

NOV 17 1999

ENGINEERING DATA TRANSMITTAL

Page 1 of 1

1. EDT 627597

2. To: (Receiving Organization) Distribution	3. From: (Originating Organization) Process Engineering	4. Related EDT No.: N/A
5. Proj./Prog./Dept./Div.: Spent Nuclear Fuel Project	6. Design Authority/ Design Agent/Cog. Engr.: D. R. Duncan	7. Purchase Order No.: N/A
8. Originator Remarks: Transmittal for approval and release		9. Equip./Component No.: N/A
		10. System/Bldg./Facility: IWTS, K Basins, FRS
11. Receiver Remarks: 11A. Design Baseline Document? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		12. Major Assm. Dwg. No.: N/A
		13. Permit/Permit Application No.: N/A
		14. Required Response Date: ASAP

15. DATA TRANSMITTED					(F)	(G)	(H)	(I)
(A) Item No.	(B) Document/Drawing No.	(C) Sheet No.	(D) Rev. No.	(E) Title or Description of Data Transmitted	Approval Desig- nator	Reason for Trans- mittal	Origi- nator Trans- mittal	Receiv- er Dispo- sition
1	SNF-4998	N/A	0	Potential for Fuel Ignition after K Basin Drainage (Fauske & Associates Report FAI/99-71, Rev. 1)	Q, S ^N	1,2	1	1

16.

KEY

Approval Designator (F)	Reason for Transmittal (G)	Disposition (H) & (I)									
E, S, Q, D or N/A (see WHC-CM-3-5, Sec.12.7)	1. Approval 4. Review 2. Release 5. Post-Review 3. Information 6. Dist. (Receipt Acknow. Required)	1. Approved 4. Reviewed no/comment 2. Approved w/comment 5. Reviewed w/comment 3. Disapproved w/comment 6. Receipt acknowledged									
17. SIGNATURE/DISTRIBUTION (See Approval Designator for required signatures)											
(G) Rea- son	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN	(G) Rea- son	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN
		Design Authority N/A									
		Design Agent N/A									
1	1	Cog. Eng. D.R. Duncan	<i>D.R. Duncan 11/4/99</i>	R3-86							
		Cog. Mgr. R.L. Garrett	<i>R.L. Garrett 11/4/99</i>	R3-26							
1	1	QA G.M. Davis	<i>G.M. Davis 11/16/99</i>	X3-80							
1	1	Safety R.L. Garrett	<i>R.L. Garrett 11/4/99</i>	R3-26							
		Env. N/A									
18.			19.		20.			21. DOE APPROVAL (if required) Ctrl. No.			
D. R. Duncan Signature of EDT Originator			R.L. Garrett Signature of Authorized Representative		R.L. Garrett Design Authority/ Cognizant Manager			<input type="checkbox"/> Approved N/A <input type="checkbox"/> Approved w/comments <input type="checkbox"/> Disapproved w/comments			
11/4/99			11/4/99		11/4/99						
Date			Date		Date			Date			
Signature of EDT Originator			Authorized Representative		Design Authority/ Cognizant Manager						

BD-7400-172-2 (05/96) GEF097

BD-7400-172-1

1.0 SUMMARY AND PURPOSE

1.1 Scope and Purpose

The potential for N reactor fuel ignition after hypothetical K basin drainage is considered here for fuel configurations and boundary conditions specified by the Spent Nuclear Fuel Project (SNFP). Configurations include:

1. Scrap canisters (open K East canisters containing primarily fragmented fuel) partially covered by sludge (on the exterior),
2. IWTS (Integrated Water Treatment System) settlers filled with fine fuel particulate,
3. IWTS knock out pots filled with coarse fuel particulate,
4. Scrap (fragmented fuel) in stylized configurations residing on the process table, including hemispherical and cylindrical piles, and
5. Scrap in a scrap basket on the process table.

Fuel mass, metal fraction, and surface area or ranges for these parameters are specified by the SNFP in each configuration. Fuel and container exteriors are specified to be dry after the hypothetical drainage event, except in the case of fine particulate in the settlers which physically must hold water. Credibility of the specified scenarios and input parameters is neither endorsed nor judged in this report.

The purpose of the calculations is to determine thermal stability of fuel given the specified configurations, parameters, and boundary conditions.

1.2 Summary of Results

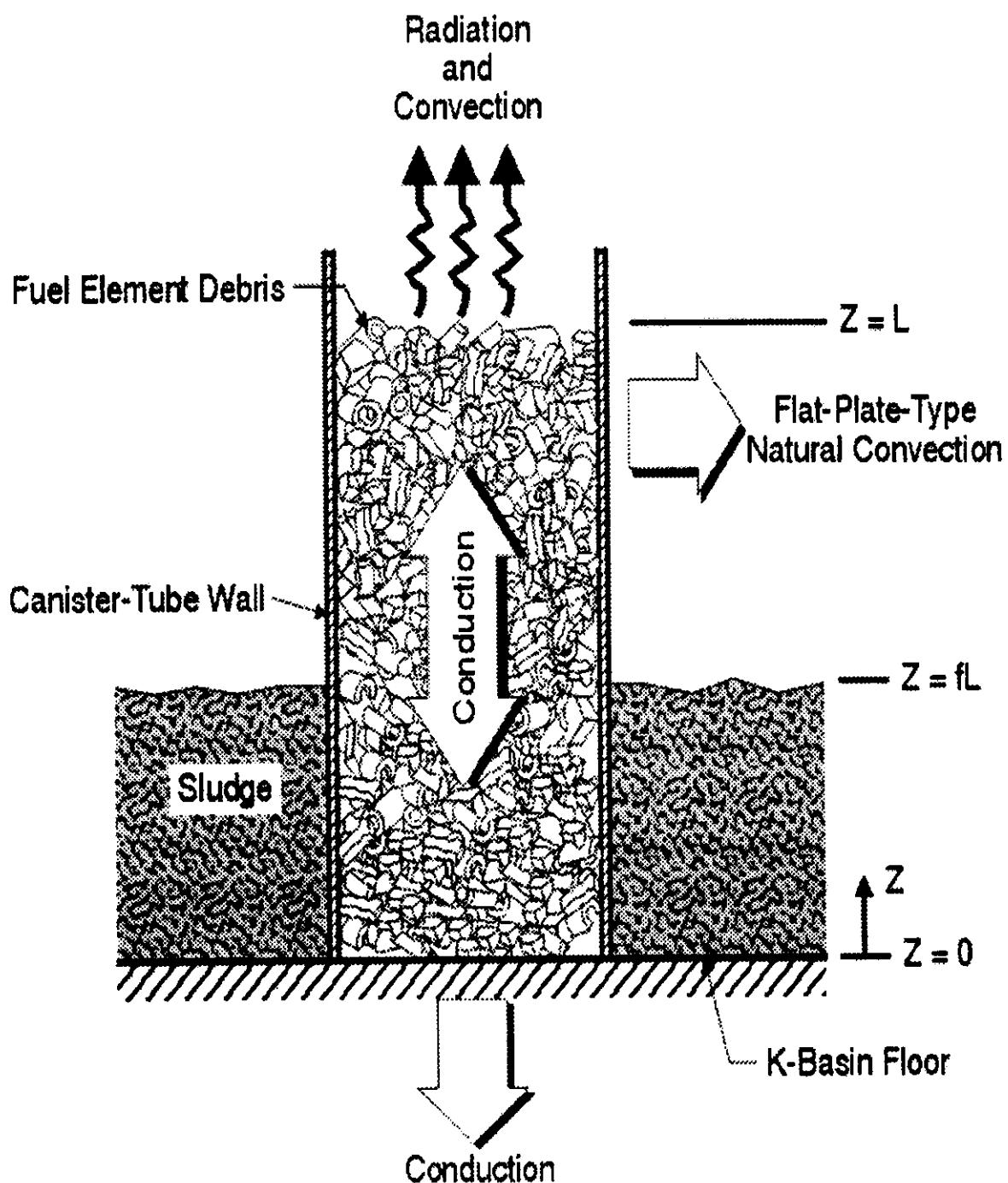
After hypothetical K basin drainage, thermal stability of the various configurations examined may be summarized as follows:

1. Using best-estimate rate law values, scrap canisters are thermally stable for the time-average basin ambient temperature of 35°C as long as the canister is no more than about 25% covered by sludge. Use of a higher rate law multiplier or a higher sludge coverage makes a scrap canister unstable. Stability would be increased for partially filled scrap canisters.
2. For practical purposes, IWTS settlers are at the margin of thermal stability and are unstable for a time-average basin ambient temperature of 35°C. This conclusion would change if it could be shown that low metal fractions are really passed to the settler from the IWTS knock out pot. The conclusions are insensitive to choice of rate law multipliers.
3. Using best-estimate rate law values and a modified design, including copper inserts, an IWTS knock out pot is thermally stable for reasonable contents. For higher rate law values or for the baseline design, an IWTS knock out pot is unstable.
4. The stable scrap mass in a hemispherical configuration on the scrap table is slightly less than, or just about equal to, twice the scrap mass of a scrap canister (four barrels). In a cylindrical pile, two canisters' scrap mass is stable up to depths of about 0.28 m (11 inches), and one canisters' worth of scrap is always stable.
5. A scrap basket is thermally stable using bounding input parameters.

2.0 SCRAP CANISTER EVALUATION

2.1 Scenario and Parameter Specifications

Here we investigate the ignition potential of material in a scrap canister after a hypothetical K basin drainage accident. Figure 2-1 is an illustration of a scrap canister partially covered in sludge with heat transfer paths and elevations defined. In this scenario, water is assumed completely drained from the scrap canister interior.


In a worst case, scrap fills the canister to the top as a porous debris bed, and in practice variable debris heights are of interest. The sludge coverage fraction external to the debris bed is variable. Table 2-1 contains a summary of key parameters.

2.2 Model

Heat transfer in the scrap is idealized by a one-dimensional axial temperature profile. The portion of scrap covered by sludge is adiabatic radially because in general another canister will be present and the sludge merely fills up inter-canister volume. The uncovered portion of scrap canister wall undergoes convection by a thermosyphon mechanism described in detail in [FAI, 1994]. Thus, the uncovered scrap loses heat like a fin in the direction orthogonal to the calculated temperature gradient. This approach is conservative and will yield a conservative prediction of ignition potential. Heat transfer coefficients in each direction are discussed below.

The temperature distribution below the sludge level T_1 and above the sludge level T_2 may now be derived. The derivation in [FAI, 1994] is repeated and extended here to obtain a simplified, closed-form ignition criterion.

Figure 2-1:
**Ignition Model for Highly Degraded Fuel Elements in an Open Canister Partially
 Submerged in Sludge.**

ME947107.CDR 8-11-94

Table 2-1: Key Parameters for Scrap Canister Stability.		
Parameter	Value	References
Decay power	2000 W/m ³	Rounded up Databook bounding value.
Area per unit volume	125.6 m ⁻¹	Corresponds to Databook 4.5 m ² scrap basket.
Canister radius	0.104 m	None.
Canister average height	0.6 m	None.
Bed thermal conductivity	0.46 w/m/K	For metal in air.
Ritchie relative humidity reaction rate	75%	With various rate law multipliers.

To simplify the nomenclature during the course of the analysis, we denote by Q the sum of the spatially uniform decay and oxidation volumetric heating rates. Thus

$$Q = (1 - \phi) Q_{dk} + A_v \Delta H \dot{m}_{ox}'' (T_{max}) \quad (2-1)$$

$$A_v = \frac{6(1 - \phi)}{d} \quad (2-2)$$

where A_v = Reactive area per unit volume, m⁻¹,

ϕ = Scrap porosity (void fraction),

Q_{dk} = Fuel volumetric decay power, W/m³,

d = Effective particle size, m,

ΔH = Heat of reaction, 3.4×10^7 J/kgO₂, and

$\dot{m}_{ox}''(T)$ = Reaction rate, kgO₂/m²/s.

The quantity T_{max} in the above equation is the yet-to-be determined maximum temperature within the reactive uranium debris bed. The conduction equation for the lower portion of the canister with an adiabatic side wall is

$$\frac{d^2 T_1}{dz^2} = - \frac{Q}{k_b} \quad 0 < z < fL \quad (2-3)$$

where z = Vertical coordinate measured from the bottom of the canister,
 L = Total height of the uranium debris bed,
 k_b = Effective bed thermal conductivity, W/m/K, and
 f = Lower fraction of the canister wall that is not cooled on the outside by natural convection (see Figure 2-1).

The fraction f is a measure of the degree of submergence of the heat generating portion of the canister in the exterior sludge. The conduction equation for the upper portion of the debris bed where side convection occurs is

$$\frac{d^2 T_2}{dz^2} = - \frac{Q}{k_b} + 2 \frac{H_s}{R_{can}} (T_2 - T_\infty) \quad fL < z < L \quad (2-4)$$

where R_{can} = Radius of the canister, and
 H_s = Heat transfer coefficient for convection off the side of the canister divided by the bed thermal conductivity

$$H_s = \frac{h_t}{k_b} \quad (2-5)$$

The heat-transfer coefficient h_t is given by

$$h_t = 0.454 k_b \left(\frac{g \beta \Delta T}{v \alpha L} \right)^{0.25} \quad (2-6)$$

where g = Acceleration of gravity, 9.81 m/s^2 ,
 β = $1 / T_\infty$ = Expansion coefficient, K^{-1} ,
 ΔT = Reference temperature difference, K ,
 ν = Air kinematic viscosity, $\text{kg/m} \cdot \text{s}$, and
 α = Air thermal diffusivity, m^2/s .

The solutions of equations (2-3) and (2-4) must obey the following boundary conditions:

$$\frac{d T_1}{d z} (0) = H_d [T_1 (0) - T_\infty] \quad (2-7)$$

at the bottom of the debris bed, and

$$\frac{d T_2}{d z} (L) = -H_u [T_2 (L) - T_\infty] \quad (2-8)$$

at the top of the debris bed. The quantity H_d is the "downward heat transfer coefficient" for conduction into the concrete, namely $k_{\text{con}} / R_{\text{can}}$, divided by the debris bed thermal conductivity.

$$H_d = \frac{k_{\text{con}}}{R_{\text{can}} k_b} \quad (2-9)$$

The quantity H_u is the "upward heat transfer coefficient" for combined turbulent and natural convection heat transfer off the top of the debris bed divided by the bed thermal conductivity:

$$H_u = \frac{h_\infty}{k_b} \quad (2-10)$$

Here h_∞ is the sum of convective and linearized radiative terms: $h_\infty = h_c + h_r$.

$$h_c = 0.1 \left(\frac{g \beta \Delta T}{\nu \alpha} \right)^{0.33} \quad (2-11)$$

$$h_r = 4 \sigma \varepsilon T_\infty^3 \quad (2-12)$$

where ε = Overall planar emissivity, and

σ = Stefan-Boltzmann constant, $5.67 \times 10^{-8} \text{ W/m}^2/\text{K}^4$.

Note that in writing equation (2-7), we have assumed that the temperature within the concrete floor of K-basin and far below the canister is always equal to the ambient temperature.

The solutions of equations (2-3) and (2-4) must also obey the following temperature compatibility conditions at the location in the debris bed that coincides with the surface of the insulating sludge (see Figure 2-1):

$$T_1(fL) = T_2(fL) ; \frac{dT_1}{dz}(fL) = \frac{dT_2}{dz}(fL) \quad (2-13)$$

Solving equations (2-3) and (2-4) yields

$$T_1(z) = T_\infty + \frac{Q}{2 k_b} (-z^2 + C_1 z + C_2) ; 0 < z < fL \quad (2-14)$$

$$T_2(z) = T_\infty + \frac{Q R_{can}}{2 k_b H_s} (1 + C_3 e^{-mz} + C_4 e^{mz}) ; fL < z L \quad (2-15)$$

where C_1 , C_2 , C_3 , and C_4 are constants of integration and a fin parameter is defined by

$$m = \left(\frac{2 H_s}{R_{can}} \right)^{1/2} \quad (2-16)$$

Substituting equations (2-14) and (2-15) into the boundary and temperature compatibility conditions represented by equations (2-7), (2-8), and (2-13) yields, after some lengthy algebraic manipulations, the following expressions for the integration constants:

$$C_4 = \frac{\frac{H_s}{R_{can}} \left[(f L)^2 + \frac{2 f L}{H_d} \right] - 1 - \frac{H_u (1 + M)}{(m - H_u)} \cdot e^{m L (1 - f)}}{(1 - M) e^{m L f} + \frac{(m + H_u) (1 + M)}{m - H_u} \cdot e^{m L (2 - f)}} \quad (2-17)$$

$$C_3 = \frac{H_u}{(m - H_u)} e^{m L} + \frac{C_4 (m + H_u)}{m - H_u} e^{2 m L} \quad (2-18)$$

$$C_1 = 2 f L + \frac{R_{can}}{H_s} m (C_4 e^{m f L} - C_3 e^{-m f L}) \quad (2-19)$$

$$C_2 = \frac{C_1}{H_d} \quad (2-20)$$

where M in equation (2-17) is defined as

$$M = m \left(f L + \frac{1}{H_d} \right) \quad (2-21)$$

Test a pure source with no depletion, same initial distribution, expect to derive average addition rate.

$$\text{Fill over a two year period: } V_{\text{dot}} := \frac{\Delta x \cdot (1 - \varepsilon)}{2 \cdot \text{Secy}} \cdot \frac{1 - \eta + \frac{\rho_m}{\rho_o} \cdot \frac{270}{238} \cdot \eta}{\eta}^{-1} \quad V_{\text{dot}} = 1.352 \cdot 10^{-9}$$

$$D(t, N) := fNdot(300, N, \eta, 0, V_{\text{dot}}) \quad v := rkfixed(N, 0, \text{Secy}, 250, ID1) \quad j := 0..B-1$$

$$i := 0..250 \quad N_{j,i} := v_{i,j+1} \quad M_i := N^{<i>} \cdot V_b \cdot \rho_m \quad dM_i := fNdot(300, N^{<i>}, \eta, 0, V_{\text{dot}}) \cdot V_b \cdot \rho_m \quad t_i := v_{i,0}$$

$$M_{\text{dot}} := V_{\text{dot}} \cdot \rho_m \cdot \eta \quad M_{\text{dot}} = 5.139 \cdot 10^{-6} \quad M_{250} - M_0 \cdot e^{-t_0} = 5.139 \cdot 10^{-6} \quad dM_0 = 5.139 \cdot 10^{-6}$$

Test particle evolution function Expect evolution to a steady distribution when a source is present.

$$N := fN(\mu_s, \sigma_s, 0.00001, \eta_j)$$

$$D(t, N) := fNdot(300, N, \eta, \xi, V_{\text{dot}}) \quad v := rkfixed(N, 0, \text{Secy}, 250, ID1) \quad j := 0..B-1$$

$$n1_j := v_{10,j+1} \quad n2_j := v_{20,j+1} \quad n3_j := v_{50,j+1} \quad n4_j := v_{100,j+1} \quad n5_j := v_{250,j+1}$$

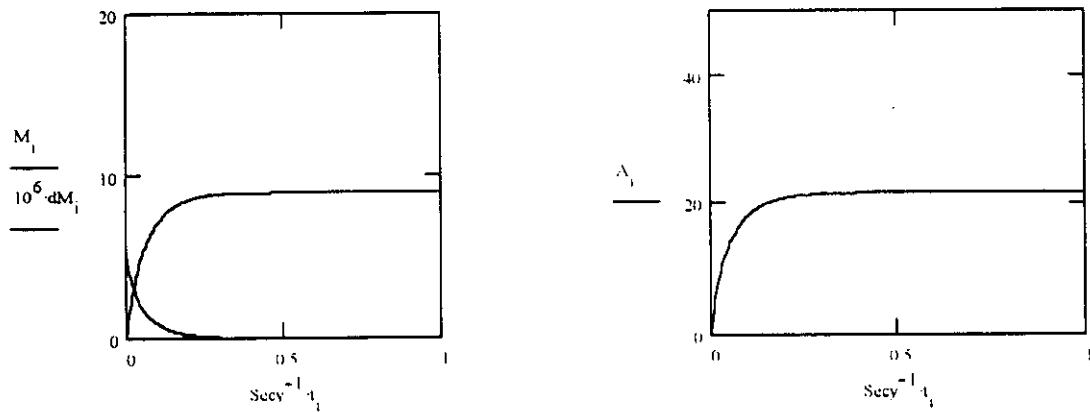
Demonstrate a-priori prediction of steady distribution: n4, n5, and NS all align on plot below:

$$U := fUo(\xi, 300) \quad U = 1.241 \cdot 10^{-11}$$

$$b := B-1 \quad NS_b := \frac{\eta \cdot V_{\text{dot}} \cdot S_b}{U \cdot \lambda_b} \quad b := 0..B-2 \quad j_b := B-b-2 \quad NS_{j_b+1} := \frac{\eta \cdot V_{\text{dot}} \cdot S_{j_b+1}}{U} + NS_{j_b+1} \cdot \lambda_{j_b+1}$$

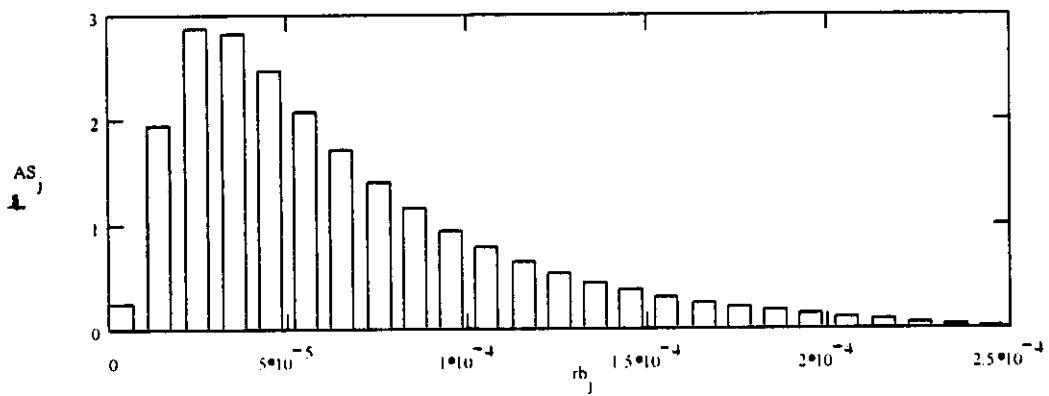
$$NS_{12} = 2.738 \cdot 10^6 \quad NS_6 = 3.236 \cdot 10^7 \quad NS_0 = 1.92 \cdot 10^9$$

$$n5_{12} = 2.738 \cdot 10^6 \quad n5_6 = 3.236 \cdot 10^7 \quad n5_0 = 1.92 \cdot 10^9 \quad j := 0..B-1$$


$$i := 0..250 \quad NN_{j,i} := v_{i,j+1} \quad M_i := NN^{<i>} \cdot Vb \cdot \rho_m \quad dM_i := fNdot(300, NN^{<i>} \cdot S, \eta, \xi, Vdot) \cdot Vb \cdot \rho_m \quad t_i := v_{i,0}$$

$$\text{Source rate: } Vdot \cdot \rho_m \cdot \eta = 5.139 \cdot 10^{-6}$$

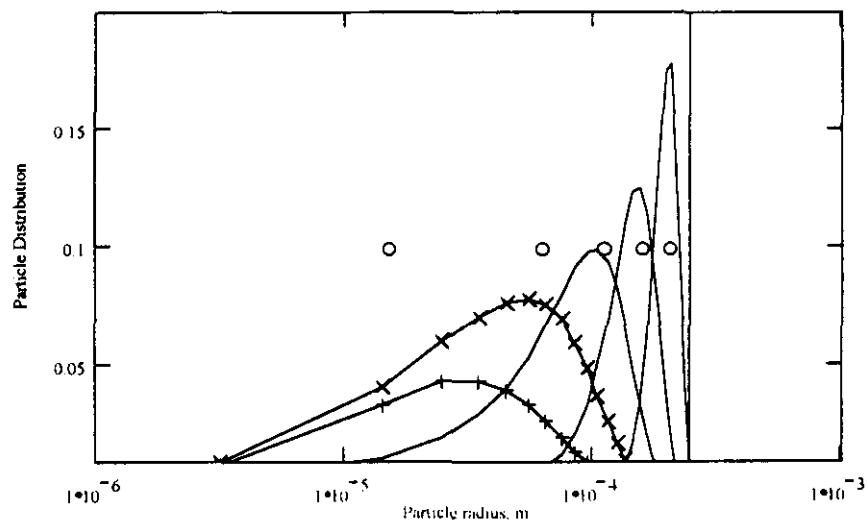
$$\text{Oxidation rate at steady state: } fNdot(300, NN^{<250>} \cdot S, \eta, \xi, 0) \cdot Vb \cdot \rho_m = -5.139 \cdot 10^{-6}$$


$$U := fUox(\xi, 300) \quad U = 1.241 \cdot 10^{-11} \quad w := \rho_m \cdot U \cdot NN^{<250>} \cdot Ab \quad w = 5.139 \cdot 10^{-6}$$

$$\text{Area: } A_i := NN^{<i>} \cdot Ab \quad A_{250} = 21.803 \quad \text{Source area: } m^2/s \quad S \cdot Ab \cdot Vdot \cdot \eta = 1.892 \cdot 10^{-5}$$

$$\text{Examine steady area distribution: } j := 0..B-1 \quad \Delta S_j := Ab_j \cdot NS_j \quad \sum_j \Delta S_j = 21.803$$

$$\Delta dot := \eta \cdot Vdot \cdot \sum_j \Delta S_j \cdot S_j \quad \Delta dot = 1.892 \cdot 10^{-5}$$

