will time-
393 ; out, and ask for re-transmit, so will be corrected there. This loop can only
394 ; be exited by receiving a Ctrl-C, Ack, Nak, or pressing the ATTENTION buttion.
395 WAIT ACK NAK

396 Clrwdt ; Reset 2.4 second Watch-dog Timer

397 Btfsc PORTB, ATTENTION ; Check if operator wants to terminate
398 Goto READ_END ; Button pushed, skip to end of read

399 Btfsc SER FLAG, CNTRLC FLG ; Test if transfer Interrupt Flag

400 Goto READ_END N ; Transfer interrupted by Ctrl-C

401 Btfsc SER FLAG, ACK FLG ; Acknowledge flag test

402 Goto WAIE~OVER B ; OK to proceed

403 ;

404 ; The PC interface program may send Ack (0x06), Nak (0x15), or if the interface
405 ; program had some communication time-outs, Xon (0x11l). Treat Nak and X-on
406 ; control characters the same way.

407 Btfsc SER FLAG, NAK FLG ; Negative acknowledge

408 Goto READ_LOOP ; . . . got error, retransmit

409 Btfsc SER_FLAG, XON_FLG ; Treat like NAK

410 Goto READ_LOOP B

2%% Goto WAIT ACK_NAK ; Nothing received, keep checking

413 ; Acknowledge received - Frame group received error-free.

414 ; Adjust count of Frame groups successfully uploaded

415 WAIT OVER

416 Movlw 0x01 ; Increment count of Frames uploaded

417 Addwf BLCKO, f ; Frame count LS Byte

418 Btfsc STATUS, C ; See if LS Byte increment caused Carry
419 Inct BLCK1l, £ ; Got Carry, adjust MS Byte

420 ;

421 ; End of Frame loop. Increment the memory address to the next 512-byte Page.
422 Next_ Page

423 ;

424 ; Check to see if already read all Records stored in Flash memory

425 Btfsc MEMORY FLAG, MEM FIND FLG ; End of memory flag

426 Goto READ LOOP B ; Just loop, will send blanks

113

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

Movlw
addwf
Btfsc
Incf

Code Listing — Rd_Hand.asm

0x01

ApDl, £ ; Incr instruction doesn't set C flag
STATUS, C ; See if overflow

ADD2, £ ; yes, increment next address

; Check for end of memory. If end, both ADD1l and ADPDZ will have rolled to zero

Movf
Iorwf
Btfsc
Bsf
Goto

ADDL, w

ADD2, w

STATUS, Z

MEMORY_FLAG, MEM_FIND FLG ; Set the End of memory flag
READ_LOOP ; Keep going until PC says stop

;********************* End Of E‘lash Memory Read Loop EEE RS SR EEEEEERERERESESEESEEE]

’

; Finished reading all frames

READ_END
Bcf
Cirf
Bsf
Retlw

i

STATUS, RPO ; Make sure in Memory Bank 0
SER_FLAG ; Reset transfer Interrupt Flag
PORTC, CE ; Disable Chip Enable

0 ; Return to CMD HAND, WREG=0

;**

;************************** END Of FILE Rd_Hand.asm dhkkkhdhkrkrhkhkkkkhdhhhkhhhhdhdkdr

;**

END

114

ORI N BN —

.

’

Code Listing — Ser_Hand.asm

File name: "ser_ hand.asm"
P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code
Routines to process a serial interrupt and other serial interface functions

Date: 11 December 2001
File Version: 4
Author: Tedd A Rohwer, Sandia National Laboratories

Change history:

1999 - Adapted from MilliPen.asm for Sensor Ball, TA Rohwer

November 2000 - Version 2, TA Rohwer

17 March 2001 - Version 3 Changes requested by P&G, ME Partridge

14 Jun 2001 - Add control characters for data transfer integrity

12 Aug 2001 - Version 4, ME Partridge
Put Baud setting as a subroutine for consistency
Combine nibbles of successive parameters to build Bytes
Echo input Parameters on first echo, then combined Bytes on "V" reply
Expand allowable command character set to A - z (lower case z)
Use String transmit function for messages
Add a Hexidecimal translate / transmit step for messages

11 December 2001 - having problems with data upload, receiving characters

in the > Ox1F range instead of the control character transmitted.

Change so serial interrupt does not call subroutine - stack concern

EE R N R R S RS SEEEERAEES EEE RS R eSS EEE R R RS

Receive SER(ial) HAND(ler) -- Interrupt Handler
Function:
Processes Serial Interrupts. Control characters are received, and the
appropriate bit in PROG_FLAG or SER _FLAG is set. If a command phrase is
being sent, the progress is tracked using flags in SER _STATE. The command
character is temporarily stored in RC_TEMP. Once the command phrase is
terminated by CR, LF, The command is echoed to the PC. If the proper command
was echoed, then the PC transmits the "V" verify command, and RC_TEMP is
moved to CMD CHAR for processing by CMD HAND elsewhere, and the Command Flag
is set.

The command phrase sequence is:

Receive character "0" (zero)

Receive command character, must be in & - z

Optionally, receive any parameters, placed in the CMD_PARAMS stack
Terminate the phrase with CR and LF, in either order

Sensor Ball echoes command and any parameters to PC

PC responds with "Q", "vV", CR, LF if the correct, Cntl-C otherwise.

W oy U W N

Command processing begins if Step 6 received.

The phrase will be aborted if a Ctrl-C is received, a character other than
"0" is sent first, or if a command character not in A - z is sent following
the "0" character. :

All valid command sequences, without the passed parameters, are Echoed back

to the PC when the command phrase is complete. An invalid command is Echoed
back with a "?" in the response. Cntl-C, X-On, X-0ff, and any other control
character are not Echoed.

Subroutines in this file:

GLOBAL SENDDATA ; Sends standard completion message to PC
GLOBAL Fail Msg ; Sends failure text message to PC
GLOBAL Status_Msg ; Sends PC update message during memory test
GLOBAL Erase_Msg ; Sends PC update message during memory erase
GLOBAL TX WREG ; Transmits on RS-232 serial interface
GLOBAL TX_String ; Uses TX_WREG to send a string
GLOBAL Baud_Set ; Sets Baud rate + configure serial port
Calls:
none
Registers:
EXTERN ADDO, ADD1, ADD2 ; Flash memory address
EXTERN RC_TEMP ; Received temporary Command Storage
EXTERN RC_CHAR ; ASCII Character Storage

Sensor Ball echoes command to PC again, but with processed parameters.

115

Code Listing — Ser_Hand.asm

72 EXTERN CMD_CHAR ; Command character for CMD HAND, in A - %
73 EXTERN SER_STATE ; Progress building the Command Phrase
74 EXTERN PROG_FLAG ; bits COMMAND, REINIT, CMDERROR, STRERROR
75 EXTERN SER FLAG ; Control character flags
76 EXTERN MEMORY_FLAG ; Error condition from memory
77 EXTERN CMD_CHAR ; ASCII character for command
78 EXTERN CMD_ PARAMS ; Command Parameter count, top of stack
79 EXTERN TEMP ; Temporary, used here in Baud set routine
80 EXTERN TEMP_INT ; Temporary for interrupt routine
gé EXTERN LOOP_INT ; Loop counter for interrupt routine
83 ; Serial output starting location for strings in program memory
84 EXTERN Look_ Hi ; Used to load PCLATH value
85 EXTERN Look_Lo ; Used to load PCL
86 EXTERN List Fail Msg ; String for Memory failure message
87 EXTERN List Stat Msg ; String for Memory fill / test progress
88 EXTERN List Eras Msgqg ; String for Memory erase progress
89 EXTERN List_Mem Flag ; String for Memory Flag value
90 ;
91 ; Attention mode serial interface time-out registers
92 EXTERN CMD TIMEL ; Time-out LSByte, 285ms / bit
3431 EXTERN CMD_TIMEH ; Time-out MSByte
95 ; Registers to push data during interrupt, accessible regardless of Memory Bank selected.
96 EXTERN STACK Wreg ; Working Register holding during interrupts
97 EXTERN STACK Status ; Status Register holding during interrupts
98 EXTERN STACK_FSR ; Indirect pointer holding during interrupts
99 ;
100 ; Interrupts:
101 ; Global, Peripheral, Serial Interrupts are enabled prior to call.
102 ;
103 ; Return:
104 ; Wreg=0
105 ;
106 ; include files:
107 #include "P16C774.inc" ;Standard Header File for PIC16C773
108 ;Includes all Register Definitions,
109 ;RAM Definitions, & Configuration Bits
{%0 #include "ball equ.inc” ;EQU Declarations, equivalence
1 ;
112 ;**
113 ,-**
114 FERIFHAKAKIA KKK KKK KKK KAX R KA K INEEITUPE VECLOL X ¥k hkkdkkkkkkhkkhkkkhkhk ko k kokkkk
115 PERIPH VEC CODE 0x04 ; Peripheral Interrupt Handler
%{g Goto PERIPH_ISR ; Not enough room to locate ISR here
118 :-**
119 ;************************* Interrupt Service Routine SRS S SR E S SR ESEEEEESESERES]
120 ;
121 ; Function:
122 ; To identify source of Peripheral Interrupt. Currently only testing for
123 ; serial receive interrupt -- all other interrupts disabled.
124 ; 4-5 cycle delay expected for Hardware to call PERIPH HAND
125 H 7 cycles are executed before RCSER HAND called.
126 ; Calls:
127 ; RCL1_ISR in file Ser Hand.asm
128 ;
129 ; Registers:
130 ; STACK_FSR ; Shared memory, indirect address register
131 ; STACK_Status ; Shared memory, temporary STATUS contents
{g% ; STACK Wreg ; Shared memory, temporary Working Register contents
134 ; Interrupts:
135 ; Global Interrupts auto-disabled at start, auto-enabled at close
136 ;
137 ; Return:
%gg ; Wreg, STATUS, FSR returned to pre-Interrupt state
140 :-**
141 ;
142 ISR PROG CODE ;relocatable code in Program EPROM

116

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Code Listing — Ser_Hand.asm

PERIPH_ ISR
; Note: STACK Wreg, _Status, and _FSR are in shared memory, so are available
; regardless of the current Memory Bank pointers RPO and RP1

Movwf STACK Wreg ; save Wreg first or will overwrite
Movf STATUS, w ; next, save Status register

Movwf STACK Status ; into reserved location

Movf FSR, w ; finally, save the FSR

MovwE STACK_FSR

Bcf STATUS, RPO ; Select Bank 0 memory

; Transition on RB4, Port C to note entry into ISR.

Movlw 0x10 ; ISR TEST is PORT B, line 4
Xorwf PORTB, £ ; Change RB4 state
;] === Serial Interrupt Test (for some reason, RCIF not being set)
ISR_RCITEST
Btfss PIR1, RCIF ; Test Rc Interrupt Flag
Goto SER_Cntl ERR ; . . . not receive, clear error conditions

; Even at 115.2k Baud, almost 320 instructions can be executed in the time to
; transmit one Byte, so something is wrong if a serial overrun has occurred.
ISR OERR_TST

Btfsc RCSTA, OERR ; Test if serial register overrun

Goto SER Cntl ERR ; . . . Overrun error, pProcess
; Framing Error Test
ISR _FERR_TST

Btfsc RCSTA, FERR ; Test if framing error occurred

Goto SER _Cntl ERR ; . . . framing error, process

; Begin processing serial interrupt

RCIF is a read-only bit cleared when RCREG has been read and is empty. RCREG
; 1s a double-buffered register, i.e. it is a two deep FIFO. It is possible for
; two bytes of data to be received and transferred to the RCREG FIFO and a

; third byte begin shifting to the RSR. On detection of the stop bit of the

; third byte, if the RCREG is still full, then the overrun error bit,

; OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be

; read twice to retrieve the two bytes in the FIFO. The OERR bit is cleared by
; resetting the receive logic (CREN is set). If the OERR bit is set, transfers

; from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit
; if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is

; not detected.

ISR _RECEIVE

Movf RCREG, w ; capture character from USART receive buffer
Movwf RC_CHAR ; and put into working location

Movlw 0x10 ; ISR_TEST is PORT B, line 4 of 0 - 7

Xorwf PORTB, f ; make ISR TEST change state

; Handle the character received
; Check for special control characters
ISR_SP_CHAR

Movf RC_CHAR, w

Sublw Ox1F ; subtract control char range
Btfss STATUS, C ; Check if Carry set
Goto SER_STR ; Carry clear, so not a control character

H
;**

pREFIxKAAxAXHA4 Start of Control character processing section **x*xikatadddkixx
,-**

;

; Now, set up to jump to control character routine.

Movlw high SER_Jump ; Get upper Program Counter

Movwf PCLATH ; set in upper 5 bits of PC

Movf RC_CHAR, w ; recover received character

Addlw SER_Jump ; Adds GOTO series starting address
Btfsc STATUS, C ; Check if address addition overflow
Incft PCLATH, f ; Yes, adjust program counter high byte
Movwf PCL ; change Program Counter to jump there

117

Code Listing — Ser_Hand.asm

214 ;

215 SER_Jump

216 Goto SER END ; Null, ignore

217 Goto SER_Cntl ERR ; 0x01 not used, SOH

218 Goto SER_Cntl_ERR ; 0x02 not used, STX

219 Goto SER_Cntl _C ; 0x03 is Control-C

220 Goto SER Cntl ERR ; 0x04 not used, EOT

221 Goto SER Cntl ERR ; 0x05 not used, ENQ

222 Goto SER_ACK ; 0x06 is ACK, received data

223 Goto SER Cntl_ ERR ; 0x07 not used, BEL

224 Goto SER _Cntl_ERR ; 0x08 not used, Backspace

225 Goto SER_Cntl_ ERR ; 0x09 not used, Horizontal Tab

226 Goto SER LF ; 0x0A is Line Feed

227 Goto SER Cntl ERR ; 0x0B not used, Vertical Tab

228 Goto SER Cntl_ERR ; 0x0C not used, Form Feed

229 Goto SER CR ; 0x0D is Carriage Return

230 Goto SER_Cntl ERR ; 0xOE not used, SO

231 Goto SER Cntl ERR ; 0xOF not used, SI

232 Goto SER _Cntl_ERR ; 0x10 not used, SLE

233 Goto SER_Xon ; 0x1l is X-on, DCl

234 Goto SER _Cntl_ERR ; 0x12 not used, DC2

235 Goto SER_Xoff ; 0x13 is X-off, DC3

236 Goto SER _Cntl_ ERR ; O0x14 not used, DC4

237 Goto SER_NAK ; 0x15 is NAK, retransmit

238 Goto SER_Cntl ERR ; 0x16 not used, SYN

239 Goto SER_Cntl ERR ; 0x17 not used, ETB

240 Goto SER Cntl ERR ; 0x18 not used, CAN

241 Goto SER Cntl ERR ; 0x19 not used, EM

242 Goto SER Cntl ERR ; 0x1A not used, STB

243 Goto SER_Cntl ERR ; 0x1B not used, ESC

244 Goto SER_Cntl ERR ; 0x1C not used, F$

245 Goto SER_Cntl ERR ; 0x1D not used, GS

246 Goto SER Cntl ERR ; O0x1E not used, RS

247 Goto SER Cntl ERR ; 0x1F not used, US

248 ;

249 ; Control-C routine, stops any command phrase in progress without error message
250 SER_Cntl C

251 Bsf SER_FLAG, CNTRLC_FLG ; ==CNTL-C, set CNTLC Flag

252 Clrf SER_STATE ; clear command phrase state

253 Clirf RC_CHAR ; clear the received character buffer
254 Clrf CMD_CHAR ; clear any command character

255 Clrf CMD_PARAMS ; Clear parameter count

256 Goto SER_END

257 ;

258 ; Line Feed routine. Either LF or CR can be first, but both must occur to terminate command.
259 SER_LF

260 Bsf SER_STATE, SER ST LF ; Bit 4 of SER_STATE

%g; Goto SER_CHECK_DONE ; If both CR and LF received, parse parameters
263 ; Carriage Return routine. Either CR or LF can be first, but both must occur to terminate

264 command.
265 SER CR

266 Bsf SER_STATE, SER ST CR ; Right sequence, Bit of SER_STATE set

267 Goto SER_CHECK_DONE ; If both CR and LF received, parse parameters
268 ;

269 ; X~Off routine. Sets flag to halt serial transmission in TX_WREG routine.

270 ; Xoff is an inhibit control, while Xon both clears Xoff and signals go-ahead

271 ; to begin data upload.
272 SER_Xoff

273 Bsf SER_FLAG, XOFF_FLG ; Set the X-Off Command Flag

274 Bef SER_FLAG, XON_FLG ; . . and clear the X-On Command Flag
275 Goto SER_END B

276 ;

277 ; X-On routine. Clears Xoff flag to enable serial transmission in the TX_WREG
278 ; routine. Xoff is an inhibit-only control, while Xon both clears Xoff and
279 ; signals go-ahead to begin data upload in the ST HAND and RD_HAND routines.
280 SER Xon - -

281 Bcf SER_FLAG, XOFF_ FLG ; Clear the X-Off Command Flag

282 Bsf SER_FLAG, XON FLG ; . . and set the X-On Command Flag
283 Goto SER_END B

284 ; B

118

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

; ACK routine.

SER_ACK
Bsf
Goto

; NAK routine.

