

Conf-950454 --3

ANL/ET/CP-85882

CHARACTERIZATION OF TRANSFER LAYERS ON STEEL SURFACES SLIDING
AGAINST DIAMONDLIKE CARBON IN DRY NITROGEN*

A. Erdemir, C. Bindal⁺ and J. Pagan[#]

Energy Technology Division
Argonne National Laboratory
Argonne, IL 60439

P. Wilbur
Department of Mechanical Engineering
Colorado State University
Fort Collins, CO 80523

March, 1995

The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

For presentation at the 1995 International Conference on Metallurgical Coatings and Thin Films, ICMCTF-95, San Diego, CA, April 24-28, 1995

*Work supported by the U.S. Department of Energy, under Contract W-31-109-Eng.-38.

+Permanent address: Sakarya University, Department of Metallurgical Engineering,
Adapazari, Turkey.

Permanent address: University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI 48107.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

CHARACTERIZATION OF TRANSFER LAYERS ON STEEL SURFACES SLIDING AGAINST DIAMONDLIKE CARBON IN DRY NITROGEN

A. Erdemir, C. Bindal and J. Pagan
Energy Technology Division
Argonne National Laboratory
Argonne, IL 60439

P. Wilbur
Department of Mechanical Engineering
Colorado State University
Fort Collins, CO 80523

ABSTRACT:

Transfer layers on sliding steel surfaces play important roles in tribological performance of diamondlike carbon films. In this study, we investigated the nature of transfer layers formed on M50 balls during sliding against diamondlike carbon (DLC) films (1.5 μm thick) prepared by ion-beam deposition. Long-duration sliding tests were performed with steel balls sliding against the DLC coatings in dry nitrogen at room temperature, $\approx 22 \pm 1^\circ\text{C}$, and zero humidity. Test results indicated that the friction coefficients of test pairs were initially ≈ 0.12 but decreased steadily with sliding distance to 0.02-0.03 and remained constant throughout the tests, which lasted for more than 250,000 sliding cycles (≈ 30 km). This low-friction regime appeared to coincide with the formation of a carbon-rich transfer layer on the sliding surfaces of M50 balls. Micro-laser-Raman spectroscopy and electron microscopy were used to elucidate the structure and chemistry of these transfer layers and to reveal their possible role in the wear and friction behavior of DLC-coated surfaces.

*Work supported by the U.S. Department of Energy under Contract W-31-109-Eng.-38.

(JG)

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

INTRODUCTION

Diamond-like carbon (DLC) or amorphous hydrogenated carbon coatings offer unique mechanical and physical properties that make them very desirable for a wide range of tribological applications. Mechanically, these materials are extremely hard. Reported microhardness values for DLC coatings vary between 2000 and 9000 kg/mm² [1-4]. Furthermore, DLC coatings are chemically very inert, hence provide excellent resistance to corrosive attack in acidic and saline media [1,2,4,5]. Recent tribological tests indicate that these coatings can afford very low friction and high wear resistance to sliding tribological interfaces [6-13]. The reported friction coefficients of DLC coatings sliding against metallic and ceramic materials may range from 0.005 to 0.4, depending on test environment, deposition methodology, and temperature [8-10,13]. Furthermore, compared to other popular hard coatings; such as TiN and TiC; DLC coatings can last 2 to 3 orders of magnitude longer in a typical wear test. The relative humidity of the test environment were found to play a significant role in the friction and wear performance of DLC coatings. In dry air, N₂, and inert gases, the friction coefficients were found to vary between 0.005 to 0.04 [8-10]. However, with increasing relative humidity, the friction coefficients of DLC films may increase to 0.3 [6,7,10].

Some of the previous studies have indicated that the wear scars of counterface materials are often covered with a carbon-rich transfer layer during sliding against the DLC

coatings. Moreover, in most cases, the formation of these carbon-rich transfer layers on wear scars always coincided with a substantial reduction in friction coefficients [9,11,14-16]. For example, Erdemir et al. [11] found carbon-rich transfer layers on the wear scars of 440C steel balls after a long period of sliding, i.e., 25 km. In their sliding tests, the friction coefficients of 440C balls against the DLC coated 440C disks were initially 0.17 but decreased to ≈ 0.05 to 0.07 after a carbon-rich transfer layer formed on the wear scars. It is possible that an understanding of the chemical and physical nature of such transfer layers may provide some insight into the otherwise complex friction and wear mechanisms of DLC coatings. Furthermore, very long endurance lives afforded by these coatings may be due to a mechanism involving first the generation, then the transfer of such a highly shearable layers at sliding interfaces of pins and disks.

In this study, we attempt to elucidate the physical and chemical nature of these carbon-rich transfer layers formed on the surface of M50 balls during sliding against DLC coatings (1.5 μm thick). For this purpose, a series of long-duration sliding tests (250,000 revolutions, ≈ 30 km) were performed in dry nitrogen at room temperature, $\approx 22 \pm 1^\circ\text{C}$. After reaching a low steady-state friction regime, the balls were taken out the test machine and the structural chemistry of the transfer layers formed on the balls was examined by micro-laser-Raman spectroscopy and electron microscopy.