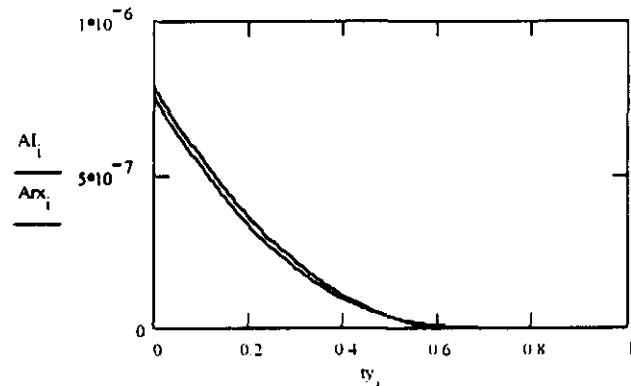


Stringent Test: Propagation of Monodisperse Initial Distribution

```

b := 0..B-1    Nb := 10-6  Sb := 0    NB-1 := 1    η := 0    ξ := 3
D1(t, N) := fNdot(300, N, S, η, ξ, 0)    v := rkfixed(N, 0, Secy, 250, D1)    j := 0..B-1
i := 0..250    ti := vi,0    v := submatrix(v, 0, 250, 1, B)T    Ndoti := sum(Ndot, 300, v<1>, S, η, ξ, 0)
ii := 0..249    Δtii := tii+1 - tii    Δt250 := Δt249    Ndot · Δt = -1    Number conserved
U := fUox(ξ, 300)    U = 1.241 · 10-11    τ := rmax / (U · Secy)    τ = 0.639    t160 / Secy = 0.64    Particles depleted
Ideal area versus time:    ri := if(rmax < U · ti, 0, rmax - U · ti)    Ali := 4 · π · (ri)2    ty := ti · Secy-1
n1 := v<30>    n2 := v<60>    n3 := v<90>    n4 := v<120>    n5 := v<150>    Select distributions
jj := 0..4    NRjj := 0.1    RI0 := r30    RI1 := r60    RI2 := r90    RI3 := r120    RI4 := r150    <- Ideal solution

```



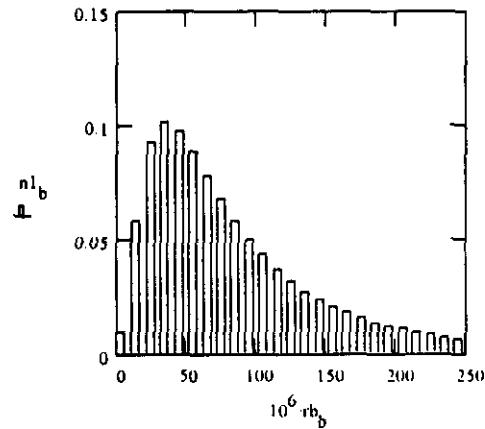
Ideal versus numerical solution:

Vertical line at right is the initial radius of all particles of uniform size.

Circles indicate the ideal particle radius at five successive later times. Five distribution curves correspond to the calculated values at the same times.

Numerical solution area versus time: ΔA_x := v^{<1>} · Δb

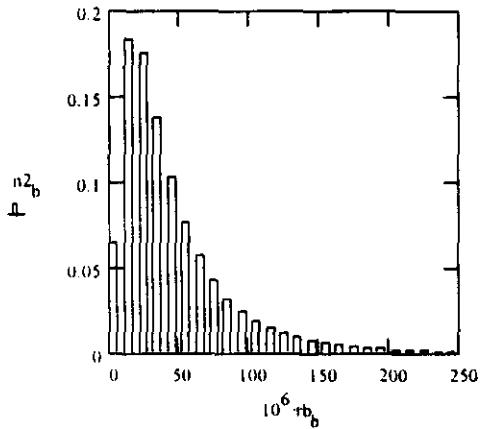
Reactive area versus time:
Ideal vs numerical solution


The ideal and calculated reaction areas are virtually identical.

Example particle size distributions: Volume distribution functions. $b := 0..B - 1$

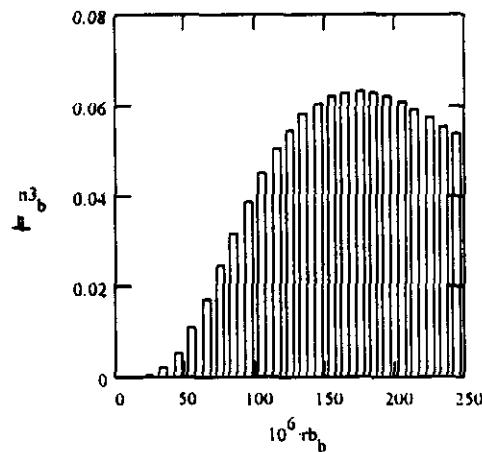
100 micron mean and standard deviation

$$n1 := fP(1.0 \cdot 10^{-4}, 1.0 \cdot 10^{-4})$$


$$A_v := \sum_b n1_b \cdot \frac{3}{rb_b} \quad A_v = 6.995 \cdot 10^{-4}$$

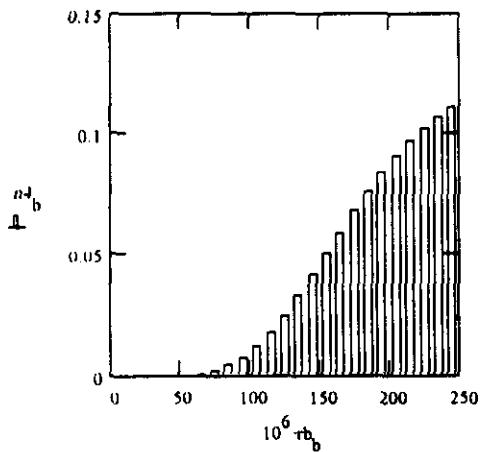
50 micron mean, 50 micron standard deviation

$$n2 := fP(0.5 \cdot 10^{-4}, 0.5 \cdot 10^{-4})$$


$$A_v := \sum_b n2_b \cdot \frac{3}{rb_b} \quad A_v = 1.542 \cdot 10^{-5}$$

300 micron mean, 200 micron standard deviation

$$n3 := fP(3.0 \cdot 10^{-4}, 2.0 \cdot 10^{-4})$$


$$A_v := \sum_b n3_b \cdot \frac{3}{rb_b} \quad A_v = 2.105 \cdot 10^{-4}$$

400 micron mean, 200 micron standard deviation

$$n4 := fP(4.0 \cdot 10^{-4}, 2.0 \cdot 10^{-4})$$

$$A_v := \sum_b n4_b \cdot \frac{3}{rb_b} \quad A_v = 1.623 \cdot 10^{-4}$$

$$fL_e(m_o, N) := \begin{cases} m_m \leftarrow \rho_m \cdot N \cdot Vb \\ A_{rx} \leftarrow N \cdot Ab \\ A \leftarrow (1 - \varepsilon)^{-1} \cdot (m_m \cdot \rho_m^{-1} + m_o \cdot \rho_o^{-1}) \end{cases} \quad \begin{matrix} \text{Function to yield effective} \\ \text{conduction length given} \\ \text{oxide mass and particle vector} \end{matrix}$$

$$\begin{matrix} \varepsilon = 0.3 & R = 0.254 \\ \rho_m \approx 1 \cdot 10^4 & \Delta x = 0.203 \\ \rho_o = 5 \cdot 10^3 \end{matrix}$$

$$\begin{cases} \theta \leftarrow f\theta(A) \\ h \leftarrow R - R \cdot \cos(0.5 \cdot \theta) \\ L_e \leftarrow \Delta x \cdot h \cdot R \end{cases}$$

$$fAv(m_o, N) := \begin{cases} m_m \leftarrow \rho_m \cdot N \cdot Vb \\ A_{rx} \leftarrow N \cdot Ab \end{cases} \quad \begin{matrix} \text{Function to overall A / V} \\ \text{in settler} \end{matrix}$$

$$A_v \leftarrow \frac{A_{rx}}{A}$$

$$fB(A_v, m_o, m_m, \xi, X, h, T_{am}) := \begin{cases} A \leftarrow (1 - \varepsilon)^{-1} \cdot (m_m \cdot \rho_m^{-1} + m_o \cdot \rho_o^{-1}) \\ P \leftarrow X^2 \cdot 2 \cdot k_b^{-1} + A \cdot (h \cdot 2 \cdot \pi \cdot R \cdot f(A))^{-1} \\ Q_v \leftarrow (m_m + m_o) \cdot \frac{238}{270} \cdot \frac{Q_{dk}}{\rho_m} \cdot \frac{1}{A} \\ T_{dk} \leftarrow T_{am} + Q_v \cdot P \\ T_r \leftarrow T_E \cdot T_{dk}^{-1} \\ B \leftarrow \frac{A_v \cdot P \cdot \xi \cdot k_o \cdot \Delta H \cdot T_r}{T_{dk} \cdot \exp(-T_r + 1)} \end{cases} \quad \begin{matrix} Q_{dk} = 2 \cdot 10^3 \\ k_o = 119.6 \\ T_E = 6.945 \cdot 10^3 \\ \Delta H = 1.67 \cdot 10^7 \\ k_b = 2 \end{matrix}$$

$$fTig(A_v, m_o, m_m, \xi, X, h) := \begin{cases} T_{am} \leftarrow 350 \\ Tig \leftarrow \text{root}(fB(A_v, m_o, m_m, \xi, X, h, T_{am}) - 1, T_{am}) \end{cases}$$

Function for power at ignition point: Note $T_0=1$ at ignition used to get reaction power.

$$fQ(A_v, m_o, m_m, \xi, X, T_{am}) := \begin{cases} Q_v \leftarrow (m_m + m_o) \cdot \frac{238}{270} \cdot \frac{Q_{dk}}{\rho_m} \cdot \frac{(1 - \varepsilon)}{(m_m \cdot \rho_m^{-1} + m_o \cdot \rho_o^{-1})} \\ T_{dk} \leftarrow T_{am} + Q_v \cdot X^2 \cdot 2 \cdot k_b^{-1} \\ T_r \leftarrow T_E \cdot T_{dk}^{-1} \\ Q \leftarrow (m_m + m_o) \cdot \frac{238}{270} \cdot \frac{Q_{dk}}{\rho_m} + A_v \cdot \xi \cdot k_o \cdot \exp(-T_r + 1) \end{cases}$$

Full simulation 100 micron size mean and s.d over 1 year:

$$F := 0.001 \quad \mu_s := 10^{-4} \quad \sigma_s := 10^{-4} \quad \mu := 0.5 \quad \xi := 3 \quad \tau := \text{Secy}$$

$$Y := f(Y_0, F, \mu_s, \sigma_s, \mu, \tau, \xi) \quad \Psi := \text{rkfixed}(Y, 0, \tau, 250, \text{DS}) \quad j := 0..B-1 \quad i := 0..250$$

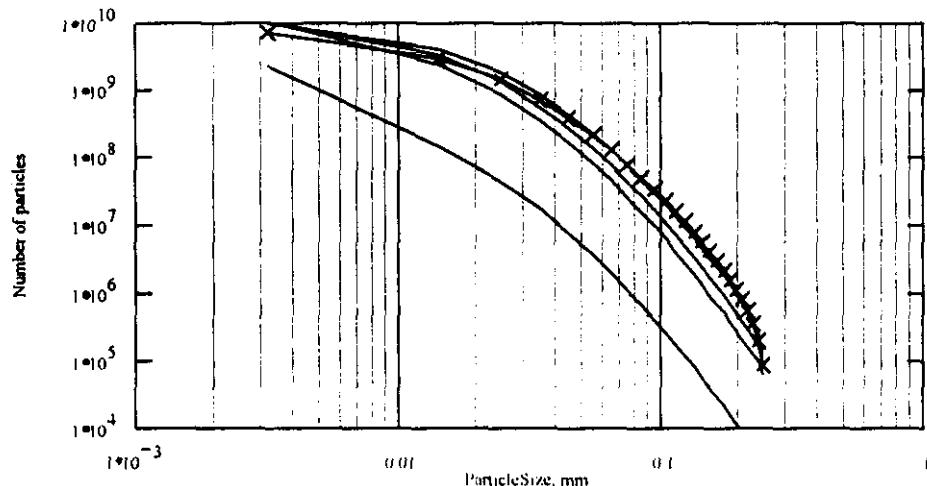
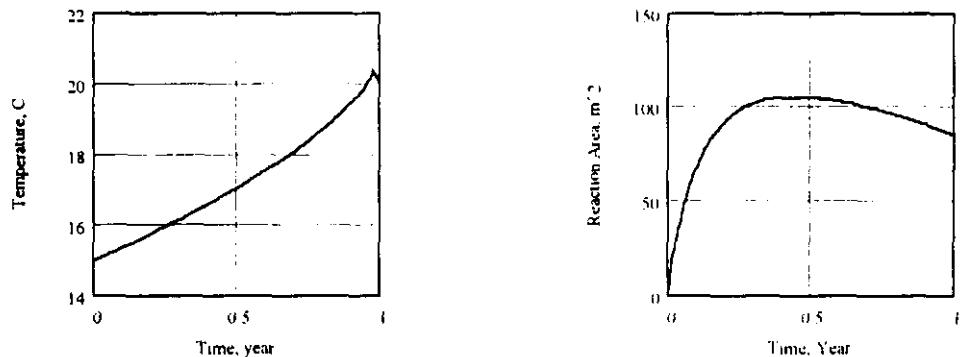
Source rate and fraction filled just be oxide for reference:

$$Vdot := Y_{17} \quad Vdot = 1.176 \cdot 10^5 \quad Vdot \cdot (1 - \varepsilon)^{-1} \cdot \text{Secy} \cdot \Delta x^{-1} = 2.615 \cdot 10^{13} \quad \Delta x \cdot \rho_0 = 1.013 \cdot 10^3$$

Time, oxide mass, distribution, temperature, reactive area:

$$t_i := \Psi_{i,0} \quad m_{0,i} := \Psi_{i,5} \quad N_{j,i} := \Psi_{i,j+6} \quad T_i := f(TSS(\xi, m_0, N^{<i>}) - 273) \quad Ar_i := N^{<i>} \cdot Ab$$

Select particle size distributions:



$$m_{0,j} := \Psi_{0,j+6} \quad m_{1,j} := \Psi_{10,j+6} \quad m_{2,j} := \Psi_{20,j+6} \quad m_{3,j} := \Psi_{50,j+6} \quad m_{4,j} := \Psi_{250,j+6}$$

$$\text{day0} := t_0 \cdot \text{Secd}^{-1} \quad \text{day1} := t_{10} \cdot \text{Secd}^{-1} \quad \text{day2} := t_{20} \cdot \text{Secd}^{-1} \quad \text{day3} := t_{50} \cdot \text{Secd}^{-1} \quad \text{day4} := t_{250} \cdot \text{Secd}^{-1}$$

$$\text{Check full after one year: } (m_{0,250} \cdot \rho_0^{-1} + N^{<250>} \cdot Vb) \cdot \Delta x^{-1} \cdot (1 - \varepsilon)^{-1} = 1.026$$

$$\text{Reaction power at peak (about 0.5 year): } Qr_i := f(QrN(\xi, T_i + 273) \cdot Ar_i) \quad \text{max}(Qr) = 27.374$$

Temperature and reactive area: Discontinuity in T when height = 2/3 diameter

Particle size distributions for increasing times from lower (solid) to upper (crosses) curves

$$\text{Metal mass: } m_{m_i} := \rho_m N^{<i>} \cdot V_b$$

$$\text{Bulk A / V: } A_{vb_i} := \rho A v_i m_{o_i} N^{<i>}$$

$$T_{ig_i} := f(T_{ig}(A_{vb_i}, m_{o_i}, m_{m_i}, \xi, L_{e_i}, h)) = 273$$

$$\text{Conduction length: } L_{e_i} := \sqrt{L_e m_{o_i} N^{<i>}}$$

$$\text{External h: } h := 6$$

$$Q_i := (Q_i(A_{vb_i}, m_{o_i}, m_{m_i}, \xi, L_{e_i}, T_{ig_i}))$$

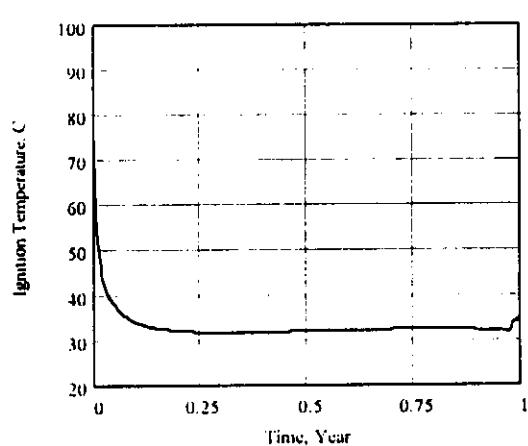
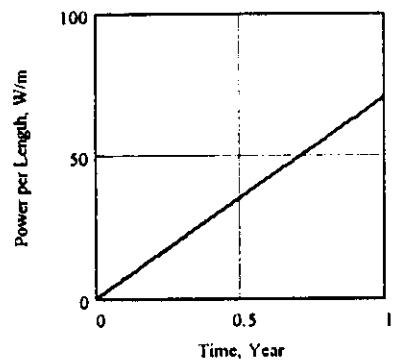
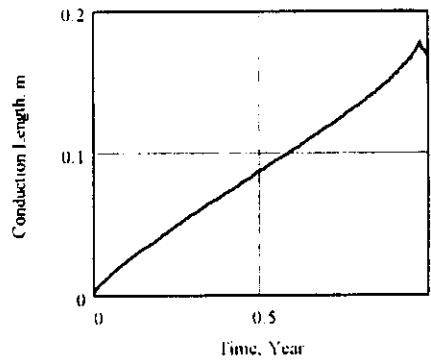
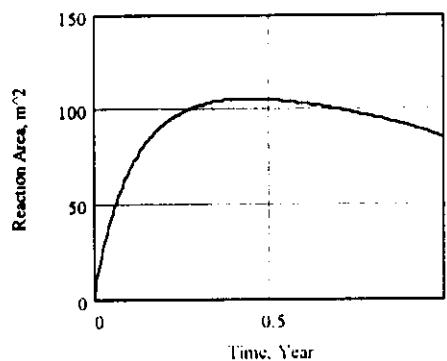
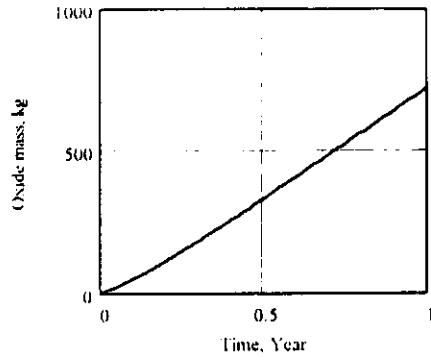
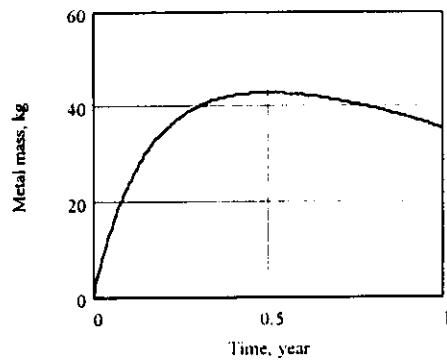







Fig. 3-1. Settler ignition condition for $\xi=3$, 100 micron radius and std deviation, for various fill conditions.