SER NAK
Bsf
Goto

;

; None of the characters above,

SER_Cntl_ ERR
Bsf
Bcf
Movf
Movf
Bsf
Goto

’

Code Listing — Ser_Hand.asm

Sets flag indicating PC received data block with proper
; checksum. The flag is cleared by the routine monitoring the flag.

SER FLAG, ACK FLG
SER_END

i

Set Acknowledge flag, continue xmit

Sets flag that data ckecksum in error, need to retransmit.
; The flag is cleared by the routine monitoring the flag.

SER FLAG, NAK FLG
SER_END

SER_FLAG, CNTL_ER FLG
RCSTA, CREN

RCREG, w

RCREG, w

RCSTA, CREN

SER_END

;

or othe

’

’

Set Negative Ack, retransmit data

r error. Set flag for debug and ignore.
just illegal control character

Note error for debug

Reset receive enable to clear OERR
Clear Framing error by reading RCREG
Buffer is two registers deep

Re-enable receive

,-****************'k***

;**** End of Control character processing section, start of Command phrase ****
;**

’

; A command sequence consists of a zero, then a capital letter, optional
; parameters each with a value between 0x20 and OxFF, and ends with carriage

; return and line feed.

’

; Check to see if sequence has started

SER_STR
Btfsc
Goto
Btfss
Goto
Btfss
Goto

’

; Everything else received,

PROG_FLAG, COMMAND_FLG ;

SER PHRASE_DONE
SER_STATE, SER ST_O
SER_ZERO

SER_STATE, SER ST_AZ
SER_COMMAND

’
’
;

’

so must be

; as received onto parameter stack for
; pointer because this is an interrupt

SER_PARAMETER
Movlw
Subwf
Btfsc
Goto

Inct
Movlw
Addwt
Movwf
Movf
Movwf
Bsf
Goto

’

; No command phrase has started,
; If the character is not zero,

SER_ZERO
Cilrf
Movlw
Subwf
Btfss
Goto
Bsf
Goto

; Expecting to

SER_COMMAND
Movlw
Subwf

Param Stack Size
CMD_PARAMS, w
STATUS, C
SER_ERR

CMD PARAMS, £
CMD_Param Start
CMD_PARAMS, w

FSR

RC_CHAR, w

INDF

SER_STATE, SER_ST_PAR
SER_END

SER_STATE
"O "

RC_CHAR, w

STATUS, 2

SER_ERR

SER_STATE, SER_ST 0
SER_END

see a character in "A"

"Z"+l
RC_CHAR, w

~

~

14

7

i

’
’

14

The command is not processed until the CR LF.

Set if already processing a command phrase
; Ignore new commands until current is done
See if command start received
Start not received, make sure is zero
Test if command character previously read
Check if character in range "A" - "z"

a Parameter. Push Parameter characters
later processing. Need to build stack
routine, and FSR changes on exit.

Prepare to check if exceeded stack size
Test against number received so far
Carry set means # params. >= limit
Parameter Stack overflow

Count parameters received

Add Parameter stack offset location
Stack points to next location

get received character

store on parameter stack

At least one parameter stored

s0 to be wvalid the first character must be a zero.
clear the character and exit.

Must be first character, reset state
will compare with zero character

If RC_CHAR equal to "0", Zero flag set
=0, so we're outta here.
mark that the starting zero has been received.

thru "z". If not a character, then error out.

’

;

"o

check if command character beyond "z
Subwf subtracts "z"+1 from character

119

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

’

Btfsc
Goto
Movliw
Subwf
Btfss
Goto
Bsf

Code Listing — Ser_Hand.asm

STATUS, C
SER_ERR

man

RC CHAR, w

STATUS, C

SER_ERR

SER_STATE, SER ST_AZ

’
’
’
’
;
;

7

carry clear means character <= "z"
above "z", error

now test lower end

will be zero or positive if wvalid
carry set means character >= "A"

less than "A", error

Valid character - not tested if command

; Now test if this is the Verify command

; Save command

’

Movlw
Subwf
Btfsc
Goto

MovE
Movwf
Clrf
Goto

; Is Verify,
SER_VER_CMD

’

Bsf
Bcf
Goto

"V"

RC_CHAR, w
STATUS, 2
SER_VER_CMD

RC CHAR, w
RC_TEMP
CMD_PARAMS
SER_END

’

;

’

I
‘

;

Check to see if command is Verify = V

will be zero if Verify character received

Is "V", process Verify character

character in temporary location and prepare to receive Parameters

Recover character received
Hold in temporary
Clear received Parameter count

set Verify flag but don't overwrite temporary command character

SER_STATE, SER_VERIFY
SER_FLAG, XON_FLG
SER_END

;

;

Received Verify character
Clear Xon flag - prepare for upload

;*****'k**

;**** End of Command phrase processing section,

start of Parameter parse ***x*x%

,-**

;

; Test to see if phrase is complete
SER_CHECK_DONE

; Activity from PC,

MovfE
Andlw
Sublw
Btfss
Goto
Btfss
Goto

SER_STATE, w

0x0F

0x0F

STATUS, Z

SER_END

SER_STATE, SER_VERIFY
SER_PHRASE_DONE

’

(minimum "0", command, CR, LF)

Strip off Parameter, Verify flag bits
Test if entire command phrase done

not complete phrase
see if this is Verify phrase

; Not Verify, skip finish-up for now

reset command interface timeout count. Otherwise, may

; get a "heartbeat” dot character in echo, and cause interface error

; Received Verify phrase,

; Build parameter bytes from nibbles transmitted.

Clrf
Clrf

Movf
Movwf
Bsf

CMD TIMEL
CMD TIMEH

RC_TEMP, w
CMD_CHAR

2

’

2

Clear time-out registers

so finish up command setup.

recover temporary Command character
store Command character for CMD_HAND use

PROG_FLAG, COMMAND_FLG ; Mark command ready for processing

The PC cannot send parameters

; with values less than 0x20 because they would be interpreted as control
; characters. Therefore, only the lower nibble of each parameter byte is used.
; The assumed sequence is Byte 1, Byte2 => MS Nibble, LS Nibble. If the last

; Byte is odd-numbered,

’

Movlw
Movwf
Movf
Btfsc
Goto
MovwE

CMD_Param_Start
FSR

INDF, w

STATUS, Z
SER_PHRASE_DONE
LOOP_INT

i

it is translated as a MS Nibble.

; Get start of parameter table
Place in stack pointer
=CMD_PARAMS, count of parameters passed
Test if zero parameters on stack

; No parameters passed
Interrupt use only Loop Counter

; Rebuild parameter table with combined nibbles
SER_PAR_EXTR

120

Incf
Movlw
Andwf
Swapf
Decf
Btfsc
Goto

FSR, f
0x0F

INDF, £
INDF, f
LOOP_INT, £
STATUS, Z
SER_PAR_DONE

Point to first (odd) Parameter
Set mask to strip upper nibble
Strip upper nibble

Make this MS nibble of Parameter
Track Parameters processed

See if was last Parameter

Done with parameters

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

Code Listing — Ser_Hand.asm

B

; Process LS Nibble of combined parameter

Inct FSR, f ; Point to second (even) Parameter
Andwf INDF, f ; Strip upper nibble

Movf INDF, w ; Recover stripped value

Decf FSR, £ ; point to upper nibble

Addwf INDF, f ; Combine lower with upper nibble
Decf LOOP_INT, £ ; Find Parameters remaining

Btfsc STATUS, Z ; See if was last Parameter

Goto SER_PAR DONE ; Done with parameters

’

; Move up rest of parameter stack to fill void

Movf FSR, w ; Get adjusted FSR

Movwf TEMP_INT ; Hold this value

Incf FSR, f ; Points to what will be next value
Movf LOOP_INT, w ; Get Parameters remaining

Movwf RC_CHAR ; Use as temporary loop counter

; Loop through stack, sliding all values up by one location
SER_PAR_LOOP

Inct FSR, f ; Point to next unprocessed parameter
Movf INDF, w ; Get this walue

Decf FSR, f ; Point to new location

Movwf INDF ; Put the value there

Incf FSR, f ; Point to just-moved parameter
Decfsz RC_CHAR, f ; Loop counter

Goto SER_PAR_LOOP ; Still more parameters in stack

12

; Done moving up Stack, restore pointer

Movf TEMP_INT, w ; Get the FSR held before
Movwf FSR
Goto SER_PAR EXTR ; Loop back to process next

; Adjust parameter count to be half, 1&2 => 1, 3&4 => 2, etc.
SER_PAR_DONE

Incf CMD_PARAMS, £ ; Prepare param count for divide
Bcf STATUS, C ; Clear carry bit

Rrf CMD_PARAMS, f ; Effectively, divide by two

Goto SER_PHRASE DONE ; close out processed phrase

;
;
,-**

;**** Finished with serial routine, close out in error or normal mode *****x**%*
,-**

’

; Problem in command phrase. Reset all variables.

SER_ERR
Clrf CMD_CHAR ; clear any command character
Clrf CMD_PARAMS ; Clear parameter count
Bsf SER_FLAG, STR_ER FLG ; Note error for debug

; Either Phrase complete or error. Echo the command character or "?" if

; a command phrase error. In a normal command sequence, echo is sent twice,

; once when the Command character phrase is complete, and once when the "V"

; verify character is sent. In the former, unprocessed Parameters (characters)
; are sent. In the latter, processed parameters in final form are sent.

SER_PHRASE_DONE

; Transmits | "0" | Temp Cmd Char | <parameters> | CR | LF |
Clrwdt ; Watch-Dog Timer reset
Movlw "O" ; Load zero character
Call TX_WREG ; Transmit zero character and return
Btfss SER_FLAG, STR_ER FLG ; Check if command string error
Goto SER_ECHO_CHAR ; No error, just echo command character

;

; Was an error, insert error character before one received

Movlw ray ; Yes, send error character flag

Call TX_WREG ; Transmit error character and return
SER_ECHO_CHAR

MovE RC_TEMP, w ; get the temporary command character

Call TX_WREG ; Transmit command character

121

498
499
500
501
502
503
504
508
506
507
508
509
510
511
512
513
514
51§
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

I

4

;

‘

Code Listing — Ser_Hand.asm

Check to see if any parameters were sent. If so, transmit the parameters in
processed form (nibbles combined to form bytes).

Movlw CMD Param Start ; Get start of parameter table
Movwf FSR ; Place in stack pointer

Movf INDF, w ; =CMD_PARAMS, count of parameters passed
Btfsc STATUS, Z ; Test if zero parameters on stack

Goto SER_ECHO_END ; No parameters passed

Movwf LOOP_INT ; Hold number of parameters passed

Send parameter values

SER_ECH_Loop

’

14

Incf FSR, £ ; Point to Parameter

Movf INDF, w ; Recover value

Call TX_WREG ; Transmit Parameter

Decfsz LOOP_INT, f ; See if all parameters sent
Goto SER_ECH_Loop ;/ . . . Continue sending

Done with echoed command and parameters, close out string

SER_ECHO_END

‘

Movlw "\r" ; Carriage Return

Call TX_WREG ; Transmit

Movlw "\n" ; Line Feed

Call TX_WREG ; Transmit

Clrf SER_FLAG ; Clear all serial flags
Clrf SER_STATE ; clear command phrase state

;**

;**

4

’

Exit Interrupt Service Routine

SER_END
Movf STACK_FSR, W ; Retrieve pre-isr FSR contents
Movwf FSR H and restore the FSR
MovEf STACK_ Status, w ; Retrieve pre-isr STATUS contents
Movwf STATUS ; and restore Microprocessor state
Movf STACK Wreg, w ; Finally, restore Wreg
ISR_END
Retfie ;Return from Interrupt

4

’

; auto-enable global interrupts

;**

;**

i

TX_WREG and TX_HEX Subroutines

Function:
Expects serial port initialized (in Ball.asm). The data byte to be
transmitted is passed to this routine in Wreg. Waits for the transmit buffer
to empty if necessary, then move Wreg to TXREG and sets TXEN to transmit.

Two registers are involved in transmitting data. Data are first moved to the
transmit buffer, TXREG. After the Stop bit is transmitted from the previous
load, the transmit (serial) shift register (TSR) loads the new data from the
TXREG register. Once the TXREG register transfers the data to the TSR
register, the TXREG register is empty and flag bit TXIF (PIR1<4>) is set.
Flag bit TXIF will reset only when new data is loaded into the TXREG
register. Bit TRMT (TXSTA<1>) is a read-only bit that is set when the TSR
register is empty.

WARNING: You must not trust the TXIF bit to accurately reflect the state of
the transmitter on power up. (The flag shows FULL even though there are NO
characters in either the TXREG or TSR! The flag bit TXIF is ONLY true AFTER
the first DUMMY character's STOP bit is clocked out of the TSR producing the
FIRST load pulse to the TXREG and setting the correct flags!)

115.2kBaud * (8/10) = effective bits/second at 115.2kBaud = 92160
This equates to 11520, 8-bit Bytes/second, or 0.2 hours to upload 8MBytes
At 19.2kRaud, 1.2 hours are required to upload 8MBytes.

122

Code Listing — Ser_Hand.asm

569 ;

570 ; Calls:

571 ; NONE

572 ;

573 ; Registers:

574 ; Wreg has byte to transmit on entry

575 ;

576 ; Interrupts:

577 ; Interrupts not used or changed in this subroutine

578 ;

579 ; Return:

58? ; Wreg still holds data transmitted on exit

ggz :-**
583 ;

584 ; Converts lower nibble of Wreg to ASCII representation. Character is left in

585 ; Wreg to be processed by TX WREG.
586 TX_HEX

587 Andlw OxOF ; Mask off upper nibble

588 Addlw OxF6 ; Test if greater than 9

589 Btfsc STATUS, C ; If so, set for A - F

590 addlw 0x07 ; is in A - F, add offset

591 addlw 0x3A ; ASCII offset for zero + restore subtract
592 ;

593 TX_WREG

594 :

595 ; First, check if PC requested transmission halt: Xoff flag set. This flag is
596 ; cleared by the PC when an Xon character is sent.

597 Bcf STATUS, RPO ; Select Bank 0 memory

598 Btfsc SER _FLAG, XOFF_FLG

599 Goto TX_WREG ; X-off sent, wait until X-on clears

600 ;

601 ; Xoff not set, next check if transmit shift register is empty

602 Bsf STATUS, RPO ; Select Bank 1 memory

603 Btfsc TXSTA, TRMT ; Set to 1 when TSR empty

ggg Goto TX_DO_IT ; shift register empty, load new data
606 ; If the TSR is not empty, might not need to wait. Just check if TXREG is empty
607 ; Note: this bit is only set after the first transmit

608 Bcf STATUS, RPO ; Select Bank 0 memory

609 Btfss PIR1, TXIF ; Check TX Register, l=empty

g}? Goto TX_WREG ; need to wait to empty if not.

612 ; Choosing to load TXREG, then start transmission by enabling transmit. Data
613 ; book says this is faster than leaving enabled and transmit on load.

614 TX_DO_IT

615 Bcf STATUS, RPO ; Select Bank 0 memory

616 Movwf TXREG ; Load Tx Register from Wreg

617 BSE STATUS, RPO ; Select Bank 1 memory

618 Bsf TXSTA, TXEN ; Start Transmission

619 Bcf STATUS, RPO ; Select Bank 0 memory

g%? Return ; Return with data still in Wreg

622 :-**
623 ,-********************************'k***
624 ; TX_String Subroutine

625 :

626 ; Function:

627 ; Uses TX WREG to send a string of characters to the serial port. The string
628 ; location is loaded into the stack pointer. The string is transmitted one
629 ; character at a time until a null (hex 0) is found. The null is transmitted
630 ; as well.

631 ;

632 ; Calls:

633 ; TX_WREG

634 ;

635 ; Registers:

636 ; Look Hi, Look Low contain start of string on entry. These are modified as
637 ; each value in the string is recalled.

ggg ; Wreg is used to send the byte to TX_WREG

123

Code Listing — Ser_Hand.asm

640 ; Interrupts:

641 ; Interrupts not used or changed in this subroutine

642 ;

643 ; Return:

614 ; Wreg holds last data transmitted on exit (null)

242 ,:**
647 :

648 ;

649 TX_String

650 Call TX Lookup ; Get character to transmit

651 Call TX_WREG ; Send character, returns Wreg=character
652 Andlw OXFF ; Refresh STATUS register on Wreg

653 Btfss STATUS, Z ; Check if just sent null

654 Goto TX String ; Wasn't null, loop again

655 ;

656 ; Done with transmit

657 TX_Str End

658 Retlw O ; Return, WREG=0

659 ;

660 ; This section recalls the character from program data, where it is stored as
661 ; a the return value in a Retlw expression. Jumps program counter to the

662 ; desired Retlw, and completes the call return from there.

663 TX_Lookup

664 ;

665 ; Set Program counter to location of string character

666 MovE Look Hi, w ; set PCLATH to next string location

667 Movwf PCLATH

223 Movf Look Lo, w ; Now set lower program counter, PCL

670 ; Now adjust the Program Counter for the next access (if used)

671 Incf Look_Lo, f ; Adjust to next location for subsequent access
672 Btfsc STATUS, Z ; see if incremented to zero

g;i Incf Look Hi, £ ; lower address incremented, adjust upper
675 ; Now jump to address: an Retlw command returning Wreg with the string value
676 Movwf PCL ; ok, now jump

677 ; Note: since this is a called routine, the RETLW command will reset the program
g;g ; counter to the code that called TX_Lookup.

