
'.',. .. . , ,
. ,,'' , ..
.. .

SANDIA'R'E'pQRT
SAND2002-0770

Printed April 2002

a Lockheed
Energy und,

F o 87185 and Livermore, Cal

am laboratory o p e r a t d y Sa

itract DE-AC04-94ALBI
Company, for the U

closure of invention relating to the subject of this publlcation has
filed with the U.S. Department of Energy.

>., .,:

@ Sandia National laboratories

Unlimited Release

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report WBS prepared BS an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not

by the United States Government, any agency thereof, or any of their
necessarily constitute or imply its endorsement, recommendation, or favoring

contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

Printed April 2002

SAND2002-0770

Development of an In-Situ Monitoring /
Recording Device for Aqueous Processes

Michael E. Partridge, Tedd A. Rohwer, and Randal R. Lockhart
Telemetry and Instrumentation Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-0986

Abstract
The In-Situ Monitoring and Recording Device for Aqueous Processes was developed under a Cooperative Research

recorder that measures and records temperature, pH, conductivity, and three-axis acceleration. Intended to
and Development Agreement (CRADA) with The hocter & Gamble Company. The device is a miniaturized data

autonomously record process data for up to two weeks, the device is tennis-ball-sized, waterproof, has the density of
water, contains non-volatile memory, and is powered by a commercially available 9-V battery. The design details
are presented, including explanation of circuit function, schematics, and microcontroller code listings.

Unlimited Release

Acknowledgements
The authors thank Willard B. Hunter, who was the initial Sandia point of contact and was responsible for initial
interactions with Mike Rothgeb and Jim Jordan, of The Procter & Gamble Company, resulting in this development.

Ed Henry assisted in the design development, and Dennis Wilder constructed the prototype electronics. Bill
Flounders provided invaluable advice regarding pH sensors and pH measurement. Ron Akau completed thermal
transport modeling to improve the temperature sensor placement. Our Procter & Gamble counterparts Kris Gansle,
Mark Cipollone, and Jonathan Joyce conducted the laboratory validation of our design, and uncovered challenging
design problems as the prototypes were evaluated. Keith Fanta, also at P&G, helped correct an electronic design
problem late in the project. Tony Mittas took over project responsibility in its final months and provided
modifications to the pH, accelerometer, and conductivity circuits.

The authors also thank Toni Kovarik, who negotiated the original CRADA, and Vic Weiss, who took over CRADA
management from Toni and negotiated the follow-on extensions.

Acceptance Testing .. 36
Testing During Assembly ... 36
Functionality and Calibration Tests ... 36
P&G Laboratory and Field Tests .. 37

Appendix A: P&G Background and Initial Proposal ... 39
Appendix B: Requirements Document .. 41

Appendix D: Sensor Ball Test Procedure .. 49
Appendix E: Schematics .. 52
Appendix F: Assembly Drawings and Electronics Materials Lists ... 58

Controller Board Bill of Materials .. 65
Signal Conditioner Board Bill of Materials .. 67

Appendix G: Circuit Board Connector Pin Definitions 69
Microcontroller Programming Steps 68

Appendix I: Mechanical Components .. 70
Appendix J Mechanical Assembly Procedure .. 72
Appendix K Microcontroller Code Listing .. 73
Appendix L: PC Interface (SensorBall) Code Listing .. 145
Distribution ... 173

Appendix C: PC Interface Software Guide ... 47

..
...

Figures
Figure 1 . Wire-Frame and Solid Views of the Sensor Ball .. 10

Figure 3 . pH DuraFET Drive Circuit .. 12
Figure 4 . pH Monitoring Circuit ... 13
Figure 5 . Conductivity Measurement Circuit ... 15
Figure 6 . Axis Definitions in the Sensor Ball .. 17

Figure 8 Connections to the RS-232 Driver Circuit 21
Figure 7 Accelerometer Circuitry 17

Figure 9 . Battery Terminal Inputs and Battery Voltage Monitor .. 22
Figure 10 . Voltage Regulator Circuits with Voltage Monitors ... 22
Figure 11 . Flowchart for the Sensor Ball Firmware, Main Module ... 24
Figure 12 . Sensor Ball View Showing the Sensor-Protecting Cage .. 31
Figure 13 . P&G Staff Evaluating Sensor Ball Characteristics ... 38
Figure 14 . Component Detail, Sensor Ball Exploded View ... 70
Figure 15 . Exploded View of Disassembled Unit .. 72
Figure 16 . Assembled Unit ... 72

Figure 2 . Construction of the Honeywell pH Probe Tip (figure bas errors and needs text) 11

.

Tables . ..
Table 2 Sensor Ball to PC Connection Cable Pin Definitions 23
Table 1 Data List 8

Table 3 . Directly Wired Connections .. 69
Table 4 . Test Points ... 69
Table 5 . Sensor Ball Mechanical Bill of Materials ... 71

. ..

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
1

Development of an /n-Sifu
Monitoring / Recording Device for

Aqueous Processes
Introduction
The In-Situ MonitoringRecordmg Device for Aqueous Processes will provide The Procter & Gamble Company
(P&G) with non-intrusive instrumentation that will accelerate in-house product development. The device,
developed and fabricated under CRADA SC00101585, records chemical and physical parameters during normal
washing machine conditions. The data will assist P&G in evaluating consumer practices and the impact of those
practices on product performance.

In order to stay competitive in today’s market, P&G must develop better test methods to shorten the development
time of new technologies. One way to accomplish this is to develop “smart” sensors that communicate what is
occurring in consumers’ homes. For example, by monitoring parameters such as wash temperature, pH,

machine agitation through a wash cycle, a more comprehensive understanding of consumer laundry practices and
conductivity, turbidity, water hardness, available chlorine, available oxygen, product consumption, and washing

the impact of these practices on product performance can be developed.

The technological basis for this project is the earth penebator instrumentation developed by Sandia National

those previous instrumentation designs monitored aqueous chemistry. The P&G application is essentially a
Laboratories (Sandia). This instrumentation has aspects similar to the requirements of this project, however, none of

measurements and somewhat different approaches for memory management. This project provided proof of concept
reformatting of the earth penetrator instrumentation concept with new features added to acquire additional

work may lead to additional cooperation to develop novel chemical sensors that could have application to national
for an autonomous monitoring device that can measure and record certain chemical and physical parameters. The

security issues.

Sensor Ball Features
The instnunentation developed, the Sensor Ball, measures wash water pH, conductivity, temperature, and agitation
(3-axis acceleration). The watertight device is approximately a sphere three inches in diameter weighing about half
a pound - essentially the weight of water displaced by the ball. The shape and size are very similar to Procter &

the Sensor Ball automatically determines when it is immersed in water and should begin collecting data. Once a
Gamble’s Downey fabric softener dispenser ball. By monitoring the conductivity measurement once every minute,

data collection cycle starts, measurements are recorded about 2.6 times per second for 45 minutes. The data are
stored in non-volatile, flash memory with a 32M-byte capacity. Each data collection cycle uses 128k-bytes memory,
so the battery life is the limiting factor on how much data can be collected. Depending on battery life, the Sensor
Ball should be able to collect about 54 data cycles over a two-week period, considerably beyond the minimum 20
data cycles defmed in the Sensor Ball requirements shown in Appendix B.

Following the data collection period in a test-consumer’s home, the Sensor Ball is returned to P&G. Simple
disassembly allows access to an interface connector to upload data and to replace the battery. After removing a
single security screw, the top half of the Lexan case can be unscrewed. Either a fresh battery must be installed or a

cable between the Sensor Ball and a personal computer. To facilitate data extraction, a user interface program was
separate supply must be connected to power the Sensor Ball for data uploading. Data are transferred serially using a

preparation for another data collection period. Following reassembly, the Sensor Ball is ready to return to the field
developed that can upload the data, check current stam of Sensor Ball parameters, and erase the memory in

to repeat another data collection period.

washing machines includes high shock impulses when a solid object strikes the lifting bars in the machine, and high
The design was intended for use in top-loadmg washing machines. The mechanical environment in 6ont-load

acceleration forces during the spin cycle. These environments exceed the design goals for this version of Sensor
Ball. In addition, the conductivity and pH sensors require continuous immersion in water for valid measurements.
A Sensor Ball design compatible with a fiont-load washing machine must abate the repetitious, high impact shock
and provide some mechanism for stable water chemisny measurements given intermittent immersion.

Measurement Data List
The Sensor Ball data list with channel numbers and names, resolution, sample rate, and nominal calibration factors
is shown in Table 1 below. In addition to acceleration, pH, conductivity, and temperature, the Sensor Ball data
includes measurements and other information to help validate and interpret data. For example, voltage monitors
indicate if the 3V and 6V reference voltages are stable, which may indicate the quality of the measurements. The
battery voltage can be used to monitor battery performance and indicate potential circuit failures as revealed by
increased power consumption. Record number and Frame number help separate data sets. The Time Most-

will assist data interpretation by noting when a data set was collected. Time measurement inaccuracy occurs
Significant Word (MSW) and Least-Significant Word (LSW) are included to provide a rough time measure. This

not exactly 3.686 MHz. In addition, the time measurement is reset whenever a microcontroller reset occurs.
because the watchdog timer delay is not exactly 2.4 seconds, and because the microcontroller oscillator frequency is

Finally, the Flash memory address was included to help diagnose Flash memory and related problems.

Table 1. Data List

Note: the above table uses the equation Engineering Units = Slope * (Counts -Offset)

Battery Operating Time
The hardware and fmware for the Sensor Ball have been designed to maximize battery life. To minimize power
consumption, the Sensor Ball remains in a low power, “sleep” mode unless collecting data. In this state the Sensor
Ball draws less than one-half milliamp. Once a minute, the Sensor Ball powers all circuiny and checks whether the
conductivity measurement is above a set threshold, about 6% of full-scale range. If this threshold is exceeded, then
the Sensor Ball remains fully powered and begins a 45-minute data collection cycle, filling 128k-bytes memory.
During full-power operation, the Sensor Ball draws about 25mA. Following the data collection cycle, the

state.
conductivity measurement is checked again, and if less than the threshold the Sensor Ball returns to the low-power

battery. The capacity of a standard, 9-V alkaline battery is about 600 mA-Hr. This is barely adequate to meet the
To achieve more than the minimum 20 data cycles over a two-week period, care must be taken when selecting a

desired duration of data collection. The appropriate battery, the Energizer Model L522 for example, has about a
1200-mA-Hr capacity and uses a lithium / manganese dioxide chemistry. Calculations below show that with this

period. Similar calculations for an alkaline, 600-mA-Hr battery reveals that only about 23 records can be collected
capacity battery, the Sensor Ball should be capable of acquiring about 54 data collection cycles over a two-week

8

I
I
1
I
I
I
1
0
I
I
I
I
I
I
I
I
I
I
1

using that type of battery. Actual battery performance is a function of the current draw among other factors, so these
calculations are estimates only.

Low Power Sensor Ball Operation:
0.5 mA * 14 days * 24 hom/day = 168 mA-HI

Full Power Sensor Ball Operation:
25 mA * 45 min * 54 cycles I60 m i n h = 1013 mA-Hr

Total Battery Capacity Needed:
168 mA-HI + 1013 mA-Hr = 1181 mA-Hr

Because the Sensor Ball uses non-volatile memory to hold the collected data, battery failure or battery voltage
dropping below the minimum 6.5 V electronics operating voltage does not result in lost data.

Project Formation
P&G determined that a miniaturized data-logging device meeting their needs was not commercially available, so
Sandia’s assistance was sought to develop this device. The background on P&G initial involvement and their design

measure more than temperature, pH, conductivity, and acceleration, the features of the device proposed for
concept are detailed in a P&G document included in Appendix A. Although P&G wanted a device that would

development were reduced to this set to demonstrate proof of concept for the approach. Further, sensors for some of
P&G‘s measurements of interest were not available at all, or at least not in the size needed for the proposed
instrumentation to be practical.

CRADA Timeline
Discussions regarding the creation of the recording device began May 1999, when P&G requested project timing
and funding proposal 6om Sandia. This was followed by a P&G visit to Sandia on 25 June 1999 to discuss proposal
options. As a result of those discussions, a CRADA was executed 1 1 January 2000 with P&G that provided $225k
funding from P&G. This was a “funds-in” CRADA, with no funding contribution by the Department of Energy.
The frst joint P&G and Sandia project meeting, which began the detailed design requirements negotiation, occurred
February 8,2000.

April 2000 that shortened the delivery time of the fust prototype by two months but increased the cost by about
Because the project start was delayed somewhat waiting for funds transfer, P&G requested a CRADA amendment in

$30k. This was intended to compensate in part for the month-long delay from CRADA execution until receipt ofthe
initial funds at Sandia.

Sandia delivered the frst Sensor Ball prototype to P&G in September 2000. After P&G tested this prototype,
Sandia implemented substantial revisions in the Sensor Ball’s mechanical, electronic, and firmware design, resulting
in the Version 2 design that was delivered to P&G in December 2000. Following additional test experience with the
Version 2 prototype, P&G requested further improvements to the Sensor Ball functionality that required minor
electronic and substantial fmware changes. This Version 3 design was delivered in June 2001. The final prototype
design, Version 4, required additional electronic modifications and minor firmware changes. Design Versions 2, 3,
and 4 used the same circuit board design, but with some signal re-routing and component changes as a result of the
circuit changes. The board was not redesigned to minimize costs. Five copies of prototype Version 4 were
delivered to P&G in January 2002. To accommodate building these additional prototype units, P&G requested a
second CRADA amendment that increased funding by $50k. Two time-only CRADA extensions were also
executed to provide P&G additional evaluation time before fnalizing requirements for the Version 4 design.

Requirements Summary

Appendix B. In addition to defming the basic parameters to he measured, requirements negotiations covered issues
The final design requirements are detailed in a document prepared for P&G by Sandia, which is included in

measurement ranges, and operating requirements. The requirements document also discussed human interface
like the impact resistance of the completed Sensor Ball, the basic shape and chemical properties of the case,

details such as bow the Sensor Ball would indicate various operating modes. Deliverables were specified to be a

prototype Sensor Ball, interface cable, user interface software, and documentation. P&G intended to seek a
manufacturing entity to produce the Sensor Ball in quantity after the concept was adequately proven. At P&G’s
request, Sandia produced five additional prototype units to facilitate concept evaluation.

The f d form of the Sensor Ball is shown in Figure 1. The design is ballasted to maintain orientation with the
chemical sensors on the bottom, where they will remain immersed. The cage protects the pH and conductivity
transducers from damage by clothing in the washing machine, but was primarily intended to protect these
transducers in the event the Sensor Ball is accidentally dropped. After a tamper-prevention fastener is removed, the
top half of the Sensor Ball can be unscrewed to access the battery, serial interface connector, and “Attention” button.
Only P&G personnel are intended to access these, not the consumer product tester.

Figure 1. Wire-Frame and Solid Views of the Sensor Ball

Measurement Transducers and Circuitry
To measure the four parameters specified in the requirements, the Sensor Ball included four types of transducers.
First, a Honeywell DuraFET pH sensor combined with a Microelectrodes Inc. pH reference was used to measure
pH. Microelectrodes, Inc. also provided the conductivity probe, which consists of an array of four, platinum pins.

Analog Devices. Finally, a semiconductor temperature transducer manufactured by Analog Devices was selected to
The three-axis acceleration measurement relied on the recently developed, integrated accelerometers produced by

totaling about $600 per Sensor Ball in small quantities. Each of the transducers is described in detail below.
simplify circuit design and data interpretation. The sensors represent a significant fraction ofthe Sensor Ball cost,

pH Sensor
The wash water pH significantly affects product performance. The measurement range in the Sensor Ball is pH 5 to

sensor is a robust process-monitoring probe that uses a field-effect transistor (FET) as the monitoring element for
11. The pH sensor was selected by P&G based upon their laboratory experience. The Honeywell DuraFET pH

monitoring configuration. This seven-inch long cylinder required modification at Sandia to fit within the tennis-ball
hydrogen ion concentration. The probe was available from Honeywell only as a complete assembly in the process-

sized Sensor Ball.

pH Probe Details
Details of the probe construction is proprietary information that Honeywell was not inclined to share. From our
observations and Honeywell (formerly Leeds and Northrup) conference papers’, the pH probe consists of a quarter-
inch diameter FET silicon window embedded in a Ryton cylinder. The cylinder side opposite to the FET contains a

I J. G. Connery, R.D. Baxter, and C. W. Gulczynski, “Development and Performance Characteristics of a New pH
Electrode”, 1992 Pittsburgh Conference, 10 March 1992

10

I
I
1
I
I
I
1
1
I
I
I
1
1
I
I
c
I
I
I

conductive Ryton plug. The Ryton is conductive to provide the counter-electrode connection to the liquid being
monitored. Figure 2 shows a diagram of the pH sensor construction.

The DuraFET is part of a class of ion-selective field-effect transistor, or ISFET, devices. The substrate is a p-
channel, enhancement-mode FET, with the gate insulator exposed to the solution to be monitored. The
recommended operating mode is to maintain a constant drain-some current through the DuraFET by driving the
potential of the solution with respect to the DuraFET with a counter-electrode. For the Honeywell device, the
counter electrode is a region of conductive plastic on the probe body (the Ryton cylinder). With the voltage sensed

the DuraFET drain current constant. Then, the overall potential of the solution is sensed using a silver / silver
at the source of the DuraFET as the negative feedback, an amplifier circuit modifies the solution’s potential to keep

decreases about 60 mV for every one-unit increase in pH.
chloride reference electrode. The Honeywell conference paper indicated that the potential on the DuraFET gate

Seal ,-/ Ryton probe tip

Conductive
elastomer \ =- DuraFET

Figure 2. Construction of the Honeywell pH Probe Tip (figure has errors and needs text)

A Honeywell Model 51204976-002 pH probe was used2, which is configured without an integral reference electrode
but has the same outer diameter as that type. Modifications to the Honeywell probe included sawing the probe apart,
leaving about a one-inch section of Ryton tube holding the DuraFET. In the fmt attempts to modify the probe, the
original thin circuit board that made electrical contact to the DuraFET was replaced with a Sandia-designed version.
A conductive elastomer, present in the original and retained in the modified unit, makes the fmal connection
between the circuit board and the DuraFET. A small gasket seals the DuraFET to the Ryton body. During the step
replacing the original board with the Sandia version, the gasket seal was broken, and the probe leaked. The
procedure was modified to leave the original Honeywell board in place, and then making the electrical connection to
the Sensor Ball by soldering fine wires to the circuit traces on that board. Modifying the probe is a very time-
consuming step. When considering higher-volume production versions of the Sensor Ball, some agreement with
Honeywell should be attempted to procure the probe tip or some variation configured specifically for the Sensor
Ball.

AgAgCl Reference Electrode
Although the probe-only configuration was used for the Sensor Ball, the pH sensor from Honeywell can be supplied
with an integral reference electrode configured as an annulus around the probe body. The annulus is a passage into
the probe body, which contains a potassium-chloride gel saturated with silver chloride into which a silver wire is
immersed. The reference electrode is an attractive feature ofthe Honeywell probe, but unfortunately it could not be
used when the probe was modified to fit the Sensor Ball. Instead, the reference electrode function was filled by a
slightly modified version of the model MI402 Dip-type Reference microelectrode from Microelectrodes
Incorporated3. This electrode, a 2-mm outside-diameter flexible tube closed on the immersed side with a glass frit,

http://content.honevwell.com/sensine/controUudWsales lit/70-82-58-66.odf, page 3, CO~U~III 1.
httn:/lwww.microelectrodes.comiProducts/MI 402.htm The pH reference electrode cost about $124 each when

fvst ordered June 2000.

http://content.honevwell.com/sensine/controUudWsales

is tilled with a 3 molar KC1 gel solution saturated with AgCl. The silver contact wire that is immersed in the KC1
gel is soldered directly to the main Sensor Ball circuit board.

One problem with the reference electrode is that it provides a passage to the inside of the Sensor Ball. When a
pressure differential ofmore than a few pounds / square inch occurs between the interior and exterior ofthe Sensor
Ball, the reference electrode solution is likely to leak by moving towards the lower pressure. This should not be a
problem at the bottom of a two-foot column of water (as in a washing machine) because the pressure at that depth is
less than 1 psi. Similarly, atmospheric pressure variations due to weather should be less than 3%, or about 0.5-psi
variation. However, we found that a problem does occur when the Sensor Ball is assembled at one altitude, and then
shipped to a significantly different altitude. The elevation at Sandia in Albuquerque is higher than 5000 feet, while
P&G's Cincinnati location is about 500 feet, a differential of about 2 psi. When shipped via air, a pressurized
shipping compartment may drop to about 1 1-psi absolute pressure, whereas an un-pressurized compartment would
be about 3 psi absolute. This pressure-induced leakage problem was resolved by shipping the Sensor Ball partially
disassembled so that no pressure differential occurs across the reference electrode.

pH Sensor Electronics Interface
Figure 3 and Figure 4 show the DuraFET drive circuit and the pH-sensing circuit, respectively, used in the Sensor

the pH circuit is shifted h m ground (zero volts) to 3 V. The DuraFET source is connected to terminal X 2 , and the
Ball. Rather than use a switch-mode power converter to produce a negative supply voltage, the reference voltage for

drain at X4, where the signal connects to ground through resistor R2.4. The DuraFET substrate is tied to the 3-V
reference voltage at terminal X5. The non-inverting input of the OPA4343 operational amplifier, component
number UlD, is connected to the 3-V reference voltage. The inverting input monitors the voltage at the DuraFET
source, with current to the source provided through resistor R16 from the 6-V supply. Approximately 0.3 mA

with the voltage increasing as the current through the W E T decreases.
current flows through the DuraFET device. The output of operational amplifier U1D drives the counter electrode,

0V
T

Figure 3. pH DuraFET Drive Circuit

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 4. pH Monitoring Circuit

The solution potential, which is proportional to pH, is measured by the microcontroller after signal conditioning by
operational amplifiers UlA, B, and C. The frsi stage using UlA is a unity-gain buffer to accommodate the high-
impedance input signal from the reference electrode. The second stage using operational amplifier UIB corrects for
the circuit reference voltage shifted to 3 V h m ground, allows offset adjustment via R13, and signal amplification
adjustment using R4. The nominal gain is about 15 (negative), which is then divided approximately in half by the
subsequent resistor-divider network formed by R11 and R71. The subsequent operational amplifier U1C acts as a
unity-gain buffer that supplies the signal to the analog-to-digital converter (ADC) included in the microcontroller.
The intended range is pH 5 to pH 11.

pH Sensor Electronics Design Issues
Late in the evaluation of the Sensor Ball, we discovered that the pH voltage supplied to the microcontroller ADC
exceeded 3 V, especially when the pH probe was not immersed. This caused problems as described later in the
“Electronics Design” section, under “RS-232 Interface”. To ensure that the voltage supplied to the microcontroller
does not exceed 3 V, all ofthe needed gain was implemented in the frst amplification stage using operational

more than two using a resistor-divider ensures a maximum final output voltage less than 3 V.
amplifier UIB. Its output cannot exceed the 6-V supply voltage. Then, dividing that intermediate signal by slightly

A problem with the delay between valid pH measurements and pH circuitry power-up was only partially resolved.
Whenever analog power is removed from the Sensor Ball circuiky, a transient error occurs in subsequent pH
measurements. The time before the error is negligible seems to increase with longer power-off time. After a one-
minute low-power period, the transient usually lasts two to three minutes, while after an hour with power off, the
delay may be five minutes. The problem was corrected partially in the Version 4 Sensor Ball fmware by

problem will still exist whenever the Sensor Ball goes from a low-power, shutdown state to a data collection mode.
eliminating the inter-record, one-minute delays, thus removing the discontinuity during a period of interest. The

However, this delay is considered tolerable because the reference electrode is not completely functional for a few
minutes after it has been lei? in air long enough for the tip to dry.

Based on observations during P&G tests, the delay until valid pH measurements was not seen with the Version 2
Sensor Ball. Three changes were made subsequent to the Version 2 Sensor Ball design. First, the microcontroller

function could have been a cause. Second, the specific pH probe and reference electrode were replaced. There
code was extensively revised. Changes in the way the microcontroller acquires data or does some other related

could be some variation in the performance of individual units. And thiid, the process for modifying the pH probe
for use in the Sensor Ball changed. We determined that the microcontroller was not a possible cause by creating a
test setup that isolated the pH probe, reference electrode, and associated signal conditioning circuitry with the
microcontroller excluded. Using a voltmeter to monitor the conditioning circuit output, we observed the delay
whenever power was restored to the circuit. The discontinuity did not occur when the Sensor Ball remained
powered, but was moved among various pH buffer solutions, demonstrating that the circuit response time was
adequate. Therefore we concluded that the issue could be pH probe variation, or perhaps differences between the
original Honeywell connection board and the Sandia version.

Conductivity Probe
The conductivity measurement provides an indication of ionic content, which in turn can indicate the water
hardness. The calcium and magnesium ions that cause hard water combine with the product and deactivate it.
Generally, if the concentration of ions is doubled, the conductivity is doubled, or in the case of magnesium and
calcium ions, quadrupled because each has an ionic charge of two. The conductivity of a material is an inherent
property -that is; pure water at a particular temperature will always have the same conductivity. The SI unit of
conductance is the Siemen (S) or -’. This unit has also been known as Ohm spelled backwards, or mho.
Conductivity is measured in units of Siemens / m. The Sensor Ball conductivity measurement appears to be linear
in the zero to 3000-pS/cm range, which is the expected conductivity range in a consumer’s wash. The maximum
conductivity that the circuit can report is about 10000-pSicm.

A secondary use of the conductivity measurement is to initiate a data collection cycle. The design originally used a
tilt-switch to detect placement in the washing machine, and automatically initiate data collection. The switch was

Although non-mercury tilt switches are available, the units are much larger. In any case, using the conductivity
deleted because it contained mercury, a potentially hazardous material when included in a consumer appliance.

measurement is an elegant approach to sense Sensor Ball placement in the washing machine. The design was
revised so that the Sensor Ball periodically “wakes up” and checks the conductivity reading. The measurement is
essentially zero when the probe is in air. If the value indicates immersion in water, a data collection cycle begins.

time of the Sensor Ball.
The cost of this approach is slightly higher power drain, resulting in about a 10% reduction in the potential recording

rods coated with colloidal platinum, or platinum black, and obtained 6om Microelectrodes, Inc4. The coating is
The Sensor Ball conductivity probe uses a two-electrode arrangement. The electrodes are 1 mm diameter, platinum

wave voltage that is applied across the probe pair. The probe voltage is coupled using a capacitor to avoid electrode
intended to absorb gas products resulting ftom water electrolysis. Current is sensed from a fixed-amplitude, square-

polarization and electrolytic build-up on the electrodes that in turn would affect measurement accuracy. An equally
important consideration is to avoid affecting the solution potential as detected for the pH measurement. The
capacitors block direct current, and thus do not cause a bias shift in solution potential. To create an alternating
current, the conductivity probe voltage is pulsed at 7.2 kHz.

Explanation of Cell Constant’s Relationship to Conductivity Measurements
The cell constant, K, for a conductivity measurement device is related to the area of an electrode and the distance
between electrodes in the cell. K is defined for two flat, parallel measuring electrodes as the electrode separation
distance divided by the electrode area. We need to be concerned about the cell constant when using a 2-electrode
conductivity cell, as the response becomes non-linear outside of the electrode workmg range. For wash solutions, a
cell constant of 1 cm” is sufficient. This cell constant provides a working range of zero to 2000 pSicm. When the

A four-electrode conductivity cell with a single cell constant can cover large concentration ranges from 0.1 to
expected solution conductivity is large, for example 8,000 pSicm, a larger cell constant such as 10 cm.’ is necessq.

10,000 pSkm that would normally take three ordinary 2-electrode cells with three different cell constants. In a four-
electrode cell, two electrodes drive current and two electrodes sense voltage. An alternating voltage is applied
across the drive electrodes, resulting in an alternating current flow that is measured at the sensing electrodes. The
voltage measured at the sensing electrode controls the amplitude of an alternating voltage applied across the drive
electrodes; hence, the cell constant is continually being adjusted depending on the solution being analyzed and the
cell field strength is maintained constant. The current flow at the drive electrodes is directly proportional to
conductivity.

Conductivity Circuitry
The circuitry takes a root-mean-square measurement of the alternating current flowing through the wash water at the
conductivity electrodes. The current is proportional to the solution conductance. Figure 5 shows the conductivity
circuit described below.

4 httu:llwww.microelectrodes.com A four-electrode set of conductivity probes cost about $225 from
Microelectrodes Inc. when frst ordered June 2000.

14

I
1
I
I
I
I
I
I
I’
I
I
I
I
I
I
I
I
I
I

http://httu:llwww.microelectrodes.com

To generate the alternating voltage applied to the conductivity electrodes, the Sensor Ball divides the approximately

7.2-!d-Iz square-wave signal. (The instruction clock is actually closer to 920 kHz.) Resistors R48 and R50 attenuate
I-MHz "Instruction Clock" produced by the microcontroller by 128 using CMOS counter U10, resulting in a

the 3V-clock signal, and operational amplifier U6D buffers the resulting 1-V square wave for application to the
conductivity electrode via lOpF capacitor C44. This electrode is connected at X11. Matching 10pF capacitor C51

The alternating voltage across the resistor is proportional to the current, and also proportional to the conductivity.
connects the second electrode at X10 to current sensing resistor R52, which is in turn connected to signal return.

4-probe conductivity measurement.
The conductivity probes connected to X12 and X13 are not used. They were originally included to accommodate a

7

Figure 5. Conductivity Measurement Circuit

To convert the alternating voltage into a steady value acceptable to the analog-to-digital converter, a specialized
component, Maxim part MX636 (component U12) calculates the root-mean-square voltage. The MX636 data sheet'
describes a configuration for single-supply operation. Using the recommended configuration, the equivalent supply
voltages become +2 V / -4 V, and the maximum input signal is *2 V. Because the voltage driving the conductivity
electrode is H.5 V, this maximum input signal value cannot be exceeded. Therefore, the output of the MX636 is at
most 0.5V. The gain circuit including operational amplifier U7D amplifies that output by about 8, so a 4 V
maximum signal would be produced with zero resistance between the conductivity electrodes. Although this would
exceed the 3-V maximum, zero resistance is unlikely in normal Sensor Ball operation.

A Four-Electrode Design Option
With four electrodes, the sensing current for the conductivity measurement can be adjusted to compensate for

between the inner pair. The resulting current is proportional to the conductivity. Unfortunately, the circuitry to
electrode fouling. Essentially, the current is adjusted across the outer two electrodes to maintain a constant potential

implement the four-probe approach could not readily be implemented to meet the size and power constraints of the
Sensor Ball. Instead, the two-electrode arrangement described above was used that places a fixed voltage potential
across the pair and measures the current.

To implement the 4-probe conductivity design, the drive voltage amplitude would be continuously adjusted to
maintain a constant potential across the sensing electrode pair. This could be accomplished by amplifying the root-
mean-square value (or absolute value) of the sensing electrode pair potential, and chopping that signal through a
transistor before connecting it to the driven electrode. The 7.2kHz signal that directly drove the existing 2-electrode

5 http:ilpdfserv.maxim-ic.codarpdfiMX536A-MX636.pdf, page 8.

15

http:ilpdfserv.maxim-ic.codarpdfiMX536A-MX636.pdf

circuit, or a separate oscillator, would provide the transistor-switching signal. The resulting drive current indicates
the conductivity.

If power consumption and component count is an issue, an alternative two-electrode measurement could be

produces a pulse time constant of many tens to hundreds of milliseconds, depending on the conductivity. This time
developed that applies a voltage pulse to the electrode pair and measures the current. Using a 10pF capacitor

constant would produce less than one bit error in the 12-bit measurement as a result of signal droop in the lops
required by the ADC to acquire the measurement. An advantage to using a pulse is reduced interference of the pH

to a four-electrode measurement, should one be required in the future.
measurement, fewer components, and lower power consumption. But a disadvantage is further difficulty converting

Accelerometers
The accelerometer measurement indicates the degree of agitation during the wash cycle. This may imply how
tightly packed the clothes are in the wash. The measurement was implemented using three, single-axis
accelerometers. The acceleration range on each axis is +/-50 g. Although the accelerometers could have measured
the spin cycle acceleration, which implies the residual moisture in the clothes, the spin-cycle acceleration in a typical
washing machine will exceed 100 g and is therefore beyond the range of the accelerometers used. However,
duration of the spin cycle is available from the measurement.

Tri-axial acceleration measurements were selected because the orientation of the Sensor Ball to the acceleration
vector is unpredictable, and an acceleration magnitude is desired. P&G laboratory measurements included a
significant amount of data on load size and relative rate of agitation based on single-axis vibration measurements.
But tri-axial acceleration measurements were expected to provide more insight than single-axis acceleration into
how the clothing tumbles, bends and moves during the wash. The additional circuit board space and higher power
consumption were considered when making this design trade-off. P&G’s standard single-axis laboratory vibration
measurements employed a piezoelechic crystal sensor that has no DC response. The transducer used in the Sensor
Ball, however, can measure constant acceleration.

Integrated Accelerometer and Signal Conditioning

machined accelerometer. The ADXL150 is a single-axis accelerometer with signal conditioning included on a single
The acceleration transducer used, an Analog Devices model ADXL1506, is a third-generation, *50 g surface-micro-

monolithic integrated circuit. The sensitive axis ofthe ADXLl5O is in the same plane as the silicon chip. Thus,
producing a 3-axis measurement requires a second circuit board oriented orthogonally to the primary board. In the

placed on the secondary board. In Figure 6 below, the circuit boards are shown in green.
Sensor Ball, the x-axis accelerometer is located on the main circuit board while the y- and z-axis accelerometers are

6 httD://www.analoc.com/uroductSelection/~dffADXL150 250 O.Ddf,

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
1
I
I
I
I
I
I
1
I
I
I
I
1
I
I
I

+X

+z
Figure 6. Axis Definitions in the Sensor Ball

*SO g full-scale range. However, the signal conditioning gain selected and the 12-bit resolution of the analog-to-
Typical signal-to-noise ratio for the ADLXISO is 80 dB, allowing resolution of signals as low as 0.01 g within a

digital converter in the Sensor Ball limits resolution to about 0.03 g. The device scale factor is 38 mV/g when a 5-V
supply voltage is used. Because the scale factor and zero-g output are ratiometic with the supply voltage, the
Sensor Ball scale factor is 46 mV/g. The supply voltage in the Sensor Ball is 6 V. Zero g drift is 0.4 g over 0°C to
70°C, and power consumption is 1.8 m A .

Accelerometer Circuit
The accelerometer output signal can range 6om 0.25 V to 5.75 V, while the microcontroller's internal analog-to-
digital converter is limited to a zero to 3 V input range. The ADLXISO accelerometer produces a reference signal

the difference between the accelerometer reference signal and the acceleration measurement signal, and then reduces
output that is essentially half the supply voltage. As shown in Figure 7, operational amplifier component U6A takes

uot exceeded. The intent of the circuit is to center the ADC input at 1.5 V to get the maximum dynamic range.
both the zero acceleration output and the measurement by 50% to ensure that the 3-V limit on the microcontroller is

B" R z me*
49 9K
RZB

,.
mi
I M K

v
rnXLl5C

Figure I. Accelerometer Circuitry

Temperature Transducer
Temperature is an important factor in product performance. The Sensor Ball uses an Analog Devices model AD590
temperature transducer, a two-terminal integrated circuit that produces an output current proportional to absolute
temperature. The Sensor Ball’s temperature measurement maximum is 100OC.

Active Device for Temperature Measurement
The AD590’ acts as an ideal high-impedance, constant-current source passing current proportional to temperature,
1 pA/K. The device is trimmed by the manufacturer to calibrate the device to produce 273.2 pA output at 273.2K,
which is 0°C. The AD590 uses a fundamental properly of silicon to realize its temperature proportional
characteristic. This relationship is if two identical transistors are operated at a constant ratio of collector current
densities, r, then the difference in their base-emitter voltage will be:

v = -ln(r) kT
4 -

Since both k, Boltzman’s constant and q, the charge of an electron, are constan6 the resulting voltage is directly
proportional to absolute temperature. The AD590 was chosen instead of a thermistor because of its inherent h e a r

Thermal Transport

Version 1, to a machined pocket inside the Lexan case. This provided faster response to temperature changes.
The location of the sensor was moved from the main circuit board, where it was initially placed for easy assembly in

temperature sensor location. The issue is how fast heat can move from one material to the next. The modeling
Limited modeling of the Sensor Ball temperature measurement response time guided the selection of the revised

different than duect contact with the water. Lexan wall thickness around 0.05 to 0.10 inches was expected to be
showed that placing the AD590 in a milled pocket of the Lexan case should work well, and would not be much

0.001-inch air gap between the AD590 and the Lexan produces a heat flow resistance factor of 2.0, while the 0.050
acceptable. However, the contact between the temperature sensor and the Lexan must be tight. For comparison, a

inch thick Lexan has a resistance factor of 0.2. The resistance is directly proportional to the thickness, so would
double for double the thickness. For this reason, a thermal compound should be considered to improve the contact
of the AD590 to the Lexan. The Sensor Ball assembly included epoxy to provide good thermal contact between the
AD590 and the Lexan wall. The response time may still be inadequate; see the “Suggested Changes” section.

Interestingly, a major factor for affecting the temperature measurement response time may be the conduction from
the water to the Lexan. Different flow rates of water past the ball can account for two orders of magnitude
difference in the heat flow resistance factor. A resistance factor of 17 was used for model calculations, and equates
to a low liquid flow such as would be likely with the sensor floating in sloshing water. But if laboratory
measurements monitor temperature in a rapidly flowing environment, such as the temperature sensor on a pump
l i e , the response time would be much faster when compared to the Sensor Ball.

Temperature Circuit
The temperature circuit consists of the AD590 device and a 7.87kR resistor, R28, as shown in Appendix E:
Schematics. The 6-V supply voltage biases the AD590. Since the AD590 acts as an ideal current source, the
voltage across R28 is proportional to the current, and also the temperature. The resistor value was selected to
produce a 3-V output at about 100°C. Although at the expense of slightly more complex circuitry, higher
temperature measurement resolution could be achieved with an operational amplifier circuit that inserts a voltage
offset so that O°C produces a zero volt output.

Electronic Design
The Sensor Ball electronic design can be divided into a few functional areas. The transducer interface and signal
conditioning functions were described above with each transducer used. These circuit elements, and the other

7 http://www.analog.com/productSelection/pdf71186-b.pdf

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

http://www.analog.com/productSelection/pdf71186-b.pdf

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

electronic components can be lumped into the category, “Hardware”. The remaining Sensor Ball functionality is
achieved using the algorithms encoded in the microcontroller, which is the “Firmware” Category. Details for each
are described in these sections below.

Hardware
A microcontroller incorporates the intelligence needed to control recording data from these transducers, and the user

recorded data are held in a non-volatile, Flash memory. An RS232 interface component facilitates uploading the
interface to extract the data. The algorithms for this functionality are described later in the “Firmware” section. The

data to a computer. Linear regulators reduce the 9-V nominal battery voltage to levels acceptable to the circuitry,
and permit portions of the design to be powered only as needed to conserve power. The complete schematics for the
Sensor Ball are included in Appendix E: Schematics.

Microcontroller
The Sensor Ball operations are controlled by a Microchip PIC16C7748 microcontroller, an 8-bit, reduced-
instruction-set device designed to consume very little power. The microcontroller has a built-in oscillator circuit
with the frequency set by an external resistor and capacitor. The Sensor Ball oscillator frequency, 3.686 MHz, was
selected to be an integral multiple of the 19.2k Baud and 115.2k Baud serial communication rates. The frequency is

microcontroller facilitates serial communication. The PIC16C774 also includes a IO-channel, 12-bit Analog-to-
set by R46 and C40. A universal, synchronous I asynchronous receiver /transmitter (USART) in the

power consumption even further, the low-power “Sleep” mode is used while waiting to initiate a data collection
Digital Converter (ADC). This is used to digitize all the measurements recorded by the Sensor Ball. To reduce

microprocessor is virtually powered down. Following this “Sleep” period, normal processing continues. This delay
cycle. In this mode, a separate internal oscillator measures a 2.4 second (nominal) delay period, during which the

timer function also is the basis for a Watch-Dog Timer, used to reset the microprocessor in the event the device

set, and developed using MPLAB Version 5.40. The code is divided into six main routines plus three support files
stops normal operations. The microcontroller code is written in assembly language using Microchip’s instruction

that reserve memory for program variables, define equivalence statements, and store message text. The code is
described in the Sensor Ball Code section.

The inputs to the microcontroller include six analog sensor data channels (ACCEL X, ACCEL Y , ACCEL 2, pH,

depressed signal (ATTENTION): and a serial receive input (RX). The outputs from the microcontroller include
CONDUCT, TEMP); three analog voltage monitor channels (3V MON, 6V MON, 9V MON); a pushbutton

LED control (LED): power control (POWER ON); memory interface (VOl-VOS, CLE, ALE, WP-, RiB-, RE-,
CE-, WE-); and a serial transmit output (TX).

Flash Memory

cycle 45 minutes in duration. Further, the memory should be non-volatile so that battery power is not necessary to
Design requirements stated that sufficient memory capacity was needed to record 20 data measurement cycles, each

retain the information. The requirement translates into a 4 M byte minimum memory size. A Toshiba TC58256FT
Flash memory device was selected. The device is a 3.3V, 32 M byte Electrically Erasable and Programmable Read-
Only Memory (EEPROM) organized as 2048 blocks of 32 pages, each page containing 528 bytes (5 12 bytes plus
extra 16 bytes extended area). For the Sensor Ball application, only 512 out of the 528 bytes are used on each
memory page. The device has a 528-byte static register that acts as a buffer for programming functions. Data are
written to the buffer and then transferred to the non-volatile memory when commanded.

The Toshiba TC58256FT is a serial-type memory that uses eight VO pins for command and address input as well as
data input I output. A typical command consists of a command byte followed by three address bytes. Once a read
or write command is executed, the device can continue to read or write 528 bytes without an additional command
step. In addition to read and write, the memory commands are Program, which transfers the 528-Byte static register
to the memory cell array: Erase followed by Erase Confirm, which erases a 16k-Byte memory block; and Status, to
determine whether a programming function has completed and report reading or writing malfunctions. The Program
operation can take a maximum of 1 millisecond, and the Erase operation a maximum of 20 milliseconds.

http:llwww.microchip.com/1000lplinelpicmicrolfamiliesll6c77x/devices/l6c774lindex.hhn

19

http:llwww.microchip.com/1000lplinelpicmicrolfamiliesll6c77x/devices/l6c774lindex.hhn

According to a note on Toshiba’s data sheet, the TC58256FT memory is not guaranteed to have the entire 2048
blocks of 16k byte each available to write. Some blocks may contain malfunctioning memory cells and be
unavailable for use. For this reason, the Sensor Ball code was revised in Version 3 to detect bad memory blocks,
and compensate for them by skipping over them. The Sensor Ball uses 128k bytes to record 45 minutes of data, so
if a 16k block were lost it would represent over five minutes of data. The down side of this feature is somewhat
more complex code.

blocks. During data storage, the frst bytes of each new block are examined, and the entire block is skipped if the
During the Flash memory erase function, the memory is tested superficially and an attempt made to mark bad

bytes are not in the erased state, a value of FF hexadecimal. The fust bytes written to each 512-byte page during
recording is a 16-bit synchronization pattern. Then when data are uploaded, the memory is first checked to see if the
memory section is blank, or was marked as malfunctioning. If so, the data are skipped and the next memory section

Version 2, the same situation would have resulted in apparently full-scale data since erased memory bytes contain a
is read. If no more data are available during data upload, the Sensor Ball begins uploading zeroes for the data. In

value of FF hexadecimal. A more extensive Flash memory test is included in the Sensor Ball funware, but is not
implemented in the SensorBall PC interface software. The extensive test takes about 30 minutes.

Adequate delay time must be provided between powering the Flash memory and first access, otherwise the memory
will appear to he malfunctioning. About a quarter-second delay is currently implemented in the Version 4 Sensor
Ball funware.

Although the Sensor Ball data are recorded in 5 12-byte increments, this is expanded to 560 bytes during data upload
to a personal computer. The expansion occurs because the variables for frame number, record number, time, and
Flash memory address are stored only Once for every 28 samples of the other analog channels, but must be expanded
to create a symmetrical data structure that meets the Inter-Range Instrumentation Group Standard 106. This
standard is followed in all instrumentation designs at Sandia, and allows previously developed software to be used
for support functions like data uploading and plotting. When the data are uploaded, seven groups of 80 bytes are
formed for each 560-byte “Block” uploaded. Withiin the 80 bytes are 4 sets of measurements: 9 channels, two bytes
per channel, for 18 bytes per set and 72 bytes total. The remaining 8 bytes in the 80-byte group contain the frame
number, record number, time (four bytes), and Flash memory address (2 bytes).

RS-232 Interface
The serial interface designed into the Sensor Ball allows data to be rapidly and easily extracted following a data
collection cycle. A three-wire cable connects the Sensor Ball to a personal computer COM port. Special software
on the personal computer sends commands to the Sensor Ball and receives data returned h m the Sensor Ball. Two

the time needed to upload data. Checksums are used to ensure data integrity. A problem with the link was
data rates are supported a default speed of 19.2k Baud, plus a 1 15.2k Baud high-speed that can be selected to reduce

discovered and corrected as one of the final design changes.

The RS-232 communication standard specifies voltage levels for signaling a “1” or “0” bit. Because these voltages
are outside the range of the Sensor Ball supply voltages, a Maxim MX3221 device (component U11) is used to
translate signal levels h m the zero to 3 V level of the microcontroller to RS-232 levels. Only conductors for
transmit, receive, and ground signals are connected. The MAX3221’s internal power supply consists of a regulated
dual charge pump that provides output voltages of +5SV (doubling charge pump) and -5.5V (inverting charge
pump) even though the Sensor Ball provides only +3V to the device. The supply voltage range for the device is
+3.0V to +5.5V. Each charge pump requires a flying capacitor (C38, C39) and a reservoir capacitor (C33, C42) to
generate the V+ and V- supplies. The level translators that convert CMOS-logic levels to RS-232 levels guarantee a

PC-to-PC communication software. Figure 8 shows the connections used for the Sensor Ball. The three-pin Molex
120k bit per second data rate with worst-case loads of 3k ohms in parallel with 1000pF, providing compatibility with

connector, U3, provides a direct RS-232 communication connection to a PC,

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3v
T

I
I
I
I
I
I

c35 1
0.lufd

33
.lufd V I I

MAX3221 I

TlOUT c1-
Tl lN
FORCEON C2+

0.lufd
c39
0.lufd

- - ,2

"' - ..
I

I
I
I
I
I
I
I
I
I
I

u3

3-pin Connector

Figure 8. Connections to the RS-232 Driver Circuit

Although the PIC16C774 processor can support a maximum serial data rate of 230.4k Baud, the Maxim part limits
the communication speed to the next lower standard speed of 11 5.2k Baud. This speed should he adequate for the
Sensor Ball, since at this rate 4M bytes of memory can he uploaded in about 6 minutes. Using the slower, but more
robust, 19.2k Baud rate would take 36 minutes to upload the same 4M Bytes. Each symbol exchanged consists of 8
data hits plus one start and one stop bit.

To ensure consistent Communication performance with Baud rates matching standard speeds, the microcontroller's
RC oscillator must have less than 3% error from 3.6864 MHz. In the design problem that affected communication,
the microprocessor supply voltage shifted from 3V to nearly 5V. (The pH measurement output into the
microcontroller's analog-to-digital converter exceeded the 3V supply voltage, effectively powering the

thus also changed the communication clock frequency. RS-232 transmits least- to most-significant bits. If the
microcontroller at a higher voltage.) This voltage shift also changed the microprocessor's oscillator frequency, and

frequency shifl is sufficient, the higher-order bits will not he sampled at the proper time and the symbol sent will be
significantly misinterpreted.

the microprocessor receives power whenever a battery is installed, power to the RS-232 driver chip, the Flash
Minimizing power consumption in the Sensor Ball design is very important to maximize recording time. Although

to the RS-232 chip during the data recording process, the MAX3221 draws only 1pA supply current in this mode
memory, and the analog circuitry is switched on and off under program control. But even though power is applied

because of a special feature. If the device does not sense a valid signal level on their receiver inputs, the power

data with the RS-232 cable disconnected, the normal mode of operation. The RS-232 chip t u m s on again when a
supply and drivers on board the device shut down. This would be the situation when the Sensor Ball is collecting

valid signal level is applied to the RS-232 receiver input.

Linear Regulators and Voltage Monitors
A commercial 9V battery supplies the raw power and is wired directly to the PCB at X14 and X15 as shown in
Figure 9. The battery voltage monitor circuit reduces the voltage to be withii the maximum 3-V for the
microcontroller's analog-to-digital converter. The diode, Dl, is intended to prevent damage to the Sensor Ball in the
event the battery connection polarity is accidentally reversed.

I

~

21

Figure 9. Battery Terminal Inputs and Battery Voltage Monitor

shown in Figure 10. With the battery connected, U13 is continuously powered and supplies 3V to the
The conditioned power to run the system is supplied by three, low-dropout linear regulators, U13, U2, and Uj

microcontroller. When low, the POWER-ON line inhibits U2 and U3 through those devices' shutdown function.
microcontroller on the VDD net. U2 and U4 remain powered down until the POWER-ON line is driven high by the

microprocessor is in the low-power mode, less than 0.5 mA is required, as compared to about 25 mA when the
VDD powers only the microcontroller, while the 3V and 6V regulated voltages supply all other devices. When the

Sensor Ball is fully powered.

Y""

*
Figure 10. Voltage Regulator Circuits with Voltage Monitors

Operational amplifiers U7A, B, and C buffer the battery voltage, the regulated 6 V supply, and the regulated 3 V
supply, respectively. The monitor circuits are identical and produce identical scale factors, about 21% ofthe
monitored voltage. This voltage divider brings the monitored level within the range ofthe analog-to-digital
converter.

Circuit Board Details
The Sensor Ball circuitry is contained on two printed-circuit boards (PCBs), named the Controller Board and the
Signal Conditioning Board. The Controller Board, R62111, is constructed as a circular disk, is populated on both
sides with components, and contains six circuit planes. The top plane includes surface mount integrated circuits,
capacitors, resistors, a 3 pin Molex connector, and a push button switch. The switch, SWI, provides the user with
control over the mode of operation of the Sensor Ball. An LED is directly wired to the PCB at X8 and X9 but is
mounted at the bottom of the Sensor Ball. The LED provides an external indication of the status of the Sensor Ball.
The bottom plane is populated with surface-mount passive components. The internal planes are from top down:

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

signal m e , ground reference, 3-V supply (analog only), and 6-V supply. The 3-V Vdd supply connects only to the
microcontroller so is not allocated a routing plane.

The rectangular Signal Conditioning Board, R621 IO, is populated on both sides and contains four circuit planes.

top plane, followed by the 6-V supply plane, and then the bottom signal-routing plane. The bottom plane is
The top plane includes the accelerometer integrated circuits. The ground reference plane is the next layer under the

populated with operational amplifiers and passive components for signal conditioning,

The two circuit boards are wired together at through-hole terminations F1 through F4. Terminations F1 and F2
provide the power and ground, respectively, to the Signal Conditioning board, while F3 and F4 are the Y- and Z-axis
acceleration levels measured and conditioned on the Signal Conditioning board. Details showing the circuit plane

Materials Lists.
layout and component placement for each board is contained in Appendix F Assembly Drawings and Electronics

Communication Cable
To extract data and perform other maintenance functions on the Sensor Ball, the communication cable is required. 11
is the only cable used with the Sensor Ball. One end of the cable attaches to the keyed, 3-pin connector on the
Signal Conditioning board, and the other connects to COMl on a personal computer. The 54-inch cable has a resin-
filled fiberglass sheath protecting the wiring, which is f m l y attached to the terminating connectors using cable
lacing and hard epoxy. Definitions for the signals and pin numbers at each connector are listed in Table 2 below.

Table 2. Sensor Ball to PC Connection Cable Pin Definitions

Signal Personal Computer, Sensor Ball,
3-Pin Molex (U3) 9-Pin D Subminiature

Signal Return (Ground)
2 2 Transmit at SB.
5 1

Receive at SB,
Receive at PC’

Transmit at PC
3 3

Microcontroller Firmware
Because the microcontroller is a one-time programmable device, any changes to the code will require replacement of
The microcontroller code is almost 4k Words in size, nearly filling nearly all the available program memory space.

the device. The code is divided into six modules plus three auxiliary files. A complete listing of the code is
contained in Appendix K Microcontroller Code Listing. The content and function of each of the modules is
described here.

Main Code Module, Ball.asm

microcontroller initialization on reset, a loop monitoring the conductivity measurement, data acquisition and storage
BalLasm is the main section of code that controls the operation of the Sensor Ball. It provides four main functions:

into memory, and a user-interface loop that communicates with the PC-based interface software.

23

Power Up
Reset

-

&---
lnltlallze Variables and
Operating Parameters

Set Wail Flag as Complete

Button

No

Finished Bo

L

Command

Power all drurlby

lnilialize serlal to IDZk Baud
Turn on LED . *

lnnialize 5-minute Timer

I.

No

4 Walt 1 second
Power all drcuitty and

-No

Yes
I
I I

Yes

Collect 45-minute dah
mrd. 7168 samples

1 I

Figure 11. Flowchart for the Sensor Ball Firmware, Main Module

The initialization code sequence contained in Ball.asm executes whenever the Sensor Ball is reset by any of: initial
power application, the initialize command fiom the PC interface sohare, or an interrupt fiom the Watch-Dog
Timer. The latter would only occur in an error condition such as if the microcontroller was not executing the proper
code or if it takes longer than was anticipated to compete a function. The fmt step in the initialization sequence is
configuring input and output parallel ports. Next the serial port and A/D module are initialized. The outputs are

the serial interface as a debug test.
then set to the desired level for operation. A short phrase, the Sensor Ball version and unit number, is transmitted on

24

After initialization, the code then enters the main operating loop. For the majority of the time in this loop, the
microcontroller is operating in a low-power state and other circuitry is not powered. Immediately upon entering this
loop and every sixty seconds thereafter, the microcontroller powers up the rest of the Sensor Ball and interrogates
the conductivity sensor. If the conductivity is above a preset threshold (about 6% of full-scale range), the recording
process begins and one record is collected. If the threshold is not reached, then the microcontroller returns to the
low-power loop.

A flaw in the firmware design causes the Sensor Ball to begin the recording process whenever the battery is initially
connected. This happens because afkr power-up initialization, only a quarter-second delay occurs between power
application to the conductivity circuitry and checking its output. From circuit tests, the conductivity circuit requires
a half-second power-up delay, and the normal conductivity check loop waits over one second before acquiring the
conductivity measurement. A simple movement of the starting label for the conductivity checks process would

will terminate the data collection cycle.
correct the problem. The work-around is to press and hold the “Attention” button until the LED remains on. This

Delay Timing Loop of 6all.asm
Two types of timing are accomplished in the microcontroller. The first, a watchdog timer, is based upon a special,
internal oscillator with a eequency set at the time of manufacture. This timer controls the time that the Sensor Ball
is in the low-power, ‘Weep” mode. The second is based upon the instruction cycle clock, which is derived from an
oscillator that is programmed with an external resistor and capacitor. This timer is used to establish the delay
between sets of measurements during data collection and perform other delays as needed in the code. The time
variable created to provide a pseudo-real-time clock is dependent upon both timers.

