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ABSTRACT

We derive an effective continuum model to describe the nucleation and subsequent growth
of a gas phase from a supersaturated liquid in a porous medium, driven by heat transfer.
The evolution of the gas results from the reduction of the system pressure at a constant
rate. The model addresses two stages before the onset of bulk gas flow, nucleation and gas
phase growth. The problem arises in internal steam drives, for example of the type recently
discussed in blowdown experiments in carbonate rocks (Dehghani et al., 1997, Dehghani and
Kamath, 1999).

Important quantities characterizing the process, such as the fraction of pores that host ac-
tivated sites, the deviation from thermodynamic equilibrium, the maximum supersaturation
in the system and the critical gas saturation depend crucially on the nucleation character-
istics of the medium. We use heterogeneous nucleation models in the form of pre-existing
gas, trapped in hydrophobic cavities to investigate the nucleation behavior. Using scaling
analysis and a simpler analytical model we show that the relevant quantities during nucle-
ation can be expressed in terms of a simple combination of dimensionless parameters, which
include rate effects. The subsequent evolution of the gas phase and the approach to the
critical gas saturation are also described using numerical and analytical models.

The theory predicts that the maximum supersaturation in the system is a weakly increas-
ing function of the decline rate. This function depends sensitively on the probability density
function of the nucleation cavity sizes. It also predicts that the final nucleation fraction, thus
the critical gas saturation, is a power law of the decline rate. The theory for both nucleation
and phase growth is then compared with available experimental data and a good match is

obtained by appropriate fitting of the nucleation characteristics of the medium.






I. INTRODUCTION

The liquid-to-gas phase change in a porous medium and the subsequent growth of the gas
phase is encountered in a plethora of applications driven by mass or heat transfer. Typical
examples include the solution gas-drive process for the recovery of oil from oil reservoirs,
boiling in porous media, thermal methods for oil recovery, nuclear waste disposal, soil reme-
diation and others. In this report, we examine the gas phase growth from a supersaturated,
slightly compressible, liquid in a porous medium, driven by heat transfer and controlled by
the application of a constant-rate decline of the system pressure. A characteristic example
of such a process occurs dyring cyclic steaming for the recovery of oil from low permeability
reservoirs through hydraulic or natural fractures (Dehghani et al., 1997). During injection
and soaking, steam condenses in the fracture and hot water imbibes into the matrix. During
production, the pressure of the system constantly declines, and when it falls sufficiently be-
low the vapor pressure, it results in the appearence of steam in the matrix (in-situ boiling).
The in-situ production and subsequent growth of the steam phase inside the matrix are of
interest because they result in expelling additional oil from the matrix.

Dehghani et al. (1997) conducted a series of core experiments in order to study the effect
of in-situ steam drive on fluid displacement in porous media. Subsequently, Dehghani and
Kamath (1999) conducted experiments with a vuggy carbonate core using a recombined oil
to study the contribution of the various recovery mechanisms (thermal expansion, thermally
enhanced solution gas drive, dry distillation, and in-situ steam drive) during steam injection,
followed by pressure reduction.

While of interest both from theoretical and applied viewpoints, a more fundamental
understanding of the basic aspects of this process has not been obtained, to our knowledge.
It is the objective of this report to bridge this gap, by providing a model both of the nucleation
and of the gas-phase growth periods. Internal steam drive has many similarities with the
process of solution gas-drive. They both describe the evolution of a gas phase due to the
increase of the supersaturation of the system, through a relatively slow pressure decline.
Nucleation and subsequent phase growth play a key role in both processes. An important
difference is that solution gas drive involves a binary system and it is controlled by mass
transfer, while internal steam drive is fundamentally a single-component system, controlled
by heat transfer. In two recent publications (Tsimpanogiannis and Yortsos, 2001a,b) we
developed a comprehensive effective continuum model to model solution gas-drive under
various conditions. In this report, we extend that approach to the specific problem of internal
steam drive.

As discussed in Tsimpanogiannis and Yortsos (2001a,b), the effective continuum model
is best suited during the early part of the process, where nucleation and the early stages of

bubble growth are dominant. The latter two, particularly the nucleation sequence, are the



main areas of interest of this report. We focus on the effect of the nucleation characteristics
on the maximum supersaturation and the nucleation fraction (and the critical gas saturation)
and provide an analysis of the effect of various parameters, such as pressure decline rate,
on these quantities. Results for the gas phase growth following the conclusion of nucleation
are also presented. It is assumed that the pressure decline rates are sufficiently slow so
that inertia and spatial gradient effects on bubble growth are negligible. Under the same
conditions, the model can in principle be applied to describe the onset of boiling in porous
media, driven by the application of a constant heat flux. This application is left for a future
study, however.