Full simulation 50 micron size mean and s.d over 1 year:

$$F := 0.001 \quad \mu_s := 0.5 \cdot 10^{-4} \quad \sigma_s := 0.5 \cdot 10^{-4} \quad \mu := 0.5 \quad \xi := 3 \quad \tau := \text{Secy}$$

$$Y := t(Y_0, F, \mu_s, \sigma_s, \mu, \tau, \xi) \quad \Psi := \text{rkfixed}(Y, 0, \tau, 250, DS) \quad j := 0..B-1 \quad i := 0..250$$

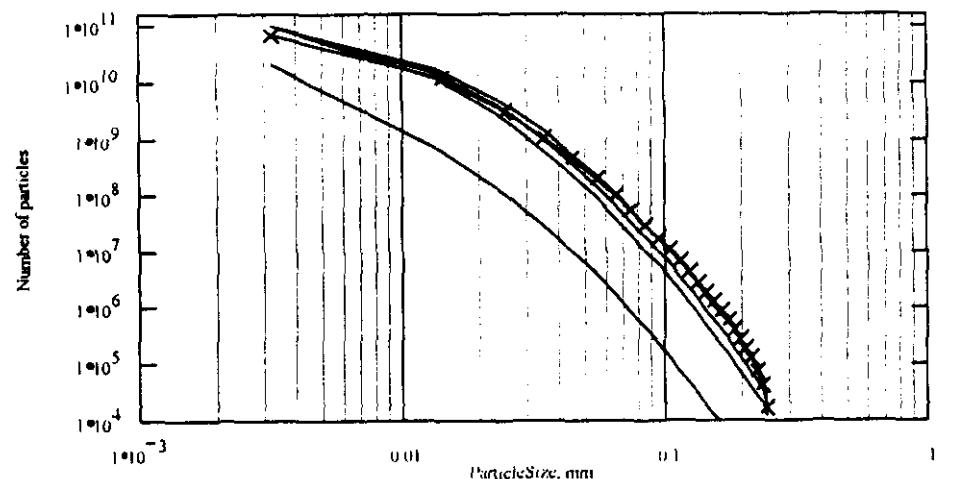
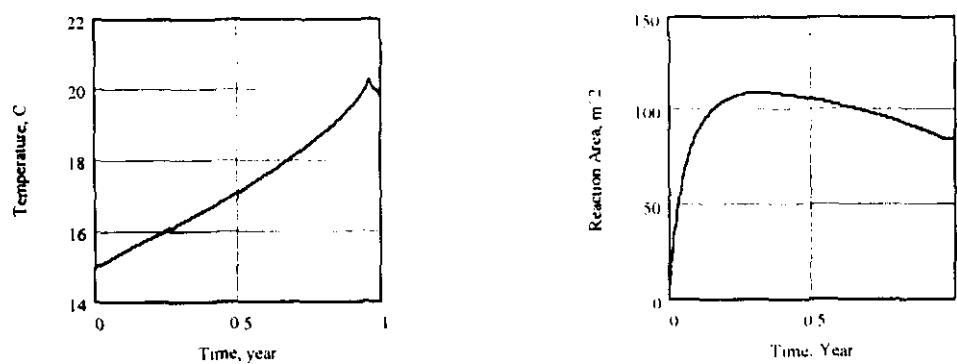
Source rate and fraction filled just be oxide for reference:

$$Vdot := Y_{17} \quad Vdot = 4.447 \cdot 10^4 \quad Vdot \cdot (1 - \varepsilon)^{-1} \cdot \text{Secy} \cdot \Delta x^{-1} = 9.891 \cdot 10^{12} \quad \Delta x \cdot \rho_0 = 1.013 \cdot 10^3$$

Time, oxide mass, distribution, temperature, reactive area:

$$t_j := \Psi_{j,0} \quad m_{0,j} := \Psi_{j,5} \quad N_{j,i} := \Psi_{j,i+6} \quad T_j := \text{fTSS} \cdot \xi \cdot m_{0,j} \cdot N^{<1>} - 273 \quad Ar_j := N^{<1>} \cdot Ab$$

Select particle size distributions:



$$m0_j := \Psi_{0,j+6} \quad m1_j := \Psi_{10,j+6} \quad m2_j := \Psi_{20,j+6} \quad m3_j := \Psi_{50,j+6} \quad m4_j := \Psi_{250,j+6}$$

$$\text{day0} := t_0 \cdot \text{Secd}^{-1} \quad \text{day1} := t_{10} \cdot \text{Secd}^{-1} \quad \text{day2} := t_{20} \cdot \text{Secd}^{-1} \quad \text{day3} := t_{50} \cdot \text{Secd}^{-1} \quad \text{day4} := t_{250} \cdot \text{Secd}^{-1}$$

$$\text{Check full after one year: } (m_{0,250} \cdot \rho_0^{-1} + N^{<250>} \cdot Vb) \cdot \Delta x^{-1} \cdot (1 - \varepsilon)^{-1} = 1.044$$

$$\text{Reaction power at peak (about 0.5 year): } Qr_j := I \cdot Q \cdot \xi \cdot T_j + 273 \cdot Ar_j \quad \text{max}(Qr) = 26.535$$

Temperature and reactive area: Discontinuity in T when height = 2/3 diameter

Particle size distributions for increasing times from lower (solid) to upper (crosses) curves

Days for curves:

day4 = 365.25
day3 = 73.05
day2 = 29.22
day1 = 14.61
day0 = 0

$$\text{Metal mass: } m_{m,i} := \rho_m \cdot N^{<i>} \cdot V_b$$

$$\text{Bulk A / V: } Avb_i := f \Delta v (m_{o,i}, N^{<i>})$$

$$Tig_i := fTig(Avb_i, m_{o,i}, m_{m,i}, \xi, Le_i, h) = 273$$

$$\text{Conduction length: } Le_i := fLe_c(m_{o,i}, N^{<i>})$$

$$\text{External h: } h := 6$$

$$Q_i := fQ(Avb_i, m_{o,i}, m_{m,i}, \xi, Le_i, Tig_i)$$

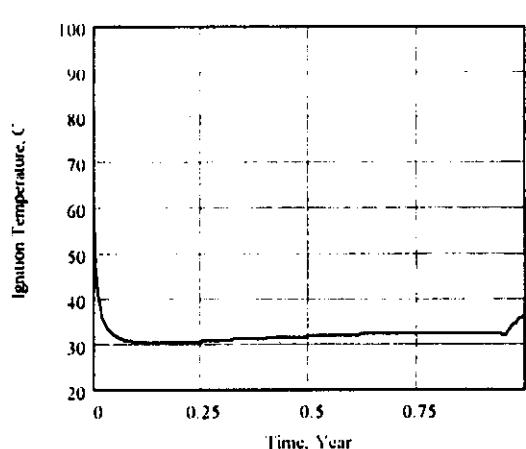
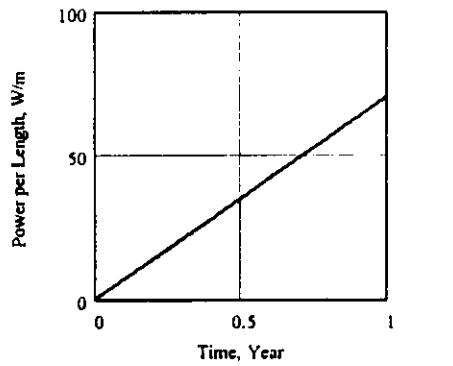
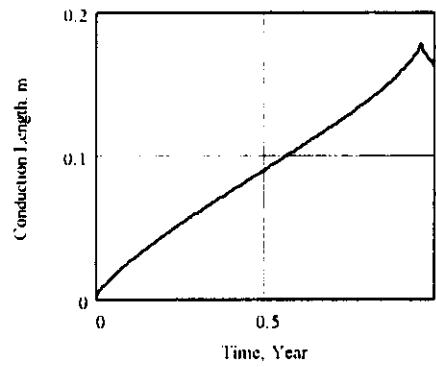
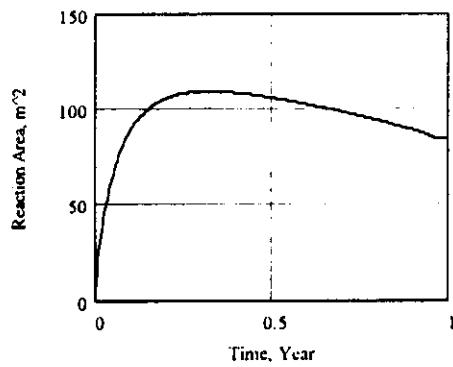
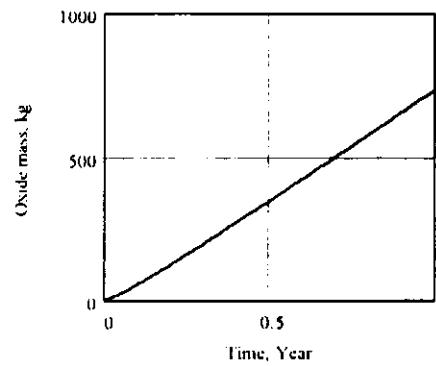
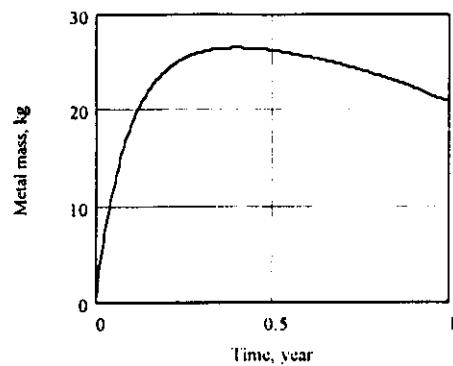







Fig. 3-2. Settler ignition condition for $\xi=3$, 25 micron radius and std deviation, for various fill conditions.

Full simulation 300 micron mean 200 micron s.d 100% metal over 1 year:

$$F := 0.001 \quad \mu_s := 3 \cdot 10^{-4} \quad \sigma_s := 2 \cdot 10^{-4} \quad \mu := 1.0 \quad \xi := 3 \quad \tau := 365.25$$

$$Y := fY0 / (F, \mu_s, \sigma_s, \mu, \tau, \xi) \quad \Psi := rkfixed(Y, 0, \tau, 250, DS) \quad j := 0..B-1 \quad i := 0..250$$

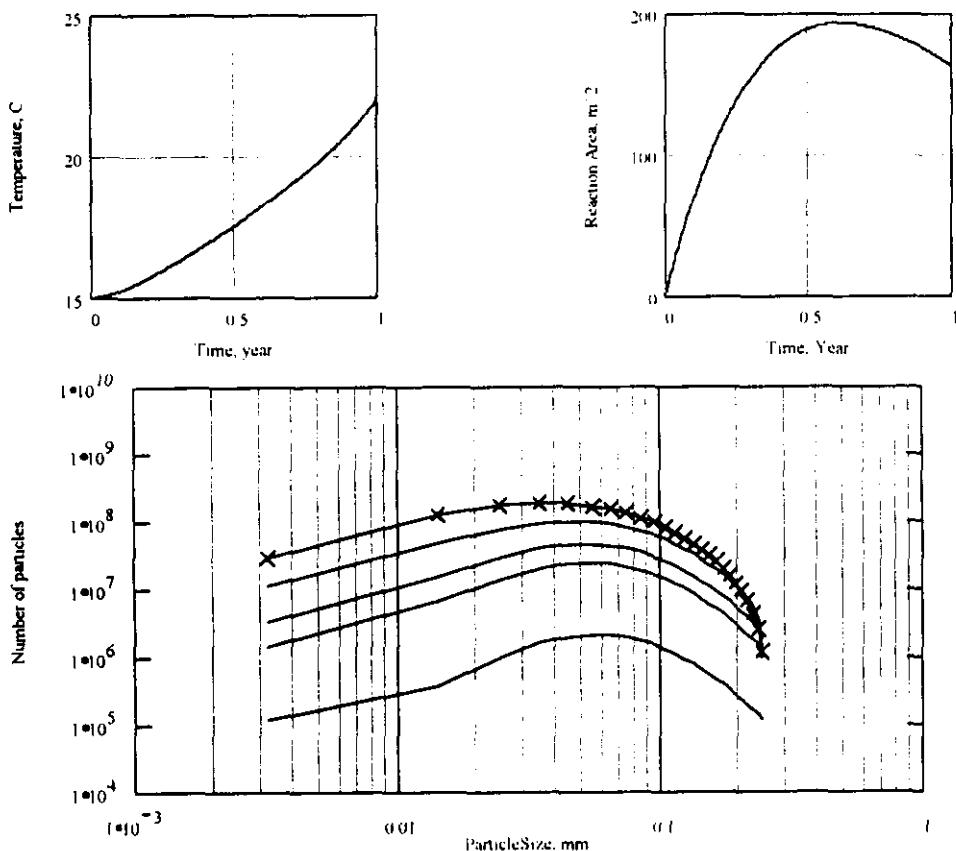
Source rate and fraction filled just be oxide for reference:

$$Vdot := Y_{17} \quad Vdot = 9.522 \cdot 10^5 \quad Vdot \cdot (1 - \varepsilon)^{-1} \cdot \text{Secy} \cdot \Delta x \cdot p_0 = 2.118 \cdot 10^{14} \Delta x \cdot p_0 = 1.013 \cdot 10^3$$

Time, oxide mass, distribution, temperature, reactive area:

$$t_i := \Psi_{i,0} \quad m_{0,i} := \Psi_{i,5} \quad N_{j,i} := \Psi_{i,j+6} \quad T_i := fTSS(\xi, m_{0,i}, N^{<i>}) - 273 \quad Ar_i := N^{<i>} \cdot Ab$$

Select particle size distributions:


$$m_{0,j} := \Psi_{0,j+6} \quad m_{1,j} := \Psi_{10,j+6} \quad m_{2,j} := \Psi_{20,j+6} \quad m_{3,j} := \Psi_{50,j+6} \quad m_{4,j} := \Psi_{250,j+6}$$

$$\text{day}0 := t_0 \cdot \text{Secd}^{-1} \quad \text{day}1 := t_{10} \cdot \text{Secd}^{-1} \quad \text{day}2 := t_{20} \cdot \text{Secd}^{-1} \quad \text{day}3 := t_{50} \cdot \text{Secd}^{-1} \quad \text{day}4 := t_{250} \cdot \text{Secd}^{-1}$$

$$\text{Check full after one year: } (m_{0,250} \cdot p_0^{-1} + N^{<250>} \cdot Vb) \cdot \Delta x \cdot (1 - \varepsilon)^{-1} = 0.978$$

$$\text{Reaction power at peak (about 0.5 year): } Qr_i := fQr(\xi, T_i + 273, Ar_i) \quad \max(Qr) = 59.112$$

Temperature and reactive area: Discontinuity in T when height = 2/3 diameter

Particle size distributions for increasing times from lower (solid) to upper (crosses) curves

$$\text{Metal mass: } m_{m,i} := \rho_m \cdot N^{<i>} \cdot V_b$$

$$\text{Bulk A / V: } Avb_i := (\Delta v_i \cdot m_{o,i} \cdot N^{<i>})$$

$$Tig_i := fTig(\Delta v_{b,i}, m_{o,i}, m_{m,i}, \xi, Le_i, h) = 273$$

$$\text{Conduction length: } Le_i := (L_c \cdot m_{o,i} \cdot N^{<i>})$$

$$\text{External h: } h := 6$$

$$Q_i := fQ(\Delta v_{b,i}, m_{o,i}, m_{m,i}, \xi, Le_i, Tig_i)$$

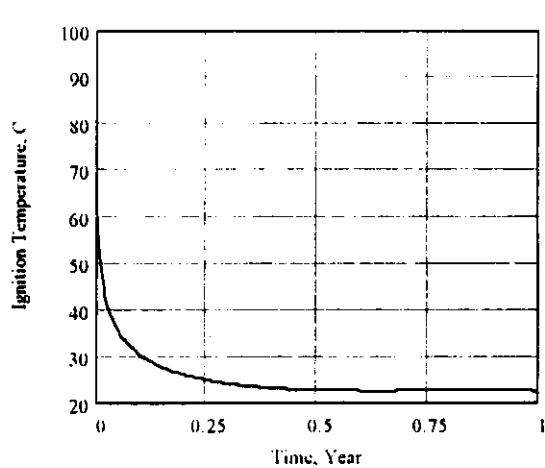
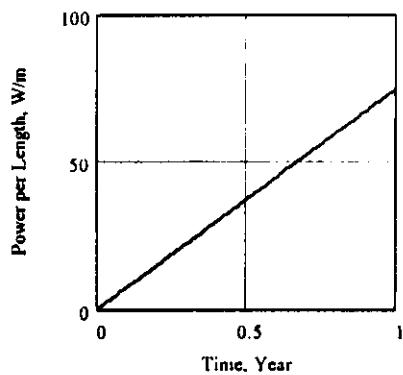
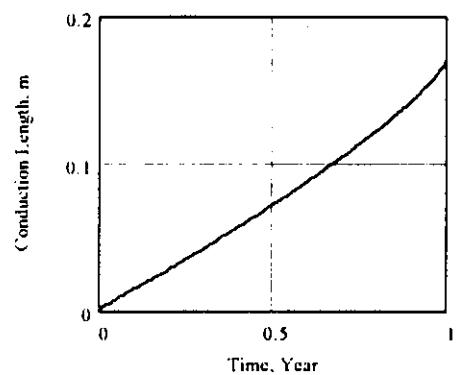
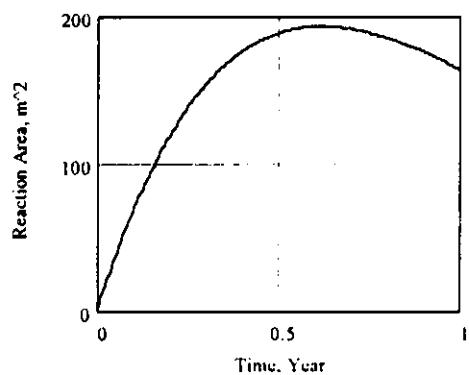
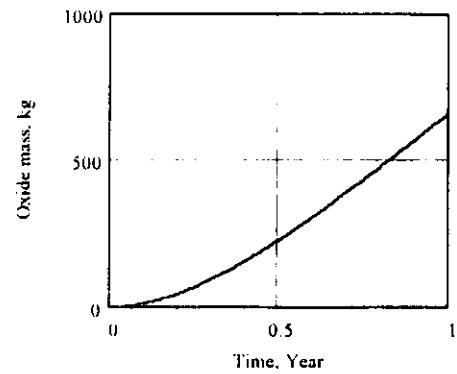
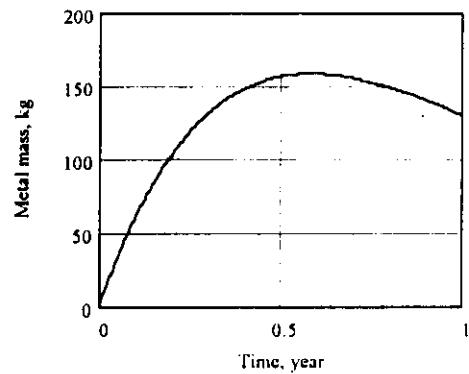







Fig. 3-3. Settler ignition condition for $\xi=3$, 300 μ radius 200 μ std deviation, for various fill conditions.

APPENDIX D:
Knock Out Pot Ignition MATHCAD File

IGNITION THEORY APPLICATION: CYLINDRICAL SCRAP CONTAINER

By: Martin G. Plys, Fauske & Associates, Inc. 16W070 W. 83rd St. Burr Ridge IL 60521 USA Phone (630) 323-8750; Email plys@fauske.com
 For: Darrel Duncan, Duke Engineering & Services Hanford, Phone (509) 372-1013

Rendering of Equations from Epstein, Luangdilok, Plys, and Fauske: On Prediction of the Ignition Potential of Uranium Metal and Hydride,
 Nuclear Safety Vol. 37 No. 1, January-March 1996

Constants and Other Physical Data

Ideal gas constant	$R_{\text{gas}} := 8.314$	Water vapor pressure: $fP_{\text{sat}}(T) := e^{\left(25.339 - \frac{5154.7}{T}\right)}$	$fP_{\text{sat}}(323) = 1.185 \times 10^4$
Joules to calories	$J_{\text{cal}} := 4.184$	Heat of reaction, J/kgO ₂ , U+O ₂ : $\Delta H_o := 3.4 \cdot 10^7$	
		Heat of reaction, J/kgO ₂ , U+H ₂ O: $\Delta H_w := 1.67 \cdot 10^7$	

Oxidation Rate Law

Ritchie correlation for U-H₂O-O₂, below 100% RH, agrees best with data BUT goes below dry air correlation at about 37 C -
 so switch to McGillivray dry air. Ritchie units of mg/cm²/hr, converted to kg O₂ / m²/s McGillivray already has units of kg/m²/s.

Ritchie Moist Air up to 75% RH:

$$T_{\text{ER}} := 26.4 \cdot 10^3 \cdot \frac{J_{\text{cal}}}{R_{\text{gas}}} \quad C_{K_r} := 7.6 \cdot 10^{13} \cdot \frac{0.01}{3600} \quad fK_r(T) := C_{K_r} \cdot \exp\left(\frac{-T_{\text{ER}}}{T}\right) \quad fK_m(T) := 10.95 \cdot \exp\left(\frac{-8077}{T}\right)$$

$$T_{\text{cor}} := 400 \quad T_{\text{cor}} := \text{root}\left(\ln\left(fK_r(T_{\text{cor}})\right) - \ln\left(fK_m(T_{\text{cor}})\right)\right), T_{\text{cor}} \quad T_{\text{cor}} = 310.499 \quad \text{Note correlations cross at about 40 C!}$$

Moist Air Getter Function below 75% RH:

$$fK_o(T) := \text{if}\left(T \geq T_{\text{cor}}, fK_r(T), fK_m(T)\right) \quad \text{Shows no discontinuity}$$

$$fK_o(T_{\text{cor}} - 0.01) = 5.518 \times 10^{-11} \quad fK_o(T_{\text{cor}} + 0.01) = 5.526 \times 10^{-11}$$

Gettering of Water vapor when Oxygen-Free:

$$fK_w(T) := \begin{cases} P_{\text{st}} \leftarrow 10^{-3} \cdot fP_{\text{sat}}(T) \\ K \leftarrow P_{\text{st}}^{0.5} \cdot 10^{4.33-2144 \cdot T^{-1}} \\ K \leftarrow K \cdot 0.01 \cdot 3600^{-1} \end{cases}$$

Ratio of oxy-free to dry rate laws:

$$\frac{fK_w(323)}{fK_o(323)} = 4.708 \times 10^{-8} \quad \frac{fK_w(323)}{fK_o(323)} = 162.865$$

$$fK_o(323) = 2.891 \times 10^{-10}$$

Definition of Effective Conduction Length, which has several parameters found algebraically:

$$\text{A dimensionless length parameter: } fL_o(L, k, h_u, h_d) := k \cdot L \cdot \left(1 + L \cdot \frac{h_u}{2 \cdot k} \right) \left(h_u + h_d + \frac{L \cdot h_u \cdot h_d}{k} \right)^{-1} \quad \text{TOL} := 0.001$$

Roots of transcendental equation, values α are needed for infinite series. The function $g\alpha_n()$ below has an infinite number of roots, and an infinite number of discontinuities. A separate file contains details of the solution technique; only essential functions are listed below.

$$\text{Discontinuity Index: } f\alpha_k(L, C) := \text{floor}\left(\frac{L \cdot \sqrt{C}}{\pi} - \frac{1}{2}\right)$$

Function for root:

$$g\alpha_n(\alpha, L, H, C) := \tan(\alpha \cdot L) - \frac{\alpha \cdot H}{\alpha^2 - C}$$

$fB(L, C, N) :=$

$$\begin{cases} n_c \leftarrow f\alpha_k(L, C) \\ D \leftarrow L \cdot \sqrt{C} \\ m_c \leftarrow \text{if}(N - 1 > n_c, n_c, N - 1) \\ \text{for } jj \in 0..m_c \\ \quad B_{jj,0} \leftarrow (jj + 0.5) \cdot \pi \\ \quad B_{jj,1} \leftarrow \text{if}[D < (jj + 1) \cdot \pi, D, (jj + 1) \cdot \pi] \\ \quad \text{if } n_c \geq 0 \\ \quad \text{for } jj \in m_c + 1..N - 1 \\ \quad \quad B_{jj,0} \leftarrow \text{if}(D > \pi \cdot jj, D, \pi \cdot jj) \\ \quad \quad B_{jj,1} \leftarrow (jj + 0.5) \cdot \pi \end{cases}$$

Critical factor C:

$$fC(h_u, h_d, k) := \frac{h_u \cdot h_d}{k^2}$$

$fQ(\alpha, L, k, h_u, h_d) := \frac{\alpha \cdot (h_u + h_d) \cdot k^{-1}}{\alpha^2 - h_u \cdot h_d \cdot k^{-2}}$

Second term in root:

$$\begin{cases} B_{jj,0} \leftarrow (jj + 0.5) \cdot \pi \\ B_{jj,1} \leftarrow \text{if}[D < (jj + 1) \cdot \pi, D, (jj + 1) \cdot \pi] \\ \text{if } N - 1 > n_c \\ \quad \text{for } jj \in m_c + 1..N - 1 \\ \quad \quad B_{jj,0} \leftarrow \text{if}(D > \pi \cdot jj, D, \pi \cdot jj) \\ \quad \quad B_{jj,1} \leftarrow (jj + 0.5) \cdot \pi \end{cases}$$

Specialized bisectional function solver that calls the root function needed here; N is the max. number of recursions; L and U are lower and upper bounds the root must lie between; fL and fU are function values of gam(), LL is the length L:

```

αBsec(L, U, fL, fU, LL, H, C, N) := 
  | X ← 0.5(L + U)
  | ΔX ← (X - L)·(X + L)-1
  | fX ← gam(X, LL, H, C)
  | if fX · fU < 0
  |   | X ← αBsec(X, U, fX, fU, LL, H, C, N - 1) if (N > 0) · (ΔX > 0.1 · TOL)
  |   | X otherwise
  | otherwise
  |   | X ← αBsec(L, X, fL, fX, LL, H, C, N - 1) if (N > 0) · (ΔX > 0.1 · TOL)
  |   | X otherwise
  | X

```

Bisectional method used to find best guess for built-in root function, Yields N roots.

```

fα3(L, k, h_u, h_d, N) := 
  | H ← (h_u + h_d) · k-1
  | C ← fC(h_u, h_d, k)
  | B ← fB(L, C, N)
  | for n ∈ 0 .. N - 1
  |   | αl ← Bn,0 · L-1 · (1 + 0.1 · TOL)
  |   | αh ← Bn,1 · L-1 · (1 - 0.1 · TOL)
  |   | fl ← gam(αl, L, H, C)
  |   | fh ← gam(αh, L, H, C)
  |   | a ← αBsec(αl, αh, fl, fh, L, H, C, 10)
  |   | αn ← root(gam(a, L, H, C), a)
  | α