EXPERIMENTAL PROCEDURES

Test Materials

The ball and disk specimens used in this study were fabricated from AISI M50 steel. The disk specimens were 50 mm in diameter and 5 mm thick. They were ground to a surface finish of $0.05 \pm 0.01 \mu\text{m}$ centerline average (CLA). The counterface balls were 9.5 mm in diameter with a surface finish of better than $0.01 \mu\text{m}$ CLA. Ball and disk specimens had a Vickers hardness value of about $8.0 \pm 0.2 \text{ GPa}$. Prior to friction testing, M50 balls were ultrasonically cleaned sequentially in hexane + 10 vol.% toluene, acetone for 1 min each, then dried in an oven at 100°C for 10 min.

Ion-Beam Deposition of Diamondlike Carbon

Thin DLC films ($\approx 1.5 \mu\text{m}$ thick) were ion-beam deposited on M50 disks at room temperature in a vacuum chamber equipped with a broad-beam ion source. A schematic illustration of this deposition system is shown in Fig. 1. In this deposition system, methane, the carbon source, was fed through a cylindrical ion source (see Fig. 1) and ionized by energetic electrons produced by a hot filament wire.

The M50 substrates were positioned directly beneath the ion source and sputter-cleaned with a 1 keV, 2.5 mA/cm^2 Ar-ion beam for $\approx 3-5$ min. Subsequently, an intermediate

hydrogenated-silicon carbide (SiC:H) bondlayer was sputter-deposited on these substrates by rotating the samples out of the beam and into the sputter-coating position, as illustrated in Fig. 1. Simply, methane is bled into the vacuum chamber and the 1 keV argon beam is allowed to sputter the silicon target shown in the figure. The thickness of the SiC bond layer was about 20 nm. Without the SiC layer, strong bonding could not be achieved between DLC films and M50 substrate.

Finally, the deposition of DLC was started by rotating the disk samples back to a position directly beneath the ion beam. Operating conditions were adjusted to give an ion beam with an acceleration energy of 450 eV and a current density of ≈ 2.5 mA/cm². Under these operating conditions, the deposition rate was ≈ 3 μ m/hr. Deposition was continued until a 1.5- μ m-thick DLC film was obtained. Substrates were water-cooled via their mounting plates.

Friction and Wear Tests

Sliding friction and wear tests were performed with pairs of M50 balls and DLC-coated M50 disks on a ball-on-disk Tribometer in dry N₂ at room temperature, 23 \pm 1°C for a sliding distance of about 30 km. A few short distance tests (i.e., 1 km) were also run with M50/M50 and M50/DLC-coated M50 pairs to provide comparison between their friction and wear performance in dry N₂. The sliding velocity was kept at 0.5 m/s. The dead weight applied on balls was 5 N, which created an initial mean Hertzian contact pressure

of approximately 0.54 Gpa. Frictional force was monitored with the aid of a linear variable-displacement transducer and was recorded on chart papers throughout the tests. The diameter of the wear track varied between 30 and 35 mm during these tests, producing steadily decreasing nominal pressures far below the initial mean Hertzian pressures.

Wear-volume calculations on the balls were based on microscopic determination of the diameter of the circular wear scars, combined with the assumption that the wear scar is flat. The wear of disk specimens was estimated from the traces of surface profiles across the wear tracks. Two to three tests were run under conditions described above to check the reproducibility of the friction and wear data. The results were quite reproducible, with deviations of $\approx \pm 6$ to $\pm 15\%$. Wear scars and tracks were examined with a scanning electron microscope and analyzed with a micro-laser Raman spectroscope.

RESULTS AND DISCUSSION

Figure 2 shows the microstructural details of the DLC films tested in this study. As is evident, this DLC film appears very dense and free of volume defects. The structural morphology of this film is essentially featureless. Also, at the magnification shown, there is no evidence of a gap or discontinuity at the film/substrate interface, suggesting that this DLC film had excellent adhesion.

Fig. 3 gives the micro-laser Raman spectrum of the DLC film shown in Fig. 2. It reveals a peak at $\approx 1356 \text{ cm}^{-1}$ (appearing as a shoulder) and another broad peak centered at $\approx 1502 \text{ cm}^{-1}$. The shouldered peak at $\approx 1350 \text{ cm}^{-1}$ may be representing amorphous carbon. The peak at 1550 cm^{-1} is most likely due to the disordered graphite precursor. In general, these peaks are typical of the carbon films designated as DLC and are consistent with the Raman data provided in refs. 1,4, and 17.