At later stages of bubble growth, where the various gas clusters compete with each other
through a combination of pore geometrical and topological effects, the present continuum
model will have obvious drawbacks. In the latter stages, a pore-network model should
instead be used. Pore-network models of bubble growth in single-component systems, driven
by heat transfer w ere developed by Satik and Yortsos (1996). In principle, these contain all
the necessary physics for a rigorous modeling of the process, particularly when significant
spatial gradients develop. Such an effort can be pursued in parallel.

The report is organized as follows: First, we formulate the problem closely following
Tsimpanogiannis and Yortsos (2001a,b). A scaling analysis of the resulting equation allows
to recast the problem in a more useful form, to be used for direct predictions. The numerical
results are analyzed. It turns out that for their interpretation, a simplified model of the
nucleation and growth periods can be developed. We use the simpler model to obtain
expressions for the maximum supersaturation as a function of geometric, thermodynamic
and process parameters. This allows us to obtain useful relations for the dependence of
the final nucleation fraction (and the critical gas saturation) on process parameters. The

theoretical predictions are then compared against experimental results.

II. MATHEMATICAL FORMULATION

Consider an effective porous medium occupied by a single-component liquid. At the
beginning of the process, the system is subcooled at the initial temperature, T,, and pressure,
P,, where P, > P**(T,) and P**(T) denotes the equilibrium vapor pressure at temperature
T. 1In the practical application discussed by Dehghani and Kamath (1999) this state is
achieved by steam injection, followed by steam condensation. Then, the pressure of the
system is slowly decreased. Nucleation and subsequent bubble growth are driven by the
continuous increase in the supersaturation, P***(7T,,)— P(t), where Ty, is the far-field system
temperature and subscript { denotes liquid. To describe phase equilibria, we will assume a

Clausius-Clapeyron equation



dn[P*(T,)] L, "
.  R,IZ

where R, is the ideal gas constant and L, the molar latent heat of vaporization. Equation

(1) does not include Kelvin vapor pressure lowering effects. However, these can be readily
incorporated by replacing L, in (1) by L, + P.v,,, where P. is the capillary pressure and v,,
the molar liquid volume. More complex thermodynamics can certainly be incorporated (Reid
et al., 1986), but the salient features are manifested with the simpler model (1). Conversely,
at a specified liquid pressure, P, a degree of superheat is present in the system, given by the

difference

AT =T, — T*(P) (2)

where T°%(P;) denotes the equilibrium temperature corresponding to F,. The change in
supersaturation (or superheat) is here driven by a constant rate of pressure decline. As
mentioned, we will proceed with the assumption that the rate of decline is sufficiently slow,
so that inertia effects as well as effects of spatial gradients (gravitational and/or viscous)
are negligible. This requires sufficiently small Rayleigh, Bond, capillary and Peclet num-
bers. Instead, emphasis will be placed on nucleation and on the effect of the increase of

supersaturation on the growth of the gas phase.

a. Nucleation

As the liquid pressure declines, nucleation sets in. Yortsos and Parlar (1989) reviewed
the gas-liquid phase change in porous media and concluded that heterogeneous nucleation is
the most plausible mechanism under sufficiently slow rates of supersaturation. In one model,
nucleation occurs when a gas bubble, either pre-existing or nucleated inside a cavity at the
pore walls, becomes unstable and detaches or otherwise occupies the host pore body. This
type of mechanism is in agreement with visual observations from micromodel experiments in
solution gas drive (Li and Yortsos, 1995a, El Yousfi et al., 1991, 1997, Bora et al., 2000 and
Dominguez et al., 2000) and will also be assumed here. In the cavity model, the activation
of a nucleation site occurs when the trapping capillary forces are overcome for the first time.
Then, the following condition is satisfied between the radius of the nucleation cavity, r., and

the (local) supersaturation,

2~cosb*

P = = P**(T) — Pi2) (3)

Te
where 6* is the contact angle (0 < 8* < 7/2). In the present model, the onset of nucleation

is not kinetically related to the degree of supersaturation, as for example, in conventional



approaches for solution gas drive (Firoozabadi and Kaschiev, 1997), but rather depends on
the size distribution, a.(r.), of the nucleation cavities.

