

Central Waste Complex Waste Analysis Plan

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Project Hanford Management Contractor for the
U.S. Department of Energy under Contract DE-AC06-96RL13200

FLUOR DANIEL HANFORD, INC.

P.O. Box 1000
Richland, Washington

Central Waste Complex Waste Analysis Plan

M Ellefson
Fluor Hanford Company

Date Published
December 1999

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

FLUOR DANIEL HANFORD, INC.

P.O. Box 1000
Richland, Washington

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

RELEASE AUTHORIZATION

Document Number:	HNF-1886, REV. 0
Document Title:	Central Waste Complex Waste Analysis Plan

**This document, reviewed in accordance with
DOE Order 241.1, "Scientific and Technical
Information Management," and DOE G 241.1-1,
"Guide to the Management of Scientific and
Technical Information," does not contain
classified or sensitive unclassified information
and is:**

APPROVED FOR PUBLIC RELEASE

Christine Willingham

C. Willingham

1/3/2000

Date

Lockheed Martin Services, Inc.
Document Control / Information Clearance

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy.

Printed in the United States of America.

Available to the U.S. Department of Energy and its contractors from the U.S. Department of Energy Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; Telephone: 423/576-8401.

Available to the public from the U.S. Department of Commerce National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; Telephone: 703/487-4650.

INFORMATION CLEARANCE FORM

Rev. 0

A. Information Category <input type="checkbox"/> Abstract <input type="checkbox"/> Journal Article <input type="checkbox"/> Summary <input type="checkbox"/> Internet <input type="checkbox"/> Visual Aid <input type="checkbox"/> Software <input type="checkbox"/> Full Paper <input type="checkbox"/> Report <input checked="" type="checkbox"/> Other _____	B. Document Number hnf-1886- Rev F C. Title Central Waste Complex Operational Waste Analysis Plan																																			
D. Internet Address																																				
E. Required Information																																				
1. Is document potentially Classified? <input checked="" type="radio"/> No <input type="radio"/> Yes (MANDATORY) <div style="text-align: center;"><i>Leland F. Willis</i> Manager's Signature Required</div>																																				
If Yes _____ <input type="radio"/> No <input type="radio"/> Yes Classified <div style="text-align: center;"><i>ADC</i> ADC Signature Required</div>																																				
2. Internal Review Required? <input type="radio"/> No <input checked="" type="radio"/> Yes If Yes, Document Signatures Below <div style="text-align: center;">Counsel _____</div> <div style="text-align: center;">Program _____</div>																																				
3. References in the Information are Applied Technology <input type="radio"/> No <input type="radio"/> Yes Export Controlled Information <input type="radio"/> No <input checked="" type="radio"/> Yes																																				
F. Complete for a Journal Article																																				
1. Title of Journal _____																																				
G. Complete for a Presentation																																				
1. Title for Conference or Meeting _____																																				
2. Group Sponsoring _____																																				
3. Date of Conference _____																																				
4. City/State _____																																				
5. Will Information be Published in Proceedings? <input type="radio"/> No <input type="radio"/> Yes																																				
6. Will Material be Handed Out? <input type="radio"/> No <input type="radio"/> Yes																																				
H. Author/Requestor																																				
<div style="text-align: center;"><i>M. F. Jefferson</i> <i>par JF</i> (Print and Sign)</div>																																				
I. Reviewers <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 15%; text-align: left;">General Counsel</td> <td style="width: 15%; text-align: center;"><input checked="" type="checkbox"/></td> <td style="width: 15%; text-align: center;">Yes</td> <td style="width: 15%; text-align: center;">Print</td> <td style="width: 15%; text-align: center;"><i>Leland F. Willis</i></td> <td style="width: 15%; text-align: right;">Signature</td> <td style="width: 15%; text-align: right;">Public Y/N (If N, complete J)</td> </tr> <tr> <td>Office of External Affairs</td> <td><input type="checkbox"/></td> <td></td> <td></td> <td></td> <td></td> <td style="text-align: right;">Y / N</td> </tr> <tr> <td>DOE-RL</td> <td><input checked="" type="checkbox"/></td> <td></td> <td></td> <td></td> <td></td> <td style="text-align: right;">Y / N</td> </tr> <tr> <td>Other</td> <td><input type="checkbox"/></td> <td></td> <td></td> <td></td> <td></td> <td style="text-align: right;">Y / N</td> </tr> <tr> <td>Other</td> <td><input type="checkbox"/></td> <td></td> <td></td> <td></td> <td></td> <td style="text-align: right;">Y / N</td> </tr> </table>		General Counsel	<input checked="" type="checkbox"/>	Yes	Print	<i>Leland F. Willis</i>	Signature	Public Y/N (If N, complete J)	Office of External Affairs	<input type="checkbox"/>					Y / N	DOE-RL	<input checked="" type="checkbox"/>					Y / N	Other	<input type="checkbox"/>					Y / N	Other	<input type="checkbox"/>					Y / N
General Counsel	<input checked="" type="checkbox"/>	Yes	Print	<i>Leland F. Willis</i>	Signature	Public Y/N (If N, complete J)																														
Office of External Affairs	<input type="checkbox"/>					Y / N																														
DOE-RL	<input checked="" type="checkbox"/>					Y / N																														
Other	<input type="checkbox"/>					Y / N																														
Other	<input type="checkbox"/>					Y / N																														
7. If Information Includes Sensitive Information and is not to be released to the Public indicate category below.																																				
<input type="checkbox"/> Applied Technology <input type="checkbox"/> Protected CRADA <input type="checkbox"/> Personal/Private <input type="checkbox"/> Export Controlled <input type="checkbox"/> Proprietary <input type="checkbox"/> Procurement-Sensitive <input type="checkbox"/> Business-Sensitive <input type="checkbox"/> Patentable <input type="checkbox"/> Predecisional <input type="checkbox"/> Other (Specify) _____																																				
K. If Additional Comments, Please Attach Separate Sheet																																				
<div style="text-align: right;"><i>By default this document is approved for Public Release</i></div>																																				
<div style="text-align: right; border: 1px solid black; border-radius: 50%; padding: 5px; margin-bottom: 10px;"> APPROVED FOR RELEASE OFFICIAL DOCUMENT <i>cu</i> <i>1-3-2000</i> </div>																																				

Information Clearance Approval

CONTENTS

4	GLOSSARY	vi
6	METRIC CONVERSION CHART	vii
8	1.0 UNIT DESCRIPTION	1-1
9	1.1 DESCRIPTION OF UNIT PROCESSES AND ACTIVITIES	1-1
10	1.1.1 How Waste is Accepted, Moved, Processed, and Managed	1-1
11	1.1.1.1 Narrative Process Descriptions	1-1
12	1.1.1.2 Waste Acceptance Process	1-1
13	1.1.1.3 Description of Waste Profile System	1-3
14	1.1.2 Process Flow Diagram	1-4
15	1.1.3 Operating Conditions	1-5
16	1.2 IDENTIFICATION AND CLASSIFICATION OF WASTE	1-5
17	1.2.1 Dangerous Waste Numbers, Quantities, and Design Capacity	1-5
18	1.2.2 Alternative Waste Management Plan	1-6
20	2.0 CONFIRMATION PROCESS	2-1
21	2.1 PRE-SHIPMENT REVIEW	2-1
22	2.1.1 Waste Stream Approval Process	2-1
23	2.1.2 Waste Shipment Approval Process	2-2
24	2.1.3 Acceptable Knowledge Requirements	2-3
25	2.1.3.1 General Acceptable Knowledge Requirements	2-3
26	2.1.3.2 Methodology to Ensure Compliance with Land Disposal Restrictions Requirements	2-4
28	2.2 VERIFICATION	2-5
29	2.2.1 Container Receipt Inspection	2-5
30	2.2.2 Physical Screening Process	2-5
31	2.2.2.1 Physical Screening Methods	2-6
32	2.2.2.2 Physical Screening Frequency	2-6
33	2.2.2.3 Physical Screening Exceptions	2-6
34	2.2.3 Chemical Screening Process	2-7
35	2.2.3.1 Chemical Screening Frequency	2-7
36	2.2.3.2 Chemical Screening Exceptions	2-8
37	2.2.4 Sampling for Confirmation Screening	2-8
38	2.2.5 Quality Assurance and Quality Control for Confirmation Process	2-8
39	2.2.5.1 Physical Screening Quality Control	2-9
40	2.2.5.2 Chemical Screening Quality Control	2-9
42	3.0 SELECTING WASTE ANALYSIS PARAMETERS	3-1
43	3.1 PHYSICAL SCREENING PARAMETERS	3-1
44	3.2 CHEMICAL SCREENING PARAMETERS	3-2
45	3.3 OTHER SAMPLE AND ANALYSIS PARAMETERS	3-5

1 **CONTENTS (cont)**
2
3

4	4.0	SELECTING SAMPLING PROCESSES FOR DESIGNATION	4-1
5	4.1	SAMPLING STRATEGIES	4-1
6	4.2	SAMPLING METHODS	4-1
7	4.3	SELECTING SAMPLING EQUIPMENT	4-2
8	4.4	SAMPLE PRESERVATION	4-2
9	4.5	ESTABLISHING QUALITY AND QUALITY CONTROL FOR SAMPLING	4-2
10	5.0	SELECTING A LABORATORY, LABORATORY TESTING, AND ANALYTICAL METHODS	5-1
11	5.1	SELECTING A LABORATORY	5-1
12	5.2	SELECTING TESTING AND ANALYTICAL METHODS	5-1
13	6.0	SELECTING WASTE RE-EVALUATION FREQUENCIES	6-1
14	7.0	SPECIAL PROCEDURAL REQUIREMENTS	7-1
15	7.1	PROCEDURES FOR RECEIVING WASTE GENERATED ONSITE	7-1
16	7.2	PROCEDURES FOR RECEIVING WASTE GENERATED OFFSITE	7-1
17	7.3	PROCEDURES FOR IGNITABLE, REACTIVE, AND INCOMPATIBLE WASTE	7-1
18	7.4	PROVISIONS FOR COMPLYING WITH FEDERAL AND STATE LAND DISPOSAL RESTRICTION REQUIREMENTS	7-1
19	7.4.1	Waste Treatment	7-2
20	7.4.2	Sampling and Analytical Methods	7-3
21	7.4.3	Land Disposal Restriction Certification of Treatment	7-3
22	8.0	RECORDKEEPING	8-1
23	9.0	REFERENCES	9-1

33 **APPENDIX**
34
35

36	A	ANALYTICAL PARAMETERS, METHODS, AND RATIONALE FOR WASTE RECEIVED AT THE CENTRAL WASTE COMPLEX	APP A-i
----	---	---	---------

FIGURES

4	1-1. Central Waste Complex Site Plan	F1-1
5	1-2. Flammable and Alkali Metal Waste Storage Building	F1-2
6	1-3. 2401-W Waste Storage Building	F1-3
7	1-4. 2402-W Waste Storage Buildings	F1-4
8	1-5. 2403-WA through WC Waste Storage Buildings	F1-5
9	1-6. 2403-WD Waste Storage Building	F1-6
10	1-7. 2404-W Waste Storage Buildings	F1-7
11	1-8. Waste Storage Pad	F1-8
12	1-9. Central Waste Complex Waste Analysis Plan Flowchart	F1-9

TABLE

17
18 4-1. Central Waste Complex Chemical Screening Sampling Equipment T4-1
19

GLOSSARY

4	ALARA	as low as reasonably achievable
5	ASTM	American Society for Testing and Materials
6	AWMP	alternative waste management plan
7		
8	CAP	corrective action plan
9	COLIWASA	composite liquid waste sampler
10	CFR	Code of Federal Regulations
11	CWC	Central Waste Complex
12		
13	DOE-RL	U.S. Department of Energy, Richland Operations Office
14	DQO	data quality objectives
15		
16	Ecology	Washington State Department of Ecology
17		
18	HNF	Hanford Nuclear Facility (document identifier)
19		
20	LDR	land disposal restriction
21	LLBG	Low-Level Burial Grounds
22		
23	MSDS	material safety data sheet
24		
25	NDA	nondestructive assay
26	NDE	nondestructive examination
27		
28	PCB	polychlorinated biphenyl
29	PES	performance evaluation system
30	pH	negative logarithm of the hydrogen-ion concentration
31		
32	QA/QC	quality assurance and quality control
33		
34	RCRA	<i>Resource Conservation and Recovery Act of 1976</i>
35	RCW	Revised Code of Washington
36		
37	SWITS	solid waste information tracking system
38	SWMU	solid waste management unit
39		
40	TRU	transuranic
41		
42	WAC	Washington Administrative Code
43	WAP	waste analysis plan
44	WSRd	waste specification record
45		
46	°C	degrees Celsius
47		

METRIC CONVERSION CHART

The following conversion chart is provided to the reader as a tool to aid in conversion.

Into metric units			Out of metric units		
If you know	Multiply by	To get	If you know	Multiply by	To get
Length			Length		
inches	25.40	millimeters	millimeters	0.0393	inches
inches	2.54	centimeters	centimeters	0.393	inches
feet	0.3048	meters	meters	3.2808	feet
yards	0.914	meters	meters	1.09	yards
miles	1.609	kilometers	kilometers	0.62	miles
Area			Area		
square inches	6.4516	square centimeters	square centimeters	0.155	square inches
square feet	0.092	square meters	square meters	10.7639	square feet
square yards	0.836	square meters	square meters	1.20	square yards
square miles	2.59	square kilometers	square kilometers	0.39	square miles
acres	0.404	hectares	hectares	2.471	acres
Mass (weight)			Mass (weight)		
ounces	28.35	grams	grams	0.0352	ounces
pounds	0.453	kilograms	kilograms	2.2046	pounds
short ton	0.907	metric ton	metric ton	1.10	short ton
Volume			Volume		
fluid ounces	29.57	milliliters	milliliters	0.03	fluid ounces
quarts	0.95	liters	liters	1.057	quarts
gallons	3.79	liters	liters	0.26	gallons
cubic feet	0.03	cubic meters	cubic meters	35.3147	cubic feet
cubic yards	0.76	cubic meters	cubic meters	1.308	cubic yards
Temperature			Temperature		
Fahrenheit	subtract 32 then multiply by 5/9ths	Celsius	Celsius	multiply by 9/5ths, then add 32	Fahrenheit

Source: *Engineering Unit Conversions*, M. R. Lindeburg, PE., Second Ed., 1990, Professional Publications, Inc., Belmont, California.

1
2
3
4
5

This page intentionally left blank.

1.0 UNIT DESCRIPTION

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

1.1 DESCRIPTION OF UNIT PROCESSES AND ACTIVITIES

The CWC is a nonland-based unit consisting of various buildings, storage modules, and storage pad (Figure 1-1). The CWC structures are used for the storage of waste and are subject to *Dangerous Waste Regulations*, Washington Administrative Code (WAC) 173-303 and 40 Code of Federal Regulations (CFR) 761.