Figure 4 shows the variation of the friction coefficients of M50/M50 and M50/DLC-coated M50 test pairs during short duration sliding tests. As is evident, the friction coefficient of a pair without a DLC coating is higher than 1 in dry N_2 . However, the friction coefficient of the M50/DLC-coated M50 pair is very low. As can be noticed, initially friction coefficient of this pair is around 0.12, but decreased steadily as sliding continues and reaches a value of about 0.07 toward the end of the 1-km test. The average specific wear rate ((wear volume (mm^3) divided by contact load (N) and total sliding distance (m)) of the M50 ball slid against the uncoated M50 disk was $\approx 9.8 \times 10^{-6} \text{ mm}^3/\text{N.m}$. Whereas, the wear rate of an M50 ball slid against the DLC-coated M50 disk was $6 \times 10^{-9} \text{ mm}^3/\text{N.m}$ which translates into a factor of 1600 reduction in the wear rate.

Figure 5 shows the variation of the friction coefficient of a M50/DLC-coated M50 pair as a function of sliding cycles in a long-duration test. Initially, the friction coefficient of this pair was 0.13, but decreased substantially after about 50,000 sliding cycles and eventually reached a steady-state value of about 0.03 after 100,000 cycles and remained

constant for the remainder of the test. The average specific wear rate of counterface ball was 4.6×10^{-10} mm³/N.m. Surface profilometry trace over the wear track revealed very little wear on the DLC film itself.

DISCUSSION

In general, the results presented above demonstrate that the DLC coatings evaluated in this study are capable of imparting very low friction coefficients and wear rates to sliding steel surfaces during both the short duration and long-duration tests in dry N₂. In general, high mechanical hardness and very slippery nature of these coatings may have been largely responsible for their excellent friction and wear performance. Even after 250,000 sliding cycles, the film tested in this study was still intact, further verifying that these films wear at a very low rates.

In order to understand the physical and chemical nature of sliding contact interfaces that provided very low friction and wear, we employed micro-laser Raman spectroscopy and electron microscopy on rubbing surfaces. In our test schedule, we first allowed each sliding test to continue until a fairly low steady-state friction coefficient, i.e., ≈ 0.03 , was established between M50 balls and DLC films. As shown in Fig. 4, the friction coefficient of M50/DLC-coated M50 pairs is about 0.07 after sliding for 1 km, but it further decreased to 0.03 during long-duration test (see Fig. 5). This observation suggests that short-duration tests do not necessarily reflect the real steady-state friction coefficient of

DLC films.

When we examine the wear scars on balls after long-duration test under a scanning electron microscope, we immediately noticed that the scars were covered by long streaks of transfer layers with an orientation parallel to the sliding direction (see Fig. 6a). Figs. 6b, 6c, and 6d are the secondary electron image, C, and Fe X-ray maps, respectively, of a transfer layer found in this scar at a much higher magnification. The X-ray map in Fig. 6c suggests that this transfer layer is rich in C. According to Fig. 6d, the transfer layer is Fe deficient. Fig. 7 shows the micro-laser Raman spectra of the base DLC coating, transfer layer, and black deposit found in the upper right corner of the wear scar shown in Fig. 6a. The Raman spectroscopy of a graphite standard is also provided in this figure as a reference. As is clear, the structural chemistry of black deposit and transfer layer is very different from that of the DLC coating, but is similar to that of graphite. Note that the Raman line positions of black deposit around the edge of scar and transfer layer essentially match those of the graphite standard. It is also important to note that the Raman line shapes of the transfer layer and black deposit are not as sharp as those of the graphite. This type of broadening is thought to result from phonon damping and is related to the degree of structural disorder in graphitic precursors as discussed in ref. 18.

Similar microscopic inspection of the wear scars on balls used in short-distance tests (i.e., 1 km) of Fig. 4 did not reveal any type of transfer layer. It is possible that a very

thin transfer layer may have also formed on the wear scars of these balls, but it may have been too thin or beyond the detection limit of our electron microscope and Raman spectroscope. In short, based on the results of this preliminary investigation, we conclude that the transfer layers forming on the surface of M50 balls have a disordered graphite structure. Furthermore, it is possible that much lower steady-state friction coefficients observed during long duration tests may have been related to the formation of such layers.

CONCLUSIONS

1. DLC films used in this study afforded very low friction coefficients and low wear rates to sliding steel surfaces. During short-duration sliding tests, the friction coefficient was around 0.07, but reduced further to 0.03 during long-duration tests.
2. Low friction coefficients in long-duration test correlated with the formation of a transfer layer on counterface balls.
3. The transfer layers are rich in carbon and have a graphite-like structure.

ACKNOWLEDGEMENTS

The authors thank C. Zuiker of Argonne National Laboratory for performing the laser-Raman spectroscopy. C. Bindal acknowledges the Camlica Foundation of Istanbul and Sakarya University, Adapazari-Turkey for financial support. This work was supported by the U.S. Department of Energy, under Contract W-31-109-Eng-38.