Consider, now, the activation of nucleation sites. With the decrease in the liquid pressure,
the right-hand side of (3) increases, eventually becoming positive. Then, various cavities
satisfying (3) become activated and their corresponding host pore bodies are occupied by
gas. At any time, the current nucleation fraction, f,, defined as the number fraction of pores

that contain sizes which have been activated, is

fi= [ adryar (4)

where r. is an implicit function of time, through (3). Equation (4) implies a zero nucleation
fraction at zero supersaturation (r. — oo) and a nucleation fraction of one at infinite su-
persaturation (r. — 0). As elaborated in Tsimpanogiannis and Yortsos (2001a), the cavity
size distribution, a., pertains only to the largest cavity in any given pore (as this cavity will
be activated first). Also, equation (4) slightly overestimates the true nucleation fraction,
since pores containing sites to be activated later, may already be occupied by gas, due to
the growth of gas clusters from neighboring pores. However, in most cases, nucleation termi-
nates well before gas bubble growth has occurred to any substantial degree (S, < 1), thus
(4) should be an excellent approximation.

It is apparent that f, will have a different dependence on parameters, depending on the
assumed cavity size distribution. In the present report, we will consider distribution of the

Rayleigh type,

2 7.[_,_)/2

= () = o |~ ) )

*
C

where % is a characteristic (here the mean) cavity size, as well as a stretched-exponential

fy = exp (— e ) 0

*1
ar,

where n is a positive exponent and ¢ is a measure of the variance. The type of distribution
influences significantly the results to be obtained, as will be demonstrated below.

As long as the level of supersaturation increases with time, the right-hand-side of equa-
tion (5) also increases, implying that additional sites become activated, and the nucleation
fraction continuously rises. This is consistent with experimental evidence of sequential nucle-
ation reported by Satik and Yortsos (1996). After the supersaturation reaches a maximum
(local or global), equation (5) predicts a decreasing f,, which is unphysical. Therefore, in
segments of decreasing supersaturation the nucleation fraction is assumed constant. When
the supersaturation goes through a global maximum, it signals the end of the nucleation pe-

riod, in which case the fraction of pores ultimately activated, f,;, will be given by equations



(5) or (6) at the time of the maximum supersaturation. We note that in typical solution
gas-drive experiments, f,s is very small, of the order of 107% — 107¢.

Through this process, nucleation centers are activated sequentially, giving rise to evolving
gas clusters, which grow by heat transfer from the liquid to the gas. Sequential nucleation
results into clusters of different ages (the time passed since a particular class of gas clusters
has been nucleated/activated). Let w(7) be the number density of clusters nucleated per
total number of pores. Then, w(7)d7 is the number of new clusters per total number of

pores that become activated in the time interval between 7 and 7 + dr. Evidently,

w(r)dr = df, (7)

This relation will be used below to simplify the expressions for the gas phase growth.

b. Gas phase growth

During the growth of the gas phase we can roughly distinguish two periods, one in
which the growth is within single pores and another corresponding to gas clusters spanning
several pores (Tsimpanogiannis and Yortsos, 2001a). The first period extends throughout
and following the nucleation stage, the second is the later stage of growth. In either, growth
is driven by heat transfer. In general, different clusters compete for the available heat in the
liquid, the relative heat transfer rates depending on their geometry and relative position.

In the absence of competition between adjacent clusters and under the assumption that
heat transfer is conduction-controlled (namely that the Peclet number is sufficiently small),
an isolated cluster j grows at a rate which is proportional to its effective radius, R;(¢,7), and
the driving force T, — T**(P;) where Ty, is the far-field temperature. This is true even for
ramified fractal clusters, as was verified by Satik and Yortsos (1996) for a percolation cluster.

Assuming that the gas is ideal, we can write the following mass balance for a growing cluster

M, \ d ke sa
( n ) SUP+ ;] & an BT, () ®)
qg-g

where M, is the molecular weight of the gas, T, the temperature in the gas phase, V, the gas

v

cluster volume, k.s; an effective conductivity and L, the mass latent heat of vaporization
(L, = LJMw). In equation (8) we have also included the capillary pressure, P., which in
the application of interest can be significant. To simplify, we linearize the phase equilibria

around P,,

deat
dP

T**Y(P) = T*(P,) + (P = F,) (9)

and take without significant loss T, ~ T.