7 to 33 milliseconds, with 18 milliseconds typical. This is measured with VDD = 5V, and over the temperature
From the microcontroller data sheet’, the typical value for the Watch-Dog Timer timeout period (Twdt) ranges from

range -40°C to +85T with the typical value measured at 25°C. However, Microchip states that these parameters are
for design guidance only and are not tested. For the Sensor Ball, the PIC16C774 microcontroller is powered with a
3-V supply voltage. The delay seems to be very close to the typical, 18 millisecond value in the Sensor Ball. The

value of about 2.3 seconds for the “Sleep” delay loop. Thus, twenty-six passes through the loop are required to
Sensor Ball fmware applies a 1: 128 scale factor on the watchdog timer delay, resulting in an incremental timing

accumulate the desired 60-second delay between conductivity measurement checks. Once the Sensor Ball is
operating in full-power mode, the instruction clock timer is used.

3.686MHz, which was selected to be an integral multiple of the 19.2k Baud rate. This frequency can vary
Resistor R46,7.87kR and capacitor C40,22pF set the instruction clock frequency. The desired frequency is

primary oscillator frequency is divided by four to produce the instruction clock frequency. Then, a 1 :4 scale value is
somewhat, but should not be more than 3% from the desired target or serial communication will be affected. This

applied to form the basis for Timer 1. Each increment of the Timer 1 clock represents about 1.1 1 milliseconds, and
this is also the increment of the Time Least Significant Word that is stored with the recorded data. The Time value
is adjusted each time the WAIT delay subroutine is called.

Data Collection Section of 6all.asm

measurement is above a set threshold, a data collection cycle will begin. The data collection code loop controls the
If the conductivity check indicates that the Sensor Ball is immersed in water, that is, that the conductivity

Analog-to-Digital Converter (ADC), reads the ADC result, and stores the information into the Flash memory. The
microcontroller then waits a short delay before acquiring another data set. Pressing and holding the Attention
button, accessible only when the Sensor Ball is opened, can halt the data collection cycle.

First, the Flash memory is interrogated to verify that the location pointed to by the current memory address value is
actually blank. This value is cleared when the microcontroller is initialized but a search routine fmd the frst blank

9 httD://www.microchi~.com/l000/uline/vicmicro/families/16c77xldevices/16c774/index.htm PIC16C77314
Datasheet, Table 15-7: Reset, Watchdog Timer, Oscillator Start-up Timer, Power-Up Timer, And Brown-Out Reset
Requirements, page 163.

25

collection cycle, the memory address value will already point to the next usable Flash memory location. If the
section where data has not been stored. If the microcontroller has not been re-initialized since the previous data

memory is full (unlikely since the 32 ME can contain 256 records), the data collection loop ends and he
microcontroller returns to the low-power state.

Because the basic unit in the Flash memory is a 512-byte page, data are stored in this increment. The first two bytes
on the page form a synchronization word that indicates the page contains valid data. This is followed by six bytes
containing the record number, the h e number, and four bytes representing the time. The remaining 504 bytes
hold 28 sets of measurements, with each set consisting of 9, 16-bit measurement values. Table 1 lists the data
collected.

takes about 9 milliseconds), producing a data collection frequency of 2.66 samples per second. Collection proceeds
After collecting each complete set of 9 values, the microcontroller pauses for about 368 milliseconds (data collection

for about 45 minutes, filling 128 kB memory, and then control is returned to the main loop starting with an
immediate check of the conductivity measurement. If the conductivity is still above the set threshold, the data
collection loop is immediately re-entered. Otherwise, the low-power loop begins, with the conductivity
subsequently checked every 60 seconds.

Command Processing Section of Ball.asm

complete command sequence, then calls the command processing routine, Cmd-Handam. The characters are
The command processing section of the Ball.asm module is a simple loop that waits until the Sensor Ball receives a

complete command is ready for processing. The only other function of the command loop is to monitor how long
caphued by an interrupt routine contained in the Ser-Hand.asm module, which also provides the indication that a

the last command. This ensures that a spurious “Attention” signal won’t halt the Sensor Ball for too long. The
ago the last command was entered and return to the low-power mode if more than five minutes have elapsed since

depending upon the Sensor Ball’s operating mode before the Attention button was pressed. In the low power,
command mode can be entered at any time by pressing and holding the Attention button. Response times vary

“Sleep” mode, response is within 3 seconds. At the other extreme, the response may be as long as 11 seconds if the
Sensor Ball is acquiring data.

Serial Interface Module, Ser-Hand.asm

routine that captures and processes control characters, and that captures a command phrase and indicates to the main
The serial interface module contains all code associated with the serial interface. It includes the interrupt service

routine that a command sequence is complete. Also included are interface configuration, character and string
transmit routines.

The Sensor Ball’s microcontroller is configured to generate an interrupt whenever a character is received on the
serial interface, and code execution changes to the interrupt service routine. This routine includes hardware error
processing to clear buffer overflow or fiaming errors. The Sensor Ball expects serial data using the format of one
start bit, eight data bits, and one stop bit. Because the least-significant bit is transmitted fust, timing errors receiving
the serial data affect the most significant bit to the greatest extent. Either 19.2k Baud or 115.2k Baud may be used,
but the Sensor Ball must be commanded to expect the higher data rate.

In the ASCII character defmition, control characters have numeric values of hexadecimal 1F or lower. The Sensor
Ball recognizes only eight control characters: Control-C, line feed, carriage return, X-off, X-on, Acknowledge, and
Negative Acknowledge. If a control character other than these eight is received it is ignored. Control-C stops any
command phrase in progress and is also used to abort the data upload process. Line feed and carriage return are
used to terminate a command phrase, and may occur in either order. X-on is used to signal the Sensor Ball to begin
transmitting data during a Status command or data upload. X-on also clears X-off, which may be sent by the PC to
temporarily suspend data transfer if the X-on / X-off protocol is used. The Acknowledge and Negative
Acknowledge are used during data upload, at the end of each 560-byte block that is transferred. The Sensor Ball
calculates a 16-bit checksum for each block, and transmits it when finished sending the block. The PC does a
similar calculation, and t ransmits an Acknowledge control character ifthe checksum calculated by the PC matches
what the Sensor Ball sent. Otherwise, the PC returns a Negative Acknowledge control character, and the Sensor
Ball retransmits the data block. I

I 26

I
I
1
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I

A command phrase consists of the following character sequence:
I . A “O”, the zero character, must he sent fvst by the PC interface.
2. An alphabetic command character (A through Z), either upper or lower case, follows.
3. Optionally, any parameters can follow the command character. These characters must have numeric

4. Finally, carriage return and line feed are sent in either order.
equivalents of hexadecimal 20 or greater; otherwise they would be interpreted as a control character.

Following receipt of a complete command phrase, the Sensor hall echoes the phrase back to the PC. This provides a
check to ensure the command and its optional parameters were received properly. If the command is echoed
properly, the PC sends a command phrase including the “V” command character, indicating the expected command
phrase was echoed. In response to this command phrase, the Sensor Ball echoes the previous command phrase, with
the parameters processed so that the upper and lower nihhles are combined into one character. Because control
characters cannot he included as parameter values, the parameters are encoded with only the least significant nibble
in each parmeter character used to represent a value. The nibbles 6om two sequential characters are required to
represent an eight-bit value. Therefore, the parameters echoed back to the PC in this stage can include control
characters. Following this second echo of the command phrase with processed parameters, the Sensor Ball
processes the command. If the phrase initially echoed to the PC is incorrect, sending Control-C control character, or
just repeating the intended command can cancel the incorrectly received command. If the Sensor Ball receives an
incorrect command sequence, it replies with an error phrase: “O?x”, where “X” represents the incorrect character.

Once a command phrase is complete and verified, the interrupt routine sets a flag and returns control to the
previously running code, usually the command processing section of the main code module Ball.asm.

Text String and Character Transmit and Serial Interface Configuration Routines
The serial interface code module Ser-Hand also contains other related routines such subroutines to retrieve text
strings, to transmit a character, and to configure the interface.

Text strings are recovered using a code “trick that loads the starting location of the string into the program counter,
and jumps to that location. This program location contains a return instruction with the desired character loaded in

that is jumped to. This character is passed to the serial transmission subroutine, which checks to see ifthe serial
the working register. Each character ofthe string is recovered in turn by incrementing the program address location

routine loops through its instructions to wait until the buffer is empty. When a single character is transmitted, it is
output buffer is full, and moves the character to the buffer if it is empty. If the register is full, the serial transmission

simply loaded into the working register followed by a call to the serial transmission subroutine.

The serial interface configuration function was placed in a subroutine because it is called during power up / reset
initialization, whenever the “Attention” button is pressed, and in response to the PC interface Baud Rate command.
The routine selects the Baud rate based upon the value passed in the working register: a zero indicates 19.2k Baud,
and a non-zero value 115.2k Baud.

PC Interface Command Processing Module, Cmd-Hand.asm

the command processing loop in the main code module Ball.asm calls the command handler subroutine. This is the
The Sensor Ball recognizes seventeen commands. After the serial interface module sets the command received flag,

received command character with the associated instructions. Following execution of these instructions, the
only routine in the Cmd-Hand.asm module. Using a look-up table, the command handler subroutine matches the

command handler subroutine returns control back the command-processing loop in the main code module. The
actions taken by the six commands available through the PC interface software, “SensorBalP’, are described in
Appendix C. The Read and Status command instructions are contained in separate code modules, Rd-Hand.asm and
St-Hand.asm, respectively. These routines are described later in later sections. Each of the other commands is
described below.

The Acquire command associated with command character “A” sets a flag that results in program control jumping to
the data recording instructions. Control will not he returned to the command-processing loop after the data record is
collected. Pressing the “Attention” button is required to allow other PC interface commands to be processed. The

21

action taken by the Acquire command is the same as ifthe Sensor Ball detected a conductivity measurement above
threshold in normal operation.

Command character “ B is associated with the Baud-rate change instructions. The default data rate is 19.2k Baud,

registers, and the rate is toggled to the other value. The change is accomplished by calling a subroutine in the
and the high-speed rate is 115.2k Baud. The current data transmission rate is determined from the configuration

Ser-Hand.asm code module.

The Sensor Ball’s Flash memory is erased using the “E” erase command. The entire 32M-byte memory is erased by
this command.

Command “P’, memory fill, is not available using the Sensorball PC interface software, but requires HyperTerminal

testing Sensor Ball operation. Two parameters following the command determine the number of 128k-byte Flash
or another similar software package that allows direct control of the PC’s COM port. This command is intended for

memory records to be filled with values. The default, if no parameters are attached, is one record.

A PC interface session can be terminated using the “I” initialize command. The result is equivalent to removing
power from the Sensor Ball. All variables are cleared, including those that track time. In the initialization sequence,
the Flash memory is inspected to determine the last record number and memory location used. The “P” command,
included as a legacy command results in the same actions. The PC interface uses only the “I” command.

The Data Read command “R” is implemented in the Rd-Hand routine, described below.

routine, which is described below.
Sensor Ball status is returned in response to the “S” command. This function is implemented in the St-Hand

during Sensor Ball check out. Two tests are run using two different data values in which the entire Flash memory is
The “T’ test command is also unavailable using the Sensorball PC interface software. It is intended to be used

any bad memory by writing the incorrect synchronization pattern into the start of the memory block. The test takes
filled with the data value and read back to ensure the memory is operating properly. The routine attempts to mark

a little more than half an hour to complete. An error value is returned for each IM-byte memory section tested.

Several lower-case commands in addition to the “r” and “s” commands described above are implemented as a frst

this group that is used by the Sensorball PC interface soitware is “w”, which requests the device name and unit
step towards standardizing the interface to Sandia’s memory-based instrumentation systems. The only command in

number. The Sensor Ball returns the phrase, “Sensor Ball Version 4 Unit nnn”, where “nnn” represents the unit
number. The complete list of these extended commands with their associated function is as follows:

b -replies with the high-speed data transfer rate represented in ASCII characters
c - lists the upper-case commands recognized by the Sensor Ball, “ABEFIPRST”
m - send the number of each type of channel: analog, bilevel, and self-test
n - transmit the name for the channel specified
r - as discussed above, uploads the contents of the Sensor Ball memory without checking for blanks, etc.
s -reports the status of each data channel in data fiame order
w - described above, identifies the unit as a Sensor Ball with the version and unit number
z -replies with the total memory size and the upload data block size

Flash Memory Control Module, Flash.asm

memory. Using the functions instead of in-line code or macros conserved program memory space and made the
The Flash memory module contains all the functions needed to read, write, and erase the Toshiba TC58256FT Flasn

code somewhat easier to read and maintain.

The Flash memory uses the same eight connections to accept a command, an address, and read or write data. The
code functions were organized around the memory commands, and support the following commands:

Ox00 Read Mode 1, Address bit A8=0. Allows sequential reads through a 512-byte memory page.
0x80 Write with Address bit A8=0, writes to the 528-Byte static register.

28

I
1
1
I
I
I
1
1
I
I
I
I
I
I
I
I
I
1
I

Ox10 Program, transfers the 528-Byte static register to the memory cell array
0x60 Erase, erases a 16k-Byte memory block. Must be followed by Erase Confm
OxDO Erase c o n f m command
0x70 Status, provides Ready i Busy-, and write fail.

When transferring measurements to the Flash memory, the code must keep track of bow much data has been written.
Afier a 5 12-byte memory page is filled, a separate pro-ing command must be issued to transfer the data to
non-volatile storage. The erase command also requires two steps, but this combination is designed to reduce the
change that a spurious command will accidentally erase the memory.

After a program or erase command, the memory device will be busy for a period and should not be interrupted with
additional commands or data. A special memory status inquiry function was used to monitor the status. The status
can also be ascertained by monitoring the Ready i Busy line on the memory chip. However, that occupies an
additional input connection on the microcontroller. The memory datasheet notes that up to 1 millisecond is required
for the program function, and as much as 20 milliseconds for the erase function. A read access requires IO
microseconds maximum, but that delay was achieved by padding the code with NOP (no operation) instructions.

Because the TC58256FT memory is not guaranteed to have the entire 2048 Blocks available to write, functions were

an error indication along with the Ready i Busy information. If any write or erase operation returns an error
included in the Sensor Ball fmware to detect a memory failure and hopefully avoid it. The status command returns

condition, the code attempts to mark the memory block as bad. When that block is subsequently selected for writing
or reading, the code skips ahead to the next functional memory block.

Two functions are included in the memory subroutines to assist testing the memory. Neither are accessible using the
SensorBall personal computer interface software. The fust, the memory fill command, “F”, creates simulated data
and writes it to memory. This can be used to generate data records to test the serial interface. Otherwise, uploading
blank memory is not particularly taxing since the data are all zero. The second command, “T”, or memory test,
writes values to the memory then reads back and compares the read value with the intended value. The test is
conducted page-by-page. First, the memory is totally erased. Then, pattern one is written to memory, which is a
value of hexadecimal OxAA. After the memory is filled, the memory is erased and a second value, hexadecimal
0x55, is written. Finally, the memory is erased again. Any errors are reported as messages using the serial interface.
The memory test function takes about 30 minutes to complete.

Data Upload Module, Rd-Hand.asm
The Rd-Hand.asm routine is called from Cmd-Hand when the “ R or “r” command is processed. This routine reads
the contents of the Flash memory and transmits it to the PC interface. The PC interface software allows increments
of 128k bytes to be uploaded. The start of each block of Sensor Ball memory is examined to ensure that the correct
synchronization pattern is stored in the frst 16 bits of the memory page. Blank memory (values of hexadecimal FF)

that the 16k-byte memory block failed and so should be skipped during data upload.
and memory pages with a bad synchronization pattern are skipped. An incorrect synchronization pattern indicates

waiting for a response from the PC. The PC interface software also calculates a checksum, and compares the two
The Sensor Ball calculates a checksum for each block of data uploaded, and transmits it as the last two bytes before

memory block is read and transmitted. If the checksums do not match, the PC sends the Negative Acknowledge
values. If the values match, the PC interface software sends the Acknowledge control character and the next Flash

control character, and the block is re-read and re-transmitted by the Sensor Ball.

A variation of the read command is implemented that does not inspect the memory, so does not check for blank or

the PC interface software. It may be helpful to attempt data recovery if the Flash memory became faulty.
invalid memory and therefore uploads these with the known good data. This command, “r”, is not implemented in

Both the “R” and “r” commands allow additional parameters to select where in the Flash memory data upload
begins. The PC interface software does not use this feature. The parameter is loaded as two ASCII alphabetic
characters, with the lower nibble of each combined to indicate the 128k-byte memory section of interest. The data

29

uploads continues from that point until terminated by the PC interface software, just like when no parameters are
used.

Sensor Ball Status Reporting Module, St-Hand.asm

monitors, and the current Flash memory location. These data are then transmitted to the interfaced PC. Once
The status handler routine St-Hand.asm acquires real-time data from each of the six sensors, the three voltage

complete, the code returns control to the Cmd-Hand routine, which passes control to the command-processing loop
in the main code section, Ball.asm.

Data are acquired using the 16-sample averaging algorithm implemented in the Sensor Ball data acquisition code.
The same subroutine is used for normal data acquisition, but a averaging flag bit is set to no averaging for the data
stored in Flash memory. The last-used Flash memory address is also sent so that the number of 128k-byte sections
of memory available for uploading can be gauged. This information is helpful to know so that time is not wasted
attempting to upload blank memory. The status command as implemented in the PC interface software follows the
“S” command with the “w” command, which requests the unit to identify itself. The unit identification number will
become more important since multiple Sensor Balls will be collecting data.

A second version of the status command is available, but is not implemented in the current PC interface software.
The “s” command uploads data in the order that it is defined in the data frame. Thus, the record and frame number,
the time variables, and the current Flash memory address all follow the analog channels. This is intended to be a
simpler format that can be discerned by using the other “standardized” commands.

Auxiliary Files
Three additional files are used to build the Sensor Ball firmware, and are inserted into the code as “include” files.
The Ball-Equ.inc file contains equivalence defmitions for the various single-bit programming flags that are used, as
well as the constants and assembly-time definitions. Ball-Dat.inc reserves memory for all the variables needed in
the code including the data stack structures. Finally, Ball-Msg.inc holds the message text strings. The majority of
the text strings are used to define ermr messages and measurement names that are not accessed by the present PC
interface software. These were included in anticipation of an improved interface software development.

Mechanical Design
The mechanical design of the Sensor Ball offered a number of challenges. The primary role of the Sensor Ball
housing is to protect the electronics and transducers from potentially damaging mechanical shock and vibration.
The housing must also maintain a dry interior while simultaneously permitting easy access for data extraction and
battery replacement, and a passage to the water to allow pH and conductivity to be measured. Operational
considerations in both the intended consumer environment and the laboratory were important. Finally, the design
must closely match the density of water while maintaining an orientation favorable for pH and conductivity
measurements. The final prototype design achieved all these design goals.

Sandia provided a non-hctional Sensor Ball mass mock-up to P&G in June 2000. Because electrical components
were not included, the weight was slightly less than the functional recorder and the mock-up was provided unsealed
to allow easy disassembly. The early mock-up also did not include conductivity probes, although their location on
the flat surface next to the pH sensor was noted. Scrap circuit boards were cut to the expected size because
functional boards had not been fabricated when the mock-up was produced.

Shock and Vibration

higher, non-operational mechanical shock level. These shock and vibration levels were not quantified but were
The requirements stated that the design must survive certain levels of shock and vibration while operating and a

intended to be the maximum environment expected during a wash cycle. A more difficult condition was described

was meant to consider the possibility of a consumer dropping the unit while transferring it to or from the washing
for non-operational mode, in that the Sensor Ball must survive a six-foot drop onto concrete. The latter requirement

machine.

30

A major consideration when designing to meet the shock and vibration requirements was protection of the pH probe,
its reference electrode, and the four-element conductivity probe. These must penetrate the housing wall to make

mechanism for protecting them while still permitting adequate flow of wash water past the sensors was required.
contact with the wash water. But direct impact on any of the sensors would likely destroy them, so some

The solution selected was to build a cage over the sensors. Options for the cage included solid plastic and welded

withstand the required six-foot drop onto a hard surface. And, the spring smcture did not attach well to the main
spring-wire, as well as machined steel. Initially, a plastic cage was designed, but that design proved too weak to

machined cage was tried using Type 17-4 stainless, tempered, spring steel that was selected for its spring constant,
Sensor Ball housing because any impact tended to push the spring wire hold-down points away h m the housing. A

but the material choice was unfortunate due to corrosion susceptibility when combined with the Type 303 stainless
steel fasteners. A rust problem developed around the fasteners attaching the metal cage to the Sensor Ball case.
Following an investigation that showed a material with a lower toughness was acceptable; the cage material was
changed to Type 303 stainless steel to match the fasteners. Still, concerns were raised that any metal cage might
mar the surfaces inside a washing machine. The edges of the cage were polished to minimize damage to the
washing machine.

The stainless-steel cage, shown in detail in Figure 12, includes a ring that makes full contact with the housing. The
steel is also strong enough to permit large open areas for good wash-water contact with the sensors. One of the six

conductivity probes by clothing during the wash cycle. The same approach also protects the pH reference electrode.
a n n s on the cage is positioned directly over the conductivity probe grouping. This prevents abrasion of the

The pH probe, located on the center axis of the Sensor Ball, is covered by the center of the protective cage. The
center location maximizes the internal height available to contain the pH probe body, which is about 2 inches long.

Figure 12. Sensor Ball View Showing the Sensor-Protecting Cage

Lexan case surrounding the fasteners in the iirst prototype. These were likely caused by several cycles of assembly
Six, flat-head number 6 fasteners attach the cage to the Lexan housing. Numerous cracks were discovered in the

and disassembly of the Sensor Ball. Since this was considered a severe problem, the case was replaced with an
older, but unused case from a previous design version to allow laboratory testing to continue.

Water and Chemical Resistance

well as insensitive to the chemicals in the wash water. Any exposed metallic components must not react with these
The primary design environment for the Sensor Ball is submerged in wash water, so the design must be watertight as

products. Testing of the fmt prototype design revealed material incompatibilities, which were corrected as
chemicals, which would otherwise cause a potential failure mechanism or even stain the clothing with oxidation

described above. The selection of Lexan for the housing material was predicated on its resistance to the expected
wash water chemicals as well as its good machining properties - a consideration primarily for the prototypes rather
than potential production units.

31

The fmt Sensor Ball prototype developed a leaking problem, which could have been caused by three factors. The

the DuraFET and the pH probe body caused this. Our previous assembly practice was to remove the original circuit
fust issue discovered was that the Honeywell pH sensor admitted water. We determined that a broken seal between

board that contacted the DuraFET, and replace it with our own board design to make the electrical connections. We
now leave the as-supplied Honeywell board in place, and attach wires to traces on the board. Although this
unfortunately requires careful, detailed disassembly of the pH probe to re-use the board, the seal is preserved.

Lexan case together seemed to be inadequate. A change was made to replace the 0.103 square inch cross-section
The second leak was more a potential issue than a confmed one. The O-ring used to seal the two halves of the

material with 0.139 square inch material. The groove holding the O-ring in the Lexan case was also deepened to
accommodate the thicker material. This resulted in a very snug seal between the case halves.

Finally, we observed that the reference electrode could not tolerate a pressure differential, and admitted water.

reference electrode. This was corrected to have the DuraFET facing the reference electrode,
During the pH sensor retrofit, the probe orientation was mistakenly placed with the DuraFET away kom the

All circuit board surfaces were conformally coated with a silicone rubber compound. A silicone rubber seal was
also added inside the case around the pH probe and the conductivity probes. The temperature sensor was held in
place with a thin layer of epoxy, and then covered with silicone rubber. Finally, the serial interface connector was
attached using epoxy.

Sensor Ball Density and Center of Gravity
Finally, the Sensor Ball mechanical design sets the density of the unit to approximately that of water, and maintains
the unit’s orientation when it is floating in water. To accurately measure the conditions imposed on the clothing in
the washing machine, the Sensor Ball must move through the column of water with the clothing. Also, the pH and
conductivity sensors must be continuously submerged to collect valid measurements.

The Sensor Ball’s volume was dictated in part by the space required for the electronic components. The original

battery location was a particular problem because it had to be accessible for replacement. Thus, it could not be
intent was to have a tennis-ball sized unit, but that volume was not quite sufficient to hold all the components. The

placed under the circuit board where its mass would have helped orient the Sensor Ball. To offset the battery weight
above the necessary center of gravity, we placed additional steel ballast below. But then the displacement of the

resembled the shape of the P&G Downey Ball fabric softener dispenser. The resulting weight of the unit, which is
Sensor Ball bad to be increased to maintain the desired specific gravity. In its fnal form, the Sensor Ball closely

computer-aided design software, and including a medical-grade lithium battery, The volume is 272.0 cubic
essentially the equivalent weight of water displaced by the unit, is 269.1 grams as calculated by the mechanical

centimeters, which results in a 0.997 specific gravity. The specific gravity of water varies ftom 0.9997 at 10°C to
0.9880 at 5OOC. In actuality, the specific gravity ofthe Sensor Ball as assembled is somewhat lower than calculated,

grams with a standard deviation of 0.4 grams, resulting in a 0.9917 specific gravity.
so that the unit is slightly buoyant. The measured weight of the Version 4 Sensor Ball and battery averages 269.8

In addition to steel ballast, the steel cage protecting the transducers helped shift the center of gravity. Because the

submerged requires very little center of gravity offset. This offset is the difference between the center of buoyancy
Sensor Ball is kee-floating, maintaining the orientation that keeps the pH and conductivity sensors continuously

gravity location for each component in the Sensor Ball. Based on these calculations, we adjusted the Sensor Ball’s
and the center of mass. The mechanical computer-aided design software was used to model the weight and center of

center of gravity to ahout 0.266 inches below the displacement center, sufficient to maintain proper orientation. The
lateral center of gravity locations were within 0.01 inches of the Sensor Ball centerline so that the unit did not list
noticeably.

During tests at P&G in a special transparent washing machine, the Sensor Ball moved through the column of water
with the clothes, and maintained the proper orientation. This validated this aspect of the mechanical design.

32

Design Revisions
The first prototype design, Version 1, was delivered to P&G in early September 2000. A number of requirements
changes were identified once researchers used the device. Subsequent deliveries of each design version were as

January 2002. Five units of Version 4 were produced, but only one each of the earlier versions. The Version 2
follows: Version 2 in December 2000, Version 3 design in June 2001, and the final prototype design, Version 4, in

housing was damaged during testing and replaced, then the new housing reused when the design was transitioned
from Version 2 to Version 3.

Substantial Changes in Sensor Ball Version 2

was nixed because it could potentially be hazardous to the consumer. The switch was intended to detect consumer
Version 2 included revisions to the circuit board design, and production of a new board. The mercury tilt switch

placement of the Sensor Ball into the washing machine, because moving the Sensor Ball would trip the switch with
high probability. The design was revised to use the conductivity measurement as the trigger to collect data. Using
the low-power feature of the microcontroller keeps power consumption very low while the Sensor Ball is not in a
data collection mode. This produces a slightly shorter, but tolerable, data collection life.

The conductivity sensor in Version 1 was intended to be a 4- conductor design, but we realized that the circuit did

the pH measurement unless the conductivity detection signals were coupled to the water using capacitors. Including
not actually accomplish this. Part of the problem was the realization that the conductivity measurement would affect

the feedback circuit required to implement the 4-conductor conductivity measurement seemed to add too much
complexity to the design. Thus, we compromised and used a 2-conductor probe.

In Version 1, the temperature sensor was located on the main circuit board. However, this location caused
unacceptable delays in acquiring an accurate temperature measurement. The design was modeled, and as a result a
more appropriate location for the sensor was selected in the wall ofthe Lexan case. This change required a minor
mechanical modification to cut a pocket in the Lexan.

P&G became interested in measuring the spin-cycle acceleration, so they requested that the accelerometer range be
changed from a +/-5Og device to a +/-1OOg device. This caused a circuit error that was only discovered later. The
ADXLl5O accelerometer operates at 6 V maximum, which is compatible with the Sensor Ball. However, the 100-g

power consumption but otherwise seemed to be tolerated. This decision was later reversed, back to a 50-g
device, ADXL190, accepts only 5.5 V supply power maximum. We suspect that this resulted in slightly higher

accelerometer in Version 3.

A major mechanical design revision was undertaken in Version 2 to simplify the assembly and disassembly ofthe

washing machine. In Version 1, six screws distributed around the circumference ofthe Sensor Ball held the case
Sensor Ball. The changes were also intended to reduce the chance that the Sensor Ball would disassemble in the

halves. Also, the battery case was attached to the upper case half, which made working with a disassembled unit
clumsy. The Version 2 design included mating threads on either half of the case, so that they screw together. A

to better protect the reference electrode and conductivity probes. The battery mount was moved to a structure above
single security screw was added to prevent consumer tampering. The cage covering the aqueous sensors was rotated

the circuit boards in the lower half of the case, removing all components from the top case half.

The serial interface connector for Version 1 used a Nanonics, 9-pin miniaturized connector. This connector is quite
expensive and can be difficult to use. It was replaced in Version 2 by an inexpensive, simple, 3-pin Molex
connector. However, this connector had to be epoxied to the board to keep it steady. Finally, the battery monitor
measurement was not considered important, so was removed to allow the measurement set to fit better into the Flash
memory format.

Primarily Firmware Changes for Version 3
Changes for Version 3 primarily included substantial revisions to the fmware. The code changes included a
second, high-speed serial interface speed intended to reduce data upload times, a time-stamping feature to help

potential data losses, addition of additional record information to more clearly separate data collection periods, and a
determine when the data records were collected, a Flash memory failure detection and compensation to minimize

revision to the general code structure intended to make it easier to maintain. Because the 100-g accelerometer range
was insufficient to monitor the spin cycle, the +A50 g range accelerometer replaced it to provide better resolution.
The connection board modifications to the Honeywell pH probe caused it to leak, so these modifications were
revised. Instead of removing the original circuit board that connected to the DuraFET, the board was cut and
connectors soldered to the board traces. Also, the material selected for the sensor cage was changed to Type 303

the additional data in the Flash memory made the format a non-integral multiple of the memory size, deletion of the
stainless to be compatible with the fasteners used. Previously, a material incompatibility caused corrosion. Because

battery monitor measurement was no longer justified and it was restored. The overall data collection 6equency was
reduced to 2.66 samples per second, but the 128k-byte total memory used for each data record was retained. This
means fewer samples were collected but this was acceptable to P&G.

Minor Circuit and Firmware Changes to Produce Version 4

Unit 3, was sent to P&G.January 4 to verify the design changes prior to the construction of the remaining four units.
The final five prototypes produced were Version 4, sent to P&G on January 16,2002. The fust copy of this version,

This test verified that the fmware and circuitry changes performed nearly as expected. One remaining fmware
issue that was not deemed important enough to correct was the initial powering of the Sensor Ball. Immediately

discussed in the Microcontroller Firmware section.
after a battery is installed, the Sensor Ball begins a data collection cycle. This flaw and how to correct it is

microcontroller on 3 V, there is a possibility that the analog circuit could apply a voltage greater than the 3-V
Several circuitry flaws were discovered and corrected. Because the analog circuitry operates on 6 V and the

maximum allowed by the microcontroller. This situation existed on the pH and accelerometer measurements. The

to a lesser extent at the low-speed data rate as well. Applying the greater than 3-V signal increased the effective
most noticeable impact was disruption ofthe serial data link during data uploads, primarily at the high-speed rate but

microcontroller voltage, which caused the microcontroller oscillator to shift 6equency, thereby causing
communication failures during data upload. A less noticeable result of the circuit changes was a reduction in power
consumption fiom 35 mA to 25 mA during data collection. Power during low-power, “Sleep” mode remained at
300 microamps.

Finally, we discovered that the reference electrode gel will empty if the pressure differential inside-to-outside of the
Sensor Ball exceeds more than a few pounds per square inch. This required a few attempts to correct. The final
approach secured the reference electrode with hard epoxy in addition to silicone adhesive to make a leak less likely.
A longer term, and better solution would be to replace the type of reference electrode, but this would have required
additional mechanical design modifications. This option is discussed in the next section.

Suggested Changes for a Future Design Revision
A number of potential improvements were identified for the Sensor Ball, but we lacked time and funds to implement
them. Several of these are discussed here.

Improve the pH Transducer

sealed on the inside of the Sensor Ball would help withstand pressure changes caused by shipping the unit, so that it
The most likely source of leaks into the Sensor Ball is the reference electrode. Using a reference electrode that is

can be shipped completely assembled. Perhaps pinching the tube closed with a wire clip or some other mechanism

material and the Sensor Ball case would also help considerably. The reference electrode dries out when it is not
to plug the tube inside the Sensor Ball could stop the potential leak. A better seal between the reference electrode

submerged in solution, causing a delay in producing an accurate pH measurement, so perhaps a completely different
reference electrode design should be used. Other reference electrode manufacturers provide electrodes that are

reference electrode with larger AgCI-saturated KC1 gel capacity is desirable to increase the useful life of the
virtually sealed, although they are much longer than the electrode currently used. From the P&G perspective, a

electrode.

Another issue is the pH probe. Modifying the pH probe as it is supplied fiom Honeywell requires the most skill of
the Sensor Ball assembly process. We recommend negotiating with Honeywell to have them produce a shortened
probe tip for the Sensor Ball that can be used without modification. Finally, the selection of capacitors in the pH

34

signal conditioning circuit may not be optimized for best performance. Some of the high values are probably too
high, which may slow the pH measurement response time or could even cause the measurement signal to oscillate.

Use Connectors for the Transducers
All tbe transducers, excluding the accelerometers, are currently soldered directly into the main circuit board. This
makes disassembly ofthe Sensor Ball for maintenance very difficult. Use of a connector that is accessible from the
top of the main circuit board would correct this. However, connector mounting would need to be carefully
considered to ensure that the connector did not come loose.

Select a Different Communication Connector
To extract data from the Sensor Ball, a simple, 3-wire cable is attached between the Sensor Ball and a personal

and the LED, used to indicate operating mode, is difficult to view when interfacing to the Sensor Ball. Changing the
computer. However, the connector is somewhat difficult to use. Further, the Attention button is diffkult to reach

connector to a standard circuit board header type with a 0.1-inch spacing between leads would make connections
simpler to make. This type of connector would also allow adding more wires to automatically put the Sensor Ball in
“Attention” mode whenever the connector is attached, add a reset button, allow external power to be applied, and
make the LED more readily observable.

Add a True, Real-Time Clock

emulation is flawed in that the time variable is reset whenever the Sensor Ball is reset, and it does not provide the
Sensor Ball Version 3 added code to emulate a real-time clock, allowing the data records to be time-stamped. This

time in a format readily translated to day, hour, and minute. It measures time in 1.1 1 millisecond units since the last
time the Sensor Ball was reset. Adding a real-time clock will require circuit changes to reallocate microcontroller

memory ready / busy signal is no longer used, so that connection would raise to five the spare signals available.
input pins, but four unused connections to the microcontroller are already available to accomplish this. The Flash

Combine the Accelerometer Measurements

would, and in fact, are combined by P&G during data analysis. The three measurements can be summed into a
The three accelerometer channels probably do not provide more information than a single, combined measurement

single channel if an absolute or root-mean square value was fust derived for each. Incorporating circuitry that
captured an average value of the combined result may also be helpful, and provide more information than the
extremely under-sampled measurement that is now implemented. A further enhancement could be adding two

higher full-scale range to monitor the spin cycle. Acceleration can be calculated from:
ranges of accelerometers, one with high resolution to monitor agitation and a second set with lower resolution but

A = r x w 2
where r is the washing machine tub radius and w the rotation rate in radians per second. For a 2-ft diameter
washing machine tub and a 500-RPM spin cycle speed, the acceleration is about 85 g. Analog Devices produces a
+lOO-g accelerometer that uses the same pin-out as the device used, but circuit changes would be required in the
Sensor Ball to reduce the supply voltage from 6 V to no higher than 5.5 V.

Include a 4-Probe Conductivity Measurement

replaced with a 4-probe version. This will allow linear measurement over a much broader range of conductivity.
As discussed in the Conductivity Transducer section, the present 2-probe conductivity measurement should be

The temperature measurement takes too long to stabilize when the water that the Sensor Ball is immersed in
Improve the Response Time of the Temperature Transducer

suddenly changes temperature. This was a problem with the initial prototype, and was thought corrected when the
sensor was moved from the circuit board to a pocked milled in the Lexan case. P&G reports a time constant of

would be non-linear. The AD590 costs about $10 each, while a thermistor costs less than $1. The Honeywell pH
about 5 minutes. An additional change could be use of a less expensive sensor, although the resulting measurement

probe contained a thermistor in the probe tip, so this might provide faster response.

Use a Flash-Memory Based Microeontroller
If changes are needed to the Sensor Ball fnnware, the microcontroller must be removed and replaced, a fairly
invasive and expensive operation. But, a design that incorporated a microcontroller with code held in Flash memory

35

could be easily reprogrammed as new data collection opportunities are presented. When the Sensor Ball was
originally designed a Flash-based microcontroller with a built-in, 12-bits resolution Analog-to-Digital converter was

ADC. Using this option, a 16-bit resolution or higher is ADC is readily available.
not available, and still may not be available. The design could be revised to use an external analog multiplexer and

Modify the Mechanical Design for Manufacturability
The Sensor Ball's mechanical design will be modified extensively when the transition is made to produce the units
in higher volume. The prototype was machined from a solid rod of Lexan, an operation that is too expensive to be
practical for more than just a small quantity of prototype units. The mechanical changes should also consider ways
to reduce the skill level and time required to assemble the units, and should consider features that simplify
transducer maintenance. An issue for P&G is adjusting the weight of the Sensor Ball to accommodate variation in
battery weight, which results in a variation in Sensor Ball buoyancy. Also, P&G's test consumers were concerned
that the steel cage protecting the sensors has sharp edges that may mar fabrics. The cage was supplied with polished
edges, but that seems to have been inadequate to allay these concerns.

Acceptance Testing
prototype status, the design must be verified. This shows that the engineering design meets the stated requirements.
The evaluation of the Sensor Ball must accomplish three objectives. First, because the Sensor Ball is still in

was assembled properly and that all components are functional. This second objective is the only purpose of testing
A particular concern is whether the firmware is operating as intended. Second, the testing must show that the design

when designs are produced in volume, but this is not the case for the Sensor Ball prototypes. While the first two
objectives can be accomplished with tests at Sandia, the third objective, design validation, must be done at P&G.
Design validation will demonstrate that the Sensor Ball design, which meets the design requirements and is
functional, will achieve the intended result. Many of the revisions to the Sensor Ball design during the course of this
project resulted from P&G testing that showed the design requirements needed adjustment to meet the overall
objective. The Sandia test process did not distinguish between tests intended to verify the design or to prove that it
was assembled properly. The testing steps and associated data sheet are contained in Appendix D: Sensor Ball Test
Procedure.

Testing During Assembly
A few resistor values are considered adjustable to meet functionality goals. Values are recorded for the gain and
offset resistors used for the pH measurement circuit, and for the resistor selected to set the microcontroller oscillator
frequency. The appropriateness of the values is determined by measuring the circuit response to different pH buffer

between the Sensor Ball and a personal computer is an indirect indication that the clock frequency is correct.
solutions, and by measuring the microcontroller instruction clock 6equency. Error-free serial communication

The Honeywell pH probe requires dificult modifications to make it compatible with the Sensor Ball needs. To

tested to show that a diode voltage drop occurs between the DuraFET drain and substrate, and between the source
ensure that the DuraFET portion of the probe is properly connected electrically to the attached wires, the device is

and substrate. This is tested using the diode check function on a digital multi-meter.

As a' final coarse indication of unit functionality, a power supply is connected to the Sensor Ball battery terminals
and the current measured when the Sensor Ball is in the data acquisition mode, the Attention mode, and the low-
power sleep mode. These data are recorded on the test sheet. Anomalous power consumption is a good indication
of malfunction.

Functionality and Calibration Tests
The functionality tests show that the Sensor Ball accomplishes the core, required tasks:

Communicate with the PC to allow status checks and data upload
Store data into the Flash memory and retrieve it without error
Show nominal calibration for temperature, pH, conductivity, and acceleration.

The microcontroller provides the user a means of functionally testing the Sensor Ball without resorting to simply
using the unit in an operational capacity. The Sensor Ball can acquire real-time data and send it to a PC when

36

connected with the interface cable. A status command sent by the PC to the recorder will initiate the microcontroller
to take one measurement kom each sensor and voltage monitor and send that data back to the PC. This command
can be repeated as often as necessary to facilitate testing. Because the Sensor Ball case must be opened to access the

the calibration tests can be readily accomplished.
interface cable connection, this precludes complete immersion of the unit into the standard solutions. However, all

In most cases, adequate testing of the Sensor Ball can be achieved using the personal computer user interface

measurement value acquired from each Sensor Ball transducer plus some additional status information. However,
soha re , SensorBall, which was written specifically for this design. When commanded, this software displays the

better information for testing the Flash memory can be acquired using general-pqose serial interface software such
as HyperTerminal. All of the Sensor Ball interface commands can be executed plus any resulting error messages
can be observed. These test commands are discussed in the “Microcontroller Firmware” section under
“Cmd-Hand.asm”. The memory test command, “T”, writes and reads two data patterns into the Flash memory, and
reports errors. It also attempts to mark any bad memory so that it will not be used during normal Sensor Ball data
collection. The memory fill command, “F”, inserts simulated data records into the Sensor Ball memory to facilitate
later data communication tests.

Communication tests are best accomplished using the SensorBall interface software. One of the testing steps using
HyperTerminal creates a number of simulated data records in the Sensor Ball Flash memory. The SensorBall
software displays errors that occur during data uploads. Both the 19.2k-Baud low data rate and the 115.2k-Baud
high data rate are tested.

The intent of the calibration tests is to demonstrate that the Sensor Ball calibration is nominal at room temperature.
No attempt is made to make each measurement result consistent to a high degree among the units produced. P&G is
responsible for determining the unique, precision calibration values for each unit. The tests at Sandia check the pH
measurement using pH 5 and pH 12 buffer solutions. The actual range of the Sensor Ball is just short of 7 pH units,
so depending on the measurement offset, one or the other of the pH buffer measurements will be out of range.
Conductivity is checked using a 9.65 pSiemendcm and a 1417 pSiemens/cm standard solution. The accelerometers
are tested primarily to show that the zero-g offset point is approximately mid-range. The Sensor Ball is positioned
to produce a positive and inverted acceleration measurement for each of the three axes. A difference of 2-g
acceleration between the positive and inverted position is observable.

P&G Laboratory and Field Tests
Although Sandia’s standard practice was to run each Sensor Ball in a washing machine before shipment to P&G,
this test was superficial and primarily focused on ensuring that the Sensor Ball did not leak. P&G ran extensive
laboratory tests to establish accurate calibration factors for the Sensor Ball measurements. The calibration factors
were also collected over a wide temperature range.

P&G has test washing machines that were used to evaluate the Sensor Ball’s performance compared to data

needed revisions to the Sensor Ball requirements and design. For the fmal, Version 4, prototypes, the tests provided
collected previously using specialized instrumentation. During the course of the project, these tests helped establish

a fmal check of the Sensor Ball before attempting field trials in consumer test homes,

Field trial results are not yet available, but P&G staff members were very satisfied with the laboratory performance
of the fmal design version. A total of five, Version 4 Sensor Ball units were produced at Sandia to support the field
evaluation, and allowed some comparisons of unit-to-unit variation. Figure 13 below shows a P&G staff member
testing the mechanical characteristics of the Sensor Ball.

31

I

Figure 13. P&G Staff Evaluating Sensor Ball Characteristics

38

Appendix A: P&G Background and Initial Proposal

39

F&HC Analytical Sciences - North America
Ivorydale Technical Center

May 5, 1999

Development & Fabrication of a Device for in-situ Monitoring of Washing-Machine Chemistry

The following is a proposal to fabricate a miniaturized sensor-device for following “real time” chemistry and other
key parameters occurring during the wash.

Backeround: In order to stay competitive in today’s market, we must develop better test methods to shorten the
development time of new laundry technologies. We believe one way to accomplish this is to develop “smart”
sensors that communicate back to us what is occurring in consumers’ homes. By monitoring parameters such as
wash temperature, pH, conductivity, turbidity, water hardness, available chlorine, available oxygen, product
consumption and washing machine agitation through a wash cycle, we can develop a more comprehensive
understanding of consumer practices and the impact of these practices on product performance. Ultimately, we can
develop better performance models for speeding in-house development.

A major problem we have encountered in our efforts to develop a smart sensor device is locating commercially
available, miniaturized sensor devices with data-capturing capabilities. Io addition, miniaturized sensors for some of

technologies in-house. Secondary to sensor availability is the need to understand and develop appropriate data-
the parameters we wish to measure are not commercially available, nor do we have the expertise to develop these

mining techniques to correlate sensor output with consumer preference (model building).

ProDosal: We are interested in working with outside laboratories to develop and fabricate miniaturized, data
logging devices that measure (listed highest to lowest priority): temperature, pH, conductivity,
acceleratiodvibration, turbidity, available oxygedchlorine and water hardness. We would like our initial prototype
devices to measure the first 4 above parameters. Robust macro-scale technologies that we have identified for
monitoring washing-machine chemistry include toroidal and four-electrode conductivity, ISFET pH, thermistor
temperature sensors and piezoelectric acceleratiodvibration sensors. Other suitable technologies for measuring
these parameters in a miniaturized device could be investigated, but care must be taken to thoroughly validate them
under wash conditions.

We would like the device to be capable of measuring: temperature from 5 to 95 “C, pH from I to 12, conductivity
from 0 to 1500 pSIcm, acceleration from 0 to lOOg andlor vibration from 0 to 50 mmls. Data capture via telemetry

the above 4 (or 5) parameters every 30 seconds (or less) for a period of at least two weeks - the time a product is
or self-contained data-logging hardware is also needed. The device should be capable of collecting data on each of

typically placed in a consumer’s home for evaluation. We envision a miniaturized device that would be no larger
than a tennis ball, contain non-volatile memory, completely waterproof, and have a density of - Ig/cm (so that it
would not sink or rise during the wash). Event marking capabilities are desirable but not required. The sensor
should be easily interfaced with a PC for facile data transfer and manipulation.

fabrication of this miniaturized sensor is just the first step to better understand washing machine chemistry and to
We would like to proceed with the fabrication of IO ~ 50 of these devices as quickly as possible. The initial

gain experience in using this device in the hands of a consumer. If the device proves to be successful in these initial
studies, development of more sophisticated devices would be pursued.

Next Stem: Should this be of interest, we would like to request a proposal detailing funding and timing needed to
complete the fabrication of 10 sensor devices. If needed, we are always open to discussing this proposal in more
detail.

Sensors proposal 5-5-99.doc

40

Appendix B: Requirements Document

In-Situ MonitoringLRecording Device for
Aqueous Processes

Requirements Document

Submitted to:
The Procter & Gamble Company

Cincinnati, Ohio

Submitted by:
T. A. Rohwer

Sandia National Laboratories
Telemetry & Instrumentation Department

Albuquerque, New Mexico

Version 4, June 2001

41

Table of Contents

General .. 43

1.2 Description 43
1.1 Scope 43

1.3 Theory ofOperation .. 43
1.4 Definitions ... 43

...
..

1.5 Customer, Supplier, Stakeholders ... 44
2 Requirements ... 44

2.1 Electrical Requirements .. 44
2.2 Mechanical Requirements ... 44
2.3 Environmental Requirements .. 45
2.4 Software Requirements ... 45
2.5 Delivery Requirements .. 46
2.6 Documentation Requirements ... 46

42

1 General

1.1 Scope

1 .I .I This document defines the requirements for a data acquisition system to be used
as a proof of concept In-Situ MonitoringlRecording Device for Aqueous
Processes.

1.2 Description

1.2.1 The data recorder will be based on the existing Miniature Penetrator (MinPen)
design. The small, rugged, self-contained telemetry system developed by
Sandia for use by P&G will measure acceleration, pH, temperature and
conductivity in an aqueous process environment. The data acquired will be
stored in system memory for post-test retrieval and analysis via an external
connection between the data recorder and a PC.

1.3 Theory of Operati on

1.3.1 The data recorder can automatically sense placement in the aqueous process,
and begin a data collection cycle for the duration required. During the data
collection cycle, data are measured and stored into memory. Multiple data
collection cycles can be stored. Following retrieval from the monitored
process, all collected data can be extracted. Simple disassembly will allow
access to an interface connector to allow data uploading. Data uploading will
be accomplished with a IaptoplPC connected to the interface connector. The
interface also controls memory erasure. After the data have been uploaded,
memory erased, and battery replaced, the data recorder is ready to repeat
another measurement period.

1.4 Definitions

1.4.1 MinPen. Miniature Penetrator Instrumentation. Data acquisition system
developed by Sandia National Laboratories, Telemetry Organizations
specifically for high shock environments.

1.4.2 Resolution. The fineness to which a measurement is reported. For example, a
12-bit system can resolve to about 0.02% of full-scale range.

1.4.3 Accuracy. The relationship between the measured and true value of a signal.
This cannot exceed the resolution, but could also be much worse than the
resolution may imply.

43

1.5 Customer, Supplier, Stakeholders

1.5.1 P&G is the customer wi th Kris Gansle as the project lead. Telemetry and
Instrumentation Department 2665 is the supplier with Tedd Rohwer as the
project lead. Stakeholders include Technology Partnerships, represented by
Vic Weiss and Willard Hunter.

2 Requirements

2.1 Electrical Requirements

2.1.1.1 The dynamic acceleration range will be k50 g with a resolution of 0.2g. (The
range was +50 g originally, then +IO0 g for Version 2, then +50 g again
following additional laboratory testing at P&G.)

2.1.1.2 Dynamic temperature range will be 5°C to 60°C with a resolution of 0.05°C.

2.1.1.3 Dynamic pH range will be 5 to 1 1 with a resolution of 0.01.

2.1 .I .4 Dynamic conductivity range will be 0 to 3000uS/cm with a resolution of 3uS/cm.

2.1.2 Will specify a standard off-the-shelf battery specific to the system to power the
data recorder. The recorder will have sufficient power to acquire data for the
periods specified in paragraphs 2.1.4 and 2.1.5.

2.1.3 Data acquisition will be initiated when the monitored conductivity exceeds a
predetermined threshold. An LED will indicate the data recorder status.

2.1.4 The data acquisition routine will sample 3-axis acceleration, pH, conductivity, and
temperature at a minimum rate of 1 samples per second for 40 minutes.

2.1.5 Non-volatile memory capacity will allow the data acquisition routine to be run a
minimum of 20 times before it is necessary to download the data.

2.1.6 Downloading the data will be accomplished by connecting the data recorder to a
PCllaptop.

2.2 Mechanical Requirements

2.2.1 The data recorder will b e water tight for use in aqueous processes.

44

2.2.2 The density of the data recorder will be that of water f 10 %.

2.2.3 A connector for data download will be accessible after some disassembly.

2.2.4 The battery will be accessible for replacement after some disassembly.

2.2.5 The data recorder will be bright in color.

2.2.6 The external surface of the recorder will be grippable and resistant to identified
chemicals (harshest being bleach).