REFERENCES

1. H. Tsai and D. B. Bogy, *J. Va. Sc. Technol.*, A5 (1987) 3287.
2. A. Grill, V. Patel, and B. S. Meyerson, in *Applications of Diamond Films and Related Materials*, Y. Tzeng, M. Yoshikawa, A. Feldman (Eds.) Elsevier Science, Publishers, B.V., 1991, p. 683.
3. J. C. Angus, P. Koidl, and S. Domitz, *Plasma Deposited Thin Films*, J. Mort and F. Jansen (Eds.), CRC Press, Boca Raton, FL, 1986, p. 89.
4. J. Robertson, *Advan. Phys.*, 35 (1986) 317.
5. V. L. Arbuzov, A. B. Vladimirov, V. B. Vyhodets, A. E. Davletshin, S. A. Plotnikov, I. Sh. Trakhtenberg, A. P. Rubshtein, S. D. Gorpinchenco and E. V. Kuzmina, *Dia. Rel. Mater.*, 3 (1994) 775-778.
6. K. Miyoshi, J. J. Pouch, and S. A. Alterovitz, *Mater. Sc. Forum*, 52/53 (1989) 645.
7. K. Enke, H. Dimigen, and H. Hubsch, *Appl. Phys. Lett.*, 36 (1980) 291.
8. K. Enke, *Thin Solid Films*, 80 (1981) 277.
9. R. Memming, H. J. Tolle, and P. E. Wierenga, *Thin Solid Films*, 143 (1986) 31.
10. A. Erdemir, M. Switala, R. Wei, and P. Wilbur, *Surf. Coat. Technol.*, 50 (1991) 17.
11. A. Erdemir, F. A. Nichols, X. Z. Pan, R. Wei, and P. Wilbur, *Diam. Rel. Mater.*, 3(1993) 119.
12. A. Grill, *Wear*, 168 (1993) 143.
13. M. Maillat, H. E. Hintermann, "Tribological Properties of Amorphous Diamond-Like Carbon Coatings", *Surf. Coat. Technol.*, 68/69 (1994) 638-643.

14. H. Ronkainen, J. Koskinen, J. Likonen, S. Varjus, and J. Vihersalo, *Dia. Rel. Mater.*, 3(1994)1329.

15. C. Donnet, M. Belin, J. C. Auge, J. M. Martin, A. Grill, V. Patel, "Tribochemistry of Diamond-Like Carbon Coatings in Various Enviroments", *Surf. Coat. Technol.*, 68/69 (1994) 626- 631.

16. D. S. Kim, T. E. Fischer, and B. Gallois, *Surf. Coat. Technol.*, 49 (1991) 537.

17. D. S. Knight and W. B. White, *J. Mater. Res.*, 4 (1989) 385.

18. E. H. Lee, M. B. Lewis, P. J. Blau, and L. K. Mansur, *J. Mater. Res.*, 6(1991)610.

FIGURE CAPTIONS

Fig. 1. Schematic of ion-beam deposition system.

Fig. 2. Cross-sectional SEM micrograph of DLC film used in this study.

Fig. 3. Micro-laser-Raman spectrum of DLC film used in this study.

Fig. 4. Variation of friction coefficient of an M50 ball during sliding against an M50 disk and against a DLC-coated M50 disk during short-duration sliding tests under 5 N and in dry N₂.

Fig. 5. Variation of friction coefficient of an M50 ball during sliding against a DLC-coated M50 disk during long-duration test under 5 N and in dry N₂.

Fig. 6. (a) Scanning electron photomicrograph of a wear scar formed on M50 ball during

long-duration test, (b) higher magnification SEM micrograph, (c) C X-ray map, and (d) Fe X-ray map of transfer layer on the wear scar.

Fig. 7. Micro-laser Raman spectra of DLC coating, transfer layers, black deposit around the edge of wear track, and graphite standard, suggesting that the transfer layer and black deposit have a graphitelike structure.

