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Abstract — An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface
Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An
assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and
dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake
River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a
Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The
Freundlich K for seven samples, where material properties have been measured, is correlated to sediment
surface area (' = 0.79). Based on these empirical observations, a model has been derived for adsorption
of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used
to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose
zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate

decreases with depth.

[. INTRODUCTION

The Radioactive Waste Management Complex at
the INEEL, established in 1952, is used for
subsurface disposal and above ground storage of
radioactive waste. Low-level waste is buried in
shallow (depth < 22 ft) pits and trenches in the
Subsurface Disposal Area (SDA). Prior to 1970,
waste containing transuranic elements was also
buried in these pits and trenches. Transuranic waste
received since 1970 has been stored above ground in
the Transuranic Storage Area (TSA). The stored
wastes are in the process of being shipped to the
Waste Isolation Pilot Plant in New Mexico for
permanent disposal. The fate of the buried waste will
be decided through the CERCLA remedial action
process. Almost 330 metric tons of uranium are
estimated to have been buried in the SDA since the
early 1950's. Most of the uranium is in the form of
depleted uranium with 99.3% of the total uranium
mass in the form of U-238. Uranium represents a
significant source term in the buried waste, and a
long term potential threat to underlying ground water.

* E-mail: hullle@inel.gov

Predictions of uranium migration at the SDA
have been made for compliance with DOE Orders'?
and to support CERCLA risk assessment.” In all of
these simulation studies, transport of uranium was
modeled wusing a linear, reversible partition
coefficient (Ky) of 6 mL/g derived from laboratory
measurement of Ky on a composite interbed sample.”
Recognizing the need for improved defensibility of
risk assessment models in support of the INEEL
CERCLA remediation program, the INEEL
Environmental Restoration Program has been funding
studies at Clemson University to measure site-
specific partition coefficients for SDA sediments.**
Results from a recent set of adsorption isotherm
experiments suggest that a more general model of
adsorption can be derived from these data. We
modeled the existing, small, data set as a basis to
evaluate the applicability of more theoretical models
of adsorption. Additional laboratory data are being
collected to further validate this model. The results
of this study will be couched in a form that the
Environmental Restoration Program can use for
immediate improvement in the defensibility of risk
assessments at the SDA.

b Current address: U.S. Nuclear Regulatory Commission, Rockville, MD



II. SETTING

The SDA is located on the eastern Snake River
Plain, a north-east trending structural basin about 200
miles long and 50 to 70 miles wide in southeastern
Idaho. The plain is underlain by a layered sequence
of Tertiary and Quaternary volcanic rocks and
sedimentary deposits.”  Volcanic rocks in this
sequence consist of basaltic lava flows and cinder
beds. During periods of volcanic quiescence, fluvial,
lacustrine, and eolian sediments were deposited.
Alternating periods of volcanic activity and
sedimentary deposition have accumulated into a
complex sequence of layers. The water table is at a
depth of about 480 ft in the vicinity of the SDA.

There are several important sedimentary units
beneath the SDA that are considered to be crucial
barriers to downward migration of radionuclides
from buried waste.'” The ability of these interbeds to
retard the migration of contaminants is the focus of
characterization efforts. The fractured basalt units
are not considered to provide significant retardation,
and therefore are of secondary interest at this time.

The waste is buried in a layer of surficial
sediment accumulated in a low area surrounded by
basalt lava flows. The surficial sediment in the SDA
is up to 22 ft thick and is deposited on top of the A
basalt flow. The shallowest interbed is the A-B
interbed (between basalt flows A and B), which is
mainly found in the northern and western parts of the
SDA. The depth to the top of the A-B interbed is
between 18 and 55 ft below land surface. The B-C
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interbed ranges in depth from 87 to 131 ft and is
commonly referred to as the "110-ft interbed." The
thickness ranges from 0 to 40 ft and averages 13 ft.
The C-D interbed ranges in depth from 218 to 253 ft
and is commonly referred to as the "240-ft interbed."
The C-D interbed ranges in thickness from 5 ft to 32
ft and average 17 ft in thickness.