2.2.7 The mechanical design will incorporate a flat surface to enable stable storage.

2.2.8 The accelerometers will be mounted in a tri-axis orientation.

2.2.9 Conductivity, temperatu re, and pH sensors will be mounted for direct contact with
environment.

2.2.10 The sensor ball will be permanently marked with an ID number.

2.3 Environmental Requirements

2.3.1 Operational Requirements

2.3.1.1 Function in aqueous processes

2.3.1.2 "5C -- "60C

2.3.2 Non-Operational Requirements

2.3.2.1 Survive in aqueous processes

2.3.2.2 "5C -- "60C

2.3.2.3 Six-foot drop onto concrete

2.4 Software Requirements

2.4.1 Installation software compatible with Windows 95/NT

2.4.2 Download data into an ASCII file and reset the memory

2.4.3 Analog status of all data channels

4s

~~~~ ~~~~~~ 



2.4.4 Computer  enabled arming of the  recorder  for  bench  testing 

2.5 Delivery Requirem ents 

2.5.1 One  data  acquisition system will  be  delivered  to  P&G  by 8/17/00. 

2.5.2 Hardware 

2.5.2.1 One (1) sensor ball. (The CRADA  was  modified to add 5 copies  of the final 
prototype  version.) 

2.5.2.2 One (1) interface  cable 

2.5.3 Software - GUI interface software 

2.5.4 Documentation 

2.6 Documentation Requirements 

2.6.1 Department 2665 will maintain a  Fabrication  and  Assembly  book  detailing 
assembly  and  testing  issues  of the data  acquisition  system. 

2.6.2 User's  Guide 

2.6.3 Systems  Requirements  Document - this  document 

2.6.4 Critical  Design  Review  documentation 

2.6.5 Functional  test  results 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 

46 



Appendix C: PC Interface  Software  Guide 

Establishing  Serial  Communication 
Data are uploaded from the Sensor Ball to a computer using a direct wire connection to the computer’s RS-232 
serial port.  When the top half of the Sensor Ball case is removed, the 9-V battery, “Attention” push-button, and 

Ball to Computer cable, and the 9-Pin Serial Connector end plugged into the  COMl serial port on a personal 
serial port are accessible. To access data, the 3-pin connector on the Sensor Ball must  be  connected  with the Sensor 

computer. The cable contains only three wires and uses only receive, transmit, and ground signals of the  RS-232 
connection. Power must  be supplied to the Sensor Ball, either by using the 9-V battery or  an equivalent power 
supply. To begin the communication process, the small, white “Attention” button must be depressed and held until 
the LED near the Sensor Ball cage is illuminated continuously. This  is the Command Mode, and will time out with 
no input after about five minutes. In autonomous data collection mode, the Sensor Ball serial interface is not 
monitored, so no external commands can  be executed. 

The next step is to run the PC interface software, “SensorBall”, on the computer. This program’s display has 
changed to include a debug frame on the right side of the screen. This shows  the data exchanged with the Sensor 
Ball in hexadecimal format, with some interpretive comments. The “Clear” button below the debug fiame clears the 
information received to that point. 

Sensor  Ball  Commands 
the project. The commands available from SensorBall are listed below with their associated functions. 
Some of the command options presented in the PC interface software, SensorBall, have changed over the course of 

[IIInitializing - Reset the Sensor Ball, returning it to the power-up state, including returning the default 
communication speed to 19.2k Baud and zeroing the time counter. The effect is the same  as removing and 
reapplying power on the Sensor Ball. The “Attention” button will need to be  pressed  again to reestablish 
communication after this command. The Flash memory is read  to determine the number of data collection Records 
currently stored in the unit, and identify the next memory location to use when beginning another collection cycle. 

the SensorBall software screen, additional configuration displays appear that are active after the “Send Command” 
[RIRAM Read - Read, or upload data from the Sensor Ball Flash memory. After the “radio button” is selected on 

button selected. The “Number of Records” dial actually uploads the number of 128kB Flash  memory sections 
specified. (If an Acquire function were terminated before the complete Record was stored, less than the entire 
128kB memory  would be used for that  one Record.) The computer file name must also be selected. While waiting 
for this input, the Sensor Ball LED will flash in a pause-blink-blink pattern. Once the fmal “Read” button is 
selected, the data are uploaded and stored in the specified file. The LED will toggle on or off for  each Record 
Frame (28 measurement sets) uploaded. If the  high Baud rate was selected, uploading 8-MB memory should take 
less than 20 minutes. 

[AIAcquiring to Flash - Acquire one 128kB data Record,  but additional records will be acquired ifthe Sensor Ball 
is  in a conductive solution (the normal operation ofthe Sensor Ball.)  This initiates the same recording function as if 
the Sensor Ball had detected sufficient conductivity to store a Record. The time to store a complete Record is now 
45 minutes (measurement sample rate 2.66  Hz).  However, pushing and holding the “Attention” button until the 
LED remains on continuously can halt the recording process. This halts the recording process and returns the 
Sensor Ball to the command-processing mode. 

[SIStatus Request -Returns the current values ofthe Sensor Ball measurements, the number of 128k byte memory 
sections containing data, and shows the unit identification (version and unit number). A blank Flash memory would 
return a zero for the Record count. 

[EIErase Memory - Erase all 32MB of Flash Memory in the Sensor Ball. The Sensor Ball monitors the result as 
each 16kB Flash Memory Block is erased, and if an error is detected, that Block is  marked as defective and not used 

47 



to record data. The LED intensity will dip and flicker slightly during  the 10 seconds or so that are required to erase 
memory. 

and 115.2k Baud. If the Sensor  Ball and computer get out of sync with regard  to communication speed, the situation 
[BIBaud Rate Change -This sends a message to the Sensor Ball  to toggle between 19.2k Baud (the default speed) 

can usually be corrected by issuing the  Baud rate toggle command a couple of times to synchronize the speeds. 

48 

I 
I 
I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 

Appendix D: Sensor Ball Test  Procedure 
Unit Number:  Date: 

Assembly  information 
Microcontroller instruction clock Frequency Test (UIO-P10): __ H Z  

R13 Value for offset is: - kR. 
R2 1 Value for  Gain is: ~ m. 
R46 Value  for pC Clock  is: - m. 

Functionality Tests 
The properties of the Sensor Ball that will  be verified are  as follows: 

Communication with PC 
Flash memory good 

Nominal pH  and conductivity measurements in standard solutions 
Power consumption nominal 

Connect the Sensor Ball to a PC, s t a r t  the HyperTerminal program (configured at 19.2k  Baud). Set the 
supply voltage to 1O.OV. Configure a DMM to monitor current supplied to  the Sensor Ball. Attach power 

with the unit number matching the expected value. 
clips to the appropriate battery clip terminals. Verify that “Sensor Ball Version 4 Unit ” was received, 

The Sensor Ball should be in Acquisition mode, with the LED blinking at about a 3Hz rate. Record  the 
supply current. Current in Acquisition mode: (Should be less  than 30mA) 

Hold the “Attention” button until the LED is steady. This halts  the Acquisition mode.  Record the supply 
current. Current in Attention mode: (Should be less than 30mA) 

Use HyperTerminal to send the following commands. The frst character is a zero, “0”. In each case, type 
the command  and hit carriage return. The command should be echoed back by the Sensor Ball. Then send 
the “Verify” phrase “OV”, also followed by carriage return. 

1. Send the memory Erase command “ O E .  Check ‘that erase messages are received after every 4MB 
for the entire 32h4B of memory. Y / N 

2. Send the fill command “OFW. Check that messages are returned after every Record, and that 4 
Records are written. Y / N 

3. Send the Memory upload command, “OR”. Verify that the LED has a Blink-Blink-Pause 
sequence. Y / N 

4. Press the “Attention” button on the Sensor Ball to return it to command  mode. The LED should 
be on steady. Y I N  

Calibration  Tests 

“Sensor Ball Version 4 Unit -” was received, with the expected  unit number matching the displayed value. 
Exit HyperTerminal, and run SensorBalll2. In response to the Status command, the display should show 

Y/N 

Set up pH and conductivity calibration standards. When the Sensor Ball  is immersed in the standard, move 
it in the solution briefly in a stirring motion. Then, execute the Status command using the  SensorBalll2 
software. Record the values in the table below. After removing the Sensor  Ball from each standard, use 
the air hose to blow off solution clinging to the sensors. 

49 



Table 1. pH Standard  Test  Results 
Air  (before  immersion) 

pH 5 Standard  pH 12 Standard 
PH, 
counts 
Temperature, 
Counts 

Table 2. Conductivity  Standard  Tests 
Air  (before  immersion)  9.65  ySiemenslcm 1417 pSiemenslcm 

Standard Standard 
Conductivity, 

Temperature, 
Counts 

Table 3. Static  Accelerometer  Tests 
Rotate 90” Left - Rotate 90’ Back - 

Normal  Orientation (+Y) 1 Attention  button  down battery terminals  up (+Z) I 
Inverted (-Y) (+X) I Inverted (-X) Inverted (-Z) 

Accel. X. 
Counts 
Accel. Y ,  

Accel. Z, 
Counts 

Table 4. Monitor  Channels 

Number 
Record 

Battery, V 
I 

+3v Supply 

+6V  Supply 

Data Upload / Memorv Tests 
Execute the Baud  command.  The display should  show 115.2 k Baud.  Execute the Status command to 
verify that communication still works; Y-I N 

Execute the Read  command, selecting 5 records to upload.  This step assumes that the  Functionality tests 
were run, which  places 4 records into memory. The upload  should  take  about  3  minutes. Note error 

Number of errors: __ 
messages  in right panel of SensorBalll2 screen. 

Exit SensorBalll2, and run HyperTerminal at 19.2  k  Baud.  Press the “Attention”  button to reset the Sensor 
Ball serial interface to 19.2 k  Baud.  The display should  increment  with  a “.” character about  every 4 
seconds. Y I N 

Use  HyperTerminal to send  the  following  commands.  The first character is a zero, “0”. In each case, type 
the command  and  hit carriage return. The command  should be echoed  back by the Sensor Ball. Then  send 
the “Verify” phrase “OV”, also followed by carriage return. 

50 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1. 

2. 

messages will be generated. Check that erase messages are received after every 4MB for the 
Send the memory Test command “OT”. This process will take about 40 minutes. Two sets of 

entire 32MB of memory.  Then, check that test messages were generated after every IMB. V e r F  
that all error values are 00. Y / N 

Make sure the Sensor Ball is in “Sleep” mode. Do this  by either letting the interface time out 
(about 5 minutes after completing the last command) or send the Initialize command, “OI” 
followed by Verify, “OV”. 
Measure the supply current: ~ (Should be about 300 p.4) 

End of Testiw 
Remove power and the serial cable. Screw on the Sensor Ball toD half. mote that the  Sensor Ball must be 
shipped with the halves separated to avoid a pressure differential’across the reference electrode.) 

51 



i 

I I I I I I I I I I I I I I I I I I I 



I I I I I I I I I I I I I I I I I I I 

1
 

E 



I
 

0
0

 

E
l 

I I I I I I I I I I I I I I I I I I I 



I I I I I I I I I I I I I I I I I I I 

r t 

-1 
I 

I 

-6
 

zz 

IC
) 

IC
) 



d' 

3 



6 

I
 

I 'a = 
3

- 

' E 

.. . 

N
r

n
 

0
0

 
*

I
D

 
0

0
 



L
 L 



I 

N
 

m
 
0
 

21. 
O
.
 

m
e

 

0
 

0
 

4
 

0
 

I 



i 

ef, Eea 

r ? 

-J
 

I 



i
 L 



I- 

1



:
I

I
*

 
.

"
 

.
.

 

i 

. 
9

%
 f
 

c 





Controller Board Bill of Materials 
Microcontroller,  Memory,  and  RS-232  Revised:  Thursday,  January  17,  2002 
R62111  Revision:  2.1 

Bill Of Materials  January  17,2002  8:50:53  Pagel 

Item  Quantity  Reference  Part  PCB  Footprint 

6 
7 

LO 

12 
11 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

26 

2 
1 

27 
1 

2 
7 

1 

1 
1 

1 
1 
1 
1 
1 

2 
2 
5 

1 

7 
1 

0. lufd  0603 Cl,C2,  C7,C9,  C13,C17,C18, 
C22,C23,C24,C25,C26,C27, 
c28,c29,c3o,c32,c33,c34, 
C35,C36,C38,C39,C41,C42, 
c43 

C5,C6,ClO,Cll,C37,C44, lOufd 3216 
c3,c47  0.47ufd 0805 

c49,c5o,c51 
C40,C12  22pfd  0402 
C48  230pfd  0402 
Dl MMBR0540  SOD-123 
Xl,TPl,  Fl,X2,  TP2,  F2,X3,  TH 
TP3,F3,X4,TP4,  F4,X5,TP5, 
X6,TP6,X7,TP7,X8,  TP8,X9, 

R8,Rl 1 Meg 0402 
RZ,R5,Rl5,RZO,R27,R29,  lOOK  0402 
R7 0 
R4 
R11 150K  0402 

25K  0402 

R13 82.5K  0402 
R16  11.8K 0402 
R17  200K  0402 

R21 365K 0402 
R19 15K 0402 

R22  51.1K 0402 
R24  5.36K 0402 
R26,R25 
R46,R28 

49.9K 0402 

R35,R49,R67,R68,R69 
7.87K  0402 

200  0402 

R37,R39,R43,R50  10K  0402 
R36,R38,R41  38.3K  0402 

R40,R42,R48,R51  20K  0402 
R47  4.99K 0402 
R57,R52 
R53 0 

1K 04P’ 
0402 

R54  30.9K 0402 
R55  39.2K 0402 
R59,R56 
R58 274K  0402 

2K 04( 

x10,x11,x12,x13,x14,x15 

65 



32 
33 

1 

34 
1 

35 
1 

36 3 
1 

37 
38 

3 

39 
1 

40 
1 

41 
1 
1 

42 1 
43 
44 

1 
1 

R60 34.8K 0402 
R61 Short 0402 
R71  147K  0402 

Ul,U6,U7  OPA4343 
SW1  PUSHBUTTON 

SSOP-16 
U2,U4,U13  LP2986 
U3 3-pin  Connector 

SO-8 

U5  ADXL15O 
U8 TH58512 

SO-14 
TSOP-48 

U9  PIC16C774A - TQ 
U10  74AC4040  SOIC-16  Narrow 

TQFP-44 

U12 MX636  SO-16  Wide 
U11  MAX3221 SSOP-16 

Assembly Changes  and  Patches for R621 I1 
Assembly R62 1  1 1 contains patches, and has a number of deleted components. The components deleted are 
as follows: 

Diodes Deleted 
D3,  D4,  D6,  D7, D8, D9. (Only Dl  remains) 

Transistors Deleted (all deleted) 
Q&Q2 

Capacitors Deleted 

C45, C46 (1OuF) 
C4, C8 (0.luF) 

Resistors Deleted 
R3, R9, R10,  R14, R23, R62 

Resistors Added 
R71 -Connect %om U1 pin  12 to ground (U1 Pin 13) 

Patches: 
Jumper pads 2 and 3 of the Q1 footprint 
Lift pin 8 of U2 
Lift pin 8 of U4 
Tie U2-pin8 and U4-pin8 to D4 

Jumper U6 pin 10 to U6 pin 11 
Short pads  for the D4 footprint 

Lift U6  pin  15. Jumper U6  pin 15 to  U6 pin  16 
Jumper U6  pin  12 to U6 pin  12 (ground) 

Jumper U5  pin  13 to US pin 14 

66 



Signal  conditioner  Board  Bill of Materials 
Sensor  Ball  Signal  Conditioner  Revised:  Thursday,  January 1 1 ,  2002 

Revision: 00 

Bill Of Materials  January 17,2002 14:01:33 

Item  Quantity  Reference Part PCB  Footprint 

Page1 

1 
2 8 TP1, Fl,TPZ,FZ,TP3,F3,TP4, 

F4 
TI 

3 
4 

4 
4 

Rl,R2,Rll,R12 49.9K 0402 
R3,R4,R13,R14 lOOK 0407 

6 1 
7 2 

u1 OPA2343 MSOP-8 
U4,U5 ADXL150 50-14 

5 C3,C9,C12,C13,C14 O.luF 0603 

5 2 R20,RlO 200 0402 

Assembly  Changes  and  Patches  for R621 10 
Assembly  R62110  contains  patches, and has  2  deleted  components.  The  components  deleted are as 
follows: 

Diodes  Deleted  (all  diodes  deleted) 
Dl,  D2 

Patches: 
JumperU4pin13toU4pin14 
Jumper  US  pin 13 to  U5  pin  14 

 61 



Microcontroller Programming Steps 
The Microchip  PIC  16C774  microcontroller resides on assembly  R62111, the Controller  Board. The 
sequence of steps is listed below to modify  the  Sensor  Ball  code for unit identification, and  then  program  a 
microcontroller  component. The assembly  language  compiler  used for this project was  Microchip’s  Mplab 
Version 5.40. This  seems to be a DOS application or at least exhibits those limitations in file name 
conventions  and so on. 

The  unit  number  is  encoded in two include files in the code,  and must be changed  in  both locations 
Comments  in the files point to the lines to he  changed for a new unit number. The file names a r e :  
Ball-msg.inc 
Ball-equ.inc 

Next,  compile  the  complete  program set, which consists of the files Ball.asm,  Cmd-Hand.asm,  Flash.asm, 
Rd-Hand.asm,  Ser-Hand.asm,  and  St-Hand.asm. One of the limitations with  the Mplab compiler  seems to 
be the number of characters allowed  in the fu l l  directory path to the files  being  compiled. The limit seems 
to be about 40 characters. 

Following  compile,  the  next step is  to program  the part. This  operation  was  done on a different computer 
than the compile at Sandia. A Microchip  Mplab  programmer  must  be  connected to the  computer.  The 
programmer  must  have  a  PIC16CXX,  44-pin  TQFP interface module. 

After  connecting the programmer, run the Mplab software, and then  enable  the  programmer tool. Be  sure 
to open the BalLhex  file to ensure that the compile  process  produced a new  executable file. The Unit  and 
Version  numbers are displayed in the ASCII  text  near  the  top  of  the  Ball.hex file. Ensure that the 
programmer displays the 16C774 part number. 

Set the Device ID hex  code to equal the Unit  number.  This  is  readable  only  by the verify tool, but may  help 
track a series of parts before  they are installed onto circuit boards. 

Install a  blank  device  in the programmer. Select the Blank  Check function, and verify that the part reads as 
blank.  Then, select Program  Device.  Verify that the process  returned error-6ee. Next select the Verify 
device  option  and  ensure that no errors are reported there. 

Finally, remove  the  programmed  microcontroller from the programmer, label it,  and  place  it  in an 
appropriate anti-static container. The leads are very easily bent so need  some  type  of protection. 

68 



Appendix G: Circuit  Board  Connector  Pin  Definitions 

Table 3. Directly Wired Connections 

Table 4. Test Points 

 69 



Appendix I: Mechanical  Components 

- 18 

- 10 

Q n  
11 A 

Figure 14. Component Detail, Sensor Ball Exploded  View 

70  

14 

17 

10 

- 12 

4 

9 

- 23 

- 22 



Table 5. Sensor Ball Mechanical Bill of Materials 

 71 



Appendix J: Mechanical  Assembly  Procedure 
The Sensor Ball case separates into two halves, with  the electronics and  support structure in the lower half and a simple shell 1 
forming  the upper half. The halves screw together, producing a watertight seal using a rubber O-ring. A critical issue  in the Sensor 
Ball assembly is  ensuring  that  the halves have been screwed tightly together while still  properly positioning the keyway slot to 
accept the security clip. Step-by-step assembly instructions follow. 

L LOWER 
HOUSING 

Figure 15. Exploded View of Disassembled  Unit 

Figure 16. Assembled  Unit 

72 

1. The lower half of the Sensor Ball housing  is 
provided with an installed O-ring. A small amount I 
of silicone-based lubricant applied to the O-ring will 
reduce the force needed to assemble the unit. 

2. Thread the upper and  lower housings together by I 
tightening in a clockwise direction until no gap 
exists between the two halves, and the upper and 
lower keyways are aligned. I 

3. Place the security clip in the aligned keyways with 
the beveled edge facing both up and outwards.  The 
clip should lay flat in the keyway  and the holes in 
the clip and the lower  housing should align. 

I 

1 
4. Insert the #4-40unc button-head security screw thru I 

the clips’ hole and  thread into the lower housing. 
Finger-tighten in the clockwise position until fully 
seated against the clip’s surface. 

5. Apply a torque value of 4 inch-pounds to  the 
security screw using a calibrated torque wench and 
the supplied insert bit. 1 
the security screw and separate the housings in a I 
counterclockwise direction. 

6 .  To disassemble, reverse steps 2 thru 4,  but remove 

I 

I 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

Appendix K: Microcontroller Code Listing 
; File  name:  "ball  .asm" 
; P&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
; Main  microcontroller  code  for  the  P&G  Sensor  Ball 

; Date: 11 December  2001 
; File  Version:  4 
; Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

: Change  history: 
09 Sep  1998 - Final  Tested  Code  on  Emulator  and  Hardware 
10 Sep  1998 - Correct  RAMWRIT  Timing  and  updated  comments 
1999 - Version 1 Sensor  Ball,  Adapted  from  MilliPen.asm,  TA  Rohwer 
Nov  2000 - Version 2, TA  Rohwer 
02  Mar  2001 - Version  3  Changes  requested  by  P&G,  ME  Partridge 

Baud  rate  from  19.2k  to  115.2kBAUD  (limited  by  the  Maxim  3221 chip) 
Average  16  samples  for  each  measurement 
Changed  WDT  to  2.4  seconds  for  Sleep  function 
User  Timer1  for  delays  in 1.11 millisecond  increments  to  285ms. 
Times  out  from  "Attention"  mode  (command  download)  in  about  5  mins. 

These  changes  were  needed  to  ensure  reliable  data at  115.2k  Baud 

Anytime  ATTENTION  button is pressed,  reset  Baud  to  19.2k. 
Change  algorithm fo r  19.2k to  Version  2  style,  hope  errors  stop. 
Eliminate  1-min  delay  between records:  check  conductivity  first. 
Remove  auto-continue  during  data  upload  after 0.5 sec. 
Correct MEM-FIND  call to  skip  a  bad  Block  appearing  blank 
Added  string  transmit  function  for  messages 
Added  "Smart  PCM  Device"  commands  b, c, m,  n,  r, s, w,  z  (CMD-HAND) 
Created  subroutine  for  interface  timeout  check  (BALL.ASM) 
Create  Flash  Page  header  subroutine  (FLASH.ASM) 

13  Jun  2001 - Add  checksum  and  data  retransmit,  ME  Partridge 

12  Aug  2001 - Version  4  Changes  per  P&G  request, ME Partridge 

11 Dec  2001  having  problem  with  serial  receive -- getting  spurious 
characters.  Reset  receive  after  each  block  transmitted  in  RD-HAND. 

Set  RB4  (previously  unused) as  an  output  for  ISR debug 
; Function: 
; Initializes  processor  settings and clears  flags & data.  Begins  a loop to 
; check  either  for  commands  or  for  conductivity  above  the  specified  threshold. 
; Conductivity  is  checked  about  once  a  minute. If  Conductivity is detected,  a 
; data  acquisition  cycle is initiated,  storing 45  minutes  of  data,  then  returns 
; to  the  loop.  Once  every  2.4  seconds  nominal  (1.5s  minimum  and  4.4s 
; maximum), the  ATTENTION  button is checked,  and if  pressed  a  command 
; processing  sequence is started.  This  mode  can  be  exited  by  selecting  the 
; "Re-initialize'' command,  or,  the  mode  will  time  out  about  five  minutes  after 
; the  last  command  is  completed.  The COMMAND-FLG  is  set after  the  command  is 
; echoed  to  the  PC,  and  the  verify ("V") character  is  received  by  the  sensor 
; ball.  Then,  CMD-HAND is called  to  interpret  commands. 

; The ATTENTION  button can also  terminate  a  data  acquisition  cycle  for  lab  use. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Project  Files: 
; ball.asm  Main  Source  File,  contains  code  sections 

MAIN-INIT at  location 0x00, PowerOn  Vector 
MAIN-PROG,  relocatable,  Main  code  section. 
subroutines Timeout-Set,  Timeout-Chk  for PC  interface 
subroutines WAIT-Sleep,  WAITlMS,  WAITXXMS  for  time  delays 
subroutines ADC-Read,  Acquire  to  collect  measurements 

; cmd-hand.asm  Command  Handler  routines,  contains  code  sections 
CMD-PROG,  relocatable 

; flash.asm  Flash  Memory  read,  write,  erase,  and  test  subroutines 

; rd-hand.asm  Memory  read  and  upload 

; ser-hand.asm Interrupt  Service  Routines  (ISR) and Serial  Subroutines 

 73 



Code  Listing - Ball.asm 

68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 

Serial  port  configuration  subroutine  with  Hi/Lo Baud  rate 
PERIPH-VEC  at location  0x04,  Peripheral  Interrupt  Handler 

; st-hand.asm Status  Handler,  uploads  current  Sensor Ball measurements 

; Last  Compile: 
Program  Memory  Usage:  0x0000 to  OxO7C4,  4038  of  4096  Bytes 

; Compiler  Directives  (See  MPASM  User's  Guide)  LIST - Listing  Options 
Option  Default  Description 
c=nnn  132  Set  column  width. 
n=nnn 60 Set  lines  per  page. 
p=<type>  None  Set  processor  type;  for  example,  PIC16C54. 
r=<radix>  hex  Set  default  radix:  hex,  dec,  oct. 
st={ONIOFF)  On  Print symbol table in list  file. 
t= { ON I OFF}  Off  Truncate  lines  of  listing  (otherwise  wrap). 

list  P=16C774, C=145, T=ON 

; CPU  Configuration  Bits  (Register  CONFIG,  Address  0x2007): 
CPl:CPO,  Code  protection  bits,  protection  off 
Vbor  Brown-out  voltage,  set  to  2.5V 
BODEN  Brown-out  reset,  disabled 
PWRTE  Power-up  timer,  enabled 
WDTE  Watch-dog  timer,  enabled 
Foscl:Fosc2,  Oscillator  select, RC  oscillator 
config ( -CP-OFF & -WDT-ON & -BODEN-OFF & -VBOR-25 & -PWRTE-ON & -RC-OSC ) 

; Configuratioin  information: 
Compiled  using  MPLAB  Ver.  5.40 
Oscillator  internal  RC,  set  to  3.686MHz  nominal 
Interface  designed  for  SensorBall  version 10 and  above,  19.2k  and  115.2k  Baud 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Include  files: 

#include  "P16C774.  INC" 

Constant  definitions 
#include  "ball-equ.  inc" 

Registers: 
#include  "ball-dat . inc" 

Subroutines  in  this  file: 
GLOBAL INIT-UP 
GLOBAL Timeout-Set 
GLOBAL Timeout-Chk 
GLOBAL WAIT-Sleep 
GLOBAL WAITXXMS 
GLOBAL WAITlMS 
GLOBAL ADC-Read 
GLOBAL Acquire 

Calls : 
EXTERN CMD-HAND 
EXTERN TX-WREG 
EXTERN TX-String 
EXTERN Baud-Set 
EXTERN SER-ECHO 
EXTERN MEM-READ 
EXTERN MEMWRITE 
EXTERN MEM-FIND 
EXTERN MEM-RD-SET 
EXTERN MEM-WR-SET 

EXTERN  MEM-PROGRAM 
EXTERN  MEM-Header 

Public  Variables: 

;Standard  Header  File  for  PIC16C773 
;Includes  all  Register  Definitions, 
;RAM Definitions, L Configuration  Bits 

; Flag,  Port,  and  Constant  Definitions 

;RES  Declarations,  memory  reserve 

; Reset  vector  routine 
; Sets  up  timer to  monitor  PC  interface 
; Tests  if  interface  has  timed  out 
; Uses  Watch-Dog  Timer  for  a  2.4  second  low-power  delay 
; Delays  for  milliseconds  set in Wreg 
; calls  WAITXXMS  to  create  a 1 millisecond  delay 
; Acquires  ADC  channel  specified  in  Wreg 
; Puts  all  nine  measurements  in  Data  stack 

; Cmd-Hand.asm, Processes  command  phrase 
; Ser-Hand.asm, Transmits  contents of  Wreg 
; Transmit  a  string  message 
; Ser-Hand.asm, Configures  serial  port 
; Ser-Hand.asm,  Uploads  command  echo 
; Flash.asm,  Return  value  from  Flash  memory 
; Flash.asm,  Writes  Wreg  value  to  Flash  memory 
; Flash.asm,  Locates  free  Flash  memory  block 
; Flash.asm,  called  from  macro  Record 
; Flash.asm,  called  from  macro  Record 
; Fills  out  the  once-per-Page  values 
; Flash.asm,  Writes  a  512-byte  page  in  Flash 

74  



139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
I62 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
I79 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 

Code  Listing - Ball.asm 

; Flag  registers  for  program  control and  status 
GLOBAL  PROG-FLAG ; bits  COMMAND,  ADC-AVG,  ACQUIRE-FLG,  REINIT,  CMDERROR 
GLOBAL SER-FLAG ; bits  XON,XOFF,ACK,NAK,CNTRLC  control  characters 
GLOBAL MEMORY-FLAG ; Memory  condition and  test  result  flags,  MEM-FULL 
GLOBAL SER-STATE ; Bits  indicating  progress  building  Command  Phrase 

; Flash  memory  position  data 
GLOBAL MEM-REC-NUM ; Current  Flash  memory  Record, 1 - 64 
GLOBAL MEM-FW-NUM ; Current  Record  Frame  (Page), 0 - 255 
GLOBAL MEM-BAD-NUM ; Bad  blocks in Flash  memory 
GLOBAL ADD0 ; Flash  Memory  address  A7 . .  A0 
GLOBAL ADD1 ; Flash  memory  address  A16 .. A8 
GLOBAL ADD2 ; Flash  memory  address A24 .. A17 
GLOBAL A8 ; Indicates  which  256B  half  of  Page 

; Serial  input  support  for  commands  and  parameters 
GLOBAL CMD-CHAR ; Command  character  for  CMD-HAND,  in  A-2 
GLOBAL RC-CHAR ; ASCII  Character  Storage 
GLOBAL RC-TEMP ; Received  Command  temporary  Storage 

; Serial  output  starting  location f o r  strings  in  program  memory 
GLOBAL Look-Hi ; Used  to  load  PCLATH  value 
GLOBAL Look-Lo ; Used  to  load  PCL 

; Analog-to-Digital  results 
GLOBAL LSBYTE ; Analog  Meas. LS  Byte. [A7, ... A01 
GLOBAL MSBYTE ; Analog  Meas. MS  Byte. [X,X,X,X,All, ... A81 

; Time  registers as data  placeholders  for  an  eventual  Real-Time  Clock  chip 
; Used  now  as  crude  recording  of  time in milliseconds  since  last  reset. 
; (units  in  parenthesis  Placeholder  for  Real-Time  Clock) 

GLOBAL  TIME0 ; LS  Byte,  Time  in  milliseconds  (Seconds) 
GLOBAL  TIME1 ; . . . next  significant  byte  (Minutes) 
GLOBAL  TIME2 ; . . . next  significant  byte  (Hours) 
GLOBAL  TIME3 ; . . . next  significant  byte  (Days  from  Reset) 
GLOBAL  TIME4 ; =zero,  not  used  yet  (Month) 
GLOBAL  TIME5 ; =zero,  not  used  yet (Year) 

; Attention  mode  time-out  registers 
GLOBAL CMD-TIMEL : Time-out  LSByte,  285ms / bit 
GLOBAL CMD-TIMEH ; Time-out  MSByte 

; Temporary  values  used  when  reading back  files 
GLOBAL R-Sync-Byte0 
GLOBAL R-Sync-Byte1 
GLOBAL R-MEM-REC-NUM 
GLOBAL R-MEM-FRY-NUM 
GLOBAL R-ADD1 ; Used in MEM-FIND, sequential  blanks 
GLOBAL R-ADD2 
GLOBAL R-TIME3 
GLOBAL R-TIME2 
GLOBAL R-TIME1 
GLOBAL R-TIME0 

; Read  value  of  Record #, Temporary  value  to  find  Record 

: Loop  counters,  other  temporary  values 
GLOBAL MeasSet-Cnt ; Loop  counter,  sets  of 9 analog  measurements 
GLOBAL Channel-Cnt ; Loop  counter,  analog  channels 0 to 9 skip  7 
GLOBAL Sleep-Cnt 
GLOBAL Loop-Cnt 

; Loop  counter,  sleep  cycles  between  conductivity  check 
; Generic  Loop  Counter 

GLOBAL  TEMP ; Temporary  Flash  value,  MEMORY-FLAG (Don't use  for 

GLOBAL  PATTERN ; Test  pattern  passed  in  Wreg to  MEM-TEST 
GLOBAL  CKSMO 
GLOBAL  CKSMl 
GLOBAL  BLCKO ; Count of Frames  uploaded, LS Byte 
GLOBAL  BLCKl : Count  of  Frames  uploaded, MS Byte 

Interrupt  routines) 

; Checksum LS Byte,  used  in  memory  to  PC  transfer 
; Checksum  MS  Byte 

: Registers to push  data  during  interrupt,  accessible  regardless of Memory  Bank  selected. 
GLOBAL STACK-Wreg ; Working  Register  holding  during  interrupts 
GLOBAL STACK-Status ; Status  Register  holding  during  interrupts 
GLOBAL STACK-FSR ; Indirect  pointer  holding  during  interrupts 

 75 



210 
21 1 
212 
213 
214 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
23 8 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 1 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 
280 

GLOBAL TEMP-INT 
GLOBAL LOOP-INT 

Code  Listing - Ball.asm 

: Temporary for  interrupt only 
: Temporary for  interrupt only 

: Command  Parameter  Stack  starting  location 
; Note:  Code  does  not  check  to  see if stack  exceeded,  that  is  beyond  address  Ox6F 

GLOBAL CMD-PARAMS : Count  of  command  parameters  received 

: String  starting  locations  transmitting  strings (TX-String subroutine) 
GLOBAL List-WhoID : Unit  ID  string 
GLOBAL List-Commands ; Valid  command  character  string 
GLOBAL List-Data00 : First  channel  name 
GLOBAL List-Slft00 : First  self-test  bit  name 
GLOBAL List-Undef : Request  undefined  name 
GLOBAL List-Fail-Msg : String  for  Memory  failure  message 
GLOBAL List-Stat-Msg : String  for  Memory  fill / test  progress 
GLOBAL List-Eras-Msg : String  for  Memory  erase  progress 
GLOBAL List-Mem-Flag : String  for  Memory  Flag  value 

: Macros: 
none : macro  definitions -- not  used 

: Interrupts: 
Enables  Global,  Peripheral,  and  Serial  Port  Interrupts 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Message  string  definition  file * * * * * * * * * * * * * * * * * * * A  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
#include "ball-msg . inc" : Text  strings  for  messages 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  power-on  Reset  Start  Vector . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MAIN-INIT CODE  Ox00 : PowerOn  Vector 

Goto INIT-UP 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  Main  program  code  relocatable . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MAIN-PROG CODE 

INIT-UP 
: Power-on  Reset  Vector,  Initialize  Microprocessor 

Clrw 
Movwf  STATUS : Cannot  directly  clear  arithmetic  flags 

Clrf  INTCON : Disable  all  interrupts 
Clrf  PIRl : Clear  peripheral  interrupt  flag  bits 
Clrf  PIR2 : Clear  CCP2, etc. interrupt  flag  bits 
Bsf  STATUS, RPO : Select  Bank 1 Memory 
Clrf  PIE1 : Clear  individual  peripheral  enable  bits 
Clrf  PIE2 : Clear  CCP2,  etc.  interrupt  enable  bits 

: Selects  Bank 0 memory 

: 1/0 Ports  (See  PIC16C77X  Data  Book,  sect. 3.0 ) 
Bcf  STATUS, RPO : Select  Bank 0 memory 
Clrf  PORTA : Initialize  ports  by  clearing  output 
Clrf PORTB 
Clrf PORTC 
Clrf PORTD 
Clrf PORTE 

: Set  Port  direction 
Bsf STATUS, RPO 
Movlw OxFF 
Movwf TRISA 
Movlw OxOD 
Movwf TRISB 
Movlw OxC5 
Movwf TRISC 
Movlw Ox00 
Movwf TRISD 

: data  latches 

: Select  Bank 1 Memory 

: Set  RA(5:O)  Inputs,  A  is  6-bit  wide  port) 

: Set  RB(7:4,1)  outputs,  RB(3:2,0)  inputs 
: TRISC<7:6>  set  to  configure  TX & RX 
; Set  RC(7:6,2,0)  inputs,  RC(5:3,1)  outputs 

: Set  RD (7: 0 )  Outputs 

76  



28 1 
282 
283 
284 
255 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
3 02 
303 
3 04 
305 
306 
307 
308 
309 
310 
311 
3 12 
3 13 
3 14 
315 
316 
317 
3 18 
319 
320 
32 1 
322 
323 
324 
325 
326 
327 
328 
329 
330 
33 1 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
35 1 

Movlw 0x07 
Movwf TRISE 

: Set  Port  outputs 
INIT-PORT 

Bcf  STATUS, RPO 
Bcf  PORTB,  WP 
Bsf PORTB,  POWER 
Bsf  PORTC,  LED 
Bsf PORTC, CE 
Bsf PORTC,  RE 
Bsf  PORTC, WE 

Code  Listing - Ball.asm 

: Set  RE(2:O) Inputs, 
: If bit 4=1, Conf.  Port  D  as  Slave  Port 

: Select  Bank 0 memory 
: WP- lo, Flash  Memory  write  protected 
: POWER on analog,  RS-232, & Flash 
; LED  hi  turns  LED on 
: CE-  high,  Flash  Memory  control  lines 
: RE-  high 
: WE-  high 

: Analog-to-Digital  Converter  Module  (See  PIC16C77x  Data  Book,  sect. 11.0) 
: ADCONO  Register  in  Bank 0 Memory,  ADCONl in Bank 1 
INITA2D 

Bsf STATUS, RPO : Select  Bank 1 Memory 
Clrf  ADCONl 
Bsf ADCON1,  ADFM : Right  justify A/D result 
Bcf  ADCON1,  VCFG2 ; Select  voltage  reference 
Bcf ADCON1,  VCFGl ; using  supply  and  ground 
Bcf  ADCON1,  VCFGO 
Bcf  ADCON1,  PCFG3 : Select  to  use  all 10 analog  channels 
Bcf  ADCON1,  PCFG2 : even  though  Analog7  is  not  connected 
Bcf  ADCON1,  PCFGl 
Bcf  ADCONl,  PCFGO 

Bcf STATUS, RPO : Select  Bank 0 Memory 
Bsf  ADCONO, ADCSO : Set  A/D  conversion  clock  Fosc/8 
Bcf ADCONO, ADCSl 
Bsf  ADCONO, ADON : Turn  on  ADC 

: Watch-dog  Timer  set  up 
: See  PIC16C77x  Data  Book,  Section 4.0 Timer  (for  prescaler),  Section  12.13  (Sleep) 
INIT-WDT 

Bsf STATUS, RPO : Select  Bank 1 Memory 
Bsf  OPTION-REG, PSA : Direct  prescaler  for  WDT  use 
Bsf  OPTION-REG, PS2 : Use  Prescale  1:128, so WDT  is 
Bsf  OPTION-REG, PS1 : about 2.4 seconds 
Bsf  OPTION-REG,  PSO : and so is  Sleep 
Clrwdt 

: Timer 1 set  up - about 1 millisecond  per  clock  tick  (l.llms @ 3.686MHz  osc.) 
INIT-TMR1 

Bcf STATUS, RPO : Select  Bank 0 Memory 
Bcf TlCON, TMRlON ; Stop  Timer 1 if  running 
Bcf TlCON,  TMRlCS ; Timer 1 clock  source  Fosc/4 
Bsf  TlCON, NOT-TlSYNC : Sleep  input  not  selected 
Bsf TlCON,  TlCKPSl : Set  Prescale  to 1:4 so Fosc/l6 
Bcf  TlCON,  TlCKPSO 
Clrf  TMRlH : Clear  timer  contents,  hi  byte 
Clrf  TMRlL : Clear  timer  contents, low byte 

: Initialize  user-defined  registers  in  Memory  Bank 0, including  Parameter  Stack. 
INIT-CLRREG 

Bcf  STATUS,  RPO : Select  Bank 0 Memory 
Movlw  0x20 : Starting  address  for  user  memory 
Movwf FSR : Stack  pointer 
Movlw 0x50 : 0x50  locations,  Ox020-0x06F 
Movwf LOOP-INT : Temporary  used  only  by  interrupt  routine 

Clrf  INDF 
Incf  FSR,  f 

Goto INIT-Reg-Loop 

INIT-Reg-Loop 

Decfsz LOOP-INT, f : Loop  counter,  number  of  user  registers 

: Give  the  power  about  a  quarter-second  to  stabilize 
Movlw Ox00 : Prepare  for  delay,  value is Ox100 
Call  WAITXXMS : Wait  for  285ms 

 77 



Code  Listing - Ball.asm 

3 52 
353 
354 
355 
356 
357 
358 
359 
360 
361 
3 62 
363 
3 64 
365 
3 66 
367 
368 
3 69 
3 70 
371 
372 
373 
3 74 
375 
3 76 
377 
378 
379 
380 
381 
3 82 
383 
3 84 
385 
3 86 
387 
388 
3 89 
390 
39 1 
392 
393 
3 94 
395 
396 
397 
398 
3 99 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
41 1 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 
422 

; Find  the  first  blank  section  of  Flash  memory,  and  read  the  last  Record 
; number  used if the  memory  is  not  totally  erased. 

Call MEM-FIND 

; Transmit  characters  on  USART,  used  to  verify  RS-232  interface  awake  for  testing 
INIT-XMT 

Clrw ; Clear  Wreg 
Call Baud-Set ; if  Wreg=O,  sets  19.2k  Baud 

Clrwdt ; Watch-Dog  Timer  reset 
Movlw "w" ; Get  character  to  select  Who  command 
Movwf CMD-CHAR ; Variable  used  by CMD-HAND 
Call CMD-HAND ; Calls  the  Who  command 

; if WregoO, sets 115.2k  Baud 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Start of main  command  check - conductivity  trigger  check - record  data - sleep  loop 
MAIN-START 

Bcf  STATUS, RPO ; Select  Bank 0 Memory 
Clrf  INTCON ; Disable  all  interrupts 
Clrf Sleep-Cnt ; Sleep-Cnt Zero = check  conductivity 

MAIN-LOOP 
Bcf  STATUS, RPO ; Select  Bank 0 Memory 
Clrwdt ; Watch-Dog  Timer  is  about  2.4  seconds 

; Check  to  see if computer  command, started by pushing  Attention  button 
Btfsc  PORTB,  ATTENTION ; Bit  Test  of  Command  Flag 
Goto ATTEN-START ; Button  pushed,  begin  processing  commands 

; If  the  Flash  Memory  is  full  (32MB), no point  trying  to  record  more  data 
Btfsc MEMORY-FLAG,  MEM-FULL ; See  if  have  full  memory 
Goto MAIN-SLEEP ; Yes,  just  minimize  power  consumption 

; Want  to  check  Conductivity  first  before  Sleep, so check  the  delay  counter. 
Movf  Sleep-Cnt,  w ; Get  current  count  down  value 
Btfsc  STATUS, 2 ; See  if  count-down = zero 
Goto MAIN-ACQ-CHECK ; Yes L power  is  still  on, so check  cond. 

; Microcontroller  Sleep  mode  saves  power.  Duration of the  Sleep  mode is set  by 
; the  Watch-Dog  Timer  (WDT)  delay  multiplied  by  the  Prescale  from  OPTION-REG. 
; In  the  PIC16C77x  Timing  Diagrams  and  Specifications,  WDT  minimum is 7ms, 
; typical  18ms,  and  maximum  33ms.  Because  the  Prescale  has  been  set  to  1:128, 
; one  low-power  Sleep  cycle  is  2.4  seconds. 

MAIN-SLEEP 
Bcf  ADCONO,  ADON ; Turn  off  ADC 
Bcf PORTB,  POWER ; Power  off  analog,  Flash,  RS-232 
Bcf  PORTC,  LED ; LED  low  turns  the  LED  off 
Call WAIT-Sleep : Wait in low-power  mode 
Decfsz Sleep-Cnt,  f ; See  if  Sleep  cycles  count = one  minute  (approximately) 
Goto MAIN-LOOP ; No,  wait  some  more 

; Wake  up  Sensor  Ball  to  check  conductivity 
Bsf  PORTB,  POWER ; POWER on analog L Flash  memory  power 
Bsf  PORTC,  LED ; LED  high,  LED on 
Bsf  ADCONO,  ADON ; Turn on ADC 

; The  conductivity  circuitry  takes  a  little  over  500ms  to  stabilize, so wait 
; for  about  a  second  before  checking  the  value.  Each  delay  below  uses  a  delay 
; value of 0x00, which  is  translated  as  Ox100  and  about  a  285ms  delay. 

Movlw  Ox00 ; Prepare  for  delay,  value  is  Ox100 
Call  WAITXXMS ; Wait  for 285ms, returns  Wreg=O 
Bcf  PORTC,  LED ; LED  off,  was  just  a  quick  flash  on 
Call  WAITXXMS 
Call  WAITXXMS 
Call  WAITXXMS 

MAIN-ACQ-CHECK 

; ADC-Read subroutine  returns  the  value  for  the  channel  specified in Wreg  into 

; Check  to  see  if  Conductivity  measurement  above  threshold  to  begin  measurement  recording  Cycle 

78  



423 
424 
425 
426 
427 
428 
429 
430 
43 1 
432 
433 
434 
43 5 
436 
437 
43 8 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 
453 
454 
455 
456 
457 
458 
459 
460 
46 1 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
48 1 
482 
483 
484 
485 
486 
487 
488 
489 
490 
49 1 
492 
493 

Code Listing - Ball.asm 

; registers  LSBYTE  and  MSBYTE.  MSBYTE  is  also  returned  in  Wreg.  If  the  ADC-AVG 
; bit  is  set in PROG-FLAG, 16-sample  averaging  is  used. 

Bsf  PROG-FLAG,  ADC-AVG ; Set  for  16-bit  averaging 
Movlw  0x04 ; Acquire  ADC  channel  4 = Conductivity 
Call ADC-Read ; ADC  average in regs.  LSBYTE  and  MSBYTE 

; A  result  of  measured  conductivity  greater  than or equal  to  Conduct-Thresh 
; will  set  the  carry  bit in the  Subwf  instruction  below 

Movlw Conduct-Thresh ; Conductivity  threshold  limit 
Subwf  MSBYTE,  w ; Subtracts  reading  from  threshold 
Btfsc  STATUS,  C ; C set  says  conductivity > threshold 
Goto MAIN-RECORD-BEGIN ; Threshold  exceeded,  begin  record 

; Threshold  not  exceeded,  reset  one-minute  delay  in  low-power  mode 
Movlw Sleep-Cycles ; = # of 2.4 second  long  Sleep  cycles 

Movwf Sleep-Cnt ; Sleep  Cycle  Down  count  from  24 is 

Goto MAIN-LOOP 

; between  conductivity  checks 

; about  one  minute  total 

MAIN-RECORD-BEGIN 
; Valid  arm  signal  based  on  Conductivity  detected,  Record  data  to  Flash.  Can 
; be interrupted at  the  end  of  each  512-byte  page  by  pressing  the  ATTENTION 
; button  (may  need  to  hold  for 10 sec) . 
; Starting  with  the  next  16kB  block  record  pointed  to  by  ADDl  and  ADD2,  read 
; the  first  two  bytes  to  verify  that  the  location is blank.  Blank  memory 
; contains  OxFFFF,  a  used  block  begins  with  OxEB90,  and bad memory  may  have 
; something  other  than  these two. If  not  blank,  (perhaps  a  RESET  occurred), 
; search  the  start of each  16kB  Block  until  a  blank  one is found. 

Call  MEM-FIND ; Search  next  128kB  Record  by  16kB  Blocks 
Btfsc  MEMORY-FLAG,  MEM-FULL ; See if  have  captured  32MB  data  records 
Goto MAIN-SLEEP ; Yes,  just  minimize  power  consumption 

; The  Frame  counter MEM-FPJ-NUM is cleared  (set  to  0x00,  which  is  effectively 
; 0x100) to record  256  frames  of  512  bytes  each  (128kB  total). 

Bcf  PROG-FLAG, ACQUIRE-FLG;  Clear  after  acquire,  set  by CMD-HAND 

Incf MEM-REC-NUM, f ; Add  one to  number  of  records  stored 
C1 r f MEM-FRM-NUM ; Clear  Memory  Page  count 

RECORD-LOOP 

; Check  to  see  if  request  to  interrupt  record  collection  process 
Btfsc  PORTB,  ATTENTION ; Bit  Test  of  Command  Flag 
Goto ATTEN-START ; Button  pushed,  abort  data acq. cycle 

; Set  up  memory  to  accept  data at  the  512-Byte  Page  address  pointed to by 
; address  Bytes  ADDl  and 2. 

Call MEM-WR-SET 

; Write  information at  start  of  memory  Page.  Time,  etc.  written  only  once  per  page. 
Call  MEM-Header 

; Initialize  measurement  counter  to  record  28  analog  sets  per  Frame 
Movlw OxlC ; Frame  contains  28  analog  meas.  sets 
Movwf MeasSet-Cnt ; initialize  counter  variable 

; Loop to build  one  data  Frame,  which  also  occupies  one  Flash  memory  Page 
FRAME-LOOP 

Clrwdt ; Reset 2.4 second  Watch-dog  Timer 
Bsf PORTC,  LED ; LED  on  during  data  acquire. 

; Acquire  one  measurement  set.  Reads  all  nine  value  pairs  into  the  Data  stack. 
Bcf  PROG-FLAG,  ADC-AVG ; Set for no averaging 
Call  Acquire ; Get  all  measurements  in  Data  stack 

; Now  store  the  measurement  set  into  memory 
Movlw Data-Start ; top  of  memory  stack 
MOWf FSR ; . . . loaded  into  the  stack  pointer 

 79 



494 
495 
496 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
5 10 
511 
5 12 
513 
514 
515 
516 
517 
518 
519 
520 
52 1 
522 
523 
524 
525 
526 
527 
528 
529 
530 
53 1 
532 
533 
534 
535 
536 
537 
538 
539 
540 
54 1 
542 
543 
544 
545 
546 
547 
548 
549 
550 
55 1 
552 
553 
554 
555 
556 
557 
558 
559 
560 
56 1 
562 
563 
564 

Code Listing - Ball.asm 

; 9 channels * 2  Bytes  each = 18 
; Re-use ADC-Read loop  counter 

; recover  value  from  stack 
; Store  in  Flash  memory 
; adjust  stack  pointer 

Movlw 0x12 
Movwf Channel-Cnt 

MEAS-LOOP 
Movf INDF,  w 
Call MEMWRITE 
Incf FSR,  f 
Decfsz Channel-Cnt, f 
Goto MEAS-LOOP 

; End  of  measurement  loop - Wait  368  milliseconds.  Using 45 minutes  data 
; collection  per  record  and  7168  samples / record, so 376.7  milliseconds  per 
; sample.  Sampling 9 analog  channels  takes  about l.lms  per channel,  essentially 
; one  delay  timer  clock  tick  each  when  the  oscillator  frequency  Fosc = 3.686MHz. 
; So, delay  for  330  additional  delay  timer  ticks, = Ox14A, = 366.7  milliseconds 

Bcf  PORTC,  LED ; LED off, brief  flash  during  acquire 
Clrw ; Starting  with  Wreg = 0 gives  256 
Call  WAITXXMS ; counts,  about  285  ms  delay 
Movlw  Ox4A ; Gives  14  counts, or 