The gas volume V, takes a different expression in the two different periods (Tsimpanogian-
3
nis and Yortsos, 2001a). For growth within a single pore, V; = V. (%) , where V, is a char-

4

acteristic cavity volume (defined here as 27r’®). For growth of a cluster spanning several

3
R;\Ds . . L
pores, we have V;, =~ A*V, (;}) , where V; is the average site volume, r} is a characteristic

pore body size, Dy is the mass fractal dimension, equal approximately to 2.5 for a 3-D clus-
ter, and A* is a dimensionless geometric prefactor. To capture both periods with the same

equation we write

AV.M,\ d
R,T, ) dt

with the understanding that D, varies between 3 and 2.5, and A between 1 and A =

(P,+P)(f )Df

C

= A7 R; kz.ff (Too _ Tsat) (10)

v

A*Vs ¥ Df . . . . .
T (i) , during the nucleation period and growth periods, respectively.

Under the above assumptions, the gas phase will be described as a collection of clusters

of size R(t,7), the dynamics of each of which is described by equation (10), with R; replaced

AV M d
ot

subject to the initial condition R(7,7) = r.(7), where r. satisfies (3).

by R, namely

<H+P>(f)m

C

= 47rRk2ff(Too — T (11)

v

Consider, next, the heat balance for the entire system. We have

dT

Vo lo(L = S9)pCp + (1 = $)pr Cpr] — = =

I3
t Ak (Too — T**) Ny / R(t, 7)w(r)dr
0

+ hAsurf(To - Too) (12)

where the integration is over all existing clusters, C}, denotes heat capacity per unit mass,
@ is porosity, h is the heat transfer coefficient to the surroundings, assumed at temperature
T,, and A,y is the corresponding surface area through which heat is exchanged.

The gas saturation is related to the radius of the growing clusters and the nucleation

fraction through the relation

S, = Av /f( tfq) df, (13)

where we introduced the volume ratio v = % and the notation R( f(7)) = R(t, ), for the
radius of a cluster at time ¢, nucleated when the nucleation fraction was f(7). Note that the

liquid mass balance can also be expressed and reads as

QW _
=

4P ds,

~(1 = Sp)e— + = (14)



where c takes values in the range of 1.45 x 10~* — 1.45 x 10~>MPa™'. However, in the present
problem it is not used. Subject to the relevant initial conditions, the system of equations
(11), (12), (14) and (13) can be integrated. Integration proceeds until the time when the
critical gas saturation is reached. In the present approach, we assume that the critical gas
saturation, S,., can be predicted given the nucleation fraction and the capillary and Bond
numbers (Du and Yortsos, 1999, Tsimpanogiannis and Yortsos, 2001a,b, Tsimpanogiannis
and Yortsos, 2002). Therefore, for the purposes of estimating Sy, it only suffices to model

well the events during the nucleation period.
c. Dimensionless formulation and scaling

For the solution of the problem, we recast the equations in dimensionless form. Denote
dimensionless quantities by subscript D and scale temperature by T, pressure by P,, clus-
ter size by r}, and time by t* = %, where a is the constant pressure decline rate. The

dimensionless mass balance for the gas phase is given by

dRy T,
otp  AlL

while the dimensionless heat balance for the system reads

(1 —tp+1L) (Tpeo — T8 Rp + Rp’ (15)

—$\ dTp.. s
1 (14 22 ) = o i ) [ holon,
+ Hp(l —Tpew) (16)

In the above, we have defined the dimensionless groups

I, = ViprCpra _ Vopr Cpra

Am Pokossrr  4mP,Nrkos e

Rng pGCr hAsurfPo

H2 =, HH =~

’l)MwLU Po VpPGCrG¢

27ycosf*

Hp — pl—C’pl and HC = AN (17)

Prcpr’ re b

Parameter 11; expresses the ratio of the characteristic times for heat diffusion at the pore
scale to that for the decline of pressure. Although a small number in typical applications, it
plays a key role in determining the nucleation fraction and the critical gas saturation.

In addition, we have the following relations: The gas saturation is

5= Av [ oo, )7, (18)



Using the linearized phase equilibria, the dimensionless superheat is

(9 = TDoo — Bat = TDoo — (1 — @[)tp) (19)
where ¢ = %9% or P = M—}j—%’ when Kelvin effects are important. The cavity size

that becomes activated at a given time and temperature can be expressed in terms of the

supersaturation

1_CrDoo

SEPIS)at(TDOO,tD)—PDl(tD) :tD— ¢ (20)
or, more conveniently, in terms of the rescaled supersaturation
s
Sp = — 21
D= (21)

Then, the nucleation fraction is

fomon (). men () o
D D

depending on the size distribution used. In the solution of the problem, we assumed that

the process begins (tp = 0) when the pressure is at the bubble point corresponding to Ts.
Initial conditions for the simulations were Tp., = 1, Pp; =1 and Rp(7,7) = s5' (7).