680 :-****************************** End Of TX Strll’lg FAX KK IA Ak hdhkkddhkhkrrrhkx kX hhdkdhk
681 ,-**:*************************************
682 ,-**
683 H Fail Msg, Status_Msqg, Erase_Msg, SENDDATA Subroutines

684 ; Function:

685 ; Transmits <Message> (memory address) "Mem Flag Value"” (memory flag) CR LF
686 ; <Messages> are:

687 H Fail Msg : "Failed block"

688 ; Status_Msg: "Finished block" -- used for Fill and Test functions

689 H Erase_Msg: "Erased block"

690 ; SENDDATA: | SyncO | Syncl | 0x00 | 0x02 | Version | Unit # |

691 ;

692 ; Calls:

693 ; TX WREG, TX HEX, TX String

694 : B B -

695 ; Registers:

696 ; MEMORY FLAG, ADD2, ADD1

697 ; B

698 ; Interrupts:

699 ; None changed.

700 ;

701 ; Return:

702 ; Wreg=0

703 ;

704 ;*'k*********'k************************"(**‘**********‘k****************************
705 Fail Msg

706 Movlw High List Fail Msg ; Load starting location of string

707 Movwf Look Hi B -

708 Movlw Low List_Fail Msg

709 Movwf Look Lo

710 Goto Msg_Finish

124

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

Code Listing — Ser_Hand.asm

Status_Msg
Movlw High
Movwf Look Hi
Movlw Low
Movwf Look Lo
Goto Msg_ Finish

List_Stat_Msg i

List_Stat_Msg

Erase_Msg
Movlw High
Movwf Look Hi
Movlw Low
Movwf Look Lo
Goto Msg_Finish

List_Eras _Msg ;

List_Eras_Msg

SENDDATA

Clrwdt i
Movlw Sync_ Byte0
Call TX_WREG ;
Movlw Sync_Bytel
call TX_WREG ;
Movlw 0x00Q
Call TX_WREG ;
Movlw 0x02
Call TX_WREG ;
Movlw Hardware_Ver
call TX_WREG ;
Movlw Unit_Number
call TX_WREG ;
Goto Msg Addr_Stat

; Send String message

Msg_Finish
Clrwdt ;
Call TX String ;

; Send Memory MSB address location and
Msg Addr_Stat
Swapf ADD2, w ;
call TX_HEX ;
Movf ADD2, w

call TX_HEX ;
Swapf ADD1l, w ;
call TX HEX ;
MovE ADD1l, w

Call TX_HEX ;

; Memory error flag
Movlw High
Movwf Look_ Hi
Movlw Low
Movwf Look Lo
Call TX_String ;

List Mem Flag ;

List Mem_Flag

Swapf MEMORY FLAG, w H

call TX HEX ;
Movf MEMORY_FLAG, w

Call TX_HEX :
Movliw "\r" H
Call TX WREG 5
Movlw "\n" ;
call TX_WREG ;
Retlw 0 ;

‘

PR S R R RS R SRS Rl

;

;**

H Baud_Set Subroutine
; Function:

Load starting location of string

Load starting location of string

Watch-Dog Timer reset

;Load First Sync Byte

Transmit Data

;Load Second Sync Byte

Transmit Data

;Load NULL

Transmit Data

;Load ASCII STX

Transmit Data

;Load Current Hardware Rev #

Transmit Data

;Load Unit #

Transmit Data

Watch-Dog Timer reset
Call string transmit routine

Memory status

Load Memory MS Byte of address
Convert lower nibble to ASCII & TX

Convert lower nibble to ASCII & TX
Next significant Flash Memory address
Convert lower nibble to ASCII & TX

Convert lower nibble to ASCII & TX

Load starting location of string

Call string transmit routine

Prepare memory error flag MS nibble
Convert lower nibble to ASCII & TX

Convert lower nibble to ASCII & TX

Carriage Return
Transmit

Line Feed
Transmit
Return, WREG=0

H Initializes serial port and sets Baud rate based upon Wreg contents.
; A Wreg value of zero sets Baud to 19.2k Baud, otherwise, set to a rate

125

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

,

Code Listing — Ser_Hand.asm

of 115.2k Baud.

Calls:
None

Registers:
Wreg, Zero sets Baud to 19.1k Baud
non-zero sets Baud to 115.2k Baud

Interrupts:
None changed.

Return:
Wreg=0

,-**

Baud_Set

’

I

Universal Synchronous/Asynchronous Receiver/Transmitter (PIC16C77x Data Book,
sect. 9.0) Configure for either 19.2k Baud (standard Penetrator rate) or high
speed at 115.2k Baud (the maximum, limited by the Maxim RS-232 chip used in
the design). The PIC microcontroller's RC oscillator must be close to
3.6864MHz for the Baud rates to match the standard speeds.

SPBRG and TXSTA Registers in Bank 1 Memory

USART Transmit configuration
Check which Baud rate. Wreg value selects rate

Bsf STATUS, RPO ; Select Bank 1 Memory
Btfsc STATUS, Z ; Wreg zero if selecting 19.2k Baud
Goto Baud_19 ; Z set, select 19.2k

Set rate to 115.2k Baud

Baud_115
Clrf TXSTA ; Reset any error condition
Movlw 0x01 ; value for 115.2k Baud @ high speed
Movwf SPBRG ; Set Baud Rate Hi=Fosc/(16* (SPBRG+1)
Bsf TXSTA, BRGH ; Select high speed

’

;

Goto Baud_TX

Set rate to 19.2k Baud

Baud_ 19
Clrf TXSTA ; Reset any error condition
Movlw 0x02 ; value for 19.2k Baud @ low speed
Movwf SPBRG ; Set Baud Rate Low=Fosc/(64* (SPBRG+1)
Bcf TXSTA, BRGH ; Select low speed

’

’

Set rest of transmit configuration

Baud TX
; Bef TXSTA, SYNC ; Asynchronous operation
Bsf TXSTA, SPEN ; Serial Port enable - Configure RC7/RX/DT
; and RC6/TX/CK as serial port pins
; Bcf TXSTA, TXEN ; Enable Transmit -- don't do this here
; Bcf TXSTA, TX9 ; 8-bit transmission
; USART Receive configuration
Baud_RX
Bcf STATUS, RPO ; Select Bank 0 Memory
Clrf RCSTA ; Reset any error condition
Bsf RCSTA, SPEN ; Serial port enable
H Bef RCSTA, RXS ; Selects 8-bit reception
; Bcf RCSTA, SREN ; Don't care - Synchronous configuration
Bsf RCSTA, CREN ; Continuous receive enable
H Bcf RCSTA, ADDEN ; Disable address detection
; Interrupt configuration
Bsf STATUS, RPO ; Select Bank 1 Memory
Bst PIEl, RCIE ;Enable Serial Port Rx Interrupt
Bcf STATUS, RPO ; Select Bank 0 Memory
Clrf INTCON ; Clear interrupt control register
Bsf INTCON, PEIE ;Enable Peripheral Interrupts
Bsf INTCON, GIE ;Enable Global Interrupts

126

853
854
855
856
857
858
859
860

Code Listing — Ser_Hand.asm

;
Baud_END
Retlw O ; Return with Wreg=0
;
,-***

;'-********************** End Of FILE Ser Hand.asm hhkhkhkdkdkrrhkhhkhkhhhkkdhdrhhhhhxkk
;**

END

127

O OOIRNUN W —

’
;
;
‘

;

¢

File name: "st hand.asm"
P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code
Status Handler returns Sensor Ball status to PC via serial interface

Date: 11 December 2001

File Version:
Author: Tedd A Rohwer,

4

Change history:
1999 - Adapted from MilliPen.asm for Sensor Ball, TA Rohwer

November 2000 - Version 2,

Code Listing - St_Hand.asm

Sandia National Laboratories

TA Rohwer

17 March 2001 - Version 3 Changes requested by P&G, ME Partridge

12 Aug 2001 - Version 4 Changes, ME Partridge
Correct value returned for Records in memory to last memory address
Add "Smart PCM Device" status logic for command "s"

Tk kkkdhk kA I I A A A I AR A Ak kA A AT A xhhkhkk kb ok dhdhhddhhddrrdhhhhkrdhhdhdxhdddhhhhhxhdh

Status_Hand(ler) Subroutine

Function:

Acquires one set of analog measurements (Channels 0 thru 9 skip 7) and the

remaining non-ADC channels and holds it in the Data Stack.

Then, these

16-bit data words are uploaded to the PC with least-significant byte first

(Intel format).

The Data Stack is used in this routine; it is separate from

the Parameter Stack used by the Ser_ Hand interrupt routine.

Two Status formats are supported: the original format expected by the
SensorBall PC software

status format

Subroutines in this file:

GLOBAL

Calls:
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

Macros used:

none

Registers:
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

Interrupts:

Serial Interrupts not used or changed in this subroutine.

STATUS HAND

TX_WREG
WAITXXMS
WAIT1MS
Acquire
MEM_FIND

Loop_Cnt
Channel Cnt
MeasSet Cnt
PROG_FLAG
SER_FLAG
MEMORY_ FLAG
MEM REC NUM
MEM FRM NUM
ADDO

ADD1

ADD2

LSBYTE
MSBYTE
TIMEQ

TIMEL

TIME2

TIME3

(Command $ upper-case), and the "Smart PCM Device"
(Command s lower-case).

; Ser Hand.asm, Transmits contents of Wreg

; Delays for milliseconds set in Wreg

; calls WAITXXMS to create a 1 millisecond delay
; Puts all nine ADC measurements in Data stack

; Locates the next blank Flash memory

; Generic Loop counter

; Loop counter, analog channels 0 to 9 skip 7

; Loop counter, sets of analog meas.

; bits COMMAND,ADC AVG,ACQUIRE_ FLG,REINIT,CMDERROR

; Program Command Flags

; Memory condition and test result flags, MEM_FULL

; Number of Records in Flash memory {(or in progress)
; Current Frame number in Record

; Flash Memory address A7 .. A0

; Flash Memory address Al6 .. A8

; Flash Memory address A24 .. Al7

; ADC_READ, Least Sig. Byte. [A7,...A0]

; ADC_READ, Most Sig. Byte. [X,X,X,X,All,...A8]

; LS Byte, Time in milliseconds (Counter for Seconds)

; . . . next significant byte (Minutes)
; . . . next significant byte (Hours)
H . . . next significant byte (Count of days from Reset)

However, the

serial port is used for both Rc and Tx via Flags.

Return:
Wreg=0

include files:

#include

128

"P16C774.INC"

; Standard Header File for PIC16C773

Code Listing — St_Hand.asm

; Includes all Register Definitions,
; RAM Dbefinitions, & Configuration Bits
#include "ball equ.inc" ; EQU Declarations, equivalence
;
,-**
;**

STAT_PROG CODE ; Relocatable code in Program EPROM

STATUS_HAND

Clrwdt ; Reset 2.4 second Watch-dog Timer
Bcf STATUS, RPO ; uP Memory Bank 0

Clrf MEM_FRM NUM ; Count of Frames transferred

Clrf SER_FLAG ; Clear Control character Flags (Xon)
Clrf ADD1 ; Clear memory location to ensure
Clrf ADD2 i . . . current one found by MEM FIND

; Note: the next blank address is reported for Record count. This equals the
; Record count unless partial Records have been made by interrupting the data
; collection cycle by pressing the "ATTENTION" button.

Call MEM_ FIND ; Find next blank address

; Acquire one measurement set. If data are acquired while the serial lines are
; active, the measurements seem to be affected. So the acquire is kept
; separate from the upload function. These are PIC16C774 ADC 0 thru 9 skip 7,
; so effectively Channels 0 thru 8.

Bsf PROG_FLAG, ADC_AVG : Set for 16-bit averaging

Call Acquire ; Get all measurements in Data stack

i Put remaining channels on Stack. Acquire left FSR at next stack location.
; Ch. 9 = Record & Frame number

Movf MEM FRM NUM, w ; Get current frame count, 0 to 255
Movwf INDF ; Push onto the stack

Incf FSR, £ ; adjust stack pointer

MovE MEM REC_NUM, w ; Record number, 1 to 255

Movwf INDF ; Push onto the stack

Inct FSR, £ ; adjust stack pointer

; Write the TIMEn registers, MS Word, LS Word, with LS Byte first (Intel fmt)
; Ch. 10 = Time MSW

Movf TIME2, w ; Write 4 Bytes of time information
Movwf INDF ; Push onto the stack

Incf FSR, f ; adjust stack pointer

Movf TIME3, w ; Bytes currently incremented w/o RTC
Movwf INDF ; Push onto the stack

Incf FSR, f ; adjust stack pointer

; Ch. 11 = Time LSW
Movf TIMEG, w

Movwf INDF ; Push onto the stack
Incf FSR, f ; adjust stack pointer
Movf TIMEl, w

Movwf INDF ; Push onto the stack
Incf FSR, f ; adjust stack pointer

; Write the Flash memory address with LS Byte first (Intel fmt)
; Ch. 12 = Memory Address
Movf ADD1l, w

Movwf INDF ; Push onto the stack
Incf FSR, £ ; adjust stack pointer
Movf ADD2, w

Movwf INDF ; Push onto the stack
Incf FSR, f ; adjust stack pointer

; Write Self-test bits (Memory status Flag).

Movf MEMORY FLAG, w ; Get memory flag

Movwf INDF ; Push onto the stack

Incf FSR, f ; adjust stack pointer
Clrf INDF ; put zero on MSB location
Incf FSR, £ ; adjust stack pointer

; Reset WDT to maximize time waiting for X-on before uP resets

129

Code Listing — St_Hand.asm

143 Clrwdt ; Reset 2.4 second Watch-dog Timer
144 ;

145 ; Wait for OK from PC

146 STA_XON

147 Btfss SER FLAG, XON_FLG ; PC sends Xon when ready

148 Goto STA_XON

143 Clrf SER_FLAG ; Clear Xon flag & other Control Flags
15 ;

151 ; Test if "Smart PCM Device" Status command "s"

152 Btfsc PROG_FIAG, SIMPLE FLG ; Set if Command “s”

15‘31 Goto STA_SYNC ; Skip channel info

15 ;

155 ; PC expecting number of data channels and housekeeping monitor channels
156 Movlw NumChan ; Load # of Channels into W

157 Call TX_WREG ; Transmit to PC

158 Movliw NumMon ; Load # of Monitors into W

159 call TX WREG

160 ;

161 ; Next, Sync bytes

162 STA SYNC

163 Movlw Sync_Byte(; Start Frame with sync bytes

164 Call TX WREG

165 Movlw Sync_Bytel

166 Call TX_WREG

167 ;

168 ; Test if "Smart PCM Device"” Status command "s"

169 Btfss PROG_FLAG, SIMPLE FLG ; Set if Command "s"

%;? Goto STA_BLK CNT ; No, Standard Command "S", skip over
172 ; Insert set-up for transmit loop for "Smart PCM Device" status. Data sent once.
173 Movlw 0x01 ; Set for one pass thru loop

174 Movwf MeasSet Cnt : Universal Status, Xmit only one set
175 Movlw 0x1C ; 14 channels * 2 Bytes each = 28

176 Movwf Loop_Cnt ; Re-use ADC_Read loop counter

};g Goto STA_Stack ; join transmit loop

179 ; SensorBall combines the following two bytes as low and hi bytes of a block
180 ; count. The value expected is zero for status check.