The mineralogy of the surficial sediments and
sedimentary interbeds has been studied by the U. S.
Geological Survey.®® The sediment has a nominal
mineralogy of 35% quartz, 30% feldspar, 4% calcite,
10% pyroxene, 2% dolomite, and 19% clays.
Predominant clay minerals are illite, smectite, and
kaolinite. The mineralogy of sediments at the SDA
correlate with minerals from source areas in the
adjoining mountains. Sediments in different
interbeds are mineralogically very similar. This
evidence indicates a fairly uniform depositional
process over time, which has lead to a similar
mineralogy in the sediments’. This similarity in
source material and depositional processes over time
may result in some uniformity in adsorption
characteristics of sediments.

III. EXPERIMENTAL PROGRAM

A series of vadose zone boreholes was drilled in
and around the SDA to install moisture monitoring
equipment and to collect samples of sedimentary
interbed material (Figure 1). Material properties
determined from these samples will be used to
parameterize computer models.  Samples were
collected from the B-C and C-D sedimentary
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Fig. 1. Map of the Radioactive Waste Management Complex showing the wells where samples have been
collected for measuring uranium adsorption isotherms. Samples from wells identified with triangles are discussed in
this report. Samples from wells identified with squares are currently in the laboratory for analysis.



interbeds  for  hydrologic and  geochemical
characterization. The first round of samples sent for
geochemical characterization were from the wells
drilled inside the SDA. Seven samples (Table I) for
which a complete set of geochemical properties and
isotherm measurements have been completed, were a
set of biased samples collected to cover the range of
observed material properties from sand to clayey silt.
The range of surface area and cation exchange
capacity measured on these samples reflects the large
range in textural characteristics.

1II.A. Material Characterization

Material properties measured were bulk
mineralogy, clay mineralogy, surface area,
extractable oxides, cation exchange capacity, and
exchangeable cations. Mineralogy was determined
by x—ray diffraction. Surface area was determined by
multipoint nitrogen absorption using Brunauer-
Emmett-Teller (BET) surface area analysis. To
quantify the amount of oxide coatings present on the
soil, the soluble oxides were extracted from the
sediment with sodium dithionite warmed to 80°C and
the concentrations of iron, manganese, aluminum and
silica determined in the supernatant by inductively
coupled plasma emission spectrometry.  Cation
exchange capacity and exchangeable cations were
determined independently. Cation exchange capacity
was measured by sodium saturation followed by
extraction with ammonium acetate. Exchangeable

cations were determined by ammonium acetate
extraction, with the difference that the sodium
saturation step was bypassed. The collected extract
was analyzed for calcium, magnesium, strontium,
sodium, and potassium by inductively coupled
plasma emission spectrometry.

1II.B. Batch Isotherm Experiments

The fourteen sediment samples were air-dried,
and sieved to remove material larger than 2 mm. The
sieved sediment material was pretreated with
simulated groundwater according to ASTM
D 4319-93' in four contact intervals: three of 15
minutes and one of 24 hours. After the contact
interval, the sediment was centrifuged at 1,000 g for
5 minutes and decanted. Sediment suspensions were
prepared by adding a weighed amount of sediment to
simulated groundwater to produce suspended solids
concentrations between 50,000 and 100,000 mg/L.
The pH of the test solutions was adjusted to 8.0 £ 0.2.
Each isotherm was determined by duplicate
equilibrations at each of five initial radionuclide
concentrations. The final dissolved inorganic carbon
concentration was measured for two of the test
solutions and found to be 1.83 + 0.02 and 2.25 £ 0.10
mmole/L. All calculations involving water chemistry
of test solutions in this report use 2 mmole/L total
dissolved carbonate and a pH of 8.0.