Call  WAITXXMS ; about  82 ms delay 

; Check  if  done  with  frame 
Decfsz MeasSet-Cnt, f ; sub-frame  counter,  want  28  sets 
Goto FRAME-LOOP ; not  done  with  28  sets  yet 

; End  of  Frame  loop.  Command  transfer  of  Flash  internal  buffer  to  memory 
FRAME-WRITE 

Clrwdt ; Reset  2.4  second  Watch-dog  Timer 
Call  MEM-PROGRAM ; Transfer  internal  buffer  to  Flash 

; Note:  Maximum  write  delay is 1 millisecond.  The  call  waits  until done. 

; Increment  memory  address  to  next  512-Byte  Page.  Add0 is the  Byte  location 
; within  the  Page, so is  not  incremented. 
FRAME-INCR 

Incf ADD1,  f ; Increment  to  next  Page 
Btfsc STATUS, Z ; See if  rolled  over,  overflow 
Incf ADD2,  f ; yes,  increment  next  address 

; Increment  frame  counter 
Incfsz MEM-FRP-NUM, f ; Frame  counter,  rolls  to Ox00  from  OxFF 
Goto RECORD-LOOP 

; 128kB  Record  complete - End  of memory  acquisition / write.  The  MEM-INCR 
; function  sets  the  MEM-FULL  flag  if  it  incremented  beyond  the  last  Page  of  the 
; 32MB  memory,  indicating  that  all  acquisition  records  are  complete. 

Goto MAIN-START 

; - End  of  command  check - conductivity  trigger  check - record  data - sleep  loop 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  handler  loop.  Entered  when  the  "ATTENTION"  button is pressed.  This 
; approach  is  used  because  the  loop  above  includes  a  Sleep  function,  which 
; disables  the  serial  interface.  The  serial  interface chip, Flash  memory,  and 
; all  analog  circuits  are  also  powered  down  before  Sleep is run.  This  loop  can 
; be  exited  by  requesting  the  reinitialize  command,  or  waiting  about  5  minutes 
; for  this  mode  to  time  out. 

ATTEN-START 
; Make  sure  using  19.2k  Baud  communication 

Clrw ; Clear  Wreg 
Call  Baud-Set ; if  Wreg=O,  sets 19.2k  Baud 

; if WregoO, sets  115.2k  Baud 

; Set up  timer  for  ATTENTION  mode  time-out 
ATTEN-TIMER 

Call  Timeout-Set 
Bcf  PROG-FLAG,  LED-BLINK ; Keep  LED  steady, do dot  char.  heartbeat 

80  



565 
566 
567 
568 
569 
570 
57 1 
572 
573 
574 
575 
576 
577 
578 
579 
5 80 
58 1 
582 
583 
5 84 
585 
586 
587 
588 
5 89 
590 
59 1 
592 
593 
594 
595 
5 96 
597 
598 
599 
600 
60 1 
602 
603 
604 
605 
606 
607 
608 
609 
610 
61 1 
612 
613 
614 
615 
616 
617 
618 
619 
620 
62 1 
622 
623 
624 
625 
626 
627 
628 
629 
630 
63 1 
632 
633 
634 
63 5 

Code  Listing - Ball.asm 

; Turn  on  LED  to  indicate  ATTENTION  mode  started, and  power  aux.  circuitry 
Bsf  PORTC,  LED ; LED  high,  LED  illuminated 
Bsf  PORTB,  POWER ; POWER  high,  analog,  RS-232, & Flash on 
Bsf  ADCONO,  ADON ; Turn  on  ADC 

; Initialize  serial  input  state  registers 
Clrf PROG-FLAG 
Clrf  SER-FLAG 
Clrf SER-STATE 

ATTEN-LOOP 
Clrwdt ; Watch-Dog  Timer is about 2.4 seconds 
Call  Timeout-Chk ; Test  if  interface  has  timed  out 
Btfss  STATUS, Z ; Wreg  non-zero if  timed  out 
Goto ATTEN-END ; PC  interface timed  out 

; The  Serial  Interrupt  Handler  captures  and  verifies  a  command  phrase,  then  sets 
; the  Command  flag  bit  set and moves  the  command  character to CMD-CHAR. 
ATTEN-CMD 

Btfsc  PORTB,  ATTENTION ; Bit  Test  of  Command  Flag 
Goto ATTEN-START ; Button  pushed,  reset  interface 
Btfss  PROG-FLAG,  COMMAND-FLG; Bit  set  when  command  available 
Goto ATTEN-LOOP ; No command,  repeat  arm/command  check 

; Have  a  command  character  available,  process 
Call  CMD-HAND ; Process  the  Command 
Btfsc PROG-FLAG,  REINIT-FLG ; Bit  Test  on  ReInit  Flag 
Goto INIT-UP ; ==I, Restart  Program,  Reinitialize 
Btfsc  PROG-FLAG,  ACQUIRE-FLG; Request  to  acquire  one  Record? 
Goto MAIN-RECORD-BEGIN ; . . . then  start  acquisition 
Goto ATTEN-TIMER ; Reset  command time-out, and  loop 

; End  command.  Disable  all  interrupts.  Returns  to  conductivity  check  loop 

ATTEN-END 
; without  resetting  processor. 

Goto MAIN-START 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interface  Time-out  Set-up  Subroutine 

; Function: 
; Timeout-Set - Sets up use  of  Timer1  to  monitor  whether  the  PC  interface  has 

been  inactive  beyond  a  specified  time. 

; Calls: 
; none 

; Registers: 
; TIMEO,  TIME1,  TIME2,  TIME3 - Time  since  Sensor  Ball  reset 
; CMD-TIMEH,  CMD-TIMEL - time  since  last  interface  input 

; Interrupts: 
; Interrupts  not  used or changed  in  this  subroutine 

; Return: 
; WREG=O 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Timeout-Set 
Bcf STATUS, RPO ; Select  Memory  Bank 0 
Bcf  TlCON,  TMRlON ; Stop  Timer 1 if  running 

Clrf  TMRlL ; Clear  Timer 1 counters 
Clrf  TMRlH ; Set  for  maximum  time,  about  285ms 

Bcf  PIR1,  TMRlIF ; Clear  interrupt  flag 

BSf TICON,  TMRlON ; Start  Timer 1 
Clrf CMD-TIMEL ; Clear  time-out  registers 
Clrf  CMD-TIMEH 
Retlw 0 ; Done  with  set-up 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 81 



636 
637 
63 8 
639 
640 
64 1 
642 
643 
644 
645 
646 
647 
648 
649 
650 
65 1 
652 
653 
654 
655 
656 
657 
65 8 
659 
660 
66 1 
662 
663 
664 
665 
666 
667 
668 
669 
670 
67 1 
672 
673 
674 
675 
676 
677 
678 
679 
680 
68 1 
682 
683 
684 
685 
686 
687 
688 
689 
690 
69 1 
692 
693 
694 
695 
696 
697 
698 
699 
700 
70 1 
702 
703 
704 
705 
706 

Code  Listing - Ball.asm 

Interface  Time-out  Check  Subroutine 
; Function: 
; Timeout-Chk - Tests  whether  Timerl  has  rolled  over.  If  yes,  checks  if  the 

total  time  elapsed  exceeds  Constant Atten-Timeout.  Adjusts  the  TIME 
registers  in  the  process. 

; Calls: 
; none 

; Registers : 
; TIMEO,  TIME1,  TIME2,  TIME3 - Time  since  Sensor  Ball  reset 
; CMD-TIMEH,  CMD-TIMEL - time  since  last  interface  input 

; Interrupts: 
; Interrupts  not  used  or  changed  in  this  subroutine 

; Return: 
; WREG=O 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Timeout-Chk 
Bcf  STATUS,  RPO ; Select  Memory  Bank 0 
Clrw ; Prepare  for  Wreg=O  and Z bit  set 
Btfss  PIR1,  TMRlIF ; check  timer  completion 
Return ; Timer not  elapsed,  return  with  Wreg=O 

; Attention  time-out  counter  increment  expired.  Update  time  registers.  Timerl 
; continues  to  operate  until  stopped, so no  need  to  set up again  for  the 
; subsequent  285  millisecond  increments. 
Timeout-Update 

Bcf  PIR1,  TMRlIF ; Clear  interrupt  flag,  timer  still  running 
Movlw Ox01 ; set  to  increment  time  registers 
Addwf  TIME1,  f ; . . . about  285ms / Time1 bit 
Btfsc  STATUS,  C 
Addwf  TIME2,  f 
Btfsc  STATUS,  C 
Addwf  TIME3, f 
Addwf  CMD-TIMEL,  f ; Increment  time-out  regs,  285ms / bit 

Incf  CMD-TIMEH,  f ; Incremented  every 73 sec  (256 * 285ms) 
BtfSC  STATUS,  C 

; Make  LED  blink  if  requested.  Otherwise  do  dot  character 
Btfss  PROG-FLAG,  LED-BLINK 
Goto Timeout-Dot 

; Blink  LED  with  distinctive  pause-blink-blink  pattern,  2-second  period 
Timeout-LED 

Movf  CMD-TIMEL, w 
Andlw  0x04 ; Mask  to  get  every  four  counts, 1 sec 
Sublw  0x04 ; Four  counts * 285ms 

Goto Timeout-Test ; Not even  increment  of  four 
BtfSC  STATUS, Z ; check  if  equal 

; Make  LED  blink 
Movlw  0x02 ; LED  is PORT C, line 1 
Xorwf  PORTC,  f ; make  LED  blink 
Goto Timeout-Test 

; Debug - send  out  dot  every  4  seconds 
Timeout-Dot 

Movf  CMD-TIMEL,  w 
Andlw  OxOF ; retain  bits 0 to 3 
Sublw  0x08 ; count  on  4s  increments 
Btfss  STATUS, Z ; see  if  equal 
Goto Timeout-Test 

; On  4-second  increment,  send  heartbeat  character  to  PC 
Movlw " . 'I ; Load  dot character 
Call TX-WREG ; Transmit serial  data  and  return 

; Check  if  timed  out 

82  



707 
708 
709 
710 
71 1 
712 
713 
714 
715 
716 
717 
718 
719 
720 
72 1 
722 
723 
724 
725 
726 
727 
728 
729 
73 0 
73 I 
732 
133 
734 
735 
73 6 
737 
73 8 
739 
740 
74 1 
742 
743 
744 
745 
746 
747 
748 
749 
750 
75 1 
752 
753 
754 
755 
756 
757 
758 
759 
760 
76 1 
762 
763 
764 
765 
766 
767 
768 
769 
770 
77 1 
772 
773 
774 
775 
776 
777 

Timeout-Test 
Movlw 
Subwf 
Btfsc 
Goto 
Clrw 
Return 

; PC  interface 

Timeout 
Iorwf 
Return 

Code  Listing - Ball.asm 

Atten-Timeout ; Maximum  wait  time  without  a  command 
CMD-TIMEH,  w ; Compare  with  time  accumulated 
STATUS,  C ; If  has  timed  out,  negative (carry set) 
Timeout ; Carry  set,  timed  out 

; Set  Zero  bit  for  Wreg 
; Carry  clear,  not  timed  out  yet 

has  timed  out.  Stop  the  timer,  and  return  a  non-zero  Wreg. 

OxFF,  w ; Indicate  timeout  with  non-zero  Wreg 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WAIT  Subroutine  TAR 

Function: 
WAIT-Sleep - Long  (about  2.4  second)  low-power  delay  using  Sleep  function 
WAITlMS - 1 millisecond  delay  using  Timerl 
WAITXXMS - variable  delay  read  from  Wreg  and  using  Timerl 

Calls : 
none 

Registers: 
TIMEO,  TIME1,  TIME2,  TIME3 

; Interrupts: 
; Serial  Interrupts  not  processed  during  Sleep 
; Interrupts  not  used or changed in this  subroutine 

; Return: 
; WREG=O 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; The  Sleep function  uses the internal  WDT  oscillator,  which  can  be  somewhat 
; variable. Nominal  time  with  the  current  configuration  is 2.4 seconds,  but it 
; can range from 1.5 to  4.4s. 

WAIT-Sleep ; Wait 2.4 seconds 

; Increment  the  TIME2 to TIMEO  counter  by  2400  as  a  crude  count  of  milliseconds 
; elapsed.  The  Sleep  function  actually  has  a  wide  variation  because  an 
; internal  microprocessor  oscillator  circuit  generates the  clock  for  the 
; Watch-Dog  Timer.  TIME  register  maximum  is  about 50 days. 

Movlw  0x60 ; Adding  0x0960 = 2400ms  to  Time  regs 
Addwf  TIMEO,  f 
Movlw Ox09 ; Prepare  for  Time 1 addition 
Btfsc  STATUS,  C ; If  Time 0 overflowed,  increment  Time 1 
Movlw OxOA ; . . . by  one  more 
Addwf  TIME1,  f 
Movlw  Ox01 ; Prepare  increment  if  needed 
Btfsc  STATUS,  C ; Look  for  overflow  on  Time 1 
Addwf  TIME2, f ; Time 1 overflow,  increment  Time  2 
Btfsc  STATUS,  C ; Still  clear  from  Time 1, or  clear/set  by  2 
Incf  TIME3,  f ; Time 2 overflow,  increment  Time  3 

WAIT-SL-GO 
Clrwdt ; Watch-Dog  Timer  is  about  2.4  seconds 
Sleep ; Low  power  duration is Watch-dog  Timer 
Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Entry at  l.lms  delay  (WAITlMS)  or  variable  delay  (WAITXXMS  with  delay in 
; Wreg). About 1.11 milliseconds  per  count  (with  Fosc=3.686MHz)  of  the  high- 
; order  timer  byte  because  the  Timer 1 Prescale  is  set  to 1:4 (Fosc/4  then 
; prescale  by  1/4).  This  means  the  low-order  byte  is  incremented  every  four 
; instruction  cycles,  or  roughly 4us.  The  high-order  timer  byte is the 
; complemented  value  of  the  millisecond  delay  requested,  then  incremented by 1 
; because  timer  counts  up to  OxFF,  and  stops  on  Ox00  (roll-over).  Maximum  input 

 83 



Code  Listing - BalLasm 

778 
779 
780 
78 1 
782 
783 
784 
785 
786 
787 
788 
789 
790 
79 1 
792 
793 
794 
795 
796 
797 
798 
799 
800 
80 1 
802 
803 
804 
805 
806 
807 
808 
809 
810 
81 1 
8 12 
813 
814 
815 
816 
817 
818 
819 
820 
82 1 
822 
823 
824 
825 
826 
827 
828 
829 
830 
83 1 
832 
833 
834 
835 
836 
83 7 
83 8 
839 
840 
84 1 
842 
843 
844 
845 
846 
847 
848 

; is 0x00,  represents  about  284ms  delay,  and  minimum  0x01,  a  delay  of  l.llms. 

WAITlMS ; Wait  l.lms  (with  Fosc=3.686MHz) 
Movlw  Ox01 ; set  Wreg  with  delay  value 

WAITXXMS 
Clrwdt ; Watch-Dog  Timer  is  about 2.4 seconds 
Movwf  TEMP ; Millisecond  delay / time  increment  value 
Bcf  STATUS, RPO ; Select  Memory  Bank 0 
Bcf  TlCON,  TMRlON ; Stop  Timer 1 if  running 
Bcf  PIR1,  TMRlIF ; Clear  interrupt  flag 
Clrf  TMRlL 
Movf  TEMP,  w ; Recover  delay  to  set/clear 2 on status 
Btfsc  STATUS, Z ; Value  is  0x00,  really  represents  Ox100 
Goto WAIT-TM-ADJ ; Just  increment  next  significant  TIME  byte 
Addwf  TIMEO,  f ; Value in Wreg  not  zero, so add  to  LS  byte 
Btfss  STATUS,  C ; Check  if  carry  from  TIMEO  addition 
Goto WAIT-COM ; No  carry, no need  to  adjust  next  bytes 

Movlw Ox01 ; Incr  command  does  not  alter  Carry  bit 
Addwf  TIME1,  f ; Increment  time  registers,  -l.llms/bit 
Btfsc  STATUS,  C ; Look  for  overflow on Time 1 
Addwf  TIME2, f ; Time 1 overflow,  increment  Time 2 
Btfsc  STATUS,  C ; Still  clear  from  Time 1, or clear/set by  2 
Incf  TIME3,  f ; Time 2 overflow,  increment  Time 3 

WAIT-TMADJ 

; Inversion  and  increment  to  set  up  TMRlH  up-counter 
WAIT-COM 

Comf  TEMP,  f ; Millisecond  delay  value,  invert 
Incf  TEMP,  w 
Movwf  TMRlH 
Bsf TlCON,  TMRlON 

Btfss  PIR1,  TMRlIF 
Goto WAITXX-LOOP 

Bcf  TlCON,  TMRlON 
Bcf  PIR1,  TMRlIF 
Retlw 0 

WAITXX-LOOP 

Add  one,  becomes  value  for  up-counter 
Variable  delay, = 1.112ms * Wreg 
Start  Timer 1 

Test if Timer 1 overflow  occurred 
Overflow  still  clear,  loop  again 

Stop  Timer 1 
Clear  interrupt  flag 
Delay  over,  return  with  Wreg=O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ADC  Read  with  Average  Subroutine 

4/16/2001 ME Partridge 
; Function: 
; Sets  up  the  ADC  multiplexer  channel  pointed  to in Register  W.  Calls  the 
; WAITlMS  function  to  allow  time  for  the  ADC  multiplexer  to  stabilize,  then 
; converts  and  adds  the  programmed  number  of  samples  together.  Finally, 
; divides  (shifts  right)  the  result  by  the  programmed  number of bits. 

; Note:  the  ADC is a  12  bit  result,  but  is  right  justified so the  upper  nibble 
; of  MSBYTEO is zero. 

; Calls: 
; WAITlMS  Delays  one  millisecond 

; Macros  used: 
; none. 

Registers: 
PROG-FLAG If ADCAVG is  set,  take  a  16-bit average  of  measurement 
Wreg On  entry,  has  the  ADC  channel  to convert 
LSBYTE On  exit,  contains  the LS byte  of the  averaged  data 
MSBYTE On  exit,  contains  the  MS  byte  of the  averaged  data. 

Interrupts: 
None  used. 

Return: 
LSBYTE 
MSBYTE 

84 

= On  exit, contains the  LS  byte  of  the  averaged  data 
= On  exit, contains the  MS  byte of the  averaged  data 

 



849 
850 
85 1 
852 
853 
854 
855 
856 
857 
858 
859 
860 
86 1 
862 
863 
864 
865 
866 
867 
868 
869 
870 
87 1 
872 
873 
874 
875 
876 
877 
878 
879 
880 
88 1 
882 
883 
884 
885 
886 
887 
888 
889 
890 
89 1 
892 
893 
894 
895 
896 
897 
898 
899 
900 
90 1 
902 
903 
904 
905 
906 
907 
908 
909 
910 
91 1 
912 
913 
914 
915 
916 
917 
918 
919 

Code Listing - Ball.asm 

Wreg = On  exit,  MS  byte  of  data. 

; Revisions : 
3/3/2001  First  revision 
4/16/2001  Change  to  macro,  make  averaging  selectable 
9/16/2001  Change  to  subroutine  with ADC-AVG averaging  flag 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Set  ADC  multiplexer  channel  based on channel  identified in Register  W 
; ADCONO  Bits,  MSB to LSB: ADCSl  ADCSO  CHS2  CHSl  CHSO  GO/DONE  CHS3  ADON 

ADC-Read 
Movwf LSBYTE ; Use  as  temporary  for  channel  select 
Movlw OxC5 ; Mask to clear  CHS  bits 
Andwf ADCONO, f ; Clear  channel  selection 

Btfsc  LSBYTE, 0 
Bsf  ADCONO, CHSO ; LS bit  was a 1 

Btfsc  LSBYTE, 1 
Bsf  ADCONO, CHSl ; Bit 1 was  a 1 

Btfsc  LSBYTE, 2 
Bsf  ADCONO, CHS2 ; Bit  2  was  a 1 

Btfsc  LSBYTE, 3 
BSf  ADCONO,  CHS3 ; Bit 3 was  a  1 

; Clear  temporary  storage  for  ADC  result,  prepare for average  function 
Clrf  LSBYTE ; Clear  temporary  ADC LS Byte 
Clrf  MSBYTE ; Clear  temporary  ADC MS Byte 

; Averaging  function  only if ADC-AVG  selected in PROG-FLAG. Match  the  number 
; of  values  averaged  with  the  number of  shifts  right  to  "divide" 

Movlw  Ox10 ; Number of values  averaged = 16 
Movwf Loop-Cnt 
Call  WAITlMS ; Wait  for  ADC  multiplexer  to  settle 

Avg-Loop 

ADC-Conv 
BSf  ADCONO, GO ;Start  A/D  conversion 

Btfsc  ADCONO, GO ;Check  for  conversion  complete  on ADC-ch 
Goto ADC-Conv 
Bsf  STATUS, RPO ; Select  Memory  Bank 1 
Movf  ADRESL,  w ; Get  ADC  Result  Least  significant  byte 
Bcf  STATUS, RPO ; Select  Memory  Bank 0 
Addwf  LSBYTE,  f ; ADD  and  store  result in LSBYTE 
Btfsc  STATUS,  C ; check if LS  byte  addition  carry 
Incf  MSBYTE,  f ; Add  one  to  MSB if carry 
Movf  ADRESH,  w ; Get  ADC  Result  Most  significant  byte 
Addwf  MSBYTE,  f ; The  12-bit  ADC  result  is  right 

; justified, so upper  nibble  is  zero 

; Skip  remaining  routine if averaging  is  not  selected. 
Btfss PROG-FLAG,  ADC-AVG ; Test  to  see if averaging  requested 
Goto ADC-END ; Skip  averaging 

; Check  if  all  samples  acquired 
Decfsz Loop-Cnt, f 
Goto Avg-Loop ; Continue  average  acquisition  loop 

; Need  to  shift  result  right  4  bits  for  16  samples 
Bcf  STATUS, C ; prepare  for  Rotate  Right  with  carry 
Rrf  MSBYTE,  f ; Divide  by  2 
Rrf  LSBYTE,  f 
Bcf  STATUS,  C 
Rrf  MSBYTE,  f ; Divide  by 4 
Rrf  LSBYTE,  f 
Bcf  STATUS,  C 
Rrf  MSBYTE,  f ; Divide  by 8 
Rrf LSBYTE,  f 
Bcf STATUS,  C 

 85 



920 
92 1 
922 
923 
924 
925 
926 
927 
928 
929 
930 
93 1 
932 
933 
934 
935 
936 
93 7 
93 8 
939 
940 
94 1 
942 
943 
944 
945 
946 
947 
948 
949 
950 
95 1 
952 
953 
954 
955 
956 
957 
958 
959 
960 
961 
962 
963 
964 
965 
966 
967 
968 
969 
970 
97 1 
972 
973 
974 
975 
976 
977 
978 
979 
980 
98 1 
982 
983 
984 
985 
986 
987 
988 
989 
990 

Rrf MSBYTE,  f 
Rrf LSBYTE, f 

ADC-END 
Movf  MSBYTE,  w 
Return 

Code Listing - Ball.asm 

; Divide  by 16 

; Put  MS  Byte in Wreg 
; Return  with  ADC  result  MS  Byte in Wreg 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Acquire  ADC  data  set  Subroutine 

9/21/2001 ME Partridge 
; Function: 
; Acquires  one  set of ADC  data,  and  puts  the  values in the  Data-Stack. Channels 
; zero  through 9, skipping  channel  seven,  are  stored in LS  Byte,  MS  Byte  order. 

; Arguments : 
; Instance  Unique  identifier in the  calling  subroutine 
; AVG  Set  to 0 for no averaging,  non-zero  produces  averaged  results. 

; Calls: 
; ADC-Read Gets  ADC  value for channel  specified 
; WAITlMS  Delays  one  millisecond 

; Macros  used: 
; none. 

; Registers: 
; Wreg  Used in loop  to  select  the  ADC  channel  to  convert 

; Interrupts: 
None  used. 

; Return: 
Wreg = On  exit,  zero. 

; Revisions : 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Acquire  one  set of data.  If  data  are  acquired  while  the  serial  lines  are 
; active,  the  measurements  seem  to  be  affected. So the  acquire  is  kept 
; separate  from  the  upload  function. 
Acquire 

9/21/2001  First  revision 

Movlw Data-Start ; top  of  memory  stack 
Movwf  FSR ; . . . loaded  into  the  stack  pointer 
Clrf Channel-Cnt 

Acq-Loop 
Movf  Channel-Cnt,  w ; analog  channel  number 
Call ADC-Read ; ADC  average in regs.  LSBYTE  and  MSBYTE 
Movf  LSBYTE,  w ; Store  LSB  first,  unique  to STHAND 
Movwf  INDF ; Push  onto  stack 
Incf  FSR,  f ; increment  stack  pointer 
Movf  MSBYTE,  w 
Movwf  INDF 
Incf FSR, f 

Incf Channel-Cnt,  f 
Acq-Incr 

; Check if pointing  to  Channel  7  (which is not  used) 
Movlw  0x07 ; skip  channel 7, not  used 
Subwf Channel-Cnt , w 
Btfsc  STATUS, 2 
Goto Acq-Incr ; is  channel 7, just  increment  to  next 

; See if all  the  channels  have  been  read 
Movlw  OxOA ; Done if beyond  channel  9 
Subwf Channel-Cnt,  w 
Btfss  STATUS, 2 
Goto Acq-Loop 

86  



I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Code  Listing - Ball.asm 

 87 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Code  Listing - Cmd-Hand.asm 

: File  name: "cmd-hand. asm" 
: P&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
: Routines  to  interpret  and  execute  commands  sent  to  the  P&G  Sensor  Ball 

: Date: 11 December 2001 
: File  Version: 4 
: Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

: Change  history: 
1999 - Adapted  from  MilliPen.asm  for  Sensor  Ball,  TA  Rohwer 
November  2000 - Version 2, TA  Rohwer 
17 Mar 2001 - Version 3 Changes  requested  by  P&G,  ME  Partridge 
12  Aug 2001 - Version 4 Changes,  ME  Partridge 
Moved  Baud  change  operation  into  Ser-Hand  subroutine  Baud-Set 
Used  new  string  transmit  function  for  "Who"  identification  command 
Added  "Smart  PCM  Device"  setup  commands  b, c, m,  n, r, s, w, z 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Cmd-Hand(1er)  Subroutine 

: Function: 
: Works  in  conjunction  with RC-ISR (Interrupt  Service  Routine).  The  Sensor 
: Ball  must  be  in  ATTENTION  mode,  set  by  pressing  the  ATTENTION  button. 
: CMD-HAND  tests  the  CMD-CHAR  variable for the  known  Sensor  Ball  commands  and 
: executes  the  appropriate  procedure  (see  list  in  CMD-Jump  below) or else 
: error. 

; Order  of  operations: 
; 1 PC  sends  string  to  package: 0, Cmd, <Parml>, <Parm2>,  <Parm . .> CR,  LF 
: 2  Upon  receipt of CR, LF,  the  ISR  routine  echoes  the  completed  command  phrase 
: 3 PC  checks  the  echoed  command,  and  sends  the  verify  character  if  correct. 
: 4 Verify  command  received,  echoes  processed  parameter  values 
: 5 MAIN  program  sees  COMMAND-FLG  is  set  and  calls  CMD-HAND 
: 6 CMD-HAND  processes  the  CMD-CHAR  (which  may  set  REINIT-FLG or others) 
: 7  MAIN  program  returns  to  loop  checking  for  CMD-CHAR  (unless  REINIT-FLG) 

: Subroutines  in  this  file: 
GLOBAL CMD-HAND 

: Calls: 
EXTERN  READ-HAND 
EXTERN  STATUS-HAND 
EXTERN  SENDDATA : Sends  standard  completion  message  to  PC 
EXTERN  MEM-ERASE : Erases  entire  memory 
EXTERN  MEM-TEST : Writes  pattern  supplied  then  erases 
EXTERN  FILL-TEST ; Fills  Flash  memory  with  known  values 
EXTERN  TX-WREG : Transmits on RS-232  serial  interface 

: Memory  upload  subroutine 
; Sensor  Ball  status  upload 

EXTERN TX-String ; Uses TXWREG to  send  a  string 
EXTERN Baud-Set : Sets Baud  rate + configure  serial  port 

: Registers: 
EXTERN  PROG-FLAG : bits  COMMAND,  REINIT,XON,XOFF,  CMDERROR 
EXTERN  TEMP : Temporary  for PROG-FLAG 
EXTERN  SER-FLAG 
EXTERN  MEMORY-FLAG 
EXTERN  CMD-CHAR : Command  character for CMD-HAND, in  A - 2 
EXTERN  CMD-PARAMS : Count  of  command  parameters  received 

: Includes  flag bit to acquire  data 
: Memory  condition and test  result  flags,  MEM-FULL 

: Serial  output  starting  location for  strings  in  program  memory 
EXTERN  Look-Hi : Used  to  load  PCLATH  value 
EXTERN  Look-Lo : Used  to  load  PCL 
EXTERN  List-Undef : Request  undefined  name 
EXTERN  List-WhoID : Unit  ID  string 
EXTERN  List-Commands : Valid command  character  string 
EXTERN  List-Data00 : First  channel  name 
EXTERN  List-Slft00 : First  self-test  bit  name 

: Interrupts: 
Global,  Peripheral,  Serial  Interrupts  are  enabled  prior  to  call 
Serial  Interrupts  Disabled  for  routines  responding  with  data to  the  PC 

: Return: 

88  



I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
1 1 1  
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

Code  Listing - Cmd-Hand.asm 

WREG=O 

; include  files: 
#include  "P16C774.  INC"  ;Standard  Header  File  for  PICl6C773 

;Includes  all  Register  Definitions, 
;RAM Definitions, & Configuration  Bits 

#include "ball-equ. inc" ;EQU Declarations,  equivalence 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CMD-PROG CODE  ;relocatable  code  in  Program  EPROM 

; The  command  character  was  verified by  SER-HAND to be  in "A" . . " 2 "  

; Now,  set  Program  Counter  to  select  subroutine  according  to  character 
CMD-HAND 

Clrf 
Movlw 
Movwf 
Movlw 
Subwf 
Addlw 
Btfsc 
Incf 
Movwf 

CMD-Jump 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 

Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 

Goto 

PROG-FLAG ; Clear  Command  Flag  register 

PCLATH ; set in upper 5 bits  of  PC 
high CMD-Jump ; Get upper  Program  Counter 

"A" ; Character  offset 
CMD  CHAR,  w ; Command  Character  minus  Offset  "A" 
CMDIJump 
STATUS,  C 
PCLATH,  f 
PCL 

CMDA 
CMD-B 
CMD-Undef 
CMD-Unde f 
CMD-E 
CMD-F 
CMD-Unde f 
CMD-Undef 

CMD-Undef 
CMD-Unde f 
CMD-Undef 
CMD-Unde f 
CMD-Unde f 
CMD-Undef 
CMD-I 
CMD-Undef 
CMD-R 
CMD-S 
CMDT 

CMD-I 

CMD-Undef 
CMDUnde f 
CMD-Unde f 
CMD-Undef 
CMD-Undef 
CMD-Undef 
CMD-Unde f 
CMD-Undef 
CMD-Unde f 
CMD-Unde f 
CMD-Unde f 
CMD-Undef 
CMD-Undef 
CMD-b 
CMD-C 
CMD-Undef 
CMD-Undef 
CMD-Unde f 
CMD-Undef 
CMD-Unde f 
CMD-Undef 
CMD-Unde f 
CMDUnde f 
CMD-Unde f 

; Adds GOT0 series  starting  address 
; Check  if  address  addition  overflow 
; Yes,  adjust  program  counter  high  byte 
; jump  there 

; acquire  command,  begin  acquiring  one  record 
; Baud  rate  change,  increase  to 115.2K 
; command  C 
; command D 
; E = erase  memory  command 
; command F 
; command  G 
; command H 
; I = initialize  command 
; command J 
; command K 
; command L 
; command  M 
; command N 
; command 0 
; P = initialize  command 
; command Q 
; Read  Records  command 
; get  unit  status  command 
; Test  memory and erase 
; command U 
; command V - processed  in  SER-HAND,  not  here 
; command  W 
; command X 
; command Y 
; command 2 
; command [ left-bracket  open-square 
; command \ left-slash  backslash  bash 
; command ] right-bracket  close-square 
; command A hat  circumflex  caret  up-arrow 
; command - UNT  underscore  underbar 
; command ~ accent-grave  backprime  backquote 
; command  a  alpha 
; Send  high  Baud  rate 
; Send  recognized  commands 
; command  d  delta 
; command  e  echo 
; command  f  foxtrot 
; command  g  golf 
; command  h  hotel 
; command  i  india 
; command  j  juliett 
; command k kilo 
; command 1 lima 

 89 



143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 

Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 

CMD-m 
CMD-n 
CMD-Undef 
CMD-Undef 
CMD-Undef 
CMD-r 
CMD-s 
CMD-Undef 
CMD-Undef 
CMD-Undef 
CMD-W 
CMD-Unde  f 
CMD-Undef 
CMD-z 

Code  Listing - Cmd-Hand-asm 

Send  channel  numbers:  analog,  bilevel,  self-test 
Send  name for specified  channel 
command o Oscar 
command  p  papa 
command  q  quebec 
Upload  data  starting  at  Page  specified 
Status in "Smart  PCM  Device"  format 
command  t  tango 
command u uniform 
command  v  victor 
Who  are  you?  Identify  this  unit 
command x x-ray 
command y Yankee 
Reply  total  memory  and  transfer  block  size 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  error,  command  character  invalid  (not in A - z )  or command  undefined 
CMD-Unde  f 

Bsf  PROG-FLAG,  CMDERROR-FLG ;Set  Command  Error  Flag 
Goto CMD-END ; Exit  routine 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Set ARM to  create  one  Record  of 256 data  frames,  each  frame  one  512-byte  page. 
; Recording can be  interrupted  at  the  end of each  512-byte  page  by  pressing  the 
; ATTENTION  button  (may  need  to  hold  ATTENTION for 10 sec). 

; Received  command: "0", "A",  CR, LF 
CMD-A 

BSf PROG-FLAG, ACQUIRE-FLG;  Flag - main  routine  acquire  a  Record 
Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  B -- Toggle  baud  rate  between  19.2k  (default)  and  115.2k  Baud. Also 
; returns  to 19.2k anytime  "ATTENTION"  is  pushed or by  the  "Reset"  command. 

CMD-B 
; Received  command: "0", "B",  CR,  LF 

; Need  to  wait  for  transmit  buffer  to  empty  before  doing  the  Baud  change 
; SPBRG  and  TXSTA  Registers in Bank 1 Memory 

Bsf  STATUS, RPO ; Select  Bank 1 memory 

Goto CMD-B ; Loop  and  wait 
BtfSS  TXSTA,  TRMT ; Set  to 1 when  TSR  empty 

Movf  SPBRG,  w ; Recover  value 
Sublw Ox01 ; Value for 115.2k  Baud 
Call Baud-Set ; Wreg  zero  if  now  115.2k  Baud 

Wreg=O  sets  19.2k  Baud 
WregoO sets 115.2k  Baud 
Bank 0 memory  selected  at  end of  Baud-Set 

Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  E -- Erase  all  memory.  Also  marks  bad  blocks if found. 
; Received  command: "0", "E",  CR, LF 
CMD-E 

Call MEM-ERASE ;Call  Flash  Memory  Erase  routine 
Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  F -- Fill  memory  with  known  values  starting at the  current  memory 
; location  for  the  number  of  Records  optionally  specified.  If no parameters  are 
; provided,  one  Record  is  filled. 
; Received  command: "0", "F",  <MSB # Records>,  <LSB # Records>,  CR, LF 
CMD-F 

Call  FILL-TEST  ;Call  Fill  test in FLASH  file 
Goto CMD-END 

90  

I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 



214 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
238 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
25 8 
259 
260 
26 1 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 
280 
28 1 
282 
283 
284 

Code Listing - Cmd-Hand.asm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  I -- Initialize.  Exits  command  mode  (entered  by  pushing  ATTENTION  button) 
; Received  command: "0", "I", CR, LF 
CMD-I 

Bsf PROG-FLAG,  REINIT-FLG ;Set  Re-initialize  Flag 
Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  P -- Set  Re-initialize  flag 
; Received  command: "0", "P",  CR, LF 
CMD-P 

Bsf  PROG-FLAG,  REINIT-FLG  ;Set  Re-initialize  Flag 
Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  R -- Uploads  records  starting  at  block  (Frame or Page)  optionally 
; specified.  If no parameters are  provided  begins  at  memory  start.  Waits  for 
; Ack  or  Nak  character  after  each  block  (Frame  or  Page  in  this  code).  If  Nak, 
; the  block is retransmitted. 

; Received  command: "0", "R", <MSB  Page #>, <LSB  Page #>, CR, LF 
CMD-R 

Bcf  PROG-FLAG,  SIMPLE-FLG ; Ensure  SIMPLE-FLG  clear 
Call  READ-HAND ; Call  Read  Handler 
Goto CMD END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command S -- Return  status  of  unit 

CMD-S 
; Received  command: "0", "S", CR, LF 

Bcf  PROG-FLAG,  SIMPLE-FLG ; Ensure  SIMPLE-FLG  clear 
Call  STATUS-HAND ; Call  Status  Handler 
Goto  CMD  END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  T -- Test  Flash  memory,  erasing  after each  block & marking  bad  blocks 
; Erases  entire  memory,  then  writes  pattern  and  erases  on  a  per-block  basis 

CMD-T 
; Received  command: " O " ,  "T", CR, LF 

Clrf MEMORY-FLAG ;Clear  Test  Result  Flags 
Call  MEM-ERASE 

; Writes  pattern  then  erases each  block.  Attempts  to  mark  block  if  bad. 
Movlw OxAA ; Pattern  expected in Wreg 
Call  MEM-TEST ; Test  Flash  with  OxAA  pattern 

; Next  pattern 
Movlw 0x55 ; pattern  expected  in  Wreg 
Call MEM-TEST ; Test  Flash  with  0x55  pattern 

Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  b -- Send  high  Baud  rate,  115.2k  Baud.  (Low  is  standardized  as  the 
; same  for  all  systems, 19.2k  Baud.) Sends  rate as  ASCII  string. 

CMDb 
; Received  command: " O " ,  "b",  CR, LF 

Movlw "1" 
Call TX-WREG 
Movlw "1" 
Call TX-WREG 
Movlw "5" 
Call TX-WREG 
Movlw "2" 
Call TX-WREG 
Movlw "0" 
Call TX-WREG 
Movlw "0"  
Call TX-WREG 

 91 



Code  Listing - Cmd-Hand-asm 

288 
289 
290 
29 1 
292 
293 
294 
295 
296 
297 
298 
299 
3 00 
301 
3  02 
303 
3 04 
305 
306 
307 
308 
309 
3 10 
311 
3  12 
313 
3 14 
3  15 
316 
317 
318 
3  19 
320 
32 1 
322 
323 
324 
325 
326 
327 

33 1 
332 
333 
334 
335 
336 
337 

34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
35 1 
3  52 
353 
354 
355 

Goto CMD-CRLF 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  c -- Send  recognized  commands.  Sends  back  a  null  terminated  string 
; with  each  recognized  command  character  (excluding  setup  commands). 
; Received  command: "0", "c", CR, LF 
CMD-c 

Movlw  High List-Commands ; Load  starting  location  of  string 
Movwf  Look-Hi 
Movlw Low List-Commands 
Movwf  Look-Lo 
Goto CMD-String 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  m -- Send number  of  each  channel  type:  analog/digital,  bilevel, 
; self-test  bits  using  four  bytes,  with  the  last  unused. 
; Received  command: "0", "m",  CR, LF 
CMD-m 

Movlw Ox00 ; Byte 2 = bilevels 
Call  TX-WREG 
Movlw  OxOD ; Byte 3 = analog/digital, 13 = OxOD 
Call  TX-WREG 
Movlw Ox00 ; Byte 0 = unused 
Call  TX-WREG 
Movlw  0x08 ; Byte 1 = self-test  bits 
Call  TX-WREG 

Goto CMD-CRLF 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  n -- Send  channel  name  specified  in  parameters as  follows: 
; Byte 1 = analog/digital  channel  name 
; Byte 2 = bilevel  channel  name (not used in Sensor  Ball) 
; Byte 3 = self-test bit  name 
; Byte 4 = unused. 
; Received  command: "0", "n",  <byte 1>, <byte 2>, <byte 3>, <byte 4>, CR,  LF 
CMDp 

; Adjust  Command  Parameter  stack  pointer  to  last  parameter  passed 
Movlw  CMD-Param-Start ; Added  to  count  of  params  CMD-PARAMS 
Movwf FSR ; Put  into  pointer 
Movf  INDF,  w ; Get  number  of  parameters 
BtfSC  STATUS, Z ; Test  if no parameters  passed 
Goto CMD-END ; No  parameters, no response. 

; The  channel  and  self-test  bit  name  strings  are  all  16  bits  long,  padded  with 
; nulls. So the  selected  name can be  located  by  adding  the  appropriate  multiple 
; of 16 as  an  offset  to  the  starting  name  string.  Only  one  of  the  Bytes  will 
; be  populated,  and  since no channel or self-test  bit  number  is  greater  than 
; 16,  a  simplified  address  adjustment  can  be  made. 
CMD-n-B1 

Incf  FSR,  f ; Adjust  stack  pointer 
Movf  INDF,  w ; Extract  Parameter  Byte 1 
Btfsc  STATUS, Z ; Will  be  zero  if  not  selected 
Got0 CMD-n-B2 

; Select  string  for  transmit 
Movlw  High  List-Data00 ; Load  location  of  first  channel  string 
Movwf  Look-Hi 
Movlw Low List-Data00 ; First  channel  name 
Movwf  Look-Lo ; Store low address 
Movlw  OxOE ; check  if  beyond 13 (0 to 12) 
Goto CMD-n-CHK-Msg 

; Second  Byte,  bilevel  channel  name  (not  used  in  Sensor  Ball) 

92  



356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
3 74 
375 
3 76 
377 
378 
379 
380 
381 
3 82 
383 
3 84 
385 
386 
387 
388 
3 89 
390 
391 
3  92 
393 
3  94 
395 
396 
397 
398 
399 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
41 1 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 
422 
423 
424 
425 
426 

Code Listing - Cmd-Hand.asm 

CMD-n-B2 
Incf  FSR,  f ; Adjust  stack  pointer 
Movf INDF, w ; Extract  Parameter  Byte 2 
BtfSC  STATUS, Z ; Will  be zero  if  not  selected 
Goto CMD-n-B3 

; No  bilevels  defined, so send  message 
Goto CMD-Undef-Msg 

; Third  Byte,  Self-Test  bits 
CMD-n-B3 

Incf  FSR,  f ; Adjust  stack  pointer 
Movf INDF, w ; Extract  Parameter  Byte 3 
Btfsc  STATUS, Z ; Will  be  zero  if  not  selected 
Goto CMD-END ; All  paramters  were  zero, no response 

; Select  string  for  transmit 
Movlw  High List-Slft00 ; Load  first  Self-test  bit  name  location 
Movwf Look-Hi 
Movlw Low List-Slft00 ; Low  address  of  name 
Movwf Look-Lo ; Store low address 
Movlw Ox09 ; check  if  beyond 8 ( 0  to 7) 

; Maximum  name  value  was  loaded in Wreg  above.  Now  test  to  see  if  the  name 
; exists,  and  adjust  name  pointer  if  it  does. 
CMD-nCHK-Msg 

Subwf  INDF,  w ; Subwf  subtracts  name  number 
Btfsc  STATUS,  C ; carry  set  means  name  number  <=  defined  names 
Goto CMD-Undef-Msg ; above  maximum  name  number,  error 
Decf  INDF,  f ; Adjust to use  as  pointer 
Swapf  INDF,  w ; Effectively,  multiply  by 16 
Addwf  Look-Lo, f ; Adjust  address  to  point  to  proper  string 
Btfsc  STATUS,  C ; Check  if  overflow  on  address  adjust 
Incf  Look-Hi, f ; . . . was  overflow,  adjust 
Goto CMD-String 

CMD-Undef-Msg 
Movlw  High  List-Undef ; Load  location  of  message  string 
Movwf Look-Hi 
Movlw Low List-Undef 
Movwf Look-Lo ; Store low address 
Goto CMD-String 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command r -- Uploads  records  starting  at  block  (Frame  or  Page)  optionally 
; specified.  If no parameters  are  provided  begins  at  memory  start.  No  checks 
; are  made  for  valid  Sync  in  memory, so bad  and  blank  Blocks  are  uploaded.  The 
; checksum is calculated  and  transmitted,  and  Ack  and  Nak  control  characters  are 
; waited for. X-on and  X-off  are  also  still  active. 
; Received  command: "0", "r",  <MSB  Page #>, <LSB  Page #>, CR,  LF 
CMD-r 

Bsf  PROG-FLAG,  SIMPLE-FLG ; Set  for  simple  upload 
Call  READ-HAND ; Call  Read  Handler 
Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command s -- Return  status  of  unit  in  "Smart  PCM  Device"  format.  Data  are 
; returned in the  order  contained in command  "n": 
; all  analog/digital  channels 
; bilevel  channels  (not  used  in  Sensor  Ball so none  sent) 
; all  self-test  bit data, sent  as  a  16-bit  word. 
; Received  command: " O " ,  "s", CR,  LF 
CMD-s 

Bsf  PROG-FLAG,  SIMPLE-FLG ; Set  for  "Smart  PCM  Device"  status 
Call STATUS-HAND ;Call  Status  Handler 
Goto CMD-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 93 



427 
428 
429 
430 
43 1 
432 
433 
434 
43 5 
436 
437 
43 8 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 
453 
454 
455 
456 
457 
458 
459 
460 
46 1 
462 
463 
464 
465 
466 
467 
468 
469 
470 
47 1 
472 
473 
474 
475 
476 
477 
478 
479 
480 
48 1 
482 
483 
484 
485 
486 
487 
488 
489 
490 
49 1 
492 

Code  Listing - Cmd-Hand.asm 

; Command  w -- Who  are  you.  Sends  back  a  phrase  identifying  this  as  a 
; Procter & Gamble  Sensor  Ball  and  includes  the  Version  number. 
; Received  command: "O", "w" , CR, LF 
CMD-w 

Movlw  High ListWhoID : Load  starting  location  of  string 
Movwf Look-Hi 
Movlw  Low List-WhoID 
Movwf Look-Lo 

Goto CMD-String 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Command  z -- Send  memory  size.  Sends  six  bytes,  with  the  first  four  specifying 
: the  device's  memory  size,  and  the  last  two  bytes  specifying  data  block  size. 
; Received  command: "O", "z",  CR,  LF 
CMD-z 

; Size is 32MB,  with a block  size of 560 + 2  Checksum  Bytes ( 2  Sync  and 2 Bytes 
; with  block  number  not  counted).  Use  32MB  memory = 0x020000,  and  562  byte 
; block = 0x0232 

Movlw  Ox00 ; Byte 4, Intel format: LSByte,  MSByte 
Call TX-WREG 
Movlw  Ox02 ; Byte  5 
Call TX-WREG 
Movlw  Ox00 ; Byte  2 
Call TXWREG 
Movlw Ox00 ; Byte 3 
Call TXWREG 
Movlw  Ox00 ; Byte 0 
Call TXWREG 
Movlw  Ox00 ; Byte 1 
Call TX-WREG 

; Block  Size 
Movlw  0x32 ; Byte 0, Intel  format:  LSByte,  MSByte 
Call  TX-WREG 
Movlw  Ox02 ; Byte 1 
Call TX-WREG 

Goto CMD-CRLF 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; End  of  Command  handler  routines,  clean  everything up 
CMD-String 

Call TX-String ; Call  string  transmit  routine 

Movlw "\r" ; Carriage  Return 
Call TX-WREG ; Transmit 
Movlw "\n" ; Line  Feed 
Call TX-WREG ; Transmit 

CMD-CRLF 

CMD-END 
Clrf  CMD-CHAR ;Clear CMD-CHAR 

: Reset  Command  Parameter  stack in case  partial  command  received 
Movlw CMD-Param-Start : Reset  command  parameter  stack 
Movwf  FSR : by  setting  pointer  to  top. 
Clrf CMD-PARAMS ; Clear  count  of  parameters  received 
Retlw 0 ; Return  to  MAIN,  Wreg=O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  End of FILE Cmd-Hand.asm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
END 

94  

I 
I 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Code  Listing - Flash.asm 

; File  name:  "flash.asm" 
; P&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
; Flash  Memory  auxiliary  routines 

; Date: 11 December  2001 
; File  Version: 4 
; Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

; Change  history: 
1999 - Adapted  from  MilliPen.asm  for  Sensor  Ball,  TA  Rohwer 
Nov 2000 - Version 2, TA  Rohwer 
17  Mar 2001 - Version 3, Revised  extensively by ME Partridge 
28  Jun  2001 - Minor  revisions,  ME  Partridge 
12 Aug  2001 - Version  4,  Check  for  sequential  blank  Blocks  in  MEM-FIND 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Flash  Memory  Subroutines 

; Function: 
; Contains  all  functions  needed  to  read,  write,  and  erase  the  Toshiba  TC58256FT 
; Flash  memory.  The  device is a 3.3V,  256Mbit (32MB) NAND  Electrically 
; Erasable  and  Programmable  Read-only  Memory (EEPROM) organized  as  528  bytes  x 
; 32  pages  x  2048  blocks. 

Page  size: 528  Bytes (512 Bytes  plus  extra 16 Bytes  extended  area) 
Block  size:  32  Pages,  16k-Bytes t 512  Bytes 
Total  memory:  2048  Blocks,  32MB 

; The device  has  a  528-byte  static  register  which  allows  program  and  read  data 
; to  be  transferred  between  the  register  and  the  memory  cell  array  in  528-byte 
; increments.  The  Erase  operation  is  implemented  in  single  block  units  (16k 
; Bytes + 512  bytes).  The  TC58256FT  is  a  serial-type  memory  that  uses  the 1/0 
; pins  for  command  and  address  input as  well  as  data  input / output. 

The  following  commands are  supported  by  the  device: 
; Ox00  Read  Mode 1, Address  bit  A8=0,  can  read  sequentially  thru  entire  device 
; 0x80 Write  with  Address  bit  A8=0,  writes to the  528-Byte  static  register. 
; Ox10 Program, transfers  the  528-Byte  static  register  to  the  memory  cell  array 
; 0x60  Erase,  erases  a  16k-Byte  memory  block.  Must  be  followed  by  Erase  Confirm 
; OxDO  Erase  confirm  command 
; 0x70  Status,  provides  Ready / Busy-,  and  write  fail. 

; Special  Note -- Timing  issues 
; The  TC58256FT  memory  has  a  few  timing  parameters  that  are  significant  with 
; respect  to  instruction  step  time.  Short  delays  are  accommodated  by  inserting 
; NOPs  into  the  code.  Longer  delays  are  handled  by  looping on the  Status 
; command  to  monitor  Ready / Busy-.  The  R/B-  line  on  the  part  is  not  used. 

Read  address  to  data  available, 10 microseconds  maximum,  NOP  padded 
Program - 1000 microseconds  maximum.  Use  Status  command  to  check 
Erase - May  take  up  to  20  milliseconds.  Use  Status  command  to  check 

; Special  Note -- Number  of  valid  Blocks 
; The  TC58256FT  memory  is  not  guaranteed to  have  the  entire  2048  Blocks 
; available  to  write.  For  this  reason,  checks  are  made  for  bad  blocks,  which 
; are  skipped  if  found. 

; Subroutines  in  this  file: 
GLOBAL MEM-READ 
GLOBAL MEM-WRITE 
GLOBAL MEM-FIND 
GLOBAL MEM-RD-SET 
GLOBAL MEMWR-SET 

GLOBAL MEM-PROGRAM 
GLOBAL MEM-ERASE 
GLOBAL MEM-REC-FIND 
GLOBAL MEM-TEST 
GLOBAL FILL-TEST 

GLOBAL MEM-Header 

; Calls: 
EXTERN  SENDDATA 
EXTERN  Fail-Msg 

; Return  value  from  Flash  memory 
; Writes  Wreg  value  to  Flash  memory 
; Finds  the  first  blank  Block 
; Sets  Flash  address  for  reading 
; Sets  Flash  address  for  writing 
; F i l l s  out the  once-per-Page  values 
; Transfers  internal  buffer  to  Flash 
; Erases  entire  memory 
; Finds a particular  Record  number 
; Writes  pattern  supplied  then  erases 
; Writes  known  values  to # recs  specified 

; Sends  failure  text  message  to  PC 

 95 



72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
1 1 1  
112 
1 1 3  
114 
115 
116 
117 
118 
119 
120 
12 1 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

Code Listing - Flash.asm 

EXTERN  Status-Msg 

EXTERN  WAITlMS 
EXTERN  Erase-Msg 

; Registers: 
EXTERN MEMORY-FLAG 
EXTERN TEMP 
EXTERN PATTERN 
EXTERN R-MEM-REC-NUM 
EXTERN MEM-REC-NUM 
EXTERN MEM-Fm-NUM 
EXTERN MEM-BAD-NUM 
EXTERN ADD0 
EXTERN ADD1 
EXTERN ADD2 
EXTERN R-ADD1 
EXTERN R-ADD2 
EXTERN A8 

; Registers  for  test  routine 
EXTERN  CMD-PARAMS 
EXTERN R-MEM-REC-NUM 
EXTERN  TIME3 
EXTERN  TIME2 
EXTERN  TIME1 
EXTERN  TIME0 
EXTERN  R-TIME3 
EXTERN R-TIME2 
EXTERN  R-TIME1 
EXTERN  R-TIME0 
EXTERN  MeasSet-Cnt ; Loop  counter,  28  sets  of 9 meas. / page 
EXTERN  Channel-Cnt ; LOOP counter,  analog  channels 0 to 9 skip 7 
EXTERN  TEMP ; Scratch  register  for  blank  check 

; Sends PC  update  message  during  memory  test 
; Sends PC  update  message  during  memory  erase 

; Memory  Status  and  test  flags 
; Temporary MEMORY-FLAG  and value  read 
; Test  pattern  passed in Wreg 
; Temporary  value  to  find  Record 
; Current  Flash  memory  Record, 1 - 64 
; Current  Record  Frame  (Page), 0 - 255 
; Bad  blocks in Flash  memory 
; Flash  Memory  address  A7 . .  A0 
; Flash  memory  address  A16 .. A8 
: Flash  memory  address  A24 . .  A17 
; Temporary for  ADD1 
; Temporary  for  ADD2 
; Half of memory  page,  1st (FE) or 2nd (FF) 

; Interrupts: 
Global,  Peripheral,  Serial  Interrupts  are  enabled  prior  to  call 

; Return: 
WREG=O 

; include  files: 
#include  "P16C774.  INC"  ;Standard  Header  File  for  PIC16C773 

;Includes  all  Register  Definitions, 
;RAM Definitions, & Configuration  Bits 

#include "ball-equ. inc"  ;EQU  Declarations,  equivalence 