181 STA_BLK CNT

182 Clrw ; Load 0x00 (old MinPen = DPH)

183 Call TX_WREG ; send LS Byte first

184 Clrw ; Had counter here of data sets

185 Call TX WREG ; send MS Byte

186 ;

187 ; Set up loop count for Version 3. Version 2 SensorBall expected a 256-byte

188 ; data block. Version 3 uses 560 bytes. Neither counts the preamble bytes
189 ; above. This loop uploads one 560-byte block of data to the PC, with the first

%g? ; 16-bit value equal to the current memory location. No Pad values are needed.
192 Movlw 0Ox1C ; 28 sets of measurements

193 Movwf MeasSet Cnt

194 SET_LOOP

195 Movlw 0x12 ; 9 channels * 2 Bytes each = 18

196 Movwf Loop_Cnt ; Re-use ADC_Read loop counter

197 MovE ADD2, w ; LS Byte of current memory location
198 Call TX_WREG ; Transmit W Register

199 Movlw 0x00 ; MS Byte of memory location

200 Call TX_WREG ; Transmit W Register

201 ;

202 ; Entry point for "Smart PCM Device" Status

203 STA Stack

204 Movlw Data Start ; top of Data Stack

205 Movwf FSR ; . . . loaded into the stack pointer
206 Tx Loop

207 MovfE INDF, w ; recover value from stack

208 Call TX_WREG ; Upload

209 Inct FSR, f ; adjust stack pointer

210 Decfsz Loop Cnt, f

211 Goto Tx Loop

212 ; B

213 Decfsz MeasSet Cnt, f ; Decrement Loop Index and Test

130

214
215
216
217
218
219
220
221
222

Code Listing — St_Hand.asm

Goto SET_LOOP ; '=0, Not end of frame, do another
STA EXIT
Retlw O ;Return, WREG = 0

;

,-**
,-************************ End Of E‘ile St_Hand.asm LERE SRR RS SRR SRR EENEEEEE TR
;**'k*********************************

END

131

N=1-EN R N RNV] S

10

Code Listing — Ball_Dat.inc

; File npame: "ball dat.inc”
; P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code
Program memory definition include file in main microcontroller code for the P&G Sensor Ball

; Date: 11 December 2001
; File Version: 4
; BAuthor: Tedd A Rohwer, Sandia National Laboratories

; Change history:

; 4/26/99 Modified for MilliPen TA Rohwer

; 30 Mar 2001 - Version 3 Changes requested by P&G, ME Partridge

; New variables added to support changes

; ADC variables MSBYTEO - 9 and LSBYTEO - 9 deleted

Time data registers TIMEO - 6 and others for time functions

H 13 Jun 2001 - Checksum generation and data retransmit, ME Partridge
H 17 Jun 2001 - Minor revisions, ME Partridge

; 12 Aug 2001 - Version 4, add temporary variable for address, ME Partridge
; Add temporary for interrupt routine

; Move starting location of parameter stack

; Function:
H Includes all Reserved Register Declarations
H Only #include once in the main program {(ball.asm)

,-******3\'***
,-**
SWVARS UDATA 0x20 ;Bank(0 General Purpose Data RAM

; Addresses 0x20 to 0x4F for variables
;

; Flag registers for program control and status

PROG_FLAG RES 1 ;20 Program Command Flags
SER_FLAG RES 1 721 Control character received flags
MEMORY_ FLAG RES 1 122 MEM_ HAND Memory function failure flags
1 123 SER_HAND State machine for command receive

SER_STATE RES

; Flash memory position data

MEM REC_NUM RES 1 ;24 Number of Records in Flash memory (or in progress)
MEM FRM_NUM RES 1 725 Current Frame number in Record

MEM BAD NUM RES 1 ;26 Bad blocks counted in Flash memory

ADDO RES 1 ;27 Flash Memory address A7 .. A0

ADD1 RES 1 ;28 Flash Memory address Al6 .. A8

ADD2 RES 1 ;29 Flash Memory address A24 .. Al7

A8 RES 1 ;2A Indicates if in first (0) or second (1) half of Page
4

; Serial input support for commands and parameters

CMD_CHAR RES 1 ;2B SER_ & CMD_HAND, Valid New Command

RC_CHAR RES 1 ;2C SER_HAND, New Serial Character

RC_TEMP RES 1 ;2D SER_HAND, Received Character

2

; Serial output string location registers

Look Hi RES 1 ;2E
Look_Lo RES 1 ;2F
; Analog-to-Digital results
LSBYTE RES 1 ;30 ADC_READ, Least Sig. Byte. [A7,...A0]
MSBYTE RES 1 ;31 ADC_READ, Most Sig. Byte. [X,X,X,%X,A11,...A8]
; Time count registers (Placeholder for Real-Time Clock)
TIMEO RES 1 ;32 LS Byte, Time in milliseconds (Counter for Seconds)
TIME1 RES 1 ;33 . . . next significant byte (Minutes)
TIME2 RES 1 ;34 . . . next significant byte (Hours)
TIME3 RES 1 ;35 . . . next significant byte (Count of days from Reset)
TIME4 RES 1 ;36 =zero, not used yet (Month)
1 ;37 =zero, not used yet (Year)

TIMES RES
; Attention mode time-out registers

CMD_TIMEL RES 1 ;38 Time-out LSByte, 285ms / bit
CMD_TIMEH RES 1 ;39 Time-out MSByte

; Temporary values used when reading back files

R _Sync_ByteO RES 1 ;32 Variable for reading data

132

Code Listing — Ball_Dat.inc

R Sync Bytel RES 1 ;3B

R _MEM REC NUM RES 1 ;3C

R MEM FRM NUM RES 1 ;3D

R_ADD1 RES 1 ;3E

R_ADD2 RES 1 ;3F

R_TIME3 RES 1 ;40

R_TIME2 RES 1 ;41

R_TIMEL RES 1 ;42

R_TIMEQ RES 1 ;43

CKSMO RES 1 ;44 LS Byte for checksum

CKSM1 RES 1 ;45 MS Byte for checksum

BLCKO RES 1 ;46 LS Byte, count of Frames uploaded
1 ;47 MS Byte, count of Frames uploaded

BLCK1 RES

; Loop counters, other temporary values

MeasSet Cnt RES 1 ;48 Loop counter, sets of 9 analog measurements

Channel Cnt RES 1 ;49 Loop counter, analog channels 0 to 9 skip 7

Sleep_Cnt RES 1 ;4A Loop counter, sleep cycles between conductivity check

Loop_Cnt RES 1 ;4B Generic Loop Counter

TEMP RES 1 ;4C Generic temporary (Don't use for Interrupt routines)
1 ;4D Test pattern in memory test

PATTERN RES

;
;**

’-**
; —---- Registers accessible regardless of Memory Bank selected

; Used to push data during interrupt. Uses shared region of user memory,
; locations 0x070-0x07F, 0x0F0-0x0OFF, 0x170-0x17F, Ox1F0-0x1FF

Stack_Vars UDATA_SHR 0x70 ; Accessible from all Banks General Purpose Data RAM
TEMP_INT RES 1 ;70 Temporary for interrupt routine only
LOOP_INT RES 1 ;71 Temporary for interrupt routine only
STACK Wreg RES 1 ;72 Working Register holding during interrupts
STACK_Status RES 1 ;73 Status Register holding during interrupts
1 ;74 Indirect pointer holding during interrupts

STACK_FSR RES

;
H
;**
;**
; —---- Command Parameter Stack

; Note: Code does not check to see if stack exceeded

; Allocation cannot exceed address O0x6F

Parm Stack UDATA CMD_Param Start ; Stack start for command parameters passed from PC

CMD_ PARAMS RES Param Stack_Size ; Maximum 32 values, O0x50 to Ox6éF

’
I-**

;**

; =---- Data Hold Stack

; Holds data read from memory to allow re-transmit if checksum error
Data_Stack UDATA Data_Start ; Bank 1 memory

Data Values RES 0x50 ; Maximum 80 values in stack, addr 0xAO - OXEF

’
;**

;********************* End Of file Ball Dat'inc R SRR R R R SR EEEEREEEEEEEEEEEESE]
’-**

133

Code Listing — Ball_Equ.inc

; File name: "ball equ.inc"
; P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code
Program memory definition include file in main microcontroller code for the P&G Sensor Ball

; Date: 11 December 2001
; File Version: 4
; Author: Tedd A Rohwer, Sandia National Laboratories

OO0 ~INN NI =

10

; Change history:

; 4/26/99 Modified for MilliPen TA Rohwer

H 30 Mar 2001 - Version 3 Changes requested by P&G, ME Partridge
; New variables added to support changes

; 12 Aug 2001 - Version 4, ME Partridge

; Add ADC_AVG flag to control subroutine ADC_Read
; Add LED BLINK flag for Timeout_ Chk subroutine

; Function:

H Includes all equivalence and constant Declarations
; EQU's are compiler directives and can't be declared global

H #include in each program file

;**
,-********-k*****************'k***

;

; NOTE: If Version and/or Unit are changed, change List_Who_ID in Ball_Msg.inc

Hardware Ver set "4 ; Version 4 Hardware / Firmware
Unit_Number set " ; Unit number 3
e Flag Bits for Flag Registers
;---- PROG_FLAG
COMMAND FLG EQU 0 ; Command Flag, Valid Command String Received
ADC_AVG EQU 1 ; Take average for ADC acquisition
LED_ BLINK EQU 2 ; Used in Timeout Chk to request "Waiting"™ blink
; EQU 3 H
REINIT_FLG EQU 4 ; INIT UP Flag, starts power-up initialization
ACQUIRE_FLG EQU 5 ; Acquire a data Record, Command A
SIMPLE_FLG EQU 6 ; Simple, stupid upload in RD_HAND, Command U
CMDERROR_FLG EQU 7 ; Command Character is undefined command
;---- SER_FLAG
CNTRLC_FLG EQU 0 ;CNTRL~-C Flag, READ Abort Command
XON_FLG EQU 1 ;XON Flag, S/W Handshaking starts transmission
XOFF_FLG EQU 2 ;XQFF Flag, S/W Handshaking stops transmission
ACK_FLG EQU 3 ;Acknowledge Flag, Data matches checksum,
NAK FLG EQU 4 ;Negative Ack Flag, Data and checksum mismatch,
CNTL_ER FLG EQU 5 ;Received undefined Control Char (0x00 - Ox1F)
STR_ER_FLG EQU 6 ;Command character not in
; EQU 7
;—--- MEMORY FLAG
MEM FULL EQU 0 ;Memory Full Flag, 32MB data recorded
MEM_ PROG EQU 1 ;Program Fail Flag, Failure during Flash program
MEM ER FLG EQU 2 ;Block Erase Failure
MEM WR_FLG EQU 3 ;Pattern read not equal written
TEST55_FAIL EQU 4 ;Test Write of 0x55 Failure
TESTBA_FAIL EQU 5 ;Test Write of OxAA Failure
MEM_FIND FLG EQU 6 ;Search for a Record failed
END OF DATA EQU 7 ;Set flag during read handler at end
;---- SER_STATE
SER_ST_0 EQU H'00" ; Received starting "Q" character
SER_ST_AZ EQU H'01' ; Received a command character in A - 2
SER_ST_CR EQU H'02' ; Received CR for command phrase
SER_ST_LF EQU H'03' ; Received LF for command phrase
SER_ST_PAR EQU H'04' ; Received a command parameter

H'05" ; Received Verify character on subsequent phrase

SER_VERIFY EQU

I/0 PORT Pin References
;3ee P17C756.inc for PORT address references

Code Listing — Ball_Equ.inc

72 ; Note: analog channels are accessed by their channel number, NOT the Port line
73 ACCEL_X EQU 0x00 ;Analog Channel 0, ACCEL X

74 ACCEL Y EQU 0x01 ;Analog Channel 1, ACCEL Y

75 ACCEL_Z EQU 0x02 ;Analog Channel 2, ACCEL Z

76 pH EQU 0x03 ;Analog Channel 3, pH

77 CONDUCT EQU 0x05 ;Analog Channel 4, CONDUCT

78 ;

79 ;--—-- PORTB, Bank0

80 ; Note: analog channels are accessed by their channel number, NOT the Port line
81 ATTENTION EQU 0x00 ;Command attention button Input

82 POWER EQU 0x01 ;POWER 3V & 6V control output

83 REG1 MON EQU 0x02 ;Analog Channel 8, REGl MON, 3V

84 REG2_MON EQU 0x03 :Analog Channel 9, REG2 MON, 6V

85 ISR_TEST EQU 0x04 ;Test output, state change on ISR entry

86 CLE EQU 0x05 ;Flash Command Latch Enable

87 ALE EQU 0x06 ;Flash Address Latch Enable

88 WP EQU 0x07 ;Flash Write Protect (active low)

89 :

90 ;---— PORTC, Bank0

91 ; PD EQU 0x00 ;Power down (active low)

92 LED EQU 0x01 ;LED Power output, active high

93 RB EQU 0x02 ; Input, Ready/Busy~ output on Flash, not used

94 RE EQU 0x03 ;Flash Read enable (active low)

95 CE EQU 0x04 ;Flash Chip enable (active low)

96 WE EQU 0x05 ;Flash Write enable (active low)

97 0S4 EQU 0x06 ;USART Transmit Line

98 RX EQU 0x07 ;USART Receive Line

99 ;

100 ;-—-- PORTD, Bank0

101 101 EQU 0x00 ;Flash Address, Command Input, Data I/O

102 102 EQU 0x01 ;

103 103 EQU 0x02 ;

104 104 EQU 0x03 ;

105 105 EQU 0x04 :

106 106 EQU 0x05

107 107 EQU 0x06 ;

108 108 EQU 0x07 ;

109 ;

110 ;--—- PORTE, Bank0

111 ; Note: analog channels are accessed by their channel number, NOT the Port line
112 TMP EQU 0200 ;Analog Channel 5, TEMP

113 MON9V EQU 0x01 ;Bnalog Channel 6, 9V_MON

H‘S‘ ; EQU 0x02 ;Analog Channel 7, not connected

116 ;**
117 ; ---- Constants

118 Sync_Byte0 set 0XEB ; Standard 16-bit Sync Bytes

119 Sync_Bytel set 0x90

120 BLK_per REC set 8 ; 8 ea. 16kB Blocks per 128kB Record

121 NumChan set 7 ; Number of Channels, used by SensorBall
122 NumMon set 3 ; Number of Monitors, used by SensorBall
123 Atten_Timeout set 0x04 ; S5-minute Timeout, command "ATTENTION" mode
124 Sleep_Cycles set 0x19 ; Set for 25 cycles, or about one minute with WDT = 2.4sec
%%g Conduct_Thresh set 0x01 ; 6.3 percent of full-scale Conductivity reading
127 ; Define

128 #define CMD_Param Start 0x50 ; Memory start location for parameter stack pointer
129 #define Param Stack_Size 0x20 i 32 locations for parameters

B(l) #define Data_Start 0xAC ; Bank 1 memory for data stack
132 :-**
133 ,-************************* END Of FILE Ball Equ.asm hkhk*khkkhhxkhkhkkhrhhkhkkhkhkkhkkkdxd
134 ,-**:***********************************

135

ORI NAWLWN—

Code Listing — Ball_Msg.inc

; File name: "ball msg.inc"
P&G Sensor Ball, MicroChip PIC16C774 MicroController Assembly Code
Message string definition include file in main microcontroller code

; Date: 11 December 2001
; File Version: 4
; Author: Tedd A Rohwer, Sandia National Laboratories

; Change history:
; 26 Oct 2001 - Created for Version 4
H Put message strings in separate include file

; Function:
; Includes message strings as Retlw "value" instructions. Called
; from the TX String subroutine in file SER_HAND.

H Only #include once in the main program (ball.asm)

i
;**

pr¥xFxxkkxxxxxxxx Define text strings for transmit, relocatable ****xxxdxxxxxxskx
;**
; These strings are used by the TX Lookup routine, where a Program Counter

; value is generated equal to the Retlw line with the requested value.

List_Strings CODE
; NOTE: If Version and/or Unit are changed, change the Hardware Ver and
; Unit_Number Ball_Equ.inc

List_WhoID

Retlw 'S’
Retlw ‘e!
Retlw 'n'
Retlw 's'
Retlw 'o!
Retlw 'r!
Retlw v
Retlw 'B'
Retlw ‘a'
Retlw 1
Retlw AR
Retlw vt
Retlw v
Retlw Te!
Retlw 'r!
Retlw 's’
Retlw 'i'
Retlw 'o!
Retlw 'n'
Retlw to
Retlw '4r
Retlw ' '
Retlw g
Retlw 'n'
Retlw vit
Retlw 't!
Retlw v
Retlw '0'
Retlw '0r
Retlw 7
Retlw O

2

List Commands

Retlw AV
Retlw 'B*
Retlw 'E!
Retlw 'F
Retlw T
Retlw 'p’
Retlw 'R’
Retlw ‘s
Retlw '
Retlw O

136

’

; Data channel names.

List_Data00
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_DataOl
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List Data02
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Data03
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Data04

At
LM
te!
ta!
tye
Tet
fps
'3
e
LER
o'
‘n'
[
b
0

0

‘Al
tert
e
te!
vy
tal
Tpt
‘ta!
et
it
Tof
n'

tyt

"ar

L

L

)

OO0 O0ODODOO0OOOOO OO

Code Listing — Ball_Msg.inc

All must be 16 Bytes long, including terminating null

137

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Data05

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Data06

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Data07

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Data08

138

Retlw
Retlw
Retlw

el

tgr

e

gt

te!

[N eNel el

'R’
LIPS
!
e
re!
ty?
lyl
vt
Ty
'o!
!
!

[N eNeNol

'3
ry!

L
tge
ryt

Code Listing — Ball_Msg.inc

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List_Data(9
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List DatalO
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List_Datall
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List_Datal2
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

[
'R!
Te!
lgl
u!
1]
gt
e
'o!
tyt

'R!
LS
e
to!
Tpt
g
v
LA
L]
Lol
tp!
gt
'
e

v
vy
m?'
et
[
M
g
W'

loNaNelNeNoNeNoNol

v

m'
el
[
Tt
g
W

[>NeoNoNoNoNeNolN ol

™'

‘m!'
t o
AY
'q!

Code Listing — Ball_Msg.inc

139

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

;

; Self-Test bit names.

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_S1£t00

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_S1ft01

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List S1ft02

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_S1ft03

140

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

"M
te!
‘m*
to!
fpt
lyv
T
g
'
1
1t
0

QO OO

'pt
tyt
o!

Tyt
gt
m’
T
‘P
ry!
it
]t

o

O OO

(ol
tpt
taf
gt
re!
[
rpe
Tat
vt
LR

[aNeNoNoNoNal

'R
te!
ta!
rd?’
bt
ral
te!

