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Abstract

Ductile and brittle fracture are critical material failure modes that impact areas ranging
from advanced system development to the aging of stockpile components. Consequently,
computational models of these processes are essential to Sandia’s programmatic interests.
The wide range of length scales involved has dramatically hampered the computer modeling
of fracture. For example, ductile fracture involves the interactions between dislocations
(defects in the atomic crystal lattice) and crack tips, producing long-range elastic forces
at micro- and macroscopic scales. Similarly, brittle fracture entails atomic and molecular
bond breaking caused by the concentration of stress fields at the crack tip, where the origin
of these stresses is at remote boundaries. Thus, it is imperative to couple the atomistic
understanding provided by solid-state physics with the stress analysis provided by continuum
mechanics. We have conducted a coordinated project in which experimental investigation of
prototypical fracture events guides the use of atomistic and continuum modeling techniques.
Our goals are to achieve a common working vocabulary that merges the ideas of atomistic
and continuum analyses, to determine the areas in which continuum models need to be
enriched to reflect atomic-scale processes, and to validate these methods by comparison with
nano-scale experiments.

We began by investigating the relationship between atomic-level processes and the longer-
range behavior of the stress field present during nanoindentation near steps on a metal
surface. Our motivation is to examine defect nucleation requiring a stress concentration. The
stress concentration at the step is by its nature an atomic-level property while the behavior of
the stress field away from the step is better characterized by a continuum approach. How the
plastic yield of the metal is affected by a stress applied by a neighboring indenter will help us
understand the interplay between the atomic- and continuum-level effects. Efforts were then
made to study nanoindentation of a brittle material, usually resulting in the development of
cracks within the material that possess specific, characteristic shapes. Atomistic simulation
of nanoindentation of an ionic crystal, MgO, has been performed, as have experiments on
that same material. We have also analyzed and compared the static and dynamic responses
of atomistic and continuum models of steady-state, 2-dimensional crack propagation. This
model problem allowed us to characterize the inherent traits of the two simulation methods,
and identify specific directions in which continuum simulation needs to be enhanced.

Keywords: Brittle fracture, dislocations, atomistic simulation, nanoindentation, cohesive
modeling.
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Chapter 1

Introduction

Ductile and brittle fracture are critical material failure modes which impact areas ranging
from advanced system development to the aging of stockpile components. Consequently,
computational models of these processes are essential to Sandia’s programmatic interests.
Indeed, the current goal of materials engineering is to develop computational methods ca-
pable of duplicating and predicting various modes of defect nucleation and evolution. The
wide range of length scales involved has been the primary obstacle to predictive modeling
of fracture. For example, ductile fracture in crystalline materials involves the interactions
between dislocations, line imperfections within an otherwise perfect crystal lattice, and crack
tips, producing long-range elastic forces at micro- and macroscopic scales. Similarly, brittle
fracture entails atomic and molecular bond breaking caused by the concentration of stress
fields at a crack tip, where the origin of these stresses is at remote boundaries. Methods
used to analyze such material defects operate at specific length-scale regimes. Macroscopic
dimensions (1 mm to 10 m) are modeled using classical continuum plasticity methods while
the mesoscopic regime (100 µm to 1 cm) is well suited to crystal plasticity constitutive rela-
tions. Microscopic features (0.1 to 10 µm) can be analyzed with dislocation dynamics, and
nanoscopic structures (1 Å to 100 nm) can only be treated fully with atomistic simulation.
Thus, it is imperative to couple the atomistic understanding provided by solid-state physics
to the stress analysis provided by continuum mechanics.

We have completed a coordinated project in which experimental investigation of proto-
typical fracture events was used to guide modeling using atomistic and continuum techniques.
Our goals were to achieve a common working vocabulary that merged the ideas of atomistic
and continuum analyses, to determine the areas in which continuum models need to be en-
riched to reflect atomic-scale processes, and to validate these methods by comparison with
nano-scale experiments.

We have obtained nanoindentation results with the interfacial force microscope (IFM)
exploring the plastic yield threshold for Au(111) single-crystal surfaces as a function of the
distance to neighboring surface steps. These studies involved obtaining constant force images
of the surface in order to establish the location and properties of steps on the Au surface. We
have created loading curves, i.e. measurements of indentation force vs. relative displacement,
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CHAPTER 1. INTRODUCTION

with a parabolic probe and identify the onset of plastic yield by the deviation of the loading
curve from the classic Hertzian behavior. Values for the yield stress and the contact area
at yield are then tabulated, along with the height of the step, as a function of the distance
from the tip center to the step edge. We find that on broad terraces the average yield stress
is 7 GPa approaching the theoretical strength of the Au lattice. However when the probe is
placed at the step edge, the yield stress is reduced by almost a factor of two. The surface
step represents a very controllable defect. Surprisingly, we find that the reduction of the
yield stress by the neighboring step extends over a range of approximately three times the
contact radius at yield.

Quasistatic atomistic simulations of a Au(111) surface with a step provided insight into
dislocation nucleation during nanoindentation. The results are similar to those seen in
nanoindentation experiments, although length-scale differences result in subtle contrasts.
The “long-range” effect observed in experiments is discovered to originate from contact
between the indenter and the step edge. A geometric expression was developed which predicts
results in both atomistic simulation and experiments. We developed a new simulation metric,
the slip vector, to identify the Burgers vector content of the dislocation structures that form.
Combining the precise direction of slip with a locally defined atomic stress tensor permits
calculation of the resolved shear stress needed for dislocation nucleation. We compared stress
fields in the atomistic simulation with those in a finite element calculation using a constitutive
model derived from the same interatomic potential. The fields agree well quantitatively.

We have performed further validation of our atomistic models by comparing additional
nanoindentation simulations with recent experiments showing the formation of sub-Å height
hillocks on Scanning Tunnelling Microscope (STM) indented, Au(001) surfaces. These
hillocks are positioned at significant distances away from the indentation region. It has
been theorized that these hillocks are produced by the dissociation of V-shaped dislocation
loops that form, and then propagate away from the indentation region [2]. Atomistic simula-
tion confirms this sub-surface structure and connects the hillocks to the underlying stacking
faults bounded by the dissociated partial dislocations. The heights of the hillocks observed
in simulation, approximately 0.6 Å, are in agreement with experimental measurements.

We have developed an atomistic simulation code capable of modeling ionic crystals.
This code uses a charge-neutralization, truncated-radius formalism to evaluate the Coulomb
portion of the interatomic potential. Simulations of the nanoindentation of MgO exhibit
Hertzian behavior and a critical load at which material failure occurs. Images of these
simulations do not display dislocation structures, but further analysis is needed to clarify
if any material defects are created. For comparison, nanoindentation experiments using a
diamond-tip indenter were performed; however, irregular behavior in the loading curve, fail-
ure to detect any defect formation, and SEM examination of the indenter suggests the tip
used possessed a complex shape resulting in a larger than expected tip radius.

We have qualitatively and quantitatively analyzed and compared the static and dynamic
responses of atomistic and continuum models of steady-state, 2-dimensional crack propaga-
tion. The parameters for the two material models are selected to produce identical elastic
modulus, fracture energy and cohesive strength, derived from a standard interatomic poten-
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tial. Under quasistatic loading, the two models possess nearly identical traction distributions
on the cleavage plane and fail due to brittle fracture at the same crack driving force. However,
whereas dynamic loading of the continuum model results in brittle cleavage, the response of
the atomistic model is strain-rate dependent and displays multiple mechanisms of dissipation
such as material vibration and, at high strain-rates, dislocation emission. A detailed analy-
sis of the two models exhibiting brittle cleavage shows the continuum crack accelerating to
the continuum limiting speed of the Rayleigh wave speed. In contrast, the atomistic crack
reaches a speed of one fifth this value, and then propagates at constant speed. The rate
of kinetic energy generation increases proportionately to the applied strain in the atomistic
model, while this rate vanishes for the continuum model as the limiting speed is approached.
For the atomistic simulation, Fourier spectral analysis of displacements perpendicular to the
cleavage plane for atoms in front of, and behind, the crack tip shows that the moving crack
concentrates kinetic motion to a specific wavelength approximately five times the lattice
parameter. Reduction of the interaction range of the interatomic potential produces only
slight alterations of both the terminal crack speed and the concentration wavelength. We
conclude that a local continuum description does not or cannot produce dispersive behavior.
The addition of dissipation mechanisms for the energy converted into “heat” does not make
the cohesive simulations behave like the atomistics.

Chapter 2 will present the atomistic and continuum simulation methods used for this
research. Chapter 3 will discuss our atomistic modeling of nanoindentation of Au(111) and
Au(001). Chapter 4 will show our first attempt to examine failure of a brittle material,
specifically sodium silicate glass. In Chapter 5, our computational and experimental re-
search on the nanoindentation of MgO will be discussed. Chapter 6 will present our study
of 2-dimensional steady-state crack growth using atomistic and continuum methodologies.
Finally, in Chapter 7, we summarize our findings and present a list of publications produced
as a result of this research.
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Chapter 2

Simulation Methods

Use of particle simulation methods is widespread in today’s age of computational materials
analysis. There are many research problems in the study of both fluids and solids which
require examination of the behavior of individual particles, in place of the continuum me-
chanical approach of treating a material as a continuous and homogeneous medium. Such
work includes study of the mechanics of fracture at a crack tip [3, 4, 5, 6, 7] as well as
the effect of defects such as dislocations, vacancies, interstitials, voids and inclusions on
mechanical behavior.

A more common approach to materials simulation is the use of continuum mechanics.
Modern continuum simulations consist of material models that are cohesive in nature, i.e.
the constitutive model is based on a traction-separation relation, and described by a finite
work of separation a maximum value of stress for material response. This allows the natural
evolution of material failure rather than by introducing a separate, phenomenological failure
criterion. Two such cohesive approaches are Cauchy-Born elasticity and the use of cohesive
surfaces.