```

Demonstration that seeding the MATHCAD root solver using the bisectional method leads to convergence:

```

L := 0.4   k := 3   h_u := 100   h_d := 100
α := fα3(L, k, h_u, h_d, 6)
j := 0 .. 5   Fj := tan(αj · L) - fQ(αj, L, k, h_u, h_d)

```

α _j =	α _j · L · π ⁻¹ =	F _j =
6.842	0.871	-7.802 · 10 ⁻⁷
13.752	1.751	5.935 · 10 ⁻⁶
20.775	2.645	1.93 · 10 ⁻⁵
27.929	3.556	1.834 · 10 ⁻⁵
35.206	4.483	-1.751 · 10 ⁻⁵
42.59	5.423	3.768 · 10 ⁻⁶

Another parameter λ for infinite series, depends on the roots α found above. N values supplied; α has N entries too!

```

 $\lambda_n(L, k, h_u, h_d, N, \alpha) :=$ 
  
$$\begin{cases} H_u \leftarrow h_u \cdot k^{-1} \\ H_d \leftarrow h_d \cdot k^{-1} \\ \text{for } jj \in 0..N-1 \\ \quad \alpha \alpha \leftarrow (\alpha_{jj})^2 \\ \quad \lambda_{jj} \leftarrow 2 \cdot \alpha \alpha \cdot \left[ H_u \cdot \frac{\alpha \alpha + H_d^2}{\alpha \alpha + H_u^2} + H_d + L \left( \alpha \alpha + H_d^2 \right) \right]^{-1} \end{cases}$$


```

Another parameter β for infinite series, depends on the roots α found above. N values supplied; α has N entries too!

```

 $\beta_n(L, k, h_d, L_o, N, \alpha) :=$ 
  
$$\begin{cases} H_d \leftarrow h_d \cdot k^{-1} \\ \text{for } jj \in 0..N-1 \\ \quad C \leftarrow \cos(\alpha_{jj} \cdot L) \\ \quad S \leftarrow \sin(\alpha_{jj} \cdot L) \\ \quad \alpha1 \leftarrow \alpha_{jj} \\ \quad \alpha2 \leftarrow (\alpha_{jj})^2 \\ \quad \alpha3 \leftarrow (\alpha_{jj})^3 \\ \quad T1 \leftarrow \frac{-1}{2} \cdot \left( \frac{2 \cdot L}{\alpha2} \cdot C + \frac{\alpha2 \cdot L^2 - 2}{\alpha3} \cdot S \right) + L_o \cdot H_d \left( \frac{C}{\alpha2} + \frac{L}{\alpha1} \cdot S - \frac{1}{\alpha2} \right) + \frac{L_o}{\alpha1} \cdot S \\ \quad T2 \leftarrow \frac{-H_d}{2 \cdot \alpha1} \cdot \left( \frac{2 \cdot L}{\alpha2} \cdot S - \frac{\alpha2 \cdot L^2 - 2}{\alpha3} \cdot C - \frac{2}{\alpha3} \right) + \frac{L_o \cdot H_d^2}{\alpha1} \cdot \left( \frac{S}{\alpha2} - \frac{L}{\alpha1} \cdot C \right) + \frac{L_o \cdot H_d}{\alpha2} \cdot (1 - C) \\ \quad \beta_{jj} \leftarrow T1 + T2 \end{cases}$$


```

Function for coefficient of infinite series, α already known:

$$fC_n(L, k, h_d, h_u, h_s, R, N, \alpha) := \begin{cases} \lambda \leftarrow f\lambda_n(L, k, h_u, h_d, N, \alpha) \\ L_o \leftarrow fL_o(L, k, h_u, h_d) \\ \beta \leftarrow f\beta_n(L, k, h_d, L_o, N, \alpha) \\ \text{for } jj \in 0..N-1 \\ \quad C_{jj} \leftarrow \frac{\lambda_{jj}\beta_{jj}}{\alpha_{jj}I_1(\alpha_{jj}R) + \frac{h_s}{k} \cdot 10(\alpha_{jj}R)} \end{cases}$$

Function for sum of infinite series:

$$fS(h_d, k, z, N, \alpha, C) := \begin{cases} S \leftarrow 0 \\ \text{for } jj \in 0..N-1 \\ \quad S \leftarrow S + C_{jj} \left(\cos(\alpha_{jj}z) + \frac{h_d}{k \alpha_{jj}} \cdot \sin(\alpha_{jj}z) \right) \end{cases}$$

Shape function for temperature along axis and its derivative w.r.t. z, AND off-axis temperature in general:

$$fT_z(z, L, k, h_d, h_s, L_o, N, \alpha, C) := \frac{2 \cdot L_o}{L^2} \cdot \left(\frac{h_d}{k \cdot z + 1} \right) - \frac{z^2}{L^2} - \frac{2 \cdot h_s}{k \cdot L^2} \cdot \sum_{jj=0}^{N-1} C_{jj} \left(\cos(\alpha_{jj}z) + \frac{h_d}{k \alpha_{jj}} \cdot \sin(\alpha_{jj}z) \right)$$

$$fDT_z(z, L, k, h_d, h_s, L_o, N, \alpha, C) := \frac{2 \cdot L_o}{L^2} \cdot \left(\frac{h_d}{k} \right) - \frac{2 \cdot z}{L^2} - \frac{2 \cdot h_s}{k \cdot L^2} \cdot \sum_{jj=0}^{N-1} C_{jj} \left(-\alpha_{jj} \sin(\alpha_{jj}z) + \frac{h_d}{k} \cdot \cos(\alpha_{jj}z) \right)$$

$$fT_{rz}(r, z, L, k, h_d, h_s, L_o, N, \alpha, C) := \frac{2 \cdot L_o}{L^2} \cdot \left(\frac{h_d}{k} \cdot z + 1 \right) - \frac{z^2}{L^2} - \frac{2 \cdot h_s}{k \cdot L^2} \cdot \sum_{jj=0}^{N-1} C_{jj} \cdot 10(\alpha_{jj}r) \cdot \left(\cos(\alpha_{jj}z) + \frac{h_d}{k \alpha_{jj}} \cdot \sin(\alpha_{jj}z) \right)$$

Solve for location of maximum temperature:

$$fz_{max}(L, k, h_d, h_s, L_o, N, \alpha, C) := \begin{cases} z \leftarrow 0.5 \cdot L \\ z \leftarrow \text{root}(fDT_z(z, L, k, h_d, h_s, L_o, N, \alpha, C), z) \end{cases}$$

Example Temperature Evaluations Demonstrate Anticipated Performance:

Example evaluation:	$L := 0.4$	$k := 3$	$h_u := 1000$	$h_d := 1000$	$R := 0..1$	$N := 10$	$j := 0..10$	$z_{jj} := \frac{jj \cdot L}{10}$																				
$L_o := fL_o(L, k, h_u, h_d)$	$\alpha := f\alpha3(L, k, h_u, h_d, N)$	$C := fC_n(L, k, h_d, h_u, h_s, R, N, \alpha)$			$z_{max} := fz_{max}(L, k, h_d, h_s, L_o, N, \alpha, C)$			$z_{max} = 0.2$																				
$Tz_{jj} := fT_z(z_{jj}, L, k, h_d, h_s, L_o, N, \alpha, C)$	$Tz^T =$	<table border="1"> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr> <tr><td>0.0074</td><td>0.0966</td><td>0.1659</td><td>0.2153</td><td>0.2449</td><td>0.2548</td><td>0.2449</td><td>0.2153</td><td>0.1659</td><td>0.0966</td></tr> </table>	0	1	2	3	4	5	6	7	8	9	0.0074	0.0966	0.1659	0.2153	0.2449	0.2548	0.2449	0.2153	0.1659	0.0966						9 Symmetric!
0	1	2	3	4	5	6	7	8	9																			
0.0074	0.0966	0.1659	0.2153	0.2449	0.2548	0.2449	0.2153	0.1659	0.0966																			
Example evaluation:	$L := 0.4$	$k := 3$	$h_u := 10$	$h_d := 10$	$R := 0..1$	$N := 10$	$j := 0..10$	$z_{jj} := \frac{jj \cdot L}{10}$																				
$L_o := fL_o(L, k, h_u, h_d)$	$\alpha := f\alpha3(L, k, h_u, h_d, N)$	$C := fC_n(L, k, h_d, h_u, h_s, R, N, \alpha)$			$z_{max} := fz_{max}(L, k, h_d, h_s, L_o, N, \alpha, C)$			$z_{max} = 0.2$																				
$Tz_{jj} := fT_z(z_{jj}, L, k, h_d, h_s, L_o, N, \alpha, C)$	$Tz^T =$	<table border="1"> <tr><td>0.1492</td><td>0.1661</td><td>0.1777</td><td>0.1853</td><td>0.1896</td><td>0.1909</td><td>0.1896</td><td>0.1853</td><td>0.1777</td><td>0.1661</td></tr> <tr><td>0.1492</td><td>0.1661</td><td>0.1777</td><td>0.1853</td><td>0.1896</td><td>0.1909</td><td>0.1896</td><td>0.1853</td><td>0.1777</td><td>0.1661</td></tr> </table>	0.1492	0.1661	0.1777	0.1853	0.1896	0.1909	0.1896	0.1853	0.1777	0.1661	0.1492	0.1661	0.1777	0.1853	0.1896	0.1909	0.1896	0.1853	0.1777	0.1661						ric!
0.1492	0.1661	0.1777	0.1853	0.1896	0.1909	0.1896	0.1853	0.1777	0.1661																			
0.1492	0.1661	0.1777	0.1853	0.1896	0.1909	0.1896	0.1853	0.1777	0.1661																			
Example evaluation:	$L := 0.4$	$k := 3$	$h_u := 1000$	$h_d := 0..1$	$R := 0..1$	$N := 10$	$j := 0..10$	$z_{jj} := \frac{jj \cdot L}{10}$																				
$L_o := fL_o(L, k, h_u, h_d)$	$\alpha := f\alpha3(L, k, h_u, h_d, N)$	$C := fC_n(L, k, h_d, h_u, h_s, R, N, \alpha)$																										
$Tz_{jj} := fT_z(z_{jj}, L, k, h_d, h_s, L_o, N, \alpha, C)$	$Tz^T =$	<table border="1"> <tr><td>0.9595</td><td>0.9513</td><td>0.9241</td><td>0.8778</td><td>0.8125</td><td>0.728</td><td>0.6243</td><td>0.5012</td><td>0.3586</td><td>0.1964</td></tr> <tr><td>0.9595</td><td>0.9513</td><td>0.9241</td><td>0.8778</td><td>0.8125</td><td>0.728</td><td>0.6243</td><td>0.5012</td><td>0.3586</td><td>0.1964</td></tr> </table>	0.9595	0.9513	0.9241	0.8778	0.8125	0.728	0.6243	0.5012	0.3586	0.1964	0.9595	0.9513	0.9241	0.8778	0.8125	0.728	0.6243	0.5012	0.3586	0.1964						
0.9595	0.9513	0.9241	0.8778	0.8125	0.728	0.6243	0.5012	0.3586	0.1964																			
0.9595	0.9513	0.9241	0.8778	0.8125	0.728	0.6243	0.5012	0.3586	0.1964																			
$z_{max} := fz_{max}(L, k, h_d, h_s, L_o, N, \alpha, C)$		$z_{max} = 2.702 \times 10^{-3}$						In this limit, temperature goes as 1 - (z/L)^2, OK!																				
Example evaluation:	$L := 0.4$	$k := 3$	$h_u := 0..1$	$h_d := 0..1$	$R := 0..2$	$N := 10$	$j := 0..10$	$r_{jj} := \frac{jj \cdot R}{10}$																				
$L_o := fL_o(L, k, h_u, h_d)$	$\alpha := f\alpha3(L, k, h_u, h_d, N)$	$C := fC_n(L, k, h_d, h_u, h_s, R, N, \alpha)$																										
$Tr_{jj} := \left(\frac{L}{R}\right)^2 \cdot fT_z(r_{jj}, L, k, h_d, h_s, L_o, N, \alpha, C)$	$Tr^T =$	<table border="1"> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr> <tr><td>0.5135</td><td>0.5085</td><td>0.4935</td><td>0.4686</td><td>0.4337</td><td>0.3889</td><td>0.3341</td><td>0.2693</td><td>0.1945</td><td>0.1097</td></tr> </table>	0	1	2	3	4	5	6	7	8	9	0.5135	0.5085	0.4935	0.4686	0.4337	0.3889	0.3341	0.2693	0.1945	0.1097						
0	1	2	3	4	5	6	7	8	9																			
0.5135	0.5085	0.4935	0.4686	0.4337	0.3889	0.3341	0.2693	0.1945	0.1097																			
In this limit, temperature goes as 0.5 * (1 - (r/R)^2), OK! Factor of 1/2 normalizes delta-T to Q R^2 / (4 k) as expected!																												

Temperature Shape Factor Function:

$$f(L, k, h_d, h_u, h_s, R, N) := \begin{cases} L_o \leftarrow f_{L_o}(L, k, h_u, h_d) \\ \alpha \leftarrow f_{\alpha}(L, k, h_u, h_d, N) \\ C \leftarrow f_C(L, k, h_d, h_u, h_s, R, N, \alpha) \\ z_{max} \leftarrow f_{z_{max}}(L, k, h_d, h_s, L_o, N, \alpha, C) \\ f \leftarrow f_f(z_{max}, L, k, h_d, h_s, L_o, N, \alpha, C) \end{cases} \quad f$$

Ignition Parameter Function:

$$fB(A_v, L, f, k, T_{am}, Q_{dk}, \xi, k_o, T_E, \Delta H) := \begin{cases} T_o \leftarrow T_{am} + \frac{Q_{dk} \cdot f \cdot L^2}{2 \cdot k} \\ T_t \leftarrow T_t \cdot T_o^{-1} \\ A_v \cdot L^2 \cdot f \cdot \xi \cdot k_o \cdot T_t \cdot \Delta H \\ \frac{2 \cdot k \cdot T_o \cdot \exp(T_t - 1)}{2 \cdot k \cdot T_o \cdot \exp(T_t - 1)} \end{cases}$$

Validation: Compare to Epstein et al result for 30 gallon drums**Solve for ambient temperature for ignition given A/V of uranium turnings&chips:**Values used in paper $L := 0.75$ $R := 0.23$ $k := 0.44$ $h_u := 9$ $h_s := 9$ $h_d := 1.7 \cdot R^{-1}$ $h_d := 7.391$ $Q_{dk} := 0$ $N := 10$ McGillivray law, dry $k_o := 10.95$ $T_E := 8077$ $\xi := 1.4$ Derive shape factor: $f := ff(L, k, h_d, h_u, h_s, R, N)$ Guess: $T_{am} := 350$

$$\begin{array}{ll} A_v := 400 & T_{am} := \text{root}(fB(A_v, L, f, k, T_{am}, Q_{dk}, \xi, k_o, T_E, \Delta H_o) - 1, T_{am}) & T_{am} - 273 = 112.754 & 100 \text{ C expected} \\ A_v := 1000 & T_{am} := \text{root}(fB(A_v, L, f, k, T_{am}, Q_{dk}, \xi, k_o, T_E, \Delta H_o) - 1, T_{am}) & T_{am} - 273 = 95.016 & 82 \text{ C expected} \\ A_v := 3000 & T_{am} := \text{root}(fB(A_v, L, f, k, T_{am}, Q_{dk}, \xi, k_o, T_E, \Delta H_o) - 1, T_{am}) & T_{am} - 273 = 75.844 & 66 \text{ C expected} \\ A_v := 10000 & T_{am} := \text{root}(fB(A_v, L, f, k, T_{am}, Q_{dk}, \xi, k_o, T_E, \Delta H_o) - 1, T_{am}) & T_{am} - 273 = 57.105 & 50 \text{ C expected} \end{array}$$

Conclusion: Results are close but not identical to those in paper. In the paper, the Frank-Kamenetskii approx. was not used, and values of α were taken from a textbook. Results considered close enough.

Reproduce 1-D planar solution; should get f=1. For values from MGP Nov. 12 memo, should get about 0.45 mm:

$$\begin{aligned}
 L &:= 0.05 & R &:= 0.2 & \phi &:= 0.4 & k &:= 1 & h_d &:= 0.1 & h_u &:= 1000 & h_s &:= 0.1 \\
 \xi &:= 3 & k_o &:= 624 & T_E &:= 7529 & T_{an} &:= 300 & Q_{dk} &:= 2000 \cdot (1 - \phi) & N &:= 5 \\
 f &:= ff(L, k, h_d, h_u, h_s, R, N) & T_{dk} &:= \frac{Q_{dk} \cdot L^2}{2 \cdot k} & T_o &:= T_{an} + T_{dk} \cdot f & T_r &:= T_E \cdot T_o^{-1} & d_p &:= \frac{6 \cdot (1 - \phi) \cdot L^2 \cdot f \cdot \xi \cdot k_o \cdot T_r \cdot \Delta H_w}{2 \cdot k \cdot T_o \cdot \exp(T_r - 1)}
 \end{aligned}$$

$$f = 1.035 \quad T_{dk} = 1.5 \quad T_o = 301.552 \quad T_r = 24.967 \quad d_p = 4.7 \times 10^{-4}$$

Reproduce 1-D radial solution; should get f=1/2 * (R/L)2 = 0.05. Geometry from P. Loscoe Dec. 2 memo used with sat. water rate:**

$$\begin{aligned}
 L &:= 0.8 & R &:= 0.25 & \phi &:= 0.4 & k &:= 2 & h_d &:= 0.1 & h_u &:= 0.1 & h_s &:= 1000 \\
 \xi &:= 3 & k_o &:= 624 & T_E &:= 7529 & T_{an} &:= 293 & Q_{dk} &:= 2000 \cdot (1 - \phi) & N &:= 10 \\
 f &:= ff(L, k, h_d, h_u, h_s, R, N) & T_{dk} &:= \frac{Q_{dk} \cdot L^2}{2 \cdot k} & T_o &:= T_{an} + T_{dk} \cdot f & T_r &:= T_E \cdot T_o^{-1} & d_p &:= \frac{6 \cdot (1 - \phi) \cdot L^2 \cdot f \cdot \xi \cdot k_o \cdot T_r \cdot \Delta H_w}{2 \cdot k \cdot T_o \cdot \exp(T_r - 1)}
 \end{aligned}$$

$$f = 0.05 \quad T_{dk} = 192 \quad T_o = 302.526 \quad T_r = 24.887 \quad d_p = 3.106 \times 10^{-3}$$

Note Loscoe's linearization temperature: $Q_{dk} \cdot R^2 \cdot (4 \cdot k)^{-1} = 9.375$ $T_{dk} \cdot f = 9.526$ OK here

Note Loscoe's effective distance term: $R^2 \cdot 0.5 = 0.031$ $L^2 \cdot f = 0.032$ OK here

1-D Radial again, geometry from P. Loscoe Dec. 2 memo, use rate law used by Loscoe: Trimble HNF-2853:

$$\begin{aligned}
 L &:= 0.8 & R &:= 0.25 & \phi &:= 0.4 & k &:= 2 & h_d &:= 0.1 & h_u &:= 0.1 & h_s &:= 1000 \\
 \xi &:= 3 & k_o &:= 2530 & T_E &:= 8096 & T_{an} &:= 293 & Q_{dk} &:= 2000 \cdot (1 - \phi) & N &:= 10 \\
 f &:= ff(L, k, h_d, h_u, h_s, R, N) & T_{dk} &:= \frac{Q_{dk} \cdot L^2}{2 \cdot k} & T_o &:= T_{an} + T_{dk} \cdot f & T_r &:= T_E \cdot T_o^{-1} & d_p &:= \frac{6 \cdot (1 - \phi) \cdot L^2 \cdot f \cdot \xi \cdot k_o \cdot T_r \cdot \Delta H_w}{2 \cdot k \cdot T_o \cdot \exp(T_r - 1)}
 \end{aligned}$$

$$f = 0.05 \quad T_{dk} = 192 \quad T_o = 302.526 \quad T_r = 26.761 \quad d_p = 2.078 \times 10^{-3}$$

Conclusion: Agrees with Loscoe calculation; Rate law accounts for +/- 50% variation in predicted diameter!

Calculation using databook water reaction rate, $T < 100$ C, for various metal fractions and total debris heights:

Nat. convection $h \approx 150$ W/m² = upward; Neglect wall resistance ($h = 16/0.008 = 2000$) so use same h side & down
 Rate law ≈ 10 by definition for a baseline.

Heat transfer coefficients for constant T boundary, use 15 C: $h_d := 150$ $h_u := 150$ $h_s := 150$ $T_{am} := 288$ $N := 10$

SNF databook reaction law and roughness factor of 10: $\xi := 10$ $k_0 := 119.6$ $T_E := 694.5$

Pessimistic low porosity and conductivity, high decay power: $\phi := 0.3$ $k := 2$ $Q_{dko} := 2000 \cdot (1 - \phi)$ Radius: $R := 0.203$

Metal and oxide densities, oxide pessimistically high: $\rho_m := 19000$ $\rho_o := 5000$

Debris Heights of 20, 30, 40 cm: $i := 0..2$ $L_i := 0.2 + 0.1 \cdot i$ $f_i := ff(L_i, k, h_d, h_u, h_s, R, N)$

Metal mass fraction range, and
 Derive density and number fraction for reactions:
 $j := 0..9$ $\mu_j := 1 - 0.1 \cdot j$ $\mu_{10} := 0.05$ $j := 0..10$ $\rho a_j := \left(\frac{\mu_j}{\rho_m} + \frac{1 - \mu_j}{\rho_o} \right)^{-1}$ $\eta_j := \frac{\rho a_j}{\rho_m} \cdot \mu_j$

Derive reduced temperature, note decay power
 reduced by overall density:
 $Q_{dko} \cdot \frac{\rho a_j \cdot (L_i)^2}{\rho_m}$ $T_{dki,j} := T_{am} + Tdki,j \cdot f_i$ $T_{ri,j} := T_E \cdot (T_{dki,j})^{-1}$

Particle size for incipient runaway, mm
 $dp_{i,j} := 1000 \cdot \frac{6 \cdot (1 - \phi) \cdot (L_i)^2 \cdot f_i \cdot \eta_j \cdot \xi \cdot k_0 \cdot T_{dki,j} \cdot \Delta H_w}{2 \cdot k \cdot T_{dki,j} \cdot \exp(T_{ri,j} - 1)}$

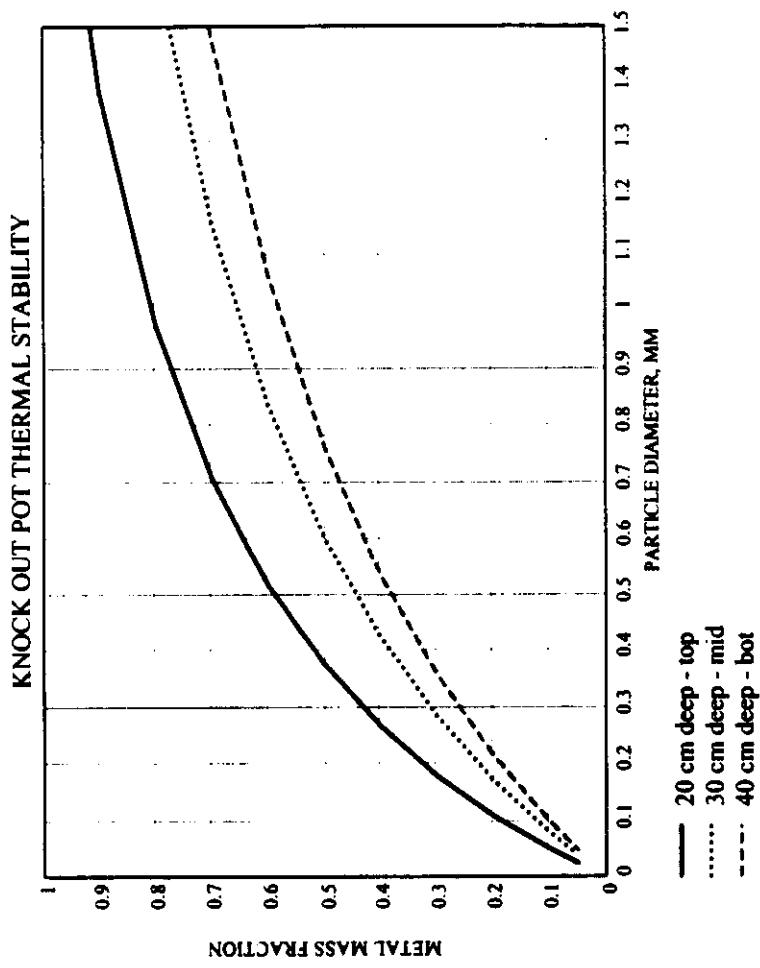


Fig. 4-1. Relationship between particle diameter, mm, and metal mass fraction for incipient runaway, mm, for various particle bed depths, $\epsilon = 30\%$ void, in a knock out pot of 16" diameter, rate law multiplier = 10. Unstable combinations are above the curves, stable combinations are below. Exterior conditions are 15 C water, $h = 150 \text{ W/m}^2\text{-K}$.