TABLEI

Sample depths and sample identification. Material properties of surface area and cation exchange capacity have
been measured for seven of the sample materials. Freundlich adsorption constants (Ky) are given with the 95%
confidence interval.

Well ID Interval Interval Sample ID Surface Cation log K¢
Top Bottom Area Exchange (L/g)
(ft bls) (ft bls) (m’/g) (meq/100g)

SCI-153 103.0 103.6 7DS00101KD 75.24 43.9 -2.78+0.12
SCI-153 107.4 108.0 7DS00301KD 61.36 23.2 -2.9440.12
SCI-153 109.0 109.4 I1S-INEEL-109 -3.1320.12
SCI-154 103.0 103.5 7DS00701KD 19.29 14.8 -3.18%0.11
SCI-154 104.5 105.0 12S-INEEL-105 -3.07£0.12
SCI-154 112.0 112.5 7DS00901KD 51.14 27.3 -3.03£0.12
SCI-157 229.2 229.7 I3D-INEEL-229 -3.25%0.11
SCI-157 231.0 231.5 7DS01701KD 36.58 23.2 -3.09£0.11
SCI-159 224.2 224.8 [14D-INEEL-224 -3.15%0.11
SCI-159 230.0 230.5 7DS02301KD 34.02 22.5 -3.10£0.12
SCI-159 230.5 233.5 14D-INEEL-231 -3.20%0.11
SCI-159 233.5 234.0 14D-INEEL-234 -3.34+0.12
SCI-160 234.0 234.5 [1D-INEEL-234 -2.9840.12
SCI-160 238.1 238.6 7DS00501KD 46.39 19.4 -3.0740.12




Stock uranium spike solution was prepared using
U-233 at high activity in an acidic water. Test
solutions were then prepared by adding a small
volume of the spike solution the test
solution/sediment suspension to achieve the desired
final concentration in the test solution. The pH of the
test solution was then adjusted to a value of 8.0 £ 0.2
using hydrochloric acid or sodium hydroxide. Batch
adsorption experiments were carried out for time
periods between 48 and 56 days based on results
from a preliminary kinetic adsorption study.

IV. RESULTS

A Freundlich isotherm was fit to the fourteen
data sets by a linear regression on the log
transformation of the data. The log-transformed
version of the Freundlich isotherm is given by:

log[C o4 ]=log[K ¢ ]+ n-log[Cyq1 ] (1)

Ky = empirical partition coefficient at
equilibrium (L/g)

n = empirical coefficient

Cags = concentration of parameter on the

solid (mg/g, pCi/g, mole/g...)

Ciol = concentration of parameter in solution
(mg/L, pCi/L, mole/L...)

Four statistical models were analyzed. These models
tested the hypothesis that the isotherms shared
common parameter values. The model with the
greatest degrees of freedom and the lowest mean
square error was a model that included a unique K;
for each sediment sample, but a common shared n
parameter. Allowing n to vary between samples did
not significantly improve the fit to the data
(probability = 0.51). The fit of the isotherm model to
some of the sediment samples is illustrated in
Figure 2. The common slope (n) for uranium was
found to be 0.79 £ .02 (95% confidence interval).
The Freundlich adsorption constants (Ky) are listed in
Table I.

The commonality in the n values calculated for
the uranium adsorption isotherms on the 14 sediment
samples from the SDA suggests that the suite of
adsorption sites on the sediments is very similar. The
n parameter compensates for a decrease in binding
affinity to mineral surfaces as sites become filled.
Because the mineralogy of the sediments is similar,’
the suite of adsorption sites might also be expected to
be similar.

The Freundlich adsorption constants were
significantly different among the sediment samples.
The Freundlich K¢ is an empirical parameter that is
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Fig. 2 Plot of seven uranium adsorption
isotherms showing the fit of the Freundlich isotherm
to the data using a common n parameter of 0.79 for
all isotherms.

composed of three components, a binding constant, a
term related to the number of adsorption sites, and
solution composition. Because all experiments were
conducted at essentially the same solution
composition, it is not possible to extract any
information on water chemistry. However, it may be
possible to separate the surface sites from the binding
energy terms.