The first section of this chapter will explain the methods of atomistic simulation used
for this project, including molecular dynamics (MD) and energy minimization using the
conjugate gradient (CG) algorithm. This section will also discuss boundary conditions,
particle ensembles and neighbor lists. A listing of interatomic potentials will be presented
showing the different empirical models available and used for this work. The second section
of this chapter will present the cohesive continuum mechanical models used in this project.

2.1 Atomistic Simulation

This section will discuss the computational techniques used for simulations of material de-
formation at the atomic scale. Among the important concepts to understand are the time
step limitations, the type of boundary conditions applied to the system, isothermal versus
adiabatic simulations, and interatomic potential models.

15



CHAPTER 2. SIMULATION METHODS

2.1.1 Molecular dynamics

Molecular dynamics is perhaps the most straightforward type of simulation method used
by researchers to analyze materials problems. It involves deriving the equations of motion
for a system comprised of a large number of particles, which results in a set of coupled
ordinary differential equations, and solving these equations by discretization of time and
approximation of time derivatives. The governing equation of motion is Newton’s 2nd law,

F αi = mαẍ
α
i . (2.1)

In this expression, F αi denotes the force in the i
th direction acting on particle α, mα denotes

that particle’s mass, and xαi denotes the i
th component of the particle’s position. The

notation z̈ is equivalent to the second time derivative, d
2z
dt2
, of the variable z. As a convention,

lower case roman letters (i, j, k) denote a Cartesian coordinate direction (i = 1, 2, 3) and
lower case greek letters (α, β) denote the number designation for a particle belonging to a
system of N particles.

The equations of motion can also be derived using more advanced methods such as
Hamiltonian dynamics. This type of mechanics uses a function of particle positions and
momenta which is known to be constant for a particular system. Such is the case for an
isolated system of particles in which that function, the Hamiltonian H, is known to be the
total (kinetic plus potential) energy of the system...

H =

N∑
α=1

pαkp
α
k

2mα
+ U

(
xN
)
= E. (2.2)

Here, pαk denotes the momentum of particle α in the kth direction,

pαk = mαẋ
α
k , (2.3)

repeated occurrence of a Cartesian index implies summation over that index , U denotes
the potential energy of the system of N particles and E is the total energy of the system,
a constant. The differentiation of the Hamiltonian with respect to time, which equals zero,
can be performed to derive two partial differential equations. The first equation,

∂H
∂pαj

= ẋαj , (2.4)

is just the relation defining momentum as the product of mass and velocity. The second
equation,

∂H
∂xαj

= −ṗαj , (2.5)

reproduces Newton’s 2nd law (2.1) provided the force acting on particle α is conservative,

F αj = − ∂U
∂xαj

, (2.6)
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2.1. ATOMISTIC SIMULATION

which is true for an isolated system of particles.

The equation of motion (2.1) of particle α is coupled to the equations of motion of all the
other particles in the system (β = 1, 2, ..., α−1, α+1, ...,N) through the conservative forces
(2.6) present. Thus, a closed-form solution that defines the particle’s motion for all time
generally cannot be found. Instead, the coupled equations of motion are discretized in time
and positions are found at a specific time step t = n∆t based on positions and velocities at
previous time steps. This is known as the finite-difference method. A commonly used finite-
difference algorithm is the one developed by Gear [8, 9], which uses a Taylor series expansion
with higher-order derivatives to predict future motion, relying on force calculations to correct
these predictions. This algorithm has three steps. The first is to predict the position of an
atom at the next time step by using a fifth-order Taylor series expansion about the atom’s
current values of position, velocity and acceleration:

xαi (t+∆t) = x
α
i (t) + ẋ

i
α (t)∆t+

1

2!
ẍαi (t) (∆t)

2 +
1

3!

d3xαi (t)

dt3
(∆t)3

+
1

4!

d4xαi (t)

dt4
(∆t)4 +

1

5!

d5xαi (t)

dt5
(∆t)5

(2.7)

ẋαi (t+∆t) = ẋ
i
α (t) + ẍ

α
i (t)∆t+

1

2!

d3xαi (t)

dt3
(∆t)2 +

1

3!

d4xαi (t)

dt4
(∆t)3

+
1

4!

d5xαi (t)

dt5
(∆t)4

(2.8)

ẍαi (t+∆t) = ẍ
i
α (t) +

d3xαi (t)

dt3
∆t+

1

2!

d4xαi (t)

dt4
(∆t)2 +

1

3!

d5xαi (t)

dt5
(∆t)3 (2.9)

d3xαi (t+∆t)

dt3
=
d3xαi (t)

dt3
+
d4xαi (t)

dt4
∆t+

1

2!

d5xαi (t)

dt5
(∆t)2 (2.10)

d4xαi (t+∆t)

dt4
=
d4xαi (t)

dt4
+
d5xαi (t)

dt5
∆t (2.11)

d5xαi (t+∆t)

dt5
=
d5xαi (t)

dt5
(2.12)

The second step is to evaluate the forces on each atom, thus obtaining the true value

of {ẍαi (t+∆t)}. This provides the correction Λαi =
[
ẍαi (t+∆t)− ẍ

P,α
i (t+∆t)

]
where

ẍP,αi (t+∆t) is the prediction calculated in (2.9). The final step is to correct each term in
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the Taylor expansion by the factor:

xαi (t+∆t) = x
P,α
i (t+∆t) +

1

2!
α0Λ

α
i (∆t)

2 (2.13)

ẋαi (t+∆t) = ẋ
P,α
i (t+∆t) +

1

2!
α1Λ

α
i ∆t (2.14)

ẍαi (t+∆t) = ẍ
P,α
i (t+∆t) + α2Λ

α
i (2.15)

d3xαi (t+∆t)

dt3
=
d3xP,αi (t+∆t)

dt3
+
3!

2!
α3Λ

α
i (∆t)

−1 (2.16)

d4xαi (t+∆t)

dt4
=
d4xP,αi (t+∆t)

dt4
+
4!

2!
α4Λ

α
i (∆t)

−2 (2.17)

d5xαi (t+∆t)

dt5
=
d5xP,αi (t+∆t)

dt5
+
5!

2!
α5Λ

α
i (∆t)

−3 (2.18)

where α0 =
3
16
, α1 =

251
360
, α2 = 1, α3 =

11
18
, α4 =

1
6
and α5 =

1
60
.

It is necessary to know how large to make the time step ∆t. Naturally, it would be
desirable to have the time step be arbitrarily large, so phenomena that occur over any time
scales could be modeled. However, the particle forces at a given time step are really average
values over this increment, so the time step cannot be too large. This limitation is best seen
by looking at the variation of the total energy of an isolated system. For such a system
this variation should be identically zero, but realistically the variation will be finite with
a monotonic dependence on the time step. The variation can be minimized by the use of
double-precision arithmetic over single-precision when the time step is sufficiently small.

A further complication arises from the dimensional units of the system being simulated.
When the time step is said to be “too large” or “too small”, this has to be interpreted with
respect to a characteristic value of time intrinsic to the material system. Such a dimensional
factor of time is calculated from the quantity

τ = σ

√
m

ε
. (2.19)

In multi-particle systems where the particles are atoms, the values of σ, m and ε represent
bond length, atomic mass, and cohesive energy of a bulk atom, respectively. The time step
can then be expressed in the nondimensional form

∆t∗ =
∆t

τ
. (2.20)

For this research a value of τ = 10−12 sec was chosen. Once this time scale is chosen, an
analysis of the variation of system energy was performed to choose an acceptable value of
∆t∗. Typically, this value was chosen to be between 0.0001 and 0.005, depending upon the
choice of material.
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2.1.2 Energy minimization

Although molecular dynamics gives interesting and useful information about the motion of
atomic systems, it is limited by the time scale requirements of modeling atoms. Some ma-
terials phenomena are observed to occur over time scales which are outside of this range.
Additionally, there are some instances in which it is desirable to know if a particular mate-
rial behavior is energetically favorable to occur at all. For these cases, methods of energy
minimization are used. These types of simulations determine particle configurations with
lower potential energy, searching in an unphysical way which cannot necessarily be tied to a
time scale. One such method is the conjugate gradient method [10, 11, 12], which determines
specific trajectories for the system’s particles which are conjugate to all previous trajectories,
i.e. the set of displacements for all particles at a given step is conjugate to all previous sets
of displacements. For a system of particles with the set of positions {xα}(n) at timestep
t = n∆t, the CG algorithm determines the new positions, {xα}(n+1) by using the directions
of the forces, {F α}(n) as well as the previous step directions:

{xα}(n+1) = {xα}(n) + α(n) {d
α}(n) , (2.21)

where {dα}(n) is the step direction and

{dα}(n) = {F α}(n) + β(n) {d
α}(n−1) . (2.22)

In the expressions above, α(n) is the magnitude of the step taken in the direction {dα}(n) to
minimize the potential energy function, while β(n) is a quantity derived from the vector dot
products of the current and previous residuals, a name used for the negative of gradient of the
energy function, the forces {F α}. A more comprehensive explanation of the CG algorithm,
and its implementation, can be found in the references listed above.

2.1.3 Ensembles and boundary conditions

Although the equations of motion and the numerical techniques used to solve those equations
are of the utmost importance in examining the behavior of a system of particles, also of
significance are the constraints applied to the system. This involves a discussion of two
additional topics, ensemble type and boundary conditions. This section will address these
issues as they relate to a MD simulation.

The explanation of atomistic simulation necessitates a discussion about statistical me-
chanics. Statistical mechanics is the method by which individual properties of particles from
a system are used to calculate macroscopically observable and measurable quantities. A well
known example is temperature, which is merely a measurement of the average kinetic energy
of all particles that make up a system or body. These systems are referred to as ensembles
and the observable quantities as ensemble averages. An atomistic simulation is usually con-
strained such that certain ensemble averages remain constant. For instance, the equations
discussed in section 2.1.1 are valid for an ensemble in which the number of particles, N , and
total energy, E, are constants. In most MD simulations, a constant volume, V , is specified
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either by employing rigid boundaries which provide external forces on some atoms, or by
enforcing periodic boundary conditions. Techniques for both will be discussed within this
section. Such systems are called NVE ensembles, the three system quantities held constant,
or microcanonical ensembles.