MEM-PROG CODE ; Relocatable  Code 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Memory  Read  subroutine.  Returns  with  Wreg  containg  the  data  that  was read. 
; Moves  data  from  Port  D  (the  Flash 1/0 lines)  to  Wreg,  and  controls  the 

MEM-READ 
; active-low  Read  Enable  signal.  On  exit,  Wreg  has  the  data  read. 

Bcf  PORTC,  RE ; RE-,  Read  active  low 
Movf  PORTD,  w ; Recover  Flash  data  into  Wreg 
Bsf  PORTC, RE ; RE-,  Read  active  low 
Return ; Return  with  value in Wreg 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Memory  Write  subroutine.  Moves  data  from  Wreg  to  Port D (the  Flash 1/0 
; lines),  and  controls  the  active-low  Write  Enable  signal.  On  exit,  Wreg 

MEM-WRITE 
; retains  the  value  written. 

Movwf  PORTD ; Write  one  byte 
Bcf  PORTC, WE ; WE-,  Active  low  write  enable  data 
Bsf  PORTC, WE 
Return ; Return  with  written  value in Wreg 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

96  



143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
I90 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 

Code  Listing - Flash.asm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory  Find  Subroutine  MEP 

; Function: 
; Starting  from  the  last  used  address  ADD2 & ADD1,  checks  the  start  of  this 
; location  and  subsequent  16kB  Blocks  find  the  next  blank  location  to  write 
; data. 
; Calls: 
; None  (all  calls  internal  to  this  file) 
; Registers : 
; MEMORY-FLAG(MEM-FULL) - indicates  that  all  32MB  memory  is  filled 
; Interrupts: 
; None  changed 
; Return: 
; NONE. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Search  Flash  memory  to  set  address  ADD2,  ADD1  to  point  to  next  blank  Block 
MEM-FIND 

Clrf MEMORY-FLAG ; Reset  flags,  will  set  accordingly 
Clrf  A8 ; Half-page  flag,  used in ext. blank  ck. 
Movlw OxEO ; Mask  even  Block  boundary,  16kB=Ox20 
Andwf  ADD1,  f ; Strip  off  non-integral  Block  address 

MEM-LOOP 
Call MEM-RD-SET ; Set  up  Flash  to  read  Block  pointed  to 

; Read  first  two  Bytes.  Will  equal  OxFFFF if blank,  OxEB90 if used,  and  OxA5A5 
; or  something  else  if  the  Block is bad. 
MEM-USED-CK 

Call MEM-READ 
Movwf  TEMP ; Hold  Value 
Incf  TEMP,  w ; Blank  is  OxFF,  incf -> Ox00 
Btfss  STATUS, Z ; Will  have  become  zero  if  was  blank 
Goto MEM-SYNC-CK ; Not  blank,  check if sync 

Call MEM-READ ; Read  second  byte in Block 
Sublw  OxFF ; Check if blank = OxFF 
Btfss  STATUS, Z ; If  result  zero,  was  blank 
Goto MEM-BAD-BLK ; Was  not  blank, so memory  bad 

; Read  two  first Bytes in Block  and  both  blank.  Repeat  test on next  Block 
; to  ensure  that it  wasn't  just  an  isolated  Block or was  bad. 

Btfsc  A8, 0 ; Bit  zero  marks  previous  blank  success 
Goto MEM-DONE ; Second  Block  blank,  process  done 
Bsf  A8, 0 ; Set  flag  for  first  Block  blank 
Movf  ADD1,  w ; Recover  memory  address 
Movwf RADDl ; Hold in temporary 
Movf  ADD2,  w ; Next  significant  memory  address 
Movwf R-ADD2 ; Hold  it  also in temporary 
Goto MEM-NXT-BLK ; Increment  address,  loop on next  Block 

MEM-SYNC-CK 
; The  first  Byte  was  not  blank,  see if marked  with  Sync  indicating  valid  data 

Clrf  A8 ; Cancel  sequential  blank  Block  flag 
Movf  TEMP,  w ; Recover  value  read 
Sublw Sync-Byte0 ; First  Sync  Byte if Block  used 
Btfss  STATUS, Z ; Result  zero if equals  SyncO 
Goto MEM-BAD-BLK ; not  sync, so memory  bad 

; First  Byte in Block is SyncO.  Now  check  if  second  Byte  is  Syncl. 
Call MEM-READ ; Now  look  for  second  Sync 
Sublw Sync-Byte1 
Btfss  STATUS, Z 
Goto MEM-BAD-BLK 

; Memory  used,  read  Record  number 

; if  is  second  sync,  zero 
; not  sync, so memory  bad 

 97 



Code  Listing - Flash.asm 

214 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
23 8 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 1 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 
280 
28 1 
282 
283 
284 

Call MEM-READ ; Frame  number 
Call MEM-READ ; Record  number 
Movwf MEM-REC-NUM ; Hold  last  Record  number  used 
Goto MEM-NXT-BLK 

; Bad  16kB  block, so Skip  block  but  don't  increment  block  count 
MEM-BAD-BLK 

Incf MEM-BAD-NUM,  f ; count  number of  bad  blocks 

; Assume  entire  16kB  Block  is  not  blank  or is bad - move  to  next  16k-Byte  Block 
; and  check  if  advanced  beyond  32MB  boundary 
MEM-NXT-BLK 

Movlw  0x20 ; ADDl  increment  for  16kB  Block 
Addwf  ADD1,  f ; Store  result in ADDl 
Btfss  STATUS,  C ; Carry  set if rolled  over 
Goto MEM-LOOP ; No  need  to  check  ADD2  yet 

; ADDl  rolled  over, so adjust  ADD2.  If  ADD2 rolls over,  have  incremented  past 
; end  of 32MB  memory so set  flag  to  indicate that no more  records  can be stored. 

Incf  ADD2,  f ; Increment  ADD2 if ADDl  carry 
Btfss  STATUS, Z ; Check if ADD2  rolled  to  zero 
Goto MEM-LOOP : Not  at  end,  continue  search 

Retlw 0 ; Leave  ADDl & ADD2  at  zero 
Bsf  MEMORY-FLAG,  MEM-FULL ; Indicates  memory  filled 

; Found  sequential  blank  Blocks.  Assume  OK,  restore  previous  address 
; Calling  routine  must  set  up  memory  location  found  for  read  or  write 
MEM-DONE 

Movf RADDl, w ; Recover  temporary  Address 
Movwf ADDl ; Restore  value 
Movf RADD2, w ; Recover  temporary  Address 
Movwf ADD2 ; Restore  value 

Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Find  a  particular  record  number  by  first  calculating  the  minimum  address 
; location  for  the  record,  then  searching  from  that  point  to  find  the  start 
: of  the  Record.  ADDl  counts  the  number  of  512-Byte  Pages,  ADD2  the  number  of 
; 128kB  Records.  A  Block-by-Block  search  is  conducted  from  that  point  forward 
; because  a  bad  Block  may  have  been  encountered  and  skipped,  throwing  off  the 
; Blocks / Record.  Flash  address  registers  ADD2,  ADD1,  and  ADD0  are  modified. 

MEM-REC-FIND 
Btfsc  STATUS, 2 
Movlw  Ox01 
Movwf  TEMP ; Hold  Record  sought  for  compare 
Movwf  ADD2 
Decf  ADD2, f 
Clrf  ADDl ; Start  of  Record 

; Wreg  has  Record  number,  Verify  not  Zero 
: Wreg=O,  default  to  Record=l 

; ADD2  as  minimum is Record  number. . . 
; . . . minus one. 

Bcf  MEMORY-FLAG,  MEM-FIND-FLG ; Record  search  fail  flag 

MEM-FIND-LOOP 
; Begin  search  with  minimum  possible  address,  128kB per  Record. 

Call MEM-RD-SET ; Set  up  Flash  to  Record  start 

; Read  first  two  Bytes.  Will  equal  OxEB90 if used,  OxFFFF if blank,  and  OxA5A5 
; or something  else if the  block  is  bad. 

Call MEM-READ 
Sublw Sync-Byte0 
Btfss STATUS, Z 
Goto MEM-FIND-NXT 
Call MEM-READ 

Btfss  STATUS, 2 ; if  is  second  sync,  zero 
Goto MEM-FIND-NXT ; Not  sync,  assume  bad  block 

; First  Sync  Byte if Block  used 
; Result  zero if equals  Sync0 
; Not  sync,  assume  bad  block 
; Now  look  for  second  Sync 

Sublw Sync-Byte1 

; Good  block,  check if correct Record,  which  is  fourth  byte  on  Page 
: This  seems  to  have  problems. Found  good  Sync, so just  exit. 

Goto MEM-FIND-DONE ; Found it, Return 

98  



285 
286 
287 
288 
289 
290 
29  1 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
3 02 
303 
3  04 
305 
306 
307 
308 
309 
3 10 
311 
3  12 
313 
3 14 
315 
3  16 
317 
318 
319 
320 
32 1 
322 
323 
324 
325 
326 
327 
328 
329 
330 
33 1 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
35 1 
3  52 
353 
3 54 
355 

Code  Listing - Flash.asm 

; Get  next  block  for  search 
MEM-FIND-NXT 

Movlw  Ox20 ; ADDl  increment  for  16kB  Block 
Addwf  ADD1,  f ; Store  result in ADDl 
Btfss  STATUS,  C ; Carry s e t  if rolled  over 
Goto MEM-FIND-LOOP ; No  need  to  check  ADD2  yet 

; ADDl  rolled  over, so adjust  ADD2. If  ADD2 rolls  over,  have  incremented  past 
; end  of  32MB  memory so set  flag  to indicate that no more  records  can be stored. 

Incf  ADD2, f : Increment  ADD2 if ADDl  carry 
Btfss  STATUS, 2 ; Check  if  ADD2  rolled  to  zero 
Goto MEM-FIND-LOOP ; Not  at  end,  continue  search 

; At  memory  boundary,  set  flag  to  indicate  that  no  more  records  can  be  stored. 
MEM-FIND-FAIL 

Bsf  MEMORY-FLAG,  MEM-FIND-FLG ; Sets  Record  search  fail  flag 

; Return to callinq  point,  That  routine  needs to set  up  memory for read or write 
MEM-FIND-DONE 

. _  

Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; On  entry,  ADDl L 2  are  set  up  to  point  to  the  512B  memory  Page  to  read. 
; Because  the  Toshiba  TC58256FT  Flash  memory  can  take up to 1Ous between 
; sending  the  address  and  having  memory  ready,  a 10 NOP  delay is included. 

MEM-RD-SET 
Bcf  STATUS, RPO ; Select  Bank 0 memory 
Clrf  PORTD ; Port  D  is  Address / Data  bus  to  Flash 
Bsf  STATUS, RPO 
Clrf  TRISD ; Set  PORTD=Outputs  (memory  bank 1) 
Bcf  STATUS, RPO : Select  Bank 0 memory 
Bcf  PORTC, CE ; Chip  enable  CE-,  Active low 
Bsf  PORTB,  CLE ; Command  Latch  Enable 
Movlw  Ox00 ; Command  Ox00  is  Read  Mode 1, Address  A8= 
Call MEM-WRITE 
Bcf  PORTB,  CLE 
Bsf  PORTB,  ALE ; Address  Latch  Enable 
Movlw  Ox00 ; Substitute  for  ADDO,  A7  to  AO,  always  zero 
Call MEM-WRITE 
Movf  ADD1,  w ; Wreg  with  A16  to  A9 
Call MEM-WRITE 
Movf  ADD2,  w ; Wreg  with  A24  to  A17 
Call MEM-WRITE 
Bcf  PORTB,ALE 

: Get  Port  D  ready  for  read  function.  Flash  chip  is  left  enabled. 
Clrf PORTD 
Bsf  STATUS, RPO 
Movlw  OxFF 
Movwf  TRISD  ;Set  PORTD=Inputs 
Bcf  STATUS, RPO 

; Delay  to  allow  Flash  memory  to  access  data  requested, lOus maximum 
NOP 
NOP 
NOP 
NOP 
NOP 

Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; On  entry,  ADDl L 2  are  set  up  to  point  to  the  memory  Page  to  write.  Contrary 
; to  Toshiba  documentation,  write  enable  is  necessary  for  both  filling  the 
; buffer  and  the  Program  function. 

MEMWR-SET 

 99 



356 
357 
358 
359 
360 
36 1 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
3 72 
373 
3 74 
375 
376 
377 
378 
379 
380 
381 
3 82 
3 83 
3 84 
385 
3 86 
387 
388 
3 89 
390 
391 
3 92 
393 
3 94 
395 
396 
397 
398 
399 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
41 1 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 
422 
423 
424 
425 
426 

Bsf STATUS, RPO 
Clrf TRISD 
Bcf STATUS, RPO 
Bsf PORTB,  WP 
Bcf PORTC,  CE 
Bsf PORTB,  CLE 
Movlw 0x80 
Call MEM-WRITE 
Bcf PORTB,  CLE 
Bsf PORTB,  ALE 
Movlw Ox00 
Call MEMWRITE 
Movf ADD1,  w 
Call MEM-WRITE 
Movf ADD2,  w 
Call MEMWRITE 
Bcf PORTB,ALE 

; Port  D  is  left  ready  for  write 

Retlw 0 

Code  Listing - Flash.asm 

; Select  Bank 1 memory 
; Set  PORTD=Outputs 
: Select  Bank 0 memory 
; WP-  high,  writes  enabled 
; Chip  enable  CE-,  Active  low 
: Command  Latch  Enable 
: Command 0x80 Data  Input  first  half-Page 

; End  Command  write 
; Address  Latch  Enable,  address  write 
; Substitute  for  ADDO,  A7  to  AO,  always  zero 

; Wreg  with  A16  to A9 

; Wreg  with  A24  to  A17 

: End  Address  write 

function,  and  Flash  chip is enabled. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; On  entry,  ADD1 & 2 are  set up to  the  start  of  a  blank  memory  Page.  This 
: routine  fills in the  values  that  are  written  only  once  every  Page,  like  TIME, 
; Record  number,  and so on. 

MEM-Header 

; Write  sync  pattern  into  the  first  two  bytes in each  frame  (512-byte  Page). 
; This  provides  a  known  value  to  detect  used,  bad,  or  blank  Flash  Memory  Pages. 

Movlw Sync-Byte0 ; Sync  Bytes. 
Call  MEM-WRITE 
Movlw Sync-Byte1 
Call  MEM-WRITE 

; Write  Frame  and  Record  number. 
Movf  MEM-Fm-NUM, w ; Get  current  frame  count, 0 to  255 
Call MEM-WRITE ; Store in Flash  memory 
Movf  MEM-REC-NUM, w ; Record  number, 1 to  255 
Call  MEM-WRITE : Store in Flash  memory 

; Write  the  TIMEn  registers,  MS  Word, LS Word,  with  LS  Byte  first  (Intel  fmt) 
Movf  TIME2,  w ; Write 4 Bytes  of  time  information 
Call MEMWRITE ; . . . - placeholder  for RTC 
Movf  TIME3,  w ; Bytes  currently  incremented  w/o  RTC 
Call MEM-WRITE ; Store in Flash  memory 
Movf  TIMEO,  w 
Call MEMWRITE ; Store in Flash  memory 
Movf  TIME1,  w 
Call MEMWRITE ; Store in Flash  memory 
Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Transfer  internal  Flash  write  buffer  to  Flash  memory  Page.  Deselects  chip 
; and  set  Write  Protect  on  completion.  Must  follow  with  Read- or  Write-set. 
; Note:  enabling  write  (WP-  high  and  inactive)  is  needed  only  for  the  Erase  and 
: Program  functions. 

MEM-PROGRAM 
Clrwdt ; Watch-Dog  Timer  reset 
Bsf  STATUS, RPO 

Bcf  STATUS, RPO 
Bsf  PORTB, WP : WP-  high  and  inactive,  enable  Flash  Memory  write 

Clrf  TRISD ; Set  PORTD=Outputs 

Bcf  PORTC,  CE ; Chip  enable  CE-,  Active  low 
Bsf  PORTB, CLE ; Command  Latch  Enable 
Movlw Ox10 ; Command Ox10 is Program,  transfer  buffer  Flash 
Call MEM-WRITE 

100  



427 
428 
429 
43 0 
43 1 
432 
43 3 
434 
435 
436 
437 
43 8 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 
453 
454 
455 
456 
457 
458 
459 
460 
46 1 
462 
463 
464 
465 
466 
467 
468 
469 
470 
47 1 
472 
473 
474 
475 
476 
477 
478 
479 
480 
48 1 
482 
483 
484 
485 
486 
487 
488 
489 
490 
49 1 
492 
493 
494 
495 
496 
497 

Code  Listing - Flash.asm 

Bcf  PORTB, CLE 

; MEM-STATUS Loops  until  Flash  status  bit  Ready  is  set,  which  should  take  0.2  to 1.0 millisecond 
Call MEM-STATUS ; Reads  Flash  Status  register  into  Wreg 

; Check  for  error  condition 
Btfsc  MEMORY-FLAG, MEM-ER-FLG ; Set in MEM-STATUS if error 
Bsf  MEMORY-FLAG,  MEM-PROG ; Sets  condition  flag  for  message 

MEM-PR-END 
; Program  function  complete 

Bcf  PORTB,  WP ; WP-  low  and  active,  disable  Flash  Memory  write 
Bsf  PORTC,  CE ; Release  CE-,  Active low chip  enable 
Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Erase  the  entire  32MB  of  Flash  memory.  This  function  must be done  Block-by- 
; Block.  If  erase  failures  are  detected,  the  routine  attempt  to  mark  the  Block 
; bad  by  writing  OxA5A5  and  increments  the  bad  Block  count. 

MEM-ERASE 
Clrf  ADDl ; Start  at  memory  beginning 
Clrf  ADD2 
Clrf MEMORY-FLAG ; Clear  error  condition  flags 
Clrf MEM-BAD-NUM ; Zero  count  of  bad  blocks 
Call  SENDDATA ; Message  expected  by PC interface  S/W 

MEM-ER-LOOP 
Call MEM-ERASE-BLOCK 

; Make  LED  blink  after  each  Block 
Movlw Ox02 ; LED  is  PORT  C,  line 1 
Xorwf PORTC, f ; make  LED  blink 

; If error  condition,  mark  block  bad 
BtfSS  MEMORY-FLAG, MEM-ER-FLG ; Error  from  erase  status 
Goto MEM-ER-NXT ; Flag  not  set,  continue 

; Block  bad. The maximum  Blocks in the  32MB  memory  is  2046, so can overflow. 
Incf MEM-BAD-NUM, f ; count  number  of bad blocks 
Call MEM-WR-SET ; Still  pointing  to  start  of  block 
Movlw  OxA5 ; pattern  to  mark  bad 
Call MEMWRITE ; write out OxA5A5 
Call MEMWRITE ; . . . might  not  be  able  to  write  since  bad  block. 
Call MEM-PROGRAM ; Transfer  buffer  to  Flash 
Call Fail-Msg ; Readable  message in HyperTerminal 

; Increment  memory  to  next  16kB  block  to  erase 
MEM-ERNXT 

Clrf MEMORY-FLAG ; Clear  any  condition  flag 
Movlw  Ox20 ; ADDl  increment  for  16kB  Block 
Addwf  ADD1,  f ; Store  result in ADDl 
Btfss  STATUS,  C ; Carry  set if rolled  over 
Goto MEM-ER-LOOP ; NO need  to  check  ADD2  yet 

; ADDl  rolled  over, so adjust  ADD2.  If  ADD2 rolls  over,  have  incremented  past 
; end  of  32MB  memory so set  flag  to  indicate that no more  records  can  be  stored. 

Incf  ADD2,  f ; Increment  ADD2 if ADDl  carry 
BtfSC  STATUS, Z ; Check  if  ADD2  rolled to zero 
Goto MEM-ER-END ; Rolled  to  zero,  all  done 

; Write  message  every  4MB  erased 
Movf  ADD2,  w ; Recover  ADD2 
Andlw  OxlF ; Strip  upper  bits  on  ADD2 
Btfsc  STATUS, Z ; Lower  ADD2  bits  zero? 
Call Erase-Msg ; yes,  send  debug  message 
Goto MEM-ER-LOOP 

; Finished  with  erase  function 
MEM-ER-END 

 101 



498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
5 09 
510 
511 
5 12 
513 
5 14 
5 15 
516 
517 
518 
519 
520 
52 1 
522 
523 
524 
525 
526 
527 
528 
529 
530 
53 1 
532 
533 
534 
535 
536 
537 
538 
539 
540 
54 1 
542 
543 
544 
545 
546 
547 
548 
549 
550 
55 1 
552 
553 
554 
555 
556 
557 
558 
559 
560 
56 1 
562 
563 
564 
565 
566 
567 
568 

Code Listing - Flash.asm 

Call StatusMsg 
Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Erase  one  16kB  Block  of  Flash  memory.  Note:  enabling  write  (WP-  high  and 
; inactive)  is  needed  only  for  the  Erase,  Program,  and  Write  buffer  functions. 
MEM-ERASEBLOCK 

Clrwdt ; Watch-Dog  Timer  reset 
Bsf  STATUS, RPO 
Clrf  TRISD ; Set  PORTD=Outputs 
Bcf  STATUS,  RPO 
Bsf  PORTB,  WP ; WP-  high  and  inactive,  enable  Flash  Memory  write 
BCf  PORTC,  CE ; Chip  enable  CE-,  Active  low 
Bsf  PORTB,  CLE ; Command  Latch  Enable 
Movlw  0x60 ; Command 0x60 is  Erase 
Call MEMWRITE 
Bcf  PORTB,  CLE 

; Write  Block  address.  Erase  function  is  on  16kB  blocks. 
Bs  f  PORTB,  ALE 
Movf  ADD1,  w 
Call MEM-WRITE 
Movf  ADD2,  w 
Call MEM-WRITE 
Bcf  PORTB,  ALE 

; Send  confirm  command 
Bs  f  PORTB,  CLE 
Movlw OxDO ; Erase  confirm  command 
Call MEMWRITE 
Bcf  PORTB,  CLE 

; Wait  for  completion.  Takes  up  to 20 milliseconds. MEM-STATUS returns  Flash 
; Memory  status in Wreg 

Call  MEM-STATUS ; Loops  until  Flash  sets  Ready  status 
Bcf  PORTB,  WP ; WP-  low,  Flash  Memory  write  protected 
Bsf  PORTC,  CE ; Release  CE-,  Active low chip  enable 
Return 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Flash  Status is in  Wreg  on  return,  loops  until  memory  shows  Ready 
; TC58256FT  memory  Status  Bit  definition  for  the  TC58256FT  memory: 

Bit 0 Pass = 0, Fail = 1 for  a  program  or  erase  function 
Bits 1 - 5  are  not  used  and  returned  as 0 
Bit 6 Ready = 1, Busy = 0 for  any  command 
Bit 7 Write  protect  status, 0 = protect, 1 = write  enabled 

; Expect  result  read to be OxCO when  function  is  complete. 

MEM-STATUS 
; Set  up  to  write  command 

Bsf STATUS, RPO 
Clrf TRISD 
Bcf STATUS, RPO 
Bsf PORTB,  CLE 
Movlw 0x70 
Call MEM-WRITE 
Bcf PORTB,  CLE 

; Set up to  read  result 
Clrf PORTD 
Bsf STATUS, RPO 
Movlw OxFF 
Movwf TRISD 
Bcf STATUS, RPO 
Call MEM-READ 
Movwf TEMP 
Btfss TEMP, 6 

; Select  Bank 1 Memory 
; Set  PORTD=Outputs 
; Set  Bank 0 Memory 
; Command  Latch  Enable 
; Command  to  Read  Flash  Status 

; Select  Bank 1 Memory 

; Set  PORTD=Inputs 
; Select  Bank 0 Memory 
; Read  result in Wreg 

; Bit 6 is  Ready / Busy-,  still  processing if low 

102  



569 
570 
57 1 
572 
573 
574 
575 
576 
577 
578 
579 
580 

585 
586 
587 
588 
589 
5 90 
59 I 
592 
593 
594 
595 

600 
60 1 
602 
603 
604 
605 
606 
607 
608 
609 
610 
61 1 
612 
613 
614 
615 
616 
617 
618 
619 
620 
62 1 
622 
623 
624 
625 
626 
627 
628 
629 

637 
63 8 
639 

~ ~ ~~~~~~ 

Code  Listing - Flash.asm 

Goto MEM-STATUS 

; Check  for  error  condition 
Btfsc  TEMP, 0 ; Failure  flag  on  bit 0 
Bsf  MEMORY-FLAG,  MEM-ER-FLG ; Sets  condition  flag  for  message 

Return 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Test-Hand (ler) Subroutine 

; Function: 
; On  a  16kB  block  basis,  this  routine  erases  the  Flash  memory,  fills  the  memory 
; with  the  pattern  supplied,  then  erases  again.  Error  and  progress  update 
; messages  are  sent  to  the  PC  after  every  1MB. 

; The  TC58256FT  memory  includes  an  auto-verify  function  that  compares  the 
; contents  of  the  memory  with the  buffer  after  a  program  operation.  If  these 
; do not  match,  the  Fail  bit  is  set on memory  status.  The  Erase  command  also 
; does  the  equivalent  with  an  Erase  and  Verify  function. 

; Calls: 
I MEM-WR-SET 

MEM-ERASE-BLOCK 
MEM-PROGRAM 

; Registers: 
Wreg  has  the  test  pattern on entry. 

I 

; Interrupts: 
Not changed. 

; Return: 
WREG=O 

; Execution  Time: 
??M  Cycles 
??sec at  4MHz 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

MEM-TEST 
Movwf  PATTERN ; Wreg  has  Test  Pattern on entry 
Clrf  ADD1 
Clrf  ADD2 
Clrf  MEMORY-FLAG 

MEM-TSW-LOOP ; Loop  per  memory  Page 

; Check to see if computer  command, started  by  pushing  Attention  button 
Btfsc  PORTB,  ATTENTION ; Bit  Test  of  Command  Flag 
Goto MEM-TST-END : Button  pushed,  begin  processing  commands 

Clrf  ADDO ; Used  here  to  track  if  Page  filled 
Movlw  OxFE ; Set up for  two  loops 
Movwf A8 ; Tracks  which  Page  half  of  512-byte  page 

Movf  PATTERN,  w ; Recover  test  pattern  to  Wreg 

Call MEMWRITE 
Incfsz  ADDO,  f ; Increment  after  each  byte  written 
Goto MEM-TSW-inner ; Address  not  rolled  over  to  zero,  loop 

Call MEM-WR-SET ; Starting  a  new  Page,  prepare  to  write 

MEM-TSW-inner ; Loop  per  memory  Byte 

; Check  if  finished  one  page = 512  bytes, or just  half-page = 256  bytes 
Incfsz A8, f ; A8=0 @ 512  Bytes,  A8=FF @ 256 Bytes 
Goto MEM-TSW-inner ; Page  not  finished,  continue  writing 

; Have  written  512  bytes  into  buffer 
Call  MEM-PROGRAM ; Transfer  from  buffer,  captures  error 

; Now  read back page to  see  if  matches. 
MEM-TSR-LOOP ; Loop  per  memory  Page 

 103 



640 
64 1 
642 
643 
644 
645 
646 
647 
648 
649 
650 
65 1 
652 
653 
654 
655 
656 
657 
658 
659 
660 
66 1 
662 
663 
664 
665 
666 
667 
668 
669 
670 
67 1 
672 
673 
674 
675 
676 
677 
678 
679 
680 
68 1 
682 
683 
684 
685 
686 
687 
688 
689 
690 
69 1 
692 
693 
694 
695 
696 
697 
698 
699 
700 
70 1 
702 
703 
704 
705 
706 
707 
708 
709 
710 

Code  Listing - Flash.asm 

Movlw  OxFE ; Set  up  for  two  loops 
Movwf  A8 ; Tracks  which  Page  half  of  512-byte  page 
Call MEM-RD-SET ; Starting  a  new  Page,  prepare  to  write 

Call MEM-READ 
Subwf  PATTERN,  w ; Compare  test  pattern  with  read  value 
Btfss  STATUS, Z 
Bsf  MEMORY-FLAG, MEMWR-FLG ; Did  not  match 
Incfsz  ADDO, f ; Increment  after  each  byte  written 
Goto MEM-TSR-inner ; Address  not  rolled  over  to  zero,  loop 

MEM-TSR-inner ; Loop  per  memory  Byte 

; Check if finished  one  page = 512  bytes, or just  half-page = 256 bytes 
Incfsz  A8,  f ; A8=0 @ 512  Bytes,  A8=FF @ 256  Bytes 
Goto MEM-TSR-inner ; Page  not  finished,  continue  writing 

; Check if finished  last  page in 16kB  block.  ADDl=OxlF,  Ox3F,  etc. 
Movlw  OxlF ; Mask  out  upper  three  bits 
Andwf  ADD1, w ; Wreg  left  with  lower  five  bits 
Sublw  OxlF ; Address  for  last  page in block 
Btfsc  STATUS, Z 
Goto MEM-TS-ER ; Finished  writing  Block, so erase 

; Was  not  end  of  block so increment  memory  to  next  Page  to  test 
Movlw  Ox01 
Addwf  ADD1, f ; Increment  ADDl if ADDO overflow 
Btfsc  STATUS,  C ; See  if  overflow 
Incf  ADD2,  f ; yes,  increment  next  address 
Goto MEM-TSW-LOOP ; Start  writing  next  memory  Page 

; Set  address  to  erase  this  block,  then  increment  to  start  of  new  block 
MEM-TS-ER 

Clrf ADDO 
Movlw OxEO ; Retain  only  upper  three  address  bits 
Andwf  ADD1, f ; Set  ADDl  to  start  address  of  this  page 
Call MEM-ERASE-BLOCK 

; Make  LED  blink  after  each  Block  tested 
Movlw Ox02 ; LED  is  PORT  C,  line 1 
Xorwf PORTC, f ; make  LED  blink 

; Check  if  any  failures in this  block 
Movf MEMORY-FLAG, w ; recover  memory  error  condition  flags 
Btfsc STATUS, Z ; Should  be  zero  if no errors 
Goto MEM-TS-NXT ; no errors,  go  to  start of next  block 

; Some  error in block,  send  failure  message 
Incf MEM-BAD-NUM, f ; count  number of bad  blocks 
Call Fail-Msg ; Message  with  block  address 
Call MEM-WR-SET ; Still  pointing  to  start  of  block 
Movlw OxA5 ; pattern  to  mark  bad 
Call MEMWRITE ; write  out  OxA5A5 
Call MEM-WRITE ; . . . might  not  write  since  bad. 
Call MEM-PROGRAM ; Transfer  buffer  to  Flash 

MEM-TSNXT 
; Increment  memory  to  next  16kB  block  to  test 

Clrf MEMORY-FLAG ; Clear  any  condition  flag 
Movlw  Ox20 ; ADDl  increment  for  16kB  Block 
Addwf  ADD1,  f ; Store  result in ADDl 
Btfss  STATUS,  C ; Carry  set if rolled  over 
Goto MEM-TSW-LOOP ; No need  to  check  ADD2  yet 

; ADDl  rolled  over, so adjust  ADD2.  If  ADD2 rolls over,  have  incremented  past 
; end of  32MB  memory so end  test. 

Incf  ADD2,  f ; Increment  ADD2 if ADDl  carry 
Btfsc  STATUS, 2 ; Check  if  ADD2  rolled  to  zero 
Goto MEM-TST-END ; Rolled  to  zero,  all  done 

; Write  message  every  1MB  tested 
Movf ADD2, w ; Recover  ADD2 
Andlw 0x07 ; Strip  upper  bits  on  ADD2 

104  



71 1 
712 
713 
714 
715 
716 
717 
718 
719 
720 
72 1 
722 
723 
724 
725 
726 
727 
728 
729 
730 
73 1 
732 
733 
734 
735 
736 
737 
73 8 
73  9 
740 
74 1 
742 
743 
744 
745 
746 
747 
748 
749 
750 
75 1 
752 
753 
754 
755 
756 
757 
758 
759 
760 
76 1 
762 
763 
764 
765 
766 
767 
768 
769 
770 
77 1 
772 
773 
774 
775 
776 
777 
778 
779 
780 
78 1 

Code Listing - Flash.asm 

: Lower  ADD2  bits  zero? 
: yes,  send  debug  message 

Btfsc STATUS, Z 
Call Status-Msg 
Goto MEM-TSW-LOOP 

: Done  with  test 
MEM-TST-END 

Call  Status-Msg 
Retlw 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Fill  Test  Subroutine 

: Function: 
: Fills  the  number of Flash  memory  Records  specified  with  known  values.  This 
: allows  tests  of  the  read  routine.  Follows  the  same  Frame  structure  as 
: normal  written  data.  Use  the  HyperTerminal,  and  Command  string: 
: "0", "F",  <parm  MSB>,  <parm  LSB> 
; where  the  <parm ..> is an ASCII  character  with  the  least  significant  nibble 
: set  to  the  value  desired.  The  value  indicates  the  number  of  records  to fill. 
: For  example,  to  fill 5 records,  the  command  string  is: 
: OF05 
: because  the  ASCII  value  for  "5"  is  35  hex, so the  least  sig.  nibble  is  a  5 as 
: needed.  (The  serial  interrupt  routine  combines  the  nibbles  into  8-bit  values) 

; Interrupts: 
: No  change.  Serial  Interrupts  must  be  enabled  prior  to  call  to  allow  the  PC 
; to stop  data  upload  with the Cntl-C  character. 

: Return: 
: Wreg=O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FILL-TEST 
Clrwdt : Reset  2.4  second  Watch-dog  Timer 
BCf STATUS, RPO 
Clrf  MEMORY-FLAG 

: Make  sure  pointing to Memory  Bank 0 
: Resets  memory  condition  flags 

; Locate  the  next  blank  memory  location.  Also  returns  last  Record  number used. 
Call  MEM-FIND 

: Get parameter  passed  with  command, 
: Record. 

Movlw  Ox01 
Movwf R-MEM-REC-NUM 
Movlw CMD-Param-Start 
Movwf  FSR 
Movf  INDF,  w 
Btfsc  STATUS, Z 
Goto FILL-END-REC 

if  any.  If no parameters,  set  to  fill  one 

: Default to one  Record  fill 
: Ox01  is first  128kB  Record 

: Place  into  stack  pointer 
; Recover  CMD-PARAMS=parameter  count 
: Test if zero  parameters on stack 
: no parameters  passed,  start  with  default 

: Start  of  parameter  stack 

: Adjust  Command  Parameter  stack  pointer  to  first  parameter  passed 
Incf  FSR,  f : Point  to  first  parameter 
Movf  INDF,  w : Get  value 
Movwf R-MEM-REC-NUM : Store  as  number  Records  to  fill 

: Now  add  to  current  record  number  to  determine  stopping  record  number. 

Movf MEMREC-NUM, w : Get  current  record  count 
Addwf R-MEM-REC-NUM, f : Add  to  number  of  records  to  fill 
Movlw  OxFF : Does  not  affect  carry  bit 
Btfsc  STATUS, C : See  if  caused  overflow 
Movwf R-MEM-REC-NUM : Overflow,  set  to  maximum 

FILL-END-REC 

FILL-START 
: Position  memory  to  start  filling  memory. 

C1  r  f MEM-FRb-NUM : Clear  Memory  Page  count 
Incf  MEM-REC-NUN, f : Add  one  to  number  of  records  stored 

FILL-LOOP 

 105 



782 
783 
784 
785 
786 
787 
788 
789 
790 
79 1 
792 
793 
794 
795 
796 
797 
798 
799 
800 
80 1 
802 
803 
804 
805 
806 
807 
808 
809 
810 
81 1 
812 
813 
8 14 
815 
816 
817 
818 
819 
820 
82 1 
822 
823 
824 
825 
826 
827 
828 
829 
830 
83 1 
832 
833 
834 
835 
836 
837 
838 
839 
840 
84 1 
842 
843 
844 
845 
846 
847 
848 
849 
850 
85 1 
852 

Code  Listing - Flash.asm 

; Check  to  see if  computer  command, started  by  pushing  Attention  button 
Btfsc PORTB,  ATTENTION ; Bit  Test of Command  Flag 
Goto FILL-COMPLETE ; Button  pushed,  begin  processing  commands 

; Set  up  memory  to  accept  data  at  the  512-Byte  Page  address  pointed  to  by 
; address  Bytes  ADDO, 1, 2. 

Call MEM-WR-SET 

; Increment  time  values  for  next  record,  16ms  per  Frame. 
Movlw  Ox10 
Addwf  TIMEO,  f 
Movlw Ox01 ; increment  value  for  subsequent 
Btfsc  STATUS,  C ; If  Time 0 overflowed,  increment  Time 1 
Addwf  TIME1,  f 
Btfsc  STATUS, C ; Look  for  overflow on Time 1 
Addwf  TIME2,  f ; Time 1 overflow,  increment  Time 2 
Btfsc  STATUS,  C ; Still  clear  from  Time 1, or  clear/set  by 2 
Incf  TIME3,  f ; Time  2  overflow,  increment  Time 3 

; Write  sync  pattern  into  the  first  two  bytes  in  each  frame  (512-byte Page). 
; This  provides  a  known  value  to  detect  used,  bad, or blank  Flash  Memory  Pages. 
; Also,  write  all  once-per-page  values at  the  start  of  the  page. 

Call  MEM-Header 

; Initialize  measurement  counter  to  record  28  analog  sets  per  Frame 
Movlw OxlC ; Frame  contains  28  analog  meas.  sets 
Movwf MeasSet-Cnt ; initialize  counter  variable 

; Set up  simulated  analog  measurement  loop 
FILL-F-LOOP 

Movlw  0x08 ; Fill 9 channels, 0 to  8 
Movwf  Channel-Cnt 

; Simulate  Analog  measurement  with  large  value  in LSB, small  value in MSB. 
FILL-M-LOOP 

Comf Channel-Cnt, w ; simulates  LSB of  data 
Call MEMWRITE ; Store  in  Flash  memory 
Movf Channel-Cnt, w ; simulates  MSB of  data 
Call MEM-WRITE ; Store  in  Flash  memory 

Decfsz  Channel-Cnt,  f ; go  to  next  value 
Goto FILL-M-LOOP 

; Check  if  done  with  frame 
Decfsz  MeasSet-Cnt,  f ; sub-frame  counter,  want  28  sets 
Goto FILL-F-LOOP ; not  done  with  28  sets  yet 

; End  of  Frame  loop.  Command  transfer  of  Flash  internal  buffer  to  memory 
Clrwdt ; Reset  2.4  second  Watch-dog  Timer 
Call  MEM-PROGRAM ; Transfer  internal  buffer  to  Flash 

; Note:  Maximum  write  delay is 1 millisecond 

; Increment  memory  address  to  next  512-Byte  Page.  Add0  is  the  Byte  location 

FILL-F-INCR 
; within  the  Page, so is  not  incremented. 

Incf  ADD1,  f ; Incf  instruction  doesn't  set  C  flag 
Btfss  STATUS, 2 ; See if rolled  over,  overflow 
Goto FILL-INC-FR ; Not  rolled  over,  don't  need  to  check  rest 

; Make  LED  blink 
Movlw 0x02 
Xorwf PORTC,  f 

; LED is PORT  C,  line 1 
; make  LED  blink 

; ADDl  rolled  over, so increment  next  significant  address.  Check  for  end  of 
; memory.  If  end,  both  ADDl  and  ADD2  will  have  rolled  to  zero. 

Incf  ADD2,  f ; increment  next  address 

Goto  FILL-COMPLETE 
Btfsc  STATUS, Z ; Will  have  rolled  to  zero  if  full 

; Increment  frame  counter 

106  



853 
854 
855 
856 
857 
858 
859 
860 
86 1 
862 
863 
864 
865 
866 
867 
868 
869 
870 
87 1 
872 
873 

Code  Listing - Flash.asm 

FILL-INC-FR 
Incfsz MEM-FRM-NUM, f ; Frame  counter, rolls to Ox00 from  OxFF 
Goto FILLLOOP 

; 128kB  Record  complete - See  if  need to loop again. 
FILL-CKCOMP 

Call Status-Msg ; Sends  Output  location  to  terminal 
Movf R-MEM-REC-NUM, w ; Get  finish  Record  value 
Subwf  MEM-REC-NUM, w ; Subtract  current  Record  number 
Btfss  STATUS,  C ; Carry  set  if R- < MEM-REC-NUM 
Goto FILL-START 

; End  of  memory  acquisition / write. 
FILL-COMPLETE 

Return 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  END of FILE  Flash.asm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

END 

 107 



Code  Listing - Rd-Hand.asm 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
31 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

; File  name:  "rd-hand.  asm" 
; P&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
; Routines  to  read  memory  and  send  data  via  serial  interface 

; Date: 11 December  2001 
; File  Version: 4 
; Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

; Change  history: 
1999 - Adapted  from  MilliPen.asm  for  Sensor  Ball,  TA  Rohwer 
November  2000 - Version  2,  TA  Rohwer 
17  Mar  2001 - Version 3 Changes  requested  by  P&G,  ME  Partridge 
14 Jun  2001 - Include  checksum  features  for  data  integrity at  115.2k  Baud 
12  Aug  2001 - Version 4 Changes,  ME  Partridge 
Remove  the  automatic  continuation  function  during  upload.  This  may 

Add  reduced-function  upload  command "r" w/o  Sync  check 
Use  interface  timeout  subroutines 
Correct  upload  of  Time  LSW 

have  caused  512-Byte  Pages  to  be  missed  on  upload. 

11 Dec  2001  having  problem  with  serial  receive -- getting  spurious 
characters.  Reset  receive  after  each  block  transmitted. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Read  Hand(1er)  Subroutine 

Function: 
Reads  Records  from  memory  from  Start  Record  until  either  Cntl-C  is  received 
from  the  PC  uploading  the  data, or the  end  of  the  32MB  Flash memory  is 
reached.  Default  for  Start  Record  is 1, the  first  record.  Data  are  stored 
in  Flash  memory  as  16-bit  words,  Least  Significant  Byte  first,  and  are 
uploaded  to  the  PC  this  way. 

Seven,  80-Byte  Major  Frames  are  aligned  within one 512-Byte  Flash  memory 
Page.  The  data  are  stored  in  the  Flash  memory  Page  as  follows: 

Sync  bytes  SyncO,  Sync1 (OxEB90) 
Page  number  and  Record  number 
Time  count,  32  bits  with  LSB  first 
28  sets  of nine,  two-byte  analog  measurements,  Channel 0 thru 9 skip  7 

These  are  rearranged  to  create  the  seven  Major  Frames  with  some  values 
repeated  among  the  seven  Major  Frames  (Page  number,  Record  number,  Page 
address  LS  Byte,  Page  address MS Byte) to  the  seven  80-Byte  Major  Frames 
totaling 5 6 0  Bytes. The  Time  variable  is  incremented  for  each  Major  Frame, 
based  upon  the  initial  value  stored  in  the  Flash  memory  Page. So, the  Major 
Frame  is  constructed  of  the  following  values: 

one  set  of  nine,  two-Byte  analog  measurements 
Page number,  Record  number 
next  set  measurements 
Time  LS+2  Byte,  Time  MS  Byte 
next  set  measurements 
Time LS Byte,  Time  LS+1  Byte 
next  set  measurements 
Flash  Memory  Page  LS  Byte  address,  Flash  Memory  Page  MS  Byte  address 

To accommodate  re-transmitting  a  data  Frame  if  errors  are  detected,  the 
Flash  memory  Page  is  re-read  when  a  Negative  Acknowledge (NAK) is  sent.  After 
each  Byte  is  transmitted,  its  value is added  to  the  16-bit  checksum  value. 
Then,  the  Frame  is  uploaded  to  the  PC  followed  by  the  checksum.  If  the  data 
are  error-free,  an  Acknowledge  character  (hexadecimal 0x06)  is sent  from  the 
PC  and  data  transmission  continues  with  the  next  Flash  Memory  Page. 
Otherwise,  the  NAK  character  (hexadecimal 0x15)  is sent  and  the  Frame  is 
transmitted  again. 

; Subroutines  in  this  file: 
GLOBAL  READ-HAND 

; Calls: 
EXTERN TXWREG 
EXTERN Timeout-Chk 
EXTERN MEM-READ 
EXTERN MEMWRITE 
EXTERN MEM-REC-FIND 
EXTERN MEM-RD-SET 

; Tests  if  interface  has  timed  out 
; Flash.asm,  Return  value  from  Flash  memory 
; Flash.asm,  Writes  Wreg  value  to  Flash  memory 
; Finds  a  particular  Record  number 
: Sets  Flash  memory  to  begin  reading 

108  



72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
1 1 1  
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
14 1 
142 

; Registers: 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 
EXTERN 

MEM-REC-NUM 
MEM-FRM-NUM 
ADD0 
ADD1 
ADD2 
SER-FLAG 
MEMORY-FLAG 
PROG-FLAG 
CMD-PARAMS 
R-Sync-Byte0 
R-Sync-Byte1 
RMEM-REC-NUM 
R-MEM-FW-NUM 
R-TIME3 
R-TIME2 
R-TIME1 
R-TIME0 
CMD-TIMEL 
CMD-TIMEH 
CKSMO 
CKSMl 
BLCKO 
BLCKl 
MeasSet-Cnt 
Channel-Cnt 
TEMP 

Code Listing - Rd-Hand.asm 

; Current  Flash  memory  Record, 1 - 64 
; Current  Record  Frame  (Page), 0 - 255 
; Flash  Memory  address  A7 . .  A0 
; Flash  memory  address  A16 .. A8 
; Flash  memory  address  A24 . .  A17 
; Control  character  flags Xon, Ack,  etc. 
; Memory  Status  and  test  flags 
; Program  control, SIMPLE-FLG  used  here 

; Values  read  from  memory 

; Time-out  LSByte,  285ms / bit 
; Time-out  MSByte 
; Checksum  LS  Byte,  data  upload  to  PC 
; Checksum  MS  Byte 
; Count  of  Frames  uploaded,  LS  Byte 
; Count  of  Frames  uploaded,  MS  Byte 
; Loop  counter, 28 sets of 9 meas. / page 
; Loop  counter,  analog  channels 0 to 9 skip 7 
; Scratch  register  for  Debug 

; Interrupts: 
; No  change.  Serial  Interrupts  must be  enabled  prior  to call  to  allow  the  PC 
; to  stop  data  upload  with  the  Cntl-C  character. 

; Return: 
; Wreg=O 

; include  files: 
#include  "P16C774.  INC"  ;Standard  Header  File  for  PIC16C773 

;Includes  all  Register  Definitions, 
;RAM Definitions, L Configuration  Bits 

#include "ball-equ. inc"  ;EQU  Declarations,  equivalence 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Macro  used  only in the  Rd-Hand  routine  to  extract  data  from  memory  and  pass 
it on to  the PC. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Build  Minor-Frame  Macro 

4/16/2001  ME  Partridge 
Function: r 

; Reads  the  ADC  data  from  Flash  memory  in  sets of nine, two-byte  values  and 
; uploads  it  to  the  PC.  Then,  two  bytes  sub-commutated  values  are  sent.  The 
; Major  Frame  consists  of  four  Minor-Frames. 

; Arguments: 

; Value0  The  first sub-cornmutated  value  sent 
; Value1  The  second  sub-commutated  value 

; Calls: 
; TX-WREG Passes  data  to the  USART  to  be  transmitted  to  the  PC 

; Macros  used: 
; MEM-READ Handles  Flash  control  signals 
; ADC-Read Sets  up  the  analog  mux  and  waits  for ADC  response 

; Registers: 
; Channel-Cnt Loop  counter  to  read  one  data  set 

; Revisions: 

; LOOP  Unique  identifier  for  each  instance of this  macro 

 109 



143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 

Code  Listing - Rd-Hand.asm 

; 4/16/2001 First  revision 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sub-Frame MACRO  Loop,  ValueO,  Valuel 
Sub-Frame-#v(Loop) 

Movlw 0x12 
Movwf Channel-Cnt ; Counter  to  move 9 values  x 2 Bytes ea 

; Analog  data  loop:  get  data  for  Analog  channels 0 to 6, 8, 9 for 9 values  total 
Sub-Frame-#v(Loop)-LOOP 

Call MEM-READ ; Analog  LSBYTE 
Call TX-WREG ; Upload  Byte  to  PC 

; Do checksum  calculation. TX-WREG leaves  data in Wreg 
Addwf  CKSMO,  f ; calculate  checksum LS Byte 
Btfsc  STATUS,  C 
Incf  CKSM1,  f ; adjust  checksum  MS  Byte if Carry 

; Increment  the  measurement  number,  then  test if greater  than 18. If  not,  repeat 
; with  the  next  analog  channel. 

Decfsz Channel-Cnt,  f ; Check if completed  one  set of data 
Goto Sub-Frame-#v(Loop)-LOOP ; Acquire  and  write  next  channel 

; Close  with  two  bytes  of  other  values 
Movf  ValueO,  w 
Call TX-WREG ; Upload  Byte  to  PC 

; Do checksum  calculation. TX-WREG leaves  data in Wreg 
Addwf  CKSMO, f ; calculate  checksum LS Byte 
Btfsc  STATUS,  C 
Incf  CKSM1,  f ; adjust  checksum  MS  Byte if Carry 

; Second  value 
Movf  Valuel,  w 
Call  TX-WREG ; Upload  Byte  to  PC 

; Do checksum  calculation.  TX-WREG  leaves  data in Wreg 
Addwf  CKSMO,  f ; calculate  checksum LS Byte 
Btfsc  STATUS,  C 
Incf  CKSM1,  f ; adjust  checksum MS Byte  if  Carry 

ENDM 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

READ-PROG CODE  ;relocatable  code in Program  EPROM 

READ-HAND 
Clrwdt ; Reset 2.4 second  Watch-dog  Timer 
Bcf  STATUS, RPO ; Make  sure in Memory  Bank 0 
Bsf PROG-FLAG,  LED-BLINK ; Setup  for  LED  blink  pattern 
Clrf CMD-TIMEL ; Time-out  LSByte, 285ms / bit 
Clrf CMD-TIMEH ; Time-out  MSByte 
Clrf  BLCKO ; LS count  of  Frames  uploaded 
Clrf  BLCKl ; MS  count 
Clrf SER-FLAG ; Clears  left-over  control  characters 
Clrf MEMORY-FLAG ; Resets  memory  condition  flags 
Clrf  ADDl ; Flash  Page  address 
Clrf  ADD2 

; Get  parameter  passed  with  command,  if  any.  If  no  parameters,  leave  ADDl  set 
; to 0x00, the  start  of  memory.  A  "block"  of  data  uploaded  is  equal  to  one  Page 
; of  Flash  memory (512 Bytes),  expanded  to 560 Bytes  when  converted  to  standard 
; telemetry  frames.  A  "block"  does  not  equal  a  Flash  memory  Block,  which  is 
; 16k  Bytes,  rather, it  is the  term  used in the  host  computer  software.  One 
; "block"  contains 7 frames  of 80 bytes  each.  Data  are  uploaded  until  stopped 
; by  the  host PC when  it  transmits  a  Cntl-C  control  character. 
READ-PAM 

Movlw CMD-Param-Start ; Memory  location  for  parameter  stack 
Movwf  FSR ; Place in stack  pointer 

110  



2 14 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
23 8 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 1 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 
280 
28 1 
282 
283 
284 

Code  Listing - Rd-Hand.asm 

Movf  INDF,  w ; =CMD-PARAMS,  count  of  parameters  sent 
Btfsc  STATUS, Z ; Test  if  zero  parameters  on  stack 
Goto READ-RECORD ; no parameters  passed,  start  with  default 

; Read  first  parameter  passed, MS Byte  of  address 
Incf  FSR,  f ; Adjust  stack  pointer 
Movf INDF, w ; Byte 1, MSByte  address 
Movwf  ADD2 

; If no more  parameters,  proceed  with  read 
Decfsz CMD-PARAMS, f ; Recover  number  of  parameters 
Goto READ-2ND-PARM ; Parameter  cound  still > 0 
Goto READ-RECORD ; only  one  parameter  passed 

; Read  second  paramter  passed, LS Byte  of  address 
READ-2ND-PARM 

Incf FSR,  f ; Adjust  stack  pointer 
Movf INDF,  w ; Recover  parameter 
Movwf ADD1 ; Place  in  address 

; Position  memory  to  start  of  Record  selected. 
READ-RECORD 

; Test if "Smart  PCM  Device"  upload,  command "r" 
Btfsc  PROG-FLAG,  SIMPLE-FLG ; Set  if  Command "r" 
Goto READ-XON ; "Smart  PCM  Device"  upload,  skip  to  Read 
Call MEM-REC-FIND ; Find  first  valid  data  Record 

; Wait  for  OK  from  PC  before  begining  data  upload  loop.  Need  WDT  reset  because 

READ-XON 
; need  operator  input  to  select  file  name  and  number  of  Records  to  upload. 

Clrwdt ; Reset  2.4  second  Watch-dog  Timer 
Call  Timeout-Chk ; Used to  blink  LED  while  wait 
Btfsc  PORTB,  ATTENTION ; Check  if  operator  wants  to  terminate 
Goto READ-END ; Button  pushed,  skip  to  end of read 
Btfsc  SER-FLAG,  NAK-FLG ; Negative  acknowledge 
Goto READ-LOOP ; . . . take  it  as Go signal 
Btfss  SER-FLAG,  XON-FLG ; PC  sends  Xon  when  ready 
Goto READ-XON 

; A * * * * * * * * * * * * * * * * *  Start of Flash  Memory  Read  Loop . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Begin  loop  to  read  Flash  memory and  write  formatted  results  to  the  PC. 
READ-LOOP 

Clrwdt ; Reset  2.4  second  Watch-dog  Timer 
Btfsc  SER-FLAG,  CNTRLC-FLG  ;Test  if  transfer  Interrupt  Flag 
Goto READ-END ; ! = O ,  Transfer  interrupted by  Ctrl-C 

; Blink  LED  for  each  Memory  Page  read 
Movlw 0x02 ; LED is PORT  C,  line 1 
Xorwf PORTC, f ; make  LED  blink 

; See  if  end of memory  has  been  reached,  if so will  be  sending  blank  records 
Btfsc  MEMORY-FLAG,  MEM-FIND-FLG ; End  of  memory  flag 
Goto READ-SEND-SYNC ; Yes at end,  skip to send  sync 

; Read  the  preamble  bytes 
Call MEM-RD-SET ; Position  to  read  next  Memory  page 
Call  MEM-READ ; Sync  Byte 0 
Movwf R-Sync-Byte0 
Btfsc PROG-FLAG,  SIMPLE-FLG ; Set  if  Command  "r" 
Goto READ-Sync1 ; Simple  upload,  proceed  with  Read 

; Test  if  equal to  Sync 0. If  not, bad memory  Page. 
Sublw Sync-Byte0 
Btfss  STATUS, Z ; if  match,  will be zero 
Goto Next-Page ; no match,  skip  to  next  memory  page 

READ-Sync1 
Call  MEM-READ ; Sync  Byte 1 
Movwf R-Sync-Byte1 

 111 



Code  Listing - Rd-Hand.asm 

285 
286 
287 
288 
289 
290 
29 1 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
3 04 
305 
3 06 
307 
308 
309 
3 10 
31 1 
3 12 
313 
3 14 
315 
316 
317 
318 
3 19 
320 
32 1 
322 
323 
324 
325 
326 
327 
328 
329 
330 
33 1 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
35 1 
3 52 
353 
3 54 
355 

Btfsc  PROG-FLAG,  SIMPLE-FLG ; Set  if  Command U 
Goto READ-REST ; Simple  upload,  proceed  with  Read 

; Test  if  equal  to  Sync 1. If  not,  bad  memory  Page. 
Sublw Sync-Byte1 
Btfss  STATUS, 2 ; if match,  will be zero 
Goto Next-Page ; no match,  skip  to  next  memory  page 

; Read  remaining  preamble  data  bytes.  Need  to  match  sequence  written  by  the 