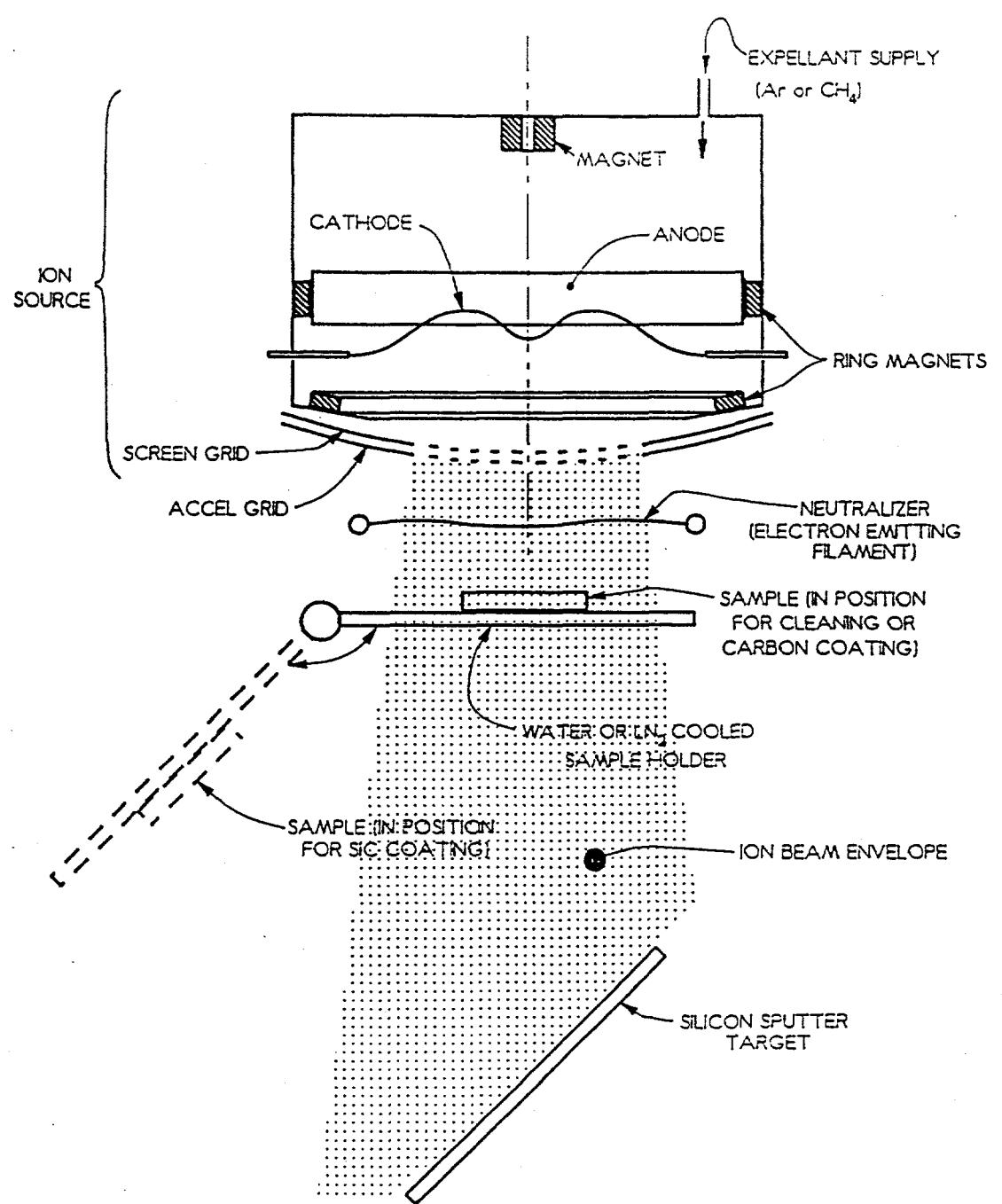


Fig.1

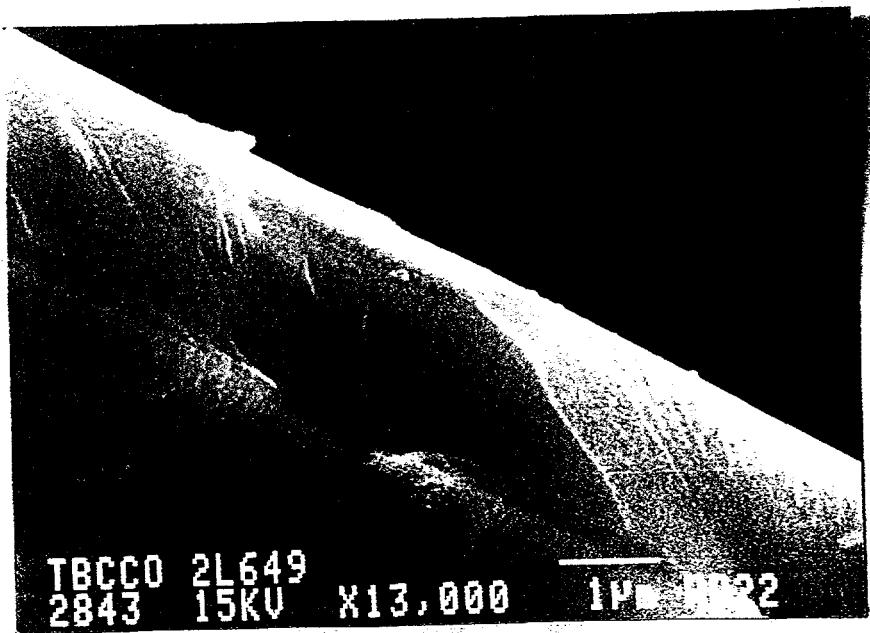


Fig. 2