A common alternative is a system in which temperature, T , is held constant instead
of system energy. These are called NVT or canonical ensembles and are used in Monte
Carlo simulations. Other systems commonly analyzed are the isothermal-isobaric or NPT
ensemble, where P denotes pressure or, in general, stress applied to the system, and the grand
canonical or µVT ensemble. µ denotes the system’s chemical potential which is held fixed
as particles leave or enter the system. Proper treatment of the NVT and NPT ensembles
has been covered by authors such as Andersen [13], Hoover [14]. Nosé [15, 16] and Allen and
Tildesley [17]. These treatments involve the addition of several scaling variables as extra
degrees of freedom of the system needed to enforce the constant pressure or temperature
conditions.

Constant volume simulations are the most common since they do not require extra scaling
variables in the MD algorithm. Also, physical experiments performed with “fixed-grip”
methods of loading lead to more stable dynamical behavior in materials than do “fixed-load”
conditions. Thus, fixed volume simulations accurately model many experimental systems. In
general, constant volume implies a constant shape. For simulations in which shape changes
occur (e.g. martensitic phase transformation), extra scaling variables should be used. In
order to maintain constant volume conditions, special care must be taken in modeling the
boundaries of the simulation region. Two options available are rigid boundary conditions
and periodic boundary conditions.

Rigid boundaries stem from walls beyond which atoms cannot travel. They are usually
implemented by restricting a layer or two of atoms bordering the walls to have limited degrees
of freedom. A picture of such a system appears in Figure 2.1, where color denotes the type
of restriction being applied to a particular atom. This system is a two dimensional model
of a constrained thin film with a free surface and a surface trough which is three atomic
spaces in width and a single layer in depth. For such a system, colors represent a numerical
value of a separate variable which would be evaluated in routines to calculate new positions.
Rigid boundary conditions are sometimes used to model an atomistic region embedded in
a continuum where the rigidly constrained atoms constitute only a small percentage of the
total number of atoms in the system. One advantage of using rigid boundary conditions is
the ability to model single defect systems which cannot be done using periodic boundary
conditions. However, energies and forces of atoms that make up the rigid boundary are not
equivalent to bulk atom energies and forces. Thus, calculations of energy and stress for such
a system might be misinterpreted.

More commonly used in simulations are periodic boundary conditions. In such systems,
the lengths of the system in the constrained directions are constant. If an atom is moved
beyond the system’s boundaries, then its position is recalculated with the appropriate length
subtracted, effectively moving the atom to other side of the simulation region. In this way,
it can be considered that the atom has left the simulation region while its periodic image
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x

y

Figure 2.1: A two dimensional triangular lattice atomistic system where differ-
ent colors denote different boundary conditions - Red: motion in x-
direction is constrained, black: motion in y-direction is constrained,
green: motions in x- and y-directions are constrained, blue: atom is
free in both directions

has entered it. This is shown pictorially in Figure 2.2. Atoms near the periodic boundaries
in these systems have the same energies and forces as bulk atoms because they effectively
“feel” the periodic images of other atoms as their nearest neighbors. Thus, periodic boundary
conditions allow a small simulation region with a limited number of particles to successfully
model bulk material, enabling calculation of bulk properties.

It is useful to mention here the concept of “neighbor lists” which is customarily used for
particle simulations which involve short-range interactions among particles. For a system of
N atoms, each atom will generally interact with every other atom, resulting in a total of
approximately N

2

2
interactions. Realistically, however, empirical potentials are defined such

that there is a limited range of interaction. For example, many interatomic potentials use a
radial cutoff parameter, rcut. Any atoms that are separated by a greater distance than rcut
have zero interaction and do not need to be considered in energy and force calculations. If
the simulation region is spatially divided into sub-regions which are just over rcut in width,
then for a given particle only its sub-region and adjacent sub-regions are searched for possible
neighbors. This results in a total of 9NcN interactions for 2-dimensional systems and 27NcN
interactions for 3-dimensional systems, where Nc is the characteristic number of particles in
a sub-region, which remains constant with increasing system size as long as the sub-region
width remains constant. In MD simulation, a list of neighbors is created according to this
search strategy. The list does not have to be updated every time step, but only every 10 to
20 time steps depending on the motion of the atoms in the system.

2.1.4 Interatomic potentials

The motion of each particle is obtained from Newton’s 2nd law (2.1) and the total potential
energy of the system U , (2.6), which is assumed to depend only upon atomic positions {xα}.
It is the task of the analyst to create a functional form of U and adjust parameters used
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Figure 2.2: A two dimensional system with periodic boundary conditions. The
black arrow shows the blue particle moving out of the real simulation
system, denoted by the solid square, while the gray arrow shows its
periodic image moving into the system.

in the function to reproduce either experimentally measured material constants or ab initio
calculations. This section will review the development of two interatomic potentials, the
functional forms of U , namely the Lennard-Jones pair potential and the embedded atom
method, both of which were used in this work.

The Lennard-Jones pair potential

Early efforts at developing interatomic potentials involved simple pair potentials where the
total potential energy is a summation of pairwise interactions,

U = 1

2

N∑
α=1

N∑
β �=α

U
(
rαβ
)
. (2.23)

Here, rαβ =
∣∣�xα − �xβ∣∣. The factor of 1

2
compensates for double-counting the interaction

between every pair of atoms. One of the most successful models is the one by Lennard-
Jones [18, 19],

U (r) = kε
[(σ
r

)n
−
(σ
r

)m]
, (2.24)
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where n and m are integers with n > m, σ represents a characteristic distance at which the
interaction has zero energy, ε represents the cohesive energy of the atomic bond, and

k =
n

n−m

( n
m

)(m/(n−m))
. (2.25)

This model is called a “soft-sphere” potential because it can model both the repulsive force
of atoms too near to each other as well as the attractive force the atoms feel if they are
stretched too far apart. The Lennard-Jones model is most often used with the values n =
12 and m = 6, resulting in k = 4 and

U (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (2.26)

The equilibrium distance for this potential can be determined to be req = 2
1
6 σ ≈ 1.1225 σ.

The Lennard-Jones model has been shown to be very effective in modeling inert-gas solids,
although it is commonly used to model generic behavior in all types of solid materials.

Two common criticisms of the pair potential arise because it is often used inappropriately.
The first criticism is that the potential is only a function of bond distance (rαβ) and not of
bond orientation. Thus, it is inappropriate to use pair potentials to model covalent solids
such as carbon and silicon. Other types of empirical potentials have been developed for
modeling covalent crystals, such as the Stillinger-Weber model [20] in which the total energy
is the sum of pair interactions and triplet interactions. It is these triplet interactions which
associate an energy with the orientation of the atomic bonds. The second criticism is that
pair potentials lead to Cauchy symmetry of the elastic constants, a symmetry not generally
found in solids such as FCC metals. The Cauchy symmetry condition is the property that

CIJKL = CIKJL, (2.27)

where CIJKL are the initial tangent moduli, the elastic stiffness constants for an equilibrium
lattice. Note that this symmetry condition is neither the major (CIJKL = CKLIJ ) nor the
minor (CIJKL = CJIKL = CIJLK = CJILK) symmetries known to be true for cubic crystals.
In cubic crystals, Cauchy symmetry amounts to the condition

C12 = C44, (2.28)

which restricts the anisotropy of the material being modeled. Although such a material has
only two independent elastic constants, the material is not isotropic. Isotropic materials
are those for which elastic properties are independent of direction. Such materials have an
anisotropy ratio,

A =
2C44

C11 − C12

, (2.29)

equal to unity, and have only two independent elastic constants. For a material with Cauchy
symmetry, the anisotropy ratio is fixed once the underlying structure of the material is
specified. For example, in an amorphous material, C12 =

1
3
C11, so A = 1, while for a FCC

lattice in which only nearest neighbors interact C12 =
1
2
C11 and A = 2.
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The Embedded Atom Method

In the 1980’s, Daw, Baskes and Foiles [21, 22, 23, 24] created a new empirical potential
specifically designed to model metals with accurate elastic properties. This potential was
based on a technique named the embedded atom method (EAM). EAM describes the total
potential energy of a system of atoms as

U =
N∑
α=1

Fα(ρα) +
1

2

N∑
α=1

N∑
β �=α

Uαβ(r
αβ). (2.30)

Fα is the energy necessary to “embed” atom α in an electron gas of some density ρα composed
of contributions from all the neighbors β of the atom. The electron density is assumed to
be a linear superposition of spherically-averaged atomic charge densities,

ρα =
N∑
β �=α

fβ
(
rαβ
)
. (2.31)

It is this assumption that is both the strength and the weakness of the embedded atom
method. By assuming the electron density has this form, the number of calculations to be
performed is comparable to, although still greater than, that for a pair potential simulation.
However, this form limits the applicability of EAM. Only simple metals and early or late
transition metals can be modeled correctly with EAM. Covalent solids and metals in which
bond hybridization is an important effect cannot be properly modeled by EAM.

The second term in equation (2.30) is a standard pair potential. For the Daw, Baskes
and Foiles model, this pair potential represents the Coulombic repulsion between atomic
cores (nuclei and inner electron shells). Both the pair potential and the atomic charge
density function are predefined functions; they are in the references mentioned above. The
embedding function is derived by equating a system’s total energy with some equation-of-
state, such as that by Rose et al. [25], and deducing the form of F (ρ) by considering the
case of hydrostatic deformation of a single-crystal material.

By using both embedding energy and pair potential terms, the EAM avoids producing
elastic stiffnesses with Cauchy symmetry. Expressions for stiffness are shown [22] to have
terms proportional to the slope and curvature of the embedding function F (ρ). Without
the embedding function, or if the embedding function is a linear function of electron density,
effectively making another pair potential, then the Cauchy symmetry is recovered. The pair
potential function is also vital; without it the unphysical relations C11 = C12 and C44 = 0
result.