; RECORD  macro 
READ-REST 

Call MEM-READ 
Movwf  RMEM-FRN-NUM 
Call MEM-READ 
Movwf R-MEM-REC-NUM 
Call MEM-READ 
Movwf R-TIME2 
Call MEM-READ 
Movwf R-TIME3 

Movwf R-TIME0 

Movwf R-TIME1 

Call  MEM-READ 

Call MEM-READ 

; Send  the  Sync  Bytes  and  the  Frame-group  being  transmitted 
READ-SEND-SYNC 

Movlw Sync-Byte0 ; Start  Frame  with  sync  bytes 
Call  TX-WREG ; USART  Transmit  to  PC 
Movlw Sync-Byte1 
Call TX-WREG 
Movf  BLCKO,  w ; Count  of  Frame  groups  uploaded 
Call TX-WREG 
Movf  BLCK1,  w 
Call TX-WREG 

; Each  Flash  memory  Page (512 Bytes)  contains  28  sets of nine,  two-Byte  analog 
; measurements.  The  following  loop  reads  the  Page  to  upload 7 Major  Frames  Of 
; 72 analog  Bytes  (504  Bytes  read)  plus  the  previously  read  eight  Bytes  of 
; preamble  data  (512  Bytes  total  read).  One  set  of  nine,  two-Byte  analog 
; measurements is sent in each  sub-Frame  plus  two  Bytes  from  preamble. 

Clrwdt ; Reset  2.4  second  Watch-dog  Timer 
Movlw  0x07 
Movwf MeasSet-Cnt ; Set  to  read 7 Frames on one  Flash  Page 

; Get  ready  to  calculate  checksum  as  data  Frame  bytes  are  transmitted 
Clrf  CKSMO ; Checksum LS Byte 
Clrf  CKSMl 

; Loop  to  read  and  upload  80-Byte  Major  Frames. LS Byte  is  sent  first. 
FRAME-LOOP 

; Check  if  at  Memory  end,  if so just  send  blanks 
Btfsc MEMORY-FLAG,  MEM-FIND-FLG ; End  of  memory  flag 
Goto Blank-Page 

Sub-Frame 0, R-MEM-FM-NUM,  RMEM-REC-NUM 
Sub-Frame 1, R-TIME2,  R-TIME3 
Sub-Frame 2, R-TIMEO,  R-TIME1 
Sub-Frame 3, ADD1,  ADD2 

; Skip  over  blank  data  transmit 
Goto  FRAME-INCR 

: Memory end has  been  reached,  keep  sending  blank  data 
Blank-Page 

Movlw 0x50 ; 80-byte  Frame 
Movwf Channel-Cnt ; Re-use  this  counter 

; All-zero  data  add  to  zero  Checksum, so don't need  to  accumulate  here 
Blank-Frame 

Movlw  Ox00 ; Send  data  as all zero 

112 



356 
3 57 
358 
359 
360 
361 
3 62 
363 
3 64 
365 
366 
367 
368 
369 
370 
371 
3 72 
373 
3 74 
375 
376 
377 
378 
379 
380 
381 
3 82 
383 
3 84 
385 
386 
387 
388 
3 89 
390 
391 
392 
393 
3 94 
395 
396 
397 
398 
399 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
41 1 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 
422 
423 
424 
425 
426 

Code Listing - Rd-Hand.asm 

Call TX-WREG ; Transmit  blank  value 
Decfsz Channel-Cnt, f ; Count  of  bytes  sent in blank  Frame 
Goto Blank-Frame ; not  done  with 80 Bytes  yet 

; Check to see if all  Frames  uploaded  from  current  memory  Page 
FRAME-INCR 

Decfsz  MeasSet-Cnt,  f ; Frame  counter,  want 7 ea.  80-byte 
Goto  FRAME-LOOP ; not  done  with 7 sets yet 

; Having problem with  receive  function.  Reset  receive  queue  to  ensure  able 
; to read  the  ACK / NAK  character. 

Bcf  STATUS,  RPO ; Select  Bank 0 Memory 
Bcf  RCSTA,  CREN ; Momentarily  disable receive, clear  OERR 
Movf  RCREG,  w ; Empty  receive  buffer, two deep 
Movf  RCREG,  w ; Potential  second  byte from receive 

; Clear  all control character  flags. 
Clrf  SER-FLAG 

; Send  Checksum  bytes, LS Byte  first 
FRAME-CKSM 

Movf CKSMO,  w 
Call TX-WREG 
Movf CKSM1,  w 
Call TX-WREG 

; Wait  until  transmit 
; empty,  wait.  Note: 
FRAME TX WAIT - 

s f  STATUS, RPO 
BtfSS TXSTA, TRMT 
Goto  FRAME-TX-WAIT 

Bcf  STATUS,  RPO 
Bsf  RCSTA,  CREN 

shift  register (TSR) is  empty  is  empty. If the TSR is  not 
this bit  is  only  set  after  the  first  transmit 

; Select  Bank 1 memory 
; Set  to 1 when  TSR  empty 
; shift  register  empty,  load new data 

; Select  Bank 0 memory 
; Continuous  receive  enable 

; Having troubles  missing  ACK  character  from  PC.  If  missed, PC read  will  time- 
; out,  and  ask  for  re-transmit, so will  be  corrected there, This loop can only 

WAITACK-NAK 
; be  exited  by  receiving  a  Ctrl-C,  Ack,  Nak,  or  pressing  the  ATTENTION  buttion. 

Clrwdt ; Reset 2.4 second  Watch-dog  Timer 
Btfsc  PORTB,  ATTENTION ; Check if operator  wants to terminate 
Goto  READ-END ; Button  pushed,  skip to end  of  read 
Btfsc  SER-FLAG,  CNTRLC-FLG ; Test if transfer  Interrupt  Flag 
Goto READ-END ; Transfer  interrupted  by  Ctrl-C 
Btfsc  SER-FLAG,  ACK-FLG ; Acknowledge  flag  test 
Goto  WAIT-OVER ; OK to proceed 

; The PC interface  program  may  send  Ack ( O X O ~ ) ,  Nak (Ox15), or if the  interface 
; program had some  communication  time-outs, Xon (0x11) .  Treat Nak and X-on 
; control characters the  same  way. 

Btfsc  SER-FLAG,  NAK-FLG ; Negative  acknowledge 
Goto  READ-LOOP 
BtfSC  SER-FLAG,  XON-FLG 

; . . . got  error,  retransmit 
; Treat like NAK 

Goto  READ-LOOP 
Goto WAIT-ACK-NAK ; Nothing  received,  keep  checking 

; Acknowledge  received - Frame  group  received  error-free. 
; Adjust  count  of  Frame  groups  successfully  uploaded 
WAIT-OVER 

Movlw Ox01 ; Increment  count  of  Frames  uploaded 
Addwf BLCKO, f ; Frame  count  LS  Byte 

Incf BLCK1, f ; Got  Carry,  adjust MS Byte 
Btfsc STATUS, C ; See if LS Byte  increment  caused Carry 

; End  of  Frame loop. Increment  the  memory  address  to  the  next  512-byte  Page. 
Next-Page 

; Check  to  see if already  read  all  Records  stored in Flash  memory 
BtfSc  MEMORY-FLAG,  MEM-FIND-FLG ; End  of  memory  flag 
Goto READ-LOOP ; Just loop, will  send  blanks 

 113 



427 
428 
429 
430 
43 1 
432 
433 
434 
43 5 
436 
437 
43  8 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 

Code  Listing - Rd-Hand.asm 

Movlw  Ox01 
Addwf  ADD1,  f ; Incr  instruction  doesn't  set  C  flag 
Btfsc  STATUS,  C ; See if overflow 
Incf  ADD2,  f ; yes,  increment  next  address 

; Check  for  end of memory.  If  end,  both  ADD1  and  ADD2  will  have  rolled  to  zero 
Movf  ADD1,  w 
Iorwf  ADD2,  w 
BtfSC  STATUS, Z 
Bsf  MEMORY-FLAG,  MEM-FIND-FLG ; Set  the  End  of  memory  flag 
Goto READ-LOOP ; Keep  going  until  PC  says  stop 

. . . . . . . . . . . . . . . . . . . . . .  End of Flash  Memory  Read  Loop . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Finished  reading  all  frames 
READ-END 

Bcf  STATUS, RPO ; Make  sure in Memory  Bank 0 
Clrf SER-FLAG ; Reset  transfer  Interrupt  Flag 
BSf PORTC, CE ; Disable  Chip  Enable 
Retlw 0 ; Return  to CMD-HAND, WREG=O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  END of FILE Rd Hand.asm . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 

END 

114 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Code  Listing - Ser-Hand.asm 

; File  name: "serhand. asm" 
; P&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
; Routines  to  process  a  serial  interrupt and other  serial  interface  functions 

; Date: 11 December  2001 
; File  Version:  4 
; Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

; Change  history: 
1999 - Adapted  from  MilliPen.asm  for  Sensor  Ball,  TA  Rohwer 
November 2000 - Version 2,  TA Rohwer 
17 March  2001 - Version  3  Changes  requested  by  P&G,  ME  Partridge 
14 Jun  2001 - Add control  characters  for  data  transfer  integrity 
12  Aug  2001 - Version 4, ME  Partridge 
Put  Baud  setting  as  a  subroutine  for  consistency 
Combine  nibbles  of  successive  parameters  to  build  Bytes 
Echo  input  Parameters  on  first  echo,  then  combined  Bytes on "V"  reply 
Expand  allowable  command  character  set  to  A - z (lower  case z )  
Use  String  transmit  function  for  messages 
Add  a  Hexidecimal  translate / transmit  step  for  messages 

11 December 2001 - having  problems  with  data  upload,  receiving  characters 
in the > OxlF  range  instead  of  the  control  character  transmitted. 

Change so serial  interrupt  does  not  call  subroutine - stack  concern 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Receive  SER(ia1)-HAND(1er) -- Interrupt  Handler 

; Function: 
; Processes  Serial  Interrupts.  Control  characters  are  received,  and  the 

appropriate  bit  in PROG-FLAG  or  SER-FLAG  is  set. If a  command  phrase  is 
being  sent,  the  progress is tracked  using  flags  in  SER-STATE.  The  command 
character  is  temporarily  stored  in RC-TEMP. Once  the  command  phrase  is 
terminated  by CR, LF,  The  command  is  echoed  to  the  PC.  If  the  proper  command 
was  echoed,  then  the  PC  transmits  the  "V"  verify  command,  and  RC-TEMP  is 
moved  to  CMD-CHAR  for  processing  by  CMD-HAND  elsewhere,  and  the  Command  Flag 
is  set. 

, 

; The command  phrase  sequence  is: 
1 Receive  character "0" (zero) 
2  Receive  command  character,  must be in  A - z 
3 Optionally,  receive  any  parameters,  placed  in  the  CMD-PARAMS  stack 
4  Terminate the phrase  with  CR and LF,  in  either  order 
5 Sensor  Ball  echoes  command and  any  parameters  to  PC 
6 PC  responds  with "0", "V" , CR,  LF  if  the  correct,  Cntl-C  otherwise. 
7 Sensor  Ball  echoes  command  to  PC  again,  but  with  processed  parameters. 
8 Command  processing  begins  if  Step 6 received. 

; The  phrase  will  be  aborted  if  a  Ctrl-C  is  received,  a  character  other  than 
; "0" is  sent  first,  or  if  a  command  character  not  in  A - z is  sent  following 
; the "0" character. 

; All  valid  command  sequences,  without  the  passed  parameters,  are  Echoed  back 
; to  the  PC  when  the  command  phrase  is  complete.  An  invalid  command is Echoed 
; back  with  a " ? "  in the  response.  Cntl-C,  X-On,  X-Off,  and  any  other  control 
; character  are  not  Echoed. 

; Subroutines  in  this  file: 
GLOBAL SENDDATA 
GLOBAL Fail-Msg 
GLOBAL Status-Msg 
GLOBAL Erase-Msg 

GLOBAL TX-String 
GLOBAL Baud-Set 

GLOBAL TX-WREG 

; Calls: 
none 

; Registers: 
EXTERN ADDO,  ADDl, ADD2 ; Flash  memory  address 
EXTERN RC-TEMP ; Received  temporary  Command  Storage 
EXTERN RC-CHAR ; ASCII  Character  Storage 

: Sends  standard  completion  message to PC 
; Sends  failure  text  message  to  PC 
; Sends  PC  update  message  during  memory  test 
; Sends  PC  update  message  during  memory  erase 
; Transmits on RS-232  serial  interface 
; Uses  TX-WREG  to  send a  string 
; Sets  Baud  rate + configure  serial  port 

 115 



Code  Listing - Ser-Hand.asm 

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

EXTERN  CMD-CHAR ; Command  character  for CMD-HAND, in A - Z 
EXTERN  SER-STATE ; Progress  building  the  Command  Phrase 
EXTERN  PROG-FLAG ; bits  COMMAND,  REINIT,  CMDERROR,  STRERROR 
EXTERN  SER-FLAG ; Control  character  flags 
EXTERN MEMORY-FLAG ; Error  condition  from  memory 
EXTERN  CMD-CHAR ; ASCII  character  for  command 
EXTERN  CMD-PARAMS ; Command  Parameter  count,  top  of  stack 
EXTERN  TEMP ; Temporary,  used  here in Baud  set  routine 
EXTERN  TEMP-INT ; Temporary  for  interrupt  routine 
EXTERN  LOOP-INT ; Loop  counter  for  interrupt  routine 

; Serial  output  starting  location for  strings in program  memory 
EXTERN  Look-Hi ; Used  to  load  PCLATH  value 
EXTERN  Look-Lo ; Used  to  load  PCL 
EXTERN  List-Fail-Msg ; String  for  Memory  failure  message 
EXTERN  List-Stat-Msg ; String for Memory  fill / test  progress 
EXTERN  List-Eras-Msg ; String  for  Memory  erase  progress 
EXTERN  List-Mem-Flag ; String  for  Memory  Flag  value 

; Attention  mode  serial  interface  time-out  registers 
EXTERN  CMD-TIMEL ; Time-out  LSByte,  285ms / bit 
EXTERN  CMD-TIMEH ; Time-out  MSByte 

; Registers  to  push  data  during  interrupt,  accessible  regardless  of  Memory  Bank  selected. 
EXTERN STACK-Wreg 
EXTERN STACK-Status 

; Working  Register  holding  during  interrupts 
; Status  Register  holding  during  interrupts 
; Indirect  pointer  holding  during  interrupts EXTERN  STACK-FSR 

; Interrupts: 
; Global,  Peripheral,  Serial  Interrupts  are  enabled  prior  to  call. 

; Return: 
Wreg=O 

; include  files: 
#include  "P16C774.  inc"  ;Standard  Header  File  for  PIC16C773 

;Includes  all  Register  Definitions, 
;RAM  Definitions, & Configuration  Bits 

#include "ball-equ.inc" ;EQU  Declarations,  equivalence 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Interrupt  vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PERIPHVEC CODE  0x04 ; Peripheral  Interrupt  Handler 

Goto  PERIPH-ISR ; Not  enough  room  to  locate  ISR  here 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  Interrupt  Service  Routine . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Function: 
; To identify  source  of  Peripheral  Interrupt.  Currently  only  testing  for 
; serial  receive  interrupt -- all  other  interrupts  disabled. 

4-5 cycle  delay  expected  for  Hardware  to  call PERIPH-HAND 
7  cycles  are  executed  before RCSER-HAND  called. 

; Calls: 
; RC1-ISR in file  Ser-Hand.asm 

; Registers : 
; STACK-FSR 
; STACK-Status 
; STACK-Wreg ; Shared  memory,  temporary  Working  Register  contents 

; Interrupts: 
; Global  Interrupts  auto-disabled  at  start,  auto-enabled  at  close 

; Return: 
; Wreg,  STATUS,  FSR  returned  to  pre-Interrupt  state 

; Shared  memory,  indirect  address  register 
; Shared  memory,  temporary  STATUS  contents 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ISR-PROG CODE  ;relocatable  code in Program  EPROM 

116  



143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 

Code  Listing - Ser-Hand.asm 

PERIPH-ISR 
: Note:  STACK-Wreg,  -Status,  and -FSR are in shared  memory, so are  available 
: regardless  of  the  current  Memory  Bank  pointers  RPO  and  RP1 

Movwf STACKWreg : save  Wreg  first  or  will  overwrite 
Movf  STATUS,  w ; next,  save  Status  register 
Movwf STACK-Status ; into  reserved  location 
Movf  FSR,  w ; finally,  save  the  FSR 
Movwf STACK-FSR 
Bcf  STATUS, RPO ; Select  Bank 0 memory 

; Transition  on  RB4,  Port  C  to  note  entry  into  ISR. 
Movlw  Ox10 ; ISR-TEST is  PORT  B,  line 4 
Xorwf  PORTB,  f ; Change  RB4  state 

. _ _ _ _ _  Serial  Interrupt  Test  (for  some  reason,  RCIF  not  being  set) 
ISR-RClTEST 

Btfss  PIR1,  RCIF ; Test  Rc  Interrupt  Flag 
Goto  SER-Cntl-ERR : . . . not  receive,  clear  error  conditions 

; Even  at  115.2k  Baud,  almost  320  instructions  can be executed in the  time  to 
: transmit  one  Byte, so something is wrong if a  serial  overrun  has  occurred. 
ISR-OERR-TST 

Btfsc  RCSTA,  OERR ; Test if serial  register  overrun 
Goto SER-Cntl-ERR ; . . . overrun  error,  process 

; Framing  Error  Test 
ISR-FERR-TST 

Btfsc  RCSTA,  FERR ; Test if framing  error  occurred 
Goto SER-Cntl-ERR ; . . . framing  error,  process 

; Begin  processing  serial  interrupt 

; RCIF  is  a  read-only  bit  cleared  when  RCREG  has  been  read  and is empty.  RCREG 
: is  a  double-buffered  register, i.e. it  is  a  two  deep FIFO. It  is  possible  for 
; two  bytes  of  data  to  be  received  and  transferred  to  the  RCREG  FIFO  and  a 
: third  byte  begin  shifting  to  the  RSR.  On  detection of the  stop  bit  of  the 
; third  byte, if the  RCREG  is  still full, then  the  overrun  error  bit, 
; OERR  (RCSTA<l>)  will  be  set.  The  word in the  RSR  will  be  lost.  RCREG  can  be 
; read  twice  to  retrieve  the  two  bytes in the  FIFO.  The  OERR  bit is cleared  by 
; resetting  the  receive  logic  (CREN  is  set).  If  the  OERR  bit is set,  transfers 
: from  the RSR  to RCREG  are  inhibited, so it is essential to clear  the  OERR  bit 
; if it  is  set.  The  framing  error  bit  FERR  (RCSTA<2>)  is  set if a  stop  bit is 
: not  detected. 

ISR-RECEIVE 
Movf  RCREG,  w ; capture  character  from  USART  receive  buffer 
Movwf RC-CHAR ; and  put  into  working  location 
Movlw  Ox10 ; ISR-TEST is  PORT  B,  line  4  of 0 - I 
Xorwf  PORTB,  f ; make ISR-TEST change  state 

; Handle  the  character  received 
: Check for special  control  characters 
ISR-SP-CHAR 

Movf RC-CHAR,  w 
Sublw  OxlF ; subtract  control  char  range 
Btfss  STATUS,  C ; Check if Carry  set 
Goto SER-STR ; Carry  clear, so not  a  control  character 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; * * * * * * * * * * * * * *  Start  of  Control  character  processing  section * * * * * * * * * * * * * * * * *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: Now,  set up  to jump to control  character  routine. 
Movlw  high SER-Jump ; Get  upper  Program  Counter 
Movwf  PCLATH ; set in upper 5 bits  of  PC 
Movf RC-CHAR,  w ; recover  received  character 
Addlw SER-Jump ; Adds GOT0 series  starting  address 
Btfsc  STATUS,  C ; Check  if  address  addition  overflow 
Incf  PCLATH,  f ; Yes,  adjust  program  counter  high  byte 
Movwf  PCL ; change  Program  Counter  to  jump  there 

117 



Code  Listing - Ser-Hand-asm 

2 14 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
23 5 
236 
237 
238 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
25 8 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 
280 
28 1 
282 
283 
284 

SER-Jump 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 
Goto 

SER-END 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-CntlC 
SER-Cntl-ERR 
SER-Cntl-ERR 

SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-LF 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-CR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Xon 
SER-Cntl-ERR 
SER-Xof  f 
SER-Cntl-ERR 
SER-NAK 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SER-Cntl-ERR 
SERCntl-ERR 
SER-Cntl-ERR 

SER-ACK 

Null,  ignore 
Ox01 not  used,  SOH 
Ox02  not  used,  STX 
0x03  is  Control-C 
0x04  not  used,  EOT 
0x05  not  used,  ENQ 
0x06  is  ACK,  received  data 
0x07  not  used,  BEL 
0x08  not  used,  Backspace 
Ox09  not  used,  Horizontal  Tab 
OxOA  is  Line  Feed 
OxOB  not  used,  Vertical  Tab 
OxOC  not  used,  Form  Feed 
OxOD  is  Carriage  Return 
OxOE  not  used, SO 
OxOF  not  used, SI 
Ox10  not  used, SLE 
0x11 is X-on,  DC1 
0x12  not  used,  DC2 
0x13  is  X-off,  DC3 
0x14  not  used,  DC4 
0x15  is  NAK,  retransmit 
0x16  not  used, SYN 
0x17  not  used,  ETB 
Ox18  not  used,  CAN 
Ox19  not  used,  EM 
OxlA  not  used,  STB 
OxlB  not  used,  ESC 
OxlC  not  used, FS 
OxlD  not  used,  GS 
OxlE  not  used, RS 
OxlF  not  used, US 

; Control-C  routine,  stops  any  command  phrase in progress  without  error  message 
SER-Cntl-C 

Bsf  SER-FLAG,  CNTRLC-FLG ; ==CNTL-C,  set  CNTLC  Flag 
Clrf SER-STATE ; clear  command  phrase  state 
Clrf RC-CHAR ; clear  the  received  character  buffer 
Clrf  CMD-CHAR ; clear  any  command  character 
C1 r f  CMD-PARAMS ; Clear  parameter  count 
Goto SER-END 

; Line  Feed  routine.  Either  LF  or CR can be  first,  but  both  must  occur  to  terminate  command. 
SER-LF 

Bsf  SER-STATE,  SER-ST-LF ; Bit 4 of SER-STATE 
Goto SER-CHECK-DONE ; If  both CR and  LF  received,  parse  parameters 

: Carriage  Return  routine.  Either CR or LF  can be  first,  but  both  must  occur  to  terminate 
command. 
SER-CR 

Bsf  SER-STATE,  SER-ST-CR ; Right  sequence,  Bit  of SER-STATE set 
Goto SER-CHECK-DONE ; If both CR and LF received,  parse  parameters 

; X-Off  routine.  Sets  flag  to  halt  serial  transmission in TX-WREG routine. 
; Xoff is an  inhibit  control,  while  Xon  both  clears  Xoff  and  signals  go-ahead 
; to  begin  data  upload. 
SER-Xoff 

Bsf  SER-FLAG,  XOFF-FLG ; Set  the  X-Off  Command  Flag 
Bcf  SER-FLAG,  XON-FLG ; . . and  clear  the  X-On  Command  Flag 
Goto SER-END 

; X-On  routine.  Clears  Xoff  flag  to  enable  serial  transmission in the TX-WREG 
; routine.  Xoff  is  an  inhibit-only  control,  while  Xon  both  clears  Xoff  and 
; signals  go-ahead  to  begin  data  upload in the ST-HAND  and  RD-HAND routines. 
SERXon 

Bcf  SER-FLAG,  XOFF-FLG ; Clear  the  X-Off  Command  Flag 
Bsf  SER-FLAG,  XON-FLG ; . . and  set  the  X-On  Command  Flag 
Goto SER-END 

118  

I 
1 
I 
I 
D~ 
I 
B 



285 

287 
288 
289 
290 
29 1 
292 
293 
294 
295 
296 
297 
298 
299 
3 00 
301 
3 02 
3 03 
3 04 
305 
306 
307 
308 
309 
3 10 
311 
3 12 
313 
3 14 
315 
3 16 
3 17 
3 18 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
33 1 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
35 1 
352 
353 
354 
355 

286 

Code  Listing - Ser-Hand.asm 

; ACK  routine.  Sets  flag  indicating  PC  received  data  block  with  proper 
; checksum.  The  flag  is  cleared  by  the  routine  monitoring  the  flag. 
SER-ACK 

Bsf  SER-FLAG,  ACK-FLG ; Set  Acknowledge  flag,  continue  xmit 
Goto SER-END 

; NAK  routine.  Sets  flag  that  data  ckecksum in error,  need  to  retransmit. 
; The  flag  is  cleared  by  the  routine  monitoring  the  flag. 
SER-NAK 

Bsf SER-FLAG,  NAK-FLG ; Set  Negative  Ack,  retransmit  data 
Goto SER-END 

; None  of  the  characters  above, or other  error.  Set  flag  for  debug  and  ignore. 
SER-Cntl-ERR ; just  illegal  control  character 

Bsf SER-FLAG,  CNTL-ER-FLG ; Note  error  for  debug 
Bcf  RCSTA,  CREN ; Reset  receive  enable  to  clear  OERR 
Movf  RCREG,  w ; Clear  Framing  error  by  reading  RCREG 
Movf  RCREG,  w ; Buffer  is  two  registers  deep 
Bs  f  RCSTA,  CREN ; Re-enable  receive 
Goto SER-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
;**** End  of  Control  character  processing  section,  start  of  Command  phrase * * * *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; A  command  sequence  consists  of  a  zero,  then  a  capital  letter,  optional 
; parameters  each  with  a  value  between  0x20  and OxFF,  and  ends  with  carriage 
; return  and  line  feed.  The  command is not  processed  until  the CR LF. 

; Check  to  see if sequence  has  started 
SER-STR 

Btfsc PROG-FLAG, COMMAND-FLG; Set if already  processing  a  command  phrase 
Goto SER-PHRASE-DONE ; Ignore  new  commands  until  current  is  done 
Btfss SER-STATE,  SER-ST-0 ; See  if  command  start  received 
Goto SER-ZERO ; Start  not  received,  make  sure  is  zero 
Btfss SER-STATE,  SER-ST-AZ ; Test if command  character  previously  read 
Goto SER-COMMAND ; Check  if  character in range  "A" - " z "  

; Everything  else  received, so must be  a  Parameter.  Push  Parameter  characters 
; as  received  onto  parameter  stack  for  later  processing.  Need  to  build  stack 
; pointer  because  this is an  interrupt  routine,  and  FSR  changes on exit. 
SER-PARAMETER 

Movlw Param-Stack-Size ; Prepare  to  check if exceeded  stack  size 
Subwf CMD-PARAMS,  w ; Test  against  number  received so far 
Btfsc  STATUS,  C ; Carry  set  means # params. >= limit 
Goto SER-ERR ; Parameter  Stack  overflow 

Incf CMD-PARAMS,  f ; Count  parameters  received 
Movlw CMD-Param-Start 
Addwf CMD-PARAMS,  w ; Add  Parameter  stack  offset  location 
Movwf  FSR ; Stack  points  to  next  location 
Movf RC-CHAR,  w ; get  received  character 
Movwf  INDF ; store on parameter  stack 
Bsf  SER-STATE,  SER-ST-PAR ; At  least  one  parameter  stored 
Goto SER-END 

; No  command  phrase  has  started, so to  be  valid  the  first  character  must  be  a  zero. 

SER-ZERO 
; If  the  character  is  not  zero,  clear  the  character  and  exit. 

Clrf SER-STATE ; Must  be  first  character,  reset  state 
Movlw "0" ; will  compare  with  zero  character 
Subwf RC-CHAR,  w 
Btfss  STATUS, 2 ; If RC-CHAR equal to " O " ,  Zero  flag  set 
Goto SER-ERR ; !=O, so we're outta  here. 
Bsf  SER-STATE,  SER-ST-0 ; mark  that  the  starting  zero  has  been  received. 
Goto SER-END 

SER-COWND 
; Expecting  to  see  a  character in "A"  thru "z". If  not  a  character,  then  error out. 

Movlw " z " + 1  ; check if command  character  beyond " z "  
Subwf RC-CHAR,  w ; Subwf  subtracts " z " + 1  from  character 

 119 



356 
357 
358 
359 
360 
361 
3  62 
363 
3 64 
365 
366 
367 
368 
3 69 
3 70 
37 1 
3 72 
373 
3 74 
375 
3 76 
377 
378 
3 79 
3 80 
381 
3 82 
383 
3 84 
3 85 
386 
387 
388 
3 89 
390 
391 
392 
393 
3 94 
395 
396 
397 
398 
3 99 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
41 1 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 
422 
423 
424 
425 
426 

Code  Listing - Ser-Hand.asm 

Btfsc  STATUS,  C : carry  clear  means  character  <= " z "  
Goto SER-ERR : above " z " ,  error 
Movlw "A" : now  test  lower  end 
Subwf  RC-CHAR,  w : will be zero or positive if valid 
Btfss  STATUS,  C ; carry  set  means  character >= "A" 
Goto SER-ERR ; less  than "A", error 
Bsf  SER-STATE,  SER-ST-AZ ; Valid  character - not  tested if command 

: Now  test if this  is  the  Verify  command 
Movlw "V" : Check  to  see  if  command is Verify = V 
Subwf RC-CHAR,  w 
Btfsc  STATUS, 2 : will  be  zero  if  Verify  character  received 
Goto SER-VER-CMD : Is  "V",  process  Verify  character 

; Save  command  character in temporary  location  and  prepare  to  receive  Parameters 
Movf  RC-CHAR,  w : Recover  character  received 
Movwf RC-TEMP ; Hold in temporary 
Clrf CMD-PAWS : Clear  received  Parameter  count 
Goto SER-END 

SER-VER-CMD 
; Is  Verify,  set  Verify  flag  but don't overwrite  temporary  command  character 

Bsf  SER-STATE,  SER-VERIFY : Received  Verify  character 
Bcf  SER-FLAG,  XON-FLG : Clear  Xon  flag - prepare for  upload 
Goto SER-END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; * ***  End  of  Command  phrase  processing  section,  start  of  Parameter  parse * * * * * *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: Test  to  see  if  phrase is complete  (minimum "0", command,  CR,  LF) 
SER-CHECK-DONE 

Movf SER-STATE,  w 
Andlw  OxOF : Strip  off  Parameter,  Verify  flag  bits 
Sublw  OxOF : Test  if  entire  command  phrase  done 
Btfss  STATUS, 2 
Goto SER-END : not  complete  phrase 
Btfss  SER-STATE,  SER-VERIFY : see  if  this  is  Verify  phrase 
Goto SER-PHRASE-DONE : Not  Verify,  skip  finish-up  for  now 

: Activity  from  PC, reset  command  interface  timeout  count.  Otherwise,  may 
; get  a  "heartbeat" dot  character in echo,  and  cause  interface  error 

Clrf CMD-TIMEL 
Clrf CMD-TIMEH 

: Clear  time-out  registers 

: Received  Verify  phrase, so finish  up  command  setup. 
Movf  RC-TEMP,  w : recover  temporary  Command  character 
Movwf CMD-CHAR : store  Command  character  for CMD-HAND  use 
Bsf  PROG-FLAG,  COMMAND-FLG; Mark  command  ready  for  processing 

: Build  parameter  bytes  from  nibbles  transmitted.  The  PC  cannot  send  parameters 
: with  values  less  than  0x20  because  they  would be interpreted  as  control 
: characters.  Therefore,  only  the  lower  nibble  of  each  parameter  byte  is  used. 
: The  assumed  sequence  is  Byte 1, Byte2 => MS  Nibble,  LS  Nibble.  If  the  last 
: Byte  is  odd-numbered,  it is translated  as  a  MS  Nibble. 

Movlw CMD-Param-Start : Get  start  of  parameter  table 
Movwf  FSR : Place in stack  pointer 
Movf  INDF,  w : =CMD-PARAMS,  count  of  parameters  passed 
Btfsc  STATUS, 2 : Test if zero  parameters on stack 
Goto  SER-PHRASE-DONE : No parameters  passed 
Movwf LOOP-INT : Interrupt  use  only  Loop  Counter 

: Rebuild  parameter  table  with  combined  nibbles 
SER-PAR-EXTR 

Incf  FSR,  f ; Point  to  first (odd) Parameter 
Movlw  OxOF ; Set  mask  to  strip  upper  nibble 
Andwf  INDF,  f : Strip  upper  nibble 
Swapf  INDF,  f : Make  this  MS  nibble  of  Parameter 
Decf LOOP-INT,  f 
BtfSC  STATUS, Z 
Goto SER-PAR-DONE : Done  with  parameters 

: Track  Parameters  processed 
: See  if  was  last  Parameter 

120  

L 



427 
428 
429 
430 
43 1 
432 
433 
434 
43 5 
436 
437 
43 8 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 
453 
454 
455 
456 
457 
458 
459 
460 
46 1 
462 
463 
464 
465 
466 
467 
468 
469 
470 
47 1 
472 
473 
474 
475 
476 
477 
478 
479 
480 
48 1 
482 
483 
484 
485 
486 
487 
488 
489 
490 
49 1 
492 
493 
494 
495 
496 
497 

Code  Listing - Ser-Hand.asm 

; Process LS Nibble  of  combined  parameter 
Incf  FSR,  f ; Point  to  second (even) Parameter 
Andwf INDF, f ; Strip  upper  nibble 
Movf  INDF,  w ; Recover  stripped  value 
Decf  FSR,  f ; point  to  upper  nibble 
Addwf INDF, f ; Combine  lower  with  upper  nibble 
Decf  LOOP-INT, f ; Find  Parameters  remaining 
Btfsc  STATUS, 2 ; See  if  was  last  Parameter 
Goto SER-PAR-DONE ; Done  with  parameters 

; Move  up  rest  of  parameter  stack  to  fill  void 
Movf FSR,  w ; Get  adjusted  FSR 
Movwf TEMP-INT ; Hold  this  value 
Incf FSR,  f ; Points  to  what  will  be  next  value 
Movf LOOP-INT, w ; Get  Parameters  remaining 
Movwf RC-CHAR ; Use  as  temporary  loop  counter 

; Loop  through  stack,  sliding  all  values  up by  one location 
SER-PAR-LOOP 

Incf FSR,  f ; Point  to  next  unprocessed  parameter 
Movf INDF, w ; Get  this  value 
Decf FSR,  f ; Point  to new location 
Movwf INDF ; Put  the  value  there 
Incf FSR, f ; Point  to  just-moved  parameter 
Decfsz RC-CHAR, f ; Loop  counter 
Goto SER-PAR-LOOP ; Still  more  parameters  in  stack 

; Done  moving  up  Stack,  restore  pointer 
Movf  TEMP-INT,  w ; Get  the  FSR  held  before 
Movwf  FSR 
Goto SER-PAR-EXTR ; Loop  back  to  process  next 

; Adjust  parameter  count  to  be  half, 1&2 => 1, 3&4 => 2, etc. 
SER-PAR-DONE 

Incf  CMD-PARAMS,  f ; Prepare  param  count  for  divide 
Bcf STATUS,  C ; Clear  carry  bit 
Rrf  CMD-PARAMS, f ; Effectively,  divide  by  two 
Goto SER-PHRASE-DONE ; close  out  processed  phrase 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
;**** Finished  with  serial  routine,  close  out  in  error  or  normal  mode * * * * * * * * *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SER-ERR 
; Problem in command  phrase.  Reset  all  variables. 

Clrf  CMD-CHAR 
Clrf  CMD-PARAMS 
Bsf  SER-FLAG,  STR-ER-FLG ; Note  error  for  debug 

; clear  any  command  character 
; Clear  parameter  count 

; Either  Phrase  complete  or  error.  Echo  the  command  character or " ? "  if 
; a  command  phrase  error. In a  normal  command  sequence,  echo  is  sent  twice, 
; once  when  the  Command  character  phrase  is  complete,  and  once  when  the "V" 
; verify  character  is  sent.  In  the  former,  unprocessed  Parameters  (characters) 
: are  sent. In the  latter,  processed  parameters  in  final  form  are  sent. 

SER-PHRASE-DONE 
Transmits I "0 "  1 Temp  Cmd  Char I <parameters> I CR I LF I 
Clrwdt ; Watch-Dog  Timer  reset 
Movlw "0" ; Load  zero  character 
Call  TX-WREG ; Transmit  zero  character  and  return 
Btfss  SER-FLAG,  STR-ER-FLG ; Check  if  command  string  error 
Goto SER-ECHO-CHAR ; No error,  just  echo  command  character 

; Was  an  error,  insert  error  character  before  one  received 
Movlw ' I ? "  

Call TX-WREG 

Movf RC-TEMP, w 
Call TX-WREG 

; Yes,  send  error  character  flag 
; Transmit  error  character  and  return 

; get  the  temporary  command  character 
; Transmit  command  character 

SER-ECHO-CHAR 

121 



Code Listing - Ser-Hand.asm 

498 
499 
500 
50 1 
5 02 
503 
504 
505 
506 
507 
508 
509 
5 10 
511 
512 
513 
5 14 
515 
516 
517 
518 
5 19 
520 
52 1 
522 
523 
524 
525 
526 
527 
528 
529 
530 
53 1 
532 
533 
534 
535 
536 
537 
538 
539 
540 
54 1 
542 
543 
544 
545 
546 
547 
548 
549 
550 
55 1 
552 
553 
554 
555 
556 
557 
558 
559 
560 
56 1 
562 
563 
5 64 
565 
566 
567 
568 

; Check  to  see  if  any  parameters  were  sent.  If s o ,  transmit  the  parameters  in 
; processed  form  (nibbles  combined  to  form  bytes). 

Movlw CMD-Param-Start ; Get  start  of  parameter  table 
Movwf  FSR ; Place  in  stack  pointer 
Movf  INDF,  w ; =CMD-PARAMS, count  of  parameters  passed 
Btfsc  STATUS, Z ; Test  if  zero  parameters  on  stack 
Goto SER-ECHO-END ; No parameters  passed 
Movwf  LOOP-INT ; Hold  number  of  parameters  passed 

; Send  parameter  values 
SER-ECH-Loop 

Incf FSR,  f ; Point  to  Parameter 
Movf INDF,  w ; Recover  value 
Call TXWREG ; Transmit  Parameter 
Decfsz LOOP-INT, f ; See  if  all  parameters  sent 
Goto SER-ECH-Loop ; . . . Continue  sending 

; Done  with  echoed  command  and  parameters,  close  out  string 
SER-ECHO-END 

Movlw "\r" ; Carriage  Return 
Call TXWREG ; Transmit 
Movlw "\n" ; Line  Feed 
Call TX-WREG ; Transmit 

Clrf SER-FLAG ; Clear all  serial  flags 
Clrf SER-STATE ; clear command  phrase  state 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Exit  Interrupt  Service  Routine 
SER-END 

Movf  STACK-FSR,  w ; Retrieve  pre-isr  FSR  contents 
Movwf  FSR ; and  restore  the  FSR 
Movf  STACK-Status,  w ; Retrieve  pre-isr  STATUS  contents 
Movwf  STATUS ; and  restore  Microprocessor  state 
Movf  STACK-Wreg,  w ; Finally,  restore  Wreg 

ISR-END 
Retfie  ;Return  from  Interrupt 

; auto-enable  global  interrupts 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TXWREGand TX-HEX Subroutines 

; Function: 
; Expects  serial  port  initialized (in Ball.asm).  The  data  byte  to  be 
; transmitted  is  passed  to  this  routine  in  Wreg.  Waits  for  the  transmit  buffer 
; to  empty  if  necessary,  then  move  Wreg  to  TXREG  and  sets  TXEN  to  transmit. 

; Two registers  are  involved  in  transmitting  data.  Data  are  first  moved  to  the 
; transmit  buffer,  TXREG.  After  the  Stop  bit is transmitted  from  the  previous 
; load,  the  transmit  (serial)  shift  register (TSR) loads  the  new  data  from the 
; TXREG  register.  Once  the  TXREG  register  transfers  the  data  to  the  TSR 
; register,  the  TXREG  register  is  empty  and  flag  bit  TXIF (PIR1<4>) is  set. 
; Flag  bit  TXIF  will  reset  only  when new data  is  loaded  into  the  TXREG 
; register.  Bit  TRMT  (TXSTA<l>)  is  a  read-only  bit  that is set  when  the  TSR 

register is empty 

WARNING:  You  must  not  trust  the  TXIF  bit  to  accurately  reflect  the  state of 
the  transmitter  on  power  up. (The flag  shows  FULL  even  though  there  are NO 
characters in either  the  TXREG  or  TSR! The flaq  bit  TXIF  is  ONLY  true  AFTER 1 the  first DUMMY character's  STOP bit is clocked  out of  the TSR  producing  the 

; FIRST  load  pulse  to  the  TXREG  and  setting  the  correct  flags!) 

; 115.2kBaud * (8/10) = effective  bits/second  at  115.2kBaud = 92160 
; This  equates  to  11520,  8-bit  Bytes/second,  or 0.2 hours  to  upload  8MBytes 
; At  19.2kBaud, 1.2 hours  are  required to upload  8MBytes. 

1 
I 

122  



569 
570 
57 1 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
5 82 
583 
584 
585 
586 
587 
588 
5 89 
590 
59 1 
592 
593 
594 
595 
596 
597 
598 
599 
600 
60 1 
602 
603 
604 
605 
606 
607 
608 
609 
610 
61 1 
612 
613 
614 
615 
616 
617 
618 
619 
620 
62 1 
622 
623 
624 
625 
626 
627 
62 8 
629 
630 
63 1 
632 
633 
634 
635 
636 
63 7 
63 8 
63 9 

Code  Listing - Ser-Hand.asm 

; Calls: 
NONE 

; Registers: 
; Wreg  has  byte  to  transmit on entry 

; Interrupts: 
; Interrupts  not  used or changed  in  this  subroutine 

; Return: 
; Wreg  still  holds  data  transmitted  on  exit 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Converts  lower  nibble  of  Wreg  to  ASCII  representation.  Character is left  in 
; Wreg to  be  processed  by  TX-WREG. 
TX-HEX 

Andlw OxOF ; Mask  off  upper  nibble 
Addlw OxF6 ; Test  if  greater  than 9 
BtfSC STATUS, C ; If s o ,  set  for  A - F 
Addlw 0x07 ; is  in A - F,  add  offset 
Addlw Ox3A ; ASCII  offset  for  zero + restore  subtract 

TX-WREG 

; First,  check  if  PC  requested  transmission halt:  Xoff  flag  set.  This  flag is 
; cleared  by  the  PC  when  an  Xon  character  is  sent. 

BCf  STATUS,  RPO ; Select  Bank 0 memory 
Btfsc  SER-FLAG,  XOFF-FLG 
Goto TX-WREG ; X-off  sent,  wait  until  X-on  clears 

; Xoff  not  set,  next  check  if  transmit  shift  register is  empty 

BtfSC  TXSTA,  TRMT ; Set  to 1 when  TSR  empty 
Got0 TX-DO-IT ; shift  register  empty,  load  new  data 

Bsf  STATUS,  RPO ; Select  Bank 1 memory 

; If the TSR  is  not  empty,  might  not  need to  wait.  Just  check  if  TXREG is empty 
; Note:  this  bit is only  set  after  the  first  transmit 

Bcf STATUS,  RPO ; Select  Bank 0 memory 
Btfss PIR1,  TXIF ; Check TX  Register,  l=empty 
Got0 TX-WREG ; need  to  wait  to  empty  if  not. 

; Choosing  to  load  TXREG,  then  start  transmission by  enabling  transmit.  Data 
; book  says  this  is  faster  than  leaving  enabled  and  transmit on load. 
TX-DO-IT 

Bcf  STATUS,  RPO 
Movwf  TXREG 
Bsf  STATUS,  RPO 
Bsf  TXSTA,  TXEN 
Bcf STATUS, RPO 
Return 

; Select  Bank 0 memory 
; Load Tx  Register  from  Wreg 
; Select  Bank 1 memory 
; Start  Transmission 
; Select  Bank 0 memory 
; Return  with  data  still  in  Wreg 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TX-String Subroutine 

; Function: 
; Uses  TX-WREG  to  send a  string  of  characters  to  the  serial  port.  The  string 
; location  is  loaded  into  the  stack  pointer.  The  string  is  transmitted one 
; character  at a time  until  a  null  (hex 0) is found.  The  null is transmitted 
; as  well. 

; Calls: 
TX-WREG 

; Registers : 
; Look-Hi,  Look-Low contain  start  of  string on entry.  These  are  modified  as 

; Wreg  is  used  to  send  the  byte  to  TX-WREG 
each  value  in  the  string  is  recalled. 

 123 



640 
64 1 
642 
643 
644 
645 
646 
647 
648 
649 
650 
65 1 
652 
653 
654 
655 
656 
657 
658 
659 
660 
66 1 
662 
663 
664 
665 
666 
667 
668 
669 
670 
67 1 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
69 1 
692 
693 
694 
695 
696 
697 
698 
699 
700 
70 1 
702 
703 
704 
705 
706 
707 
708 
709 
710 

Code  Listing - Ser-Hand.asm 

; Interrupts: 
; Interrupts  not  used  or  changed in this  subroutine 

; Wreg  holds  last  data  transmitted  on  exit  (null) 
; Return: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TX-String 
Call TX-Lookup ; Get  character  to  transmit 
Call TX-WREG ; Send  character,  returns  Wreg=character 
Andlw  OxFF ; Refresh  STATUS  register on Wreg 
Btfss  STATUS, 2 ; Check if just  sent  null 
Goto TX-String ; Wasn't  null,  loop  again 

TX-Str-End 
; Done  with  transmit 

Retlw 0 ; Return,  WREG=O 

; This  section  recalls  the  character  from  program  data,  where  it  is  stored  as 
; a  the  return  value in a  Retlw  expression.  Jumps  program  counter  to  the 
; desired  Retlw,  and  completes  the  call  return  from  there. 
TX-Lookup 

; Set  Program  counter  to  location  of  string  character 
Movf  Look-Hi,  w ; set  PCLATH  to  next  string  location 
Movwf  PCLATH 
Movf  Look-Lo,  w ; Now set  lower  program  counter,  PCL 

; Now  adjust  the  Program  Counter  for  the  next  access  (if  used) 
Incf Look-Lo,  f ; Adjust  to  next  location  for  subsequent  access 
Btfsc  STATUS, 2 ; see  if  incremented  to  zero 
Incf Look-Hi,  f ; lower  address  incremented,  adjust  upper 

; Now  jump  to  address:  an  Retlw  command  returning  Wreg  with  the  string  value 

; Note:  since  this  is  a  called  routine,  the  RETLW  command  will  reset  the  program 
; counter  to  the  code  that  called  TX-Lookup. 

Movwf  PCL ; ok, now jump 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  End  of  TX  String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- 

Fail-Msg,  Status-Msg,  Erase-Msg,  SENDDATA  Subroutines 

Transmits  <Message>  (memory  address)  "Mem  Flag  Value"  (memory  flag)  CR LF 
<Messages>  are: 
Fail-Msg : "Failed  block" 
Status-Msg:  "Finished  block" -- used  for  Fill  and  Test  functions 
Erase-Msg:  "Erased  block" 
SENDDATA: I Sync0 1 Sync1 I Ox00 1 Ox02 I Version I Unit # I 

; Function: 

; Calls: 
TX-WREG,  TX-HEX,  TX-String 

; Registers: 
MEMORY-FLAG, ADD2,  ADD1 

; Interrupts : 
; None  changed. 

; Return: 
Wreg=O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Fail-Msg 

Movlw  High List-Fail-Msg ; Load  starting  location  of  string 
Movwf Look-Hi 
Movlw  Low List-Fail-Msg 
Movwf Look-Lo 
Goto Msg-Finish 

124  



I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

71 1 
712 
713 
714 
715 
716 
717 
718 
719 
720 
72 1 
722 
723 
724 
725 
726 
727 
728 
729 
730 
73 1 
732 
733 
734 
735 
736 
737 
738 
739 
740 
74 1 
742 
743 
744 
74 5 
746 
747 
748 
749 
750 
75 1 
752 
753 
754 
755 
756 
757 
758 
759 
760 
76 1 
762 
763 
764 
765 
766 
767 
768 
769 
770 
77 1 
772 
773 
774 
775 
776 
777 
778 
779 
780 
78 1 

Status-Msg 
Movlw 
Movwf 
Movlw 
Movwf 
Goto 

Erase-Msg 
Movlw 
Movwf 
Movlw 
Movwf 
Goto 

SENDDATA 
Clrwdt 
Movlw 
Call 
Movlw 
Call 
Movlw 
Call 
Movlw 
Call 
Movlw 
Call 
Movlw 
Call 
Goto 

Code  Listing - Ser-Hand.asm 

High List-Stat-Msg ; Load  starting  location  of  string 
Look-Hi 
Low List-Stat-Msg 
Look-Lo 
Msg-Finish 

High List-Eras-Msg ; Load  starting  location  of  string 
Look-Hi 
Low List-Eras-Msg 
Look-Lo 
Msg-Finish 

Sync-Byte0 
TX-WREG 
Sync-Byte1 
TXWREG 
ox00 
TX-WREG 
0x02 
TX-WREG 
Hardware-Ver 
TX-WREG 
Unit-Number 
TX-WREG 
Msg-Addr-Stat 

; Watch-Dog  Timer  reset 
;Load  First  Sync  Byte 
; Transmit  Data 
;Load  Second  Sync  Byte 
; Transmit  Data 
;Load  NULL 
; Transmit  Data 
;Load  ASCII  STX 
; Transmit  Data 
;Load  Current  Hardware  Rev # 
; Transmit  Data 
;Load  Unit # 
: Transmit  Data 

; Send  String  message 
Msg-Finish 

Clrwdt ; Watch-Dog  Timer  reset 
Call TX-String ; Call  string  transmit  routine 

; Send  Memory  MSB  address  location  and  Memory  status 
Msg-Addr-Stat 

Swapf  ADD2,  w ; Load  Memory  MS  Byte  of  address 
Call TX-HEX ; Convert  lower  nibble  to  ASCII & TX 
Movf  ADD2,  w 
Call TX-HEX ; Convert  lower  nibble  to  ASCII & TX 
Swapf  ADD1,  w ; Next  significant  Flash  Memory  address 
Call TX-HEX ; Convert  lower  nibble  to  ASCII & TX 
Movf  ADD1,  w 
Call TX-HEX ; Convert  lower  nibble  to  ASCII & TX 

; Memory  error  flag 
Movlw  High List-Mem-Flag ; Load  starting  location  of  string 
Movwf Look-Hi 
Movlw  Low List-Mem-Flag 
Movwf Look-Lo 
Call TX-String ; Call  string  transmit  routine 

Swapf MEMORY-FLAG, w ; Prepare  memory  error  flag  MS  nibble 
Call TX-HEX ; Convert  lower  nibble  to  ASCII & TX 
Movf  MEMORY-FLAG, w 
Call TX-HEX ; Convert  lower  nibble  to  ASCII & TX 

Movlw "\r" ; Carriage  Return 
Call TXWREG ; Transmit 
Movlw "\n" ; Line  Feed 
Call TX-WREG ; Transmit 
Retlw 0 ; Return,  WREG=O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Baud-Set Subroutine 

Initializes  serial  port  and  sets  Baud  rate  based  upon  Wreg  contents. 
A  Wreg  value  of  zero  sets  Baud  to 19.2k Baud,  otherwise,  set  to  a  rate 

; Function: 

 125 



Code  Listing - Ser-Hand.asm 

782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 
80 1 
802 
803 
804 
805 
806 
807 
808 
809 
810 
81 1 
812 
813 
8 14 
815 
816 
817 
818 
819 
820 
82 1 
822 
823 
824 
825 
826 
827 
828 
829 
830 
83 1 
832 
833 
834 
835 
836 
83 7 
83 8 
839 
840 
84 1 
842 
843 
844 
845 
846 
847 
848 
849 
850 
85 1 
852 

of 115.2k  Baud. 

Calls: 
None 

Registers: 
Wreq,  Zero  sets  Baud  to  19.lk  Baud 

non-zero  sets  Baud  to 115.2k  Baud 

; Interrupts: 
; None  changed. 

: Return: 
Wreg=O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Baud-Set 

; Universal Synchronous/Asynchronous Receiver/Transmitter  (PIC16C77x  Data  Book, 
; sect.  9.0)  Configure  for  either 19.2k  Baud (standard  Penetrator  rate)  or  high 
; speed  at  115.2k  Baud  (the  maximum,  limited  by  the  Maxim  RS-232  chip  used  in 
; the  design).  The  PIC  microcontroller's  RC  oscillator  must be close  to 
; 3.6864MHz  for  the  Baud  rates to match  the  standard  speeds. 
; SPBRG  and  TXSTA  Registers in Bank 1 Memory 

~; USART  Transmit  configuration 
; Check  which  Baud  rate.  Wreg  value 

Bsf STATUS,  RPO 
Btfsc STATUS, Z 
Goto Baud-19 

; Set  rate  to  115.2k  Baud 
Baud-1 15 

Clrf TXSTA 
Movlw Ox01 
Movwf SPBRG 
Bsf TXSTA,  BRGH 
Goto Baud-TX 

; Set  rate to 19.2k Baud 
Baud-1 9 

Clrf TXSTA 
Movlw Ox02 
Movwf SPBRG 
Bcf TXSTA,  BRGH 

; Set  rest  of  transmit  configuration 
Baud-TX 

Bcf TXSTA, SYNC 
Bsf TXSTA, SPEN 

Bcf TXSTA, TXEN 
Bcf TXSTA, TX9 

; USART  Receive  configuration 
Baud-RX 

Bcf  STATUS,  RPO 
Clrf  RCSTA 
Bsf  RCSTA,  SPEN 
Bcf  RCSTA, Rx9 
Bcf  RCSTA,  SREN 
Bsf  RCSTA,  CREN 
Bcf  RCSTA,  ADDEN 

; Interrupt  configuration 
Bsf  STATUS, RPO 
Bsf PIE1,  RCIE 
Bcf  STATUS, RPO 
Clrf  INTCON 
Bsf  INTCON,  PEIE 
Bsf  INTCON, GIE 

selects  rate 
; Select  Bank 1 Memory 
; Wreg  zero  if  selecting 19.2k  Baud 
; Z set,  select  19.2k 

; Reset  any  error  condition 
; value for  115.2k  Baud @ high  speed 
; Set  Baud  Rate  Hi=Fosc/ (16* (SPBRG+l) ) 
; Select  high  speed 

; Reset  any  error  condition 
; value  for 19.2k Baud @ low  speed 
; Set  Baud  Rate  Low=Fosc/(64*(SPBRG+l)) 
; Select  low  speed 

; Asynchronous  operation 
; Serial Port enable - Configure  RC7/RX/DT 

and  RC6/TX/CK as serial  port  pins 