We hypothesize that the binding energy
parameter is a constant, and the number of surface
sites will depend on an extensive material property.
In a regression of K; on a material property, the slope
will be proportional to the binding constant times a
conversion factor to convert the material property to
the number of adsorption sites. As of now, we only
have paired characterization and adsorption data for
seven samples, so an exhaustive study of material
property correlations was not warranted. The Ky
parameters for these seven samples are correlated
with surface area data (Figure 3). For surface area,
the regression analysis gives a significant reduction
in the residual sum of squares with an r* value of
0.79. The slope of the relation is 2.06E-5 £ 0.28E-5
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Fig. 3. Plot of Freundlich K as a function of
BET surface area.
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(95% confidence interval). The y-axis intercept is
not significantly different than zero.  This is
consistent with the conceptual model, because when
the material property goes to zero, there should be no
adsorption sites available.

V. ADSORPTION ISOTHERMS

The commonality in the n parameter from the
Freundlich isotherms, and the correlation between the
K¢ parameter and surface area suggests that a more
process based model of adsorption can be derived
from these data. Partitioning of dissolved
constituents between an aqueous phase and solid
minerals in soils and sediments is affected by three
factors: a thermodynamic binding constant, the
number of adsorption sites available, and the solution
chemistry of the aqueous phase. Partitioning has
commonly been described by an empirical partition
coefficient that simply relates the total concentration
of a dissolved species to the total concentration of the
adsorbed species:

C

Ky =—2d ()
Csol

where:

Ky = empirical partition coefficient at

equilibrium (mL/g, L/g, ...)

A site specific Ky partition coefficient can be
measured under conditions appropriate to a specific
location, and applied under those conditions to that
location. The empirical K4 cannot be applied if
conditions change nor can it be applied at a different
location.'" A mechanistic approach is needed that
incorporates a theoretical understanding of the factors
that affect partitioning. Such an approach for the
SDA was proposed by Curtis and Hull."

A class of adsorption models referred to as
surface complexation models have evolved to
describe adsorption of solutes to the surfaces of
minerals. Taking a simple, non-electrostatic
approach to adsorption," adsorption can be described
by a chemical mass action expression. The proton
stoichiometry of the reaction can vary, but here is
selected to be two following the lead of Kohler et al'*
and Gabriel et al'.

=SOH? +M* +H,0 <> =SOMOH" +2H"  (3)
where:

=SOH" = surface adsorption site (moles/L)

M™ = concentration of free metal ion in
solution (moles/L)

An equilibrium constant expression can be written for
the mass action expression given by Eq. 3:

[E _SOMOH_OJ [H+ ]2

=Kag 4)
Fson]pa?]
where:
Kads = effective thermodynamic equilibrium

constant

The total number of adsorption sites on the solid
associated with a liter of water (S, moles/L) is the
sum of the uncomplexed surface sites and the sum of
the surface sites that have formed surface complexes:

s, =[eson® |+ [ somon® | (5)

Eq. 5 can be used to replace [ =SOH’ ] in Eq. 4,
which, after rearranging, gives an equation in the
form of a Langmuir isotherm:

Kads SV[M+2]
[E soMoH" ]= [H+]z (6)

1+[I;jd]sz[M+2]

The concentration of metal in Eq. 6 is the free metal
ion concentration in solution, and not the total metal
concentration. Some of the metal may be bound up
in aqueous complexes.  The total metal ion
concentration is given by the sum of the
concentrations of the free metal ion and the metal ion
complexes.