Potentials for ionic crystals

Some of our simulations will be nanoindentation of MgO. MgO is an ionic crystal, for which
the primary mode of bonding is the Coulomb interaction of + and − charged ions. In-
teratomic potential models for ionic crystals use the Coulomb potential as the dominant
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term,

UC =
1

2

N∑
α=1

N∑
β �=α

qαqβe
2

rαβ
, (2.32)

where qα is the net charge of ion α in units of e, the magnitude of charge for an electron.
The Coulomb potential is known to be a “long-range” potential for two reasons. First,
the r−1 singularity dies off very slowly, so the energy for an interaction is still significant
even at large distances. Second, since these energy terms have alternating signs, ions of
like sign provide a positive energy while ions of differing sign provide a negative energy,
their accumulation into a total energy per atom for a crystal lattice is a slowly-converging
summation. In order to use the Coulomb potential over a limited range, mathematical
“tricks” have to be introduced. One such method is the one by Ewald [17] which imposes
structural periodicity on the physical system and breaks the total energy into the sum of
two rapidly converging contributions, one for real space and one for reciprocal-space. This
method requires a large computational effort to evaluate the reciprocal-space summation,
although still less than doing O (N2) calculations. An alternative method has been developed
by Wolf et al. [26, 27], which uses a spherically truncated potential and image charges in
order to convert the Coulomb potential into a short-range potential. These authors show
that by truncating the Coulomb potential at a cut-off radius Rc and by placing image charges
for each ion at Rc, the slowly converging summation rapidly converges and the interaction
energy smoothly approaches zero at Rc. Also, a damping factor is used to compensate for
the r−1 singularity and a self-energy term is added to obtain the full energy of the lattice.
The resulting expression for potential energy is:

UW =
1

2

N∑
α=1

N∑
β �=α

(rαβ≤Rc)

Uαβ
(
rαβ
)
−

N∑
α=1

Eα, (2.33)

where

Uαβ
(
rαβ
)
=
qαqβe

2 erfc
(
αD r

αβ
)

rαβ
− lim
rαβ→Rc

{
qαqβe

2 erfc
(
αD r

αβ
)

rαβ

}
(2.34)

and

Eα =
(
erfc (αD Rc)

2Rc
+
αD√
π

)
q2a. (2.35)

In these expressions, αD is the damping factor, and values of αD and Rc are chosen such
that αDRc = 3.5. The use of lim{} is interpreted as not evaluating rαβ as Rc until any
differentiation occurs. Thus,

U
′

αβ

(
rαβ
)
=

∂

∂rαβ

(
qαqβe

2 erfc
(
αD r

αβ
)

rαβ

)
− lim
rαβ→Rc

{
∂

∂rαβ

(
qαqβe

2 erfc
(
αD r

αβ
)

rαβ

)}

(2.36)
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so,

U
′

αβ

(
rαβ
)
=− qαqβe2


erfc (αD rαβ)

(rαβ)2
+
2αD√
π

erfc
(
−α2D

(
rαβ
)2)

rαβ

−erfc (αD Rc)
R2
c

− 2αD√
π

erfc (−α2D R2
c)

Rc

) (2.37)

Although equation (2.37) is not identical to the derivative of (2.34) once the limit is taken,
the authors of [27] have found that system energy is conserved rather well, nonetheless. The
accuracy of using this method was measured by comparing the average energy per ion pair
as calculated using (2.33) – (2.35) with the value obtained analytically with the expression
derived by Madelung [17] and with a calculation using the Ewald sum [28]. It was determined
that this energy differed from both the Madelung energy and the Ewald calculation by only
a fraction of a percent, approximately 8.7 × 10−5 % and 8.2 × 10−2 %, respectively. The
lattice parameter a0 at zero temperature and pressure is also very close between the Wolf
and Ewald methods, 4.129795 Å and 4.1263 Å, respectively.

It is common that additional pair potential terms are used in addition to the Coulomb
potential to model ionic crystals. The potential model chosen for this research is the one by
Matsui [29, 30]. The full potential is written as:

U = UW +
1

2

N∑
α=1

N∑
β �=α

(rαβ≤Rc)

fo (bα + bβ) exp

(
aα + aβ − rαβ
bα + bβ

)
− cαcβ

(rαβ)
6 , (2.38)

where aMg = 0.894 Å, aO = 1.8215 Å, bMg = 0.04 Å, bO = 0.138 Å, cMg = 29.05 Å
3
√
kJ/mol,

cO = 90.61 Å3
√
kJ/mol and fo = 4.184 kJ/mol. In addition, the values of qMg and qO for

use in UW are 0.945 and -0.945, respectively. The units of the non-Coulombic terms in 2.38
are kJ/mol and need to be converted to eV/atom. These non-Coulombic terms are added
to fit specific properties of the MgO material, such as bulk modulus. They change the total
energy/atom by only a small amount, approximately 6 %.

Although this potential was used for nanoindentation simulations, it should be noted
that it does not adequately model the elastic and mechanical properties of MgO crystals.
While the bulk modulus value, 190.12 GPa, is fairly close to experimental estimates (as
reported in [31]), 175.2 GPa, the values for initial elastic moduli differ. This potential
produces C11 = 397.65 GPa and C12 = 86.35 GPa. Since the Matsui potential is just a
summation of pair potential terms, including the Coulomb potential, it too produces Cauchy
symmetry, hence C44 = C12 = 86.35 GPa. The values referenced in [31] are C11 = 329.8 GPa,
C12 = 97.9 GPa and C44 = 164.7 GPa. These are differences of 21 %, -12 % and -48 %.
Clearly, the state of the art in ionic crystal atomistic simulation needs to be improved by
the inclusion of many-body effects in the interatomic potentials.
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2.1.5 Atomistic metrics

A tensor variable used in the analysis of atomistic simulations is the atomic stress. The
theorems developed by Clausius [32] and Maxwell [33] relate the Cauchy stress tensor σ
applied to the boundary of a volume V containing N atoms to the kinetic motion and
interatomic forces between those atoms,

σ = − 1

V

{
1

2

N∑
α=1

N∑
β �=α

xαβ ⊗ Fαβ +
N∑
α=1

mαẋα ⊗ ẋα

}
. (2.39)

In this expression, xα denotes atom α’s current position, xαβ ≡ xα − xβ, Fαβ is the force
atom β exerts on atom α/α, β = 1, 2, ..., N/, and ⊗ is the dyad product. The overline
denotes the taking of a long time average. This expression is commonly used to define a
local, instantaneous atomic stress,

π� = − 1

Vα

{
1

2

N∑
β �=α

xαβ ⊗ Fαβ +mαẋ
α ⊗ ẋα

}
, (2.40)

where σ is the time and ensemble average of π�. In this expression, Vα is the volume
associated with atom α. This atomic stress is the most meaningful measure of continuum
mechanical stress in atomistic simulations, although it does display some anomalous behavior
at free surfaces [34].

A useful metric for the visualization of atomistic systems is the centrosymmetry param-
eter, Pα, developed by Kelchner et al. [35]. The expression for Pα is

Pα =
1

a20

n/2∑
β �=α

(
xαβ + xαβ

∗)2
, (2.41)

where a0 is the lattice parameter for the simulated crystal, n is the number of nearest
neighbors to atom α and β∗ represents the neighbor of atom α which is radially opposite the
neighbor β. This summation equals zero for a radially symmetric crystal, such as FCC or
BCC, which has undergone a homogeneous deformation. However for atoms which no longer
possess radial symmetry of near neighbors, such as those on surfaces, dislocation cores and
stacking faults, Pα will be a significant value greater than zero. Such a quantity is necessary
in order to create images which distinguish defects from bulk material.

To provide information on the Burgers vectors of dislocations, we developed the slip
vector, defined as

sα = − 1

ns

n∑
β �=α

(
xαβ −Xαβ

)
. (2.42)

In this expression, ns is the number of slipped neighbors, and X
αβ is the vector differences of

atoms α and β reference positions, respectively. The reference configuration is the arrange-
ment of atomic positions associated with zero mechanical stress. Although the term “slip
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vector” has been used as a synonym for the Burgers vector [36], in the present context its
meaning is given by (2.42). This expression will result in the Burgers vector for the slip of
adjacent atomic planes where the atom lies on one of those planes. The slip vector will have
a large magnitude for any inhomogeneous deformation near an atom and provides quan-
titative information about the deformation. The slip vector can be used for any material
microstructure, making it more generally applicable than the centrosymmetry parameter.
Together, the slip vector and the atomic stress expression can provide an estimate of the
resolved shear stress acting in the direction of slip.

2.2 Continuum Simulation

In this section, we introduce selected concepts from the mechanics of a continuum subject to
finite deformations. The opening section introduces measures of deformation. Green elastic
theory then provides the framework in which the stress response and material tangent mod-
uli are derived from changes in the elastic stored energy as a function of the deformation.
All the constitutive models presented in later chapters rely on the Green elastic constitutive
assumption. We then develop a class of constitutive models using the Cauchy-Born rule.
The motivation for this approach is to develop constitutive models for single crystal mate-
rials which display realistic elastic properties at finite strains. The approach is inherently
multiscale, the link between microstructural and continuum length scales being made using
an equivalence of energy. The continuum notion of strain energy density is equated to the
energy stored in the bonds of a representative volume of the material at the microstructural
level. A brief history of the method and its applications will be presented. Several examples
follow to demonstrate the application of the method to different types of semi-empirical po-
tentials originally developed for static and dynamic molecular simulations. An alternative
approach for continuum-scale simulation is that of cohesive surfaces. This method allows a
traction-separation relation reflecting a finite work to decohesion to be used to model the
propagation of cracks. The description of the cohesive surface formulation is also presented
in this section.