Calculation using databook water reaction rate, $T < 100$ C, for various metal fractions and total debris heights DRAINED BASIN:

Nat. convection h to air = 5 W/m² = upward; assume same all directions, neglect wall resistance
 Rate law = 10 by definition, basin ambient = 50 C = 323 K by definition.

Heat transfer coefficients for constant T boundary; use 15 C:

$$h_d := 5 \quad h_u := 5 \quad h_s := 5 \quad T_{am} := 323 \quad N := 10$$

SNF databook reaction law and roughness factor of 10:

$$\xi := 10 \quad k_o := 119.6 \quad T_E := 6945$$

Pessimistic low porosity and conductivity, high decay power:

$$\phi := 0.3 \quad k := 2 \quad Q_{dko} := 2000 \cdot (1 - \phi) \quad \text{Radius: } R := 0.203$$

Metal and oxide densities, oxide pessimistically high:

$$\rho_m := 19000 \quad \rho_o := 5000$$

Debris Heights of 20, 30, 40 cm:

$$i := 0..2 \quad L_i := 0.2 + 0.1 \cdot i \quad f_i := ff(L_i, k, h_d, h_u, h_s, R, N)$$

Metal mass fraction range, and
 Derive density and number fraction for reactions:

$$\begin{aligned} j &:= 0..9 \quad \mu_j := 0.4 - 0.04 \cdot j \\ \mu_{10} &:= 0.05 \quad j := 0..10 \quad \rho_{aj} := \left(\frac{\mu_j}{\rho_m} + \frac{1 - \mu_j}{\rho_o} \right)^{-1} \quad \eta_j := \frac{\rho_{aj}}{\rho_m} \cdot \mu_j \end{aligned}$$

$$Q_{dko} \cdot \frac{\rho_{aj} \cdot (L_i)^2}{\rho_m} \quad T_{dk_{i,j}} := T_{am} + T_{dk_{i,j}} f_i \quad T_{t_{i,j}} := T_E \cdot \{T_{t_{i,j}}\}^{-1}$$

Derive reduced temperature, note decay power
 reduced by overall density:

$$\frac{6 \cdot (1 - \phi) \cdot (L_i)^2 \cdot f_i \cdot \eta_j \cdot \xi \cdot k_o \cdot T_{t_{i,j}} \cdot \Delta H_w}{2 \cdot k \cdot T_{dk_{i,j}} \cdot \exp(T_{t_{i,j}} - 1)}$$

Particle size for incipient runaway, mm

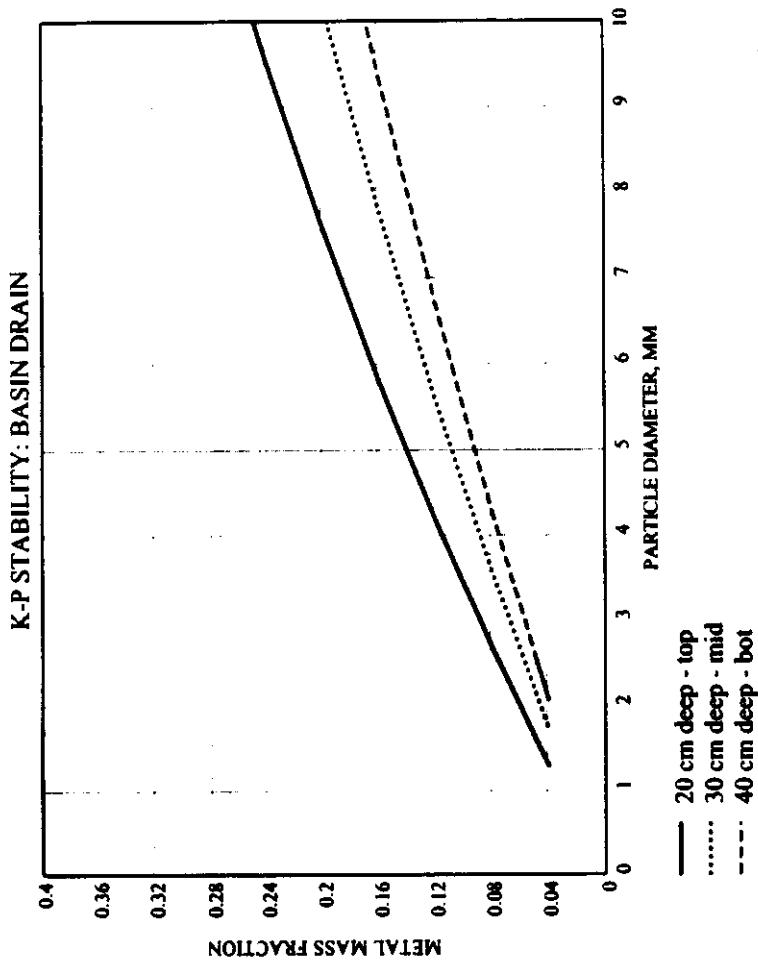


Fig. 4-2. Relationship between particle diameter, mm, and metal mass fraction for incipient runaway, mm, for various particle bed depths, $\epsilon = 30\%$, in a knock out pot of 16" diameter, rate law multiplier = 10, DRAINED BASIN. Unstable combinations are above the curves, stable combinations are below. Exterior conditions are 50 C air, $h = 5 \text{ W/m}^2\text{-K}$.

Best-estimate for k-p after drain: 400 W (vs 770), $T_1 := 0$ $T_{rl} := 0$ $\rho_{pl} := 0$ Rate law multiplier: $\xi := 3$ $T_{am} := 308$ $Q_{dko} := 1020 \cdot (1 - \phi)$
 mult=3, temp= 35 C:
 $j := 0 \dots 9$ $\mu_j := 0.5 - 0.05 \cdot j$

Density and volume fraction metal:

$$\rho_{aj} := \left(\frac{\mu_j}{\rho_m} + \frac{1 - \mu_j}{\rho_o} \right)^{-1} \quad \eta_j := \frac{\rho_{aj} \cdot \mu_j}{\rho_m} \quad T_{o,i,j} := T_{am} + \frac{Q_{dko} \cdot \rho_{aj} \cdot (L_i)^2 \cdot f_i}{2 \cdot k \cdot \rho_m} \quad T_{r,i,j} := \frac{T_E}{T_{o,i,j}} \quad dP_{i,j} := 1000 \cdot \frac{6 \cdot (1 - \phi) \cdot (L_i)^2 \cdot f_i \cdot \eta_j \cdot \xi \cdot k_o \cdot T_{r,i,j} \cdot \Delta H_w}{2 \cdot k \cdot T_{o,i,j} \cdot \exp(T_{r,i,j} - 1)}$$

Linearization temperature:

Particle size for incipient runaway, mm

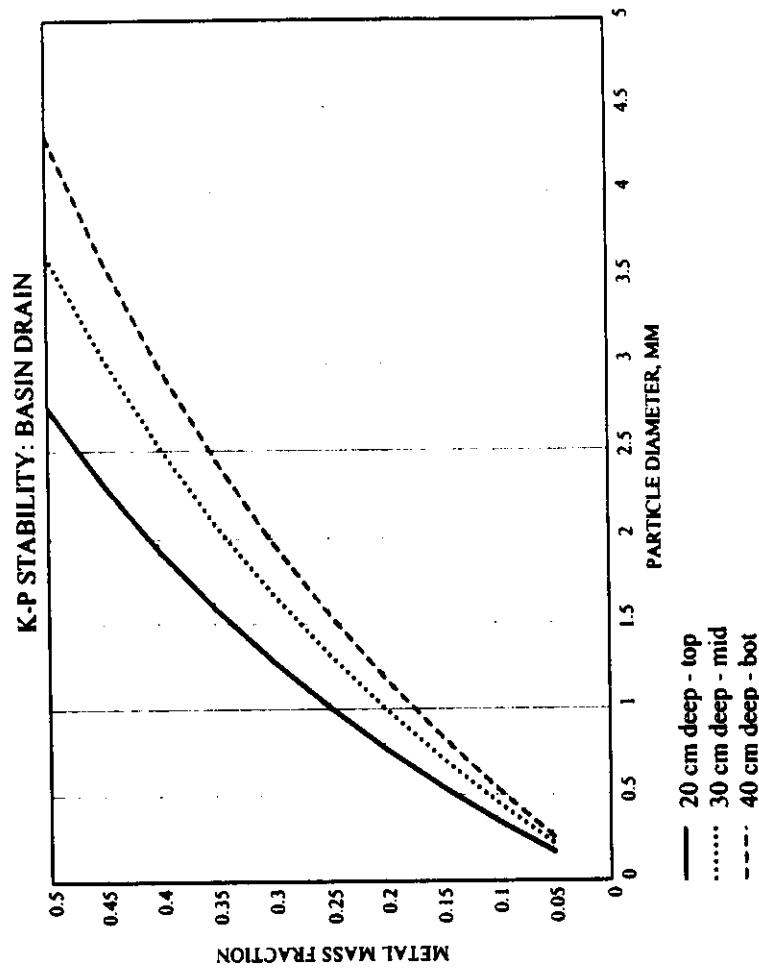


Fig. 4-3. Relationship between particle diameter, mm, and metal mass fraction for incipient runaway, mm, for various particle bed depths, $\epsilon = 30\%$ void, in a knock out pot of 16" diameter, rate law multiplier = 3, DRAINED BASIN, 400 W MCO. Unstable combinations are above the curves, stable combinations are below. Exterior conditions are 35 C air, $h = 5 \text{ W/m}^2\text{-K}$.

Stability for knock out pot with internal dividers: $T_1 := 0$ $Tr_1 := 0$ $dp_1 := 0$ Rate law multiplier: $\xi := 10$ $T_{am} := 288$ $Q_{dko} := 2000 \cdot (1 - \phi)$
 Isothermal divider boundaries (neglect delta-T there): $ji := 0..1$ $\delta x_{jj} := (2 + ji) \cdot 0.0254$ $j := 0..9$ $\mu_j := 1 - 0.1 \cdot j$

Density and volume fraction metal:

$$\rho_{aj} := \left(\frac{\mu_j}{\rho_m} + \frac{1 - \mu_j}{\rho_o} \right)^{-1} \quad 1_j := \frac{\rho_{aj} \cdot \mu_j}{\rho_m} \quad T1_{j,ji} := Q_{dko} \cdot \frac{\rho_{aj} \cdot (\delta x_{jj})^2}{\rho_m \cdot 2 \cdot k} + T_{am} \quad Tr1_{j,ji} := \frac{T_E}{T1_{j,ji}}$$

$$dp1_{j,ji} := 1000 \cdot \frac{6 \cdot (1 - \phi) \cdot (\delta x_{jj})^2 \cdot \eta_j \cdot \xi \cdot k_o \cdot Tr1_{j,ji} \cdot \Delta H_w}{2 \cdot k \cdot Tr1_{j,ji} \cdot \exp(Tr1_{j,ji} - 1)}$$

Linearization temperature:

MODIFIED KNOCK OUT POT THERMAL STABILITY

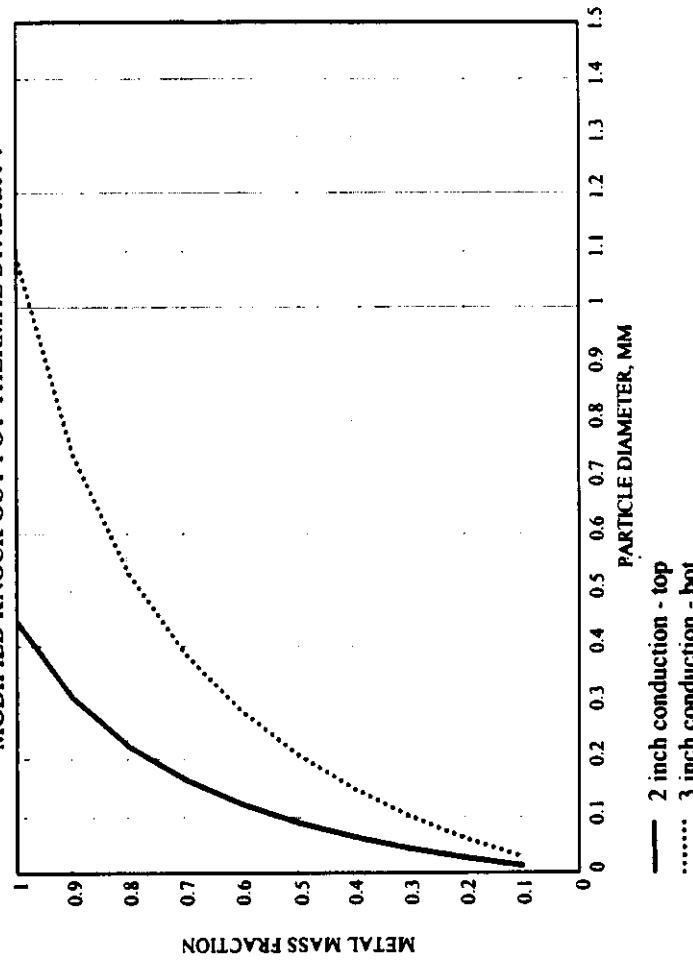


Fig. 4-4. Relationship between particle diameter, mm, and metal mass fraction for incipient runaway, mm, for a modified knock out pot, $\varepsilon = 30\%$ in a knock out pot of 16" diameter, rate law multiplier = 10. Unstable combinations are above the curves, stable combinations are below. Three internal dividers in the pot bottom set the conduction distance to a maximum of 2 inches; dividers are selected for minimal temperature gradients.

Stability for knock out pot with internal dividers:
DRY BASIN

$$T1 := 0 \quad Tr1 := 0 \quad dp1 := 0 \quad \text{Rate law multiplier:}$$

$$\text{Distance to conduct: } ji := 0..1 \quad \delta x_{ij} := (2 + ji) \cdot 0.0254 \quad j := 0..9 \quad \mu_j := 0.7 - 0.07 \cdot j$$

Density and volume fraction metal:

$$\rho_{\text{air}} := \left(\frac{\mu_j}{\rho_m} + \frac{1 - \mu_j}{\rho_o} \right)^{-1} \quad \nu_j := \frac{\rho_{\text{air}}}{\rho_m} \cdot \mu_j \quad Tr_{j,ij} := \frac{\rho_{\text{air}}}{\rho_m} \cdot Q_{\text{dot}} \cdot \frac{(\delta x_{ij})^2}{2 \cdot k} + T_{\text{am}} \quad Tr_{j,jj} := \frac{T_E}{Tr_{j,ij}} \quad dp1_{j,ij} := 1000 \cdot \frac{6 \cdot (1 - \phi) \cdot (\delta x_{ij})^2 \cdot \nu_j \cdot k_o \cdot Tr_{j,ij} \cdot \Delta H_w}{2 \cdot k \cdot Tr_{j,ij} \cdot \exp(Tr_{j,ij} - 1)}$$

Linearization temperature:

MODIFIED KP THERMAL STABILITY: BASIN DRY

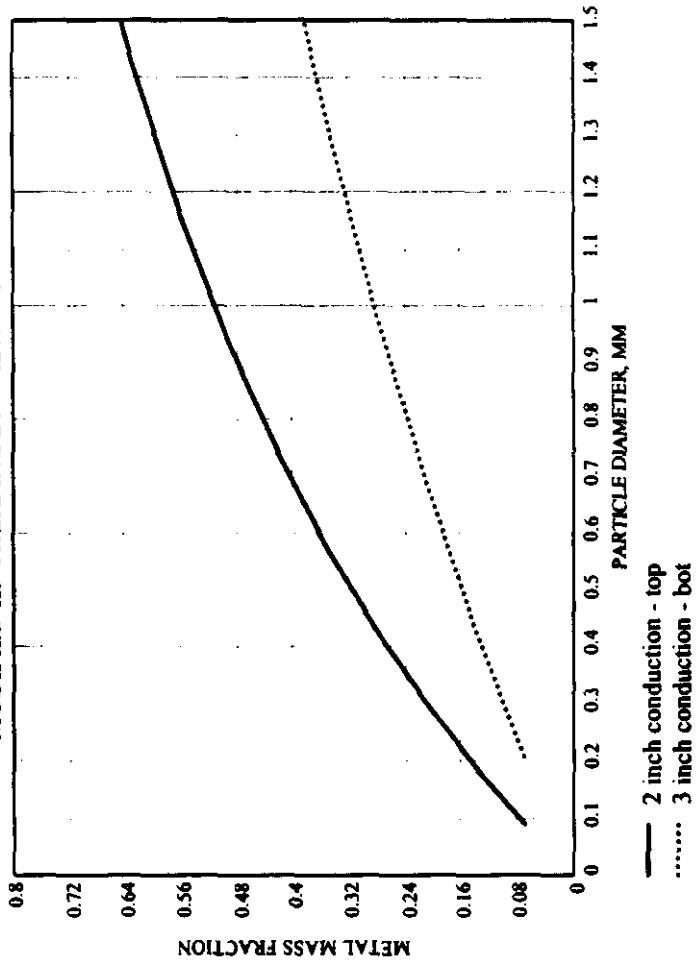


Fig. 4-5: Relationship between particle diameter, mm, and metal mass fraction for incipient runaway, mm, for a modified knock out pot, $\epsilon = 30\%$ in a knock out pot of 16" diameter, Rate law multiplier = 10, DRY BASIN, 50 C Ambient. Unstable combinations are above the curves, stable combinations are below. Three internal dividers in the pot bottom set the conduction distance to a maximum of 2 inches; dividers are selected for minimal temperature gradients.

Stability for knock out pot with internal dividers: $T1 := 0$ $Tr1 := 0$ $dp1 := 0$ Rate law multiplier: $\xi := 3$ $T_{am} := 308$ $Q_{dko} := 1020 \cdot (1 - \phi)$
DRY BASIN - BEST ESTIMATE

Distance to conduct: $jj := 0..1$ $\delta x_{jj} := (2 + jj) \cdot 0.0254$ $j := 0..9$ $\mu_j := 1 - 0.1 \cdot j$

Density and volume fraction metal:

$$\rho a_j := \left(\frac{\mu_j}{\rho_m} + \frac{1 - \mu_j}{\rho_o} \right)^{-1} \quad v_j := \frac{\rho a_j}{\rho_m} \cdot \mu_j \quad T1_{j,jj} := Q_{dko} \cdot \frac{\rho a_j}{\rho_m} \cdot \frac{(\delta x_{jj})^2}{2 \cdot k} + T_{am} \quad Tr1_{j,jj} := \frac{T_E}{Tr1_{j,jj}} \quad dp1_{j,jj} := 1000 \cdot \frac{6 \cdot (1 - \phi) \cdot (\delta x_{jj})^2 \cdot \eta_j \cdot \xi \cdot k_o \cdot Tr1_{j,jj} \cdot \Delta H_w}{2 \cdot k \cdot Tr1_{j,jj} \cdot \exp(Tr1_{j,jj} - 1)}$$

Linearization temperature:

$$\rho a_j := \left(\frac{\mu_j}{\rho_m} + \frac{1 - \mu_j}{\rho_o} \right)^{-1} \quad v_j := \frac{\rho a_j}{\rho_m} \cdot \mu_j \quad T1_{j,jj} := Q_{dko} \cdot \frac{\rho a_j}{\rho_m} \cdot \frac{(\delta x_{jj})^2}{2 \cdot k} + T_{am} \quad Tr1_{j,jj} := \frac{T_E}{Tr1_{j,jj}}$$

MODIFIED KP THERMAL STABILITY: BASIN DRY

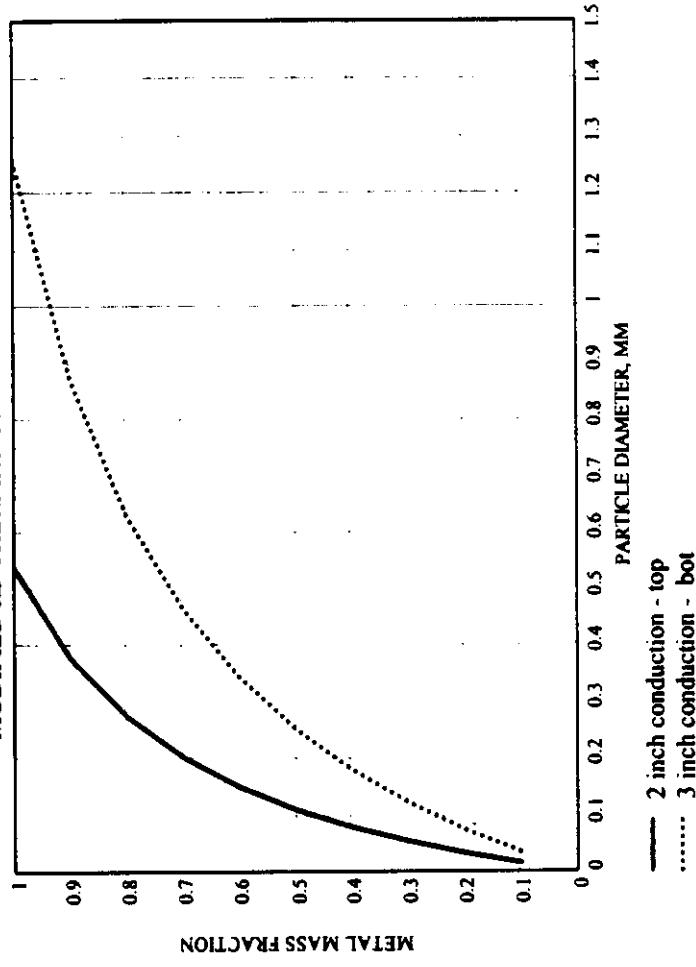


Fig. 4-6: Relationship between particle diameter, mm, and metal mass fraction for incipient runaway, mm, for a modified knock out pot, $\epsilon = 30\%$ in a knock out pot of 16" diameter. Rate law multiplier = 3, DRY BASIN, 35 C Ambient, 400 W MCO Unstable combinations are above the curves, stable combinations are below. Three internal dividers in the pot bottom set the conduction distance to a maximum of 2 inches; dividers are selected for minimal temperature gradients.