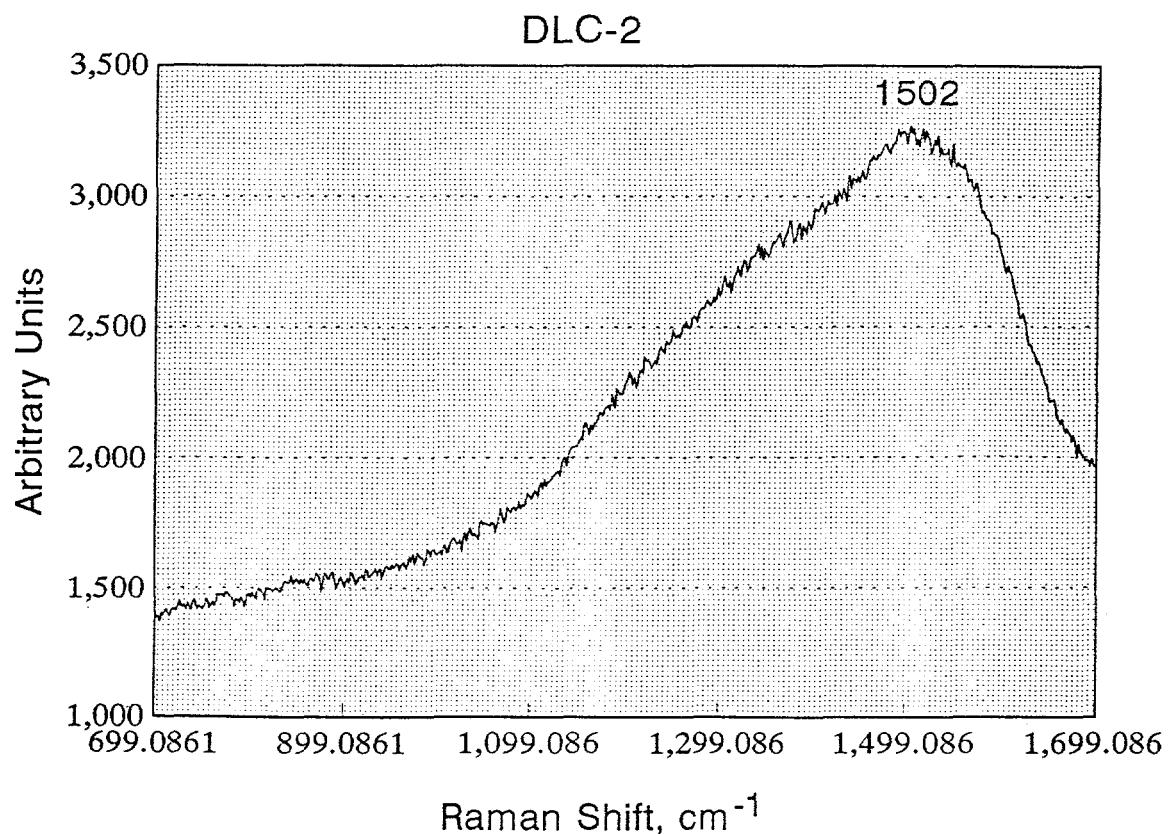


Fig. 3

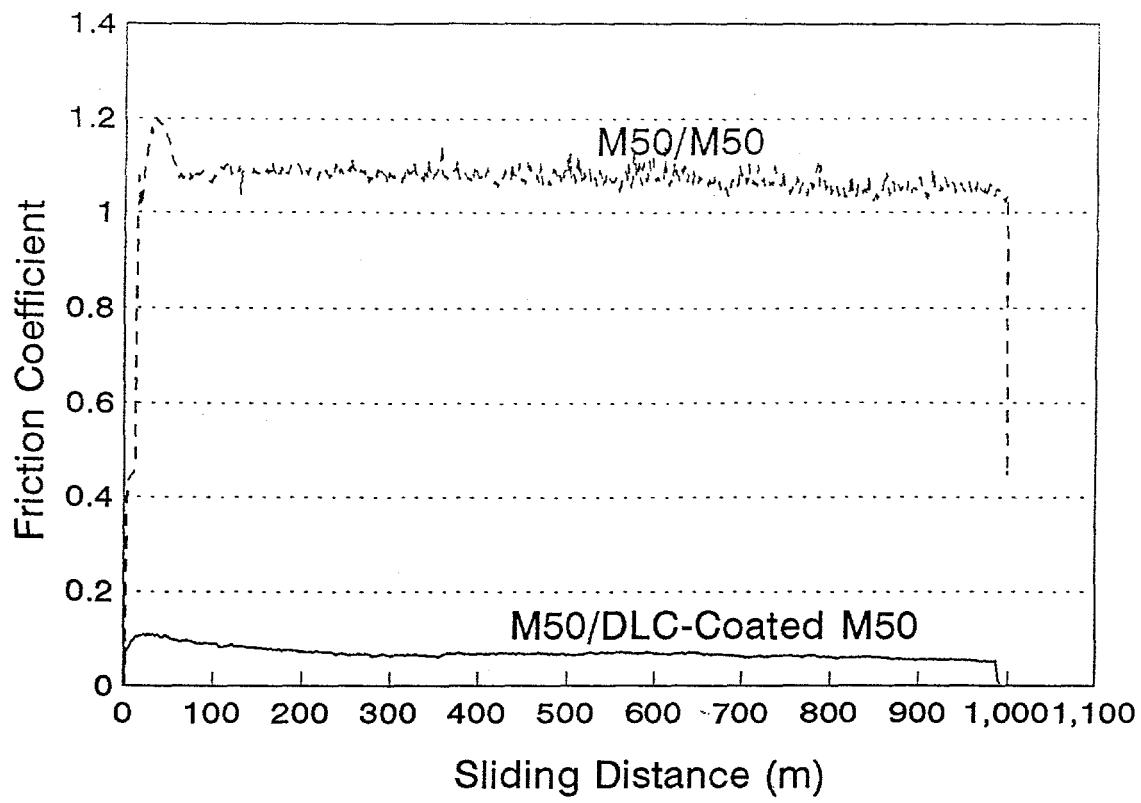


Fig. 4