2.2.1 Kinematics of deformation

In the hyperelastic theory of continuum mechanics[37, 38], material points in the undeformed
configuration are described by their reference (Lagrangian) coordinates X = (X1, X2, X3),
while points in the deformed body are described by spatial (Eulerian) coordinates x =
(x1, x2, x3). Throughout this discussion, we will make use of the convention that upper case
variables refer to quantities in their material representation, while lowercase variables refer
to the corresponding spatial representations. The motion of a point XI in the Lagrangian
coordinates to a point xi in Eulerian coordinates is described by the motion

x(X, t) = ϕ(X, t) . (2.43)
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Using the motion (2.43), we can describe the deformation of a small fiber dX emanating
from the material point X. The deformed vector dx can be approximated with a Taylor
expansion

dx = ϕ(X + dX, t)− ϕ(X, t)

=

[
ϕ(X, t) +

∂ϕ(X, t)

∂X
dX +

1

2
dX · ∂

2ϕ(X, t)

∂X2
dX+ . . .

]
− ϕ(X, t) . (2.44)

Neglecting higher order terms in (2.44), the vector dX is mapped to its deformed configura-
tion by

dx(X, t) = F(X, t) dX, (2.45)

where we have defined the deformation gradient F as

FiI(X, t) =
∂ϕi(X, t)

∂XI
. (2.46)

The length of the deformed vector dx is

dx =
√
dX · FTF dX, (2.47)

which gives rise to the definition of the right Cauchy-Green stretch tensor

C = FTF. (2.48)

By expressing dX in terms of its length dX and direction Ξ, the deformed length can be
written as

dx = dX
√
Ξ ·CΞ, (2.49)

where the direction Ξ in two dimensions may be represented in polar coordinates as

Ξ(φ) =

{
cos φ
sinφ

}
(−π ≤ φ ≤ π) , (2.50)

and in three dimensions using spherical coordinates as

Ξ(θ, φ) =



sin θ cosφ
sin θ sinφ
cos θ


 (0 ≤ θ ≤ π,−π ≤ φ ≤ π) . (2.51)

From a spatial description, we can map an infinitesimal vector back to its corresponding
undeformed description by inverting (2.45) to give

dX(x, t) = F−1(x, t) dx. (2.52)
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The expression for the original length of dx,

dX =
√
dx · F−TF−1 dx, (2.53)

gives rise to the definition of the left Cauchy-Green stretch tensor

b = FFT. (2.54)

Making use of the polar decomposition of F,

F = RU = VR, (2.55)

where R is a proper orthogonal transformation, and U and V are symmetric and positive
definite, we can derive

U = C1/2, V = b1/2, and U = RTVR. (2.56)

From the relations (2.56), we can see that the stretch tensors C and b have the same
eigenvalues and that their principal directions are related by the rotation R.

2.2.2 Green elastic theory

The basic postulate of Green elastic materials is the existence of a strain energy density
W(F) which defines the stress and modulus at a point X as a function of the local state of
deformation. In order to satisfy the requirement for material frame indifference, we limit our
discussion to strain energy densities which are expressed as a function of the right stretch
C, that is

W(F) = Φ(C) . (2.57)

To illustrate the reason for this choice, we imagine modifying a motion given by ϕ(X, t) with
an additional rigid body motion such that the final motion is given by

ϕ+(X, t) = g(t) + r(t) ϕ(X, t) . (2.58)

where g(t) represents a rigid body translation, and r(t) is a rigid body rotation satisfying
r−1 = rT and det [r(t)] = 1. We may also interpret this situation as corresponding to
observations of the same deformation from two different material reference frames. The
observation of ϕ+ can be thought of as occurring in a reference frame which is translating
and rotating with respect to the frame in which we observe ϕ. In this second reference
frame, the deformation gradient is

F+ = r(t)F, (2.59)

from which we can see that the right stretch is invariant with respect to the rigid body
rotation r since

C+ =
(
F+
)T

F+ = FT rTrF = C. (2.60)
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As we would expect, the deformation is therefore observed to be the same by observers in
either frame.

From the theory of Green elastic materials, the strain energy function Φ(C) defines the
symmetric (2nd) Piola-Kirchhoff stress tensor,

SIJ = 2
∂Φ

∂CIJ
, (2.61)

as the work-conjugate of C. The “slope” of the S-C relationship,

CIJKL = 2
∂SIJ
∂CKL

= 4
∂2Φ

∂CIJ∂CKL
, (2.62)

is the material tangent modulus. Due to the distinction between the reference and current
configurations, stress and tangent modulus are not uniquely defined. The asymmetric (1st)
Piola-Kirchhoff stress tensor is defined by

PiJ =
∂W
∂FiJ

. (2.63)

P is related to S by

PiJ = FiISIJ . (2.64)

The pair {P,F}, like {S,C}, is work-conjugate in the thermodynamic sense. The “slope”
of the P-F diagram,

BiJkL =
∂PiJ
∂FkL

= δikSJL + CIJKLFiIFkK , (2.65)

is the effective tangent modulus. Note that B, unlike C, does not possess minor symmetry
with respect to its indices.

The true (Cauchy) stress tensor σ is uniquely determined from the traction vector

ti = nj σji, (2.66)

that represents the force per unit deformed area exerted on a surface element with outward
normal n. The stress tensors σ, S, and P are related by

Jσij = PiJFjJ = FiISIJFjJ , (2.67)

where

J = detF (2.68)

is the Jacobian determinant of deformation. Admissible states of deformation are those for
which J > 0, meaning we do not admit deformations which “fold” the continuum over, or
through, itself. The corresponding “stiffness”

cijkl =
1

J
FiI FjJ FkK FlL CIJKL (2.69)

is the spatial tangent modulus.
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2.2.3 Cauchy-Born elasticity

Historical overview

The Cauchy-Born rule has a history that dates back to the 1940’s. Since that time, the
method itself has undergone little change, although the purpose of its use has been trans-
formed with shifting interests and the advent of numerical techniques and capabilities. The
method was originally described by Born[39] as a means for estimating the theoretical
strength of crystals and for assessing the stability of cubic crystal configurations subject
to simple deformations. The deformations considered were limited to those that could be
described as single parameter mappings of the atoms from their undeformed positions. Con-
figurations for which the second derivative of the potential energy with respect to the de-
formation parameter were positive were considered stable. Attempts to make connections
between the atomistic and continuum descriptions of materials followed[40, 41, 42]. The
focus was on predicting elastic moduli for crystals in the small strain regime, that is, elastic
“constants” of the crystals in their undeformed state.

By the time of Hill[43], there emerged an interest in predicting the elastic moduli of crys-
tals subject to larger deformations, as well as stability limits as a function of deformation[44].
Milstein and Hill[45, 46, 47] computed theoretical crystal properties of simple cubic, face-
centered cubic, and body-centered cubic crystals under the action of Morse potentials subject
to equitriaxial, single parameter deformation states. They predicted bulk and shear moduli
and mapped the stability of crystals as a function of the loading parameter. Subsequently,
Milstein and coworkers studied more general deformations, deriving expressions for the elas-
tic moduli and assessing stability of face-centered cubic crystals subject to extension along
the [110][48] and [111][49] crystal directions. Using the same techniques, they also stud-
ied phase transformations between face-centered and body-centered cubic crystal structures
under prescribed [100] load paths[50].

More recently[51], the Cauchy-Born rule emerged again, but for the first time, as a
means to derive nonlinear, hyperelastic constitutive models for use in numerical simulations
to predict stress and deformation under physically realistic loading conditions. Previous
application of the theory employed only pairwise potentials with lattices having primitive
unit cells, that is, unit cells containing only one atom, and deformation states were limited
to those that could be characterized as mappings of at most two parameters. Tadmor and
coworkers used the term “quasicontinuum” to describe the constitutive models derived for
aluminum using the embedded atom method[22] (EAM) with interatomic potentials derived
from first-principles calculations[52]. The complete stress response and tangent moduli were
derived for general states of deformation using Green elastic theory with a strain energy
density function constructed using the Cauchy-Born rule.

Cauchy-Born rule for crystalline materials

The Cauchy-Born rule is a multiscale assumption about how the motion of many atoms
can be related to continuum deformation measures. Under the assumption, the atoms in

32



2.2. CONTINUUM SIMULATION

a crystal subject to a homogeneous deformation move according to a single mapping from
the undeformed to the deformed configuration. From the continuum level, this mapping is
taken to be the deformation gradient F(X, t) (2.46). As shown in Figure 2.3, the continuum
region surrounding a point X in the undeformed configuration distorts as described by the

F(X,t)

X

x

Figure 2.3: Deformation of the underlying microstructure as prescribed by the
Cauchy-Born rule.

deformation gradient. The coordinate of the continuum point in the deformed configuration
is denoted by x. At a microstructural length scale below the continuum level, we assume the
deformation of an underlying crystal lattice undergoes the same homogeneous transforma-
tion. The deformation gradient at a point at the continuum length scale is assumed to be
constant over a boundless crystal at the microstructural length scale. The microstructural
description of a crystalline material and the corresponding continuum constitutive properties
are linked using an equivalence in strain energy density. The continuum-level strain energy
density is equated to the energy in a representative volume of the microstructure. Since
the deformation is homogeneous, the behavior of an arbitrarily large crystal can be studied
by considering only the representative volume subject to periodic boundary conditions. For
crystalline materials of a single species with a primitive unit cell, this representative volume is
the atomic volume. The change in energy per unit volume for a given deformation predicted
by this procedure corresponds to the bulk behavior of the crystal at zero Kelvin. There
are no surface or temperature-dependent effects. The atoms in the crystal interact as de-
termined by assumed bonding potential functions. Taken from atomistic calculations, these
semi-empirical relationships may be in the form of pairwise potentials, or multi-body poten-
tials such as the embedded atom method. The number of bonds contributing to the energy
in the representative volume depends on the range of influence of the bonding potentials.