The CWC consists of the 2401-W, 2402-W, 2403-W, and 2404-W waste storage buildings, Flammable and Alkali Metal Waste Storage Modules, the waste storage pad, and the waste receiving and staging area (Figures 1-2 through 1-8). Further discussion on these structures can be found in Chapter 2.0 of the *Hanford Facility Dangerous Waste Permit Application, Central Waste Complex* (DOE/RL-91-17).

1.1.1 How Waste is Accepted, Moved, Processed, and Managed

The following sections describe the different types of information and knowledge used for waste acceptance. The movement, processing, and management of waste at the CWC is described in Chapter 4.0 of the CWC dangerous waste permit application documentation (DOE/RL-91-17).

1.1.1.1 Narrative Process Descriptions. The onsite generating unit, offsite generator, and treatment, storage, and/or disposal (TSD) unit transferring waste to the CWC is hereafter referred to as a 'generator' unless otherwise denoted in this WAP.

Waste that meets land disposal restriction (LDR) requirements, as specified in 40 CFR 268 and WAC 173-303-140, is stored in the CWC. Waste not meeting LDR requirements, but awaiting further treatment offsite or onsite either at the Waste Receiving and Processing Facility (WRAP) or the T Plant Complex (T Plant) can be stored at the CWC. The CWC unit-specific operating record will contain information necessary to meet LDR requirements for any waste awaiting further treatment. Containerized waste that is not fully characterized or is awaiting sampling results can be stored in CWC (DOE/RL-91-17). The Hanford Facility is required to sample certain waste depending on the type of treatment standard to ensure that the waste or treatment residuals are in compliance with applicable LDR requirements. Such testing is performed according to the frequency specified in this WAP.

1.1.1.2 Waste Acceptance Process. CWC waste acceptance process consists of following activities:

- **Waste Stream Approval.** The generator provides information concerning each waste stream on a waste profile sheet. The waste stream information is reviewed against the CWC waste acceptance

1 criteria. If the waste stream information is sufficient and meets the applicable acceptance criteria,
2 the waste stream is approved. In addition, the initial verification frequency for the waste is
3 determined in accordance with the requirements found in the performance evaluation program
4 (PES) (Section 1.1.1.3). For a more complete description of the waste stream approval process,
5 refer to Section 2.1.1.

6

- 7 ● **Waste Shipment Approval.** The generator provides specific data for each waste container on the
8 container data sheet. The container data are reviewed against the waste profile sheet data and the
9 CWC acceptance criteria before being approved for shipment. In addition, the CWC operating
10 organization determines if any of the containers require verification based on the verification
11 frequency as determined by PES. For a more complete description of the waste shipment approval
12 process, refer to Section 2.1.2.
- 13 ● **Verification.** Verification activities include container receipt inspection, physical screening,
14 and/or chemical screening. A percentage of waste shipments and containers are selected for receipt
15 verification during the waste shipment approval process. These containers can be inspected
16 visually, verified by NDE, or sampled for field or laboratory analysis to confirm that the waste
17 matches the waste profile and container data information supplied by the generator. Any
18 discrepancies between the verification results and the waste profile sheet must be resolved before
19 final acceptance at CWC in accordance with the conformance issue resolution process found in
20 Section 1.1.1.3.3.

21

22 1.1.1.2.1 **Types of Acceptable Knowledge.** When collecting documentation on a waste stream or
23 container, the CWC operating organization or representative organization, hereafter referred to the 'CWC
24 operating organization', must determine if the information provided by the generator is acceptable knowledge.
25 Acceptable knowledge requirements are met using any one or a combination of the following types of data:

26

- 27 ● Mass balance from a controlled process that has a specified input for a specified output
- 28 ● Material safety data sheets (MSDSs) on unused chemical products
- 29 ● Test data from a surrogate sample
- 30 ● Analytical data on the waste or a waste from a similar process.

31

32 In addition, acceptable knowledge requirements can be met using a combination of analytical data or
33 screening results and one or more of the following:

34

- 35 ● Interview information
- 36 ● Logbooks
- 37 ● Procurement records
- 38 ● Qualified analytical data
- 39 ● Radiation work package
- 40 ● Procedures and/or methods
- 41 ● Process flow charts
- 42 ● Inventory sheets
- 43 ● Vendor information
- 44 ● Mass balance from an uncontrolled process (e.g., spill cleanup)
- 45 ● Mass balance from a process with variable inputs and outputs (e.g., washing/cleaning methods).

1 If the information is sufficient to quantify constituents and characteristics as required by the
2 regulations and CWC acceptance criteria, the information is considered acceptable knowledge. The CWC
3 acceptance criteria is defined as the requirements found in the WAP and the associated Part A, Form 3,
4 (DOE/RL-91-17, Chapter 1.0).

5
6 **1.1.1.3 Description of Waste Profile System.** A PES is used to determine initial physical screening
7 frequency of the generator. PES provides a periodic status of an individual generator's performance for waste
8 received. Also, PES provides a mechanism for determining corrective actions and physical screening
9 frequency adjustments when a problem has been discovered after waste has arrived at CWC.

10 **1.1.1.3.1 Initial Physical Screening Frequency Determination.** The initial physical screening
11 frequency is determined based on the following process.

12 ● CWC operating organization reviews the generator waste profile information to determine the
13 relative potential for misdesignation or inappropriate segregation based on all relevant
14 information, including any previous experience with the generator. Based on this review, CWC
15 operating organization identifies any concerns associated with the following criteria:
16 - documented waste management program
17 - waste stream characterization information
18 - potential for inappropriate segregation.
19 ● Based on the identification of concerns during the review, the CWC operating organization
20 establishes the initial physical screening frequency for the new generator's waste stream based on
21 the following criteria:
22 - Initial physical screening frequency of, at a minimum, 20 percent: No concerns identified (e.g.,
23 cleanup of contaminated soil where the soil has been well characterized and no other waste
24 generation processes are occurring at that location)
25 - Initial physical screening frequency of, at a minimum, 50 percent: Concern(s) identified in one
26 criterion (e.g., a facility with many different processes that generate debris that have differing
27 management paths)
28 - Initial physical screening frequency of 100 percent: Concerns identified in two or more criteria
29 (e.g., a facility with many different process and questionable segregation controls).

30 **1.1.1.3.2 Monthly Performance Evaluation.** A performance evaluation is used to trend a
31 generator's performance and is used to raise the generator's overall physical screening frequency. The
32 evaluation should be objective and should consider the conformance issues documented during the
33 Preshipment Review and Verification functions. These conformance issues are tracked and filed. The
34 conformance report is used to complete the generator evaluation and determine an increase in the following
35 physical screening rate. At no time will physical screening rate exceed 100 percent.

36 ● If the generator fails to provide properly completed and/or correct information and the result of the
37 error would have or did lead to a regulatory violation, the physical screening rate increases by
38 25 percent per subsequent evaluation.

- 1 ● If the generator fails to provide properly completed and/or correct information and the result of the
2 error would have or did lead to mis-management of the waste, the physical screening rate increases
3 by 10 percent per subsequent evaluation.
- 4 ● If the generator provides paperwork inconsistencies or improperly completed and/or incorrect
5 information that results in no mis-management of waste, the physical screening rate increases by
6 1 percent per 5 evaluations.
- 7
- 8

9 **1.1.1.3.3 Conformance Issue Resolution.** Conformance issues during verification could result in a
10 waste container that does not meet CWC waste acceptance criteria. If a possible conformance issue is
11 identified, the following actions are taken to resolve the issue.

- 12 ● CWC operating organization compile all information concerning the possible conformance
13 issue(s).
- 14 ● The generator is notified and requested to supply additional knowledge to assist in the resolution
15 of the concern(s). If the generator supplies information that alleviates the concern(s) identified, no
16 further action is required.
- 17 ● On determination that a conformance issue has been identified, the CWC operating organization
18 personnel and the generator discuss the conformance issue and identify the appropriate course of
19 action to resolve the container/shipment in question, i.e., pick another sample set, return the
20 container/shipment, divert the container/shipment to another TSD unit that can accept the
21 container/shipment and resolve the issue, or the generator resolves the issue at the TSD unit. If
22 the conformance issue(s) results in the failure of a shipment, the physical screening frequency for
23 all streams from the generator are adjusted to 100 percent until the issue(s) adequately can be
24 addressed.
- 25 ● On resolution of the initial conformance issue, CWC operating organization requests the generator
26 to provide a corrective action plan (CAP) that clearly states the reason for the failure and describes
27 the actions to be completed to prevent re-occurrence. The generator could request a reduction in
28 verification of unaffected streams. This request must be accompanied by a justification that
29 identifies why this stream(s) would not exhibit the same conformance issue.
- 30 ● CWC operating organization reviews the CAP and stream justification for adequacy. If the CAP
31 is inadequate, the generator remains at a physical screening rate of 100 percent. If the stream
32 justification is adequate, CWC operating organization could provide an alternative frequency as
33 denoted in Section 1.1.1.3.2.
- 34
- 35
- 36
- 37
- 38
- 39
- 40

41 **1.1.2 Process Flow Diagram**

42 Refer to Figure 1-9 for CWC waste analysis plan flowchart and Section 1.1 for description.

1 **1.1.3 Operating Conditions**

2
3 The following conditions and constraints apply to waste accepted at CWC. The waste container
4 weight must be known and proper handling procedures imposed to ensure safe operations. The waste
5 container radiation dose must be known and procedures must ensure that personnel exposure is kept as low as
6 is reasonably achievable (ALARA). The quantity of fissile material within the waste must be determined and
7 must be low enough to prevent a criticality hazard. Liquid waste can be received if packaged in inner glass,
8 metal, or plastic containers and surrounded by sufficient sorbent to sorb twice the amount of liquid present.
9 Containers of waste that cause pressurization must be vented. Radionuclide and dangerous waste constituent
10 inventories in waste containers must be kept low enough to ensure that personnel emergency exposure limits
11 are not exceeded.

12
13 **1.2 IDENTIFICATION AND CLASSIFICATION OF WASTE**

14
15 Waste is accepted for treatment (mixed waste) and/or storage (mixed and dangerous) in CWC except
16 for the following waste types:

17
18 • Bulk liquid waste
19 • Explosive waste
20 • Shock sensitive waste
21 • Class IV oxidizer waste
22 • Infectious waste.

23
24 Refer to DOE/RL-91-17, Chapter 4.0 for precautions that are taken when ignitable, reactive, or
25 incompatible waste is stored.

26
27 CWC manages the following waste types:

28
29 • Labpack liquids
30 • Solids/debris
31 • Sludges/soils.

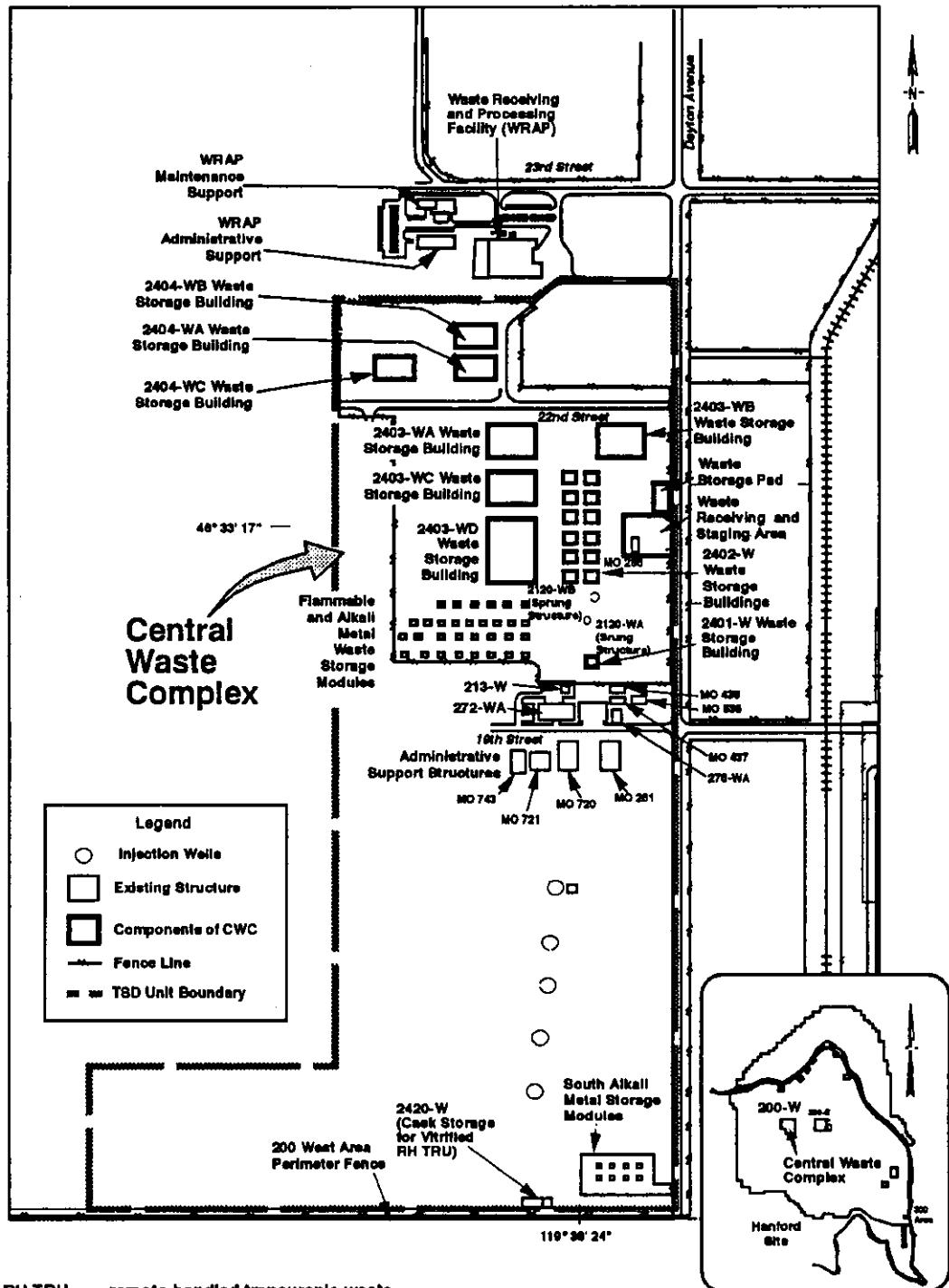
32
33 These waste types could be classified as transuranic, low-level, mixed, and/or dangerous. Unless
34 otherwise prohibited by this WAP, the waste could exhibit the characteristics of ignitable, toxic, corrosive,
35 and/or reactive. In addition to the waste received at CWC for verification or processing, CWC generates
36 mixed and dangerous waste. This waste material consists of items such as personal protective equipment
37 (PPE), rags, and spent equipment contaminated with dangerous cleaning agents, lubricants, paints, or other
38 dangerous materials. Process knowledge, field screening, or sampling and analysis are used as appropriate to
39 characterize these waste materials. Field screening and sampling are in accordance with this WAP and occur
40 at the point of waste generation or at the location where the waste materials are stored.