The above system contains one key parameter, Iy, describing the effect of the rate of
increase of the supersaturation. Because it is small, a further rescaling of the nucleation
fraction and the cluster size is necessary. After some analysis (Tsimpanogiannis and Yortsos,

2001a), it is not difficult to show that for the cavity nucleation model, the following scaling

Dy

is valid, f, ~ II;"™" and f,RPs ~ O(1) (where, given that the nucleation fraction varies
only during the first period, Dy = 3). This scaling contains the main effect of the pressure
decline rate on the nucleation fraction. Thus, we define a rescaled nucleation fraction and

rescaled cluster sizes

_3 1 4
¢y = f12 and  pp =TI} Rp (23)

In this notation, the governing equations become

dpt I
(1= to + )52 = =20 + pp) (24)
and
1 — ¢\ dTpe be
(1 —5) (Hp + TQb) dt’; = —9/0 PD(tDa¢q)d¢q + p(l - TDOO) (25)



while

Sy= Av [ pltn,,)rds, (26)

The numerical solution of the system of the rescaled equations is described below.

IIT. NUMERICAL RESULTS

The system of differential equations was solved numerically using a fourth-order Runge-
Kutta method (Press et al., 1994). At each time step we examine whether nucleation of a
new class of gas clusters is possible, namely whether the supersaturation is increasing. If so,
a new class of gas clusters is added. Then, the simultaneous growth of all different classes
of clusters is computed. When the supersaturation reaches a maximum, further nucleation
stops. In the typical case, parameters which can vary over a significant range are II; and II.
(and possibly II,). An additional important variable is the type of the cavity size distribution
used in the calculation of the nucleation fraction. The sensitivity to these parameters was
examined in the simulations.

The effect of II; and II. on the rescaled nucleation fraction, ¢,, the mean rescaled radius,
pPD.m, the rescaled supersaturation, sp, and the gas saturation, S;, is shown in Figs. 1-
4. In these calculations, we used a stretched exponential (n = 1.0 and o = 1.0) cavity size
distribution, II, was kept constant to the value 0.9697 x 10®, we assumed an adiabatic system
(Il = 0), while II; varied over several orders of magnitude (from 10~ to 107°).

The variation of ¢, as a function of the dimensionless time, {p, and of the parameters
IT; and II. is shown in Fig. 1. The nucleation fraction increases rapidly in a small time
interval, and then stabilizes to a final value at the conclusion of nucleation. Such behav-
ior is characteristic of nucleation processes, and has features similar to those reported by
Tsimpanogiannis and Yortsos (2001a, b) for solution gas drive. There is a slight effect of
II;, which basically demonstrates the correctness of the scaling (23). The effect of II. is
significant. As I, increases, the final nucleation fraction ¢, (hence f,s) decreases, while the
onset of nucleation is delayed (Fig. 1b). The increase of f,; with an increase in II; and a
decrease in II. is expected. Larger values of 1I; result from a faster decline rate, a greater
departure from equilibrium, the establishment of a greater supersaturation in the system,
hence the activation of more nucleation sites. Likewise, smaller 1I. imply that nucleation is
facilitated at increasingly smaller supersaturations, as larger size cavities can be activated
more easily.

Fig. 2 shows the corresponding effects on the mean rescaled size pp,,. There are two
different regions, corresponding to the nucleation period, and another to growth after nucle-

ation. The first period can be approximated as a linear function of time. The effect of II; is



relatively insignificant at small II;, confirming the validity of the scaling (23). The effect of
II. (not shown) is more significant. Smaller values of II. lead to an increase in the nucleation
fraction, and a corresponding decrease in the size of the gas clusters at the conclusion of
nucleation.

Fig. 3 shows plots of the rescaled supersaturation sp as a function of time for different II;
and II.. During the nucleation period (straight line segment in Fig. 3a), the supersaturation
increases with time almost linearly, suggesting that Tp., does not vary significantly in that
period. Eventually, the rate of supersaturation increase slows down and, at some point, sp
reaches a maximum, $p,,, at which point nucleation terminates. Following this point, the
supersaturation decreases monotonically. The maximum value sp,, is plotted in Fig. 3b as
a function of II; for two different values of II.. Note that sp,, is in general of the order of
1072 — 107!, The dependence on the parameters becomes stronger at larger II; and smaller
II..