; Enable  Transmit -- don't do  this  here 
; 8-bit  transmission 

; Select  Bank 0 Memory 
; Reset  any  error  condition 
; Serial  port  enable 
; Selects  8-bit  reception 
; Don't  care - Synchronous  configuration 
; Continuous  receive  enable 
; Disable  address  detection 

; Select  Bank 1 Memory 
;Enable  Serial  Port  Rx  Interrupt 
; Select  Bank 0 Memory 
; Clear  interrupt  control  register 
;Enable  Peripheral  Interrupts 
;Enable  Global  Interrupts 

126  

I 
I 

I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
1 

I 



Code  Listing - Ser-Hand.asm 

 127 



Code  Listing - St-Hand.asm 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

File  name:  "st-hand.  asm" 
p&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
Status  Handler  returns  Sensor  Ball  status  to  PC  via  serial  interface 

Date:  11  December 2001 
File  Version:  4 
Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

Change  history: 
1999 - Adapted  from  MilliPen.asm  for  Sensor  Ball,  TA  Rohwer 
November 2000 - Version 2, TA  Rohwer 
17  March  2001 - Version  3  Changes  requested  by  P&G,  ME  Partridge 
12 Aug 2001 - Version 4 Changes, ME Partridge 
Correct  value  returned  for  Records  in  memory  to  last  memory  address 
Add  "Smart  PCM  Device"  status  logic  for  command " s "  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Status-Hand(1er)  Subroutine 

; Function: 
; Acquires  one  set  of  analog  measurements  (Channels 0 thru  9  skip 7) and  the 
; remaining  non-ADC  channels  and  holds  it  in  the  Data  Stack.  Then,  these 
; 16-bit  data  words  are  uploaded  to  the  PC  with  least-significant  byte  first 
; (Intel  format). The Data  Stack  is  used  in  this  routine;  it is separate  from 
; the  Parameter  Stack  used  by  the  Ser-Hand  interrupt  routine. 

; Two  Status  formats  are  supported:  the  original  format  expected  by  the 
; SensorBall  PC  software  (Command S upper-case), and  the  "Smart  PCM  Device" 
; status  format  (Command s lower-case). 

; Subroutines  in  this  file: 
GLOBAL STATUS-HAND 

; Calls: 
EXTERN TX-WREG 
EXTERN WAITXXMS 
EXTERN WAITlMS 
EXTERN Acquire 
EXTERN  MEM-FIND 

; Ser-Hand.asm,  Transmits  contents  of  Wreg 
; Delays  for  milliseconds  set  in  Wreg 
; calls  WAITXXMS  to  create  a 1 millisecond  delay 
; Puts  all  nine  ADC  measurements  in  Data  stack 
; Locates  the  next  blank  Flash  memory 

; Macros used: 
none 

; Registers: 
EXTERN  Loop-Cnt ; Generic  Loop  counter 
EXTERN  Channel-Cnt ; Loop  counter,  analog  channels 0 to  9  skip  7 
EXTERN  Measset-Cnt ; Loop  counter,  sets  of  analog  meas. 
EXTERN  PROG-FLAG ; bits COMMAND,ADC-AVG,ACQUIRE-FLG,REINIT,CMDERROR 
EXTERN  SER-FLAG ; Program  Command  Flags 
EXTERN  MEMORY-FLAG ; Memory  condition and  test  result  flags,  MEM-FULL 
EXTERN  MEM-REC-NUM ; Number  of  Records in Flash  memory (or in  progress) 
EXTERN  MEM-FW-NUM ; Current  Frame  number  in  Record 
EXTERN  ADD0 ; Flash  Memory  address  A7 .. A0 
EXTERN  ADD1 ; Flash  Memory  address  A16 . .  A8 
EXTERN  ADD2 ; Flash  Memory  address  A24 . .  A17 
EXTERN  LSBYTE ; ADC-READ,  Least  Sig.  Byte.  [A7, ... A01 
EXTERN  MSBYTE ; ADC-READ,  Most  Sig.  Byte.  [X,X,X,X,A11, ... A81 
EXTERN  TIME0 ; LS  Byte,  Time  in  milliseconds  (Counter  for  Seconds) 
EXTERN  TIME1 ; . . . next  significant  byte  (Minutes) 
EXTERN  TIME2 ; . . . next  significant  byte (Hours)  
EXTERN  TIME3 ; . . . next  significant  byte  (Count of days  from  Reset) 

; Interrupts: 
; Serial  Interrupts  not  used  or  changed  in  this  subroutine.  However,  the 
; serial  port  is  used  for  both  RC  and Tx  via  Flags. 

; Return: 
; Wreg=O 

; include  files: 
#include  "P16C774.  INC" ; Standard  Header  File  for  PIC16C773 

128  



72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

Code  Listing - St-Hand.asm 

; Includes  all  Register  Definitions, 
; RAM Definitions, & Configuration  Bits 

#include "ball-equ. inc" ; EQU  Declarations,  equivalence 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
STAT-PROG CODE ; Relocatable  code in Program  EPROM 

STATUS-HAND 
Clrwdt 
Bcf  STATUS, RPO 

Clrf MEM-FRP-NUM 
Clrf SER-FLAG 

; Reset  2.4  second  Watch-dog  Timer 
; UP  Memory  Bank 0 

; Count  of  Frames  transferred 
; Clear  Control  character  Flags  (Xon) 
; Clear  memory  location  to  ensure 
; . . . current  one  found  by MEM-FIND 

Clrf ADD1 
Clrf ADD2 

; Note:  the  next  blank  address is reported  for  Record  count.  This  equals  the 
; Record  count  unless  partial  Records  have  been  made  by  interrupting  the  data 
; collection  cycle by pressing  the  "ATTENTION"  button. 

Call MEM-FIND ; Find  next  blank  address 

; Acquire  one  measurement  set.  If  data  are  acquired  while  the  serial  lines  are 
; active,  the  measurements  seem  to be affected. So the  acquire  is  kept 
; separate  from  the  upload  function.  These  are  PIC16C774  ADC 0 thru 9 skip  7, 
; so effectively  Channels 0 thru 8. 

Bsf PROG-FLAG,  ADC-AVG ; Set  for  16-bit  averaging 
Call  Acquire ; Get  all  measurements in Data  stack 

; Put  remaining  channels on Stack.  Acquire  left  FSR  at  next  stack  location. 
; Ch. 9 = Record & Frame  number 

Movf  MEM-FW-NUM,  w 
Movwf  INDF 
Incf  FSR,  f 
Movf MEM-REC-NUM,  w 
Movwf  INDF 
Incf  FSR,  f 

; Get  current  frame  count, 0 to  255 
; Push  onto  the  stack 
; adjust  stack  pointer 
; Record  number, 1 to  255 
; Push  onto  the  stack 
; adjust  stack  pointer 

; Write  the  TIMEn  registers,  MS  Word, LS Word,  with LS Byte  first  (Intel  fmt) 
; Ch. 10 = Time  MSW 

Movf  TIME2,  w 
Movwf  INDF 
Incf  FSR,  f ; adjust  stack  pointer 
Movf  TIME3,  w 
Movwf  INDF 
Incf  FSR,  f 

; Ch. 11 = Time  LSW 
Movf  TIMEO,  w 
Movwf  INDF 
Incf  FSR,  f 
Movf  TIME1,  w 
Movwf  INDF ; Push  onto  the  stack 
Incf  FSR,  f ; adjust  stack  pointer 

; Write  4  Bytes  of  time  information 
; Push  onto  the  stack 

; Bytes  currently  incremented  w/o  RTC 
; Push  onto  the  stack 
; adjust  stack  pointer 

; Push  onto  the  stack 
; adjust  stack  pointer 

; Write  the  Flash  memory  address  with  LS  Byte  first  (Intel  fmt) 
; Ch. 1.2 = Memory  Address 

Movf ADD1,  w 
Movwf INDF 
Incf FSR,  f 
Movf ADD2,  w 
Movwf INDF 
Incf FSR,  f 

; Push  onto  the  stack 
; adjust  stack  pointer 

; Push  onto  the  stack 
; adjust  stack  pointer 

; Write  Self-test  bits  (Memory  status  Flag). 
Movf  MEMORY-FLAG,  w 
Movwf  INDF 
InCf  FSR,  f 
Clrf  INDF 
Incf  FSR,  f 

; Get  memory  flag 
; Push  onto  the  stack 
; adjust  stack  pointer 
; put  zero  on  MSB  location 
; adjust  stack  pointer 

; Reset  WDT  to  maximize  time  waiting  for  X-on  before  UP  resets 

 129 



143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 

Code  Listing - St-Hand.asm 

Clrwdt ; Reset  2.4  second  Watch-dog  Timer 

; Wait  for OK from  PC 
STA-XON 

Btfss SER-FLAG,  XON-FLG ; PC  sends  Xon  when  ready 
Goto STA-XON 
Clrf SER-FLAG ; Clear Xon flag & other  Control  Flags 

; Test  if  "Smart  PCM  Device"  Status  command "s" 
Btfsc PROG-FLAG,  SIMPLE-FLG ; Set i f  Command "S" 
Goto STA-SYNC ; Skip  channel  info 

; PC  expecting  number  of  data  channels  and  housekeeping  monitor  channels 
Movlw  NumChan ; Load # of  Channels  into  W 
Call TX-WREG ; Transmit  to  PC 
Movlw  NumMon ; Load # of  Monitors  into  W 
Call TX-WREG 

; Next,  Sync  bytes 
STA-SYNC 

Movlw Sync-Byte@ 
Call TX-WREG 
Movlw Sync-Byte1 
Call TX-WREG 

; Test if "Smart  PCM  Device"  Status  command "s" 
Btfss PROG-FLAG,  SIMPLE-FLG ; Set if Command "s"  
Goto STA-BLK-CNT ; No,  Standard  Command " S " ,  skip  over 

; Start  Frame  with  sync  bytes 

; Insert  set-up for transmit  loop f o r  "Smart  PCM  Device"  status.  Data  sent  once. 
Movlw  Ox01 ; Set for one  pass  thru  loop 
Movwf Measset-Cnt ; Universal  Status,  Xmit  only  one  set 
Movlw  OxlC ; 14 channels * 2  Bytes  each = 28 
Movwf Loop-Cnt ; Re-use ADC-Read loop  counter 
Goto STA-Stack ; join  transmit  loop 

; SensorBall  combines  the  following  two  bytes  as  low  and  hi  bytes  of  a  block 
; count.  The  value  expected  is  zero for status  check. 
STA-BLK-CNT 

Clrw ; Load  Ox00  (old  MinPen = DPH) 
Call TX-WREG ; send LS Byte  first 
Clrw ; Had  counter  here of data  sets 
Call TX-WREG ; send  MS  Byte 

; Set  up  loop  count  for  Version 3. Version 2 SensorBall  expected  a  256-byte 
; data  block.  Version 3 uses  560  bytes.  Neither  counts  the  preamble  bytes 
; above.  This  loop  uploads  one  560-byte  block  of  data  to  the  PC,  with  the  first 
; 16-bit  value  equal  to  the  current  memory  location.  No  Pad  values  are  needed. 

Movlw  OxlC ; 28 sets  of  measurements 
Movwf Measset-Cnt 

Movlw  0x12 ; 9 channels * 2  Bytes  each = 18 
Movwf Loop-Cnt ; Re-use ADC-Read loop  counter 
Movf  ADD2,  w ; LS Byte of current  memory  location 
Call TX-WREG ; Transmit  W  Register 
Movlw  Ox00 ; MS  Byte  of  memory  location 
Call  TX-WREG ; Transmit  W  Register 

SET-LOOP 

; Entry  point  for  "Smart  PCM  Device"  Status 
STA-Stack 

Movlw Data-Start ; top  of  Data  Stack 
Movwf  FSR ; . . . loaded  into  the  stack  pointer 
Movf  INDF, w ; recover  value  from  stack 
Call TX-WREG ; Upload 
Incf  FSR,  f ; adjust  stack  pointer 
Decfsz Loop-Cnt, f 
Goto Tx-Loop 

Decfsz Measset-Cnt, f ; Decrement  Loop  Index  and  Test 

Tx-Loop 

130 



214 
215 
216 
217 
218 
219 
220 
22 1 
222 

Goto 

STA-EXIT 
Retlw 

SET-LOOP 

0 

Code  Listing - St-Hand.asm 

; ! = O ,  Not  end of frame, do another 

;Return,  WREG = 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . .  End of File St  Hand.asm . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 

END 

 13 1 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Code  Listing - Ball-Dat.inc 

; File name:  "ball-dat . inc" 
; P&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
; Program  memory  definition  include  file in main  microcontroller  code  for  the  P&G  Sensor  Ball 

; Date: 11 December  2001 
; File  Version:  4 
; Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

; Change  history: 
4/26/99  Modified  for  MilliPen TA Rohwer 
30 Mar  2001 - Version  3  Changes  requested  by  P&G, ME Partridge 

New  variables  added  to  support  changes 
ADC  variables  MSBYTEO - 9  and  LSBYTEO - 9  deleted 
Time  data  registers  TIMEO - 6  and  others  for  time  functions 

13 Jun  2001 - Checksum  generation  and  data  retransmit, ME Partridge 
17  Jun  2001 - Minor  revisions, ME Partridge 
12  Aug  2001 - Version  4,  add  temporary  variable  for  address,  ME  Partridge 

Add  temporary  for  interrupt  routine 
Move  starting  location  of  parameter  stack 

; Function: 
Includes  all  Reserved  Register  Declarations 
Only  #include  once in the  main  program  (ball.asm) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SWVARS  UDATA  0x20 

PROG-FLAG RES 1 
SER-FLAG  RES 1 
MEMORY-FLAG  RES  1 
SER-STATE  RES 1 

; Flag  registers  for  program 

; Flash  memory  position  data 
MEM-REC-NUM RES 1 
MEM-FRM_NUM RES 1 
MEM-BAD-NUM RES 1 
ADD0 RES 1 
ADD1 RES 1 
ADD2 RES 1 
A8 RES 1 

control 
;20 
;21 
; 22 
;23 

;24 
;25 
;26 
; 27 
;28 
;29 
; 2A 

;Bank0  General  Purpose  Data RAM 
; Addresses  0x20  to  Ox4F  for  variables 

and  status 
Program  Command  Flags 
Control  character  received  flags 
MEM-HAND Memory  function  failure  flags 
SER-HAND State  machine  for  command  receive 

Number  of  Records in Flash  memory  (or in progress) 
Current  Frame  number in Record 
Bad  blocks  counted in Flash  memory 
Flash  Memory  address  A7 . .  A0 
Flash  Memory  address  A16 .. A8 
Flash  Memory  address  A24 .. A17 
Indicates if  in first ( 0 )  or second (1) half  of  Page 

; Serial  input  support  for commands  and  parameters 
CMD-CHAR  RES 1 ;2B SER- L CMD-HAND,  Valid  New  Command 
RC-CHAR RES 1 ;2C SER-HAND, New  Serial  Character 
RC-TEMP  RES 1 ;2D SER-HAND,  Received  Character 

; Serial  output  string  location  registers 
Look-Hi  RES 1 ; 2E 
Look-Lo  RES 1 ; 2F 

; Analog-to-Digital  results 
LSBYTE  RES 1 ;30 ADC-READ, Least  Sig.  Byte.  [A7, . . .A01 
MSBYTE RES 1 ;31 ADC-READ, Most  Sig.  Byte.  [X,X,X,X,All,. . .A81 
; Time  count  registers  (Placeholder  for  Real-Time  Clock) 
TIMEO  RES 1 ;32 LS Byte,  Time in milliseconds  (Counter for Seconds) 
TIME1  RES 1 ; 33 . . . next  significant  byte  (Minutes) 
TIME2  RES 1 ; 34 
TIME3  RES 1 ; 35 . . . next  significant  byte  (Count  of  days  from  Reset) 
TIME4  RES 1 
TIME5 

;36  =zero,  not  used  yet  (Month) 

. . . next  significant  byte  (Hours) 

RES 1 ;37  =zero,  not  used  yet (Year) 

CMD-TIMEL 
; Attention  mode  time-out  registers 

RES 1 ;38  Time-out  LSByte,  285ms / bit 
CMD-TIMEH  RES 1 ;39  Time-out  MSByte 

; Temporary  values  used  when  reading  back  files 
R-Sync-Byte0  RES 1 ;3A  Variable  for  reading  data 

132  



72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 

R-Sync-Byte1 
R-MEM-REC-NUM 
RMEM-FW-NUM 
R-ADD1 
RADD2 
R-TIME3 
R-TIME2 
R-T IME 1 
R-TIME0 

CKSMO 
CKSMl 
BLCKO 
BLCKl 

RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 

RES 
RES 
RES 
RES 

Code  Listing - Ball-Dat.inc 

; 3B 
; 3c 
; 3D 
; 3E 
; 3F 
; 40 
; 41 
; 42 
; 43 

;44  LS  Byte  for  checksum 
;45  MS  Byte  for  checksum 
;46 LS Byte,  count  of  Frames  uploaded 
;47  MS  Byte,  count  of  Frames  uploaded 

; Loop  counters,  other  temporary  values 
MeasSet-Cnt  RES 1 ;48  Loop  counter,  sets  of 9 analog  measurements 
Channel-Cnt  RES 1 ;49 Loop  counter,  analog  channels 0 to 9 skip  7 
Sleep-Cnt  RES 1 ;4A  Loop  counter,  sleep  cycles  between  conductivity  check 
Loop-Cnt  RES 1 ;4B  Generic  Loop  Counter 

;4C  Generic  temporary (Don't use  for  Interrupt  routines) TEMP  RES 1 
PATTERN RES 1 ;4D  Test  pattern  in  memory  test 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. _ _ _ _  Registers  accessible  regardless of  Memory  Bank  selected 
; Used  to  push  data  during  interrupt.  Uses  shared  region  of  user  memory, 
; locations  0x070-0x07F,  OxOFO-OxOFF,  0x170-0x17F,  0xlFO-0xlFF 
Stack-Vars  UDATA-SHR 0x70 ; Accessible  from  all  Banks  General  Purpose  Data RAM 
TEMP-INT  RES 1 
LOOP-INT  RES 1 

;70  Temporary  for  interrupt  routine  only 

STACKWreg RES 1 
;71  Temporary  for  interrupt  routine  only 

STACK-Status  RES 1 
;72  Working  Register  holding  during  interrupts 

STACK-FSR RES 1 
;73  Status  Register  holding  during  interrupts 
;74  Indirect  pointer  holding  during  interrupts 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. _ _ _ _  Command  Parameter  Stack 
; Note:  Code  does  not  check  to  see  if  stack  exceeded 
; Allocation  cannot  exceed  address Ox6F 
Parm-Stack  UDATA  CMD-Param-Start ; Stack  start  for  command  parameters  passed  from  PC 
CMD-PARAMS  RES  Param-Stack-Size ; Maximum  32  values,  0x50  to  Ox6F 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. _ _ _ _  Data  Hold  Stack 
; Holds  data  read  from  memory  to  allow  re-transmit if checksum  error 
Data-Stack  UDATA  Data-Start ; Bank 1 memory 
Datavalues RES  0x50 ; Maximum 80 values in stack,  addr  OxAO - OxEF 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . .  End of file  Ball  Dat.inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 133 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5 1  
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Code  Listing - Ball-Equ.inc 

; File  name : "ball-equ. inc" 
; P&G  Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
: Program  memory  definition  include  file  in  main  microcontroller  code for the  P&G  Sensor  Ball 

; Date: 11 December 2001 
; File  Version: 4 
; Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

; Change  history: 
4/26/99  Modified  for  MilliPen TA Rohwer 
30  Mar  2001 - Version  3  Changes  requested by P&G,  ME  Partridge 

12  Aug 2001 - Version 4,  ME Partridge 
New  variables  added  to  support  changes 

Add ADC-AVG flag  to  control  subroutine ADC-Read 
Add LED-BLINK  flag  for  Timeout-Chk  subroutine 

; Function: 
Includes  all  equivalence  and  constant  Declarations 
EQU's  are  compiler  directives  and  can't  be  declared  global 
#include in each  program  file 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; NOTE:  If  Version  and/or  Unit are  changed,  change List-Who-ID in Ball-Msg.inc 
Hardwarever set "4" ; Version  4  Hardware / Firmware 
Unit-Number set  "7" ; Unit  number 3 

._______________________-____--  Flag  Bits for  Flag  Registers . ___-  PROG-FLAG 
COMMAND-FLG  EQU 
ADC-AVG  EQU 
LED-BLINK  EQU 

EQU 
REINIT-FLG  EQU 
ACQUIRE-FLG EQU 
SIMPLE-FLG  EQU 
CMDERROR-FLG  EQU 

. ___-  S E R-FLAG 
CNTRLC-FLG EQU 
XON-FLG  EQU 
XOFF-FLG  EQU 
ACK-FLG EQU 
NAK-FLG  EQU 
CNTL-ER-FLG EQU 
STR-ER-FLG EQU 

EQU 

. _ _ _ _  MEMORY-FLAG 
MEM-FULL  EQU 
MEM-PROG  EQU 
MEM-ER-FLG  EQU 
MEM-WR-FLG EQU 
TEST55-FAIL  EQU 
TEST=-FAIL EQU 
MEM-FIND-FLG EQU 
END-OF-DATA EQU 

. _ _ _ _  SER-STATE 
SER-ST-0 EQU 
SER-ST-AZ  EQU 
SER-ST-CR EQU 
SER-ST-LF EQU 
SER-ST-PAR  EQU 
SER-VERIFY  EQU 

0 
1 
2 
3 
4 
5 
6 
7 

0 
1 
2 
3 
4 
5 
6 
7 

0 
1 
2 
3 
4 
5 
6 
7 

H'OO' 
H'01' 
H'02' 
H'03' 
H'04' 
H'05' 

; Command  Flag,  Valid  Command  String  Received 
; Take  average for  ADC  acquisition 
; Used in Timeout-Chk  to request  "Waiting"  blink 

; INIT-LJP Flag,  starts  power-up  initialization 
; Acquire  a  data  Record,  Command  A 
; Simple,  stupid  upload in RD-HAND,  Command U 
; Command  Character  is  undefined  command 

;CNTRL-C  Flag,  READ  Abort  Command 
;XON  Flag,  S/W  Handshaking  starts  transmission 
;XOFF  Flag,  S/W  Handshaking  stops  transmission 
;Acknowledge  Flag,  Data  matches  checksum,  continue 
;Negative  Ack  Flag,  Data  and  checksum  mismatch,  retransmit 
;Received  undefined  Control  Char  (Ox00 - OxlF) 
:Command character  not in "A" - " 2 "  

;Memory  Full  Flag,  32MB  data  recorded 
;Program  Fail  Flag,  Failure  during  Flash  program 
;Block  Erase  Failure 
;Pattern  read  not  equal  written 
;Test  Write  of  0x55  Failure 
;Test  Write  of Ox= Failure 
;Search for a  Record  failed 
;Set flag  during  read  handler  at  end 

; Received  starting "0" character 
; Received  a  command  character in A - 2 
; Received  CR  for  command  phrase 
; Received LF for  command  phrase 
; Received  a  command  parameter 
; Received  Verify  character  on  subsequent  phrase 

.____-_________________________ 1/0 PORT  Pin  References 
;See  P17C756.inc  for  PORT  address  references . _ _ _ _  PORTA,  Bank0 

134  



72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 

Code  Listing - Ball-Equ.inc 

ACCEL-X 
; Note:  analog  channels  are  accessed  by  their  channel  number,  NOT  the  Port  line 

ACCEL-Y 
ACCEL-Z 

CONDUCT 

EQU Ox00 ;Analog  Channel 0, ACCEL-X 
EQU Ox01 ;Analog  Channel 1, ACCEL-Y 
EQU 0x02 ;Analog  Channel 2, ACCEL-Z 
EQU 0x03 ;Analog  Channel 3,  pH 
EQU 0x05 ;Analog  Channel 4,  CONDUCT 

PH 

. _ _ _ _  PORTB, BankO 
; Note:  analoq  channels  are  accessed  by  their  channel  number,  NOT  the  Port  line 
ATTENTION 
POWER 
REG1-MON 
REG2-MON 
ISR-TEST 
CLE 
ALE 
WP 

. _ _ _ -  PORTC, 
; PD 
LED 
RB 
RE 
CE 
WE 
TX 
Rx 

. - _ _ _  PORTD, 
I01 
I02 
I03 
I04 
I05 
I06 
I07 
I08 

. _ _ _ _  PORTE, 

ox00 
ox01 
0x02 
0x03 
0x04 
0x05 
0x06 
0x07 

ox00 
ox01 
0x02 
0x03 
0x04 
0x05 
0x06 
0x07 

ox00 
ox01 
0x02 
0x03 
0x04 
0x05 
0x06 
0x07 

;Command  attention  button  Input 
;POWER  3V & 6V  control  output 
;Analog  Channel  8, REGlMON, 3V 
;Analog  Channel 9, REG2-MON,  6V 
;Test  output,  state  change on ISR  entry 
;Flash  Command  Latch  Enable 
;Flash  Address  Latch  Enable 
;Flash  Write  Protect  (active low) 

;Power  down  (active  low) 
;LED  Power  output,  active  high 
;Input,  Ready/Busy-  output  on  Flash,  not  used 
;Flash 
;Flash 
;Flash 
; USART 
; USART 

;Flash 

Read  enable  (active low) 
Chip  enable  (active low) 
Write  enable  (active low) 
Transmit  Line 
Receive  Line 

Address,  Command  Input,  Data 1/0 

TMP 
; Note:  analog  channels  are  accessed  by  their  channel  number,  NOT  the  Port  line 

MON9V 
EQU Ox00 ;Analog  Channel 5,  TEMP 
EQU Ox01 ;Analog  Channel 6, 9V-MON 
EQU 0x02 ;Analog  Channel 7, not  connected 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. _ _ _ _  Constants 
Sync-Byte0 set OxEB 
Sync-Byte1  set  Ox90 
BLK-per-REC  set 8 
NumChan  set  7 
NumMon  set  3 
Atten-Timeout  set 0x04 
Sleep-Cycles set Ox19 
Conduct-Thresh  set  Ox01 

; Define 
#define  CMD-Param-Start 0x50 
#define  Param-Stack-Size 0x20 
#define  Data-Start  OxAO 

Standard  16-bit  Sync  Bytes 

8 ea.  16kB  Blocks  per  128kB  Record 
Number  of  Channels,  used  by  SensorBall 
Number  of  Monitors,  used  by  SensorBall 
5-minute  Timeout,  command  "ATTENTION"  mode 
Set  for  25  cycles, or about  one  minute  with  WDT = 2.4sec 
6.3 percent  of  full-scale  Conductivity  reading 

Memory  start  location  for  parameter  stack  pointer 
32  locations  for  parameters 

; Bank 1 memory  for  data  stack 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  END  of  FILE  Ball  Equ.asm . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 135 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Code  Listing - Ball-Msg-inc 

; File  name : "ball-msg. inc" 
; P&G Sensor  Ball,  Microchip  PIC16C774  MicroController  Assembly  Code 
; Message  string  definition  include  file  in  main  microcontroller  code 

; Date: 11 December 2 0 0 1  
; File  Version: 4 
; Author:  Tedd  A  Rohwer,  Sandia  National  Laboratories 

; Change  history: 
26 Oct 2001 - Created  for  Version 4 

Put  message  strings  in  separate  include  file 

; Function: 
Includes  message  strings  as  Retlw  "value"  instructions.  Called 
from  the  TX-String subroutine  in  file SER-HAND. 
Only  #include  once  in  the  main  program  (ball.asm) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; * * * * * * * * * * * * * * *  Define  text  strings  for  transmit,  relocatable * * * * * * * * * * * * * * * *  

; These  strings  are  used  by the  TX-Lookup  routine,  where  a  Program  Counter 
; value  is  generated  equal  to  the  Retlw  line  with  the  requested  value. 

List-Strings CODE 

; NOTE:  If  Version  and/or  Unit  are  changed,  change  the  Hardware-Ver  and 
; Unit-Number  Ball-Equ.inc 
List-WhoID 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 

List-Commands 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 
Retlw 

136 

' S '  
'e' 
In' 
'S' 
'0' 
'r' , ,  
'B' 
'a' 
'1' 
'1' 

'V' 
' e '  
'r' 
'S' 
'1, 
'0' 
' n '  

1 1  

1 1  

'4' 
1 1  

'U' 
'n' 
'1, 
't' 

' 0 '  
' 0 '  
' I '  
0 

1 1  

' A '  
'B' 
'E' 
' F' 
'I' 
'P' 
'R' 
' S '  
'T' 
0 

 



72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

; Data channel 
L i s t - D a t a 0 0  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

L i s t - D a t a 0 1  

L i s t - D a t a 0 2  

L i s t - D a t a 0 3  

L i s t - D a t a 0 4  

Code Listing - Ball-Msg.inc 

n a m e s .  A l l  must be 1 6  B y t e s  long ,  i n c l u d i n g  t e r m i n a t i n g  n u l l  

'A' 
'C' 
' C '  

'1' 
' e '  

' e '  
'r' 
' a '  
' t '  
T i ,  

' 0 '  

' n '  
8 ,  

'X' 
0 
0 

' A '  
' C '  

' C '  
' e '  
'1' 
' e '  
'r' 
' a '  
' t '  
' i t  

' 0 '  

' n '  
4 4  

'Y' 
0 
0 

' A '  
'C' 
' C '  
' e '  
'1' 
' e '  
'r' 
' a '  
' t '  
'1' 
' 0 '  

' n '  , ,  
' 2 '  
0 
0 

' P '  
'H' 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 



Code  Listing - Ball-Msg.inc 

143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21  1 
212 
213 

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t   l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t   l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  

L i s t - D a t a 0 5  

L i s t - D a t a 0 6  

L i s t - D a t a 0 7  

L i s t - D a t a 0 8  

138 

'C' 
' 0 '  

' n '  
' d '  
'Ll' 
' C '  

' t '  
Vi' 
'V' 
, i ,  
' t '  
'Y' 
0 
0 
0 
0 

' T '  
' e '  
'm' 

' e '  
'r' 
' a '  
' t '  
'U' 
'r' 

0 
' e '  

0 
0 
0 
0 

'B' 
' a '  
' t '  
' t '  
' e '  
'K' 

'Y' 

' P '  

1 1  

'V' 

'1' 
'0' 

' t '  
0 
0 
0 
0 

'+ '  
' 3 '  
'V' 

' R '  
' e '  

'U' 
'1' 

't' 
' a '  

' 0 '  

0 
'r' 

0 
0 

1 1  

' g '  

' + '  
' 6 '  
'V' 

 

I 
m i  
PI 
I 
8 
I 
I 
I 
I 



214 
215 
216 
217 
218 
219 
220 
22  1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
238 
239 
240 
24 1 
242 
243 
244 
-245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 1 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27  1 
272 
273 
274 
275 
276 
277 
278 
279 
280 
28 1 
282 
283 
284 

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

L i s t - D a t a 0 9  

L i s t - D a t a l 0  

L i s t - D a t a l 1  

L i s t - D a t a l 2  

Code Listing - Ball-Msg.inc 

1 1  

' R '  
' e '  

'1' 
'U' 

' a r  
' t '  
' 0 '  

0 
' r '  

0 
0 

' R '  
' e '  
'C' 
' 0 '  

'K' 
'd' 

' g '  

1 ,  

' & '  
1 1  

' F '  
'r' 
' a '  
'm' 
' e '  
0 
0 

'T' 
'i' 
'm' 
' e '  
1 ,  

"' 
' S '  
'W' 
0 
0 
0 
0 
0 
0 
0 
0 

'T' 
t i ,  

'm' 
' e '  

' L '  
' S '  
'W' 
0 
0 
0 
0 
0 
0 
0 
0 

"' 
' e '  
'm' 

'A' 
'd' 

0 ,  

1 1  

 139 

~~ 



Code  Listing - Ball-Msg.inc 

285 
286 
287 
288 
289 
290 
29 1 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
3  02 
303 
3  04 
305 
306 
307 
308 
3 09 
3 10 
311 
3  12 
3 13 
314 
315 
3 16 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
33 1 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
3  54 
355 

L i  

R e t l w  ' d '  
R e t l w  'r' 
R e t l w  ' e '  
R e t l w  ' s '  
R e t l w  ' s '  
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 

S e l f - T e s t  b 

R e t l w  
. s t - S l f t O O  

i t  n a m e s .  A l l  m u s t  be 1 6  B y t e s  l ong ,  i n c l u d i n g  t e r m i n a t i n g  n u l l  
; M e m o r y  F u l l  Flag,  32MB data  recorded 

"' 
R e t l w  ' e '  
R e t l w   ' m '  
R e t l w  ' 0 '  

R e t l w  'r' 
R e t l w  ' y '  
R e t l w  ' ' 
R e t l w  ' F '  
R e t l w  'u' 
R e t l w  '1' 
R e t l w  '1' 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 

L i s t - S l f t O l  
R e t l w  ' P I  
R e t l w  ' r' 
R e t l w  ' 0 '  

R e t l w  ' g '  
R e t l w  'r' 
R e t l w  ' a '  
R e t l w  ' m '  
R e t l w  ' ' 
R e t l w  ' F '  
R e t l w  ' a '  
R e t l w  ' i '  
R e t l w  '1' 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 

L i s t - S l f t 0 2  
R e t l w  ' E '  
R e t l w  ' r '  
R e t l w  ' a '  
R e t l w  I s '  
R e t l w  ' e '  
R e t l w  ' 
R e t l w  ' F '  
R e t l w  ' a '  
R e t l w  ' i '  
R e t l w  '1' 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 

R e t l w   ' R '  
R e t l w  ' e '  
R e t l w  ' a '  
R e t l w  ' d l  
R e t l w  'b' 
R e t l w  ' a '  
R e t l w  ' c '  

L i s t - S l f t O 3  

; P r o g r a m  F a i l  F l a g ,  F a i l u r e  d u r i n g  F lash  p r o g r a m  

; B l o c k  E r a s e  F a i l u r e  

; P a t t e r n  read n o t  equal  w r i t t e n  

140  

I 
I 



356 
357 
358 
359 
360 
361 
3 62 
363 
364 
365 
366 
367 
368 
3 69 
370 
371 
3 72 
3 73 
3 74 
375 
376 
377 
378 
379 
380 
38 1 
3 82 
3 83 
3 84 
385 
3 86 
3 87 
388 
389 
390 
391 
392 
393 
3 94 
395 
396 
397 
398 
399 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 
422 
423 
424 
425 
426 

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t   l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

L i s t - S l f t 0 4  

L i s t - S l f t O 5  

L i s t - S l f t O 6  

L i s t - S l f t 0 7  

Code  Listing - Ball-Msg.inc 

; T e s t  Write of 0x55 F a i l u r e  

; T e s t  Write of Ox= Fai lure  

;Search f o r  a R e c o r d  f a i l e d  

;Se t  f l a g  dur ing  read handler  a t  end 

 141 



427 
428 
429 
430 
43 1 
432 
433 
434 
43 5 
436 
437 
43 8 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 
453 
454 
455 
456 
457 
458 
459 
460 
46 1 
462 
463 
464 
465 
466 
467 
468 
469 
470 
41 1 
472 
473 
474 
475 
476 
477 
478 
479 
480 
48 I 
482 
483 
484 
485 
486 
487 
488 
489 
490 
49 1 
492 
493 
494 
495 
496 
497 

Code Listing - Ball-Msg.inc 

R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 
R e t l w  0 

; Undefined channel  or t e s t  b i t  n a m e  requested. 
L i s   t - U n d e  f 

R e t l w  I ? '  

R e t l w  ' ' 
R e t l w  'U' 
R e t l w  ' n '  
R e t l w  'd' 
R e t l w  ' e '  
R e t l w  ' f '  
R e t l w  ' i '  
R e t l w  ' n '  
R e t l w  ' e '  
R e t l w  ' d '  
R e t l w  0 

; Messages 
L i s t - F a i l - M s g  

R e t l w   ' F '  
R e t l w  ' a '  
R e t l w  ' i '  
R e t l w  '1' 
R e t l w  ' e '  
R e t l w  ' d '  
R e t l w  ' ' 
R e t l w   ' B '  
R e t l w  '1' 
R e t l w  ' 0 '  

R e t l w  ' c '  
R e t l w   ' k '  
R e t l w  ' ' 
R e t l w  0 

R e t l w   ' F '  
R e t l w  ' i '  
R e t l w  ' n '  
R e t l w  'i' 
R e t l w  I s '  
R e t l w  ' h '  
R e t l w  ' e '  
R e t l w  'd' 
R e t l w  ' ' 
R e t l w  'B' 
R e t l w  '1' 
R e t l w  ' 0 '  

R e t l w  ' c '  
R e t l w   ' k '  
R e t l w  ' 
R e t l w  0 

L i s t - S t a t - M s g  

L i s t - E r a s - M s g  
R e t l w  ' E '  
R e t l w  'r' 
R e t l w  ' a '  
R e t l w  Is' 
R e t l w  ' e '  
R e t l w  'd' 
R e t l w  ' ' 
R e t l w  ' B '  
R e t l w  '1' 
R e t l w  ' 0 '  

R e t l w  ' c '  
R e t l w  ' k '  
R e t l w  ' ' 
R e t l w  0 

142  

: " F a i l e d   B l o c k  I' 

: "Fin ished  B l o c k  " 

; " E r a s e d   B l o c k  " 



498 
499 
500 
50 1 
502 
503 
504 
505 
5 06 
507 
508 
509 
510 
511 
5 12 
513 
514 
515 
516 
517 
518 
519 
520 

L i s t - M e m - F l a g  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  
R e t l w  

Code Listing - Ball-Msg.inc 

; " Mem Flag V a l u e  " 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . .  End of file Bal l -Msg. inc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 143 





6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

Appendix  L:  PC  Interface  (SensorBall)  Code  Listing 

unit  Main2Form; 

interface 

uses 
Windows,  Messages,  SysUtils,  Classes,  Graphics,  Controls,  Forms,  Dialogs, 
StdCtrls,  ExtCtrls,  About,  MainUtil, ComUtil, Spin,  ComCtrls; 

type 
TForm-Main = class  (TForm) 
Group-Portstatus:  TGroupBox; 
GroupBox-Reply: TGroupBox; 
Group-Readout: TGroupBox; 
Group-Status: TGroupBox; 
Button-Send: TBUttOn; 
Edit-Outfile: TEdit; 
Button-Read: TButton; 
Label-Reply: TLabel; 
Button-About: TButton; 
Button-Close: TButton; 
Label-Status: TLabel; 
Label-ChanDatal-3: TLabel; 
~abel-VoltDatal-4:  TLabel; 
SaveDialogl:  TSaveDialog; 
Group-SelfTest: TGroupBox; 
Label-Am-Lvl:  TLabel; 
Label-Cycle-Lvl: TLabel; 
Label-ILockLvl: TLabel; 
Label-Bit3A: TLabel; 
Label-Bit4A: TLabel; 
Label-Bit5A: TLabel; 
Label-BitGA: TLabel; 
Label-Bit7A: TLabel; 
Label-RAMData: TLabel; 
Label-RAMAddrRW: TLabel; 
Label-EEPRAddrRW:  TLabel: 
Label-Bit3B: TLabel; 
Label-Bit4B: TLabel; 
Label-Bit5B: TLabel; 
Label-BitGB: TLabel; 
Label-Bit7B: TLabel; 
Label-KBytes: TLabel; 
Panell:  TPanel; 
Label-RW: TLabel; 
ProgressBar-RW: TProgressBar; 
Label-AAL: TLabel; 
Label-ADL: TLabel; 
Label-ACL: TLabel; 
Label-AIL: TLabel; 
Label-RAB4: TLabel; 
Label-RAB5: TLabel; 
Label-RAB6: TLabel; 
Label-RAB7: TLabel; 
Label-RARW: TLabel; 
Label-RD: TLabel; 
Label-EARW: TLabel; 
Label-ED: TLabel; 
Label-RBB4: TLabel; 
Label-RBB5: TLabel; 
Label-RBBG: TLabel; 
Label-RBB7: TLabel; 
Button-XOut:  TButton: 
GroupBox-Command:  TGroupBox; 
RadioButton-I: TRadioButton; 
RadioButton-R:  TRadioButton; 
RadioButton-A: TRadioButton; 

 145 



67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

109 
110 
111 
112 
113 
114 
i 15 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 

Code  Listing - Main2Form.pas 

RadioButton-S: TRadioButton; 
RadioButton-P: TRadioButton; 
RadioButton-T:  TRadioButton; 
SpinEdit-Read: TSpinEdit; 
Label2:  TLabel; 
RadioButton-H: TRadioButton; 
RadioButton-C:  TRadioButton; 
RadioButton-G: TRadioButton; 
RadioButton-D: TRadioButton; 
GainGroup:  TGroupBox; 
Labell:  TLabel; 
Label3: TLabel; 
EditGain:  TEdit; 
Label-SR: TLabel; 
RadioButton-B: TRadioButton; 
ListHexIn:  TListBox; 
Buttonl:  TButton: 
DebugDisplayOn:  TCheckBox; 
Label5:  TLabel; 
Label-ChksumNum:  TLabel; 

procedure ReadData(B1ockCnt : Integer); 
procedure  WriteData(B1ock-Cnt : Integer); 
procedure  Button-AboutClick(Sender:  TObject); 
procedure Button-SendClick(Sender: TObject); 
procedure  FormClose(Sender:  TObject;  var  Action:  TCloseAction); 
procedure  Edit-OutfileClick(Sender:  TObject); 
procedure Button-CloseClick(Sender: TObject); 
procedure Button-ReadClick(Sender: TObject); 
procedure  Read-Analog-Status; 

procedure  Read-SelfTest; 
procedure SpinEdit-ReadChange(Sender: TObject); 
procedure  FormCreate(Sender:  TObject); 
procedure ButtonXOutClick(Sender: TObject); 
procedure RadioButton-CommandClick(Sender: TObject); 
procedure  ButtonlClick(Sender:  TObject); 
procedure DebugDisplayOnClick(Sender: TObject); 

( procedure  Read-Unit-Status; ) 

private 

public 

end; 

( Private  declarations 

( Public  declarations 1 

const 
Revision-Code = '12.01'; 
Cal-Factor = 0.003549; 
Cal-FactorT = 0.20000;  

[Set  Voltage  Mons  to 4.88 mV/Count) 
(Set  Temp  Mon to 0.20 'C/COUnt} 

const 
Gain-Length = 10; 

var 
Form-Main:  TForm-Main; 

OutFileValid : Boolean; 
Buf  f-Ptr : Pointer; 
Num-Data-Chans, 
Num-Mon-Chans : Byte; 
Block-Cnt : Integer; 
HW-Rev : Char; 
Unit-ID : Byte; 
DebugOn : Boolean; 

SpEdPrV : Integer; (Spin  Edit  Previous  Value) 
(Enable  Read  Button  if  Outfile  Valid) 

{Counter  for  Number  of  Data  Blocks  Read) 

146  



138 
139 
I40 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 

Code  Listing - Main2Form.pas 

begin 
Comm-Err := True; 
[MessageDlg('A  read  timeout  has  occurred  while  waiting  for  a ' + Msg-str + 

1 
1 ,  . , mtwarning, [mbOKl , 0); 

Msg-Str := 'Read  timeout  waiting  for  a ' + Msg-str + I . '  ; 
Form Main.ListHexIn.Items.Add(Msg-Str); 

end; 
- 

procedure TFormMain.ReadData(B1ock-Cnt : Integer); 
[12/6/01 This  section  revised to  read  the  entire  group of Sync,  Block  count, 
data  block,  and  Checksum  in  one  read.  This  matches  the  way  Sensor  Ball  sends 

[----------------------------------------------------------------} 

the  data,  as  one  group.  Sensor Ba 
(Ack)  or  Negative  Acknowledge  (Nak 
OK. ) 

const 
Cksm-Length = 2; 
Sync-Length = 4; 

Offset, 
I dx : LongInt; 
MissBlock, 
Read-Cnt, 
BlockNum : Integer; 
NB  Read : DWord; 

va r 

11 
) t 

then  waits  to  receive  either  the  Acknowledge 
o indicate  whether  the  data  were  received 

Checksum  String  consist  of 2 Bytes1 
Two  Sync  bytes  plus  two  Block  count  bytes) 

Checksum : Word;  {010618ed  unsigned 16 bit) 
WaitLoopCount, 
CksmErrCount, 
SyncErrCount : Integer;  (010618ed} 
Index : Integer; 
DisplayStr : String; 
GotData : Boolean; 

begin 
Block-Num := 0; (Initialize  Block Counter1 
MissBlock := 0; 
CksmErrCount := 0; [010618ed  initialize  counter  for  counting  checksum  errors) 
SyncErrCount := 0; 
Label-ChksumNum.Caption := IC:'+ IntToStr(CksmErrC0unt) + ' S:' + IntToStr(SyncErrCount); 
Label-RW.Caption := 'Reading  Data  from  Package.'; 
Label-RW.Visible := True; 
ProgressBar-RW.Visible := True; 
Label-ChksumNum.Visible := True; 
FormMain.Refresh; 
Cursor := crHourGlass; 
Corn-Err := False; 
Repeat 
ProgressBar-RW.Position := Round((B1ockNum / BlockCnt) * 100); 
WaitLoopCount := 0; 
Checksum := 0; 

(Monitor  communications  until  Sync,  Block  num,  Data, and Cksm  are  in  buffer. 
On  the  first  time  through,  the  interface  program  needs  to  send  X-on  to  the 
Sensor  Ball  to  indicate  it  is  ready  to  receive  data.  This  loop  is  repeated 
in  case  the  X-on  byte  was  not  received.  Once  the  Sensor  Ball  has  received 
X-on, only  either  Ack  or  Nak  should  be  sent.  In  the  event  an  error  occurred 
in the  Block 0 transmission,  a  compare  is  also  made  for  Comm-Error.) 
Repeat 
FlushQueue(Receive); 
if  (Block-Num = 0) AND  NOT  Comm-Err then { 1 2 - 5 - 0 1  mikel 
SendChar  (XonChar) 

else 
if  Comm-Err then 

else 
SendChar  (NakChar) 

SendChar  (AckChar) ; (7-5-01 10:13 mike) 
if  DebugOn  then FormMain.ListHexIn.Items.Add(' ' 1 ;  
[Changed to read  all  data  in  one  statement. It is sent  as  one  group. 

 147 



209 
210 
21 1 
212 
213 
2 14 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
23 8 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 1 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 

148 

Code  Listing - Main2Form.pas 

For  the  first  read,  the  Sensor  Ball  should  be in a  wait  loop  and  respond 
in less  than  a  millisecond.  Thus  the  short  timeout  value. 1 
GotData := WaitForCommData(Sync-Length, 1000); ( 4 bytes  received, 1 second  timeout] 
if  GotData  then 
GotData := (ReadFile  (Comm-Handle,  Data-Block,  Sync-Length,  NB-Read,  IpOverLapped) 
AND  (NB-Read = Sync-Length)); 

if  GotData  then  {Sucessful  ReadFile  Processing) 
if (Data-Block [ O ]  = Ord(SyncByte1))  AND (Data-Block [l] = Ord(SyncByte2))  then 
begin  {Sync OK Processing) 
if DebugOn  then 
begin 
DisplayStr := 'Sync = + IntToHex(Data~Block[Ol, 2) 

+ IntToHex(Data_Block[1], 2) + I ,  First  Frame  of  Block ' 
+ IntToStr(B1ock-Num); 

Form-Main.ListHexIn.Items.Add(Disp1ayStr); 
end; 

end  (Sync OK Processing) 

begin 
else  {Sync  error) 

GotData := False; 
SyncErrCount := SyncErrCount + 1; 
DisplayStr := 'Block + IntToStr(B1ock-Num) + ' Sync  Error,  Received ' 

FormMain.ListHexIn.Items.Add(Disp1ayStr); 
+ IntToHex(Data-Block[O], 2 )  + ' ' + IntToHex(Data~Block[ll, 2 ) ;  

end:  {of Sync  bytes not matching) 
WaitLoopCount := WaitLoopCount + 1; 

until  GotData  OR  (WaitLoopCount > 2 0 ) ;  

if  GotData  then  {Verified  that  the  proper  Sync  was  received,  now  check  block count.) 
begin 
Read-Cnt := (Data_Block[3] * 256) + Data_Block[21; 
if NOT  (Read-Cnt + MissBlock = Block-Num)  then 
begin 
DisplayStr := 'Expected  block ' + IntToStr(Block-Num) 

Form  Main.ListHexIn.Items.Add(Disp1ayStr); 
Misskock := BlockNum - Read-Cnt; 

+ I ,  Sensor  Ball  sending  block ' + IntToStr(Read-Cnt); 

end 
end;  {End  of  check  block  number) 

{Make  sure  data  block is waiting in receive  queue) 
if GotData  then 
if WaitForCommData(B1ock-Length, 1000) then { Wait lOOOms for  block) 
GotData := (ReadFile(Com-Handle, Data-Block,  Block-Length,  NB-Read, IpOverLapped) 

AND  (NB-Read = Block-Length) ) ;  

{Read  and  store  data  block  and  calculate  checksum ) 
if  GotData  then 
begin  (Sucessful  ReadFile  Processing) 
DisplayDebug2(false, 80, Data-Block); 
Checksum := 0; 
Offset := Block-Num * Block-Length; 
for  Idx := 0 to  (Block-Length - 1) do 
begin 

Byte-Record[Offset + Idx] := Data-Block[Idxl; 
Checksum := Checksum + Data-Block[Idxl; 

end 
end; {of Sucessful  ReadFile  Processing) 

{Make  sure  checksum  is  waiting in receive  queue) 
if GotData  then 
if WaitForCommData(Cksm-Length, 50) then { Wait 50 ms  for  checksum) 
GotData :=(ReadFile(Comm-Handle, Data-Block,  Cksm-Length, NBRead, IpOverLapped) 

AND (NB - Read = Cksm-Length)); 

if  GotData  then  {Test  if  Checksum  correct) 
if (Data-Block[l] * 256 + Data-Block[Ol = Checksum)  then 
begin  {Checksum  correct) 
Comm-Err := False; 
Block-Num := Block-Num + 1; 
DisplayStr := 'Checksum  Received ' 

 



280 
28 1 
282 
283 
284 
285 
286 
287 
288 
289 
290 
29 1 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
3 04 
305 
306 
307 
308 
309 
310 
311 
3 12 
313 
3 14 
315 
316 
317 
318 
319 
320 
32 1 
322 
323 
324 
325 
326 
327 
328 
329 
330 
33 1 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 

Code  Listing - Main2Form.pas 

+ IntToHex(Data-Block[l 
+ IntToHex(Data-Block[O 

if  DebugOn  then Form-Main 
end  {of Checksum  correct} 

begin  {Checksum  Error) 
else 

Comm-Err := True; 

1, 2) + ' ' 
'I, 2); 
..ListHexIn.Items.Add(DisplayStr); 

CksmErrCount := CksmErrCount + 1; 
DisplayStr := 'Block ' + IntToStr(B1ock-Num 

+ ' Cksm  Error,  Rcvd ' 
+ IntToHex(Data-Block[l], 2) 
+ IntToHex(Data~Block[Ol, 2) + ' = ' 
+ IntToStr(Data-Block[l]*256 + Data-Block 
+ I ,  Calc= ' 
+ IntToStr(CheckSum); 

end;  {of  Checksum  error) 
Form-Main.ListHexIn.Items.Add(Disp1ayStr); 

{Summarize if had communications  error,  either bad  Sync or bad  Chksm} 
if  Corn-Err then 
Label-ChksumNum.Caption := IC:'+ IntToStr(CksmErrCount) 

+ ' S : '  + IntToStr(SyncErrCount) ; (010618ed  display # checksum  errors) 

{Terminate  loop  when  all  blocks  recovered, or if  Sync  search  times  out) 
Until ((BlockNum = Block-Cnt) OR NOT  GotData); 

{Clean  up  for  exit) 
Cursor := crDefault; 
Label-RW.Visible := False; 
ProgressBar-RW.Visible := False; 

{Stop  data  transmit} 
for  Index := 0 to 3 do { May  have  missed  first} 
begin 

SendChar (Cntl-C) ; {Cntl-C to  Stop  Data) 
Delay(500); {Wait 500 mSec  for  Data  to  Stop) 
FlushQueue(Receive); {Empty  Receive  Buffer) 

end; 
end; 

procedure TForm-Main.WriteData(Block-Cnt : Integer); 
{----------------------------------------------------------------) 

va r 
Offset, 
I  dx : LongInt; 
Block-Num : Word; 

begin 
Label-RW.Caption := 'Writmg Data  to  Disk.'; 
Label-RW.Visible := True; 
ProgressBar-RW.Visible := True; 
Form-Main.Refresh; 
Block-Num := 0; 
Cursor := crHourGlass; 
Repeat 
ProgressBar-RW.Position := Round((Block-Num / Block-Cnt) * 100); 
Offset := Block-Num * Block-Length; 
for  Idx := 0 to (Block-Length - 1) do 

BlockWrite(OutFileB, Data-Block, 1) ; 
Data-Block[Idx] := Byte-RecordLOffset + Idxl; 

Block-Num := Block-Num + 1; 
until (Block-Num = Block-Cnt); 
Cursor := crDefault; 
Label-RW.Visible := False; 
ProgressBar-RW.Visible := False; 
end; 

procedure TForm-Main.ButtonAboutClick(Sender: TObject); 
{----------------------------------------------------------------) 

 149 



Code Listing - Main2Form.pas 

35 1 
3 52 
353 
354 
355 
356 
357 
358 
359 
3 60 
361 
3 62 
363 
3 64 
365 
366 
367 
368 
369 
370 
371 
3 72 
373 
3 74 
3 75 
376 
377 
378 
379 
3 80 
381 
3 82 
3 83 
3 84 
385 
386 
3 87 
388 
3 89 
390 
391 
392 
393 
394 
395 
396 
397 
398 
3 99 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
41 1 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 

var 
Compile-DateTime : TDATETIME; 

begin 
Compile-DateTime 
AboutBox.Caption 
AboutBox.ProgramName.Capti 
AboutBox.Version.Caption 
AboutBox.Date.Caption 

AboutBox.Copyright.Caption 
AboutBox.Comments.Caption 

:= 
.- 
+ 
+ 

GetFileDT(App1ication.ExeName); 
'About ' + Application.Title; 
'Program  Name : ' + UpperCase(Application.Tit1e); 
'Version : ' + Revision-Code; 
'Compiled : ' + FormatDateTime('mm/dd/yy', 

'Copyright : + 'Sandia  National Labs'; 
'Written by : ' + 'David J. Bello' + CR 
'Revisions by  Frank  Wunderlin,  Ed  Henry,' + CR 
'and  Mike  Partridge'; 

Compile-DateTime); 

AboutBox.ShowModa1; 
end; 

procedure TFormMain.Button-SendClick(Sender: TObject); 

{var 
TimeChar : Char; 
ByteEntered : Integer; 
I dx : LongInt;  {010606ed  added  for  baud  change) 

begin 

{010618ed  change  from  A  to E) 
if (Cmd-Char = 'E') 
then 
if  MessageDlg('Warning!  You  are  about to  ERASE  ALL  DATA!! ! '  + CR + 

'Proceed  with  Erase Command?', mtconfirmation,  mbOKCance1, 1) = mrCancel 
then 
Exit; 

SendVerifyCommand(Cmd-Char, Cmd-Echo); 
Edit-0utFile.Enabled := False; 
Button-Read.Enabled := False; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  start  new  baud stuff * * * * * * * * * * * * + * )  
if (Cmd-Char = 'B')  then  (010606ed add code  to  change  baud  rate) 
begin 
if (BaudRate = 115200)  then  {allows you to  toggel  between  baud  rates] 
Begin 

end 

Begin 

end; 

BaudRate := 19200; 

else 

BaudRate := 115200; 

end; 
CloseCommPort;  {Disconnect  Comm  Device) 
OpenCommPort ( 'COM1' ) ; 
SetCommMODE(BaudRate, IN', 8,l) ; 
GetCommStatus; 
Group-PortStatus.Caption := 'COM' + IntToStr(CommStat.Port1D); 
Label-Status.Caption := 'BaudRate : ' + IntToStr(CommStat.BaudRate) + ' 

'Parity : ' + (CommStat.Parity) + '  
'Bytesize : + IntToStr(CommStat.ByteSize) + ' 
'StopBits : ' + IntToStr(CommStat.StopBits); 

.............................. end new baud stuff * * * * * * * * * * * * * * )  

Case  Cmd  Echo  of 

' +  
' +  
' +  

- 
'A' : Label-Reply.Caption := '[AlAcquiring  to  Flash'; 