41
42 **1.2.1 Dangerous Waste Numbers, Quantities, and Design Capacity**

43
44 The Part A, Form 3, permit application for CWC identifies dangerous waste numbers, quantities, and
45 design capacity (DOE/RL-91-17, Chapter 1.0).

1 1.2.1 Alternative Waste Management Plan
2

3 For waste that cannot be stored and disposed in accordance with the requirements set forth in this
4 WAP, an alternative waste management plan (AWMP) could be submitted to the Washington State
5 Department of Ecology (Ecology) for review. Because many activities associated with or necessary to
6 support waste management projects readily would not be predictable, some flexibility in timeframes for
7 submitting, reviewing, and completing waste management plans would be necessary. In general, the
8 following schedules should be observed.


- 9 • Submit the AWMP to the Ecology Project Manager at least 120 days before the project is
10 expected to begin. The cover letter would state that "no reply within 45 days constitutes
11 approval".
- 12 • Ecology reviews and provides comments (if any) within 45 days after receiving the AWMP.
- 13 • On receipt, comments would be resolved through project manager meetings or other workshops as
14 agreed to by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and Ecology.
15 When the AWMP is resubmitted following resolution of Ecology's comments, the same review
16 timeframes would be applicable.
- 17 • If no comments are received from Ecology within 45 days after the AWMP is submitted, the plan
18 would be denoted as approved.

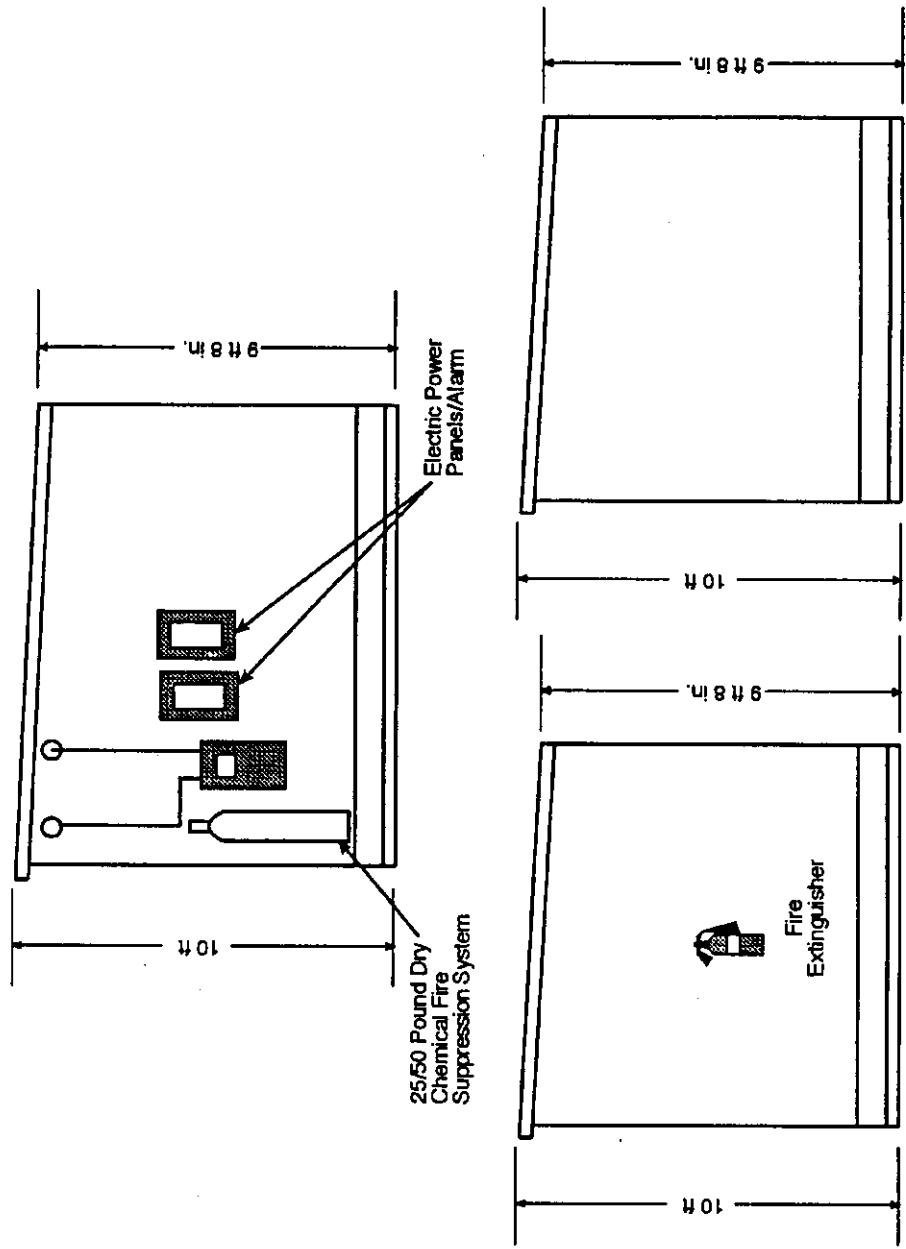
19 These timeframes could be adjusted by mutual agreement to account for project-specific needs and
20 priorities. The AWMP review would ensure the following.

- 21 • The project does not endanger human health and the environment.
- 22 • The course of action chosen is well justified.

23 On gaining written or automatic approval, the DOE-RL would proceed as described in the AWMP.
24 Should the plan require revision because of unforeseen circumstances, the DOE-RL would resubmit the plan
25 before continuing. On conclusion of the project, the DOE-RL would supply Ecology with a report outlining
26 the activities performed and the results of these activities. During the next permit modification cycle and no
27 later than 1 year, a modification to the WAP would be submitted. Approval for a AWMP that violates a
28 specific prohibition outlined in the WAP is not permitted without first receiving a modification to the permit.

Central Waste Complex Site Plan

RH TRU = remote-handled transuranic waste.


Not to scale.

Refer to topographic map (H-13-000003) for detail.

Figure 1-1. Central Waste Complex Site Plan.

Flammable and Alkali Metal Waste Storage Module

Side View

Note: To convert feet to meters, multiply by 0.3048.

To convert inches to centimeters, multiply by 2.54.

To convert to pounds to kilograms, multiply by 0.453.

Lights, electrical panels, and fire suppression systems have been deactivated in selected modules.

Figure 1-2. Flammable and Alkali Metal Waste Storage Building.

2401-W Waste Storage Building

Plan and Elevations

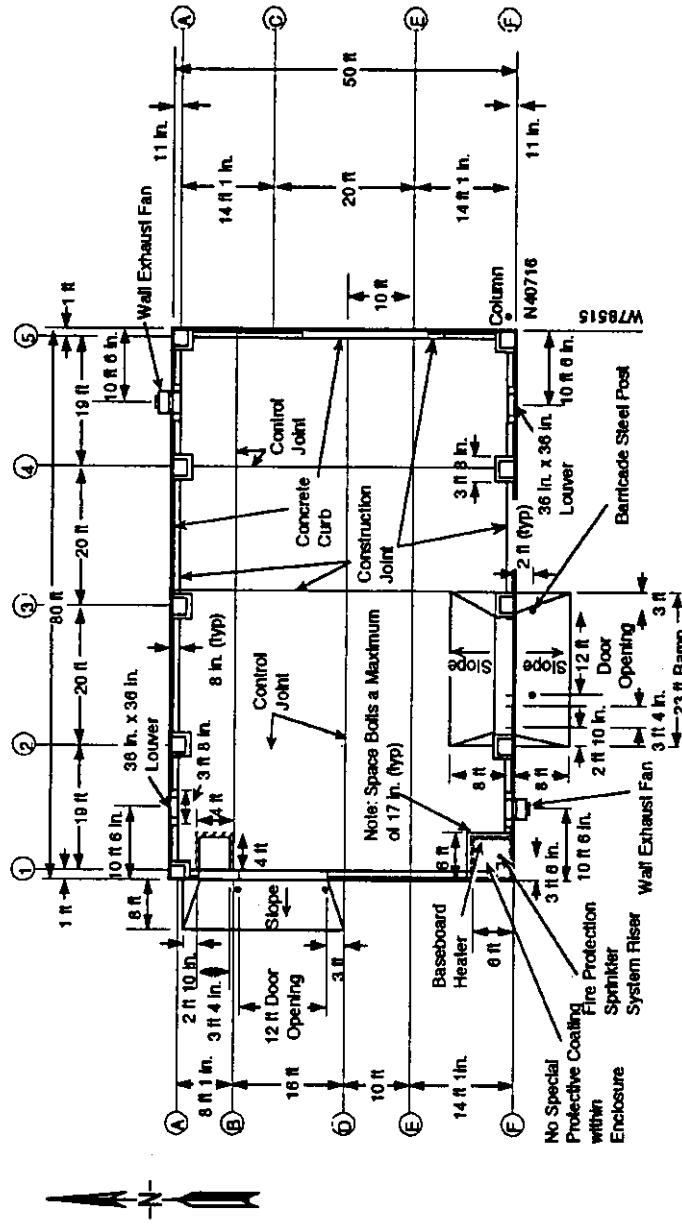
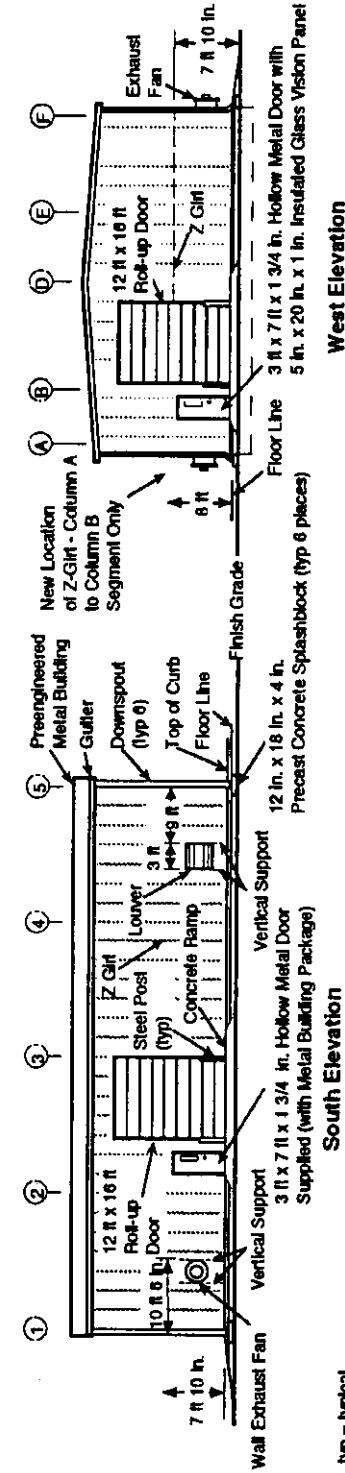



Figure 1-3. 2401-W Waste Storage Building.

980512.0608

F1-3

typical

Note: To convert feet to meter, multiply by 0.3048.
To convert inches to centimeters, multiply by 2.54

Typical Waste Storage Buildings (2402-W and 2402-WB through 2402-WL) Plan and Elevations

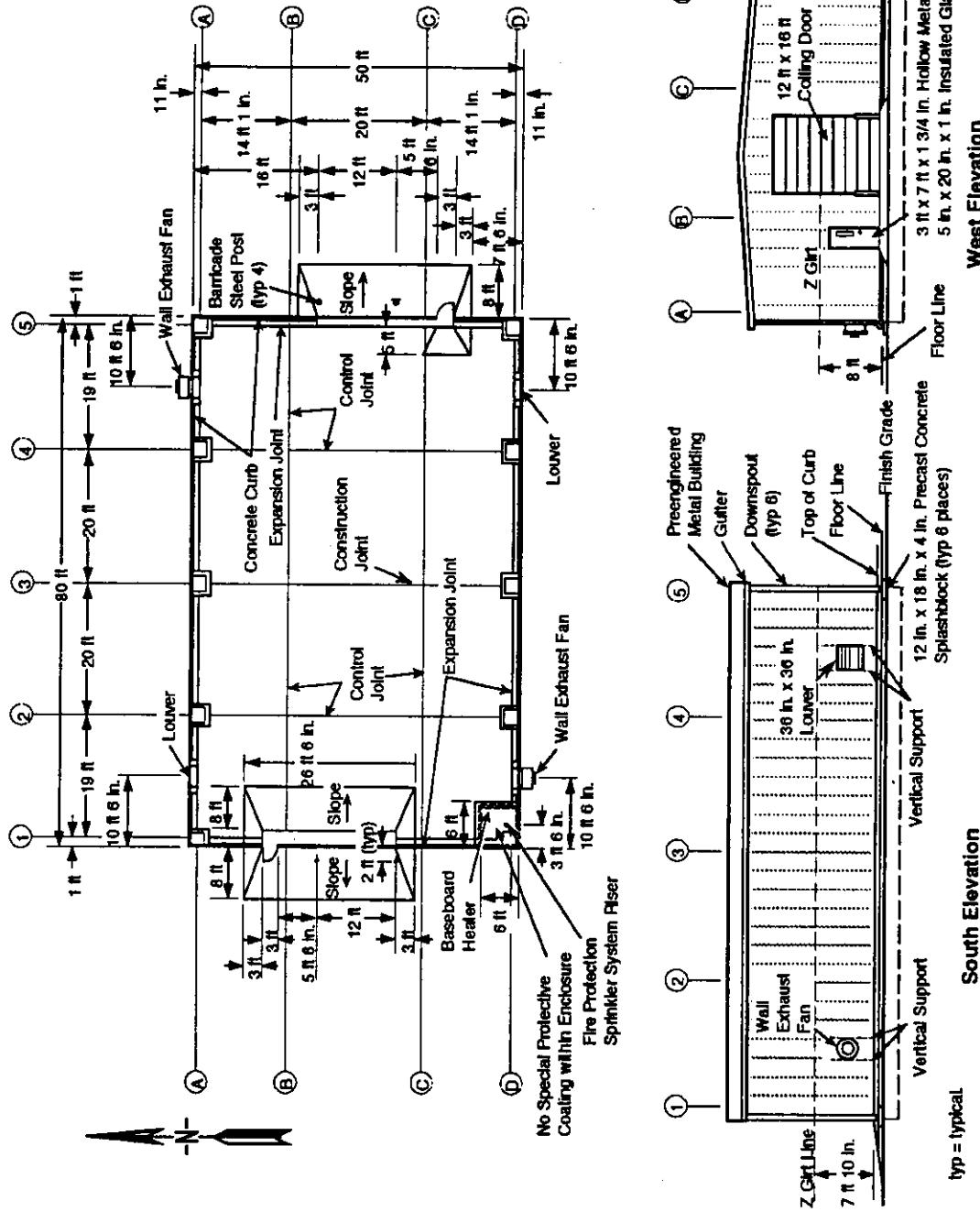


Figure 1-4. 2402-W Waste Storage Buildings.