As a first illustration, we consider a crystal whose atoms interact only through pair
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potentials. For this case, the strain energy density is

Φ2(C) =
1

Ω0

nb∑
i=1

U (i)
(
r(i)(C)

)
, (2.70)

where C is the right Cauchy-Green stretch tensor (2.48), nb is the number of bonds, Ω0 is
the representative volume, r(i) is the deformed bond length, and U (i)(r) is a pairwise bond
potential. Typically, all the bonds are assumed to be governed by the same potential function
U(r). Since the deformation is assumed homogeneous over the crystal, the transformation
defined by F can be applied to vectors of finite length. For each bond in the undeformed
unit cell, we define a bond vector

R = RΞ, (2.71)

where R and Ξ are the undeformed bond length and direction, respectively. Using (2.49)
from the kinematics of large deformations, we can express the deformed bond length as

r(C) = R
√
Ξ ·CΞ. (2.72)

Given the strain energy density function (2.70), we can derive a complete description of
the stress response and elastic tangent moduli using Green elastic theory. As a function of
the stretch tensor C, the 2nd Piola-Kirchhoff stress can be derived using (2.61) to yield

S = 2
∂Φ2

∂C
=

2

Ω0

nb∑
i=1

[
U ′(r(i)) ∂r(i)

∂C

]
. (2.73)

From (2.62), the material tangent modulus is given by

C = 2
∂S

∂C
=

4

Ω0

nb∑
i=1

[
U ′′(r(i)) ∂r(i)

∂C
⊗ ∂r(i)

∂C
+ U ′(r(i)) ∂2r(i)

∂C∂C

]
. (2.74)

The derivatives of the deformed bond length (2.72) with respect to C are given by

∂r

∂C
=
R2

2 r
Ξ ⊗ Ξ and

∂2r

∂C∂C
= − R4

2 r3
Ξ ⊗Ξ ⊗ Ξ⊗ Ξ. (2.75)

Substituting (2.75) into (2.73) and (2.74) yields the expressions

S =
1

Ω0

nb∑
i=1

[
U ′(r)

r
R2Ξ⊗ Ξ

](i)
(2.76)

and

C =
1

Ω0

nb∑
i=1

[(
U ′′(r)

r2
− U ′(r)

r3

)
R4Ξ ⊗ Ξ⊗ Ξ⊗ Ξ

](i)
, (2.77)
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which define the material description of the stress response and tangent moduli as a function
of C and the configuration of the undeformed lattice. Using (2.67) and (2.69), we can
transform S (2.76) and C (2.77) to their corresponding spatial representations, giving the
Cauchy stress

σ =
1

Ω

nb∑
i=1

[r U ′(r) ξ ⊗ ξ]
(i)

(2.78)

and the spatial tangent modulus

c =
1

Ω

nb∑
i=1

[(
r2 U ′′(r)− r U ′(r)

)
ξ ⊗ ξ ⊗ ξ ⊗ ξ

](i)
, (2.79)

where Ω = J Ω0 is the deformed volume. The deformed bond vectors are represented as

r = RFΞ

= r ξ where ξ · ξ = 1. (2.80)

The expressions for the material (2.77) and spatial (2.79) tangent moduli possess the
standard symmetries of elasticity, as well as Cauchy symmetry, meaning symmetry with
respect to any pair of indices. Using the material tangent modulus for illustration, we have
the major and minor symmetries

CIJKL = CKLIJ CIJKL = CJIKL CIJKL = CIJLK , (2.81)

as well as the Cauchy relation

CIJKL = CIKJL. (2.82)

Historically, the Cauchy relation has received considerable attention. First noted by Born[39]
for undeformed crystals, Stakgold[41] later showed that the Cauchy relation will be satisfied
for a crystal which is centrosymmetric and whose atoms interact only with a two body po-
tential. As can be seen in expressions (2.77) and (2.79) for the moduli, the symmetry results
from the assumption of pair potential interactions and holds for any state of deformation,
regardless of the form of the pair potential. Weiner[53] made use of the Hellmann-Feynman
theorem in quantum mechanics to show that the Cauchy relation is satisfied if, in a cen-
trosymmetric crystal, the electron density distribution undergoes the same affine deforma-
tion as does the lattice of nuclei. In reality, few if any crystals display Cauchy symmetry,
indicating that pair bonding does not accurately describe the atomic interactions in most
crystalline materials.

The question of stability for crystals governed by pair potentials has also been the topic
of extensive discussions from the early work of Born[39] through the summary work by
Milstein[54]. Though stability will not be the subject of a detailed discussion here, we make
some general comments to motivate the lattice structures that are introduced later and the
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types of bonding that are employed. Briefly, Hill[55] interpreted the loss of strong ellipticity
of the strain energy density function as a loss of stability of the solid. At the critical point,
one or more of the eigenvalues of the acoustical tensor q(N) (2.79) vanish, signaling a loss
of uniqueness in the admissible modes of deformation. Using the Cauchy-Born stress and
modulus, we can assess instantaneous stability of a crystal subject to arbitrary deformations
from an analysis of the acoustical tensor.

For simple crystal structures, we can assess stability based on intuitive arguments. A
simple cubic (SC) lattice with only nearest neighbor bonds has no stiffness in shear since
the lattice can collapse by rotating bonds without stretching them. Including bonds to
the second nearest neighbors stabilizes the crystal. Instability of the SC lattice to shear
deformations has been used to explain why no monatomic crystals with this structure exist
in nature[56]. A body-centered cubic (BCC) lattice can also collapse by simply rotating
pair bonds between nearest neighbors. Atomistic simulations of BCC metals typically use
embedded atom method potentials, which will be discussed in more detail below. In the
examples that follow, we consider only microstructures that are stable in the undeformed
configuration.

r( )1 r( )2

r( )3

Ω
FR( )1 R( )2

R( )3

Ω0

Figure 2.4: Deformation of a unit cell under the Cauchy-Born rule.

Figure 2.4 shows the primitive unit cell of a two-dimensional, triangular lattice with
nearest neighbor bonding for which nb = 3. In the undeformed configuration, the bond
vectors are given by

R(1) = a0

{
−1/2
−
√
3/2

}
R(2) = a0

{
1/2

−
√
3/2

}
R(3) = a0

{
1
0

}
, (2.83)

where a0 is the undeformed lattice parameter. Including any more of the six nearest neighbors
in the strain energy density (2.70) is redundant since the stretch in any additional bond is
already represented by one of the three bonds in (2.83). Figure 2.5 illustrates the change
in the neighbor bonding configuration for a range of influence in the interaction potential
between a0 to 2a0. From the assumption of homogeneity in the deformation, every bond in
the crystal described by a unique pair (R(i),Ξ(i)) is represented by a single interaction in the
strain energy density. Since this crystal is centrosymmetric, the bonds appear in pairs as
reflections through an atom at the local coordinate origin. Although the range of influence
of the bonding potential affects the number of interactions in the energy expression, the
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Ω0 a0

2a0

3 0a

Figure 2.5: The effect of extended bonding potentials.

representative volume Ω0 =
√
3 a20/2 stays fixed, as determined by the crystal structure.

This triangular arrangement of atoms also appears in three-dimensional crystals on the [111]
plane of the face-centered cubic lattice and on the basal plane of the hexagonal close-packed
lattice. These lattice structures, as well as the body-centered cubic or tetragonal structures,
can all be described with a primitive unit cell for which the representative volume Ω0 is the
atomic volume. In the analysis of infinitesimal deformations, the plane of close-packed atoms
is assumed to be isotropic. From the expressions for the moduli, we see that for arbitrary
deformations at finite strain, the crystal will develop generally anisotropic response with six-
fold symmetry. In more precise terms, this close-packed lattice arrangement only displays
instantaneously isotropic response for deformations that do not disturb the symmetry of
the undeformed lattice. For illustration, we present the Cauchy stress and spatial tangent
modulus for the two-dimensional, triangular lattice subject to equibiaxial stretching. For
this case, the deformation gradient is given by F = λ1, where λ is the stretch. This state of
deformation was used by Milstein and Hill[45, 46, 47] in their extensive studies of theoretical
crystal properties. Under equibiaxial stretching, the analysis becomes simplified because the
sums of the bond orientation terms can be evaluated explicitly for any level of deformation.
From (2.78) and (2.79), the Cauchy stress and spatial tangent modulus are given by

σ = σ1, (2.84)

where the magnitude of the equibiaxial stress is

σ =
3

2

a0
λΩ0

U ′(λa0) , (2.85)
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and

c = µ [1 ⊗ 1+ 2 I] , (2.86)

where the instantaneous shear modulus is

µ =
3

8Ω0

[
a20 U

′′(λa0)−
a0
λ
U ′(λa0)

]
. (2.87)

With instantaneous isotropic response under the restriction of Cauchy symmetry, the com-
plete description of the modulus involves only the single parameter µ from (2.87).

The earliest potentials used in lattice modeling were constructed to display the essential
features of cohesive interactions between atoms with parameters fitted to available exper-
imental data, such as lattice parameters and elastic properties in the undeformed state.
Born[39] employed an “inverse power” potential of the form

U(r) = D
nm

n −m

[
1

n

(r0
r

)n
− 1

m

(r0
r

)m]
, (2.88)

where n > m, D, and r0 were chosen to match experimental data. In particular, the well-
known Lennard-Jones potential results from (2.88) with m = 6 and n = 12. Because of
its simplicity, the Lennard-Jones potential is still widely used in simulations, though the
continuum properties it produces are best-suited to frozen rare gases. In the extensive
studies of Milstein and coworkers cited earlier, the so-called Morse function

U(r) =
D

m− 1
[
e−mα(r−r0) −me−α(r−r0)

]
(2.89)

was chosen to model the interatomic bonding. These functional forms were motivated by
simple physical considerations. Quoting directly from conditions outlined in an early work
by Girifalco[57]:

(1) The force −∂U/∂r must be attractive at large r and repulsive at small r; therefore,
U(r) must have a minimum at some point r = r0;

(2) The magnitude of U must decrease more rapidly with r than r−3;

(3) All elastic constants are positive.

The first condition arises from the existence of condensed phases while the second ensures
that the work to complete dissociation of an interaction is finite. From this general descrip-
tion, we can construct any number of acceptable potentials with characteristics described by
Figure 2.6. For both (2.88) and (2.89), the “force” between atoms vanishes when r = r0, and
the work to complete separation, or the depth of the potential well, is given by −U(r0) = U0.
The continuum notions of cohesive stress and fracture energy cannot be determined from the
bond potential function alone. As we will show later, both of these quantities depend not
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U

r
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r r

U(r) U’(r)
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Figure 2.6: The bond energy and force-separation characteristics of a cohesive
interaction potential.

only on the assumed bonding arrangement, but also on the assumed state of deformation.
The third condition of Girifalco indicates that the earlier investigators did not consider the
Cauchy-Born rule as a method for studying fracture though the form of the potentials clearly
results in unstable lattice configurations at sufficiently large deformations.