APPENDIX E

HANSF Code Difference Listing

PARAMS.DIF
AMOD.DIF
MCO.DIF

E.1 PARAMS.DIF

```
# deleted
#####00018*****.vamod.for
```

BeyondCompare Version 2.00
 Copyright (C) Stepping Stone Software 1987. All rights
 reserved.
 "Portions Copyright (C) Microsoft Corp 1984, 1985, 1986. All
 rights reserved."

```
#####00012*****params.cmg
# 13  C  PARAMETER (INCN=5)
# 14  C  PARAMETER (INCN=30)
# =====
# 13  C  PARAMETER (INCN=5)
#####00016*****.vamod.for

#####00016*****params.cmg
# 31  C  PARAMETER (INTIER1=5)
# 32  C  PARAMETER (INTIER1=8)
# =====
# 30  C  PARAMETER (INTIER1=5)
#####00013*****.vamod.for

#####00013*****params.cmg
# 31.5  C  CRITICAL PRESSURE RATIO
# 31.6  C  CRITICAL PRESSURE RATIO
# 31.7  C  CRITICAL PRESSURE RATIO
# 31.8  C  CRITICAL PRESSURE RATIO
# =====
# deleted
#####00017*****.vamod.for
```

E.2 AMOD.DIF

BeyondCompare Version 2.00
 Copyright (C) Stepping Stone Software 1987. All rights
 reserved.
 "Portions Copyright (C) Microsoft Corp 1984, 1985, 1986. All
 rights reserved."

```
#####01777*****.vamod.for
# 1778  Common /ebal/qconduction
# =====
# deleted
#####00096*****.vamod.for
```

E.3 MCO.DIF

BeyondCompare Version 2.00
 Copyright (C) Stepping Stone Software 1987. All rights
 reserved.
 "Portions Copyright (C) Microsoft Corp 1984, 1985, 1986. All
 rights reserved."

```
#####00070*****.vamod.for
# 71  Common /ebal/qconduction
# =====
# deleted
#####02165*****.vamod.for
```

```
*****02165*****\mco.for
# 2237      qldsc(1)=qconduction
# =====
# deleted
*****04603*****..\mco.for
```

APPENDIX F

Listing of GENHS.FOR & GENHS1.FOR

GENHS.FOR
GENHS1.FOR

F. 1 GENHS.FOR


```

1702      WRITE(6,1702)
1702      FORMAT(' END')
C PRINT OUT THE FIVE MORE MCO HEAT SINK DATA
C
106      WRITE(6,106)
106      FORMAT('***. FIVE MORE MCO WALL HEAT SINKS'//**')
106      WRITE(6,206) 47,48,49,50,51
206      FORMAT('SINKS      ',5(I6,5X)/**')
206      WRITE(6,306) 1, 1, 1, 1
306      FORMAT('  IGEOM   ',5(I6,5X) )
306      WRITE(6,406) 4, 4, 4
406      FORMAT('  IMATHS  ',5(I6,5X) )
406      WRITE(6,506) (XRMCO,IN=1,5)
506      FORMAT('  XRI    ',5(F10.5,1X) )
506      WRITE(6,606) (XRMCO,IN=1,5)
506      FORMAT('  XRC    ',5(F10.5,1X) )
506      WRITE(6,706) (AHSMCO,IN=1,5)
506      FORMAT('  AHS    ',5(F10.5,1X) )
506      WRITE(6,806) (1.0,IN=1,5)
506      FORMAT('  XZHS   ',5(F10.5,1X) )
506      WRITE(6,906) (50.0,IN=1,5)
506      FORMAT('  TINIT   ',5(FE.2,1X) )
506      WRITE(6,1006) (50.0,IN=1,5)
506      FORMAT('  TOINIT  ',5(FE.2,1X) )
506      WRITE(6,1106) (3, IN=1,5)
506      FORMAT('  IMSLAB  ',5(I6,5X) )
506      WRITE(6,1206) (1, IN=1,5)
506      FORMAT('  TREGI   ',5(I6,5X) )
506      WRITE(6,1306) (0.0,IN=1,5)
506      FORMAT('  TOHS    ',5(F10.5,1X) )
506      WRITE(6,1406) (1, IN=1,5)
506      FORMAT('  TREGO   ',5(I6,5X) )
506      WRITE(6,1506) (0.0,IN=1,5)
506      FORMAT('  TOHS    ',5(F10.5,1X) )
506      WRITE(6,1606) (0.111,IN=1,5)
506      FORMAT('  XLHS    ',5(F9.4,2X) )
506      WRITE(6,1706)
506      FORMAT(' END')
C PRINT OUT THE INPUT DATA FOR FICTIONAL HEAT SINKS AND TWO MCO WALL
C
105      WRITE(6,103)
105      FORMAT('***. FICTIONAL HEAT SINKS AND ONE MCO WALL'//**')
105      WRITE(6,203) 43,44,45,52,53
203      FORMAT('SINKS      ',5(I6,5X)/**')
203      WRITE(6,303) 0, 0, 1, 1
303      FORMAT('  IGEOM   ',5(I6,5X) )
303      WRITE(6,403) 2, 2, 4
403      FORMAT('  IMATHS  ',5(I6,5X) )
403      WRITE(6,503) (XRIPLT(IN=1,3),XRMCO,XRMCO
503      FORMAT('  XRI    ',5(F10.5,1X) )
503      WRITE(6,603) (XRIPLT(IN=1,3),XRMCO,XRMCO
503      FORMAT('  XRC    ',5(F10.5,1X) )
503      WRITE(6,703) (AHSPLT(IN=1,3),AHSMCO,AHSMCO
703      FORMAT('  AHS    ',5(F10.5,1X) )
703      WRITE(6,803) 5.48, 5.48, 5.48, 1.0, 1.0
803      FORMAT('  XZHS   ',5(F10.5,1X) )

```

F.2 GENHS1.FOR

```

1003      WRITE(6,903) 50.0, 50.0, 50.0, 50., 50.
1003      FORMAT('  TINIT   ',5(FB.2,3X) )
1003      WRITE(6,1003) 50.0, 50.0, 50.0, 50., 50.
1003      FORMAT('  TOINIT  ',5(FB.2,3X) )
1003      WRITE(6,1103) 3, 3, 3
1003      FORMAT('  IMSLAB  ',5(I6,5X) )
1003      WRITE(6,1203) -1, -1, 1, 1
1203      FORMAT('  TREGI   ',5(I6,5X) )
1203      WRITE(6,1303) 50., 50., 50., 0., 0.
1303      FORMAT('  TREGS   ',5(F7.1,4X) )
1303      WRITE(6,1403) -1, -1, 1, 1
1403      FORMAT('  TREGO   ',5(I6,5X) )
1403      WRITE(6,1503) 50., 50., 50., 0., 0.
1503      FORMAT('  TOHS    ',5(F7.1,4X) )
1503      WRITE(6,1603) 1.0, 1.0, 1.0, 1.0, 1.0
1603      FORMAT('  XHS    ',5(F9.4,2X) )
1603      WRITE(6,1703)
1603      FORMAT(' END')
1603      STOP
1603      END

```

THIS PROGRAM GENERATES HEAT SINK SECTION OF THE HEAT SINKS FOR THE SINKS

FILE CALCULATION.

PROGRAM HS1GEN1

```

C      Basket-8      +-----+-----+-----+-----+-----+-----+-----+-----+
C      0.0   0.2   0.4   0.6   0.8   1.0
C
C      IMPLICIT REAL (A-H,K-Z)
C      DIMENSION RINORM(8),XRI(8,9),XRO(8,9),AHS(8,9),X2HS(8,9),IRMAX(8),
C      HINORM(8),XRO(8),IEND(8),XRIPLT(8),XROPLT(8),AHSPLT(8),
C      DATA RINORM/0.0,0.2,0.4,0.6,0.8,1.0,1.0,1.0,1.0/
C      DATA AHS/0.0,0.158,0.317,0.475,0.633,0.792,0.950,1.0,1.0/
C      DATA MUCAN/328.0,17102.0,POROSITY/0.4/,PI/3.141593/
C      DATA IRMAX/5,5,5,5,5,5,5,5,5/
C      DATA IRMAX/1,7,13,19,25,31,37,43/,IEND/6,12,18,24,30,36,42,51/
C      WRITE(*,*) 'ENTER THE FRACTION OF SINGLE CANISTER WORTH SCFAP'
C      WRITE(*,*) 'AND THE THICKNESS(M) OF THE CYLINDRICAL SLAB OF FILE'
C      WRITE(*,*) 'READ(*,*) FCAN,XTSLAB'
C      OPEN(UNIT=1,FILE='FCAN.XTSLAB',STATUS='UNKNOWN')
C      C VOLUME OF THE FILE
C      VOLFCAN=FCAN*PHOU*(1.0-POROSITY)
C      C RADIUS OF THE FILE
C      FILE=SQRT(VOLFCAN*PI*X2HS(8))
C      DO 100 OVER 7 SCFAP BASKETS
C      DO 100 IB=1,7
C      DO 100 OVER INTERIOR+EXTERIOR RACES
C      DO 100 IN=1,IRMAX(1,IB)
C      IF (IN .EQ. 1) THEN
C      XRI(1,IB)=0.00001
C      ELSE
C      XRI(1,IN)=FILE*PI*PHOU
C      ENDIF
C      XRO(1,IN)=FILE*PI*IN*(1.0-IRMAX(9,1-IB))
C      X2HS(1,IN)=XTSLAB*(IRMAX(4,1-IB)-IRMAX(9,1-IB))
C      AHS(1,IB)=2.*PI*(XRI(1,IB)*AHS(1,IN))/2.*X2HS(1,IB)
C      END DO
C
C      C FIN MODE - MAKE IT THIN AND SAME AREA AS THE BOUNDARY NODE
C
C      IN=6
C      XRI(1,IB)=XRO(1,IB,IN-1)
C      XRO(1,IB,IN)=XRI(1,IB,IN)+0.001
C      X2HS(1,IB)=X2HS(1,IB,IN-1)
C      AHS(1,IB,IN)=AHS(1,IB,IN-1)
C      ENDDO
C
C      C STAINLESS STEEL PLATE
C
C      DO IN=1,5
C      XRI(1,IN)=XRI(1B~,IN)
C      XRO(1,IN)=XRO(1B~,IN)
C      X2HS(1,IN)=0.00635
C      AHS(1,IN)=2.*PI*(XRI(1,IN)*XRO(1,IN))/2.*X2HS(1,IN)
C      XRIPLT(1,IN)=XRI(1,IN)
C      XROPLT(1,IN)=XRO(1,IN)
C      AHSPLT(1,IN)=AHS(1,IN)*5.48/0.00635
C
C      C FICTITIOUS HEAT SINKS ABOVE THE SS PLATE TO WHICH IT RADIATES AND
C      C CONVECTS HEAT TO
C      XRIPLT(IN)*XRI(1B,IN)
C      XROPLT(IN)*XRO(1B,IN)
C      AHSPLT(IN)*AHS(1B,IN)*5.48/0.00635
C
C      ENDDO
C      IN=9
C      XRI(1B,IB)=XRO(1B,IB)
C      XRO(1B,IB)=XRI(1B,IB)+0.001
C      X2HS(1B,IB)=X2HS(1B,IB)+0.001
C      AHS(1B,IB)=AHS(1B,IB)+0.0015
C      AHS(1B,IB)=2.*PI*(XRI(1B,IB)*XRO(1B,IB))/2.*X2HS(1B,IB)
C
C      C FLOOR PLATE
C      XRIPLT(1B)=0.
C      XROPLT(1B)=1.
C      AHSPLT(1B)=1.*PI*(XRI(1B,IB)*XRO(1B,IB))/2.*X2HS(1B,IB)
C      C LIT PLAT
C      X2HS(1B)=0.
C      AHS(1B)=1.
C      AHSPLT(1B)=1.*PI*(XRI(1B,IB)*XRO(1B,IB))/2.*X2HS(1B,IB)
C      C MCY WALL
C
C      C PRINT OUT HEAT SINK 1-11 DATA
C
C      DO 100 IB=1,7
C      WRITE(*,100) IN
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,200) (IHS,IHS*BASKET,'11/11/11')
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,300) (I,1,IHS*BASKET,'11/11/11')
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,400) (I,1,IHS*BASKET,'11/11/11')
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,500) (XRI(1B,IN),IN=1,IRMAX(1B))
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,600) (XRO(1B,IN),IN=1,IRMAX(1B))
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,700) (AHS(1B,IN),IN=1,IRMAX(1B))
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,800) (X2HS(1B,IN),IN=1,IRMAX(1B))
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,900) (50.0,IN=1,IRMAX(1B))
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C      WRITE(1,1000) (50.0,IN=1,IRMAX(1B))
C      FORMAT(*,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1)
C
C      C FICTITIOUS HEAT SINKS ABOVE THE SS PLATE TO WHICH IT RADIATES TO
C      C CONVECTS HEAT TO
C      XRIPLT(IN)*XRI(1B,IN)
C      XROPLT(IN)*XRO(1B,IN)
C      AHSPLT(IN)*AHS(1,IN)*8.82/X2HS(1,IN)
C
C      ENDDO

```

```

      WRITE(6,1100) (7,IN=1),IRMAX(1B)
      1100 FORMAT(' IMSLAB      ',5(16,5X))
      WRITE(6,1200) (1,IN=1),IRMAX(1B)
      1200 FORMAT(' IREGI      ',5(16,5X))
      WRITE(6,1300) (0,0,IN=1),IRMAX(1B)
      1300 FORMAT('      ',5(F7.1,4X))
      WRITE(6,1400) (1,IN=1),IRMAX(1B)
      1400 FORMAT(' IREGO     ',5(16,5X))
      WRITE(6,1500) (0,0,IN=1),IRMAX(1B)
      1500 FORMAT(' TOHS      ',5(F7.1,4X))
      WRITE(6,1600) (0,111,IN=1),IRMAX(1B)
      1600 FORMAT(' XLHS     ',5(F9.4,2X))
      WRITE(6,1700)
      1700 FORMAT(' END' )

C PRINT OUT THE HEAT SINK DATA FOR THE STAINLESS STEEL PLATE
C
C 1E+6
      WRITE(6,104) 1E+6
      104 FORMAT('...//... STAINLESS STEEL PLATE'//...)
      WRITE(6,204) 45, 44, 45, 46, 47
      204 FORMAT('SINKS      ',5(16,5X))//...
      WRITE(6,304) 0, 0, 0, 0, 0
      304 FORMAT(' IGEOM     ',5(16,5X))
      WRITE(6,404) 2, 2, 2, 2, 2
      404 FORMAT(' IMATHS    ',5(16,5X))
      WRITE(6,504) (AF11B,1B,-2B,1B,-1B)
      504 FORMAT(' XFH1     ',5(F10.5,2X))
      WRITE(6,604) (AF115,1B,-1B,1B,-1B)
      604 FORMAT(' XFH2     ',5(F10.5,2X))
      WRITE(6,704) (AHS1B,1B,-2B,1B,-1B)
      704 FORMAT(' AHS      ',5(F10.5,2X))
      WRITE(6,804) (0,0,0,3,1B+1,1B+1)
      804 FORMAT(' XZHS     ',5(F10.5,2X))
      WRITE(6,904) (50,0,IN=1,5)
      904 FORMAT(' TINIT     ',5(F8.2,5X))
      WRITE(6,1004) (50,0,IN=1,5)
      1004 FORMAT(' TOINIT    ',5(F8.2,5X))
      WRITE(6,1104) (7,IN=1,5)
      1104 FORMAT(' IMSLAB    ',5(16,5X))
      WRITE(6,1204) (1,IN=1,5)
      1204 FORMAT(' IREGI     ',5(16,5X))
      WRITE(6,1304) (0,0,IN=1,5)
      1304 FORMAT(' TIHS     ',5(F7.1,4X))
      WRITE(6,1404) (1,IN=1,5)
      1404 FORMAT(' IREGO     ',5(16,5X))
      WRITE(6,1504) (0,0,IN=1,5)
      1504 FORMAT(' TOHS     ',5(F7.1,4X))
      WRITE(6,1604) (0,0,0,35,IN=1,5)
      1604 FORMAT(' XLHS     ',5(F9.4,2X))
      WRITE(6,1704)
      1704 FORMAT(' END' )

C PRINT OUT THE HEAT SINK DATA FOR THE STAINLESS STEEL PLATE
C
      WRITE(6,105) 1E+6
      105 FORMAT('...//... SINK DATA FOR FIRST FIVE ELEMENTS
      105 FORMAT(' TINIT     ',5(16,5X))
      WRITE(6,205) (50,0,IN=6,8)
      205 FORMAT(' XZHS     ',5(F10.5,2X))
      WRITE(6,305) (0,1,IN=6,8)
      305 FORMAT(' IGEOM     ',5(16,5X))
      WRITE(6,405) (2,1,IN=6,8)
      405 FORMAT(' IMATHS    ',5(16,5X))
      WRITE(6,505) (XRI1B,1B,IN=6,8)
      505 FORMAT(' XRI      ',5(F10.5,1X))
      WRITE(6,605) (XRO1B,1B,IN=6,8)
      605 FORMAT(' XRO      ',5(F10.5,1X))
      WRITE(6,705) (AHS1B,1B,IN=6,8)
      705 FORMAT(' AHS      ',5(F10.5,1X))
      WRITE(6,805) (9,0,0,35,IN=6,8)
      805 FORMAT(' XZHS     ',5(F10.5,1X))
      WRITE(6,905) (10,0,0,35,IN=6,8)
      905 FORMAT(' TINIT     ',5(F8.2,3X))
      WRITE(6,1005) (50,0,IN=6,8)
      1005 FORMAT(' TOINIT    ',5(F8.2,3X))
      WRITE(6,1105) (7,IN=6,8)
      1105 FORMAT(' IMSLAB    ',5(16,5X))
      WRITE(6,1205) (1,IN=6,8)
      1205 FORMAT(' IREGI     ',5(16,5X))
      WRITE(6,1305) (0,1,IN=6,8)
      1305 FORMAT(' TIHS     ',5(F7.1,4X))
      WRITE(6,1405) (1,IN=6,8)
      1405 FORMAT(' IREGO     ',5(16,5X))
      WRITE(6,1505) (0,1,IN=6,8)
      1505 FORMAT(' TOHS     ',5(F7.1,4X))
      WRITE(6,1605) (0,0,0,635,IN=6,8)
      1605 FORMAT(' XLHS     ',5(F9.4,2X))
      WRITE(6,1705)
      1705 FORMAT(' END' )

C PRINT OUT THE FINISH SINK DATA FOR FIRST FIVE ELEMENTS
C
      WRITE(6,106) 1E+6
      106 FORMAT('...//... SINK DATA FOR FIRST FIVE ELEMENTS
      106 FORMAT(' TINIT     ',5(16,5X))
      WRITE(6,206) (50,1,IN=1,5)
      206 FORMAT(' XZHS     ',5(F10.5,1X))
      WRITE(6,306) (XRI1B,1B,IN=1,5)
      306 FORMAT(' XRI      ',5(F10.5,1X))
      WRITE(6,406) (XRO1B,1B,IN=1,5)
      406 FORMAT(' XRO      ',5(F10.5,1X))
      WRITE(6,506) (AHS1B,1B,IN=1,5)
      506 FORMAT(' AHS      ',5(F10.5,1X))
      WRITE(6,606) (XZHS1B,1B,IN=1,5)
      606 FORMAT(' XZHS     ',5(F10.5,1X))
      WRITE(6,706) (10,0,1B=1,5)
      706 FORMAT(' TINIT     ',5(F8.2,3X))
      WRITE(6,806) (50,0,1B=1,5)
      806 FORMAT(' TOINIT    ',5(F8.2,3X))
      WRITE(6,906) (7,1B=1,5)
      906 FORMAT(' IMSLAB    ',5(16,5X))
      WRITE(6,1006) (1,1B=1,5)
      1006 FORMAT(' IREGI     ',5(16,5X))
      WRITE(6,1106) (0,0,1B=1,5)
      1106 FORMAT(' TIHS     ',5(F7.1,4X))
      WRITE(6,1206) (1,1B=1,5)
      1206 FORMAT(' IREGO     ',5(16,5X))
      WRITE(6,1306) (0,0,1B=1,5)
      1306 FORMAT(' TOHS     ',5(F7.1,4X))
      WRITE(6,1406) (0,0,0,635,1B=1,5)
      1406 FORMAT(' XLHS     ',5(F9.4,2X))
      WRITE(6,1506)
      1506 FORMAT(' END' )

C REMAINING THREE HEAT SINKS OF THE STAINLESS STEEL PLATE
C
      WRITE(6,105) 1E+6
      105 FORMAT('...//... STAINLESS STEEL PLATE'//...)

```



```

1407 FORMAT('IREGO', '5(I6,5X)') 603 FORMAT('XRO', '5(F10.5,1X)')
  WRITE(6,1507) 0., 0., 0.  WRITE(6,703) (AHSPLT(IN),IN=6,8)
1507 FORMAT('TOHS', '5(F7.1,4X)') 703 FORMAT('AHS', '5(F10.5,1X)')
  WRITE(6,1607) 0.111, 0.111, 0.111  WRITE(6,803) 5.48, 5.48,
1607 FORMAT('XLHS', '5(F9.4,2X)') 803 FORMAT('XZHS', '5(F10.5,1X)')
  WRITE(6,1707)  WRITE(6,903) 50.0, 50.0, 50.0
1707 FORMAT('END') 903 FORMAT('TINIT', '5(FB-2,3X)')
C PRINT OUT THE FIRST FIVE FICTITIOUS HEAT SINKS  WRITE(6,1003) 50.0, 50.0, 50.0
C                                         FORMAT('TINIT', '5(FB-2,3X)')
1003 WRITE(6,1103) 3, 3, 3  WRITE(6,1103) 5(I6,5X)
1103 FORMAT('IMSLAB', '5(I6,5X)') 1103 FORMAT('IMSLAB', '5(I6,5X)')
  WRITE(6,1203) -1, -1, -1, -1, -1  WRITE(6,1203) -1, -1, -1, -1, -1
1203 FORMAT('IPES1', '5(I6,5X)') 1203 FORMAT('IPES1', '5(I6,5X)')
  WRITE(6,1303) 50., 50., 50., 50., 50.  WRITE(6,1303) 50., 50., 50., 50., 50.
1303 FORMAT('THS', '5(F7.1,4X)') 1303 FORMAT('THS', '5(F7.1,4X)')
  WRITE(6,1403) -1, -1, -1, -1, -1  WRITE(6,1403) -1, -1, -1, -1, -1
1403 FORMAT('12E5', '5(F10.5,1X)') 1403 FORMAT('12E5', '5(F10.5,1X)')
  WRITE(6,1503) 50., 50., 50., 50., 50.  WRITE(6,1503) 50., 50., 50., 50., 50.
1503 FORMAT('THS', '5(F7.1,4X)') 1503 FORMAT('THS', '5(F7.1,4X)')
  WRITE(6,1603) 1., 1., 1., 1., 1.  WRITE(6,1603) 1., 1., 1., 1., 1.
1603 FORMAT('THS', '5(F9.4,2X)') 1603 FORMAT('THS', '5(F9.4,2X)')
  WRITE(6,1703) 1703 FORMAT('THS', '5(F9.4,2X)')
C PRINT OUT THE REMAINING THREE FICTITIOUS HEAT SINKS  1703 FORMAT('THS', '5(F9.4,2X)')
1708 FORMAT('END') 1708 FORMAT('END')
C                                         PRINT OUT THE REMAINING THREE FICTITIOUS HEAT SINKS
103 WRITE(6,103) 103 WRITE(6,103) 103 WRITE(6,103) 103
  FORMAT('***', 'FICTIONOUS HEAT SINKS */*/*') 103 FORMAT('***', 'FICTIONOUS HEAT SINKS */*/*')
  WRITE(6,203) 59, 60, 61 203 FORMAT('SINKS', '5(I6,5X)/*/*')
  WRITE(6,203) 1, 1, 1 203 FORMAT('SINKS', '5(I6,5X)/*/*')
  WRITE(6,203) 1, 1, 1 303 FORMAT('IGEM', '5(I6,5X)') 303 FORMAT('IGEM', '5(I6,5X)')
  WRITE(6,403) 4, 4, 4 403 FORMAT('IMATHS', '5(I6,5X)') 403 FORMAT('IMATHS', '5(I6,5X)')
  WRITE(6,503) (XRIPLT(IN),IN=6,8) 503 FORMAT('XRI', '5(F10.5,1X)') 503 FORMAT('XRI', '5(F10.5,1X)')
  WRITE(6,603) (XROPLT(IN),IN=6,8) 503 FORMAT('XRO', '5(F10.5,1X)') 503 FORMAT('XRO', '5(F10.5,1X)')

```

APPENDIX G
HANSF Input Decks

HEM200N.DAT
CYL30AN.DAT
SCBSKT.DAT

G.1 HEM200N.DAT

END TIMING : TIMING is a comment.