Note: To convert feet to meters, multiply by 0.3048.
To convert inches to centimeters, multiply by 2.54.

Typical Waste Storage Building (2403-WA through WC)

Elevations

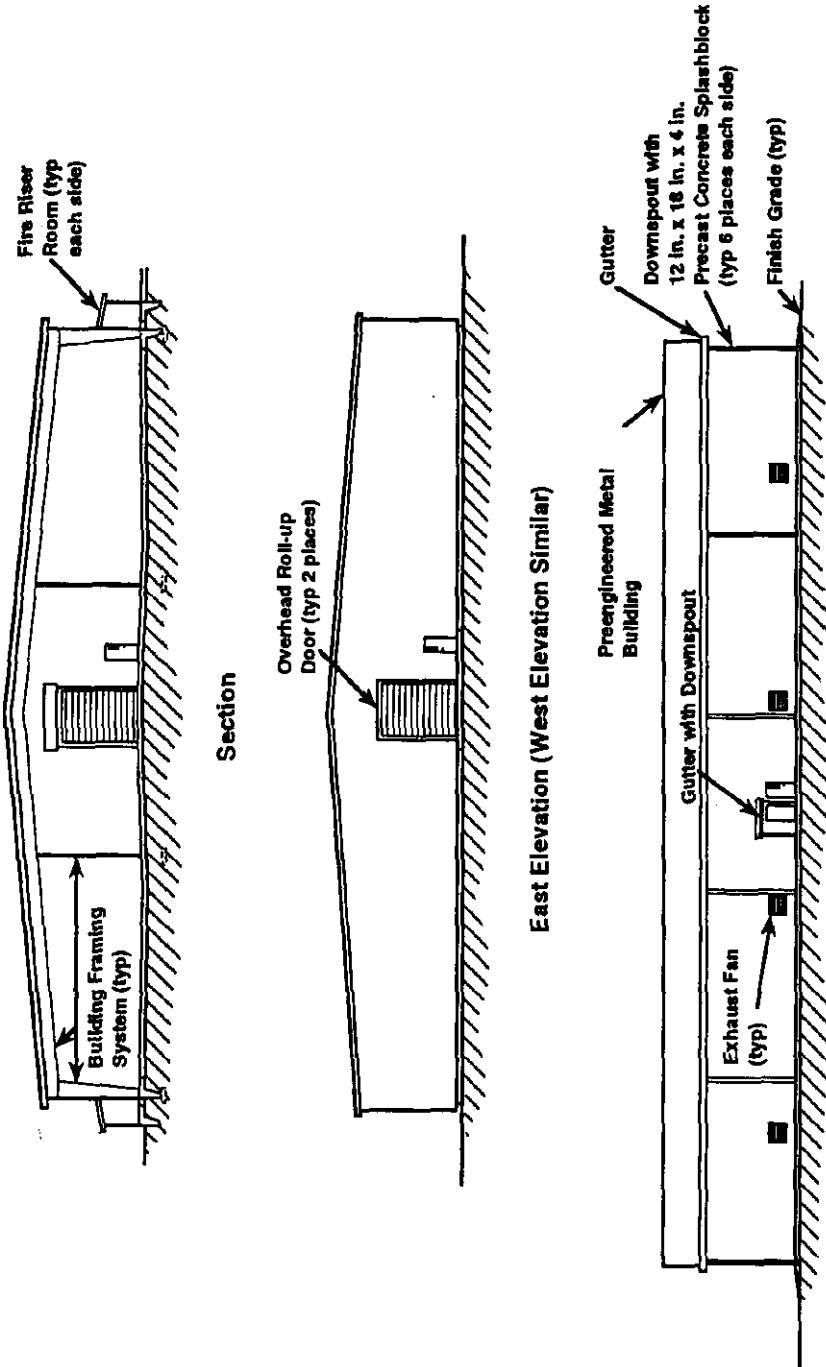


Figure 1-5. 2403-WA through WC Waste Storage Buildings.

typ = typical.
Not to scale.

Note: To convert feet to meters, multiply by 0.3048.
To convert inches to centimeters, multiply by 2.54.

HNE040178.4R2

Waste Storage Building (2403-WD)

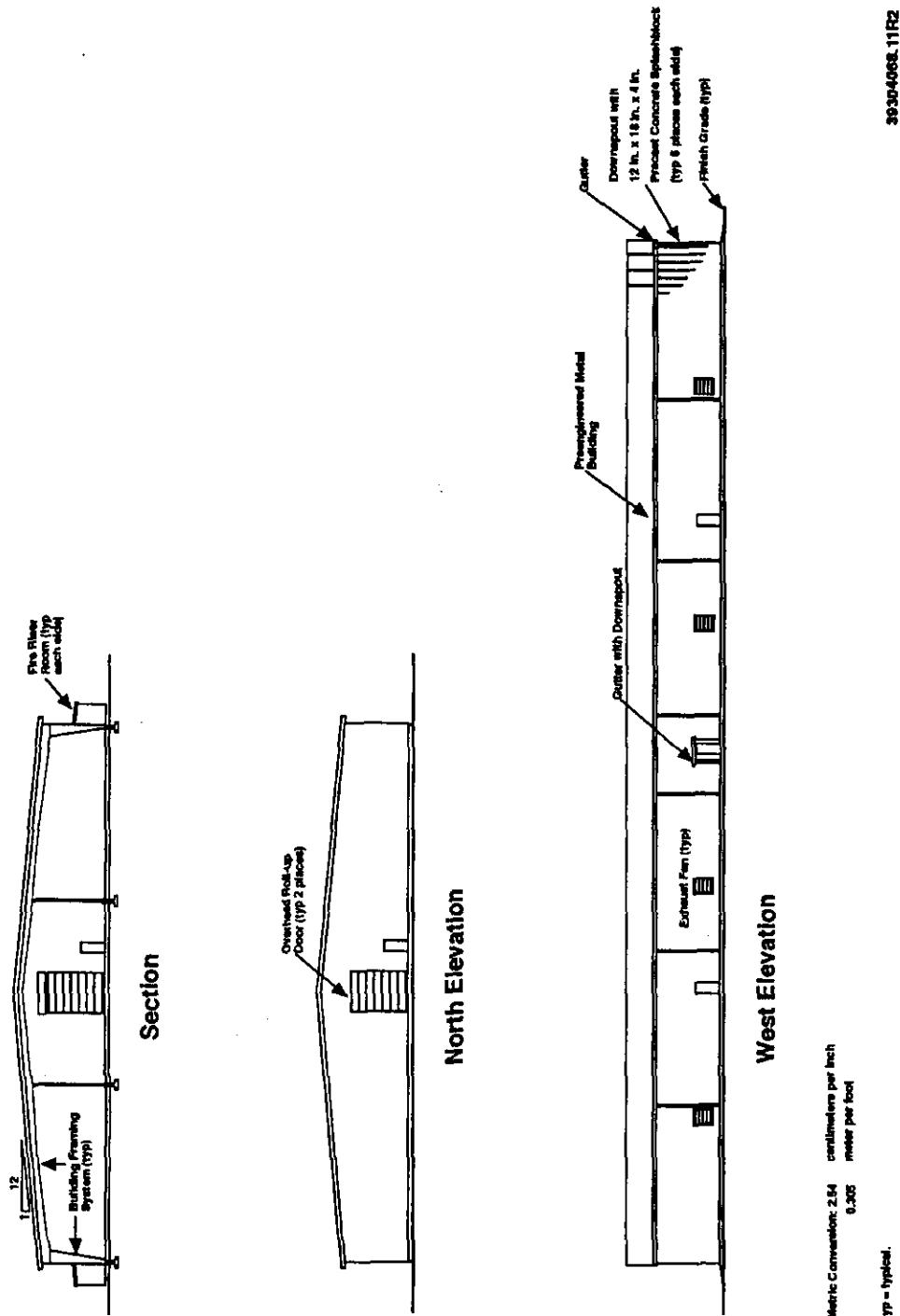


Figure 1-6. 2403-WD Waste Storage Building.

Typical Waste Storage Building (2404-WA through WC)

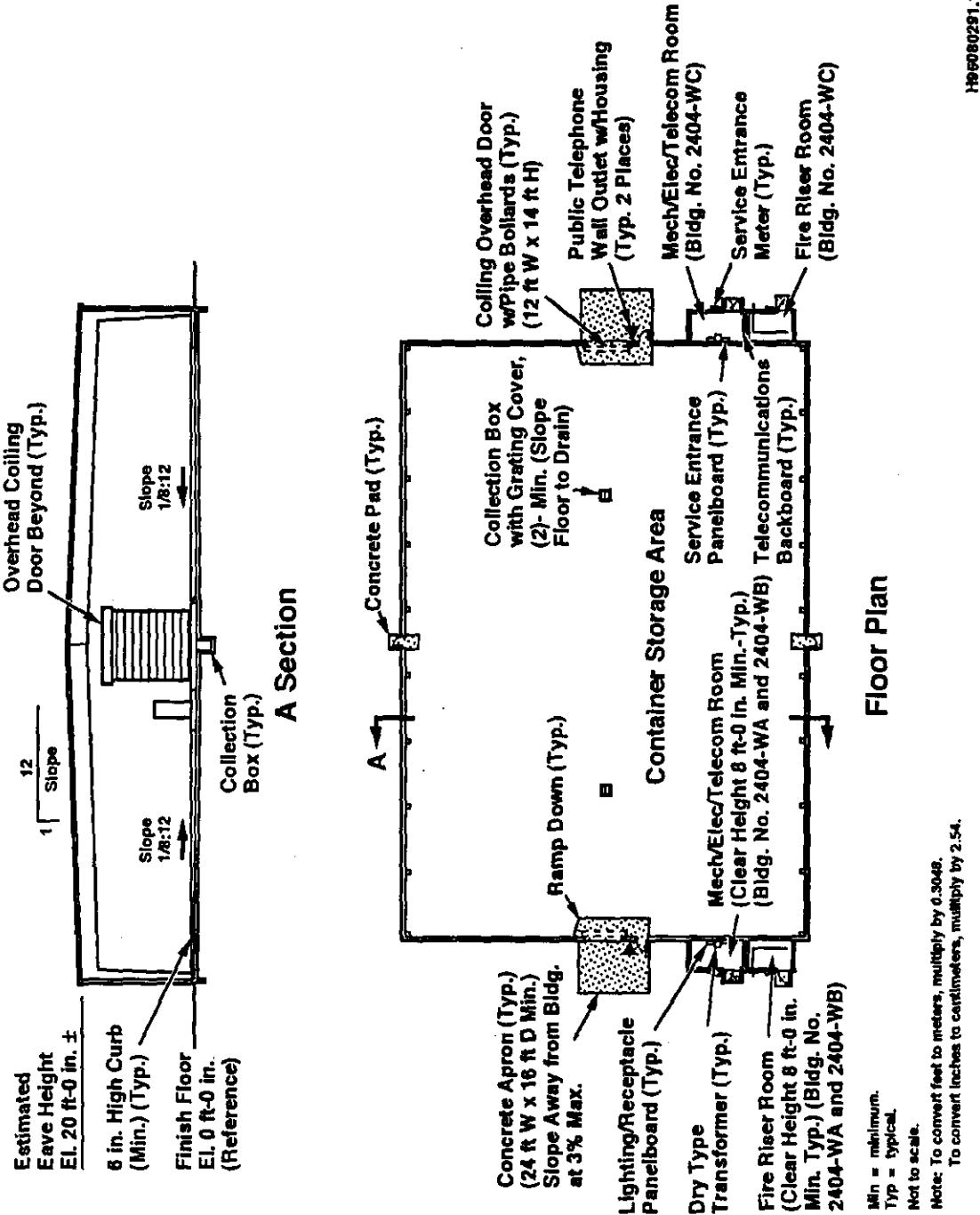
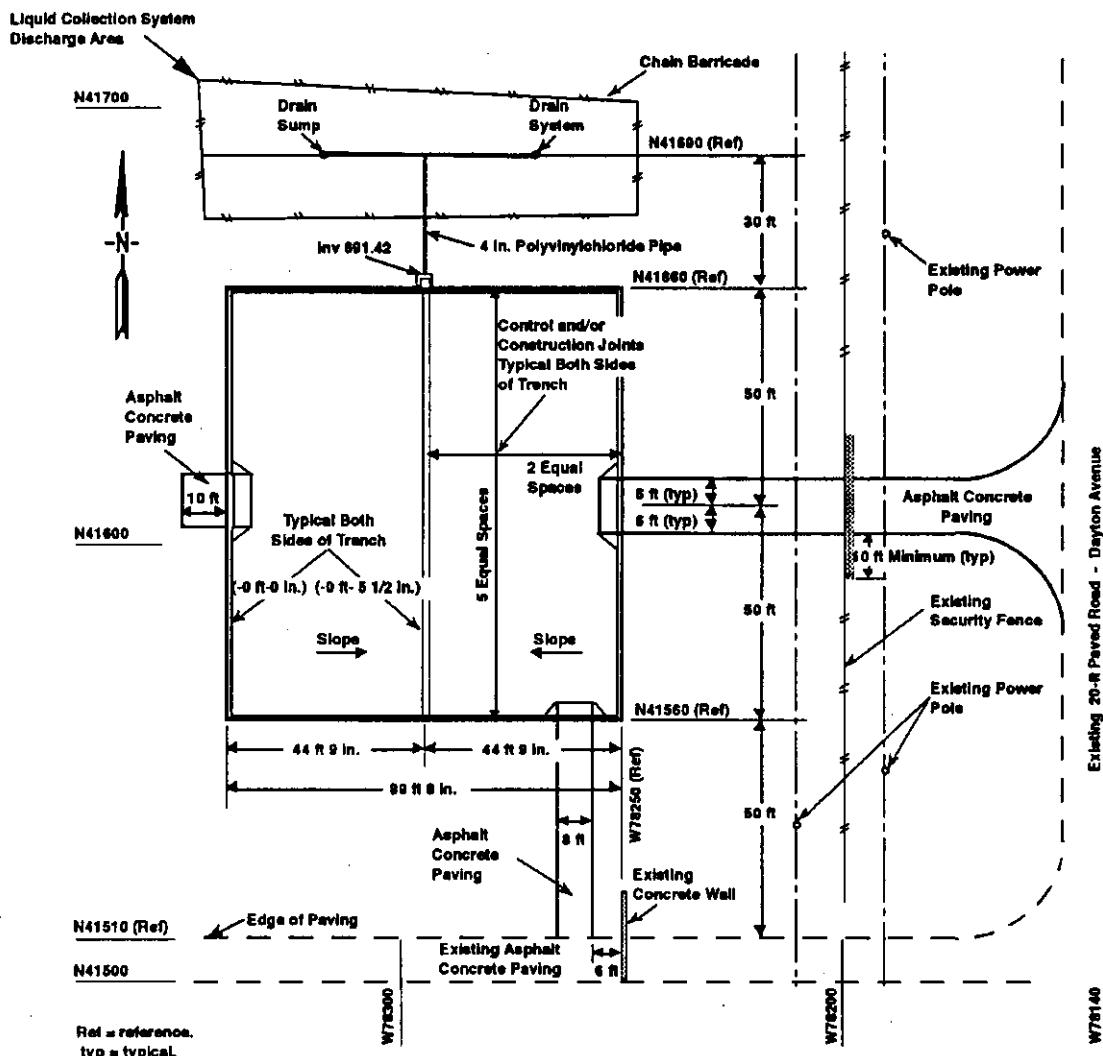
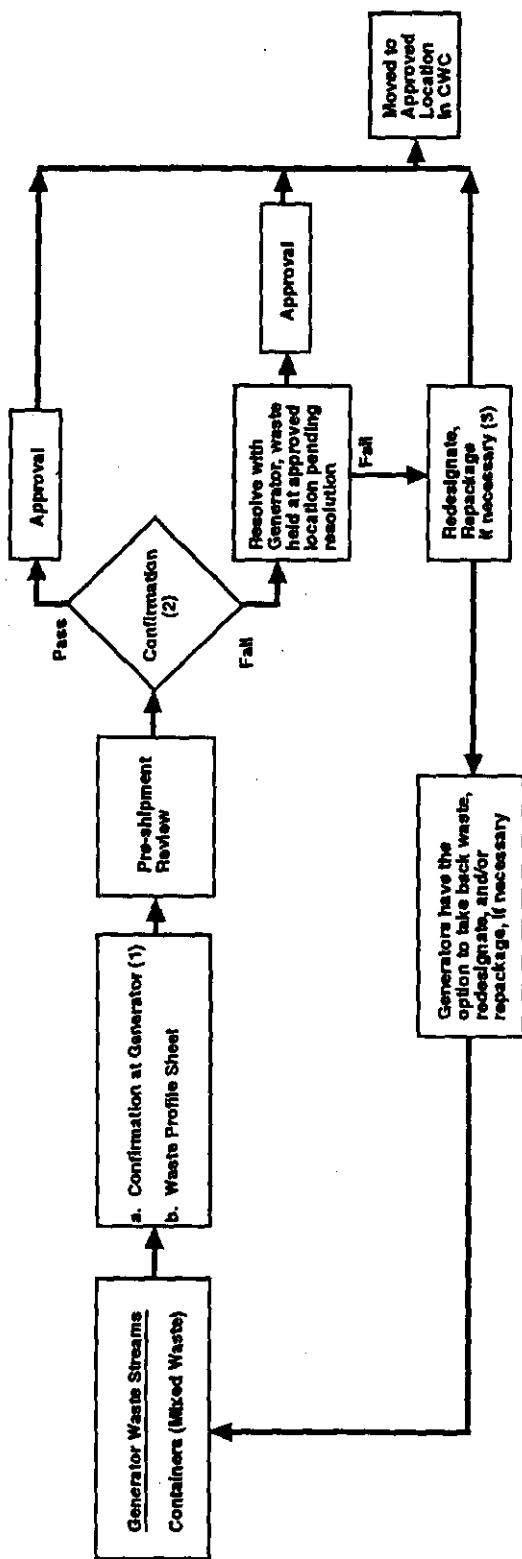