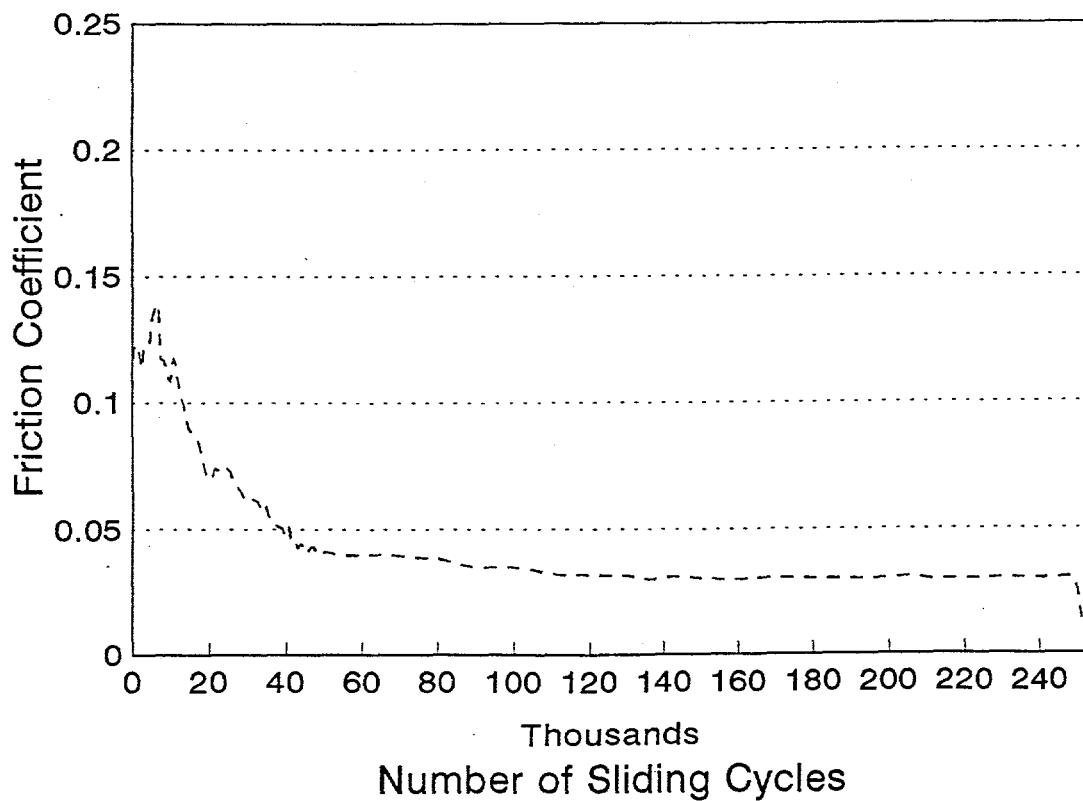


Fig. 5

Fig. 6a



Fig. 6b

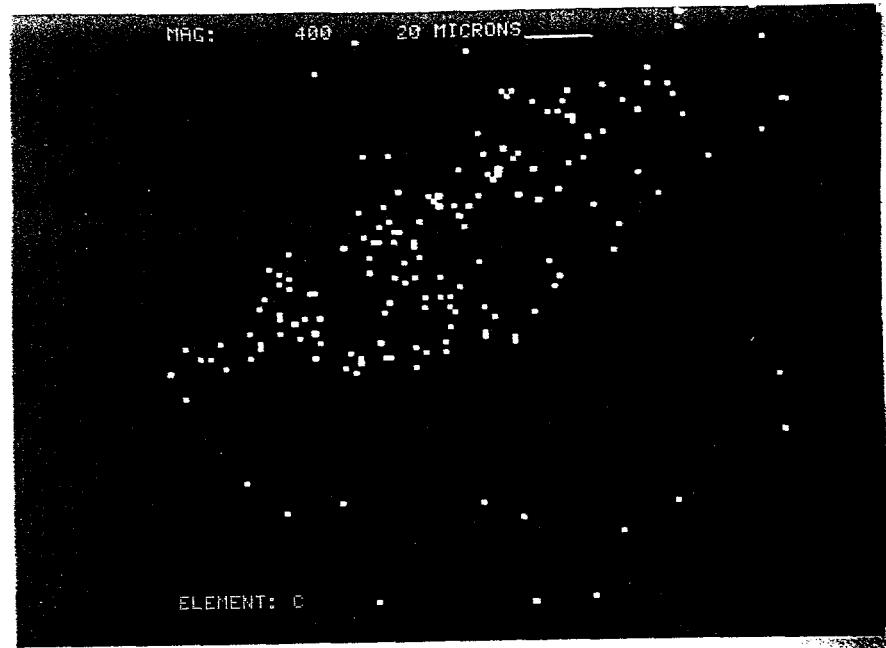