The evolution of the gas saturation is shown in Fig. 4. It follows that of f,, during
the nucleation period, and that of pp,,, during the period of growth. The effect of II. is
indirect, in that smaller values of II. promote larger values of 5, due to an increase in both
fqr and pp. All these trends are similar to the case of solution gas drive, as explained in
Tsimpanogiannis and Yortsos (2001a, b). We refer the reader to these publications for other
effects, including the effect of II; and 11, on the critical gas saturation Sy.. Because the latter
pertains to the formation of a sample-spanning cluster, in the absence of viscous or gravity
effects, S;. actually reflects the variation of f,;. Thus, S, can be considered a power-law
both of II; and of II. with exponents that vary between 0.16 and 0.25 with respect to II; and
between -0.33 and -0.22, with respect to 1l., respectively (see Tsimpanogiannis and Yortsos,
2001a, b).

The effect of Il on the rescaled nucleation fraction, ¢, and the gas saturation, S, is
shown in Figs. 5-6. In these calculations, we used a stretched exponential (n = 0.2233
and o = 0.1364) cavity size distribution. As Ily increases, the level of superheat and thus
the level of the supersaturation in the system is higher. This leads to an earlier onset of
nucleation, as well as a higher degree of nucleation. Note, however, that the effect of Iy on
the maximum superheat and on the rescaled final nucleation fraction, ¢, is not significant.
A change of Il by three orders of magnitude, results in a change of ¢, by a factor of less
than 2. The gas saturation increases faster as the heat transfer coefficient increases. This is
due to the maintaining of a higher level of superheat, therefore a larger driving force for gas
volume growth. Interestingly, as the heat transfer coefficient decreases the gas saturation
growth slows down at larger values of the gas saturation. A noticeable difference, however,
at higher values of Ilgy, is that the superheat is not be completely depleted before the gas

saturation becomes equal to one, as happens with the lower values of IIy.
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The numerical solutions obtained will be compared against available experimental results.
However, before doing so it is beneficial to provide an interpretation of the numerical findings,

using a simpler model.

IV. INTERPRETATION USING A SIMPLER MODEL

To interpret the results obtained we will consider a simpler model that captures the
essential features of the problem, just like in Tsimpanogiannis and Yortsos (2001a, 2001b).

Consider, first, the nucleation period.

a. Nucleation

We use the following equations for the gas phase growth and the superheat

dp3

(14 Hc)ﬁ ~ ,0pp (27)
and
1— ¢\ do 1—¢ 4a(o)
(Hp + 7) et (Hp + 7) - 0/0 ppdd, + My(ptp —0)  (28)

These are subject to the initial conditions

1z
6(0) = d = —1 2
(0)=0 and pp(7,7) () (29)
At early times and for small II;, the solution is approximately
H2 92 %
0 =~ Pt d R | ————— 30
Ytp and pp [3(1+HC)¢1 (30)

Note that the heat transfer term does not affect the early behavior (compare also with Figs.
5-6). The dimensionless superheat is linearly proportional to the dimensionless time and the
mean cluster size becomes evantually proportional to time. Both are consistent with the
numerical results during the nucleation period (Figs. 2 and 3).
We will use (28) to approximate the approach to the maximum superheat. The latter is
d6

reached when Fr 0, namely when

0/0% ppde, ~ (Hp + %) P (31)

11



Following a similar approach as in Tsimpanogiannis and Yortsos (2001a, b) we can combine
(30) and (30) with the definition of ¢, to obtain an approximate algebraic equation for the
rescaled maximum supersaturation, sp,,. For example, for the case of Rayleigh distribution

we have the equation

T 1 1—¢ 1 3
P — 2lnsp,, ~ Elm/) —1In (Hp + 7) — §1n3 — §IHA (32)
where we introduced the combination of variables
_4 11, -3

A =14L11:° ( ) 33
! T (33)

Likewise for the case of a stretched exponential we get

1 1 - 1

o~ lspr — 2lnsp, ~ glmb —In (Hp + 7¢) - §In3 - ;lnA (34)

These equations suggest that the dependence of the maximum supersaturation (hence the
maximum superheat since § = ¢Il.sp) on the various parameters. The solutions of (32) for
the Rayleigh distribution and of (34) for two different cases of a stretched exponential are
plotted in Fig. 7, as a function of A. For the Rayleigh distribution, sp,, varies weakly, in the
range 0.1 — 1, as A varies over several orders of magnitude (between 107'* and 107°). For
small A, the maximum supersaturation is practically constant. As A takes larger values,
Spm Increases weakly and eventually much more strongly, as A approaches the order of
one (compare also with Fig. 3). On the other hand, for the stretched exponential, the
variation is much stronger in the logarithmic plot, and almost approximates a straight line.
Stronger dependence on A is observed for the case when the tail of the cavity size distribution
becomes longer (smaller values for n). Plotted in the same figure are also the results of the
numerical solution of the full problem for a number of different parameter values. The
agreement between the numerical results and the simple analytical model is very good and
demonstrates the validity of the simple model.