Figure 1-7. 2404-W Waste Storage Buildings.


Waste Storage Pad Civil Plan

Note: To convert feet to meters, multiply by 0.3048.
To convert inches to centimeters, multiply by 2.54.

H98010038.6 R2

Figure 1-8. Waste Storage Pad.

(1) If possible, confirmation to be performed at generator location before receipt at CWC. If no, waste to be confirmed by independent authorized agent in accordance with CWC WAP.

(2) For waste streams not confirmed at generator location, including all offsite waste and waste to be nondestructively examined, confirmation to take place at an approved location after packaging. In some instances, following paperwork confirmation, waste could be exempted from further confirmation in accordance with CWC WAP.

(3) If redesignating and/or repacking cannot be performed, the waste will be transported to an approved treatment, storage and/or disposal unit for disposition.

CWC = Central Waste Complex

WAP = Waste Analysis Plan

1457110284.1

Figure 1-9. Central Waste Complex Waste Analysis Plan Flowchart.

2.0 CONFIRMATION PROCESS

The confirmation process includes completing appropriate pre-shipment reviews and verification steps and/or parameters. The requirement to confirm appears twice in WAC 173-303-300 and applies to two different scenarios.

Scenario 1: The process that an owner or operator uses to ensure knowledge supplied by the generator or TSD unit is acceptable knowledge to ensure that the waste is managed properly [WAC 173-303-300(1)]. This is accomplished by a pre-shipment review.

Scenario 2: The process that a facility owner or operator receiving offsite facility shipments uses to determine, by analysis if necessary, that each waste received at the facility matches the identity of the waste specified on the accompanying manifest or shipping paper [WAC 173-303-300(3)]. This is accomplished during verification.

2.1 PRE-SHIPMENT REVIEW

Pre-shipment review takes place before waste can be scheduled for transfer or shipment to CWC. The review focuses on whether the waste stream is defined accurately, meets the CWC waste acceptance criteria, and the LDR status is determined correctly. Only waste determined to be acceptable for treatment and/or storage is scheduled. This determination is based on the information provided by the generator. The pre-shipment review consists of the waste stream approval and waste shipment approval process. The following sections discuss the pre-shipment review process. The information obtained from the generator during the pre-shipment review, at a minimum, includes all information necessary to safely treat and/or store the waste. The pre-shipment review ensures the waste has been characterized and the data provided qualify as 'acceptable knowledge' (Section 2.1.3).

2.1.1 Waste Stream Approval Process

The waste stream approval process consists of reviewing stream information supplied on a waste stream profile and attached analysis. At a minimum, the profile requests the following information:

- Generator information (e.g., name, address, point-of-contact, phone number)
- Waste stream name
- Waste generating process description
- Radiological knowledge (e.g., classification, reportable radionuclides, characterization method)
- Chemical characterization information (e.g., characterization method(s), chemicals present, concentration ranges)
- Designation information

- 1 ● LDR information including identification of underlying hazardous constituents if applicable
- 2
- 3 ● Waste type information (e.g., physical state, absorbents used, inert materials, stabilizing agents
- 4 used)
- 5
- 6 ● Packaging information (e.g., container type, maximum weight, size)
- 7
- 8 ● Attachments could consist of container drawings, process flow information, analytical data, etc.
- 9

10 This information is reviewed against the CWC waste acceptance criteria to ensure the waste is
11 acceptable for receipt. If discrepancies are found during this review, additional information is requested that
12 could include analytical data or a sample to be analyzed. If the waste cannot be received, the CWC operating
13 organization will pursue acceptance of the waste at an alternative TSD unit or request the generator to pursue
14 acceptance at an offsite facility.

15 On determination that the waste is acceptable, the CWC operating organization assigns the profile to a
16 waste management path and establishes a waste verification frequency based on the requirements found in
17 Sections 1.1.1.3 and 2.2.2.2.

21 **2.1.2 Waste Shipment Approval Process**

22 For each waste transfer or shipment that is a candidate for treatment and/or storage, the generator
23 provides the following information:

- 24 ● Container identification number
- 25 ● Profile number
- 26 ● Waste description
- 27 ● Generator information (e.g., name, address, point-of-contact, telephone number)
- 28 ● Container information (e.g., type, size, weight)
- 29 ● Waste numbers
- 30 ● Extremely hazardous waste or dangerous waste
- 31 ● Dose rate information
- 32 ● Reportable radionuclides and quantities
- 33 ● Waste composition
- 34 ● Packaging materials and quantities

35 The pertinent information is entered into Solid Waste Information Tracking System (SWITS).

36 Where potential nonconformances exist in the information provided, (i.e., waste characteristics do not
37 match the waste profile information, or additional constituents are expected to be present that do not appear
38 on the documentation), the generator is contacted by the CWC operating organization or its representative for
39 resolution. Refer to Section 6.0 for discussion on repeat and review frequency.

40 For each container, a technical review, physical screening determination, and chemical screening
41 determination are performed as follows.

1 ● **Technical review.** The individual container data are compared to the waste profile data to ensure
2 the information is accurate. Every transfer or shipment is reviewed to ensure the waste meets the
3 CWC waste acceptance criteria.

4
5 Based on waste identification information provided, the waste designation is reviewed to ensure
6 consistency with waste designations per WAC 173-303-070, as well as for technical accuracy to
7 ensure the waste meets the waste acceptance criteria.

8
9 If the transfer or shipment information is found to be acceptable, the CWC operating organization
10 determines if any of the waste containers will be physically or chemically screened.

11
12 ● **Physical screening determination.** Containers are chosen based on the methodology described
13 in this section. The first criterion is based on whether pre-shipment review activities (document
14 and characterization review) identify areas of potential concern. The second criterion is reviewing
15 the current physical screening percentage (calculated using the following method) of containers
16 received from said stream from said generator that have been received over the past 12 months as
17 compared to those that have been physically screened. This criterion ensures that the minimum
18 physical screening confirmation rates required by this WAP are met.

19
20 - The number of containers selected for physical screening in shipments is determined by
21 multiplying the total number of containers received during the previous 12 months for that
22 stream including the containers identified in the shipment by the applicable verification rate,
23 rounded up to the next integer. This selected group of containers constitutes a sample set.

24
25 - Individual containers within a shipment are selected based on a review of the contents listed in
26 the associated shipment documentation.

27
28 - Containers are selected at random unless variability within the stream is noted. In this case
29 containers representing different variations are selected (e.g., wood debris vs metallic debris).

30
31 ● **Chemical screening determination.** Individual containers within a shipment are selected based
32 on a review of the contents listed in the associated shipment documentation. Containers are
33 selected at random unless variability within the stream is noted. In this case, containers
34 representing different variations are selected (e.g., used oil, spent solvent).

35
36 On determining whether the shipment will be verified, the shipment is scheduled.

37
38 2.1.3 Acceptable Knowledge Requirements

39
40
41 The CWC operating organization ensures that all information used to make waste management
42 decisions will be based on the requirements found in the following sections. For information determined to
43 be 'acceptable knowledge', the CWC operating organization must determine if the information is adequate for
44 management of the waste.

45
46 2.1.3.1 General Acceptable Knowledge Requirements. Adequate acceptable knowledge requires
47 (1) general waste knowledge requirements, (2) LDR waste knowledge requirements, and/or (3) waste
48 knowledge exceptions.

1 (1) **General Waste Knowledge Requirements.** At a minimum, the generator supplies enough
2 information for the waste to be treated and/or stored at CWC. The minimum level of acceptable
3 knowledge consists of designation data where the constituents causing a waste number to be
4 assigned are quantified, and data that address any CWC operational parameters necessary for
5 proper management of the waste.

6
7 Where the available information does not qualify as acceptable knowledge or is not sufficient to
8 characterize a waste for management, the sampling and testing methods outlined in
9 WAC 173-303-110 must be used to determine whether a waste designates as toxic characteristic,
10 corrosive, and/or contains free liquids.

11
12 If a generator's process knowledge indicates that constituents, which if present in the waste might
13 cause the waste to be regulated, are input to a process but not expected to be in the waste,
14 sampling and analysis must be performed to ensure the constituents do not appear in the waste.
15 This requirement can be met through chemical screening. This sampling and analysis is required
16 only for initial characterization of the waste stream.

17
18 (2) **LDR Waste Knowledge.** Waste is stored in CWC while awaiting analytical results for LDR
19 requirements. The CWC operating record contains all information required to document that the
20 appropriate treatment standards have been met or will be met after the waste is treated.

21
22 For the purposes of this WAP, a representative sample is required to demonstrate compliance with
23 a concentration-based treatment standard (refer to Section 4.5). Corroborative testing for the
24 sample could be accomplished in the following manner.

25
26 • Generators could use onsite laboratories or other laboratories to certify that the waste meets
27 LDR requirements. For waste that does not meet LDR requirements, the generator must supply
28 information on the treatment methods necessary to meet LDR requirements and in accordance
29 with WAC 173-303-380(1)(o).

30
31 • The CWC operating organization uses these analytical data to meet applicable requirements
32 found in 40 CFR 268.7 and WAC 173-303-140(4).

33
34 (3) **Waste Knowledge Exceptions.** During waste retrieval from solid waste management unit
35 trenches in the Low-Level Burial Grounds, waste can be transferred to CWC provided the waste
36 meets the CWC waste acceptance criteria. In addition, hazardous debris, as defined in
37 WAC 173-303-040, which is managed in accordance with 40 CFR 468.45, is not required to be
38 sampled to meet federal and state-only LDR regulations.

39
40 2.1.3.2 **Methodology to Ensure Compliance with Land Disposal Restrictions Requirements.** All
41 generators are subject to LDR requirements and are required to submit all information notifications and
42 certifications described in WAC 173-303-380(1)(n) or (o). Mixed waste not meeting the treatment
43 standards, but meeting the CWC waste acceptance criteria, can be stored at CWC (refer to Chapter 1.0,
44 Section 1.1.1.1). The following are general requirements for offsite notifications or onsite information and
45 supporting documentation.

46
47 • The waste is subject to LDR and the generator has treated the waste. The generator supplies the
48 appropriate LDR certification information (40 CFR 268).

- 1 ● The waste is subject to LDR and the generator has determined that the waste meets the LDR for
2 disposal. The generator develops the certification based on process knowledge, and/or analytical
3 data, and supplies the appropriate LDR certification information necessary to demonstrate
4 compliance with the LDR treatment standards of 40 CFR 268 and WAC 173-303-140. State-only
5 LDRs do not require this type of certification.
- 6
- 7 ● The waste is subject to LDR and requires further treatment to meet applicable treatment standard.
8 The generator supplies additional information concerning the waste and details any treatment
9 necessary to meet applicable treatment standards.

10 A representative sample of the waste must be submitted for analysis to ensure that
11 concentration-based LDR treatment standards are met. This sample could be taken by the CWC operating
12 organization or the generator, and is required to comply with the treatment standards contained in
13 40 CFR 268.40 and 268.48 for underlying hazardous constituents.