Fig. 6c

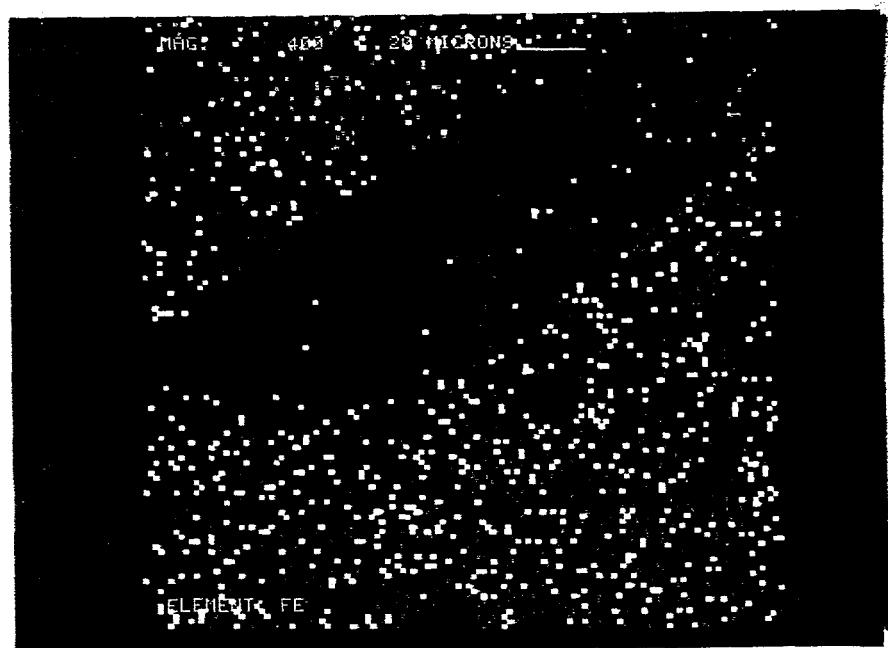


Fig. 6d

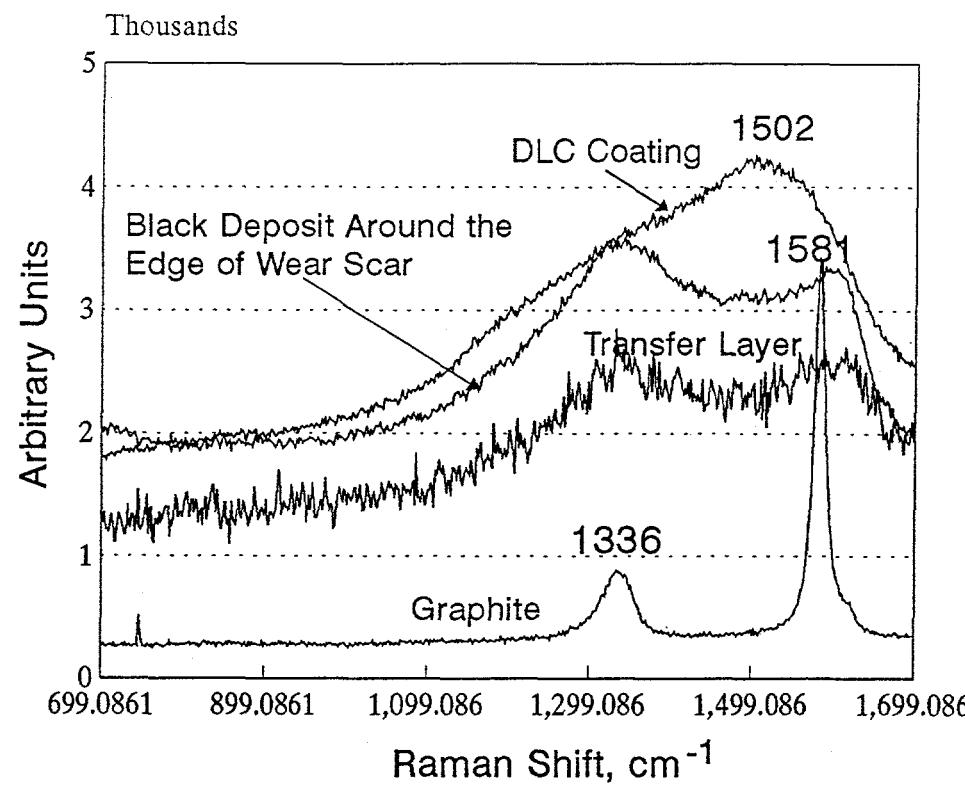


Fig. 7