The embedded atom method[22] (EAM) was developed in an attempt to incorporate
more physical understanding into the bond potential functions. Originally motivated by
the view of metals as nuclei in a sea of electrons, the total energy of any atom in the
crystal is comprised of a contribution due to the nuclear repulsion and an embedding energy
representing the attraction of the nucleus to the background electron density. In fitting a set
of EAM potentials to a particular material, one must define three functions: a pair potential
describing nuclear interactions, the electron density distribution around each nucleus, and a
function describing the interaction between a nucleus and the background electron density.
Although quite different from simple pair interactions, EAM potentials may be incorporated
into the procedures for deriving constitutive properties without any modifications to the
assumptions of the Cauchy-Born rule.

Using EAM potentials, the strain energy density has two contributions,

ΦEAM = Φ2 + Φe, (2.90)

where Φ2 is the contribution from the nuclear interactions given by the pair potential expres-
sion (2.70) and Φe is the embedding energy. This additive split in the total energy results in
additive contributions to the stress response and tangent moduli. Therefore, all expressions
derived from (2.70) still apply, and we only need to discuss the additional contribution due
to the embedding energy. The contribution to the total energy (2.90) due to the embedding
energy may be written as

Φe =
1

Ω0
F (ρ) (2.91)

where ρ is the background electron density, that is, the electron density at the nucleus of a
particular atom resulting from all neighbors of the atom, but not the atom itself. As a first
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approximation, the electron density is assumed to be centrosymmetric

ρ =

nb∑
i=1

f
(
r(i)
)
. (2.92)

From even cursory knowledge of electrodynamics, we understand that representing the elec-
tron density as a spherically averaged distribution is a gross oversimplification; however,
determining the distribution more accurately using quantum mechanical calculations is far
too costly to be considered for large scale simulations. In more recent work by Baskes and
coworkers[58, 59], some angular dependence is introduced into the electron density distribu-
tions in an attempt to generate better agreement with experimental values for the elastic
moduli of certain metals.

Considering only centrosymmetric electron density distributions (2.92), the additional
contribution to the 2nd Piola-Kirchhoff stress due the embedding energy is given by

Se =
1

Ω0
F ′(ρ) Ŝe, (2.93)

where

Ŝe =

nb∑
i=1

[
f ′(r)

r
R2Ξ ⊗ Ξ

](i)
. (2.94)

The additional contribution to the material tangent modulus is

Ce =
1

Ω0

[
F ′(ρ) Ĉe + F

′′(ρ) Ŝe ⊗ Ŝe

]
, (2.95)

where

Ĉe =
nb∑
i=1

[(
f ′′(r)

r2
− f ′(r)

r3

)
R4Ξ ⊗Ξ ⊗ Ξ⊗ Ξ

](i)
. (2.96)

It should be noted that this additional contribution to the tangent modulus does not possess
Cauchy symmetry, as is evident from the term involving Ŝe⊗ Ŝe in (2.95). The contribution
to the energy from the embedding term represents a multibody interaction, rather than a
simple pair interaction. However, Cauchy symmetry would be preserved if the embedding
energy function F were selected to be at most linear in the background electron density.

Combining the classical Cauchy-Born rule with atomistic potentials results in the mod-
ern application of the Cauchy-Born rule as a means for linking microstructure to nonlinear
continuum constitutive models. The procedure outlined above may be applied to any of the
available EAM potentials. Many methods exist for deriving EAM potentials. Some poten-
tials are developed by assuming functional forms in which adjustable parameters are selected
to match experimental measurements[22, 60]. Other potentials are developed by calculating

40



2.2. CONTINUUM SIMULATION

fitted functions based on ab initio simulations[52]. Though the first principle calculations
are “exact”, the accuracy of the resulting Cauchy-Born constitutive models is still limited
by the centrosymmetric assumption used to represent the nuclear interactions and the elec-
tron density distribution. The range of deformation for which the Cauchy-Born models are
applicable is limited in metals by the onset of plastic flow, even for single crystal specimens.
In the presence of dislocations, the deformation of the crystal is no longer homogeneous and
therefore cannot be represented by a single mapping given by the deformation gradient F.
Tadmor and coworkers[51] developed the “nonlocal quasicontinuum” formulation to bridge
the transition between homogeneous crystal deformation and the formation of individual
dislocations. The accuracy of Cauchy-Born constitutive models in response to homogeneous
deformations is determined by the accuracy of the interatomic potentials being employed.
The kinematics of the crystal deformation are represented exactly though they are devoid
of surface or size effects since the assumption of homogeneous deformation implies that the
point of observation experiences ideal bulk surroundings.

2.2.4 Cohesive surface formulation

The description of the cohesive surface formulation is presented in two parts. First, we
present the expressions for the element force vector and its consistent tangent stiffness. This
element formulation allows all constitutive behavior to be evaluated in a local coordinate
frame defined with respect to the deforming surface facets. The following section describes
the rate-independent cohesive models used for this body of work.

Element formulation

At every point along a cohesive surface, we define a local coordinate frame which resolves
the opening displacements across the surface into normal and shear components. As shown
in Figure 2.7, this coordinate frame is not uniquely defined for finite deformations. We

e1

e2
e1
~

e2
~

Figure 2.7: Local coordinate frame ẽi constructed along the surface where ei is
the global cartesian frame.

41



CHAPTER 2. SIMULATION METHODS

choose to define this coordinate system with respect to the mid-plane between the displaced
surfaces. Alternately, this frame may be fixed to the upper or lower facet. The discussion
that follows is independent of the particular choice of local coordinate system though we
present specific expressions for the mid-plane. Let the transformation of the gap vector from
its representation in the global coordinate frame ∆ to its local representation ∆̃ in a frame
defined with respect to the cohesive surface be given by

∆̃ = QT∆. (2.97)

The transformation resolves the opening displacement into normal and shear components
relative to the current orientation of the surface. This distinction allows for the definition of
mixed-mode, surface constitutive relations that show a dependence on the character of the
opening displacement. In a variational setting, the contribution to the virtual work from
cohesive surface elements is

δwCSE =

∫
Γ0

T · δ∆dΓ, (2.98)

where the integration domain Γ0 is defined in the undeformed configuration and δ∆ is the
variation in the surface opening displacement. We review the formulation of several surface
constitutive models in Section 2.2.4. The discussion that follows applies to all displacement-
driven cohesive relations T̃(∆̃) defined in the local surface frame. From (2.97), the traction
in the global coordinate frame is given by the transformation

T = QT̃. (2.99)

With these preliminaries, we derive the expressions for the element level nodal force and
stiffness contributions arising from discretization of the cohesive surfaces. Assuming the
displacement field is expressed in terms of an expansion of nodal values and shape functions,
the opening displacement vector may be written as

∆(ξ) = u+(ξ)− u−(ξ)

=
∑
A∈N+

ΦA(ξ)uA −
∑
A∈N−

ΦA(ξ)uA,
(2.100)

where u+ and u− denote the displacement fields of the upper and lower surfaces, respectively,
defined by sets of nodes N+ and N−, ΦA is the shape function associated with local node A
on upper or lower surface, uA is the nodal displacement, and ξ are coordinates parametrizing
the surface. This expression for the opening displacement and the expressions for the nodal
force and stiffness that follow are valid within a framework using standard finite element
shape functions as well as a framework using meshfree shape functions. In terms of the
variation in the nodal displacements uA, we can rewrite the work increment (2.98) as

δwCSE
A = fCSEA · δuA, (2.101)
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where the components of the nodal force

fCSErA =

∫
Γ0

∂∆i
∂urA

Qij T̃j dΓ (2.102)

only receive contributions from cohesive surfaces that fall within the support of node A and

∂∆i
∂ujA

=

{
∂ΦA

∂ξ
δij for A ∈ N+,

−∂ΦA

∂ξ
δij for A ∈ N− (2.103)

follows from the definition of the opening displacement (2.100).
The transformation to a representation of the displacement jump and tractions in a

coordinate frame fixed to the current configuration of the surfaces is often neglected in an
analog to small strain bulk deformation. Though omitting this changing transformation
reduces computational effort, the resulting nodal forces will be incorrect in situations for
which the surfaces undergo appreciable reorientation due to local crack tip deformations
or rigid rotations of the entire body. Tracking the current orientation of the surfaces adds
relatively little complication of the element force vector, but produces a considerable increase
in the complexity of the tangent stiffness. Not only does the transformation introduce
additional contributions to the stiffness, but the resulting matrix is not symmetric.

The tangent stiffness matrix is derived from the linearization of (2.102) as

δfCSEA = KCSE
AB δuB (2.104)

where [
KCSE
AB

]
rs
=
∂fCSErA

∂usB

=

∫
Γ0

∂∆i
∂urA

(
∂Qij
∂usB

T̃j +Qij
∂T̃j

∂∆̃k

∂∆̃k
∂usB

)
dΓ.

(2.105)

From (2.97), we may write

∂∆̃i
∂usA

=
∂Qji
∂usA

∆j +Qji
∂∆j
∂usA

. (2.106)

Substituting (2.106) into (2.105), the tangent may be expressed as

[
KCSE
AB

]
rs
=

∫
Γ0

(
∂∆p
∂urA

Qpi
∂T̃i

∂∆̃j
Qqj

∂∆q
∂usB

+
∂∆p
∂urA

Qpi
∂T̃i

∂∆̃j

∂Qqj
∂usB

∆q

+
∂∆i
∂urA

∂Qij
∂usB

T̃j

)
dΓ.