17 **2.2 VERIFICATION**

19 Verification is an assessment performed by the CWC operating organization to substantiate that the
20 waste received at CWC is the same as represented by the analysis supplied by the generator for the
21 pre-shipment review. Verification is performed on waste received by CWC. Verification includes container
22 receipt inspection, physical screening, and chemical screening. Waste is not accepted by CWC for treatment
23 and/or storage until required elements of verification have been completed, including evaluation of any data
24 obtained from verification activities.

26 All discrepancies identified during the verification process are resolved in accordance with
27 Section 1.1.1.3.3.

30 **2.2.1 Container Receipt Inspection**

32 The container receipt inspection is a mandatory element of the confirmation process. Therefore,
33 100 percent of the transfers/shipments are inspected for damage and to ensure the waste containers are those
34 indicated on the documentation. This activity is a mechanism for identifying any document discrepancies or
35 damaged containers before acceptance. The container receipt inspection is performed by the CWC operating
36 organization at CWC or at another onsite location. When another onsite location is chosen, the container
37 receipt inspection will be completed within 24 hours of waste receipt.

40 **2.2.2 Physical Screening Process**

42 Physical screening is considered an additional verification element. This section describes the
43 requirement pertaining to methods, frequency, and exceptions concerning the use of physical screening as a
44 verification activity. Physical screening could be performed before the waste is shipped to CWC. When
45 screening is performed at a location not within the Solid Waste Project (e.g., WRAP, T Plant Complex,
46 Low-Level Burial Grounds), tamper resistant seals are applied to each container examined.

1 **2.2.2.1 Physical Screening Methods.** Each of the following physical screening methods, listed in order of
2 preference, complies with the requirement to verify a waste. If a method other than 1 or 2 is used, the
3 reasoning behind the method chosen must be documented in the operating record. Choosing method 3 or 4 is
4 not permitted if the basis for choosing 3 or 4 is because the nondestructive examination (NDE) units are not
5 functional.

6

7 1. Visual inspection (opening the container)
8 2. NDE
9 3. Nondestructive assay (NDA)
10 4. Dose rate profile.

11

12 Refer to Section 2.2.5 for quality control pertaining to physical screening.

13

14 **2.2.2.2 Physical Screening Frequency.** Physical screening frequency is 5 percent for onsite generating
15 units, applied per waste stream per subcontractor per year. For offsite generators, the minimum physical
16 screening frequency is 10 percent per waste stream per generator per year. The CWC operating organization
17 adjusts the physical screening frequency for generators based on objective performance criteria (refer to
18 Section 1.1.1.3.1).

19

20 In the event that one of the containers in the original sample set fails, a second sample set of equal
21 size, or a minimum of three additional containers, is selected from the shipment. First and second sample sets
22 are selected using the rationale described in the pre-shipment review section (Section 2.1). A second failure
23 in either the first or the second sample set constitutes failure of the shipment. If the second sample set passes
24 the inspection the single failed container is considered an anomaly and the remainder of the shipment passes
25 verification. All failed containers and shipments are dispositioned via the PES.

26

27 **2.2.2.3 Physical Screening Exceptions.** The following exceptions to the physical screening process
28 outlined previously have been developed.

29

- 30 ● Shielded, classified, and remote-handled mixed wastes are not required to be physically screened;
31 however, the CWC operating organization must perform a more rigorous documentation review
32 and obtain the raw data used to characterize the waste (<1 percent of current waste receipts).
33 Ecology will be notified and have the opportunity to review information on these wastes before
34 shipment. For classified waste, it is necessary to have an appropriate U.S. Department of Energy
35 security clearance and a need to know the information as defined by the classifying organization or
36 agency.
- 37 ● Waste that physically cannot be screened at CWC or associated screening facility must be
38 physically screened at the generator location (e.g., large components, containers that can not be
39 opened, are greater than 20 mrem per hour, contain greater than 10 nanocuries per gram of
40 transuranic radionuclides, or will not fit into the NDE unit). Physical screening at the generator
41 location consists of observing the packaging of the waste. If no location can be found to perform
42 the physical screening, no screening is required.
- 43 ● Waste that is packaged by the TSD unit authorized independent agent are considered to have met
44 the physical screening requirements denoted in this WAP [e.g., CWC operating organization
45 packaged waste that is transferred to Waste Management Federal Services of Hanford, Inc.
46 managed TSD units or Pacific Northwest National Laboratory (PNNL) packaged waste that is

1 transferred to PNNL operated TSD units]. On closure of the container, tamper-resistant seals
2 must be applied to ensure the integrity of the contents.

3

4

5 **2.2.3 Chemical Screening Process**

6

7 Chemical screening is considered an additional verification element. This section describes methods,
8 frequency, and exceptions for chemical screening. Chemical screening could be performed before the waste is
9 shipped to CWC. When screening is performed at a location not within the Solid Waste Project,
10 tamper-resistant seals are applied to each outer container examined.

11

12 Selection and interpretation of chemical screening methods is conducted by qualified personnel.
13 Unless otherwise noted, tests are qualitative, not quantitative. The objective of screening is to obtain
14 reasonable assurance that the waste is generally consistent with the description in the shipping
15 documentation. The following tests are selected depending on the waste matrix and the applicability of the
16 method. A minimum of three listed screening tests, including pH screening, are conducted on each sample. If
17 less than five of the following methods are selected, the rationale is recorded by the qualified analyst.

18

19 ● pH

20

21 ● HOC (chlor-n-oil/water/soil)

22

23 ● Headspace testing (e.g., lower explosive limit, portable gas chromatograph, flame ionization
24 detector, photoionization detector. Instrument must be appropriate for conditions)

25

26 ● Peroxide

27

28 ● Polychlorinated biphenyl (PCB)

29

30 ● Oxidizer

31

32 ● Sulfide

33

34 ● Cyanide

35

36 ● Paint filter

37

38 ● Water reactivity.

39

40 Refer to Section 2.2.5 for quality control pertaining to chemical screening.

41

42 **2.2.3.1 Chemical Screening Frequency.** At a minimum, 10 percent of the mixed waste containers verified
43 by physical screening (Section 2.2.2.2) must be screened chemically. Although grab samples are acceptable,
44 the CWC operating organization obtains a representative sample.

45

46 Small containers of waste (labpacks), not otherwise identified in the exceptions, packaged in
47 accordance with 40 CFR 264.316, 40 CFR 265.316, and WAC 173-303-161 are screened chemically in
48 accordance with waste stream's chemical screening frequency as determined by PES (Section 1.1.1.3). Inner

1 containers are segregated by physical appearance. At least one container from each group (or three containers
2 if all are similar) are screened chemically.
3

4 **2.2.3.2 Chemical Screening Exceptions.** There are cases in which chemical screening is not required. The
5 exceptions are as follows:
6

- 7 • Small containers of waste in overpacked containers (labpacks) packaged in accordance with
8 WAC 173-303-161 and not prohibited under LDR specified in WAC 173-303-140
9
- 10 • Waste exempted from the physical screening requirements (Section 2.2.2.3) is exempted from
11 chemical screening
12
- 13 • Commercial chemical products in the original product container(s) (e.g., off-specification,
14 outdated, or unused products)
15
- 16 • Chemical containing equipment removed from service, (e.g., ballasts, batteries, etc.)
17
- 18 • Waste containing asbestos
19
- 20 • Waste, environmental media, and/or debris from the cleanup of spills or release of single
21 substance or commercial product or otherwise known material (e.g., material for which an MSDS
22 can be provided)
23
- 24 • Confirmed noninfectious waste (e.g., xylene, acetone, ethyl alcohol, isopropyl alcohol) generated
25 from laboratory tissue preparation, slide staining, or fixing processes
26
- 27 • Hazardous debris as defined in WAC 173-303-040
28
- 29 • Other special-case could be exempted on a case-by-case basis with prior approval by Ecology.
30

31 **2.2.4 Sampling for Confirmation Screening**
32

33 Sampling methods will be performed in accordance with WAC 173-303-110(2), with the following
34 exceptions. At all times, a best effort is employed to obtain a representative sample. When a representative
35 sample cannot be obtained, selective sampling is performed at a location in the matrix that visually appears to
36 have the greatest potential for dangerous constituent contamination. The chemical screening methods
37 described in Section 3.0 do not require any sample preservation methods because the screening tests are
38 performed at the time and location of sampling, or as soon as possible thereafter. During the interim period,
39 the samples are stored in a manner that maintains chain of custody and protects the sample composition.
40

41 **2.2.5 Quality Assurance and Quality Control for Confirmation Process**
42

43 The following QA and quality control (QC) elements are used by the CWC operating organization to
44 ensure confirmation activities provide sufficient data to provide an indication that waste received is as
45 described in the shipping documentation.
46

1 **2.2.5.1 Physical Screening Quality Control.** If NDE is used to meet the physical screening requirements,
2 5 percent per year of the containers that have been nondestructively examined are opened to ensure the
3 method is providing accurate data. Containers opened for other reasons, such as chemical screening or to
4 investigate inconsistencies, could be used to meet this requirement. This requirement is based on the total
5 number of containers reviewed, not on a shipment or general waste stream basis. The CWC operating
6 organization is required, at a minimum, to meet this requirement over a running 3-month average with a
7 minimum of one container being opened for every month NDE is operated. If the evaluation of NDE shows
8 that a false negative has occurred, a review of the NDE operation is required to determine if the false negative
9 was due to operator error, equipment malfunction, or equipment limitations. Based on the review, corrective
10 actions are required to be implemented before further use of NDE as a physical screening tool.

11
12 **2.2.5.2 Chemical Screening Quality Control.** The following QC elements are used when performing
13 chemical screening parameters.

14
15 ● Using appropriate sample containers and equipment. New disposable sampling equipment is used
16 whenever possible.

17
18 ● Using field QA/QC samples.

19
20 - 5 percent of the total number of field samples taken are field blanks and field replicates. The
21 percentage is calculated over a running 12-month period.

22
23 - Field blanks--Field blanks refer to an artificial sample designed to monitor the introduction of
24 artifacts into the sample preparation and analysis process. Typically reagent water is used as a
25 blank matrix. A universal blank matrix however does not exist for solid samples. Results of
26 the field blank analyses checks the water and reagents used for field screening.

27
28 - Field replicates--Field replicates are defined as independent samples collected in such a manner
29 that the samples are equally representative. For confirmation purposes, the field replicate is
30 tested in the field for the same parameters for which the original sample was tested. If the field
31 replicates do not agree, an additional two samples are tested. If the second duplicate pair of
32 samples do not agree, all reagents for the test are checked and the test is not used until
33 corrective action is taken. Replicates are run on an as-needed-basis to meet the requirement
34 stated in this section.

35
36 ● Equipment Checks

37
38 Test kit reagents are checked regularly as recommended by the manufacturer. Field
39 instrumentation have current calibrations, and reagents that are past their expiration dates, if
40 applicable, are not used.

1
2
3
4
5

This page intentionally left blank.

1 3.0 SELECTING WASTE ANALYSIS PARAMETERS

2

3

4 Analytical screening parameters that could be used for waste received at the CWC for confirmation
5 purposes, waste designation requirements, and LDR requirements are discussed in the following sections.

6

7

8 3.1 PHYSICAL SCREENING PARAMETERS

9

10 The following methods could be used to perform physical screening. These methods are listed in order
11 of preference. If a method other than 1 or 2 is used, the reasoning behind the method selection will be
12 documented.

13

14 (1) Visual inspection (preferred method for physical screening):

15

16 **Rationale.** This method meets the requirement to ensure consistency between waste containers and
17 the accompanying shipment documentation.

18

19 **Method:** The container is opened and the contents are removed as needed for visual examination.
20 Homogenous loose solids could be probed to determine the presence of material not documented on
21 the shipping documentation, or for improperly absorbed liquids. Visual observations are compared
22 with the applicable profile information and the container specific information in the shipment
23 documentation.

24

25 **Failure criteria:** A container fails the inspection for any of the following reasons; (a) undocumented,
26 improperly packaged, or inadequately absorbed liquids; (b) discovery of prohibited articles or
27 materials listed in Section 1.2; (c) discovery of material not consistent with the applicable waste
28 stream profile; and (d) variability greater than 25 percent by volume in listed constituents (e.g., paper,
29 plastic, cloth, metal).

30

31 (2) NDE:

32

33 **Rationale.** This method meets the requirement to ensure consistency between waste containers and
34 the accompanying shipment documentation. This method also is subject to the QA checks listed in
35 Section 2.2.5.1. Containers that are not easily amenable to visual inspection due to physical or
36 radiological content, or facility availability, can be safely and economically examined.

37

38 **Method:** The container is scanned with a NDE system. Data are observed on a video monitor and
39 captured on video tape. Personnel experienced with the interpretation of NDE imagery record their
40 observations. These observations are compared to the contents listed on the shipping documentation.

41

42 **Failure criteria:** A container fails the inspection for any of the following reasons; (a) undocumented,
43 improperly packaged, or inadequately absorbed liquids; (b) discovery of prohibited articles listed in
44 Section 1.2; (c) image data not consistent with the applicable waste stream profile; and (d) variability
45 greater than 25 percent by volume in listed constituents (e.g., paper, plastic, cloth, metal).

1 (3) NDA:

2
3 **Rationale.** This method is available for obtaining data that can be compared with accompanying
4 shipping documentation for consistency on containers that cannot be opened for visual inspection, and
5 cannot be examined by NDE (e.g., high container dose rate, shielding.) The reason for selection of this
6 method is documented.

7
8 **Method.** Radioactive waste is assayed in one or both of two different assay systems. The assay
9 systems include gamma energy analysis (GEA) and imaging passive/active neutron (IPAN). Gamma
10 emitting radionuclides are detected in the GEA assay system. This instrument determines the type and
11 quantity of radionuclides based on their gamma energy spectrum. The IPAN uses passive and active
12 neutron detection to determine the presence of fissionable radionuclides. Passive detection results are
13 equated with Pu-240 and active detection results are equated with Pu-239. The curie amount of low
14 energy gamma emitting radionuclides, other fissile and non-fissile alpha emitting radionuclides, and
15 beta emitting radionuclides are calculated from the GEA and IPAN data and the generator supplied
16 radionuclide information. Radionuclide ratios are calculated by dividing the activity of each
17 radionuclide reported by the activity of the most prominent radionuclide.

18
19 **Failure criteria.** A container fails the assay if the difference between the reported radionuclide ratios
20 and the measured ratios and the reported and measured curie amounts exceed 50 percent. The failure
21 criteria are adjusted based on the density of the waste and the amount of fissionable material present.

22 (4) Dose rate profile:

23
24 **Rationale.** This method is used to obtain data that can be compared for consistency with the shipment
25 documentation for a container. This method is used only when the previous three methods cannot be
26 performed for technological or ALARA reasons (e.g., container size, weight, shielding, dose rate).
27 The reason for selection of this method is documented.

28
29 **Method.** A portable dose rate meter is used to determine the contact dose rate at six evenly
30 distributed points on the exterior of the waste package. The six readings obtained are recorded and
31 averaged. The average reading is compared with the container contact dose rate recorded on the
32 shipment documentation.