M, = [M+2J+ D MLt )

Replacing the ligand concentration with the
equilibrium constant expression, rearranging to solve
for the free metal ion concentration, and substituting
back into Eq. 6 gives:

(i hor)

K ads

TlRezader)

®)
Eq. 8 gives the concentration of an adsorbed metal in
terms of a thermodynamic adsorption coefficient,
solution chemistry (pH, metal ligand complexes in
solution), and total number of surface sites. If we
make the following substitutions in Eq. 8,

[s somMoH" ]:




o= Kads )
Tzl
B=Sv% (10)

we get the following equation:

M
Cogs = [ sOMOR? |2 = M (11)
p I+aM;

where:

p = bulk density (g of sediment / L of
water)

0 = water content (L of water / L of
sediment)

The analytical equation derived from surface
complexation theory (Eq. 8) describes a Langmuir
isotherm. The units are converted from a volume of
fluid basis to a mass of solid basis by multiplying by
the ratio of bulk density to water content. The
adsorption coefficient of the derived Langmuir
isotherm can be related to solution chemistry (pH,
complexing ligands) and the thermodynamic binding
constant between the metal and the surface sites on
the sediment.

At very low metal concentrations, the product of
the metal concentration and the equilibrium constant
is small relative to 1. The denominator reduces to 1
and Eq. 11 can be simplified to:

Cags = a M (12)

The initial slope for the Langmuir adsorption site is
Cags = oM. A soil or sediment is comprised of
many minerals, and consequently multiple adsorption
sites. With multiple Langmuir adsorption sites, there
are multiple isotherms, each with initial slopes o3,
P, ... 0if;. Each subsequent slope is less that the
previous slope. With a large set of Langmuir sites,
the slopes begin to form a continuous set. This
continuous set can empirically be described using a
Freundlich isotherm.

Cage = KrCh = [upMI M, (13)

The exponent n is an empirical fitting parameter that
describes the decrease in binding energy as more
favorable adsorption sites are filled. Incorporating
the definitions of o and B, we can incorporate the
effects of water chemistry and material properties
into the Freundlich isotherm equation. The number
of surface sites will be the product of the surface area
of the sediment, the number of sites per unit area, and

a conversion factor to convert from sites to the unit of
concentration measure (moles, pCi).

N
Kadssa %

ek

MMM, (14)

where:

S. = specific surface area of sediment
(m’/g)

Na = number of sites per unit area
(sites/m?)

A = conversion factor from sites to

concentration units (sites/mole,

sites/pCi, ...)
The Freundlich Ky value can be seen to be composed
of material properties (a term for the binding
strength, the number of adsorption sites, and the
spectrum of binding energies) and water chemistry
(the proton stoichiometry of the reaction and the
formation of aqueous complexes). Eq. 14 accounts
for some of the proton stoichiometry of the reaction,
but does not take into account changes in surface
charge as a function of pH. Over a limited range in
pH values, however, the accounting may suffice.

VI. COMPONENTS OF THE FREUNDLICH
ADSORPTION COEFFICIENT

Having derived Eq. 14 to describe uranium
adsorption onto SDA sedimentary interbed material,
the next step is to identify and quantify the
components of the equation. There are three
components to quantify, the effect of complexing in
solution, the number of available surface sites, and
the thermodynamic binding constant.

VI.A. Formation of Uranium Complexes in Solution

To study the adsorption of uranium on sediments
at the SDA, the formation of aqueous complexes in
vadose zone water at the SDA must be calculated.
During the mid-to-late 1980s, a network of suction
lysimeters was installed in the SDA to monitor soil
water chemistry.'® Water samples collected from
these lysimeters were used to define the expected soil
water chemistry for pore water in the SDA.
Buffering of pore water by calcite results in a limited
range in pore water pH of 7 to 8.2. Important anions
in the water are fluoride (median 0.04 mmole/L),
chloride (median 3.8 mmole/L), sulfate (median 3.5
mmole/L), and bicarbonate (median 7.8 mmole/L).