PRINT ! Keyword for printing section

PRINT n hlist - Heat Sink Temperatures, C

HS n hlist - Heat Sink Temperatures, K

HS 10 1 2 3 4 5 6 7 8 9 10

HS 10 11 12 13 14 15 16 17 18

HS 10 21 22 23 24 25 26 27 28

HS 10 31 32 33 34 35 36 37 38

HS 10 41 42 43 44

END PRINT ! PRINT is a comment

PRINT ! Keyword for plotting section

PRINT n hlist

PRESSURE n hlist - Pressure, Pa

GAS-T n hlist - Gas Temperature, K

HS-T n hlist - Heat Sink Temperature

HS-TZ n hlist - Heat Sink Temperature

AEROSOL n hlist - Aerosol Mass, g/s

GAS-F n hlist - Mass Flowrate, g/s

GAS-W n hlist - Current Mass Flowrate

GAS-X n hlist - Gas Mass Fraction

GAS-E n hlist - Gas Radiation

GAS-S n hlist - Gas Mass Specie

AER-MASS n hlist - Gas Mass Specie

MASS n hlist - Aerosol Mass

LIG-MASS n hlist - Deposited Mass

Pressure, Gas Temperature, and total air list

Flowrates need a junction number list

Gas concentration, relative humidity, individual species aerosol mass, total species mass, and individual species dep. a region and gas name

Note: Plot routine can only accept 99 items. So plot all scrap files but only 5 fuel (p

HS-TA 10 11 12 13 14 15 16 17 18

HS-TA 10 21 22 23 24 25 26 27 28

HS-TA 10 31 32 33 34 35 36 37 38

HS-TA 10 41 42 43 44 45 46 47 48

HS-TA 3 51 52 53

END PLOT ! PLOT is a comment

CONTROL ! Major keyword group

TITLE ! Keyword; next line is title, title can be any length

CASE HEM!On: HEMISPHERIC SCRAP FILE, 200 ! CANISTER WORTH

END TITLE ! Anything after END is a comment

TIMING ! Keyword

TSTART n. ! START TIME, 0.0 FOR RESTART RUN

RESTART FILE HEM!On..PER ! RESTART FILE NAME FOR RESTART RUN

! IF NOT SPECIFIED, FILE FROM

! * Input deck name*.RIF

TLAST n. ! END TIME (seconds)

! for next six parameters: DTMIN, DTMAX, DLTMIN, DLTMAX, DTRST,

! the user can specify either a fixed value or time dependent value.

! for example:

DTMIN 0.01 will cause the code to use minimum time step of 0.01

DTMIN 0.01 second all the time

seconds, and then 2.0 second for the the rest of the

DTMIN 0.01 ! MIN TIMESTEP (Seconds)

DTMAX 10. ! MAX TIMESTEP (Seconds)

0. ! PRINT INTERVAL (Seconds)

14400. ! MIN PLOT INTERVAL (Seconds)

100. ! MAX INTERVAL WITHOUT PLOT (Seconds)

1000. ! RESTART INTERVAL (Seconds)

14400. ! FRACTIONAL CHANGE IN T AND P

0.005 ! FRACTIONAL CHANGE IN AEROSOL MASS

FACCH 0.005 ! FRACTIONAL CHANGE FOR PLOTTING

FPLCH 0.03 ! FPLCH


```

1
END
* Syntax:
*   IGEOM      1 for plane, 0 or 2 for cylinder
*   IMATHS    material type
*   RHO      Density (kg/m3), if different from material type
*   KHS      Thermal Conductivity (W/m/K), if different from material type
*   CPHS    Specific Heat (J/kg/K), if different from material type
*   QV      Volumetric Heat Generation (W/m3), if different from material type
*   EHS1    Emissivity of inner surface, if different from material type
*           User has an option to input a temperature dependent emissivity
*           by
*           inputting a negative integer for the emissivity and supplying
*           corresponding temperature versus emissivity look-up table.
*           See
*           TABLE & ETABLE keywords.
*           Emissivity of outer surface, if different from material type
*           RAI: Radius (m)
*           AHS: One-sided average heat sink area (m2)
*           XZHS: Axial length for conduction (m)
*           TINIT: Initial inside surface temperature (°C)
*           TCHINIT: Initial inside surface temperature (°C)
*           IMSLAB: Number of facets, 3 is minimum, use 1 for uniform heat sink
*           IREGI: Region index for inner surface of a (insulated)
*           CR = 1 for constant temperature
*           CR = 2 for surface temperature when IREGI = -1 (°C)
*           PREGI: Region index for outer surface of a (insulated)
*           CR = 1 for constant temperature
*           CR = 2 for constant surface temperature when IREGI = -1 (°C)
*           REGO: Characteristic length for natural convection (m)
*           TOINIT: Characteristic length for natural convection (m)
*           TCHS: Characteristic length for natural convection (m)
*           XLHS: Characteristic length for natural convection (m)
*           step basket: 1
*           See
*           SINKS      1
*           IGEOM      0
*           IMATHS    1
*           XRI       0.00001
*           XRO       0.00625
*           AHS       0.00625
*           XZHS      0.00625
*           TINIT     29.40
*           TINIT     29.40
*           IMSLAB    7
*           IREGI     1
*           THS       0.0
*           TOHS      0.0
*           XLHS      0.1110
*           END
*           scrap basket: 2
*           See
*           SINKS      15
*           IGEOM      0
*           IMATHS    1
*           XRI       0.00001
*           XRO       0.00625
*           AHS       0.00625
*           XZHS      0.00625
*           TINIT     29.40
*           TINIT     29.40
*           IMSLAB    7
*           IREGI     1
*           THS       0.0
*           TOHS      0.0
*           XLHS      0.1110
*           END
*           scrap basket: 3
*           See
*           SINKS      15
*           IGEOM      0
*           IMATHS    1
*           XRI       0.00001
*           XRO       0.00625
*           AHS       0.00625
*           XZHS      0.00625
*           TINIT     29.40
*           TINIT     29.40
*           IMSLAB    7
*           IREGI     1
*           THS       0.0
*           TOHS      0.0
*           XLHS      0.1110
*           END
*           scrap basket: 4
*           See
*           SINKS      10
*           IGEOM      0
*           IMATHS    1
*           XPI       0.00001
*           XFO       0.00250
*           AHS       0.01250
*           XZHS      0.00250
*           TINIT     29.40
*           TINIT     29.40
*           IMSLAB    7
*           IREGI     1
*           THS       0.0
*           TOHS      0.0
*           XLHS      0.1110
*           END
*           scrap basket: 5
*           See
*           SINKS      15
*           IGEOM      0
*           IMATHS    1
*           XRI       0.00001
*           XRO       0.00625
*           AHS       0.00625
*           XZHS      0.00625
*           TINIT     29.40
*           TINIT     29.40
*           IMSLAB    7
*           IREGI     1
*           THS       0.0
*           TOHS      0.0
*           XLHS      0.1110
*           END

```


SNF-4998, Rev. 0

SNF-4998, Rev. 0

* exposed surface available for oxidation
 * per unit volume of scrap (1/m³) for
 each scrap basket heat sink in the order read in.
 * the values are based on SNF CN-017 report
 AVOXSC 125.63 125.63 125.63
 FORSC 10.0 ! multiplier for AVOXSC
 XDHYSC 2.E-5 ! average diameter of hydride particle (m)
 * Nominal hydride: 4% of exposed surface with multiplier of 300
 * XSC0R0*FSCHD = Fx * Fa * XDHYD / 6, where Fx is multiplier
 * Fa is area fraction
 * read in
 * (only conductor part)
 FIRST 1.0 1.0 1.0 1.0
 * multiplier for effective conductivity in scrap basket in the order
 read in
 (only conductor part)
 FIRST 1.0 1.0 1.0 1.0
 * porosity of the scrap for each heat sink in the order: read in.
 FIRST 0.49 0.49 0.49 0.49
 * fraction of each scrap heat sink 25, 50, 75, 100
 * (0.25, 0.50, 0.75, 1.00) for each scrap heat sink 25, 50, 75, 100
 * note: the input parameters does not affect the simulation
 * FIRST 0.2500 0.5000 0.7500 1.0000
 * radius of each basket (m)
 * FIRST 0.0000 0.0000 0.0000 0.0000
 * height of scrap basket (m)
 * scrap basket area available for oxidation
 * first reading of 2.01 (1.8) for
 * the first basket heat sink in the case: read in.
 * note: all bases on SNF CN-017 report
 * values for first basket: 126.3 126.3 126.3
 * note: the input parameters does not affect the simulation
 * FIRST 1.0 1.0 1.0 1.0
 * average diameter of scrap basket
 * FIRST 0.25 0.25 0.25 0.25
 * exposed surface of each scrap basket
 * FIRST 0.0000 0.0000 0.0000 0.0000
 * bottom top axial position
 * AXIAL 0.2 0.2 0.2 0.2
 * multiplier for FMSRC (size of scrap) for each axial basket
 * FMSRC 2.226 2.365 2.365 2.044 1.67
 * multiplier for FMSRC (multiplier for oxidation area) for each axial
 basket
 * FMSRC 1.0 1.0 1.0 1.0
 * multiplier for MWSC (initial) amount of water per unit volume: tot
 each
 * axial basket, 1 kg on the bottom node, 0.167 kg on each of top three
 nodes.
 * FMWSC 1.0 1.0 1.0 1.0
 * multiplier for XDSRC (characteristic scrap size) for each axial basket
 * FXDSC 1.0 1.0 1.0 1.0
 * multiplier for FSC (multiplier for effective conductivity (conduction)
 in scrap)
 * FFSRC 1.0 1.0 1.0 1.0
 * multiplier for FSC (multiplier for effective conductivity (radiation)
 in scrap)
 * FFRSC 1.0 1.0 1.0 1.0
 END MWSC for 4th scrap basket
 * Fifth scrap basket

seconds, and then 2.0 second for the the rest of the

run

DTMIN 0.01 ! MIN TIMESTEP (Seconds)

DTMAX 0. ! MAX TIMESTEP (Seconds)

0. DTPRIN 10. ! PRINT INTERVAL (Seconds)

PLTMIN 14400. ! MIN PLOT INTERVAL (Seconds)

PLTMAX 100. ! MAX INTERVAL WITHOUT PLOT (Seconds)

DIRST 1000. ! RESTART INTERVAL (Seconds)

FTPCH 14400. ! FRACTIONAL CHANGE IN T AND F

FAECH 0.005 ! FRACTIONAL CHANGE IN AEROSOL MASS

FPLCH 0.03 ! FRACTIONAL CHANGE FOR PLOTTING

END TIMING ! TIMING is a comment.

PRINT ! Keyword for printing section

! Printing sections:

* HS n list - Heat Sink Temperatures, $^{\circ}$ C

HS 15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HS 16	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
HS 17	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
HS 18	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
HS 19	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
HS 20	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5
HS 21	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6
HS 22	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7
HS 23	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8
HS 24	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9
HS 25	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
HS 26	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11
HS 27	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12
HS 28	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13
HS 29	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14
HS 30	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15
HS 31	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
HS 32	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
HS 33	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18
HS 34	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19
HS 35	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
HS 36	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21
HS 37	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22
HS 38	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23
HS 39	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
HS 40	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
HS 41	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
HS 42	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
HS 43	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
HS 44	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
HS 45	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
HS 46	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31
HS 47	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
HS 48	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
HS 49	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
HS 50	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
HS 51	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
HS 52	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
HS 53	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
HS 54	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39
HS 55	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40
HS 56	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41
HS 57	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
HS 58	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
HS 59	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44
HS 60	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
HS 61	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
HS 62	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
HS 63	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
HS 64	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
HS 65	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
HS 66	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
HS 67	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
HS 68	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
HS 69	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
HS 70	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
HS 71	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
HS 72	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
HS 73	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
HS 74	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
HS 75	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60
HS 76	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
HS 77	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62
HS 78	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63
HS 79	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
HS 80	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65
HS 81	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66
HS 82	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67
HS 83	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68
HS 84	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69
HS 85	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
HS 86	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71
HS 87	87	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72
HS 88	88	87	86	85	84	83	82	81	80	79	78	77	76	75	74	73
HS 89	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75	74
HS 90	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75
HS 91	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76
HS 92	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77
HS 93	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78
HS 94	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79
HS 95	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80
HS 96	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81
HS 97	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82
HS 98	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83
HS 99	99	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84
HS 100	100	99	98	97	96	95	94	93	92	91	90	89	88	87	86	85

PRESSURE n list - Gas Pressure, Pa

HS-T1 n list - Heat Sink Temperature - Individual Sink Temperature, $^{\circ}$ C

HS-TC n list - Heat Sink Temperature - Total Sink Temperature, $^{\circ}$ C

HS-TD n list - Heat Sink Temperature - Average Sink Temperature, $^{\circ}$ C

AEROSOL n list - Aerosol Mass (List), kg

GAS-X n list - Gas Mass (List) - Gas Mass (Species), kg

GAS-X n list - Gas Mass (List) - Total Mass (Species), kg

GAS-MASS n list - Deposited Mass (List) - Deposited Mass (Species), kg

LIQ-MASS - GASNAME n list - Deposited Mass (Species), kg

Pressure

SNF-4998, Rev. 0

SNF-4998, Rev. 0

SNF-4998, Rev. 0

FAI/99-71

G-19

August 1999

SNF-4998, Rev. 0

Outer Radius (m) for cylindrical, thickness(m) for planar	
XRO	AHS
AHS	One-sided average heat sink area (m ²)
XZHS	Axial length for conduction (m)
TINNIT	Initial inside surface temperature (C)
TOINIT	Initial outside surface temperature (C)
TIHS	Region surface temperature when IREG1 = -1 (C)
IREGO	Region index for outer surface or 0 (insulated) or -1 for constant temperature
TOHS	Region surface temperature when IREG1 = -1 (C)
XLHS	Characteristic length for natural convection (m)
script basket heat sinks 1 through 10 switch heat sink 2 & 10 so that fin can be swapped 10 to 5	
SINKS	1
1	10
2	3
3	4
4	5
5	6
6	7
7	8
8	9
9	10
10	1
11	2
12	3
13	4
14	5
15	6
16	7
17	8
18	9
19	10
20	1
21	2
22	3
23	4
24	5
25	6
26	7
27	8
28	9
29	10
30	1
31	2
32	3
33	4
34	5
35	6
36	7
37	8
38	9
39	10
40	1
41	2
42	3
43	4
44	5
45	6
46	7
47	8
48	9
49	10
50	1
51	2
52	3
53	4
54	5
55	6
56	7
57	8
58	9
59	10
60	1
61	2
62	3
63	4
64	5
65	6
66	7
67	8
68	9
69	10
70	1
71	2
72	3
73	4
74	5
75	6
76	7
77	8
78	9
79	10
80	1
81	2
82	3
83	4
84	5
85	6
86	7
87	8
88	9
89	10
90	1
91	2
92	3
93	4
94	5
95	6
96	7
97	8
98	9
99	10
100	1
101	2
102	3
103	4
104	5
105	6
106	7
107	8
108	9
109	10
110	1
111	2
112	3
113	4
114	5
115	6
116	7
117	8
118	9
119	10
120	1
121	2
122	3
123	4
124	5
125	6
126	7
127	8
128	9
129	10
130	1
131	2
132	3
133	4
134	5
135	6
136	7
137	8
138	9
139	10
140	1
141	2
142	3
143	4
144	5
145	6
146	7
147	8
148	9
149	10
150	1
151	2
152	3
153	4
154	5
155	6
156	7
157	8
158	9
159	10
160	1
161	2
162	3
163	4
164	5
165	6
166	7
167	8
168	9
169	10
170	1
171	2
172	3
173	4
174	5
175	6
176	7
177	8
178	9
179	10
180	1
181	2
182	3
183	4
184	5
185	6
186	7
187	8
188	9
189	10
190	1
191	2
192	3
193	4
194	5
195	6
196	7
197	8
198	9
199	10
200	1
201	2
202	3
203	4
204	5
205	6
206	7
207	8
208	9
209	10
210	1
211	2
212	3
213	4
214	5
215	6
216	7
217	8
218	9
219	10
220	1
221	2
222	3
223	4
224	5
225	6
226	7
227	8
228	9
229	10
230	1
231	2
232	3
233	4
234	5
235	6
236	7
237	8
238	9
239	10
240	1
241	2
242	3
243	4
244	5
245	6
246	7
247	8
248	9
249	10
250	1
251	2
252	3
253	4
254	5
255	6
256	7
257	8
258	9
259	10
260	1
261	2
262	3
263	4
264	5
265	6
266	7
267	8
268	9
269	10
270	1
271	2
272	3
273	4
274	5
275	6
276	7
277	8
278	9
279	10
280	1
281	2
282	3
283	4
284	5
285	6
286	7
287	8
288	9
289	10
290	1
291	2
292	3
293	4
294	5
295	6
296	7
297	8
298	9
299	10
300	1
301	2
302	3
303	4
304	5
305	6
306	7
307	8
308	9
309	10
310	1
311	2
312	3
313	4
314	5
315	6
316	7
317	8
318	9
319	10
320	1
321	2
322	3
323	4
324	5
325	6
326	7
327	8
328	9
329	10
330	1
331	2
332	3
333	4
334	5
335	6
336	7
337	8
338	9
339	10
340	1
341	2
342	3
343	4
344	5
345	6
346	7
347	8
348	9
349	10
350	1
351	2
352	3
353	4
354	5
355	6
356	7
357	8
358	9
359	10
360	1
361	2
362	3
363	4
364	5
365	6
366	7
367	8
368	9
369	10
370	1
371	2
372	3
373	4
374	5
375	6
376	7
377	8
378	9
379	10
380	1
381	2
382	3
383	4
384	5
385	6
386	7
387	8
388	9
389	10
390	1
391	2
392	3
393	4
394	5
395	6
396	7
397	8
398	9
399	10
400	1
401	2
402	3
403	4
404	5
405	6
406	7
407	8
408	9
409	10
410	1
411	2
412	3
413	4
414	5
415	6
416	7
417	8
418	9
419	10
420	1
421	2
422	3
423	4
424	5
425	6
426	7
427	8
428	9
429	10
430	1
431	2
432	3
433	4
434	5
435	6
436	7
437	8
438	9
439	10
440	1
441	2
442	3
443	4
444	5
445	6
446	7
447	8
448	9
449	10
450	1
451	2
452	3
453	4
454	5
455	6
456	7
457	8
458	9
459	10
460	1
461	2
462	3
463	4
464	5
465	6
466	7
467	8
468	9
469	10
470	1
471	2
472	3
473	4
474	5
475	6
476	7
477	8
478	9
479	10
480	1
481	2
482	3
483	4
484	5
485	6
486	7
487	8
488	9
489	10
490	1
491	2
492	3
493	4
494	5
495	6
496	7
497	8
498	9
499	10
500	1
501	2
502	3
503	4
504	5
505	6
506	7
507	8
508	9
509	10
510	1
511	2
512	3
513	4
514	5
515	6
516	7
517	8
518	9
519	10
520	1
521	2
522	3
523	4
524	5
525	6
526	7
527	8
528	9
529	10
530	1
531	2
532	3
533	4
534	5
535	6
536	7
537	8
538	9
539	10
540	1
541	2
542	3
543	4
544	5
545	6
546	7
547	8
548	9
549	10
550	1
551	2
552	3
553	4
554	5
555	6
556	7
557	8
558	9
559	10
560	1
561	2
562	3
563	4
564	5
565	6
566	7
567	8
568	9
569	10
570	1
571	2
572	3
573	4
574	5
575	6
576	7
577	8
578	9
579	10
580	1
581	2
582	3
583	4
584	5
585	6
586	7
587	8
588	9
589	10
590	1
591	2
592	3
593	4
594	5
595	6
596	7
597	8
598	9
599	10
600	1
601	2
602	3
603	4
604	5
605	6
606	7
607	8
608	9
609	10
610	1
611	2
612	3
613	4
614	5
615	6
616	7
617	8
618	9
619	10
620	1
621	2
622	3
623	4
624	5
625	6
626	7
627	8
628	9
629	10
630	1
631	2
632	3
633	4
634	5
635	6
636	7
637	8
638	9
639	10
640	1
641	2
642	3
643	4
644	5
645	6
646	7
647	8
648	9
649	10
650	1
651	2
652	3
653	4
654	5
655	6
656	7
657	8
658	

* DEFN 1.0 1.0 1.0 1.0 1.0 1.0 IRGAP 0 ! define the gap node (between MCO wall and the cask)
 * N90 0 0 0 0 0 3
 * END PATHS ! PATHS is a comment.
 *
 END JUNCTIONS ! JUNCTIONS is a comment.
 *
 MCO ! MCO Major Keyword
 *
 GENERAL ! Keyword for general inputs
 TOXDTN 2 ! 0, disable oxidation of fuel/scraps
 ! =1, do oxidation of fuel/scraps
 ! =2, oxidation of covered surface uses water film for
 heat transfer calculation
 *
 LATE 0 ! =1, do hydriding/dehydriding calculation
 ! =0, disable hydriding/dehydriding calculation
 ! =0, no diversion heat transfer calculation
 *
 DIVNPT 0 ! =1, normal diversion heat transfer calculation
 ! =2, suppress the individual diversion when
 QDVRT>0 but TR1>Tg1, G1
 QDVRT=0 but TR1>Tg1, G1
 ! =3, suppress the individual diversion when
 QDVRT=0 but TR1>Tg1
 ! =4, do evaporation/condensation calculation
 ! =0, do evaporation/condensation calculation
 ! =1, evaporation rate law, 0 = Molality/Rate, 1 = Rate
 ! =2, Rate
 ! =3, Temperature
 ! =4, Database + Oxygen line
 *
 TINERATE ! =1, disable entrainment of aerosol and entrainment
 ! =0, disable entrainment of aerosol and entrainment
 ! =1, do entrainment of droplets calculation
 ! =0, disable entrainment calculation
 ! =1, do decomposition of fuel oxide hydride
 ! =0, disable hydride decomposition calculation
 ! =1, do nitriding calculation
 ! =0, disable nitriding calculation
 ! =1, do radiolysis calculation
 ! =0, disable radiolysis calculation
 ! =0, normal depletion of hydride (rate decreases with
 mass)
 INITRI 0 ! =1, use constant hydride reaction often corresponding
 to
 ! =2, use constant reaction area but the area goes to
 zero
 ! when all the mass is depleted
 FO2HYD 0. ! the fraction of the oxygen, reacting with uranium
 ! hydride, which produces hydride instead of water
 vapor XTMIN 1.E-3 ! minimum water film thickness below which the
 wetted
 ! surface starts to uncover
 ! average diameter of hydride particles (m). This is
 ! overridden by basket specific parameters, XHDFL
 XHDFSC 0 ! define the cask heat sink

! define the gap node (between MCO wall and the cask)
 ! radiative/convective h.t. between the MCO wall and
 ! the cask is computed and some of the heat is diverted
 ! to gas for stability
 ! gap distance between the MCO wall and the cask
 ! =0, turn off the radiative heat transfer between the
 ! fuel/scraps and the lid/floor
 ! =1, fully account for the radiative heat transfer
 *
 KGPCK 0.0
 FHTLID 1.0
 ! define the gap node (between MCO wall and the cask)
 ! =0, fully account for the radiative heat transfer
 ! =1, fully account for the radiative heat transfer
 ! =2, two-step decomposition
 ! input derives for 1.1 and LN F
 ! first step for LN F, second step for LN F
 *
 RHOSL 5000.
 SASL 1000.
 XDSL 1.E-6
 ! sludge particle density (kg/m³)
 ! sludge specific area (m²/m³)
 ! sludge particle diameter (m)
 *
 Hydride Model: two-step decomposition,
 *
 * input derives for 1.1 and LN F
 * first step for LN F, second step for LN F
 * from Technical Report, Page 11,
 * sludge mass in two scrap baskets = 0.9 + 1.6 = 2.5 kg
 * sludge mass in two scrap baskets has 8.0 kg of sludge
 * therefore, each basket has 0.24 + 0.24 = 0.48 kg
 * sludge mass in three tier basket = 0.24 + 0.24 + 0.24 = 0.72 kg
 * therefore, each tier basket has 1.14 kg of sludge
 * and 0.488 kg for each scrap basket
 *
 * since the initial sludge hydride is part of the basket at initial time
 * and the hydride is not yet entrained, the initial hydride is not yet
 * entrained
 * entraining equation:
 * rate = 0.488 - 0.488 * phys. + 0.175 * phys.
 * rate = 0.070 - 0.070 * phys. + 0.175 * phys.
 * therefore, there is a slight inconsistency depending on whether one
 * uses first or second correlation
 * sludge database constant change data. We do not use this
 * PHYSI 0.558 ! fraction of sludge that is hydrated
 * SHISI 2.0 ! stoichiometry number of hydride (kg of HClO₄) /
 * water per mole of uranium oxide (U₃O₈)
 * SHII 1.0 ! H₂O/H ratio is stuck, number to switch
 * SHIII 0.5 ! from first to second correlation
 * SHIV 0.5 ! H₂O/H ratio is stuck, number to switch
 * from second to third correlation.
 *
 AHYEQ1 15.912 ! "A" IN LN P = A * B/T FOR X > AHYD2
 * BHYEQ1 -6131.E0 ! "B" IN LN P = A * B/T FOR X > AHYD2
 AHYEQ2 18.382 ! "A" IN LN P = A * B/T FOR X < AHYD2
 BHYEQ2 -776.E0 ! "B" IN LN P = A * B/T FOR X < AHYD2
 AHYEQ3 18.468 ! "A" IN LN P = A * B/T FOR X < AHYD2
 BHYEQ3 -8488.E0 ! "B" IN LN P = A * B/T FOR X < AHYD2
 *
 ADEHY1 2.793E0 ! "A" IN LN K = A * B/T FOR X > AHYD2
 BDEHY1 -5111.E0 ! "B" IN LN K = A * B/T FOR X > AHYD2
 ADEHY2 6.348E0 ! "A" IN LN K = A * B/T FOR X < AHYD2
 BDEHY2 -7241.E0 ! "B" IN LN K = A * B/T FOR X < AHYD2

SNF-4998, Rev. 0

APPENDIX H

Knock Out Pot Transient Thermal Evaluation

The knock out pot transient thermal evaluation is a refinement of the model presented in [Plys, Malinovic, and Duncan, 1999]. In the previous model, transient heatup of knock out pot contents was modeled by considering the lumped heat capacity of the debris and water in its pores. The debris/water lumped internal heat transfer resistance was selected based on experience, and found to agree with the results of the ignition theory evaluation, which contain a detailed two-dimensional temperature profile. Heat transfer from the debris was equal in all directions: The side and bottom of the debris bed transfers heat to basin water, and the top of the debris bed transfers heat to overlying water which is assumed at the basin water temperature.