Code Listing — Ball_Msg.inc

All must be 16 Bytes long, including terminating null
;Memory Full Flag, 32MB data recorded

;Program Fail Flag, Failure during Flash program

;Block Erase Failure

;jPattern read not equal written

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List_S1ft04
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List_S1£t05
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List_S1ft06
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
List S1£t07
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

k!
[
B
fpt
fp!
'o!
Tyt

TpeY
al
e
tet
L
Yyt
'‘n'
vt
LG
151
[
rEt
gt
IER
vy

'pr
'a!
et
LR
A
‘y!
nt
[
A’
‘Al
L]
TR
ta!
g
]

'R
L
e
[
g
te!
Tar
frt
et
tht
T
rE
gt
LER
e

™'
e
'n!
To!
Ty
lyl
TR

nt
'qr

Code Listing — Ball_Msg.inc

;Test Write of 0x55 Failure

;Test Write of OxAA Failure

;Search for a Record failed

;Set flag during read handler at end

141

427
428
429
430
431
432
433
434
435

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
483
489
490
491
492
493
494
495
496
497

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

[eNeoNoNeNoRe]

Code Listing — Ball_Msg.inc

; Undefined channel or test bit name requested.
List _Undef

’

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

; Messages
List Fail Msg

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Stat_Msg

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

List_Eras_Msg

142

Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

ros
v
gt
Tm'
qr
tert
T
vit
tnt
el
rdr
0

(ol
rg!
1y
vyt
L
d’
[|
B!
B
o'
et
ke

[

tE
E
!
vy
gt
!
te!
g
[
‘B!
1y
'o!
te!
k!

vt

‘B!
ty!
'y
'g!
Te!
g
L]
‘B!
Y
o'
te!
Yt

T

; "Failed Block "

; "Finished Block "

; "Erased Block "

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

List_Mem Flag
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw
Retlw

;

;**
;********************* End of file Ball Msg‘inc EEE RS RS E R EEEEEEEEEEEEEEEEEEEEEES
’-**

YA
tg!
m'

TR
t1
'a!
lgl
[
Ty
a
v
!
ta!
vt

0

Code Listing — Ball_Msg.inc

" Mem Flag Value "

143

OO~ UNIWN —

Appendix L: PC Interface (SensorBall) Code Listing

unit Main2Form;

interface

uses
Windows, Mess

ages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

stdCtrls, ExtCtrls, About, MainUtil, CommUtil, Spin, ComCtrls;

type
TForm_Main =
Group_Ports
GroupBox_Re

class (TForm)
tatus: TGroupBox;
ply: TGroupBox;

Group_Readout: TGroupBox;

Group_Statu

s: TGroupBox;

Button_Send: TButton;
Edit Outfile: TEdit:

Button_ Read: TButton;
Label Reply: TLabel;

Button About: TButton;
Button_Close: TButton;
Label Status: TLabel;

Label_ ChanD
Label_VoltD
SaveDialogl
Group_SelfT

atal_3: TLabel;
atal 4: TLabel;
: TSaveDialog;
est: TGroupBox;

Label ARM Lvl: TLabel:
Label Cycle_Lvl: TLabel;
Label_ILock_Lvl: TLabel;

Label Bit3A: TLabel;
Label Bit4A: TLabel;
Label BitS5A: TLabel:
Label BitéA: TLabel;
Label Bit7A: TLabel;
Label RAMData: TLabel;

Label RAMAdJ
Label EEPRA

drRW: TLabel;
ddrRW: TLabel;

Label Bit3B: TLabel;
Label Bit4B: TLabel;
Label Bit5B: TLabel;
Label Bit6B: TLabel;
Label Bit7B: TLabel;
Label KBytes: TLabel;
Panell: TPanel;

Label RW: TLabel;

ProgressBar RW: TProgressBar;

Label AAL: TLabel;
Label ADL: TLabel;
Label ACL: TLabel;
Label AIL: TLabel;
Label RAB4: TLabel;
Label RAB5: TLabel;
Label RAB6: TLabel;
Label RAB7: TLabel;
Label RARW: TLabel;
Label RD: TLabel;

Label EARW: TLabel;
Label ED: TLabel;

Label RBB4: TLabel;
Label RBBS5: TLabel;
Label RBB6: TLabel;
Label RBB7: TLabel;

Button XOut

: TButton;

GroupBox_Command: TGroupBox;
RadioButton I: TRadioButton;
RadioButton R: TRadioButton;
RadioButton_A: TRadioButton;

145

137

Code Listing — Main2Form.pas

RadioButton_S: TRadioButton;
RadioButton P: TRadioButton;
RadioButton T: TRadioButton;
SpinEdit Read: TSpinEdit;
Label2: TLabel;
RadioButton_H: TRadioButton;
RadioButton_C: TRadioButton;
RadioButton G: TRadioButton;
RadioButton D: TRadioButton;
GainGroup: TGroupBox;
Labell: TLabel;

Label3: TLabel:

EditGain: TEdit;

Label SR: TLabel;
RadioButton_B: TRadioButton;
ListHexIn: TListBox;
Buttonl: TButton:
DebugDisplayOn: TCheckBox;
Label5: TLabel;

Label ChksumNum: TLabel;

procedure ReadData{Block_Cnt : Integer);
procedure WriteData(Block Cnt : Integer);
procedure Button_ AboutClick(Sender: TObject):;
procedure Button SendClick(Sender: TObject);
procedure FormClose{Sender: TObject; var Action: TCloseAction);
procedure Edit_OutfileClick{Sender: TObject):
procedure Button CloseClick(Sender: TObject);
procedure Button_ReadClick(Sender: TObject):
procedure Read Analog_Status;

{ procedure Read_Unit_ Status; }
procedure Read_SelfTest;
procedure SpinEdit_ReadChange (Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button XOutClick(Sender: TObject);
procedure RadioButton_ CommandClick(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure DebugDisplayOnClick(Sender: TObject};

private
{ Private declarations }
public
{ Public declarations }
end;
const
Revision_Code = '12.01';
Cal_Factor = 0.003549; {Set Voltage Mons to 4.88 mV/Count}
Cal_FactorT = 0.20000; {Set Temp Mon to 0.20 °C/Count}
const

Gain_Length = 10;

var
Form Main: TForm Main;
SpEdPrv : Integer; {Spin Edit Previous Value}
OutFilevalid : Boolean; {Enable Read Button if Outfile Valid}
Buff Ptr : Pointer;
Num_Data_Chans,
Num_ Mon_Chans : Byte;
Block Cnt : Integer; {Counter for Number of Data Blocks Read}
HW_Rev : Char;
Unit_ID ¢ Byte;
DebugOn : Boolean;
implementation
{$R *.DFM}

procedure TimeOutError (Msg Str : String);

146

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

Code Listing — Main2Form.pas

begin

Comm_Err := True;

{MessageDlg ('A read timeout has occurred while waiting for a ' + Msg str +
'.', mtWarning, [mbOK], 0);

}

Msg Str := 'Read timeout waiting for a ' + Msg_str + '.' ;
Form Main.ListHexIn.Items.Add(Msg_Str);
end;

procedure TForm Main.ReadData(Block Cnt : Integer);

{12/6/01 This section revised to read the entire group of Sync, Block count,

data block, and Checksum in one read. This matches the way Sensor Ball sends

the data, as one group. Sensor Ball then waits to receive either the Acknowledge
(Ack) or Negative Acknowledge (Nak) to indicate whether the data were received
OK.}

const

Cksm_Length = 2; {Checksum String consist of 2 Bytes}

Sync_Length = 4; {Two Sync bytes plus two Block count bytes}
var

Offset,

Idx : LongInt;

MissBlock,

Read_Cnt,

Block Num : Integer;

NB_Read : DWord;

Checksum : Word; {010618ed unsigned 16 bit}

WaitLoopCount,

CksmErrCount,

SyncErrCount : Integer; {010618ed}

Index : Integer;

DisplayStr : String;
GotData : Boolean;

begin
Block _Num := 0; {Initialize Block Counter}
MissBlock := 0;
CksmErrCount := 0; {010618ed initialize counter for counting checksum errors}
SyncErrCount := 0;
Label ChksumNum.Caption := 'C:'+ IntToStr(CksmErrCount) + ' S:' + IntToStr (SyncErrCount) ;
Label RW.Caption := 'Reading Data from Package.';
Label RW.Visible := True;
ProgressBar RW.Visible := True;

Label ChksumNum.Visible := True;
Form Main.Refresh;

Cursor := crHourGlass;

Comm Err := False;

Repeat
ProgressBar_RW.Position := Round((Block Num / Block Cnt) * 100);
WaitLoopCount := 0;
Checksum := 0;

{Monitor communications until Sync, Block num, Data, and Cksm are in buffer.
On the first time through, the interface program needs to send X-on to the
Sensor Ball to indicate it is ready to receive data. This loop is repeated
in case the X-on byte was not received. Once the Sensor Ball has received
X-on, only either Ack or Nak should be sent. In the event an error occurred
in the Block 0 transmission, a compare is also made for Comm Error.}
Repeat
FlushQueue (Receive);
if (Block_Num = Q) AND NOT Comm_Err then {12-5-01 mike}
SendChar (XonChar)
else
if Comm Err then
SendChar (NakChar)
else
SendChar (AckChar) ; {7-5-01 10:13 mike}
if DebugOn then Form Main.ListHexIn.Items.Add(' ')’
{Changed to read all data in one statement. It is sent as one group.

147

Code Listing — Main2Form.pas

209 For the first read, the Sensor Ball should be in a wait loop and respond

210 in less than a millisecond. Thus the short timeout value. }

211 GotData := WaitForCommData (Sync_ Length, 1000); { 4 bytes received, 1 second timeout}
212 if GotData then

213 GotData := (ReadFile(Comm_Handle, Data_Block, Sync_Length, NB_Read, lpOverLapped)
214 AND (NB Read = Sync_Length));

215 if GotData then {Sucessful ReadFile Processing}

216 if (pata Block [0] = Ord(SyncBytel)) AND (Data_Block [1] = Ord(SyncByte2)) then
217 begin {Sync OK Processing}

218 if DebugOn then

219 begin

220 DisplayStr := 'Sync = ' + IntToHex(Data Block(0], 2)

221 + IntToHex (Data Block[1l], 2) + ', First Frame of Block '

222 + IntToStr (Block Num);

223 Form Main.ListHexIn.Items.Add(DisplayStr):;

224 end;

225 end {Sync OK Processing}

226 else {Sync error)

227 begin

228 GotData := False;

229 SyncErrCount := SyncErrCount + 1;

230 DisplayStr := 'Block ' + IntToStr(Block Num) + ' Sync Error, Received '
231 + IntToHex (Data Block[0}, 2) + ' ' + IntToHex(Data_ Block[1l], 2);

232 Form Main.ListHexIn.Items.Add(DisplayStr):

233 end; {of Sync bytes not matching}

234 WaitLoopCount := WaitLoopCount + 1;

%gg until GotData OR (WaitLoopCount > 20);

237 if GotData then {Verified that the proper Sync was received, now check block count.}
238 begin

239 Read Cnt := (Data_Block[3] * 256) + Data_Block[2);

240 if NOT (Read_Cnt + MissBlock = Block_Num) then

241 begin

242 DisplayStr := 'Expected block ' + IntToStr(Block Num)

243 + ', Sensor Ball sending block ' + IntToStr(Read Cnt);

244 Form Main.ListHexIn.Items.Add(DisplayStr);

245 MissBlock := Block Num - Read_Cnt;

246 end

247 end; {End of check block number}

248

249 {Make sure data block is waiting in receive queue}

250 if GotData then

251 if WaitForCommData(Block Length, 1000) then { Wait 1000ms for block)

252 GotData := (ReadFile{Comm Handle, Data Block, Block_Length, NB Read, lpOverLapped)
253 AND (NB_Read = Block_Length})); B h

254

255 {Read and store data block and calculate checksum }

256 if GotData then

257 begin {Sucessful ReadFile Processing}

258 DisplayDebug2 (false, 80, Data Block);

259 Checksum := 0;

260 Offset := Block_Num * Block Length;

261 for Idx := 0 to (Block Length - 1} do

262 begin

263 Byte Record[Offset + Idx] := Data_Block[Idx];

264 Checksum := Checksum + Data Block[Idx]:

265 end

266 end; {of Sucessful ReadFile Processing}

267

268 {Make sure checksum is waiting in receive queue}

269 if GotData then

270 if WaitForCommData (Cksm Length, 50) then { Wait 50 ms for checksum}

271 GotData :=(ReadFile(Comm_Handle, Data Block, Cksm Length, NB Read, lpOverLapped)
272 AND (NB Read = Cksm Length)); N N N

273 B

274 if GotData then {Test if Checksum correct)

275 if (Data Block[1] * 256 + Data Block[0] = Checksum) then

276 begin {Checksum correct}

277 Comm_Err := False;

278 Block Num := Block_Num + 1;

279 DisplayStr := 'Checksum Received '

148

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

en
else
be

en

{Summarize if had communications error, either bad Sync or bad Chksm}

Code Listing — Main2Form.pas

+ IntToHex (Data_Block[1l], 2) + v

+ IntToHex (Data Block[0], 2);
if DebugOn then Form Main.ListHexIn.Items.Add(DisplayStr);
d {of Checksum correct}

gin {Checksum Error}
Comm Err := True;
CksmErrCount := CksmErrCount + 1;
DisplayStr := 'Block ' + IntToStr(Block_Num)
+ ' Cksm Error, Rcvd '
IntToHex (Data_Block[1l], 2)
IntToHex (Data_Block[0], 2) + ' = '
IntToStr (Data Block[1]*256 + Data_Block[O0])
', Calc= '
+ IntToStr (CheckSum);
Form Main.ListHexIn.Items.Add(DisplayStr):
d; {of Checksum error}

+ + + +

if Comm Err then

Labe
+

{Terminate loop when all blocks recovered, or if Sync search times out}

Until ((

{Clean u
Cursor
Label RW
Progress

{Stop da
for Inde
begin
Send
Dela
Flus

end;

end;

procedure

var
Offset,
Idx
Block_Nu

begin
Label RW.C
Label RW.V
ProgressBa
Form Main.
Block_Num
Cursor
Repeat
Progress
Offset
for Idx
Data B
BlockWri
Block Num
until (Blo
Cursor :=
Label RW.V
ProgressBa
end;

procedure

l_ChksumNum.Caption := 'C:'+ IntToStr (CksmErrCount)

''§:' + IntToStr(SyncErrCount) ; {010618ed display # checksum errors}

Block Num = Block Cnt) OR NOT GotData};

p for exit}

= crDefault;

.Visible := False;

Bar_RW.Visible := False;

ta transmit}

x := 0 to 3 do { May have missed first}

Char (Cntl_C); {Cntl_C to Stop Data}

y(500); {Wait 500 mSec for Data to Stop}
hQueue (Receive) ; {Empty Receive Buffer}

TForm Main.WriteData(Block_Cnt : Integer);

LongInt;
m : Word;

aption := 'Writing Data to Disk.';

isible := True;

r RW.Visible := True;

Refresh;

= 0y

:= crHourGlass;

Bar RW.Position := Round((Block Num / Block Cnt) * 100);

:= Block_Num * Block_Length;

:= 0 to (Block_Length - 1) do

lock([Idx] := Byte Record{Offset + Idx];
te(OutFileB, Data Block, 1)

:= Block_Num + 1;

ck _Num = Block Cnt);

crDefault;

isible := False;

r RW.Visible := False;

TForm Main.Button AboutClick(Sender: TObject);

149

Code Listing — Main2Form.pas

351 var

352 Compile_DateTime : TDATETIME;

353

354 begin

355 Compile DateTime := GetFileDT(Application.ExeName);

356 AboutBox.Caption := 'About ' + Application.Title;

357 AboutBox.ProgramName.Caption := 'Program Name : ' + UpperCase(Application.Title);
358 AboutBox.Version.Caption := 'Version : + Revision Code;

359 AboutBox.Date.Caption := 'Compiled : ' + FormatDateTime ('mm/dd/yy"',
360 Compile DateTime):

361 AboutBox.Copyright.Caption := 'Copyright : ' + 'Sandia National Labs';
362 AboutBox.Comments.Caption = 'Written by : ' + 'David J. Bello' + CR

363 + 'Revisions by Frank Wunderlin, Ed Henry,' + CR
364 + 'and Mike Partridge';

365 AboutBox.ShowModal;

366 end;

367

S }

369 procedure TForm Main.Button_SendClick(Sender: TObject);

370

371 {var

372 TimeChar : Char;

373 ByteEntered : Integer;

374 Idx : LongInt; {010606ed added for baud change}

375

376 begin

377

378 {010618ed change from A to E}
379 if (Cmd Char = 'E')

380 then

381 if MessageDlg('Warning! You are about to ERASE ALL DATA!!!' + CR +

382 'Proceed with Erase Command?', mtConfirmation, mbOKCancel, 1) = mrCancel
383 then

384 Exit:

385

386 SendverifyCommand (Cmd_Char, Cmd_Echo);
387 Edit_OutFile.Enabled := False;

388 Button Read.Enabled := False;

389

390 {***************************** start new baud Stuff **************)

391 if (Cmd_Char = 'B') then ({010606ed add code to change baud rate}

392 begin

393 if (BaudRate = 115200) then {allows you to toggel between baud rates}

394 Begin

395 BaudRate := 19200;

396 end

397 else

398 Begin

399 BaudRate := 115200;

400 end;