Thermodynamic speciation calculations were
performed to evaluate uranium complexes as a
function of pH and concentration of the anions in



solution. Uranium carbonate species dominate over
the entire range of pH conditions encountered in
vadose zone pore water at the SDA. Performing
calculations where one anion in sequence is raised to
the maximum concentration while the other three are
held at the median concentration does not change this
conclusion.  Therefore, the aqueous model for
uranium at the SDA need only consider a few
aqueous complexes. The uranium species that are
included in the model are UO,(OH),(aq), UO,CO5’,
UO,(CO5),?, and UO,(CO5);™.  For the pH and total
dissolved carbonate in the laboratory experiments,
the calculated value of the ratio of free uranium to
total uranium is 9.7E-8. A very small fraction of the
total uranium is available as free uranium to take part
in adsorption reactions.

VI.B. Surface Sites

To covert Eq. 14 into a Freundlich isotherm
model, the number of adsorption sites must be
estimated. A number of authors have adopted a value
of 2.31 sites/nm” to use as the number of adsorption
sites for minerals."*'”""® This value is adopted as the
site density for SDA sediments.

VI.C. Estimate of Model Parameters from
Experimental Data

The fit of the Freundlich isotherm to the
laboratory data provides estimates of the product of o
and PB. From the definitions of alpha and beta,
knowledge of the carbonate concentration and pH of
the test solutions, and the measured surface area of
the sample material, the value of K., the
thermodynamic  adsorption  coefficient, = was
calculated (Table II). There are a number of sources

TABLE I

Freundlich K; constants determined by fitting the
laboratory isotherms and the estimated K,y value

from Eq. 14.

K log Kags
Sample ID (L/g) (L/mole)
7DS00101KD 0.00167 -8.211
7DS00301KD 0.00114 -8.287
7DS00501KD 0.00086 -8.290
7DS00701KD 0.00067 -8.017
7DS00901KD 0.00093 -8.299
7DS01701KD 0.00082 -8.206
7DS02301KD 0.00080 -8.187
Average -8.214

of uncertainty that contribute to the uncertainty in
Kags in addition to the uncertainty in estimating the
Freundlich K; value. Test solution composition
provides uncertainty in the pH value (£ 0.2 pH units)
and total dissolved carbonate concentrations (= 0.2
mmole/L). There is also an uncertainty in the slope
of the regression equation for the relation between K;
and the surface area. Based on all these sources of
uncertainty, we estimate that the binding constant for
uranium to SDA sediments is log K,4; =-8.21 £ 1.75.

VI.D. Fit of the Model to the Experimental Data

Eq. 14 was then used to calculate the expected
adsorption for the experiments and compared to the
experimental results.  Because, in this set of
laboratory experiments, the water chemistry was held
constant, all of the variation in the K; parameter, and
consequently the derived K, 45 parameter, is attributed
to variations in sample surface area. The comparison
between the predicted and measured adsorption of
uranium for three selected experiments is shown in
Figure 4. The agreement is generally very good with
the fit of the model to the data reflecting how well the
sample fit the regression equation of K; on surface
area (Figure 3). Sample 7DS00701KD had the
poorest fit to the surface area regression and has the
poorest fit to the model (Figure 4).

Using Eq. 14 and the parameters estimated from
the laboratory experiments, the effect of pH and total
dissolved carbonate concentration on uranium
adsorption can be evaluated. To illustrate the effect
of water chemistry on partitioning, the adsorbed
(C.is) and  total dissolved uranium (Cgy)
concentrations were calculated over a range of pH
and dissolved carbonate concentrations using Eq. 14.
The ratio of adsorbed to dissolved uranium
concentrations is also the definition of K4 (Eq. 2). An
effective Ky value is used to illustrate the effects of
pH and dissolved carbonate because this relates the
calculated results to more traditionally recognized
ways of measuring partitioning. The results of these
calculations are shown in Figure 5. The effective K4
is low at low pH as hydrogen ion competes with
uranium for adsorption sites. Adsorption increases as
pH rises and peaks at a pH between 5 and 6. As pH
increases above this range, carbonate complexing in
solution inhibits adsorption of uranium onto the solid
mineral surfaces. Higher concentrations of dissolved
carbonate decrease adsorption by complexing
uranium in the aqueous phase.