Equations (32)-(34) can be used to approximate the final nucleation fraction. For all

cases we have

N|=

3 11 B
~sTE AIZITT? | ——2 35
qu SDm 1 C [3(1+Hc) ( )

where

-
Il
TN
=
h~)
_|_
—
I
©-
N—
N
[T
w
=
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The behavior of the maximum supersaturation as a function of the parameter A is very
similar to that in solution gas drive (Tsimpanogiannis and Yortsos, 2001a, b). In particular,
(a) In the region where sp,, varies weakly with A (at very small A) the final nucleation
fraction varies as a power law of II;, with exponent equal to 3/2.
(b) In the region where sp,, may be approximated by a power-law dependence on A, e.g.

as Spm ~ A™, we have the scaling

fuor ~ AAZTZT (37)

Such a dependence on A leads to a decrease in the exponent in the power-law scaling of f,;
on II;. For example, if we take m & 1/4 (a value examined in more detail in Tsimpanogiannis
and Yortsos, 2001a, b), we read

Jor ~ 1 and Jag ~ s (38)

b. Gas cluster growth

The modeling of the growth regime, where nucleation has terminated, can be simplified

if we consider only one class of clusters and simplify the heat and mass balances as follows

do ~ —0z + HH(¢tD — (9)

A - + 9 39
i ™ (I, + )1 — o117 @
and
dzPs _ kil0z + 2P+ (40)
dip (1 —tp+ Hc)
Here, we introduced the variable
Z = @qfpD (41)
and the parameter
foy = ~4L 42
=B (42

The final value of the rescaled nucleation fraction, ¢,;, as well as initial values for Tp., and

pp needed for the above calculation, are obtained from the previous analysis.
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V. COMPARISON WITH EXPERIMENTS

The theoretical model was next compared to the experimental results of Dehghani et
al. (1997). In these experiments, the pressure at the open end of a Colton sandstone core,
saturated with water and embedded in a constant temperature bath, was slowly reduced at
the rate of 0.7448 bar/h (10.8 psi/h). The other end of the core was kept closed to flow.
Properties of the core of interest to this report were taken as follows: r, = 3.0x107° cm, r. =
3.0 x 10~7 em. Additional physical parameters and values of the dimensionless parameters
used in the calculations are shown in Table 1.

The gas saturation as a function of time for the single-component experiment and for
various axial positions along the core are shown in Fig. 8. It is worth noting that the evolu-
tion of the gas saturation is slower as the distance from the entrance of the core increases. In
a way, this reflects a reduced rate of pressure decline, or a decrease in the heat transfer coef-
ficient as the distance from the open end increases. For a better comparison of the data, we
attempted to collapse all data into a single curve. By replotting the data using as time origin
the time the boiling point in the bulk is reached (which is ¢, = 84 minutes), and by rescaling
time by a factor b(L), where L is the distance from the open end, we were able to collapse
satisfactorily all data in a single curve, as shown in Fig. 9. The less satisfactory collapse of
the data at the early times could be the result of poor CT-scan resolution in the low porosity
sandstone used in the experiments (Dehghani et al., 1997). The variation of the factor b(L)
which allows this collapse is shown in Fig. 10. It is a linear function of the dimensionless
distance and the best fit line describing the data is given by: b(L) = 1.0106 + 5.1513 (L%)?
where L, is the core length. We then attempted to match this universal curve using our
model. As shown in Fig. 9, a very good match was obtained, using a stretched exponential

cavity size distribution with n = 0.35 and o = 1.0.

VI. CONCLUSIONS

In this report we developed an effective continuum model to describe the nucleation and
subsequent growth of a gas phase from a supersaturated liquid in a porous medium, driven by
heat transfer. The evolution of the gas results from the reduction of the system pressure at a
constant rate. The model addresses two stages before the onset of bulk gas flow, nucleation
and gas phase growth.