'B' : Label-Reply.Caption := '[BIBaud  Rate  Change' + IntToStr(BaudRate);{O10606ed added  baud 

'C' : Label-Reply.Caption := '[CICycled'; 
'E' : begin 

change) 

Label-Reply.Caption := '[EIErase  Memory';  {010611ed  changed  from  powerdown  to  Erase  mem) 
end; 

'F' : Label-Reply.Caption := '[FIFill  Memory  Test';  {Placeholder  for  command} 

150  

I 
I 
I 
c 
1 
I 
I 
1 
i 
1 
1 
1 
D 
I 
I 
I 



422 
423 
424 
425 
426 
427 
428 
429 
430 
43 1 
432 
433 
434 
435 
43 6 
437 
438 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 
453 
454 
455 
456 
457 
458 
459 
460 
46 1 
462 
463 
464 
465 
466 
467 
468 
469 
470 
47 1 
472 
473 
474 
475 
476 
477 
478 
479 
480 
48 1 
482 
483 
484 
485 
486 
487 
488 
489 
490 
49 1 
492 

Code  Listing - Main2Form.pas 

'I' : Label-Reply.Caption := [IIInitializing'; 
'R' : begin 

Label-Reply.Caption := '[RIRAM  Read'; 
Edit-0utFile.Enabled := True; 
if  OutFileValid 

end; 

Label-Reply.Caption := '[SIStatus  Request'; 
Read-Analog-Status; 
end; 

Label-Reply.Caption := '[TITest  Memory';  {010611ed  changed  Self  test  to  mem  test) 
Read-SelfTest; 
end; 

then  Button-Read.Enabled := True; 

' S I  : begin 

'T' : begin 

'w' : Label-Reply.Caption := '[w]Who  are you?'; [Placeholder  for  command) 
' z '  : Label-Reply.Caption := 'No  Response' 

else 
begin 
MessageDlg('Undefined  ECHO  Character: ' + Cmd-Echo i 

Label-Rep1y.Caption := Cmd-Echo + 'UNDEFINED.'; 
end; 

. ' , mtlarning, [&OK] , 0 )  ; 

end;  {Case) 
end; 

[----------------------------------------------------------------) 

procedure TFormMain.FormClose(Sender:  TObject;  var  Action:  TCloseAction); 

begin 
CloseCommPort; 
end; 

{Disconnect  Comm  Device) 

procedure  TForm-Main.Edit-OutfileClick(Sender:  TObject); 

begin 
SaveDialogl.FileName := "; 
SaveDialogl.Filter := 'All  Files ( * . * )  I * . * ' ;  
SaveDialogl.Options := [OfHideReadOnly,  ofPathMustExist1; 
if SaveDialogl.Execute 

{----------------------------------------------------------------) 

then 
begin 
OutFileName := SaveDialogl.Fi1eName; 
Edit-0utFile.Text := ExtractFileName(OutFi1eName); 
OutFileValid := True; 
Button-Read.Enabled := True; 
end; 

Edit-0utFile.SelStart := 0; 
Edit-0utFile.SelLength := 0; 
end; 

var 
Bytecount : int64; 
KBytes : int64; 

begin 
if  FileExists(OutFi1eName) 
then 
if MessageDlg('Fi1e + OutFileName + ' already  exist.  Overwrite?', 

151 



493 
494 
495 
496 
497 
498 
499 
500 
50 1 
502 
503 
5 04 
505 
506 
507 
508 
509 
510 
511 
5 12 
513 
5  14 
515 
516 
517 
518 
519 
520 
52 1 
522 
523 
524 
525 
526 
527 
528 
529 
530 
53 1 
532 
533 
534 
535 
536 
537 
538 
539 
540 
54 1 
542 
543 
544 
545 
546 
547 
548 
549 
550 
55 1 
552 
553 
554 
555 
556 
557 
558 
559 
560 
56 1 
562 
563 

Code  Listing - Main2Form.pas 

mtwarning,  [mbYes,  mbNo1, 0 )  = mrNo 
then  exit; 

ByteCount := SpinEdit-Read.Value * 256 * Block-Length;  {fkw - convert  records  to  bytes) 
KBytes := Bytecount  DIV 1024; (fkw - convert  bytes  to  kbytes) 

Block-Cnt := KBytes * 1024  DIV  Block-Length;  {010531ed  changed  256  to  Block-Length) 
Err-Code := OpenOutFile(OutFileB,  OutFileName, 

Block-Length){Open Binary  Output  File) 
if Err-Code = 0 

Block-Length,  (Block-Cnt * Block-Length)  DIV  1024);  {010531ed  changed 256 to 

then 
begin 
ReadData(B1ock-Cnt); 
if Corn-Err  AND  (Block-Cnt=O)  then 

else 

CloseFile(OutFi1eB);  {Close  Binary  Output  File) 

MessageDlg('Transmission  Errors  Detected! No Data  Available.',mtWarning,  [mbOKl, 0 )  

WriteData(B1ock-Cnt); 

end; 
Edit-0utFile.Enabled := False; 
Button-Read.Enabled := False; 
end; 

var 
NB-Read 
CmdEcho 
WhoID 
Channel 
IdxStr 
BiasAvg 
BiasStr 
Total-Chans 
HighByte-Loc 
LowByte-Loc 
ChanName, 
UnitStr 
EdIdx 

: DWord; 
: Char; 
: Array[0..50]  of  Char; 
: Byte; 
: String; 
: Array[l. .16] of Float;  {Max of 16 Data  and  Monitor  Chans) 
: String; 
: Byte; 
: Byte; 
: Byte; 

: String; 
: Integer; 

begin 
Corn-Err := False; 
FlushQueue(Receive);  {Clear  Receive  Buffer) 
SendChar  (XonChar) ; { SendXOn 1 
GetStatusInfo(Num-Data-Chans, NumMon-Chans);  {First  Bytes  are  Num  Data  and  Mon  Chans) 
Total-Chans := Num-Data-Chans + NumMon-Chans; 
if Total-Chans = 0 

Sync-OK := FindSync(0); {Block-Num = 0 for  Analog  Status  Frame) 
GetDataBlock; {Read  Analog  Status  Data) 

then  Exit; 

SendChar(Cnt1-C) 
Delay(500) ; 
FlushQueue (Recei 
if NOT(Sync-OK)  OR (Com-Err) 

.ve) ; 

then 
Exit ; 

{Cntl-C to  Stop  Data) 
{Wait 500 mSec for Data  to  Stop) 
{Empty  Receive  Buffer) 

for Channel := 1 to  Total-Chans do {for Channels 1 - Total-Chans) 
begin 
HighByte-Loc := ((2 * Channel) - 1); 
LowByte-Loc := ( (2 * Channel) - 2) ; 
BiasAvg[Channel] := Data-Block[HighByte-Locl * 256 

+ Data~Block[LowByte~Locl; {mep  remove  $OF  AND  w/  upper  byte) 

152  



564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
5 74 
575 
576 
577 
578 
579 
580 
581 
5 82 
583 
5 84 
585 
586 
587 
588 
589 
590 
59 1 
592 
593 
594 
595 
596 
597 
598 
599 
600 
60 1 
602 
603 
604 
605 
606 
607 
608 
609 
610 
61 1 
612 
613 
614 
615 
616 
617 
618 
619 
620 
62 1 
622 
623 
624 
625 
626 
627 
62 8 
629 
630 
63 1 
632 
633 
634 

Code  Listing - Main2Form.pas 

end; 

for  Channel := (Num-Data-Chans + 1) to  (Total-Chans)  do  {Scale  Volt  Mon  Chans) 
BiasAvg[Channel] := BiasAvg[Channel] * Cal-Factor; 

Label-ChanDatal-3.Caption := "; 
LabelVoltDatal-4.Caption := "; 
EdIdx := 0; {010618ed) 
for  Channel := 1 to  Num-Data-Chans  do 
begin 
Str(Channe1 : 2, IdxStr); 

{Clear  Channel  Data  1-3) 
{Clear  Voltage  Data 1-4} 

{Channel  Data = Chan 1 - 3) 

{Convert  Channel  to  Str # # )  
Str(Round(BiasAvg[Channell) : 4, BiasStr); 
{010618ed  added  case  statement  to  set  labels} 

case  EdIdx  of 
EdIdx := EdIdx + 1; 

1 :  ChanName := 'Rec. # I ;  

2 :  ChanName := 'Accel X ' ;  
3 :  ChanName := 'Accel Y'; 
4 :  ChanName := 'Accel 2 ' ;  
5 :  ChanName := 'pH 
6 :  ChanName := 'Cond. '; 
I :  ChanName := 'Temp. I ;  

1 .  

end; 

Label-ChanDatal-3.Caption := Label-ChanDatal-3.Caption 

end; 
EdIdx := 0; {010618ed} 
for  Channel := 1 to NumMon-Chans  do {Voltage  Data = Mon 1 

{010618ed  removed  'Chan' + IdxStr + & inserted  ChanName) 

+ ChanName + I :  ' + BiasStr + ' Counts' + CR; 

begin 
UnitStr := ' Volts'; 
Str(Channe1 : 2, IdxStr); 
Str(BiasAvg[Channel + Num-Data-Chansl: 5 : 2, BiasStr); 

(010618ed  added  case  statement  to  set  labels) 
EdIdx := EdIdx + 1; 
case  EdIdx  of 

1 :  ChanName := 'Batt  Mon '; 
2 :  ChanName := '3V Reg Mon'; 
3 :  ChanName := '6V  Reg Mon'; 

end; 
{010618ed  removed "on' + IdxStr + & inserted  ChanName} 
Label-VoltDatal-4.Caption := Label-VoltDatal-4.Caption 

end; 
+ ChanName + ' :  ' + BiasStr + UnitStr + CR; 

LabelVoltDatal-4.Caption := Label-VoltDatal-4.Caption + CR; 

{Get  unit  ID1 
SendCommand('w');  {Command 'w' is Who  are you?) 
FlushQueue(Transmit);  {Clear  Transmit  Buffer) 
FlushQueue(Receive);  {Clear  Receive Buffer} 
Sendcommand ( ' w' ) ; 
ReadCommandEcho(CmdEcho); 

if ('w' = CmdEcho)  then 
begin 
Sendcommand ( ' V ' ) ; {Send  Verification  Character) 
if  WaitForCommData(40, 1000) then { Wait  lOOOms f o r  block) 
if  (ReadFile(Comm-Handle,  WhoID, 40, NB-Read, IpOverLapped)) then 
begin 

for  EdIdx := 8 to 4 0  do Label-VoltDatal-4.Caption := 
Label-VoltDatal-$.Caption + WhoID[EdIdxl; 

end; 
end 

4) 

else 
Label-VoltDatal-4.Caption := Label-VoltDatal-4.Caption + 'Unknown  Unit'; 

end: 

 153 



63 5 
636 
637 
63 8 
639 
640 
64 1 
642 
643 
644 
645 
646 
647 
648 
649 
650 
65 1 
652 
653 
654 
655 
656 
657 
658 
659 
660 
66 1 
662 
663 
664 
665 
666 
667 
668 
669 
670 
67 1 
672 
673 
674 
675 
676 
677 
678 
679 

684 
685 
686 
687 
688 
689 
690 
69 1 
692 
693 
694 
695 
696 
697 
698 
699 
700 
70 1 
702 
703 
704 
705 

Code  Listing - Main2Form.pas 

procedure TForm-Main.Read-SelfTest; 

Const 
Stat-Length = 4; 
Pass = ' -  P'; 
Fail = ' -  F'; 

var 
NB-Read : DWord; 
Stat-Str : Array[O..Stat-Length1 of Char: 

Unit-ID : Byte; 
TResultA : Byte; 

HW-Rev : Char; 

TResultB : Byte; 

begin 
Sync-OK := False; 
FlushQueue(Receive); 
SendChar  (XonChar) ; 
if NOT s sync^ OK) 

[Used  by  delay  to  show  early exit} 

{SendXOn} 
[Block-Num = 2  for  Self  Test} 

{Clear  Receive  Buffer} 

then exit; 

then  exit; 

then 

if NOT(FindSync(2) ) {Block-Num = 2 for  Self Test} 

if WaitForCommData(Stat-Length, FiveSec)  (If  Characters in Rec  Queue - Read  Info) 

begin 
if  NOT  (ReadFile(Com-Handle, Stat-Str,  Stat-Length,  NB-Read, IpOverLapped)  AND 

(NB-Read = Stat-Length)) 
then 
begin 

exit; 
end 

begin 
HW-Rev := Stat-Str[Ol; 
Unit-ID := Ord(Stat-Str[ll); 

TResultA := Ord(Stat_Str[2] 1 ;  
TResultB := Ord(Stat_Str[31); 

HandleComError(true, 0, 'Self  Test'); 

else 

if  (TResultA  AND $01) = $00 
then  Label-AAL.Caption := Fail 
else Label-AAL.Caption := Pass; 

if (TResultA  AND  $02) = $00 
then  Label-ADL.Caption := Fail 
else LabelADL.Caption := Pass; 

if  (TResultA  AND  $04) = $00  
then LabelACL.Caption := Fail 
else  Label-ACL.Caption := Pass; 

if (TResultA  AND $08) = $00 
then LabelAIL.Caption := Fail 
else Labe1AIL.Caption := Pass; 

if  (TResultA  AND $10) = $00 
then  Label-RAB4.Caption := Fail 
else  Label-RAB4.Caption := Pass; 

if  (TResultA  AND  $20) = $00 
then Label-RAB5.Caption := Fail 
else  Label-RAB5.Caption := Pass; 

if (TResultA  AND  $40) = $00 
then  Label-RAB6.Caption := Fail 
else  Label-RAB6.Caption := Pass; 

if (TResultA  AND $80) = $00 

154  



706 
707 
708 
709 
710 
71 1 
712 
713 
714 
715 
716 
717 
718 
719 
720 
72 1 
722 
723 
724 
725 
726 
727 
72 8 
729 
730 
73 1 
732 
733 
734 
73 5 
736 
737 
73 8 
73 9 
740 
74 1 
742 
743 
744 
745 
746 
747 
748 
749 
750 
75 1 
752 
753 
754 
755 
756 
757 
758 
759 
760 
76 1 
762 
763 
764 
765 
766 
767 
768 
769 
770 
77 1 
772 
773 
774 
775 
776 

en' 

then  Label-RAB7.Caption := Fail 
else  Label-RAB7.Caption := Pass; 

if  (TResultB  AND $01) = $00 
then  Label-RARW.Caption := Fail 
else  Label-RARW.Caption := Pass; 

if  (TResultB  AND $02) = $00 
then  Label-RD.Caption := Fail 
else Label-RD.Caption := Pass; 

if  (TResultB  AND $04) = $00 
then Label-EARW.Caption := Fail 
else  Label-EARW.Caption := Pass; 

if (TResultB  AND $08) = $00 
then Label-ED.Caption := Fail 
else  Label-ED.Caption := Pass; 

if (TResultB  AND $10) = $00 
then  Label-RBB4.Caption := Fail 
else  Label-RBB4.Caption := Pass; 

if  (TResultB  AND $20) = $00 
then Label-RBB5.Caption := Fail 
else  Label-RBB5.Caption := Pass; 

if  (TResultB  AND  $40) = $00 
then Label-RBB6.Caption := Fail 
else  Label-RBB6.Caption := Pass; 

if (TResultB  AND $80) = $00 
then  Label-RBB7.Caption := Fail 
else  Label-RBB7.Caption := Pass; 

end; 
end; 

d; 

Code  Listing - Main2Form.pas 

--- 
procedure TForm-Main.FormCreate(Sender: TObject); 

var 
I dx : Integer; 
IdxStr, 
ChanName, 
UnitStr : String; 

begin 
Label-ChanDatal-3.Caption := "; 
Label-VoltDatal-4.Caption := I :  

for  Idx := 1 to 10 do 
begin 
Str(Idx : 2, IdxStr) ; 
UnitStr := Counts'; 
case  Idx  of 

1 :  ChanName := 'Rec. # I ;  

2 :  ChanName := 'Accel X'; 
3 :  ChanName := 
4 :  ChanName := 

5 :  ChanName := 
6 :  ChanName := 
7 :  ChanName := 
8 : begin 

ChanName := 'Ba 
UnitStr := v 
end: 

9 : begin 

t 
0 

I 

1 

Accel Y '  ; 
Accel Z '  ; 
PH 
Cond. ' ; 
Temp. I ;  

t Mon I ;  

Its': 

I .  

ChanName := '3V  Reg Mon'; 
UnitStr := ' Volts'; 
end; 

{Clear  Channel  Data 1-3) 
(Clear  Voltage  Data 1-4) 

{Convert  Idx  to  Str # # )  

 155 



777 
778 
779 
780 
78 1 
782 
783 
784 
785 
786 
787 
788 
789 
790 
79 1 
792 
793 
794 
795 
796 
797 
798 
799 
800 
80 1 
802 
803 
804 
805 
806 
807 
808 
809 
810 
81 1 
812 
813 
814 
815 
816 
817 
818 
819 
820 
82 1 
822 
823 
824 
825 
826 
827 
828 
829 
830 
83 1 
832 
833 
834 
835 
836 
83 7 
838 
839 
840 
84 1 
842 
843 
844 
845 
846 
847 

Code  Listing - Main2Form.pas 

10 : begin 
ChanName := '6V  Reg Mon'; 
UnitStr := ' Volts'; 
end; 

end; 

Label-ChanDatal-3.Caption := Label-ChanDatal-3.Caption 
[010618ed  removed  'Chan' + IdxStr + & inserted  ChanName) 

+ ChanName + I :  xxxx ' + UnitStr + CR; 
end; 
SpEdPrV := SpinEdit-Read.Value;  {Intitialize  SpinEdit  Previous  Value] 
Edit-0utFile.Enabled := False;  (Disable  OutFile Box) 
ButtonRead.Enab1ed := False;  [Disable  Read  Button) 
Label-RW.Visible := False; {Hide  Read/Write  Label) 
ProgressBar-RW.Visible := False;  (Hide  Read/Write  Progress  Bar) 
OutFileValid := False;  {OutFile  Not  Yet  Specified) 
Cmd-Char .= , S T ;  (Set Cmd-Char  to  'I'nitialize) 
RadioButton-S.Checked := True; 
Label-Reply.Caption := 'NO  Reply';  {Initialize  Reply  Label) 

BaudRate := 19200; 
OpenCommPort('COM1'); 
SetCommMODE(BaudRate, IN', 8,l) ; 
GetCommStatus; 
FlushQueue(Receive1;  (010618ed  added  Empty  Receive  Buffer) 
Group-PortStatus.Caption := 'COM' + IntToStr(CommStat.PortID); 
Label-Status.Caption := 'BaudRate : ' + IntToStr(CommStat.BaudRate) + ' ' +  

'Parity : ' + (ConunStat.Parity) + '   ' +  
'Bytesize : ' + IntToStr(CommStat.ByteSize) + ' ' +  
'StopBits : ' + IntToStr(CommStat.StopBits); 

end; 

[----------------------------------------------------------------) 

procedure  TForm-Main.Button-XOutClick(Sender:  TObject); 

va r 
I dx : Integer; 
IdxStr : String; 
UnitStr : String; 

begin 
Label-ChanDatal-3.Caption := ' I ;  {Clear  Channel  Data 1-31 
Label-VoltDatal-4.Caption := ' I ;  [Clear  Voltage  Data  1-41 

for  Idx := 1 to 3 do  [Channel  Data = Chan 1 - 3 )  
begin 
Str  (Idx : 2, IdxStr) ; {Convert  Idx  to  Str # # )  
Label-ChanDatal-3.Caption := Label-ChanDatal-3.CaPtiOn + 

end; 
'Chan + IdxStr + ' :  xxxx  Counts' + CR; 

for  Idx := 1 to  4 do (Voltage  Data = Mon 1 - 4) 
begin 
if  Idx < 4 
then  UnitStr := ' Volts' 
else  UnitStr := ' OC' ; 

Str(1dx : 2, IdxStr) ; (Convert Idx to  Str # # )  
Label-VoltDatal-4.Caption := Label-VoltDatal-4.Caption + 

end; 
'Man 9 t IdxStr t I :  xx.xx' + UnitStr + CR; 

Label-AAL.Caption := ' -  X'; 
LabelADL.Caption := ' -  X'; 
Label-ACL.Caption := ' -  X'; 
Label-AIL.Caption := ' -  X'; 
Label-RAB4.Caption := ' -  X'; 
Label-RAB5.Caption := ' -  X'; 
Label-RAB6.Caption := ' -  X'; 
Label-RAB7.Caption := ' -  X'; 
Label-RARW.Caption := ' -  X'; 
Label-RD.Caption := ' -  X'; 
Label-EARW.Caption := ' -  X'; 
Label-ED.Caption := ' -  X'; 

156  



848 
849 
850 
85 1 
852 
853 
854 
855 
856 
857 
858 
859 
860 
86 1 
862 
863 
864 
865 
866 
867 
868 
869 
870 
87 1 
872 
873 
874 
875 
876 
877 
878 
879 
880 
88 1 
882 
883 
884 
885 
886 
887 
888 
889 
890 
89 1 
892 
893 
894 

Code  Listing - Main2Form.pas 

Label-RBB4.Caption := ' -  X'; 
Label-RBB5.Caption := ' -  X'; 
Label-RBB6.Caption := ' -  X'; 
Label-RBB7.Caption := ' -  X I ;  

end; 

procedure TFormMain.RadioButton-CommandClick(Sender: TObject); 
begin 
GainGroup.Visible := False; 
Group-Readout.Visible := False; 
if RadioButtonA.Checked 

if  RadioButton-B.Checked 

if  RadioButton-C.Checked 

if RadioButton-P.Checked 

if RadioButton-I.Checked 

if  RadioButton-R.Checked 

then Cmd-Char := 'A';  {Arm  Package - RAM Only) 

then Cmd-Char := 'B';  {010607ed  added  baud  command) 

then Cmd-Char := IC';  {Cycle  Package) 

then Cmd-Char := 'E'; {Erase  Memory  010611ed  changed  to  erase  memory) 

then CmdChar := '1'; {Initialize) 

then 
begin 
Cmd-Char := 'R'; {Read  Data from RAM) 
Group-Readout.Visible := True; 

if  RadioButton-S.Checked 
end; 

then Cmd-Char := 'SI; 
if RadioButton-T.Checked 
then Cmd-Char := 'TI; 

end; 

procedure TFormMain.ButtonlC1 
begin 
ListHexIn.Clear; 
end; 

Status  Requested) 

Self  Test) 

ick(Sender:  TObject); 

procedure TFormMain.DebugDisplayOnClick(Sender: TObject); 
begin 
DebugOn := DebugDisplayOn.Checked; 
end; 

end. 

 157 



4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Code  Listing - About.pas 

unit  About; 

interface 

uses  WinTypes,  WinProcs, Classes, Graphics,  Forms,  Controls,  StdCtrls, 
Buttons,  ExtCtrlS; 

type 
TAboutBox = class(TForm) 
Panel-Main : TPanel; 
OKButton : TBitBtn; 
ProgramIcon : TImage; 
ProgramNarne : TLabel; 
Version : TLabel; 
Date : TLabel; 
Copyright : TLabel; 
Comments : TLabel; 

private 

public 

end: 

[ Private  declarations 1 

( Public  declarations 

va r 
AboutBox:  TAboutBox; 

implementation 

{$R *.DE”) 

end. 

158  



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Code Listing - ComUtil.pas 

unit  CommUtil; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

{ * * *  CommUtil.PAS  Ver.  Date  Init. * * * )  
{ * * *  Delphi 2.0 Communications  Utility 1.00 12/15/96  (DJB) * * * )  

I***  01.0531ed changed  from 256 to 80 

interface 

uses  Dialogs,  Windows,  SysUtils,  MainUtil; 

* * * )  

type 
QueueType = (Transmit,  Receive);  {Corn  Port  Queues) 
PString = Array[0..801  of  Char;  {Strings  for  PChar) 
CommStatRec = Record 

PortID : Byte; (Comm  Port  Number) 
BaudRate : LongInt; {BuadRate) 
Parity : String; {None,  Odd,  Even,  Mark,  Space) 
ByteSize : Byte; 
StopBits : Byte; 

end;  {End  of  Record) 

const 
InQueueSize = 16384; 
OutQueueSize = 16384; 
XonLirn = 2048; 
Xof  fLim = 2048; 
AckChar = Chr(SO6); 
XonChar = Chr ($11) ; 
Xof  fChar = Chr(S13) ; 
NakChar = Chr(S15); 
Errorchar = Chr ($00) ; 
EofChar = Chr ($00) ; 
EvtChar = Chr ( $ 0 0 )  ; 
ASCII-0 = Chr  ($30) ; 
Cntl-C = Chr ($03) ; 
CR = Chr ($OD) ; 
LF = Chr  ($OA) ; 
SyncBytel = Chr ($EB) ; 
SyncByte2 = Chr ($90 ) ; 
FiveSec = 5000; 
ECHO-GOOD = ' V ' ; 
Block-Length = 560; 

010618ed)(Data  Block  Transfer  Length) 

va r 
Corn-Handle : THandle; 
CommStat : CommStatRec; 
DCommStat : TCornStat; 
Corn-Err : Boolean; 
Sync OK : Boolean; 

{Bits  Per  Char : 4-8) 
(No. of  Stop  Bits : 1,2} 

{16K Input  Buffer) 
(16K Output  Buffer) 
(COMM-DCB  Values) 
(COMM-DCB  Values} 

(COMM-DCB  Values) 
{COMM-DCB  Values} 

(COMM-DCB  Values) 
(COMM-DCB  Values) 
(COMM-DCB  Values) 
(ASCII 0 = 30Hl 
(Control  C = 03H) 
(Carriage  Return  Character = ODH) 
{Line  Feed  Character = OAH) 
(First  Sync  Byte = EBH) 
(Second  Sync  Byte = 90H) 
{Five  Seconds = 5000  MilliSec) 
{Echo  Verification  Character) 
{010531ed  changed  from  256  to 80 now to 560 

( bat:-Block : Array[O.  .Block-Length - 11 of  Byte;  {Byte  Array  for  Data  Storage) 

Cksm) 
Data-Block : Array[O..Block-Length + 51 of  Byte;  {added  space  for  sync,  block#,  data,  and 

Cmd-Char : Char; 
Cmd-Echo : Char; 
BaudRate : DWord; 
lpoverlapped : POverlapped; 
IpSec-Attr : PSecurityAttributes; 

function WaitForCommData(NumBytes : Word;  WaitTime : LongInt) : Boolean; 
function FindSync(B1ock-Cnt: WORD) : Boolean; 

procedure  DisplayDebug(Sent : Boolean; NurnChars : Integer;  DebugStr : Array  Of  char); 
procedure  DisplayDebug2(Sent : Boolean;  NumChars : Integer;  DebugStr : Array Of byte); 
procedure  HandleCommError(C1ear : Boolean;  Errors : DWord;  Msg-Str: String); 
procedure  OpenCommPort(Com-ID:  PString); 
procedure  CloseCommPort; 
procedure  SetCommMode(BaudRate:  DWord;  Parity:  Char;  ByteSize:  Byte;  StopBits:  Byte); 
procedure  GetCommStatus; 

 159 



72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
13 1 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

Code  Listing - ComUtil.pas 

procedure  SyncError(Msg-Str : String); 
procedure  FlushQueue1TR-Queue:  QueueType); 
procedure  SendChar(Chr:  Char);  {Send  Single  Character  to  Port) 
procedure  SendCommand(Cmd:  Char);  {Embed  Char in Command  String & Send  to  Port) 
procedure  ReadCommandEcho(var  CmdEcho:  Char);  {Read  Echoed  Char  From  Comm  Port) 
procedure  SendVerifyCommand(var  CmdChar,  CmdEcho : Char); 
procedure  GetQueueStatus:  {Loads  DCommStat.cbInQue & DCommStat.cbOutQue1 
procedure GetDataBlock: 
procedure  GetStatusInfo(var Num-Data-Chans, NumMon-Chans : Byte): 

Vf>I 
implementation 

uses  Main2Form; 

begin 
MessageDlg('A  FATAL  Error  has  occurred  while ' + Err-Str + CR + CR + 

Halt: 
end; 

'Program  will  be  Aborted! I ,  mtError, [mbOKl , O )  ; 

{------------------------------------------------------------------------) 

procedure HandleComError(C1ear : Boolean;  Errors : DWord; Msg-Str : String); 

var 
ErrorFlags : DWord; 
Stats : PComStat: 

begin 
Corn-Err := True; 
if (Clear)  then 
begin 
if NOT ClearCommError(Com-Handle, ErrorFlags,  Stats)  then 
FatalError('attempting  to  clear  a  comm  error.'): 
Exit ; 

end 

ErrorFlags := Errors: 

if  (ErrorFlags <> 0 )  then 

else 

begin 
if (ErrorFlags  AND CE-MOVER) = CE-MOVER 

if (ErrorFlags  AND CE-OVERRUN) = CE-OVERRUN 

if (ErrorFlags  AND  CE-RXPARITY) = CE-RXPARITY 

if (ErrorFlags  AND CE-FRAME) = CE-FRAME 

if (ErrorFlags  AND  CE-BREAK) = CE-BREAK 

if  (ErrorFlags AND  CE-TXFULL) = CE-TXFULL 

if (ErrorFlags  AND CE-PTO) = CE-PTO 

if  (ErrorFlags  AND CE-IOE) = CE-IOE 

if (ErrorFlags  AND CE-DNS) = CE-DNS 

if  (ErrorFlags  AND CE-OOP) = CE-OOP 

if (ErrorFlags  AND CE-MODE) = CE-MODE 

if (Msg-Str <> ' ' )  then 

then Msg-Str := Msg-Str + 'Receive  queue overflow.': 

then Msg-Str := Msg-Str + 'Receive  overrun.'; 

then  Msg-Str := Msg-Str + 'Receive  parity  error.': 

then  Msg-Str := Msg-Str + 'Receive  framing  error.'; 

then  Msg-Str := Msg-Str + 'Break  detected.'; 

then  Msg-Str := Msg-Str + 'Transmission  queue OVerflOW.': 

then Msg-Str := Msg-Str + 'LPTx  Timeout.'; 

then Msg-Str := Msg-Str + 'LPTx 1/0 Error.': 

then  Msg-Str := Msg-Str + 'LPTx  Device  not selected.': 

then Msg-Str := Msg-Str + 'LPTx  Out-Of-Paper.'; 

then  Msg-Str := Msg-Str + 'Requested  mode  unsupported.'; 

) 
{ MessageDlg('C0M  Device  Error.' + CR + CR + Msg-Str, mtError,[mbOKI,O); 

I 
R 
I 
I 
I 
a i  
I 
t 160  



143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
I62 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 

Code  Listing - ComUtil.pas 

begin 
Corn-Err := True; 
{MessageDlg('A  read  timeout  has  occurred  while  waiting  for  a ' + Msg-str + , ,  
1 

. , mtwarning, [mbOK], 0); 
Msg-Str := 'Read  timeout  waiting  for  a ' t Msg-str + I . '  : 
Form-Main.ListHexIn.Items.Add(Msg-Str); 

end; 

{------------------------------------------------------------------------} 

procedure  SyncError(Msg-Str : String); 

begin 
{MessageDlg('Sync  Error : '  + CR + CR + Msg-Str, mtError, [ m b O K l ,  0 ) ;  
} 
Msg-Str := 'Sync  Error : '  + CR + CR + Msg-Str; 
FormMain.ListHexIn.Items.Add(Msg-Str); 

end; 

procedure  OpenCommPort(Com-ID:  PString); 

var 

{------------------------------------------------------------------------} 

{Valid ID'S = 'COMl', 'COMZ', 'COM3',  'COM4') 

PCom-ID : PChar; 

begin 
PCom-ID := @Com-ID;  {Set  Pointer @ Com-ID String) 
Corn-Handle := CreateFile(PCom-ID,  {Get  Handle  for  Specified  Port} 

GENERIC-READ OR GENERIC-WRITE, (Access  (read-write)  mode) 
0 ,  {Prevents  port  from  being  shared) 
IpSecAttr, {Pointer  to  Security  Attributes} 
OPEN-EXISTING, {How  to  Create} 
FILE-ATTRIBUTE-NORMAL, {File  Attributes  Normal} 
0 ) ;  {Fails  if  Not  Zero} 

if (Corn Handle = INVALID-HANDLE-VALUE) 

if NOT(SetupComm(Com-Handle, InQueueSize,  OutQueueSize)) 

CornStat.PortID := StrToInt(Com_ID[3]); 
{lpoverlapped := @NULL; } (Set  lpoverlapped  Variable} 
lpoverlapped := NIL;  {Set  lpoverlapped  Variable} 
end; 

then  FitalError ( 'opening ' + Com-ID + ' . ' ) ; 
then FatalError('initia1izing ' + Com-ID); 

{------------------------------------------------------------------------} 

procedure  CloseCornPort; 

begin 
if NOT (CloseHandle  (Corn-Handle) ) 
then  MessageDlg('Err0r  Closing  Communications  Port  COM' + 

IntToStr  (CommStat.PortID) + ' . I ,  mtError, [mbOKl  , 0 )  ; 
end; 

{ * fBinary = $00000001 {Must  Be  Set  to  True} 
{ fParity = $ 0 0 0 0 0 0 0 2  {If Set  Parity  Checking  is  Performed} 
{ fOutxCtsFlow = $ooooooo4 {If Set  CTS is Monitored  for  Flow  Control} 
{ fOutxDsrFlow = $ 0 0 0 0 0 0 0 8  {If  Set  DSR  is  Monitored  for  Flow  Control) 

{ *  fDtrControl-Dis = $00000000 (Disables  DTR  Line  when  Device  is  Opened) 

 161 



Code  Listing - ComUtil.pas 

2 14 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
23 8 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 1 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 
280 
28 1 
282 
283 
284 

fDtrContro1-Ena = $00000010 {Enables  DTR  Line  when  Device  is  Opened} 
fDtrContro1-Hsk = $00000020 (Enables  DTR  Handshaking) 
fDsrSensitivity = $00000040 {If Set  Data  is  Ignored  until  DSR  Line  High) 
fTXContinueOnXOff = $00000080 [If  Set  TX  Continues  After  Sending  Xoff} 

fOUtX = $00000100 [If  Set  Xon/Xoff  controls  affect  TX) 
i fInX = $00000200 {If Set  Xon/Xoff  controls  sent  during RX) 
fErrorChar = $00000400 [If  Set  and  fParity  Error  Bytes  are  Replaced} 
fNull = $00000800 {If Set  NULL  Bytes  are  Discarded} 

fRtsContro1-Dis = $00000000 {Disables  RTS  Line  when  Device  is  Opened) 
fRtsContro1-Ena = $00001000 {Enables  RTS  Line  when  Device  is  Opened) 
fRtsContro1-Hsk = $00002000 {Enables  RTS  Handshaking) 
fRtsContro1-Tog = $00003000 {RTS  High  when  Byte in TX  buff,  Low  when  empty} 
fAbortOnError = $00004000 (If  Set  Rx/Tx  Terminated  on  Error) 

{ fDummy2 = SFFFF8000;  {Reserved  DO  NOT  USE) 

var 
Corn-DCB : TDCB; 

begin 
if NOT(GetCommState(Com-Handle, COm-DCB)) [Get  Comm  Port  Parameters) 

COMM-DCB.BaudRate := BaudRate;  [Modify  Desired  Fields) 
Case  Parity  of 

then  FatalError('retrieving  the  current  port  configuration.'); 

'N','n' : COMM-DCB.Parity := NOPARITY; 
' O ' , ' o '  : COP@-DCB.Parity := ODDPARITY; 
'E','e' : COMM-DCB.Parity := EVENPARITY; 
'M','m' : COMM-DCB.Parity := MARKPARITY; 
' S ' , ' s '  : COMM-DCB.Parity := SPACEPARITY; 
else 
begin 
Parity := 'N'; 
COMM-DCB.Parity := NOPARITY; 
end; 

end;  (Case) 
COMM-DCB.ByteSize := ByteSize; 
Case  StopBits  of 

1 : COMM-DCB.StopBits := ONESTOPBIT; 
2 : COMk-DCB.StopBits := TWOSTOPBITS; 
else 
COMM-DCB.StopBits := ONESTOPBIT; 

end;  (Case) 

then  COm-DCB.Flags := $0201  {Parity  Checking  is  Not  Performed} 
else COMM-DCB.Flags := $0203; {Parity  Checking is Performed) 

if (Parity = IN') OR  (Parity = In') 

COMM-DCB.XonLim := XonLim; 
COMM-DCB.XoffLim := XoffLim; 
COMM-DCB.XonChar := XonChar; 
COMM-DCB.XoffChar := XoffChar; 
COMM-DCB.ErrorChar := Errorchar; 
COm-DCB.EofChar := EofChar; 
COMM-DCB.EvtChar := EvtChar; 
if NOT(SetCommState(Com-Handle, COMM-DCB))  {Set Comm Port to New  Parameters) 

end; 
then  FatalError('setting  port  configuration.'); 

procedure  GetCommStatus; 

va  r 
Corn-DCB : TDCB; 
p-TDCB : PDCB; 

begin 
if NOT(GetCommState(Comm-Handle, COMM-DCB))  {Get  COmm  Port  Parameters} 
then  FatalError('trying  to  retrieve  the  current  port  configuration.'); 

p-TDCB := @COMM-DCB; 
CommStat.BaudRate := p-TDCB.BaudRate; 
Case p-TDCB.Parity of 

162  



285 
286 
287 
288 
289 
290 
29 1 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
3 04 
305 
306 
307 
308 
309 
3 10 
311 
3 12 
313 
3 14 
315 
3 16 
3 17 
318 
3 19 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
33 1 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
35 1 
352 
353 
354 
355 

Code Listing - ComUtiLpas 

NOPARITY : CommStat.Parity := 'None'; 
ODDPARITY : CommStat.Parity := 'Odd'; 
EVENPARITY : CommStat.Parity := 'Even'; 
MARKPARITY : CommStat.Parity := 'Mark'; 
SPACEPARITY : CommStat.Parity := 'Space' 
end;  (Case} 

CommStat.ByteSize := p-TDCB.ByteSize; 
Case p-TDCB.St0pBit.s of 
ONESTOPBIT : CommStat.StopBits := 1; 
TWOSTOPBITS : CommStat.StopBits := 2; 
end;  {Case} 

end; 

procedure FlushQueue(TR-Queue:  QueueType); 

begin 
Case TR-Queue  of 

t-------------------------------------------------------------------. 

Transmit : if  NOT (PurgeCom(Com-Handle, PURGE-TXCLEAR)) 

Receive : if  NOT (PurgeComm(Com-Handle, PURGE-RXCLEAR) 1 

end;  (Case1 

then  HandleCommError(true, 0, 'Purge  Queue  Transmit'); 

then  HandleCommError(true, 0, 'Purge  Queue  Receive'); 

end; 

function WaitForCommData(NumBytes : Word;  WaitTime : LongInt) : Boolean; 

va r 
Entry-Time, 
Loop-Time : LOngInt; 

begin 
Entry-Time := GetTickCount;  {Get  Loop  Entry Time1 
Repeat 
GetQueueStatus; 
Loop  Time := GetTickCount - Entry-Time; 

Until  7DCommStat.cbInQue >= NumBytes)  OR  (Loop-Time > WaitTime); 
if  (DCommStat.cbInQue >= NumBytes) 
then  WaitForCommData := True 
else  WaitForCommData := False; 

end; 

- - )  

I 

const 
Chr-Length = 1; 

va r 
Chr-Str : Array[O..Chr-Length1  of  Char; 
NB-Written : DWord; 

begin 
Chr-Str[Ol := Chr; 
ChrIStr  [l] := #O; 
if NOT (WriteFile(Com-Handle, Chr-Str,  Chr-Length, NBWritten, IPOverLaPPed)  AND 

const 
Cmd-Length = 4; {Command  String  consist  of 4 Bytes] 

var 
Cmd-Str : Array[O..Cmd-Length]  of Char; 
NB-Written : DWord; 

 163 



356 
357 
358 
359 
360 
361 
362 
363 
3 64 
365 
366 
367 
368 
369 
370 
371 
372 
373 
3 74 
375 
376 
377 
378 
3 79 
380 
381 
3 82 
3 83 
3 84 
3 85 
3 86 
387 
388 
3 89 
390 
391 
392 
393 
394 
395 
3 96 
397 
398 
399 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 
410 
41 1 
412 
413 
414 
415 
416 
417 
418 
419 
420 
42 1 
422 
423 
424 
425 
426 

Code  Listing - ComUtil.pas 

begin 
Cmd-Str[O] := ASCII-0; 
Cmd-Str[ll := Cmd; 
Cmd_Str[2] := CR; 
Cmd-Str 131 := LF: 
Cmd_Str[4] := #O; 
if NOT (WriteFile(Com-Handle, Cmd-Str,  Cmd-Length, NBWritten, IpOverLapped)  AND 

(NB-Written = Cmd-Length)) 

DisplayDebug(true,  NB-Written,  Cmd-Str); 
end; 

then  HandleCommError(true, 0, 'Command  sent to port'); 

procedure  ReadCommandEcho(var  CmdEcho: Char); {Read  Echoed  Char  From  Comm  Port) 

const 
Echo-Length = 4; {Echo  String  consist of 4  Bytes) 
HalfSec = 500; I500  Milliseconds) 

Echo-Str : Array[O..Echo-Length]  of Char; 
NB-Read : DWord; 

var 

begin 
CmdEcho := ' ? ' ;  (Error  Flag) 
if  WaitForCommData(Echo-Length,  HalfSec)  then  {If  Characters  in  Rec  Queue - Read  Echo1 
begin 
if  NOT  (ReadFile(C0mm-Handle,  Echo-Str,  Echo-Length,  NB-Read,  IpOverLapped) 

AND  (NB-Read = Echo-Length))  then 

HandleCommError  (true, 0, 'Command  Echo' ) ; 
Exit: 

begin 

end; 
DisplayDebug(false, NB-Read,  Echo-Str); 
if (Echo-Str[O] = ASCII-0) then 

else 
CmdEcho := Echo-Str[ll 

MessageDlg('Command  echo  format is incorrect.',  mtError,[mbOKl, 0 ) ;  
end 

TimeOutError('Command Echo'): 
else 

end; 

{------------------------------------------------------------------------) 

procedure  DisplayDebug(Sent : Boolean:  NumChars : Integer;  DebugStr : Array  of char); 

va r 
Index : Integer; 
DisplayStr : String; 

begin 
if  DebugOn  then 
begin 

if (Sent)  then 

else 

for  Index := 0 to  NumChars - 1 do 

DisplayStr := 'Sent ' 

DisplayStr := ' ' ;  

begin 
DisplayStr := DisplayStr + IntToHex(Ord(DebugStr[Indexl), 2) + ' '; 
if (((Index + 1) MOD 20) = 0 )  then 
begin 

Form-Main.ListHexIn.Items.Add(Disp1ayStr); 
DisplayStr := ' '; 

end: 
end; 

if  (DisplayStr <> ' ' 1  then 
Form-Main.ListHexIn.Items.Add(Disp1ayStr); 

end: 
end: 

164 



427 
42 8 
429 
430 
43 1 
432 
433 
434 
435 
436 
437 
438 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 
45 1 
452 
453 
454 
455 
456 
457 
458 
459 
460 
46 1 
462 
463 
464 
465 
466 
467 
468 
469 
470 
47 1 
472 
473 
474 
475 
476 
477 
478 
479 
480 
48 1 
482 
483 
484 
485 
486 
487 
488 
489 
490 
49 1 
492 
493 
494 
495 
496 
497 

Code  Listing - ComUtil.pas 

procedure  DisplayDebug2(Sent : Boolean;  NumChars : Integer;  DebugStr : Array  of  byte); 

var 
Index : Integer; 
DisplayStr : String; 

begin 
if  DebugOn  then 
begin 

if (Sent)  then 

else 

for  Index := 0 to NumChars 

DisplayStr := 'Sent ' 

DisplayStr := ' ' ;  
- 1 do 

if  -(((Index + 1) MOD 20) = 0 )  then 
begin 

Form-Main.ListHexIn.Items.Add(Disp1ayStr); 
DisplayStr := ' ' ;  

end; 
end; 

if (DisplayStr <> ' ' )  then 
FormMain.ListHexIn.Items.Add(Disp1ayStr); 

end; 
end; 

{------------------------------------------------------------------------) 

procedure  SendVerifyCommand(var  CmdChar,  CmdEcho : Char); 

var 
Bit-Bucket : Char; 

begin 
FlushQueue(Transmit);  {Clear  Transmit  Buffer) 
FlushQueue(Receive); {Clear  Receive  Buffer1 
SendComand(CmdChar); 
ReadCommandEcho(CmdEcho); 
if (CmdChar <> CmdEcho)  then 
begin 
MessageDlg('C0"AND  Echo  Error.' + CR + CR + 

Exit; 
'Command  CANCELLED! ' , mtwarning,  [mbOKl , 0 )  ; 

end; 
SendCommand(ECH0-GOOD); {Send  Verification  Character) 
ReadComandEcho(Bit-Bucket); {Verify  Echo  sent to bit  bucket) 

end; 

procedure  GetQueueStatus;  {Loads  DCommStat.cb1nQue & DCommStat.cbOutQue) 
{------------------------------------------------------------------------) 

va r 
Errors : DWord; 
Status : PComStat; 

begin 
Status := @DCommStat; 
if  NOT(ClearCommError(Comm-Handle,  Errors,  Status)) 
then 
FatalError('getting  queue  status.'); 

if  Errors <> 0 
then 
HandleCommError(false,  Errors, 'Get  Queue  Status I ) ;  

end; 

{------------------------------------------------------------------------) 

function  FindSync(B1ock-Cnt:  WORD) : Boolean; 

const 
{Sync [$EBl [$go] [Blk-Cnt-Hi]  [Blk-Cnt-Lo]) 

Sync-Length = 4; {Sync  String  consist  of 4 Bytes) 

 165 



498 
499 
500 
50  1 
502 
503 
504 
505 
506 
507 
508 
509 
510 
51  1 
5 12 
513 
514 
515 
5 16 
517 
518 
519 
520 
52 1 
522 
523 
524 
525 
526 
527 
528 
529 
530 
53  1 
532 
533 
534 
535 
536 
537 
538 
539 
540 
54 1 
542 
543 
544 
545 
546 
547 
548 
549 
550 
55 1 
552 
553 
554 
555 
556 
557 
558 
559 
560 
56 1 
562 
563 
564 
565 
566 
567 
568 

Code  Listing - ComUtil.pas 

var 
Sync-Str : Array[O..Sync-Length]  of Char; 
NB-Read : DWord; 
Read-Cnt : Word; 

{ Index : Integer; 

} 

DisplayStr : String; 

begin 
FindSync := False; 

{If Characters in Rec  Queue - Read  Sync} 

if WaitForCommData(Sync-Length, FiveSec)  then 
begin 
if NOT  (ReadFile(Com-Handle, Sync-Str,  Sync-Length,  NB-Read, IpOverLapped)  AND 

(NB-Read = Sync-Length))  then 
begin 
CloseFile(OutFi1eB);  (Close  Binary  Output File} 
HandleCommError(true, 0, 'Find Sync'); 
Exit; 
end; 

DisplayDebug(false, NB-Read,  Sync-Str); 

if (Sync-Str[O] <> SyncBytel)  OR (Sync-Str[l] <> SyncByte2)  then 
begin 

if DebugOn  then FormMain.ListHexIn.Items.Add('Sync Error,  Wrong  sync  characters'); 
FindSync := False; 
Exit; 
end; 

{ =  SyncError('1ncorrect  Sync  Characters  [$EB90]  Not  Found.');} 

Read-Cnt := (Ord(Sync_Str[3]) * 256) + Ord(Sync-Str[Z]); 
if DebugOn  then  Form-Main.ListHexIn.Items.Add('SensorBal1  sending  block ' + 

if Read-Cnt = Block-Cnt then 

else 

IntToStr(Read-Cnt)); 

FindSync := True 

begin 
SyncError('1ncorrect  Block  Count.' + CR + 

'Block  Number = ' + IntToStr(B1ock-Cnt) + CR + 
'Block  ID = + IntToStr(Read-Cnt)); 

Exit; 
end 

end 

TimeOutError('Sync  Code'); 
else 

end: 

procedure  GetDataBlock; 

var 
NB-Read : DWord; 

begin 
if WaitForCommData(B1ock-Length, FiveSec)  then  {If  Characters in Rec  Queue - Read  Block) 
begin 
if NOT  (ReadFile(Com-Handle, Data-Block,  Block-Length,  NB-Read, IpOverLapped) 

AND  (NB-Read = Block-Length))  then 
begin 
CloseFile  (OutFileB) ; (Close  Binary  Output  File) 
HandleCommError(true, 0, 'Get Data  Block') ; 
Exit; 
end; 

DisplayDebugZ(false, 20, Data-Block);  {Just  list  first 20 bytes in debug  mode) 
end 

begin 
TimeOutError('Data  Block'); 
Exit; 

else 

166  



569 
570 
57 1 
5 72 
573 
5 74 
575 
576 
577 
578 
579 
5 80 
58 1 
582 
583 
5 84 
585 
586 
587 
588 
589 
590 
59 1 
592 
593 
594 
595 
596 
597 
598 
599 
600 
60 1 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 

Code  Listing - ComUtil.pas 

end 
end: 

const 
Stat-Length = 2: {Status  String  consist of 2 Bytes1 

va r 
NE-Read : DWord; 
Stat-Str : Array[O..Stat-Length]  of  Char: 

begin 
Num-Data-Chans := 0: 
Num-Mon-Chans := 0: 

{If Characters  in  Rec  Queue - Read  Info) 
if WaitForComData(Stat-Length, FiveSec)  then 
begin 
if NOT (ReadFile(Com-Handle, Stat-Str,  Stat-Length,  NB-Read, IpOverLapped)  AND 

(NB-Read = Stat-Length))  then 
begin 
HandleCommError(true, 0, 'Get  Status  Info'); 
Exit: 
end 

begin 
DisplayDebug(false, NB-Read,  Stat-Str): 
Num-Data-Chans := Ord(Stat-Str[O]): 
Num-Mon-Chans := Ord(Stat-Str[ll): 
if Nut-Data-Chans > 16 then {Max  Data  Channels = 16) 

if Num-Mon-Chans > 8 then {Max  Mon  Channels = 8 1  

end: 

else 

Num-Data-Chans := 16: 

Num-Mon-Chans := 9: 

end 

begin 
TimeOutError('Status Information'): 
Exit: 
end 

else 

end: 

 167 



Code  Listing - MainUtiLpas 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

unit  MainUtil; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

{ * * *  * * * )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( * * *  <t> MainUtil.PAS - WinLook  Main  Utilities  Unit  Delphi  V2.00 * * * )  

[ * * *  <t> 1.00 03-28-96  Original  Version  (DJB) * * * )  

interface { Public  Declarations ) 

Uses  Dialogs,  SysUtils,  WinProcs; 

type  Float = Real; 

{ * * *  Global  Constants * * * }  

const 
CR 
LF 
MaxDataChans 
MaxMuxChans 
MaxSubChans 
MaxMuxChansPerDataChan 
MaxSubChansPerDataChan 
BreakChar 
ScaleSet 
SizeOfData 

I<f>) 

I * * *  Global  Types * * * I  

= Chr($OD);  {Carriage  Return) 
= Chr($OA); {Line  Feed} 
= 32;  {Maximum  Data  Channels  Allowed} 
= 32;  [Maximum  Multiplexer  Channels  Allowed) 
= 4; {Maximum  SubComm  Channels  Allowed) 
= 16; (Maximum  Multiplexer  Chans/Data  Channel) 
= 2; {Maximum  SubComm  Chans/Data  Channel) 
: set  of  CHAR = [ '  ' , ' , ' , ' : ' , ' ; ' ,  '/','=',#091; 
: set of CHAR = ['C','c','G','g','U','u','V','v']; 
: set  of  CHAR = ['B', 'b',  'W',  'w'];  [B - Byte,  W - Word) 

type 
BYTERECORD = array[O..MaxMuxChans-11  of  BYTE; 
CHARSET = set of CHAR; 

t<f>) 
[ * * *  Global  Variables * * * )  

va r 
OutFileB : File; 
OutFileName : String; 
FileExt : String; 
ByteRec : ByteRecord; 
SSR : LongInt; 
Err-Code : Integer; 
KBReq : Word; 
ChanNum : Integer; 
Data-Current : Boolean; 
Byte-Record : Array[0..8388608]  of  Byte; 

{<f>) 
I***** Procedure  Specifications * * * * * )  
procedure  InitializeGlobals; 

[Binary  Output  File) 
{Output  File  Path  and  Name1 
{File  Extention) 

{Speed  Shift  Record} 
(Error  Code  Return Variable1 
{K-Bytes  Required for File} 
[Channel  Number  to  Process) 
[Read  DataRecord  is  Current) 
(8meg - Byte  Record} 

{Initialize  Global  Varaiblesl 
procedure  Strip(var  Str : String;  var  StrLen:  INTEGER;  Break : CHARSET); 
procedure  Parseivar  Str,  Aword : String;  Break : CHARSET); 
procedure  GetUnitStr(var  Str,  Unstring : String;  Break:  CHARSET); 
procedure  GetNumStr  (var  Str,  NumString : String;  Break:  CHARSET); 
procedure  Delay(mSec : LONGINT);  {Delay  Procedure  Resolution  limited  to 55 mSec) 

I * * * * *  File  Utilities * * * * * )  
function  GetFileDT(Fi1eName : String) : TDATETIME; 
procedure  SetFileDTiFileName : String ; FileDT : TDateTime); 
function  OpenOutFileivar  OutFile : FILE;  OutFileName : String; 

I<f>l 
implementation 

procedure  InitializeGlobals; 

begin 
Data-Current := False; 
SSR := 0; 

RecSize:  WORD ; KB-Required : WORD) : INTEGER; 

168  



Code  Listing - MainUtiLpas 

Err-Code := 0; 
KB-Req := 0; 
ChanNum := 0; 
end; 

t < f > )  
{ * * * * *  String  Routines * * * * * }  

I***** Remove  Leading  Break  Characters  from  String *****I  
procedure  Strip(var  Str : String;  var  StrLen:  INTEGER;  Break : CHARSET); 

var 
Idx : Integer; 

begin 
StrLen := Length(Str); 
if  StrLen > 0 then 
begin 

while (Str [Idx+l] in Break) and (Idx < StrLen)  do 
Idx := 0; 

Idx := Idx + 1; 
Delete (Str, 1, Idx) ; 
StrLen:=  StrLen-Idx 
end; 

end; 

{ * * * * *  Parse a Word  from a Strlng * * * * * I  
procedure  Parse(var  Str,  Aword : String;  Break : CHARSET); 

va r 
StrLen, 
Idx : Integer; 

begin 
Aword:= "; 
Strip  (Str,StrLen,Break) ; 
if StrLen = 0 
then  Exit; 

while  not  (Str  [Idx+l]  in  Break) and (Idx < StrLen) do 
Idx:= 0; 

Aword:= Copy(Str, 1, Idx) ; 
Delete (Str, 1, Idx) ; 
Strip (Str, StrLen,  Break) 
end; 

( * * * * *  Get  Unit  Character  from  String * * * * * I  
procedure  GetUnitStr(var  Str,  Unstring : String;  Break:  CHARSET); 

Idx:=  Idx+l; 

begin 
Unstring:= I ;  

while  (Length(Str)>O)  and  not  (UnString[l]  in  UnitSet)  do 

end; 

I * * * * *  Get  Next  Number  String  from  String * * * * * )  
procedure  GetNumStr  (var  Str,  NumString : String;  Break: CHARSET); 

const 

Parse  (Str,  Unstring,  Break) 

NumSet : Set  of  Char = ['-','.','0'..'9']; 

begin 
NumString:= ' '; 
while  (Length(Str)>O)  and  not (NumString[~l in  NumSet)  do 

end; 
Parse  (Str,NumString,Break) 

( * * *  STRING  ENDS * * * )  

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

 169 



Code  Listing - MainUtiLpas 

143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 

(<f>) 
procedure  Delay(mSec : LONGINT);  (Delay  Procedure  Resolution  limited  to 55 mSec} 

var 
EntryTime, 
NowTime : LongInt; 

begin 
EntryTime := GetTickCount;  {Number  of  milliseconds  Windows  Running) 
Repeat 

until  (NowTime - EntryTime) > mSeC; 
end; 

NowTime := GetTickCount; 

I<f>) 
( * * * * *  File  Utilities *****I 
function  GetFileDT(Fi1eName : String) : TDATETIME; 

var 
DOS-FileDT : LongInt; (DOS - Date/Time Format) 
DateTime : TDateTime; {Delphi - Date/Time Format) 

begin 
DOS-FileDT := FileAge(Fi1eName); 
DateTime := FileDateToDateTime(D0S-FileDT); 
GetFileDT := DateTime; 
end; 

procedure  SetFileDT(Fi1eName : String ; FileDT : TDateTime); 

var 
File-Handle : Integer; (Windows  File  Handle) 
DOS-FileDT : LonqInt; {DOS - Date/Time  Format) 

begin 
DOS-FileDT 
File-Handle 
FileSetDate ( 
Fileclose  (Fi 
end; 

{<f>) 
function Op 

:= DateTimeToFileDate(Fi1eDT); 
:= FileOpen(FileName, Of-Share-Compat); 
File-Handle,  DOS-FileDT) ; 
le-Handle); 

nOutFile(var  OutFile : FILE;  OutFileName : String; 
RecSize:  WORD ; KB-Required : WORD) : INTEGER; 

var  FilePath : String; 
DriveLetter : Char; 
BytesAvail, 
BytesRequired : Int64; 

begin 
FilePath := ExtractFilePath(ExpandFileName(0utFileName)); 
DriveLetter := UpCase(FilePath[ll); 
BytesAvail := DiskFree(Ord(DriveLetter) - $40); 
BytesRequired := KB-Required * 1024; 
if  BytesRequired > BytesAvail 
then 

MessageDlg('1nsufficient disk  space on drive : ' + DriveLetter + I . ' ,  

begin 

OpenOutFile := -1 {Return  Error  Code} 
end 

begin 
AssignFile(OutFile,  OutFileName); 
Rewrite(OutFile,  RecSize); 
OpenOutFile := 0; {No  Error) 
end; 

mtlarning, [ m b O K l  , 0 )  ; 

else 

end; 

170  

1 
8 
1 
I 
I 
I 
I 
1 
I 
1 
I 



Code Listing - MainUtiLpas 

214 ( * * *  FILE ENDS ***I 
215 
216 begin  
217 end.  
218 
219 
220 ; R o u t i n e s   t o   i n t e r p r e t  and execute  commands s e n t   t o   t h e  P&G Sensor Ball 
22 1 
222 
223 

 171 





I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Distribution 
(10 Copies) T. Michael  Rothgeb 

The Procter & Gamble  Company 
5299 Spring  Grove  Avenue 
Cincinnati, OH 452 17 

MS0487 
MS0986 

(5 Copies) MS0986 
MS0790 
MS0986 
MS0986 
MS0986 
MS0986 
MS0986 
MS0986 
MS0986 
MS0986 
MS0986 
MS0986 
MS0986 
MS0529 
MS1380 
MS 1425 
MS995 1 
MS995 1 
MS90 18 

(2 Copies) MS0899 
MS06 12 

MS 1380 
MS0161 

Tedd  A.  Rohwer,  2  12 1 
Randal  R.  Lockhart, 2665 
Michael E. Partridge, 2665 
Dennis J. Wilder, 585 1 
David L. Faucett, 2665 
John F. Heise 11,2665 
Edward  Henry, 2665 
Felipe  V.  Reyes, 2665 
Antonio Mittas, 2665 
Vincent P. Salazar, 2660 
Lorraine S. Baca, 2661 
Larry J. Dalton, 2662 
Robert J Longoria, 
Ronald J. Franco,  2664 
Jay B. Vinson, 2666 
Bruce C. Walker, 2600 
Victor  Weiss,  1323 
Carol I. Ashby,  1744 
Andrew  W.  Walker, 8130 
A.  William  Flounders,  8  130 
Central  Technical Files, 8945-1 
Technical Library, 96 16 
Review & Approval  Desk,  96  12 for 
DOE/OSTI 
CRADA  Administration,  1323 
Patent  and  Licensing Ofice, 1 1500 

 173 



I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 


	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Project Formation
	Measurement Transducers and Circuitry
	Conductivity Probe
	Accelerometers
	Temperature Transducer

	Acceptance Testing
	Testing During Assembly
	Functionality and Calibration Tests
	P&G Laboratory and Field Tests

	Appendix A: P&G Background and Initial Proposal
	Appendix B: Requirements Document
	Appendix C: PC Interface Software Guide
	Appendix D: Sensor Ball Test Procedure
	Appendix E: Schematics
	Appendix F: Assembly Drawings and Electronics Materials Lists
	Controller Board Bill of Materials
	Signal Conditioner Board Bill of Materials
	Microcontroller Programming Steps

	Appendix G: Circuit Board Connector Pin Definitions
	Appendix I: Mechanical Components
	Appendix J Mechanical Assembly Procedure