In the present model, overlying water is considered as a separate heat sink because the exterior of the knock out pot is now air. Knock out pot debris transfers heat sideward and downward to external ambient. Upward heat transfer is to the overlying water pool. The overlying water pool receives heat from the debris, and has its own heat transfer rate to the external ambient. Therefore, there are now two lumped heat capacitances in this model.

Note that a detailed study of the potential for substantial exchange between water surrounding the debris and the overlying water pool was made but is not mentioned here in detail. The key result is that for this specific application, little benefit can be obtained by considering the onset of convection between water in the debris and the overlying pool. The physical basis for this conclusion was presented by [Plys, Malinovic, and Duncan, 1999] where the onset of natural circulation in knock out pot debris was found to occur at a threshold Rayleigh number of about 40, which is obtained when the knock out pot temperature range is in the 40 to 60°C range. Experimental results that consider the effect of overlying water were obtained by [Rhee, Dhir, and Catton, 1978]. Application of these results show that added cooling will not occur until reaction power is far in excess of heat removal capability for the transient cases considered here.

The heat balance on knock out pot debris is (symbols are defined in nomenclature and ancillary formulas are found in [Plys, Malinovic, and Duncan, 1999] or the attached Mathcad file):

$$C_f \frac{dT_f}{dt} = Q_{dk} + Q_{rx} - Q_{fx} - Q_{fw} \quad (H-1)a$$

$$C_f = \varepsilon \rho_w c_{pw} V_f + (1 - \varepsilon) [\mu c_{pm} + (1 - \mu) c_{po}] \bar{\rho}_f V_f \quad (H-1)b$$

$$Q_{dk} = Q_v (1 - \varepsilon) \frac{\bar{\rho}_f}{\rho_m} V_f \quad (H-1)c$$

$$Q_{rx} = A_v V_f \xi k_o \exp\left(-\frac{T_E}{T_f}\right) \Delta H \quad (H-1)d$$

$$Q_{fx} = h_{fx} A_{fx} (T_f - T_x) \quad (H-1)e$$

$$Q_{fw} = h_{fw} A_{fw} (T_f - T_w) \quad (H-1)f$$

And the heat balance on the overlying water is:

$$C_w \frac{dT_w}{dt} = Q_{fw} - Q_{wx} \quad (H-2)a$$

$$C_w = \rho_w A_{fw} H_{ow} c_{pw} \quad (H-2)b$$

$$Q_{wx} = h_{wx} A_{wx} (T_w - T_x) \quad (H-2)c$$

As with the previous model, lumped debris internal heat transfer resistance is given by:

$$h_b = \frac{k_b}{(0.33 D)} \quad (H-3)$$

and yields agreement with ignition theory results. The external heat transfer coefficient from the knock out pot to the external ambient is $h_{ex} = 5 \text{ W/m}^2/\text{K}$. Thus, the overall heat transfer coefficient from debris to ambient is found by combining equations (H-3) and (H-4). Just to use a finite value, a heat transfer coefficient of $50 \text{ W/m}^2/\text{K}$ is used for internal water resistance, and it is combined with the debris internal and ambient external values for overall resistance.

Performance of the transient model was checked by evaluating heat balance terms as a function of debris temperature for stable and unstable cases (see the Mathcad file). In the stable case the results showed a steady temperature could be attained at about 42°C , which is borne out in the transient results, and a metastable point exists at a higher temperature, as expected by ignition theory. In the unstable case with 50% metal mass fraction, it was clearly shown that changes in the model representation of heat transfer between debris and overlying water could not appreciably change the predicted time to runaway. Transient results are shown in the following Mathcad file and are described in the main text, Section 4.3.

Nomenclature:

A_{fw} Area for debris-overlying water heat transfer, m^2 ,

A_{fx} Area for debris-external heat transfer, m^2 ,

A_v Area per unit volume for reaction, l/m ,

A_{wx} Area for overlying water - external ambient heat transfer, m^2 ,

C_f Debris plus interstitial water overall heat capacity, J/K ,

c_{pm} Uranium metal heat capacity, J/kg/K ,

c_{po} Uranium oxide heat capacity, J/kg/K ,

C_{pw}	Water heat capacity, J/kg/K,
C_w	Overlying water heat capacity, J/K,
D	Debris bed diameter, m,
h_b	Debris internal heat transfer coefficient, W/m ² /K,
h_{fw}	Heat transfer coefficient, debris to overlying water, W/m ² /K,
h_{fx}	Heat transfer coefficient, debris to external, W/m ² /K,
H_{ow}	Overlying water height, m,
h_{wx}	Heat transfer coefficient, overlying water to external basin ambient, W/m ² /K,
k_b	Debris bed effective thermal conductivity, W/m/K,
k_o	Rate law pre-exponential coefficient, kgO ₂ /m ² /s,
Q_{dk}	Decay power, W,
Q_{fw}	Debris to overlying water heat transfer, W,
Q_{fx}	Debris to external heat transfer, W,
Q_{rx}	Reaction power, W,
Q_v	Volumetric decay power of fuel, W/m ³ ,
Q_{wx}	Overlying water to external heat transfer, W,
T_E	Activation energy normalized, K,
T_f	Debris plus interstitial water temperature, K,
T_w	Overlying water temperature, K,
T_x	External ambient temperature, K,
V_f	Debris volume, m ³ ,
μ	Debris metal mass fraction,

ϵ Porosity,

ξ Rate law multiplier,

ΔH Heat of reaction, J/kgO₂,

$\bar{\rho}_f$ Overall debris density accounting for metal mass fraction, kg/m³,

ρ_m Fuel metal density, kg/m³, and

ρ_w Water density, kg/m³.

References:

Plys, M. G., Malinovic, B., and Duncan, D. R., 1999, "IWTS Metal-Water Reaction Rate Evaluation" (Fauske & Associates Report FAI/99-26), SNF-4266, Duke Engineering & Services Hanford, Inc., Richland, WA, July.

Rhee, S. J., Dhir, V. K., and Catton, I., 1978, "Natural Convection heat Transfer in Beds of Inductively Heated Particles," Trans. ASME Journal of Heat Transfer, Vol. 100, pp. 78-85, February.

Mathcad File:

SIMPLIFIED THERMAL EVALUATION OF DRY KNOCKOUT POT

Martin G. Plys Fauske & Associates Inc. 16W070 W. 83rd St. Burr Ridge IL 60521 (630) 323-9750

SNF Databook kinetic parameters $\xi := 3$ $k_0 := 119.6$ $T_E := 6945$ $\Delta H := 1.67 \cdot 10^7$
oxygen-free U-water below 100 C:Average decay power W/m^3: $Q_{dk} := 1020$

Debris Geometry: 1 ft nominal height, 30% void conservative:

$$D := 0.4064 \quad H_f := 0.3 \quad \varepsilon := 0.3 \quad V_f := \frac{\pi}{4} \cdot D^2 \cdot H_f \quad V_f = 0.039$$

Areas for external hx & hx to overlying water:

$$A_{fw} := \frac{\pi}{4} \cdot D^2 \quad A_{fw} = 0.13 \quad A_{fx} := (\pi \cdot D \cdot H_f) + \frac{\pi}{4} \cdot D^2 \quad A_{fx} = 0.513$$

Metal, oxide, water properties:

$$\rho_m := 19000 \quad c_{pm} := 150 \quad \rho_o := 5000 \quad c_{po} := 300 \quad \rho_w := 1000 \quad c_{pw} := 2000$$

Heat transfer resistance internal to bed: Approximate resistance of overlying water:

$$k_b := 2 \quad h_b := \frac{k_b}{0.333 \cdot D} \quad h_b = 14.779 \quad h_w := 50$$

Functions for average density and volume fraction given mass frac: $fpa(\mu) := \left[\frac{\mu}{\rho_m} + \frac{(1-\mu)}{\rho_o} \right]^{-1}$ $f\eta(\mu) := \frac{fpa(\mu) \cdot \mu}{\rho_m}$ Overall heat capacity as function of metal fraction and porosity: $fC(\mu, \varepsilon) := \varepsilon \cdot \rho_w \cdot V_f \cdot c_{pw} + (1-\varepsilon) \cdot [\mu \cdot c_{pm} + (1-\mu) \cdot c_{po}] \cdot fpa(\mu) \cdot V_f$

Example for 50% metal and 30% void:

$$\mu := 0.5 \quad fpa(\mu) = 7.917 \times 10^3 \quad f\eta(\mu) = 0.208 \quad fC(\mu, \varepsilon) = 7.187 \times 10^4$$

$$m_w := \varepsilon \cdot \rho_w \cdot V_f \quad m_f := (1-\varepsilon) \cdot fpa(\mu) \cdot V_f \quad c_{pf} := \mu \cdot c_{pm} + (1-\mu) \cdot c_{po} \quad Q_{decay} := Q_{dk} \cdot (1-\varepsilon) \cdot \frac{fpa(\mu)}{\rho_m} \cdot V_f$$

$$m_w \approx 11.675 \quad m_f = 215.655 \quad c_{pf} = 225 \quad Q_{decay} \approx 11.577$$

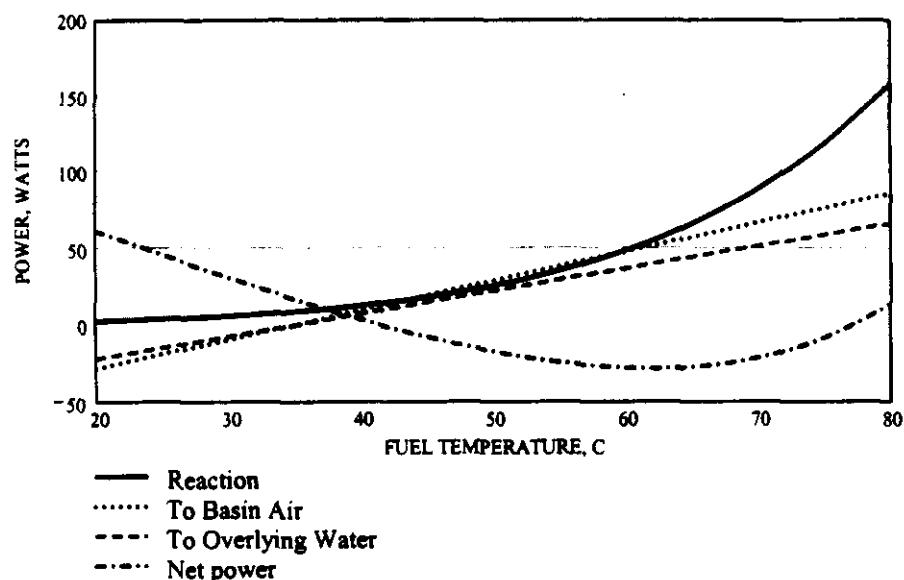
Example values for reaction area given 0.2 mm particles:

$$d_p := 0.0003 \quad A_v := 6 \cdot (1-\varepsilon) \cdot d_p^{-1} \quad A_{rx} := A_v \cdot f\eta(\mu) \cdot V$$

$$A_v \approx 1.4 \times 10^4 \quad A_{rx} = 2.917 \times 10^3 \text{ kg m}^2 \text{ s}^{-3} \text{ A}^{-1}$$

Temperature Derivative: Vector Y elements are 0 = Fuel Temperature, 1= Overlying Water temperature, 2 = Metal mass fraction, 3 = particle size, 4 = external hx coefficient, 5= external temperature, 6 = overlying water height

$fTdot(t, Y) :=$	$T_f \leftarrow Y_0$	$fQ(Y) :=$	$T_f \leftarrow Y_0$
	$T_{ow} \leftarrow Y_1$		$T_{ow} \leftarrow Y_1$
	$\mu \leftarrow Y_2$		$\mu \leftarrow Y_2$
	$d_p \leftarrow Y_3$		$d_p \leftarrow Y_3$
	$h_{ex} \leftarrow Y_4$		$h_{ex} \leftarrow Y_4$
	$T_{ex} \leftarrow Y_5$		$T_{ex} \leftarrow Y_5$
	$H_{ow} \leftarrow Y_6$		$H_{ow} \leftarrow Y_6$
	$A_v \leftarrow \frac{6 \cdot (1 - \varepsilon)}{d_p} \cdot f\eta(\mu)$		$A_v \leftarrow \frac{6 \cdot (1 - \varepsilon)}{d_p} \cdot f\eta(\mu)$
	$C \leftarrow fC(\mu, \varepsilon)$		$C \leftarrow fC(\mu, \varepsilon)$
	$Qd \leftarrow Q_{dk} \cdot (1 - \varepsilon) \cdot \frac{fpa(\mu)}{\rho_m} \cdot V_f$		$Qd \leftarrow Q_{dk} \cdot (1 - \varepsilon) \cdot \frac{fpa(\mu)}{\rho_m} \cdot V_f$
	$Tr \leftarrow \text{if}(T_f > 400, 400, T_f)$		$Tr \leftarrow \text{if}(T_f > 400, 400, T_f)$
	$Qt \leftarrow A_v \cdot V_f \cdot \xi \cdot k_o \cdot \exp\left(\frac{-T_E}{Tr}\right) \cdot \Delta H$		$Qt \leftarrow A_v \cdot V_f \cdot \xi \cdot k_o \cdot \exp\left(\frac{-T_E}{Tr}\right) \cdot \Delta H$
	$hfx \leftarrow (h_b^{-1} + h_{ex}^{-1})^{-1}$		$hfx \leftarrow (h_b^{-1} + h_{ex}^{-1})^{-1}$
	$Qfx \leftarrow hfx \cdot A_{fx} \cdot (T_f - T_{ex})$		$Qfx \leftarrow hfx \cdot A_{fx} \cdot (T_f - T_{ex})$
	$hfw \leftarrow (h_b^{-1} + h_w^{-1})^{-1}$		$hfw \leftarrow (h_b^{-1} + h_w^{-1})^{-1}$
	$Qfw \leftarrow hfw \cdot A_{fw} \cdot (T_f - T_{ow})$		$Qfw \leftarrow hfw \cdot A_{fw} \cdot (T_f - T_{ow})$
	$Tdotf \leftarrow \frac{Qd + Qt - Qfx - Qfw}{fC(\mu, \varepsilon)}$		$Tdotf \leftarrow \frac{Qd + Qt - Qfx - Qfw}{fC(\mu, \varepsilon)}$
	$hwx \leftarrow (h_w^{-1} + h_{ex}^{-1})^{-1}$		$hwx \leftarrow (h_w^{-1} + h_{ex}^{-1})^{-1}$
	$Awx \leftarrow \pi \cdot D \cdot H_{ow} + A_{fw}$		$Awx \leftarrow \pi \cdot D \cdot H_{ow} + A_{fw}$
	$Qwx \leftarrow hwx \cdot Awx \cdot (T_{ow} - T_{ex})$		$Qwx \leftarrow hwx \cdot Awx \cdot (T_{ow} - T_{ex})$
	$Cw \leftarrow A_{fw} \cdot H_{ow} \cdot \rho_w \cdot c_{pw}$		$Cw \leftarrow A_{fw} \cdot H_{ow} \cdot \rho_w \cdot c_{pw}$
	$Tdotw \leftarrow (Qfw - Qwx) \cdot Cw^{-1}$		$Tdotw \leftarrow (Qfw - Qwx) \cdot Cw^{-1}$
	$(Tdotf \ Tdotw \ Qd \ Qt \ Qfx \ Qfw \ Qwx)^T$		$(Tdotf \ Tdotw \ Qd \ Qt \ Qfx \ Qfw \ Qwx)^T$

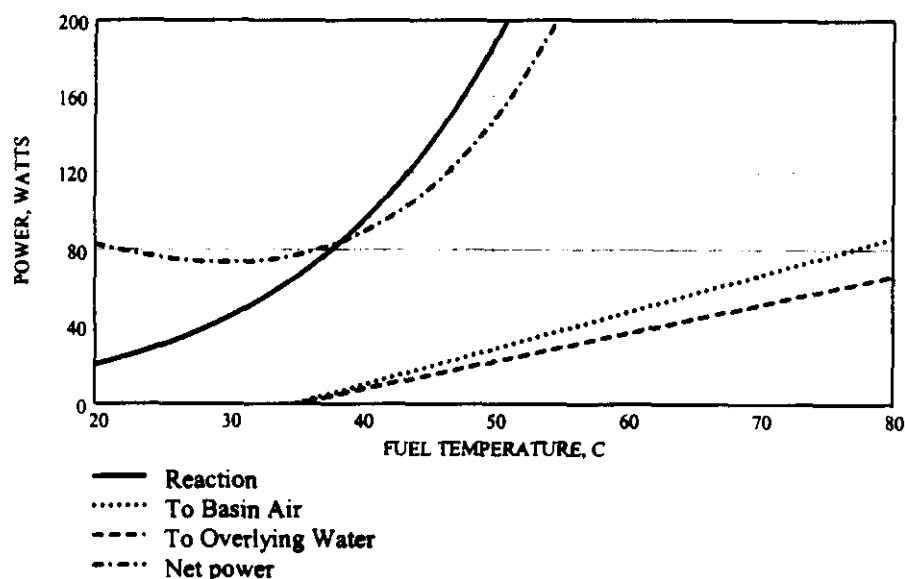

Test of function:

$$h_{ext} := 5 \quad H_{ow} := 20 \cdot 0.0254 \quad d_p := 0.0005 \quad \mu := 0.1 \quad T_{ex} := 35 + 273$$

$$i := 0..60 \quad T_i := 293 + i \quad Y^{(i)} := (T_i \ T_{ex} \ \mu \ d_p \ h_{ext} \ T_{ex} \ H_{ow})^T \quad Z^{(i)} := fQ(Y^{(i)})$$

$$TC_i := T_i - 273 \quad Qr_i := Z_{3,i} \quad Qfx_i := Z_{4,i} \quad Qfw_i := Z_{5,i} \quad Qnet_i := Z_{0,i} fC(\mu, \varepsilon)$$

Reaction power and heat losses as function of fuel temperature for fixed external air and overlying water temperatures of 35 C, 10% metal fraction, 0.5 mm particles, expected stable. Result shows stability and steady state temperature of about 42 C.


Test of function:

$$h_{ext} := 5 \quad H_{ow} := 20 \cdot 0.0254 \quad d_p := 0.0005 \quad \mu := 0.5 \quad T_{ex} := 35 + 273$$

$$i := 0..60 \quad T_i := 293 + i \quad Y^{(i)} := (T_i \ T_{ex} \ \mu \ d_p \ h_{ext} \ T_{ex} \ H_{ow})^T \quad Z^{(i)} := fQ(Y^{(i)})$$

$$TC_i := T_i - 273 \quad Qr_i := Z_{3,i} \quad Qfx_i := Z_{4,i} \quad Qfw_i := Z_{5,i} \quad Qnet_i := Z_{0,i} fC(\mu, \varepsilon)$$

Reaction power and heat losses as function of fuel temperature for fixed external air and overlying water temperatures of 35 C, 50% metal fraction, 0.5 mm particles, expected unstable. Note net power holds relatively steady until about 40 C fuel, and that losses are much smaller than reaction power, so a large dT/dt is expected. Note also that changing the heat transfer coefficient with temperature won't do much to influence dT/dt because heat losses are small compared to the source.

Compare Transient Histories:

Take care to use same timestep size for each comparison!

$$h_{ext} := 5 \quad h_{fx} := \left(\frac{1}{h_{ext}} + \frac{1}{h_b} \right)^{-1} \quad h_{fw} := \left(\frac{1}{h_w} + \frac{1}{h_b} \right)^{-1} \quad h_{wx} := \left(\frac{1}{h_w} + \frac{1}{h_{ext}} \right)^{-1}$$

$$h_{fx} = 3.736$$

$$h_{fw} = 11.407$$

$$h_{wx} = 4.545$$

Basin temperature 35 C:

$$T_{ex} := 308$$

Water height 33-12=21 inches, use 20

$$H_{ow} := 20 \cdot 0.0254 \quad H_{ow} = 0.508$$

Particle size 0.5 mm:

$$d_p := 0.0005$$

Initial fuel temperature 20 C:

$$T_0 := 293$$

1. 10% metal particles - expect barely stable

$$Y := (T_0 \ T_0 \ 0.10 \ d_p \ h_{ext} \ T_{ex} \ H_{ow})^T \quad Z := rkfixed(Y, 0, 2 \cdot 10^5, 1000, fTdot) \quad T1 := Z^{(1)} - 273$$

2. 15% metal particles - expect just barely unstable,

$$Y := (T_0 \ T_0 \ 0.20 \ d_p \ h_{ext} \ T_{ex} \ H_{ow})^T \quad Z := rkfixed(Y, 0, 2 \cdot 10^5, 1000, fTdot) \quad T2 := Z^{(1)} - 273$$

3. 50% metal particles

$$Y := (T_0 \ T_0 \ 0.50 \ d_p \ h_{ext} \ T_{ex} \ H_{ow})^T \quad Z := rkfixed(Y, 0, 2 \cdot 10^5, 1000, fTdot) \quad T3 := Z^{(1)} - 273$$

4. 75% metal particles

$$Y := (T_0 \ T_0 \ 0.75 \ d_p \ h_{ext} \ T_{ex} \ H_{ow})^T \quad Z := rkfixed(Y, 0, 2 \cdot 10^5, 1000, fTdot) \quad T4 := Z^{(1)} - 273$$

$$t := \frac{Z^{(0)}}{3600} \quad i := 0..1000$$