VII. APPLICATION TO THE INEEL
SUBSURFACE DISPOSAL AREA

An effective Ky was calculated using Eq. 14, the
Kags determined from the laboratory isotherms and
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measured in the laboratory.
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and total dissolved carbonate (C,) on partitioning of
uranium between solution and SDA sediments as
measured by calculating an effective partitioning
coefficient.

pH and dissolved carbonate measurements from
water samples collected in the SDA. There is a wide
range in dissolved carbonate in surficial sediments
(depth less than 22 ft) at the SDA, with
concentrations ranging from 1.4 to 29 mmole/L
(diamonds in Figure 6). A few water samples have
been gathered from deeper in the vadose zone at
depths between 44 ft and 110 ft below ground surface
(squares in Figure 6). For these deeper samples, the
total dissolved carbonate concentrations cluster
around 3.4 mmole/L. Most water in the surficial
sediments is high in dissolved carbonate, and yields
small (< 10 ml/g) calculated effective Ky values.
Waters in surficial sediments with low carbonate
concentrations can have effective Ky values as high
as 100 ml/g. The deeper perched water contains an
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Fig. 6. Calculated effective partition coefficient
(Ky) as a function of pH over the range of expected
total dissolved carbonate concentrations (C,, moles/L)
at the Subsurface Disposal Area.



intermediate level of dissolved carbonate and the
calculated effective Ky values for the deeper vadose
zone water generally fall around 20 ml/g.

From Eq. 14, C,s will change as a linear
function of surface area. Water chemistry parameters
such as pH and dissolved carbonate have exponential
components to the functions. Changing the surface
area by a factor of 5, changes the -effective
partitioning by a factor of five (Figure 7). Changing
the dissolved carbonate concentration by a factor of
5, however, changes the effective partitioning by a
factor of 30 (Figure 7). Plotting the calculated
effective partitioning for water samples collected
from the SDA versus dissolved carbonate shows
almost 4 orders of magnitude variation in partitioning
(Figure 8). The scatter at a given dissolved carbonate
value reflects variations in pH. While pH can have a
significant effect on adsorption, in a vadose zone
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Fig. 7. Relative effect of total dissolved
carbonate and sediment surface area on the
partitioning of uranium between solution and mineral
surfaces. Dissolved carbonate is far more important
than surface area in affecting partitioning.
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Fig. 8. Calculated partitioning coefficients for
vadose zone pore waters at the SDA as a function of
total dissolved carbonate concentration.

environment with calcite present, the pH is buffered
over narrow enough a range so that pH becomes a
secondary effect.

VIII. CONCLUSIONS

From empirical observations on the adsorption of
uranium to interbed samples collected at the SDA, a
model was derived to describe the adsorption of
uranium. The model mixes theoretical concepts of
surface complexation theory with the empirical
Freundlich isotherm. The resulting model is
considered empirical because the parameters are
based on site specific measurements. The model is
derived from seven samples, and requires validation
with a broader set of data. Additional samples are at
various stages in the analysis process, and the final
data set will consist of 36 samples.

The theoretical model identifies that the
Freundlich isotherm Ky parameter includes a number
of effects including an intrinsic binding constant,
number of surface sites, and solution chemistry.
Using surface complexation theory, these effects
were parameterized. Parameters were determined
from literature values and measurement of material
properties. The remaining unknown parameter was
the intrinsic binding constant. Assuming this value to
be a constant for all SDA sediments, the K,y value
was estimated from the laboratory isotherm
experiments by allowing only the surface area of the
material to vary. With this assumption, the model
was able to fit the lab experiments fairly well.

The adsorption model was then applied to
conditions expected to be found at the SDA. The
effect of pH, water chemistry, and sediment surface
area were all considered. The most important factor
by far for controlling variation in adsorption for the
sediments under the SDA is the dissolved carbonate
content of the water.
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