401 end;

402 CloseCommPort; {Disconnect Comm Device}

403 OpenCommPort ('COM1") ;

404 SetCommMODE (BaudRate, 'N',8,1);

405 GetCommStatus;

406 Group_PortStatus.Caption := 'COM' + IntToStr(CommStat.PortID);

407 Label Status.Caption := 'BaudRate : ' + IntToStr (CommStat.BaudRate) + ' '+
408 'Parity : ' + (CommStat.Parity) + ! 't
409 "ByteSize : ' + IntToStr(CommStat.ByteSize) + ' '+
410 'StopBits : ' + IntToStr(CommStat.StopBits);

411 [FHRAFXKX KKK KF AT AR AR KR KX XA S, * %% ond new baud Stuff **r*x*kxkxkxx*x)

412

413 Case Cmd_Echo of

414 'A' : Label Reply.Caption := '[A]Acquiring to Flash';

415 'B' : Label Reply.Caption := '[B]Baud Rate Change' + IntToStr (BaudRate);{010606ed added baud
416 change} -

417 'C' : Label Reply.Caption := '[C]Cycled';

418 'E' : begin

419 Label Reply.Caption := '[E]Erase Memory'; {0106lled changed from powerdown to Erase mem}
420 end;

421 'F' : Label Reply.Caption := '[F]Fill Memory Test'; {Placeholder for command}

150

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
438
489
490
491
492

Code Listing — Main2Form.pas

'I' : Label Reply.Caption := '([IlInitializing';
'R' : begin
Label Reply.Caption := '[R]RAM Read';

Edit_OutFile.Enabled := True;
if OutFilevalid
then Button_Read.Enabled := True;
end;
'S' : begin
Label_ Reply.Caption :
Read_Analog_Status;
end;
'T' : begin
Label Reply.Caption :
Read_SelfTest;
end;
'w' : Label Reply.Caption :
'z' : Label Reply.Caption :

'{S}status Request';

'No Response'

else
begin
MessageDlg('Undefined ECHO Character: ' + Cmd Echo +

'.', mtWarning, ([mbOK], 0);

Label Reply.Caption := Cmd_Echo + 'UNDEFINED.';
end;

end; {Case}

end;

procedure TForm Main.FormClose (Sender: TObject; var Action: TCloseAction);

begin

CloseCommPort; {Disconnect Comm Device}

end;

procedure TForm Main.Edit_OutfileClick(Sender: TObject):

begin
SaveDialogl.FileName := '';
SaveDialogl.Filter 'All Files (*.*)[|*.*';
SaveDialogl.Options := [ofHideReadOnly, ofPathMustExist];
if SaveDialogl.Execute
then
begin
OutFileName

[

)

SaveDialogl.FileName;

Edit OutFile.Text = ExtractFileName (OutFileName);
OutFilevalid = True;
Button Read.Enabled := True;
end;
Edit_OQutFile.SelStart = 0;
Edit_OutFile.SelLength := 0;

end;

procedure TForm Main.Button CloseClick(Sender: TObject):
begin

Close;

end;

procedure TForm Main.Button ReadClick(Sender: TObject) ;

var
ByteCount : inté4;
KBytes : inté4;

begin

if FileExists (OutFileName)
then

if MessageDlg('File ' + OutFileName + ' already exist. Overwrite?’,

'[T]Test Memory'; {01061lled changed self test to mem test}

'[w]Who are you?'; {Placeholder for command}

151

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Code Listing — Main2Form.pas

mtWarning, [mbYes, mbNo], 0) = mrNo
then exit;
ByteCount := SpinEdit Read.Value * 256 * Block_Length; {fkw - convert records to bytes}
KBytes = ByteCount DIV 1024; {fkw - convert bytes to kbytes}

Block_Cnt := KBytes * 1024 DIV Block_Length; {010531led changed 256 to Block_ Length}
Err Code := OpenOutFile(OutFileB, OutFileName,
Block_Length, (Block Cnt * Block Length) DIV 1024); {01053led changed 256 to
Block Length} {Open Binary Output File}
if Err_Code = 0
then
begin
ReadData (Block_Cnt);
if Comm Err AND (Block_Cnt=0) then
MessageDlg('Transmission Errors Detected! No Data Available.', mtWarning, [mbOK], 0)
else
WriteData (Block Cnt);
CloseFile (OutFileB); {Close Binary Output File}
end;
Edit_OutFile.Enabled := False;
Button_Read.Enabled := False;
end;

procedure TForm Main.SpinEdit_ReadChange (Sender: TObject);
begin

SpEdPrV := SpinEdit_Read.Value;

end;

procedure TForm Main.Read Analog_Status;

var
NB_Read : DWord;
CmdEcho : Char;
WholD : Array[0..50] of Char;
Channel : Byte;
IdxStr : String;
BiasAvg : Array([l..16] of Float; {Max of 16 Data and Monitor Chans}
BiasStr : String;

Total Chans : Byte;
HighByte_Loc : Byte;

LowByte Loc : Byte;
ChanName,
UnitStr : String;
EdIdx : Integer;
begin
Comm Err := False;
FlushQueue (Receive); {Clear Receive Buffer}
SendChar (XonChar) ; {SendXOn}
GetStatusInfo(Num Data_ Chans, Num Mon_Chans); {First Bytes are Num Data and Mon Chans}
Total Chans := Num_Data Chans + Num Mon_Chans;
if Total_Chans = 0
then Exit;
Sync_OK := FindSync(0); {Block Num = 0 for Analog Status Frame}
GetDataBlock; {Read Analog Status Data}
SendChar (Cntl_C); {Cntl C to Stop Data}
Delay(500); {Wait 500 mSec for Data to Stop}
FlushQueue (Receive); {Empty Receive Buffer}
if NOT(Sync OK) OR (Comm Err)
then
Exit;
for Channel := 1 to Total Chans do {for Channels 1 - Total_Chans}
begin
HighByte Loc := ((2 * Channel) - 1);
LowByte Loc := ((2 * Channel) - 2);
BiasAvg[Channel] := Data_ Block[HighByte Locl * 256

+ Data_Block[LowByte_Loc]; {mep remove $0F AND w/ upper byte}

152

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

Code Listing — Main2Form.pas

end;

for Channel := (Num _Data Chans + 1) to (Total_Chans) do {Scale Volt Mon Chans}
BiasAvg{Channel] := BiasAvg[Channel] * Cal_ Factor;

Label ChanDatal 3.Caption := ''; {Clear Channel Data 1-3}

Label VoltDatal 4.Caption := '‘; {Clear Voltage Data 1-4}

EdIdx := 0; {010618ed}

for Channel := 1 to Num Data_ Chans do {Channel Data = Chan 1 - 3}
begin
Str(Channel : 2, IdxStr); {Convert Channel to Str ##)
str(Round (BiasAvg[Channel]) : 4, BiasStr):

{010618ed added case statement to set labels}
EdIdx := EdIdx + 1;
case EdIdx of

1 ChanName := 'Rec. # ';
2 ChanName := 'Accel X';
3 : ChanName := 'Accel Y';
4 ChanName := 'Accel Z';
5 : ChanName := 'pH ';
6 ChanName := 'Cond. ';
7 ChanName := 'Temp. ';
end;
{010618ed removed 'Chan' + IdxStr + & inserted ChanName}
Label ChanDatal_ 3.Caption := Label ChanDatal_3.Caption
+ ChanName + ': ' + BiasStr + ' Counts' + CR;
end;
EdIdx := 0; {010618ed}
for Channel := 1 to Num_Mon_Chans do {Voltage Data = Mon 1 - 4}
begin
UnitStr := ' Volts';

Str(Channel : 2, IdxStr):;
Str (BiasAvg[Channel + Num Data Chans]: 5 : 2, BiasStr);

{010618ed added case statement to set labels}
EdIdx := EdIdx + 1;
case EdIdx of

1: ChanName := 'Batt Mon ';
2 ChanName := '3V Reg Mon';
3 : ChanName := '6V Reg Mon';

end;
{010618ed removed 'Mon' + IdxStr + & inserted ChanName}
Label VoltDatal 4.Caption := Label_VoltDatal_4.Caption

+ ChanName + ': ' + BiasStr + UnitStr + CR;
end;
Label VoltDatal 4.Caption := Label VoltDatal 4.Caption + CR;
{Get unit ID}
SendCommand {'w'); {Command 'w' is Who are you?}
FlushQueue (Transmit); {Clear Transmit Buffer}
FlushQueue (Receive) ; {Clear Receive Buffer}
SendCommand ('w') ;
ReadCommandEcho (CmdEcho) ;
if ('w' = CmdEcho) then
begin
SendCommand ('V') ; {Send Verification Character}

if WaitForCommData (40, 1000) then { Wait 1000ms for block}
if (ReadFile (Comm_Handle, WhoID, 40, NB_ Read, lpOverLapped)) then

begin
for EdIdx := 8 to 40 do Label_VoltDatal 4.Caption :=
Label VoltDatal 4.Caption + WhoID[EdIdx]:
end;
end
else
Label VoltDatal 4.Caption := Label VoltDatal_ 4.Caption + 'Unknown Unit';
end;

153

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

Code Listing — Main2Form.pas

procedure TForm Main.Read_SelfTest;

Const
Stat_Length = 4;
Pass = '- P';
Fail = '- F';
var
NB_Read : DWord;
Stat_Str : ArraylO0.
HW_Rev : Char;
Unit_ID : Byte;
TResultA . Byte;
TResultB : Byte;
begin

Sync_OK := False;
FlushQueue (Receive);
SendChar (XonChar) ;
if NOT(Sync_OK)
then exit;
if NOT (FindSync(2))
then exit:;

.Stat_Length] of Char:;

{Used by delay to show early exit}
{Clear Receive Buffer}

{SendXOn}

{Block Num = 2 for Self Test}

{Block_Num = 2 for Self Test}

if WaitForCommData (Stat_Length, FiveSec) {If Characters in Rec Queue - Read Info}

then
begin

if NOT (ReadFile(Comm Handle, Stat_Str, Stat_Length, NB_Read, lpOverLapped) AND
(NB_Read = Stat_Length))

then
begin

HandleCommError (true, 0, 'Self Test');
exit;
end

else
begin
HW_Rev = Stat_Str([0];
Unit ID = Ord(Stat_stri{l});
TResulta := Ord(Stat_str[2]);
TResultB := Ord(Stat_str(3]);

if (TResultA AND
then Label_ AAL.
else Label AAL.

if (TResultA AND
then Label ADL.
else Label ADL.

if (TResultA AND
then Label ACL.
else Label ACL.

if (TResultA AND
then Label AIL.
else Label AIL.

if (TResultA AND

$01) = $00

Caption := Fail
Caption := Pass;
$02) = $00

Caption = Fail
Caption := Pass;
$04) = $00

Caption := Fail
Caption := Pass;
$08) = $00

Caption := Fail
Caption := Pass;
$10) = $00

then Label RAB4.Caption 1= Fail

else Label RAB4.Caption := Pass;
if {TResultA AND $20) = $00

then Label RABS5.Caption := Fail

else Label RABS5.Caption 1= Pass;
if (TResultA AND $40) = $00

then Label RAB6.Caption := Fail

else Label RAB6.Caption := Pass;
if (TResultA AND $80) = $00

154

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

Code Listing — Main2Form.pas

then Label RAB7.Caption
else Label RAB7.Caption

if (TResultB AND $01) = $00
then Label RARW.Caption
else Label RARW.Caption

if (TResultB AND $02) = $00
then Label RD.Caption
else Label RD.Caption

if (TResultB AND $04) = $00
then Label EARW.Caption :
else Label EARW.Caption :=

if (TResultB AND $08) = $00
then Label ED.Caption =
else Label ED.Caption =

if (TResultB AND $10) = $00
then Label RBB4.Caption
else Label RBB4.Caption

if (TResultB AND $20) = $00
then Label RBB5.Caption
else Label RBB5.Caption

if (TResultB AND $40) = $00
then Label RBB6.Caption :=
else Label RBB6.Caption :=

if (TResultB AND $80) = $00
then Label RBB7.Caption
else Label RBB7.Caption
end;
end;
end;

= Fail
:= Pass;

:= Fail
:= Pass;

= Fail
:= Pass;

Fail
Pass;

Fail
Pass;

:= Fail
:= Pass;

= Fail
:= Pass;

Fail
Pass;

Fail
:= Pass;

\

procedure TForm Main.FormCreate (Sender: TObject):;

var
Idx : Integer;
IdxStr,
ChanName,
UnitStr : String;

begin
Label ChanDatal 3.Caption := '';
Label VoltDatal 4.Caption := '';

for Idx := 1 to 10 do

{Clear Channel Data 1-3}
{Clear Voltage Data 1-4}

begin
Str(Idx : 2, IdxStr):; {Convert Idx to Str ##)
UnitStr := ' Counts';
case Idx of
1 ChanName := ‘Rec. # ';
2 ChanName := 'Accel X';
3 ChanName := 'Accel Y';
4 ChanName := 'Accel Z°';
5 ChanName := '"pH '
6 ChanName := 'Cond. ';
7 ChanName := 'Temp. ';
8 : begin
ChanName := 'Batt Mon ';
UnitStr := ' Volts';
end;
9 : begin
ChanName := '3V Reg Mon';
UnitStr = ' vVolts';

end;

155

771
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

Code Listing — Main2Form.pas

10 : begin
ChanName := '6V Reg Mon';
UnitStr = ' Volts';
end;
end;
{010618ed removed 'Chan' + IdxStr + & inserted ChanName}
Label ChanDatal_3.Caption := Label ChanDatal_ 3.Caption
+ ChanName + ': xxxx ' + UnitStr + CR;
end;
SpEdPrv := SpinEdit_Read.Value; {Intitialize SpinEdit Previous Value}
Edit_OutFile.Enabled := False; {Disable OutFile Box}
Button Read.Enabled := False; {Disable Read Button}
Label RW.Visible := False; {Hide Read/Write Label}
ProgressBar RW.Visible := False; {Hide Read/Write Progress Bar}
OutFilevalid := False; {OutFile Not Yet Specified}
Cmd_Char = 'S'; {Set Cmd Char to 'I'nitialize}
RadioButton_S.Checked := True;
Label Reply.Caption := 'No Reply'; {Initialize Reply Label}

BaudRate := 19200;
OpenCommPort ('COM1') ;
SetCommMODE (BaudRate, 'N',8,1);

GetCommStatus;

FlushQueue (Receive) ; {010618ed added Empty Receive Buffer}

Group_PortStatus.Caption := 'COM' + IntToStr (CommStat.PortID);

Label_Status.Caption := 'BaudRate : ' + IntToStr (CommStat.BaudRate) + ' T4
'Parity : ' + (CommStat.Parity) + ! '+
'ByteSize : ' + IntToStr(CommStat.ByteSize) + ' '+
'StopBits : ' + IntToStr(CommStat.StopBits);

end;

procedure TForm Main.Button XOutClick(Sender: TObject):

var
Idx : Integer;
IdxStr : String;
UnitStr : String:;

begin
Label ChanDatal_3.Caption := ''; {Clear Channel Data 1-3}
Label_VoltData1_4.Caption H {Clear Voltage Data 1-4}
for Idx := 1 to 3 do {Channel Data = Chan 1 - 3}
begin
Str(Idx : 2, IdxStr); {Convert Idx to Str ##)
Label ChanDatal_ 3.Caption := Label ChanDatal 3.Caption +
'Chan ' + IdxStr + ': xxxx Counts' + CR;
end;
for Idx := 1 to 4 do {Voltage Data = Mon 1 - 4}
begin
if Idx < 4
then UnitStr := ' Volts'
else UnitStr := ' °C';
Str(Idx : 2, IdxStr): {Convert Idx to Str ##}
Label VoltDatal_4.Caption := Label VoltDatal 4.Caption +
‘Mon ' + IdxStr + ': xx.xx' + UnitStr + CR;
end;
Label AAL.Caption := '- X';
Label ADL.Caption = '- X';
Label ACL.Caption := '- X';
Label AIL.Caption := '- X';
Label RAB4.Caption := '- X';
Label RABS5.Caption := '- X';
Label RAB6.Caption := '- X';
Label RAB7.Caption := '- X';
Label RARW.Caption := '- X';
Label RD.Caption = '- X'
Label EARW.Caption := '- X';
Label ED.Caption = - X'

156

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

Code Listing — Main2Form.pas

Label RBB4.Caption := '- X';
Label RBB5.Caption := '—- X';
Label RBB6.Caption := '~ X';
Label RBB7.Caption := '- X';

end;

procedure TForm_Main.RadioButton_CommandClick(Sender: TObject) ;

begin
GainGroup.Visible := False;
Group_Readout.Visible := False;
if RadioButton_A.Checked
then Cmd Char := 'A'; {Arm Package ~ RAM Only}
if RadioButton_ B.Checked
then Cmd Char := 'B'; {010607ed added baud command}
if RadioButton_C.Checked
then Cmd Char := 'C'; {Cycle Package}
if RadioButton_ P.Checked
then Cmd Char := ‘'E'; {Erase Memory 0106lled changed to erase memory}
if RadioButton_I.Checked
then Cmd Char := 'I1'; {Initialize}
if RadioButton_R.Checked
then
begin
Cmd_Char := 'R'; {Read Data from RAM}
Group_Readout.Visible := True;
end;
if RadioButton_S.Checked
then Cmd Char := 'S'; {Status Requested}
if RadioButton_T.Checked
then Cmd _Char := 'T'; {Self Test}
end;

procedure TForm Main.ButtonlClick(Sender: TObject);
begin

ListHexIn.Clear;

end;

procedure TForm Main.DebugDisplayOnClick(Sender: TObject);
begin

DebugOn := DebugDisplayOn.Checked;

end;

end.