33
34 **Failure criteria.** If the average dose rate observed during the dose rate profile examination differs
35 from that recorded on the shipping documentation by more than 100 percent, the container fails.

36
37 **3.2 CHEMICAL SCREENING PARAMETERS**

38
39 The following methods could be used to perform chemical screening.

40
41 (1) Ignitability and/or headspace volatile organic compound screening

42
43 **Rationale:** To determine the potential ignitability and the presence or absence of volatile organic
44 compounds in waste, and to ensure personnel adequately are protected. This method is used when
45 containers are opened for inspection. This method can be applied to any matrix.

1 **Method:** A sample of the headspace gases in a container is analyzed by one or more of the following
2 types of portable instrumentation: organic vapor monitor, colorimetric gas sampling tubes, or a lower
3 explosive level meter.

4
5 **Tolerance:** High organic vapor readings in matrices not documented as having volatile organic
6 content constitutes failure.

7
8 (2) **Peroxide screening:**

9
10 **Rationale:** To determine the presence of organic peroxides in solvent wastes, to alert personnel to
11 potential hazards, to ensure safe segregation and storage of incompatible wastes, and to confirm
12 consistency with the shipping documentation. The test is sensitive to low parts per million ranges.

13
14 **Method:** A peroxide test strip is dampened with a pipet sample of liquid waste. Solids are tested by
15 first wetting the test strip with water and contacting a small sample of the waste. A blue color change
16 indicates a positive reaction. The color change can be compared with a chart on the packaging to
17 determine an approximate organic peroxide concentration.

18
19 **Tolerance:** Peroxide concentrations greater than 20 parts per million in liquid waste constituents that
20 are known organic peroxide formers not documented as having been stabilized constitutes failure.

21
22 (3) **Paint filter liquids test:**

23
24 **Rationale:** To verify the presence or absence of free liquid in solid or semisolid material.

25
26 **Method:** To a standard paint filter, 100 cubic centimeters or 100 grams of waste are added and
27 allowed to settle for 5 minutes. Any liquid passing through the filter signifies failure of the test.

28
29 **Tolerance:** Failure of the test in waste matrices not documented as having free liquids constitutes
30 failure of the container. Small quantities of condensate trapped in inner plastic liner folds are
31 acceptable.

32
33 (4) **pH screen:**

34
35 **Rationale:** To identify the pH and corrosive nature of an aqueous or solid waste, to ensure safe
36 segregation and storage of incompatible waste, and to confirm consistency with the shipping
37 documentation.

38
39 **Method:** Full range pH paper is used for the initial screening. If the initial screen indicates a pH
40 below 4 or above 10, a pH meter could be used, or a narrow range pH paper. Solids are mixed with an
41 equal weight of water and the liquid portion of the solution is tested. The extractant of the sample is
42 placed on the pH paper and not dipped into the sample.

43
44 **Tolerance:** pH paper for this test has a sensitivity of +/-1.0 pH units. If the pH of a matrix appears
45 to exceed regulatory limits (<2.0 or >12.5) in waste not documented as being regulated for this
46 property, the container fails the test.

1 (5) Oxidizer screen:

2
3 **Rationale:** To determine if a waste exhibits oxidizing properties to ensure safe segregation and
4 storage of incompatible waste, and to confirm consistency with the shipping documentation. This test
5 can be applied to waste liquids, solids, and semisolids.

6
7 **Method:** Acidified potassium iodide (KI) test paper is applied to solid or liquid waste. A darkening
8 of the paper is a positive indication.

9
10 **Tolerance:** This method is very sensitive to oxidizing properties. A positive indication in a waste
11 that can not be explained by documented constituents constitutes failure.

12 (6) Water reactivity screen:

13
14 **Rationale:** To determine if the waste has the potential to vigorously react with water, form gases, or
15 other reaction products. This information is used to ensure safe segregation and storage of
16 incompatible waste, and to confirm consistency with the shipping documentation.

17
18 **Method:** Water is added to a sample of solid or liquid waste. The solution is observed for evidence
19 or fuming, bubbling, spattering, or temperature change. These reactions are considered to be positive
20 evidence that the waste is water reactive.

21
22 **Tolerance:** A positive indication in a waste that cannot be explained by documented constituents
23 constitutes a failure.

24 (7) Cyanide screen:

25
26 **Rationale:** To indicate if waste could release hydrogen cyanide upon acidification near pH 2. This
27 information is used to ensure safe segregation and storage of incompatible waste, and to confirm
28 consistency with the shipping documentation.

29
30 **Method:** To a test tube or watch dish containing approximately 2 milligrams of sample, an equal
31 amount of freshly prepared ferrous ammonium citrate is added. 3 Normal hydrochloric acid is used to
32 reduce the pH of the solution to near 2.0. A deep blue color indicates the presence of cyanide.

33
34 **Tolerance:** A positive indication in a waste that can not be explained by documented constituents
35 constitutes a failure.

36 (8) Sulfide screen:

37
38 **Rationale:** To indicate if the waste could release hydrogen sulfide upon acidification near pH 2. This
39 information is used to ensure safe segregation and storage of incompatible wastes, and to confirm
40 consistency with the shipping documentation.

41
42 **Method:** Approximately 2 milligrams of sample is added to a watch dish or test tube and enough
43 3 Normal hydrochloric acid is added to bring the pH down to near 2.0. A sulfide test strip is placed in
44 the solution. If the paper turns brown or silvery black, the presence of sulfides in the sample is
45 indicated.

1 **Tolerance:** A positive indication in a waste that can not be explained by documented constituents
2 constitutes a failure.

3
4 (9) HOC screen:

5
6 **Rationale:** To indicate whether PCBs or other chlorinated solvents are present in the waste. This
7 information is used to ensure safe segregation and storage of incompatible waste, to confirm
8 consistency with the shipping documentation, and to determine if the waste needs to be managed in
9 accordance with the regulations prescribed in the *Toxic Substance Control Act of 1976*.

10
11 **Methods:** Field organic chlorine tests appropriate to the matrix, such as those offered by the Dexsil
12 Corporation (e.g. Chlor-N-Oil, Chlor-N-Soil) are used. These screening tests are available with
13 several detection limits. At a minimum, the 50 parts per million test is performed on oily matrices.

14
15 **Tolerance:** A positive indication of chlorinated organics in a waste not documented as having
16 chlorinated organic content constitutes failure.

17
18 **3.3 OTHER SAMPLE AND ANALYSIS PARAMETERS**

19
20 Sampling and analysis parameters used to meet LDR requirements for waste stored and treated at
21 CWC are detailed in Attachment A. Refer to Attachment A for parameters, methods, and rationale.

1
2
3
4
5

This page intentionally left blank.

4.0 SELECTING SAMPLING PROCESSES FOR DESIGNATION

4 Specific sampling procedures and techniques depend on both the nature of the material and the type of
5 packaging. This section describes the sampling methodology used to obtain representative samples.

4.1 SAMPLING STRATEGIES

10 Table 4-1 contains waste forms and sample equipment used to sample referenced waste. Sampling of
11 these waste forms is performed in accordance with Table 4-1.

4.2 SAMPLING METHODS

16 The appropriate personnel are responsible for arranging all sampling and laboratory support for
17 sample analysis. Samples are processed at one of several laboratories qualified to perform analysis of waste
18 samples (refer to Section 5.0). Sampling methods are those described in WAC 173-303 110(2).

19 The basic sampling sequence is as follows:

- 22 • Obtain a unique sample number and complete the sample tag before sampling
- 24 • Obtain a precleaned sampler and sample bottles
- 26 • Attach sample label to sample bottles
- 28 • For sampling liquid waste, a sampler or pipet will be used to sample for two phase liquids.
29 Homogeneous liquids in small containers will be poured into a sample bottle
- 31 • For sampling solid waste, use a scoop, trier, or hand auger to obtain a sample of the waste. For
32 large containers of waste, composite several augers or scoops to ensure samples are representative
- 34 • Fill sample containers in the following sequence: volatile organics, semivolatile organics, metals,
35 ignitability, pH (corrosivity)
- 37 • For solid waste, wipe the exterior surfaces of the sample bottles with a dry rag
- 39 • Attach sample labels to outer plastic bags
- 41 • Place samples in an appropriate receptacle for transfer to the laboratory
- 43 • Complete the chain-of-custody forms
- 45 • Seal and mark the receptacle in accordance with WAC 173-303-071(3)(1)
- 47 • Transfer receptacle to the analytical laboratory as appropriate to meet sample holding times

1 • Properly clean and decontaminate nondisposable sampling equipment or package for return to
2 central sampling equipment decontamination area according to onsite requirements.
3
4

5 **4.3 SELECTING SAMPLING EQUIPMENT**

6
7 Sampling equipment selection is detailed in Table 4-1. Sampling equipment needed to sample waste
8 is maintained and decontaminated as necessary by the CWC operating organization.
9

10 **4.4 SAMPLE PRESERVATION**

11 Sample preservation follows SW-846 protocol or other approved sample preservation method for
12 waste in accordance with 62 FR 62079.
13
14

15 **4.5 ESTABLISHING QUALITY AND QUALITY CONTROL FOR SAMPLING**

16 The sampling team ensures all samples are labeled with a unique identifier.
17
18

19 Sample collectors prepare a permanent log of sampling activities. Log entries include as appropriate:
20 date of collection, time of collection, location, batch number, sample number, tank number, copy of the
21 chain-of-custody form, sampling methodology, container description, waste matrix (liquid), description of
22 generating process (e.g., decontamination activities), number and volume of samples, field observations, field
23 measurements (e.g., pH, percent lower explosive limit), laboratory destination and laboratory number, and
24 signature. These logs entries are made by the appropriate personnel while the sampling is performed. The
25 logs or copies of logs are maintained by the appropriate personnel after completion of sampling activities.
26
27

28 A chain-of-custody record accompanies samples at all times. The record contains a unique sample
29 number for each sample, date and time of collection, sample type, sample location, methods of transfer, and
30 signatures (or electronic equivalent, e.g., signature password) of the collector and all subsequent custodians.
31
32

33 During all sampling activities, strict compliance with applicable industrial hygiene and safety
34 standards is mandatory. If samplers accidentally contact waste material and sampling personnel,
35 decontamination of sampling personnel is performed immediately. Transportation of samples is performed in
36 accordance with all applicable Hanford Site and U.S. Department of Transportation requirements.
37

38 The following QA/QC elements are used by the CWC operating organization to ensure sampling
39 activities for designation purposes result in acceptable laboratory data:
40

41 • Representative sampling methods as defined by WAC 173-303-110(2), 40 CFR 261 Appendix I,
42 and/or SW-846 Chapter 9
43
44 • Appropriate sample containers and equipment
45
46 • Samples numbered
47

- 1 • Traceable labeling system
- 2
- 3 • Field QA/QC samples (applicable sampling and analysis plan)
- 4
- 5 • Equipment calibration (current as appropriate)
- 6
- 7 • Chain of custody.

Table 4-1. Central Waste Complex Chemical Screening Sampling Equipment.

Waste form	Waste type	Reference in SW-846	Equipment*
4 Liquids	Free-flowing liquids and slurries	COLIWASA, SW-846, Chapter 9, glass thief or pipet	
5 Solidified liquids	Sludges	Trier, SW-846, Chapter 9, scoops and shovels	
6 Sludges	Sludges	Trier, SW-846, Chapter 9, scoops and shovels	
7 Soils	Sand or packed powders and granules	Auger, SW-846, Chapter 9, scoops and shovels	
8 Absorbents	Large-grained solids	Large trier, SW-846, Chapter 9, scoops and shovels	
9 Wet absorbents	Moist powders or granules	Trier, SW-846, Chapter 9, scoops and shovels	
	Moist powders or granules	Trier, SW-846, Chapter 9, scoops and shovels	
	Dry powders or granules	Thief, SW-846, Chapter 9, scoops and shovels	
10 Process solids and salts	Sand or packed powders and granules	Auger, SW-846, Chapter 9, scoops and shovels	
	Large-grained solids	Large trier, SW-846, Chapter 9, scoops and shovels	
	Moist powders or granules	Trier, SW-846, Chapter 9, scoops and shovels	
	Dry powders or granules	Thief, SW-846, Chapter 9, scoops and shovels	
11 Ion exchange resins	Sand or packed powders and granules	Auger, SW-846, Chapter 9, scoops and shovels	
12			
13	COLIWASA = composite liquid waste sampler.		
14	* other ASTM approved equipment could be used to collect samples.		

1
2
3
4
5

This page intentionally left blank.

1 **5.0 SELECTING A LABORATORY, LABORATORY TESTING, AND ANALYTICAL METHODS**

2

3 The following sections discuss selecting a laboratory for analyzing samples for QA/QC elements.

4

5 **5.1 SELECTING A LABORATORY**

6

7 The following laboratory QA/QC requirements apply to laboratory analyses of generator waste.

8

9

- 10 ● The daily quality of analytical data generated in contracted analytical laboratories is controlled by
11 the implementation of an analytical laboratory QA plan.
- 12 ● Before commencement of the contract for analytical work, the laboratory submits their QA plan
13 for approval. At a minimum, the plan documents the following:
 - 14 - Sample custody and management practices
 - 15 - Sample preparation and analytical methods
 - 16 - Instrument maintenance and calibration methods
 - 17 - Internal QA/QC measures, including the use of method blanks
 - 18 - Sample preservatives used
 - 19 - Analyses requested.

20

21 When required, replicate testing usually is accomplished by analyzing two samples, one by the
22 generator and another by the CWC operating organization.

23

24 **5.2 SELECTING TESTING AND ANALYTICAL METHODS**

25

26 CWC identifies the type of testing and analytical method to be used at the laboratory (e.g., for metals
27 analysis, the type of determination method will be stated, such as inductively coupled plasma metals by
28 atomic absorption).

29

30 CWC identifies the decision level necessary for each analytical parameter. If the decision level is
31 found in a regulation, the generator references the regulation.

1
2
3
4
5

This page intentionally left blank.

1 **6.0 SELECTING WASTE RE-EVALUATION FREQUENCIES**

2
3
4 The re-evaluation (repeat and review) frequency to review profile information is yearly, or more often
5 if the waste generation process changes.

6
7 CWC re-evaluates a waste profile if:

8
9 ● A generator notifies CWC operating organization that the generating process has changed
10
11 ● Inspection or analysis indicates that the waste received at CWC does not match the profile and/or
12 shipping documentation.

13
14 When a waste profile is re-evaluated, the CWC operating organization could request the generator to do one
15 of the following:

16
17 ● Verify the current waste profile is accurate
18 ● Supply a new waste profile
19 ● Submit a sample for parameter analysis.

1
2
3
4
5

This page intentionally left blank.