We used heterogeneous nucleation models in the form of pre-existing gas, trapped in
hydrophobic cavities to investigate the nucleation behavior. Using scaling analysis and a
simpler analytical model we showed that the relevant quantities during nucleation can be

expressed in terms of a simple combination of dimensionless parameters, which include rate

14



effects. The subsequent evolution of the gas phase were also described using numerical and
analytical models.

The theory predicts that the maximum supersaturation in the system is a weakly increas-
ing function of the decline rate. This function depends sensitively on the probability density
function of the nucleation cavity sizes. It also predicts that the final nucleation fraction,
thus the critical gas saturation, is a power law of the decline rate. The theory was then
compared with available experimental data of internal steam drives, such as the blowdown
experiments in carbonate rocks (Dehghani et al., 1997) and a good match is obtained by

appropriate fitting of the nucleation characteristics of the medium.
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Parameter Value

a (bar/h) 0.7448

Cor (J)(KgK)) | 5954.7

Cpr (J/(KgK)) | 850.0

k (um?) 4.145 x 107
kegr (W/(mK)) | 1.0

L, (em) 11.354

L, (J/mol) 37294.8
MW (g/mol) 18.016

P, (bar) 9.276

re (em) 3.0 x 1077
rs (em) 3.0 x 107°
T, (K) 449.4

v (mN/m) 55.0

I, 1.333 x 10710
11, 9.697 x 107
I, 3.901 x 10*
Iy 2.697 x 10?
I, 2.981 x 10°
pr (Kg/(m?)) | 2350.0

v 1. x 107¢

P 0.111

b 1.002 x 10~

Table 1: Characteristic values for the various parameters.
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Figure 1: Variation of the rescaled nucleation fraction, ¢,, as a function of the dimensionless
time, tp. (a) Effect of II; = 1.485 x 107, for I, = 9.6972 x 107, 1, = 2.981 and 11y = 0.
(b) Effect of II, = 0.117 x 10™, for IT; = 1.485 x 1078, I, = 9.6972 x 107, 1T, = 2.981 and
Il =0.
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Figure 2: Variation of the mean rescaled dimensionless radius, ppm, as a function of di-
mensionless time, tp. Effect of II; = 1.485 x 10™™, for II, = 9.6972 x 107, II, = 2.981,

II. = 0.117 x 10" and Iy = 0.
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Figure 3: Numerical results for the rescaled supersaturation, sp: (a) Variation as a function
of dimensionless time, ¢p. Effect of I} = 1.485 x 10", for I, = 9.6972 x 107, 1, = 2.981
and Iz = 0. (b) Effect of the parameter II; on the maximum rescaled supersaturation, spn,,
for II, = 0.117 x 10™. Points correspond to the full numerical solution, solid lines correspond

to the simpler problem.
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Figure 4: Variation of the gas saturation, S, as a function of dimensionless time, {p. Effect

of II; = 1.485 x 10™™, for Iy = 9.6972 x 107, 11, = 2.981, II, = 0.117 x 10" and 11y = 0.

23



1 00 T T T T
90
80

_4nm
HH—‘IO

60
o” 50¢
40
30

m=0

10

0.02 0.04 0.06 0.08 0.1

Figure 5: Variation of the rescaled nucleation fraction, ¢,, as a function of dimensionless
time, tp. Effect of Il = 10™, for II; = 1.485 x 1078, II, = 9.6972 x 107, II, = 0.117 x 10*
and I, = 2.981.

24



0.8

_4aM
HH—‘IO

0 0.02 0.04 0.06 0.08 0.1

Figure 6: Variation of the gas saturation, S, as a function of dimensionless time, {p. Effect

of My = 10™, for I, = 1.485 x 107% I, = 9.6972 x 107, 11, = 0.117 x 10" and II, = 2.931.
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Figure 7: Maximum rescaled supersaturation, sp.,, as a function of A for various cavity size
distributions. Solid lines correspond to the simpler problem, points correspond to the full
numerical solution [denoted by circles for the Rayleigh cavity size distribution, by triangles
for a stretched exponential (n = 0.2233 and o = 0.1364) and by squares for a stretched
exponential (n = 1.0 and o = 1.0)].
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Figure 8: Gas saturation profiles for single-phase flash experiment as a function of time and
for various axial positions along the core, L. Experimental data from Dehghani et al., (1997).
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Figure 9: The evolution of the gas saturation as a function of a rescaled time for the ex-
periments of Dehghani et al., (1997). Points denote experimental values and the solid line

corresponds to the full numerical solution.
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Figure 10: Variation of the rescaling factor, b, as a function of the dimensionless axial position
along the core, L/L,.
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