157

Lo~ bhwio—

Code Listing — About.pas

unit About:;
interface

uses WinTypes, WinProcs, Classes, Graphics, Forms,
Buttons, ExtCtrls;

type
TaboutBox = class(TForm)
Panel Main : TPanel;
OKButton : TBitBtn;

ProgramIcon : TImage;
ProgramName : TLabel;

Version : TLabel;
Date : TLabel;
Copyright : TLabel;
Comments : TLabel;
private
{ Private declarations }
public
{ Public declarations }
end;
var

AboutBox: TAboutBox;
implementation
{$R *.DFM}

end.

158 |

Controls,

stdCtrls,

O~ NN —

10

unit CommUtil;

Code Listing — ComUtil.pas

{*****************************‘)r**}

{*** CommUtil.PAS
{*** Delphi 2.0 Communications Utility

Init.
{DJB)

Date
12/15/96

Ver. *Hx}

1.00

***}

(**}

{*** (010531led changed from 256 to 80

***)

interface
uses Dialogs, Windows, SysUtils, MainUtil;
type
QueueType = (Transmit, Receive): {Comm Port Queues}
PString = Array[0..80] of Char; {Strings for PChar}
CommStatRec = Record
PortID Byte; {Comm Port Number}
BaudRate LongInt; {BuadRate}
Parity String; {None, 0Odd, Even, Mark, Space}
ByteSize Byte; {Bits Per Char 4-8}
StopBits : Byte; {No. of Stop Bits 1,2}
end; {End of Record}
const
InQueueSize = 16384; {16K Input Buffer)}
OutQueueSize = 16384; {16K Output Buffer}
XonLim = 2048; {COMM DCB Values}
Xofflim = 2048; {COMM DCB Values}
AckChar = Chr($06);
XonChar = Chr($11) {COMM DCB Values}
XoffChar = Chr($13); {CoMM_DCB Values}
NakChar = Chr($15);
ErrorChar = Chr($00); {COMM_DCB Values}
EofChar = Chr{$00); {COMM _DCB Values}
EvtChar = Chr(500); {COMM_DCB Values}
ASCII_O = Chr{$30); {ASCII 0 = 30H}
Cntl C = Chr({503); {Control C = 03H}
CR = Chr ($0D): {Carriage Return Character = ODH}
LF = Chr($0Aa); {Line Feed Character = OAH}
SyncBytel = Chr($EB); {First Sync Byte = EBH}
SyncByte2 = Chr($90); {Second Sync Byte = 90H}
FiveSec = 5000; {Five Seconds = 5000 MilliSec}
ECHO_GOOD = 'vV'; {Echo Verification Character}
Block Length = 560; {010531ed changed from 256 to 80 now to 560

010618ed} {Data

Block Transfer Length}

var
Comm_Handle THandle;
CommStat CommStatRec;
DCommStat TComStat;
Comm Err Boolean;
Sync_OK Boolean;
{ Data_Block Array([0..Block_Length - 1] of Byte; {Byte Array for Data Storage}
Data_Block : Array[0..Block_Length + 5] of Byte; {added space for sync, block#, data, and
Cksm}
Cmd_Char Char;
Cmd_Echo Char;
BaudRate DWord;
lpOverlapped POverlapped;
lpSec_Attr PSecurityAttributes;
function WaitForCommData (NumBytes : Word; WaitTime LongInt): Boolean;
function FindSync(Block Cnt: WORD) Boolean;
procedure DisplayDebug(Sent Boolean; NumChars Integer; DebugStr Array of char):
procedure DisplayDebug2 (Sent Boolean; NumChars Integer; DebugStr Array of byte):
procedure HandleCommError (Clear Boolean; Errors DWord; Msg_Str: String);
procedure OpenCommPort(Com ID: PString):
procedure CloseCommPort;
procedure SetCommMode (BaudRate: DWord; Parity: Char; ByteSize: Byte; StopBits: Byte):
procedure GetCommStatus;

159

Code Listing — ComUtil.pas

procedure SyncError{(Msg Str String):;

procedure FlushQueue (TR Queue: QueueType);

procedure SendChar (Chr: Char); {Send Single Character to Port}

procedure SendCommand(Cmd: Char); {Embed Char in Command String & Send to Port}
procedure ReadCommandEcho(var CmdEcho: Char); {Read Echoed Char From Comm Port}
procedure SendVerifyCommand(var CmdChar, CmdEcho Char);

procedure GetQueueStatus; {Loads DCommStat.cbInQue & DCommStat.cbOutQue}
procedure GetDataBlock;

procedure GetStatusInfo(var Num Data Chans, Num Mon_ Chans Byte);

{<f>}

implementation

uses Main2Form;

{***** Local Error Handling Procedures

procedure

begin

MessageDlg('A FATAL Error has occurred while '’

FatalError (Err_Str: String);

'Program will be Aborted!', mtError, [mbOK],0);

Halt;
end;
{ __
procedure HandleCommError (Clear Boolean; Errors DWord; Msg_Str
var

ErrorFlags DWord;

Stats PComStat;
begin
Comm Err := True;
if (Clear) then

begin

if NOT ClearCommError (Comm Handle, ErrorFlags,

Stats) then

FatalError('attempting to clear a comm error.');

Exit;
end
else

ErrorFlags := Errors;

if (ErrorFlags <> 0)

begin

then

+ Err_Str + CR + CR +

if (ErrorFlags
then Msg_Str
if (ErrorFlags
then Msg_Str
if (ErrorFlags
then Msg_Str
if (ErrorFlags
then Msg_Str
if (ErrorFlags
then Msg_Str
if (ErrorFlags
then Msg Str
if (ErrorFlags
then Msg Str
if (ErrorFlags
then Msg_Str
if (ErxrorFlags
then Msg Str
if (ErrorFlags
then Msg Str
if (ErrorFlags
then Msg_Str
if (Msg_Str <>

MessageDlg ('

160

AND CE_RXOVER) = CE_RXOVER

:= Msg_Str + 'Receive queue overflow.';
AND CE_OVERRUN) = CE_OVERRUN

:= Msg Str + 'Receive overrun.';

AND CE RXPARITY) = CE_RXPARITY

:= Msg_Str + 'Receive parity error.';

AND CE_FRAME) = CE_FRAME

:= Msg_Str + 'Receive framing error.';
AND CE_BREAK) = CE_BREAK

:= Msg_Str + 'Break detected.';

AND CE TXFULL) = CE_TXFULL

:= Msg_Str + 'Transmission queue overflow.';
AND CE_PTO) = CE_PTO

:= Msg_Str + 'LPTx Timeout.';

AND CE_IOE) = CE_IOE

:= Msg Str + 'LPTx I/O Error.';

AND CE_DNS) = CE_DNS

:= Msg Str + 'LPTx Device not selected.';
AND CE_OOP) = CE_OOP

1= Msg_Str + 'LPTx Out-Of-Paper.’;

AND CE_MODE) = CE_MODE

:= Msg Str + 'Requested mode unsupported.';
') then

COM Device Error.' + CR + CR + Msg_Str, mtError, [mbOK],0);

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Code Listing — ComUtil.pas

Form Main.ListHexIn.Items.Add(Msg_Str);

end;
end;

procedure TimeOutError (Msg Str : String):

begin

Comm_FErr := True;

{MessageDlg('A read timeout has occurred while waiting for a ' + Msg str +
'.', mtWarning, [mbOK], 0);

}

Msg Str := 'Read timeout waiting for a ' + Msg str + '.' ;
Form Main.ListHexIn.Items.Add(Msg_Str);
end;

procedure SyncError (Msg Str : String);

begin
{MessageDlg('Sync Error :' + CR + CR + Msg_Str, mtError, [mbOK], 0):
}
Msg Str := 'Sync Error :' + CR + CR + Msg_Str;
Form Main.ListHexIn.Items.Add(Msg_Str);
end;

procedure OpenCommPort (Com_ID: PString);
{valid ID's = ‘'CcoMl', 'COM2',6 'COM3',6 'COM4'}
var
PCom_ID : PChar;

begin
PCom ID := @Com_ID; {Set Pointer @ Com ID String}
Comm_Handle := CreateFile(PCom_ID, {Get Handle for Specified Port}
GENERIC READ OR GENERIC_WRITE, {Access (read-write) mode}
0, {Prevents port from being shared}
lpSec Attr, {Pointer to Security Attributes}
OPEN_EXISTING, {How to Create}
FILE_ATTRIBUTE NORMAL, {File Attributes Normal}
0): {Fails if Not Zero}

if (Comm Handle = INVALID HANDLE_VALUE)
then FatalError('opening ' + Com ID + '.'");
if NOT (SetupComm(Comm Handle, InQueueSize, OutQueueSize))
then FatalError('initializing ' + Com ID);
CommStat.PortID := StrTolInt(Com_ ID[3]);

{1lpOverlapped 1= @NULL; } {Set lpOverlapped Variable}
lpOverlapped := NIL; {Set 1lpOverlapped Variable}
end;

procedure CloseCommPort;

begin
if NOT (CloseHandle (Comm_Handle))
then MessageDlg('Error Closing Communications Port COM' +
IntToStr (CommStat.PortID) + '.', mtError, [mbOK], 0);
end;

procedure SetCommMode (BaudRate: DWord; Parity: Char; ByteSize: Byte; StopBits: Byte);

{Flag Definition (*) = Flag is Set COMM_DCB.Flags = $3011 is the Default}

{* fBinary = $00000001 {Must Be Set to True}

{ fParity $00000002 {If Set Parity Checking is Performed}
{

{

foutxCtsFlow $00000004 {If Set CTS is Monitored for Flow Control}
fOutxDsrFlow = $00000008 {If Set DSR is Monitored for Flow Control}

$00000000 {Disables DTR Line when Device is Opened}

{* IDtrControl Dis

161

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Code Listing — ComUtil.pas

{ fDtrControl Ena = $00000010 {Enables DTR Line when Device is Opened}

{ fDtrControl Hsk = $00000020 {Enables DTR Handshaking}

{ fDsrSensitivity = $00000040 {If Set Data is Ignored until DSR Line High)}
{ fTXContinueOnXOff = $00000080 (If Set TX Continues After Sending Xoff}

{ foutx = $00000100 {If Set Xon/Xoff controls affect TX}

{* fInX = 300000200 {If Set Xon/Xoff controls sent during RX}

{ fErrorChar = $00000400 {If Set and fParity Error Bytes are Replaced}

{ £Null = $00000800 {If Set NULL Bytes are Discarded}

]

$00000000 {Disables RTS Line when Device is Opened}
$00001000 {Enables RTS Line when Device is Opened}

fRtsControl_ Dis
fRtsContrel _Ena

"

et e

fRtsControl Hsk = $00002000 {Enables RTS Handshaking}
fRtsControl_Tog = $00003000 {RTS High when Byte in TX buff, Low when empty}
fAbortOnError = $00004000 (If Set Rx/Tx Terminated on Error}
{ fDummy2 = SFFFF8000; {Reserved DO NOT USE}
var
Comm_DCB : TDCB;
begin
if NOT (GetCommState (Comm Handle, COMM DCB)) {Get Comm Port Parameters}
then FatalError{'retrieving the current port configuration.');
COMM_DCB.BaudRate := BaudRate; {Modify Desired Fields}
Case Parity of
'N', 'n' COMM_DCB.Parity = NOPARITY;
'Oo','o" : COMM_DCB.Parity := ODDPARITY;
'E','e' : COMM_DCB.Parity = EVENPARITY;
‘M','m' : COMM DCB.Parity = MARKPARITY;
'S','s' : COMM DCB.Parity = SPACEPARITY;
else
begin
Parity := 'N’;
COMM DCB.Parity := NOPARITY;
end;
end; {Case}
COMM DCB.ByteSize 1= ByteSize;
Case StopBits of
1 : COMM_DCB.StopBits := ONESTOPBIT;
2 : COMM DCB.StopBits = TWOSTOPBITS;
else
COMM_DCB.StopBitS 1= ONESTOPBIT;
end; {Case)
if (Parity = 'N') OR (Parity = 'n'")
then COMM DCB.Flags := 50201 {Parity Checking is Not Performed}
else COMM DCB.Flags := $0203; {Parity Checking is Performed}
COMM_DCB.XonLim := XonLim;
COMM_DCB.XoffLim := XoffLim;
COMM_DCB.XonChar := XonChar;
COMM DCB.XoffChar := XoffChar;
COMM_DCB.ErrorChar := ErrorChar;
COMM_DCB.EofChar := EofChar;
COMM_DCB.EvtChar := EvtChar;
if NOT(SetCommState (Comm Handle, COMM DCB)) {Set Comm Port to New Parameters}
then FatalError('setting port configuration.');
end;

procedure GetCommStatus;

var
Comm_DCB : TDCB;
p_TDCB : PDCB;

begin

if NOT(GetCommState (Comm Handle, COMM DCB)) {Get Comm Port Parameters}

then FatalError('trying to retrieve the current port configuration.');
p_TDCB := @COMM_DCB;
CommStat.BaudRate := p_ TDCB.BaudRate;
Case p TDCB.Parity of

162

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Code Listing — ComUtil.pas

NOPARITY : CommStat.Parity := 'None';
ODDPARITY : CommStat.Parity := '0dd';

EVENPARITY : CommStat.Parity := 'Even';
MARKPARITY : CommStat.Parity := 'Mark';

i

SPACEPARITY : CommStat.Parity :
end; {Case}
CommStat.ByteSize := p_TDCB.ByteSize;
Case p TDCB.StopBits of
ONESTOPBIT : CommStat.StopBits
TWOSTOPBITS : CommStat.StopBits
end; {Case}
end;

'Space';

1;
2;

It

procedure FlushQueue (TR _Queue: QueueType);

begin
Case TR _Queue of
Transmit : if NOT (PurgeComm(Comm Handle, PURGE_TXCLEAR))
then HandleCommError (true, 0, 'Purge Queue Transmit');
Receive : if NOT (PurgeComm(Comm Handle, PURGE_RXCLEAR))
then HandleCommError (true, 0, 'Purge Queue Receive');
end; {Case}
end;

function WaitForCommData (NumBytes : Word; WaitTime : LongInt): Boolean;

var
Entry Time,
Loop_ Time : LongInt;
begin
Entry Time 1= GetTickCount; {Get Loop Entry Time}
Repeat
GetQueueStatus;
Loop_Time := GetTickCount - Entry Time;

Until (DCommStat.cbInQue >= NumBytes) OR (Loop Time > WaitTime);
if (DCommStat.cbInQue >= NumBytes)

then WaitForCommData True

else WaitForCommData := False;
end;

]

procedure SendChar (Chr: Char); {Send Single Character to Port}

const
Chr_Length = 1;

var
Chr_Str : Array[0..Chr_Length] of Char;
NB Written : DWord;

begin

Chr Str(0] := Chr;

Chr_Str[1] := #0;

if NOT (WriteFile(Comm Handle, Chr Str, Chr_Length, NB_Written, lpOverLapped) AND

(NB_Written = Chr_Length))
then HandleCommError (true, 0, 'Character sent to port'):
DisplayDebug(true, NB Written, Chr_ Str):;
end;

procedure SendCommand(Cmd: Char); {Embed Char in Command String & Send to Port}

const

Cmd Length = 4; {Command String consist of 4 Bytes}
var

Cmd_Str : Array(0..Cmd Length] of Char;

NB_Written : DWord;

163

Code Listing — ComUtil.pas

356 begin

357 Cmd_Str[0] = ASCII 0;

358 Cmd_Str([1} = Cmd;

359 Cmd_Str(2] = CR;

360 cmd_Str([3] = LF;

361 cmd_Str{4] := #0;

362 if NOT (WriteFile(Comm Handle, Cmd Str, Cmd Length, NB Written, lpOverLapped) AND
363 (NB Written = Cmd_Length))

364 then HandleCommError (true, 0, 'Command sent to port');

365 DisplayDebug(true, NB Written, Cmd_Str);

366 end;

367

368 e et }

369 procedure ReadCommandEcho(var CmdEcho: Char); {Read Echoed Char From Comm Port}
370
371 const

372 Echo_Length = 4; {Echo S$String consist of 4 Bytes)

373 HalfSec = 500; {500 Milliseconds}

374 var

375 Echo Str : Arrayl[0..Echo_Length] of Char;

376 NB_Read : DWord;

377

378 begin

379 CmdEcho := '?'; (Error Flag}

380 if WaitForCommData (Echo_Length, HalfSec) then {(If Characters in Rec Queue - Read Echo}
381 begin

382 if NOT (ReadFile(Comm Handle, Echo_Str, Echo_Length, NB_Read, lpOverLapped)
383 AND (NB_Read = Echo Length)) then