1 **7.0 SPECIAL PROCEDURAL REQUIREMENTS**

2

3

4 This section discusses any special process requirements for receiving mixed waste at CWC.

5

6

7 **7.1 PROCEDURES FOR RECEIVING WASTE GENERATED ONSITE**

8

9 In general, mixed waste received from onsite generator units is managed the same as waste received
10 from offsite generators. Differences include, but not limited to, verification rates, shipping documentation,
11 and LDR requirements.

12

13

14 **7.2 PROCEDURES FOR RECEIVING WASTE GENERATED OFFSITE**

15

16 Waste received from offsite is handled in the same manner as mixed waste received from onsite except
17 as denoted in Section 7.1.

18

19

20 **7.3 PROCEDURES FOR IGNITABLE, REACTIVE, AND INCOMPATIBLE WASTE**

21

22 CWC accepts ignitable, reactive, or incompatible waste (refer to Section 1.2). The following
23 precautions are taken before ignitable, reactive, or incompatible waste is accepted at CWC.

24

- 25 ● Pre-shipment review and/or chemical screening identifies whether the waste is ignitable, reactive,
26 or incompatible.
- 27 ● CWC waste acceptance criteria identifies storage requirements for ignitable, reactive, and
28 incompatible waste, ensuring the waste is stored in a safe manner.

31 The types of prohibited waste not accepted at CWC are listed in Section 1.2.

32

33

34 **7.4 PROVISIONS FOR COMPLYING WITH FEDERAL AND STATE LAND DISPOSAL 35 RESTRICTION REQUIREMENTS**

36

37 Although CWC does not treat LDR waste, sampling could be performed at CWC to support LDR
38 certification. The following sections are required for treatment of LDR waste.

39

40 State-only and federal LDR requirements restrict the land disposal of certain types of waste subject to
41 *Resource Conservation and Recovery Act (RCRA) of 1976* and the *Hazardous Waste Management Act*.
42 Waste managed on the Hanford Facility falls within the purview of these LDRs per 40 CFR 268 and
43 WAC 173-303-140. Waste constituents that are subject to LDRs are identified in 40 CFR 268.40 and
44 referenced by WAC 173-303-140. Waste must meet certain treatment standards, as specified in
45 40 CFR 268.40 and WAC 173-303-140, if the waste is to be land disposed.

46

47 Generators (as defined in the regulation and not per Section 1.1.1.1) determine if LDRs apply to the
48 waste based on knowledge or testing [40 CFR 268.7(a)]. Each waste is analyzed for those LDR constituents

1 contained in the listed and characteristic waste numbers identified by the generator, if the generator's
2 knowledge is not sufficient to make a determination. If the LDR waste does not meet the applicable treatment
3 standards, the generator (Section 1.1.1.1) provides with each shipment of waste information stating so, in
4 accordance with WAC 173-303-380(1)(j)(k)(n) or (o). If the waste meets the standards, the generator must
5 send a certification that the waste meets the treatment standards.
6
7

8 **7.4.1 Waste Treatment**

10 Retrieved and newly generated waste is treated to meet LDR as specified in 40 CFR 268.40 and
11 WAC 173-303-140 with the exception of transuranic mixed waste. Transuranic mixed waste is treated to the
12 applicable standards required by Waste Isolation Pilot Plant or other generator requirements. An onsite TSD
13 unit potentially can pretreat certain waste before shipment to a permitted offsite facility that could perform
14 full treatment of the specific waste to meet full LDR. Waste requiring treatment other than what an onsite
15 TSD unit can provide is repackaged, labeled, and transferred to a TSD unit for storage pending identification
16 or development of an appropriate treatment.
17

18 LDR requirements apply to all mixed waste except a small class of state-only waste. When evaluating
19 the treatability of certain characteristic waste, consideration must be given to any additional underlying
20 hazardous constituents that might be found in the waste. The treatment standards, for the most part, are
21 concentration-based. If the constituent concentrations for the waste fall below those specified in
22 40 CFR 268.40 and/or 268.48 for underlying hazardous constituents and in WAC 173-303-140, the waste
23 can be land disposed without being treated. If the concentrations exceed these limits, the waste must be
24 treated before disposal.
25

26 Specific treatments performed onsite include, but are not limited to, deactivation, encapsulation,
27 stabilization, and amalgamation.
28

29 Deactivation is used to remove the hazardous characteristics of the waste due to its ignitability
30 (D001), corrosivity (D002), solid corrosive acid (WSC2), and/or reactivity (D003). Treatment techniques
31 include neutralization, cementing, absorption, controlled reaction with water, and macroencapsulation.
32

- 33 ● Neutralization is the primary method of treatment for corrosive waste that has a pH ≤ 2 and/or
34 ≥ 12.5 . Examples of bases that could be used as neutralizing agents include sodium hydroxide,
35 calcium hydroxide, or calcium carbonate. Examples of acids that could be used to neutralize bases
36 are hydrochloric acid and sulfuric acid.
- 37 ● Absorption is the primary method of treatment for ignitable waste, which include waste that is
38 liquid and has a low total organic carbon content (<10 percent). Absorbent material that could be
39 used includes polyacrylates, polypropylene, polymer type, superabsorbent polymer, cellulose, or
40 other absorbent materials meeting various disposal requirements.
- 41 ● Cementing or grouting is the primary method of treatment for ignitables consisting of metal fines
42 or other corrosive materials. These types of waste are deactivated by mixing and binding it with
43 an inert cementitious material.
- 44 ● Controlled reaction with water is the primary method of treatment for reactive materials such as
45 sodium metal. This process will deactivate the material and allow for further disposition.
46
47

1 • Macroencapsulation with polyethylene plastic containers is the primary treatment for debris. For
2 elemental lead, macroencapsulation is performed in accordance with Table 1 of 40 CFR 268.42.
3

4 Stabilization methods used include cementing or grouting, sealing, and absorption. Particulates and/or
5 liquid waste containing hazardous constituents could be cemented or grouted to meet either RCRA LDR,
6 Waste Isolation Pilot Plant waste acceptance criteria, and/or the disposal criteria of future TSD units. These
7 types of waste are stabilized by mixing and binding the waste with an inert material. The inert material
8 generally used is Portland cement. When dealing with some waste streams such as sludges that might contain
9 an inconsistent or excess liquid content, absorbent could be added to the waste to provide a drier matrix to
10 allow identification of the proper combination of ingredients to ensure a successful stabilization effort.
11

12 Amalgamation of liquid elemental mercury (D009) is achieved using inorganic reagents such as
13 copper, zinc, nickel, gold, and sulfur. The resultant matrix is a nonliquid, solid, or semi-solid visually
14 inspected to verify compliance.
15

16 Treatment of state-only extremely hazardous waste (WT01, WP01, and WP03) will be performed in
17 accordance with RCW 70.105.050(2) and/or WAC 173-303-140(4)(a) as applicable.
18
19

20 7.4.2 Sampling and Analytical Methods 21

22 If waste is sampled and analyzed to demonstrate an LDR has been met, only U.S. Environmental
23 Protection Agency or equivalent methods are used. Waste is analyzed using the methods outlined in
24 40 CFR 268.40 and WAC 173-303-140(4)(b) or any other reliable method allowed by regulations.
25

26 Samples of waste are transferred to the sample management area for packaging and transferred to an
27 onsite laboratory or shipped offsite to a laboratory for analysis. Samples are collected and analyzed in
28 accordance with SW-846 or any other method allowed by regulations. Storage is provided for waste
29 containers while waiting for laboratory analysis results.
30
31

32 7.4.3 Land Disposal Restriction Certification of Treatment 33

34 When LDR treatment has been completed and sample results (if applicable per 40 CFR 268.40 and
35 WAC 173-303-140) have verified the LDR treatment is successful, certification of the LDR treatment is
36 required. The certification statement is prepared by the onsite TSD unit in accordance with 40 CFR 268.7.
37

38 Where a LDR waste does not meet the applicable treatment standards set forth in 40 CFR 268.40 and
39 WAC 173-303-140, or exceeds the application prohibition levels set forth in 40 CFR 268.32 or
40 Section 3004(d) of RCRA, this information is placed in the CWC operating record, in accordance with
41 WAC 173-303-380(1)(k) and (o).

1
2
3
4
5

This page intentionally left blank.

1 **8.0 RECORDKEEPING**

2

3

4 Recordkeeping requirements that are applicable to this WAP are described in Chapter 12.0,
5 Table 12-1, *Hanford Facility Dangerous Waste Permit Application, General Information Portion*
6 (DOE/RL-91-28) and within this WAP.

1
2
3
4
5

This page intentionally left blank.

1 **9.0 REFERENCES**

2

3

4 DOE/RL-91-17, *Hanford Facility Dangerous Waste Permit Application, Central Waste Complex*,
5 U.S. Department of Energy, Richland Operations Office, Richland, Washington.

6

7 DOE/RL-91-28, *Hanford Facility Dangerous Waste Permit Application, General Information Portion*,
8 U.S. Department of Energy, Richland Operations Office, Richland, Washington, revised periodically.

9

10 EPA SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, Third Edition, as
11 amended, U.S. Environmental Protection Agency, Washington, D.C.

12

13 EPA-600/4-7-020, *Methods for Chemical Analysis of Water and Wastes*, U.S. Environmental Protection
14 Agency, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio.

15

16 62 FR 62079, *Mixed Waste Testing Guidance*, November 20, 1997.

1
2
3
4
5

This page intentionally left blank.

1 APPENDIX A
2
3

4 ANALYTICAL PARAMETERS, METHODS, AND RATIONALE FOR WASTE RECEIVED AT
5 CENTRAL WASTE COMPLEX

1
2
3
4
5

This page intentionally left blank.

1 Analytical Parameters, Methods, and Rationale for Waste Received at
 2 Central Waste Complex (sheet 1 of 4)
 3

HNF-1886

4 Parameter	5 Analytical method ^a		6 Media type	7 Rationale for selection of waste acceptance parameters	8 Rationale for analysis
9 Flashpoint	1010/1020		11 Liquid	General chemistry	
12 pH	Liquid	13 9040	14 Liquid, sludge	To provide documentation for safe storage conditions	To determine regulatory status as D001 waste, to provide proper waste designation and applicability of LDR requirements
	Solid	15 9045c	16 Solid	To indicate the degree of corrosivity for safe handling; to provide for proper waste designation; and to identify waste that might compromise container integrity	To determine regulatory status as D002 waste, to provide proper waste designation, applicability of LDR requirements and state-only requirements
17 Hydroxide	18 9040		19 Liquid	To provide documentation for safe treatment and storage conditions; and to comply with CWC waste acceptance criteria.	To provide proper waste designation and applicability of LDR requirements
20 Water reactivity	21 Field method		22 Liquid, sludge	To determine whether the waste has a potential to violently react with water to form gases or generate heat; to provide documentation for safe treatment and/or storage conditions for waste designation; and to comply with CWC waste acceptance criteria.	To provide proper waste designation; safe storage and management.
23 Free liquids	24 9095A		25 Liquid, sludge, solid	To determine applicability of LDRs and for characterization of appropriate treatment	To determine appropriate state-only LDR status of the waste.
26 Cyanide	27 9010B/9012A		28 Liquid, sludge, solid	For safe storage; for proper waste designation; applicability of LDR; and characterization of appropriate treatment	To provide proper waste designation and applicability of LDR requirements.

1 Analytical Parameters, Methods, and Rationale for Waste Received at
 2 Central Waste Complex (sheet 2 of 4)
 3

HNF-1886

4 Parameter	5 Analytical method ^a	6 Media type	7 Rationale for selection of waste acceptance parameters	8 Rationale for analysis
1 Sulfide	9030B	Liquid, sludge, solid	For safe storage; for proper waste designation; applicability of LDR; and characterization of appropriate treatment	To provide proper waste designation and applicability of LDR requirements.
2			Organic analyses	
3 PCBs	8081A/8082	Liquid, sludge, solid	To determine proper waste designation for management of waste in accordance with the <i>Toxic Substance Control Act of 1976 (TSCA)</i> and WAC 173-303.	To provide proper waste designation and to meet TSCA and LDR requirements.
4 Total organic carbon	9060	Liquid, sludge, solid	To determine applicability of LDR and applicability to state-only requirements.	To provide proper waste designation and applicability to state-only requirements, to meet LDR requirements, and comply with CWC waste acceptance criteria.
5				
6 Total organic halides	9020B/9021/9022	Liquid, sludge	To determine proper waste designation and applicability to state-only requirements.	To provide proper waste designation and applicability to state-only requirements.
7 Persistent constituents	9075/9076/9077/9211/9212/9214/9250/9251/9253			
8				
9				
10 Total suspended solids	160.2 ^b	Liquid, sludge	To determine applicability of LDR and status as a wastewater	To provide applicability of LDR and status as a wastewater.
11				
12 Volatile organic compounds	1311/8260B	Liquid, sludge, solid	To determine proper waste designation, applicability of LDRs, and characterization of appropriate treatment.	To provide proper waste designation, regulatory status, and applicability of LDR requirements.
13				

1 Analytical Parameters, Methods, and Rationale for Waste Received at
 2 Central Waste Complex (Sheet 3 of 4)
 3

HNF-1886

4 Parameter	5 Analytical method*	6 Media type	7 Rationale for selection of waste acceptance parameters	8 Rationale for analysis
1 Semivolatile organic compounds	1311/8270A	Liquid, sludge, solid	To determine proper waste designation, applicability of LDRs, and characterization of appropriate treatment.	To provide proper waste designation, regulatory status, and applicability of LDR requirements.
3 Chlorinated herbicides	8151A	Liquid	Not applicable	To provide proper waste designation and applicability to state-only requirements.
Inorganic analyses				
6 Arsenic	1311/6010B	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.
7 Barium	1311/6010B	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.
8 Cadmium	1311/6010B	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.
9 Chromium	1311/6010B	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.
10 Lead	1311/6010	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.

Analytical Parameters, Methods, and Rationale for Waste Received at Central Waste Complex (sheet 4 of 4)

Parameter	Analytical method*	Media type	Rationale for selection of waste acceptance parameters	Rationale for analysis
1 Mercury	1311/7470	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.
2 Silver	1311/6010	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.
3 Selenium	1311/6010	Liquid, sludge, solid	To provide for proper waste designation, applicability of LDRs, and for characterization of appropriate treatment.	To determine proper waste designation, regulatory status as a toxic characteristic waste, and applicability of LDR requirements.
4 Nickel	6010	Liquid, sludge, solid	To determine applicability of LDRs, and for characterization of appropriate treatment.	To meet LDR requirements.

* EPA SW-846, unless otherwise noted.

^b EPA-600/4-7-020, unless otherwise noted.

1. DB = land disposal restriction

EDR = Fairly unspotted Resin edge.
PCB = Polychlorinated biphenyls

RCEB = Regional Council of Economic and Social Affairs.