384 begin

385 HandleCommError (true, 0, 'Command Echo');

386 Exit;

387 end;

388 DisplayDebug(false, NB_Read, Echo_Str):;

389 if (Echo_str[0] = ASCII_O) then

390 CmdEcho := Echo_Str[l]

391 else

392 MessageDlg{'Command echo format is incorrect.', mtError, [mbOK], 0);
393 end

394 else

395 TimeOutError ('Command Echo');

396 end;

397

398 L }

399 procedure DisplayDebug(Sent : Boolean; NumChars : Integer; DebugStr : Array of char):
400

401 var

402 Index : Integer;

403 DisplayStr : String;

404

405 begin

406 if DebugOn then

407 begin

408 if (Sent) then

409 DisplayStr := 'Sent '

410 else

411 DisplayStr := ' ';

412 for Index := 0 to NumChars - 1 do

413 begin

414 DisplayStr := DisplayStr + IntToHex (Ord(DebugStr[Index]), 2) + ' ';
415 if (({Index + 1) MOD 20) = 0) then

416 begin

417 Form _Main.ListHexIn.Items.Add({DisplayStr);
418 DisplayStr := ' ';

419 end;

420 end;

421 if (DisplayStr <> ' ') then

422 Form Main.ListHexIn.Items.Add(DisplayStr);

423 end; B

424 end;

425

426 [m e e)

164

Code Listing — ComUtil.pas

427 procedure DisplayDebug2(Sent : Boolean; NumChars : Integer; DebugStr : Array of byte};
428

429 var

430 Index : Integer:;

431 DisplayStr : String;

432

433 begin

434 if DebugOn then

435 begin

436 if (Sent) then

437 DisplayStr := 'Sent '

438 else

439 DisplayStr := ' ';

440 for Index := 0 to NumChars - 1 do

441 begin

442 DisplayStr := DisplayStr + IntToHex(Ord(DebugStr{Indexl), 2) + ' ';
443 if (((Index + 1) MOD 20) = 0) then

444 begin

445 Form_Main.ListHexIn.Items.Add(DisplayStr);

446 DisplayStr := ' ';

447 end;

448 end;

449 if (DisplayStr <> ' ') then

450 Form Main.ListHexIn.Items.Add(DisplayStr);

451 end;

452 end;

453

454 o m e }
455 procedure SendVerifyCommand(var CmdChar, CmdEcho : Char);

456

457 var

458 Bit Bucket : Char;

459

460 begin

461 FlushQueue (Transmit) ; {Clear Transmit Buffer)

462 FlushQueue (Receive); {Clear Receive Buffer}

463 SendCommand {CmdChax) ;

464 ReadCommandEcho (CmdEcho) ;

465 if (CmdChar <> CmdEcho) then

466 begin

467 MessageDlg ('COMMAND Echo Error.' + CR + CR +

468 ‘Command CANCELLED!', mtWarning, [mbOK], 0);

469 Exit;

470 end;

471 SendCommand (ECHO_GOOD) ; {Send Verification Character}
472 ReadCommandEcho (Bit Bucket); {Verify Echo sent to bit bucket}
473 end; -

474

475 e }

476 procedure GetQueueStatus; {Loads DCommStat.cbInQue & DCommStat .cbOutQue}
477

478 var

479 Errors : DWord;

480 Status : PComStat;

481

482 begin

483 Status := @DCommStat;

484 if NOT (ClearCommError (Comm Handle, Errors, Status))

485 then B

486 FatalError ('getting gueue status.');

487 if Errors <> 0

488 then

489 HandleCommError (false, Errors, 'Get Queue Status ');

490 end;

491

492 o e }
493 function FindSync(Block_Cnt: WORD) : Boolean;

494 {Sync [$EB] [$90] [Blk Cnt_Hi] [Blk_Cnt_Lol}
495 const -7

zgg Sync_Length = 4; {Sync String consist of 4 Bytes}

165

Code Listing - ComUtil.pas

498 var

499 Sync_Str : Array[0..Sync Length] of Char;

500 NB_Read : DWord;

501 Read_Cnt : Word;

502 { Index : Integer;

503 DisplayStr : String;

504 }

505 begin

506 FindSync := False;

507

ggg {If Characters in Rec Queue - Read Sync}

510 if WaitForCommData (Sync_Length, FiveSec) then

511 begin

512 if NOT (ReadFile(Comm Handle, Sync_Str, Sync_Length, NB Read, lpOverLapped) AND
513 (NB_Read = Sync Length)) then

514 begin

515 CloseFile (OutFileB); {Close Binary Output File}
516 HandleCommError(true, 0, 'Find Sync');

517 Exit;

518 end;

519

520 DisplayDebug{false, NB Read, Sync Str}:

521

522

523 if (Sync_Str[0] <> SyncBytel) OR (Sync_Str[l] <> SyncByte2) then
524 begin

525 {= SyncError ('Incorrect Sync Characters [$EB90] Not Found.');}
526 if DebugOn then Form Main.ListHexIn.Items.Add('Sync Error, Wrong sync characters');
527 FindSync := False;

528 Exit;

529 end;

530 Read Cnt := (Ord(Sync Str[3]) * 256) + Ord(Sync_Str[2]):

531 if DebugOn then Form Main.ListHexIn.Items.Add('SensorBall sending block ' +
532 IntToStr(Read_Cnt));

533 if Read_Cnt = Block Cnt then

534 FindSync := True

535 else

536 begin

537 SyncError ('Incorrect Block Count.' + CR +

538 'Block Number = ' + IntToStr(Block_Cnt) + CR +

539 'Block ID = ' + IntToStr(Read_Cnt));

540 Exit;

541 end

542 end

543 else

544 TimeOutError ('Sync Code'):

545 end;

546

547 [= e o }
548 procedure GetDataBlock;

549

550 var

551 NB_Read : DWord;

552

553 begin
554 if WaitForCommData(Block Length, FiveSec) then {If Characters in Rec Queue - Read Block}

555 begin

556 if NOT (ReadFile(Comm Handle, Data Block, Block Length, NB_Read, lpOverLapped)
557 AND (NB_Read = Block_Length)) then B B

558 begin B

559 CloseFile(OutFileB); {Close Binary Output File}
560 HandleCommError (true, 0, 'Get Data Block'):

561 Exit;

562 end;

563 DisplayDebug2 (false, 20, Data Block); {Just list first 20 bytes in debug mode}
564 end -

565 else

566 begin

567 TimeOutError ('Data Block');

568 Exit;

166

Code Listing — ComUltil.pas

569 end

570 end;

571

572 [m o e }
573 procedure GetStatusInfo(var Num Data_Chans, Num Mon Chans : Byte);
574

575 const

576 Stat_Length = 2; {Status String consist of 2 Bytes}
577

578 var

579 NB_Read : DWord;

580 Stat_Str : Array(0..Stat Length] of Char;

581

582 begin

583 Num Data Chans := 0;

584 Num_Mon_Chans := 0;

585

586 {If Characters in Rec Queue - Read Info}

587 if WaitForCommData(Stat Length, FiveSec) then

588 begin

589 if NOT (ReadFile (Comm_Handle, Stat_Str, Stat_Length, NB_Read, 1lpOverLapped) AND
590 (NB_Read = Stat_Length)) then

591 begin

592 HandleCommError (true, 0, ‘'Get Status Info');

593 Exit;

594 end

595 else

596 begin

597 DisplayDebug (false, NB_Read, Stat_Str);

598 MNum_Data Chans := Ord(Stat_str[0]);

599 Num_Mon_Chans := Ord(Stat:Str[l]);

600 if Num Data_Chans > 16 then {Max Data Channels = 16}
601 Num_Data_Chans := 16;

602 if Num Mon_Chans > 8 then {Max Mon Channels = 8}
603 Num_Mon Chans := 9;

604 end;

605 end

606 else

607 begin

608 TimeOutError ('Status Information');

609 Exit;

610 end

611 end;

612

167

N=X-LEN Ro WU RSN VR RS Fon

Code Listing — MainUtil.pas

unit MainUtil;

(******ﬁ(***)

{(*** <t> MainUtil.PAS - WinLook Main Utilities Unit Delphi V2.00 ***}
{*** ***)
{*** <t> 1.00 03-28-96 Original Version (DJB) **%*}

{**k***)

interface { Public Declarations }
Uses Dialogs, SysUtils, WinProcs;
type Float = Real;

{*** Global Constants ***}

const
CR = Chr($0D); {Carriage Return}
LF = Chr($0A); {Line Feed}
MaxDataChans = 32; {Maximum Data Channels Allowed}
MaxMuxChans = 32; {Maximum Multiplexer Channels Allowed}
MaxSubChans = 4; {Maximum SubComm Channels Allowed}
MaxMuxChansPerDataChan = 16; {Maximum Multiplexer Chans/Data Channel}
MaxSubChansPerDataChan = 2; {Maximum SubComm Chans/Data Channel}
BreakChar : set of CHAR = [' ', ', ', "', "', '/, =" ,#091;
ScaleSet : set of CHAR = ['C','¢c','G','g','U','u','V','v'];
SizeOQfData : set of CHAR = ['B','b','W','w']; {B - Byte, W - Word}
{<E>}

{*** Global Types ***}

type
BYTERECORD = arrayl[0..MaxMuxChans-11 of BYTE;
CHARSET = set of CHAR;

{<£>}

{*** Global Variables ***}

var
OQutFileB : File; {Binary Output File}
OutFileName ¢ String; {Output File Path and Name}
FileExt : String:; {File Extention}
ByteRec : ByteRecord;
SSR : LongInt; {Speed Shift Record}
Err Code : Integer; {Error Code Return Variable}
KB_Req : Word; {K-Bytes Required for File}
ChanNum : Integer; {Channel Number to Process}
Data_Current : Boolean; {Read DataRecord is Current}
Byte Record : Array[0..8388608] of Byte; {8meg - Byte Record}

{<f>}

{***** procedure Specifications ***x*}

procedure InitializeGlobals; {Initialize Global Varaibles}

procedure Strip{var Str : String; var StrLen: INTEGER; Break : CHARSET);
procedure Parse(var Str, Aword : String; Break : CHARSET):;

procedure GetUnitStr(var Str, UnString : String; Break: CHARSET);

procedure GetNumStr (var Str, NumString : String; Break: CHARSET);

procedure Delay(mSec : LONGINT); {Delay Procedure Resolution limited to 55 mSec}

{***** File Utilities ****x}

function GetFileDT(FileName : String) : TDATETIME;

procedure SetFileDT(FileName : String ; FileDT : TDateTime);

function OpenOutFile(var OutFile : FILE; OutFileName : String;
RecSize: WORD ; KB Required : WORD) : INTEGER;

{(<£>) -

implementation

procedure InitializeGlobals:
begin

Data_Current := False;
SSR = 0

168

Code Listing — MainUtil.pas

Err Code := 0;
KB Req = 0;
ChanNum = 0;
end;
{<£>}

{***** String Routines *****}

{***x*x* Remove Leading Break Characters from String *****}

procedure Strip(var Str : String; var StrLen: INTEGER; Break : CHARSET);

var
Idx : Integer;

begin

StrLen := Length(Str):

if StrLen > 0 then
begin
Idx := 0;
while (Str[Idx+1l] in Break) and (Idx < StrLen) do

Idx := Idx + 1:

Delete (Str,1,Idx);
StrLen:= StrLen-Idx
end;

end;

{***** Parse a Word from a String *****}
procedure Parse(var Str, Aword : String; Break : CHARSET) ;

var

Strlen,

Idx : Integer;
begin
Aword:= '';

Strip (Str,StrLen,Break);

if Strlen = 0
then Exit;

Idx:= 0;

while not (Str({Idx+1] in Break) and (Idx < StrLen) do
Idx:= Idx+1;

Aword:= Copy(Str,1,Idx);

Delete (Str,1,Idx);

Strip (Str,StrLen,Break)

end;

{***** Get Unit Character from String *****}
procedure GetUnitStr(var Str, UnString : String; Break: CHARSET);

const

UnitSet : Set of Char = ['a'..‘'z','A'..'2');
begin
UnString:= ' ';

while (Length(Str)>0) and not (UnString[l] in UnitSet) do
Parse (Str,UnString,Break)
end;

{***** Get Next Number String from String *****}
procedure GetNumStr (var Str, NumString : String; Break: CHARSET);

const

NumSet : Set of Char = ['-','.','0'..'9'];
begin
NumString:= ' ';

while (Length(Str)>0) and not (NumStringl[l] in NumSet) do
Parse (Str,NumString,Break)
end;

(*** STRING ENDS ***)

169

Code Listing — MainUtil.pas

143

144 (<>}

145 procedure Delay(mSec : LONGINT); {Delay Procedure Resolution limited to 55 mSec}
146

147 var

148 EntryTime,

149 NowTime : LongInt;

150

151 begin

152 EntryTime := GetTickCount; {Number of milliSeconds Windows Running}
153 Repeat

154 NowTime := GetTickCount;

155 until (NowTime - EntryTime) > mSec;

156 end;

157

158 {<E>}

159 {¥**** File Utilities **x*¥)

160 function GetFileDT(FileName : String) : TDATETIME;

161

162 var

163 DOS_FileDT : LongInt; {DOS - Date/Time Format}
164 DateTime : TDateTime; {Delphi - Date/Time Format}
165

166 begin
167 DOS_FileDT

it

FileAge (FileName);

168 DateTime := FileDateToDateTime (DOS_FileDT);

169 GetFileDT := DateTime;

170 end;

171

172 procedure SetFileDT(FileName : String ; FileDT : TDateTime);
173

174 var

175 File Handle : Integer; {Windows File Handle}

%;g DOS_FileDT : LongInt; {DOs - Date/Time Format}

178 begin
179 DOS_FileDT
180 File Handle

DateTimeToFileDate (FileDT);
FileOpen (FileName, Of Share_Compat);

n

181 FileSetDate (File Handle, DOS_FileDT);

182 FileClose(File_ Handle):

183 end;

184

185 {<f>}

186 function OpenOutFile(var OutFile : FILE; OutFileName : String;
187 RecSize: WORD ; KB_Required : WORD) : INTEGER;
188

189 var FilePath : String;

190 DrivelLetter : Char:

191 BytesAvail,

192 BytesRequired : Inté64;

193

194 begin
195 FilePath

ExtractFilePath (ExpandFileName (OutFileName)) ;
196 DriveLetter UpCase (FilePath(1]):

197 BytesAvail DiskFree (Ord (DriveLetter) - $40);

198 BytesRequired := KB _Required * 1024;

199 if BytesRequired > BytesAvail

200 then

201 begin

202 MessageDlg('Insufficient disk space on drive : ' + Driveletter + '.',
203 mtWarning, [mbOK], 0);

204 OpenOutFile := -1 {Return Error Code}
205 end

206 else

207 begin

208 AssignFile{OutFile, OutFileName);

209 Rewrite (QutFile, RecSize):

210 OpenOutFile := 0; {No Error}

211 end;

212 end;

213

170

214
215
216
217
218
219
220
221
222

223

Code Listing — MainUtil.pas

(*** FILE ENDS ***)

begin
end.

; Routines to interpret and execute commands sent to the P&G Sensor Ball

171

Distribution

(10 Copies) T. Michael Rothgeb

The Procter & Gamble Company
5299 Spring Grove Avenue
Cincinnati, OH 45217

(5 Copies)

(2 Copies)

MS0487
MS0986
MS0986
MS0790
MS0986
MS0986
MS0986
MS0986
MS0986
MS0986
MS0986
MS0986
MS0986
MS0986
MS0986
MS0529
MS1380
MS1425
MS9951
MS9951
MS9018
MS0899
MS0612

MS1380
MS0161

Tedd A. Rohwer, 2121

Randal R. Lockhart, 2665
Michael E. Partridge, 2665
Dennis J. Wilder, 5851

David L. Faucett, 2665

John F. Heise II, 2665

Edward Henry, 2665

Felipe V. Reyes, 2665

Antonio Mittas, 2665

Vincent P. Salazar, 2660
Lorraine S. Baca, 2661

Larry J. Dalton, 2662

Robert J Longoria,

Ronald J. Franco, 2664

Jay B. Vinson, 2666

Bruce C. Walker, 2600

Victor Weiss, 1323

Carol 1. Ashby, 1744

Andrew W. Walker, 8130

A. William Flounders, 8130
Central Technical Files, 8945-1
Technical Library, 9616
Review & Approval Desk, 9612 for
DOE/OSTI

CRADA Administration, 1323
Patent and Licensing Office, 11500

173

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Project Formation
	Measurement Transducers and Circuitry
	Conductivity Probe
	Accelerometers
	Temperature Transducer

	Acceptance Testing
	Testing During Assembly
	Functionality and Calibration Tests
	P&G Laboratory and Field Tests

	Appendix A: P&G Background and Initial Proposal
	Appendix B: Requirements Document
	Appendix C: PC Interface Software Guide
	Appendix D: Sensor Ball Test Procedure
	Appendix E: Schematics
	Appendix F: Assembly Drawings and Electronics Materials Lists
	Controller Board Bill of Materials
	Signal Conditioner Board Bill of Materials
	Microcontroller Programming Steps

	Appendix G: Circuit Board Connector Pin Definitions
	Appendix I: Mechanical Components
	Appendix J Mechanical Assembly Procedure