(2.107)
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In order to complete the formulation of KCSE
A , we need to derive an expression for the

third-rank tensor ∂Q
∂uA

. In two dimensions, the transformation tensor Q may be expanded as

Q2D
ij = t̂i δ1j + n̂i δ2j, (2.108)

where the unit tangent direction in the deformed configuration

t̂ =
t

|t| (2.109)

is defined from the jacobian of the surface parametrization

t(ξ) =
∂x(ξ)

∂ξ
. (2.110)

The mid-plane surface is

x(ξ) =
1

2

( ∑
A∈N+

ΦA(ξ) xA +
∑
A∈N−

ΦA(ξ) xA

)
, (2.111)

where the nodes on upper and lower facets of the element are denoted by N+ and N− as
in (2.100) and the current coordinates are defined with respect to the undeformed coordinates
XA as

xA = XA + uA. (2.112)

From (2.111), the tangent (2.110) may be expanded as

t(ξ) =
1

2

( ∑
A∈N+

∂ΦA
∂ξ

xA +
∑
A∈N−

∂ΦA
∂ξ

xA

)
. (2.113)

The normal direction may be written as

n̂ =

[
0 −1
1 0

]
t̂ = Q(π

2
) t̂. (2.114)

From (2.108) and (2.114), we can therefore express ∂Q
∂uA

needed in (2.107) for the two-
dimensional case as

∂Q2D
ij

∂ukA
=

∂t̂i
∂ukA

δ1j +Q
(π
2
)

ir

∂t̂r
∂ukA

δ2j, (2.115)

where

∂t̂i
∂ukA

=

[
∂

∂uA

t

|t|

]
ik

=
1

|t|

(
∂ti
∂ukA

− t̂i
∂tr
∂ukA

t̂r

)
. (2.116)

44



2.2. CONTINUUM SIMULATION

The derivative of the tangent t follows from (2.113) as

∂t

∂uA
=
1

2

∂ΦA
∂ξ

1. (2.117)

In three dimensions, the transformation tensor Q may be expanded as

Q3D
ij = t̂

(1)
i δ1j + t̂

(2)
i δ2j + n̂i δ3j, (2.118)

where the local normal direction n̂ and the two tangent directions t̂(1) and t̂(2) are defined
using the parameterization of the surface with respect to ξ = [ξ η]T. At any point on the
surface, two tangential, but not necessarily orthogonal, directions are defined by the columns
of the surface jacobian

m(1)(ξ) =
∂x(ξ)

∂ξ
and m(2)(ξ) =

∂x(ξ)

∂η
. (2.119)

Using the mid-plane construction, we can expand these tangent directions as

m(1)(ξ) =
1

2

( ∑
A∈N+

∂ΦA(ξ, η)

∂ξ
xA +

∑
A∈N−

∂ΦA(ξ, η)

∂ξ
xA

)
(2.120)

and

m(2)(ξ) =
1

2

( ∑
A∈N+

∂ΦA(ξ, η)

∂η
xA +

∑
A∈N−

∂ΦA(ξ, η)

∂η
xA

)
(2.121)

Using these results, we can construct the unit normal to the surface as

n̂ =
n

|n| =
m(1) ×m(2)

|m(1) ×m(2)| , (2.122)

and the remaining, mutually orthogonal, directions are chosen as

t̂(1) =
m(1)

|m(1)| (2.123)

t̂(2) = n̂× t̂(1). (2.124)

In order to derive an expression for ∂Q
3D

∂uA
from (2.118), we need the derivatives of each of the

directions (2.122)–(2.124) with respect to uA. The derivatives of the coordinate directions
are given by

∂t̂
(1)
i

∂ukA
=

1

|m(1)|

(
∂m

(1)
i

∂ukA
− t̂(1)i

∂m
(1)
r

∂ukA
t̂(1)r

)
, (2.125)

∂t̂
(2)
i

∂ukA
= εirs

(
∂n̂r
∂ukA

t̂(1)s + n̂r
∂t̂

(1)
s

∂ukA

)
, and (2.126)

∂n̂i
∂ukA

=
1

|n|

(
∂ni
∂ukA

− n̂i
∂nr
∂ukA

n̂r

)
, (2.127)
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where εijk is the permutation symbol defined by

εijk =



1 for even permutations of i, j, and k,

−1 for odd permutations of i, j, and k,

0 otherwise

(2.128)

and the derivatives of the tangent vectors (2.119) are

∂m(1)

∂uA
=
1

2

∂ΦA
∂ξ

1 and
∂m(2)

∂uA
=
1

2

∂ΦA
∂η

1. (2.129)

The expression for ∂n
∂uA

in (2.127) follows from the definition of n in (2.122) as

∂ni
∂ukA

= εirs

(
∂m

(1)
r

∂ukA
m(2)
s +m(1)

r

∂m
(2)
s

∂ukA

)
. (2.130)

With these results, the formulation of the element level nodal force vector and consis-
tent tangent matrix is complete. These expressions are valid for cohesive surfaces within a
standard finite element framework.

Cohesive surface relations

The element formulation presented in Section 2.2.4 makes use of a local coordinate frame
defined with respect the deforming facets of the cohesive surface. This construction allows
all surface constitutive relations to define the evolution of the local traction T̃ with respect
to the local opening displacement ∆̃, while the kinematics of large deformation and surface
rotations are accounted for at the element level. For the case of an elastic, or reversible,
cohesive relation, the traction is derived from a free energy potential ϕ as

T̃ =
∂ϕ

∂∆̃
(2.131)

while the surface stiffness may be expressed as

∂T̃

∂∆̃
=

∂2ϕ

∂∆̃∂∆̃
. (2.132)

Throughout this section we will use ϕ to denote a cohesive potential. Using (2.132), we
see that the first term contributing to the element stiffness (2.107) is symmetric, while the
remaining terms are generally nonsymmetric.
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Chapter 3

Nanoindention of Au

3.1 Background

The indentation of a crystal by a hard, nanometer-sized object is a benchmark problem
for determining critical energies and stresses needed for defect creation and propagation
within materials. Indentation has been rigorously treated in isotropic elasticity [61] and
extensively studied in experiments at the nanoscale [62, 63, 64]. Few of these experiments
have produced information about the initial formation of dislocation loops, which signifies
the onset of plasticity. Kiely et al. [65] have experimentally observed that surface steps
play a role in the development of dislocations as the amount of load necessary to create
dislocations lessens when the indenter is close to these steps. Our objective is to use atomistic
simulation to gain knowledge about how surface geometry affects dislocation formation. We
perform a series of simulations of a Au(111) crystal with indentation at various distances
from a surface step. A new deformation parameter, the slip vector, is used to quantify the
dislocation content of nanoindentation defects. It is used with the atomic stress fields to
determine the critical amount and direction of resolved shear stress (CRSS) necessary for
dislocation nucleation. Our simulations reveal that physical contact between an indenter and
a surface step explains the drop in indentation force when the indenter is close to the step,
altering the details of dislocation nucleation without necessarily changing the magnitude of
the CRSS. This magnitude is observed to vary only in cases of high deformation or where
the crystallography conflicts with the surface step geometry. A contact-based geometrical
expression is used to explain both simulation results and experimental data.

A number of simulations of nanoindentation have been performed in recent years. Robert-
son and Fivel [66] compared dislocations produced from experimental nanoindentation of
Cu(100) with those seen in a dislocation dynamics simulation with boundary conditions dic-
tated by isotropic elasticity and the finite element method. At the atomic scale, Tadmor et
al. [67, 68] used the quasicontinuum method to study two dimensional nanoindentation from
a rigid punch. These simulations led to several insights about the contribution of image forces
and surface energies to dislocation nucleation; however, the types of dislocations formed were
restricted by the geometry of the simulation region. These restrictions no doubt alter any
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estimation of the CRSS. Kelchner, Plimpton and Hamilton [35] used a repulsive potential to
model a spherical indenter penetrating the passivated surface of a Au(111) crystal modeled
with the embedded atom method (EAM) [23]. This work showed that complex dislocation
loops formed within the crystal and grew to intercept the crystal surface. Visualization of
dislocations and stacking faults, a difficult task accomplished by only a few researchers [69],
was achieved by the development of the centrosymmetry parameter.

3.2 Indentation of Au(111)

3.2.1 Simulation set-up

In this work, atomistic simulations of nanoindentation were performed on a 199 Å wide by
400 Å long by 125 Å thick single crystal containing approximately 560,000 atoms. The top
surface was traction free and contained a step one atomic layer in height through the width.
The bottom surface was held fixed while periodic boundary conditions were applied to the
side surfaces. The crystal was composed of gold modeled with EAM potentials [23]. The
FCC crystal was oriented such that the top surface was the (111) plane, and the step was
oriented along the

[
110
]
direction, perpendicular to the

[
112
]
direction. Two different step

orientations were used, (A) 〈110〉 / {100} and (B) 〈110〉 / {111} [70], because of the three-fold
symmetry of the (111) surface. The same repulsive potential used in [35] emulated a spherical
indenter of tip radius R = 40 Å. The indentations were performed quasistatically at zero
temperature using the conjugate gradient method [11] to minimize the system’s potential
energy. The indenter was lowered in increments ranging from 0.1 to 0.5 Å. The indenter
center was positioned at various distances d from the surface step, on both the low and high
sides, respectively defined as d < 0 and d > 0.

3.2.2 Indentation results

In the simulations, data were calculated for several force-depth curves, such as those seen
in Figure 3.1. For distances far from the step where |d| ≥ 20 Å, elastic Hertzian behavior
persists until a yield load Fy is reached at a penetration depth δy and dislocations are
nucleated upon further loading. This nucleation is characterized by a drop of 30 to 40 %
in indentation load. Although their elastic responses are identical, once dislocations are
generated the load behavior differs for A- and B-steps due to the difference in the orientation
of their slip systems. Similar behavior is seen for indentation near a surface step, although a
reduced stiffness is observed and either a small drop of less than 15% in load or an appreciable
change in slope of the force-depth curve characterizes the yield load. Figures shown in this
report will display data both at loads corresponding to the “initial event”, which indicates
the first formation of dislocations, and at load drops. The features shown in Figure 3.1 are
qualitatively similar to those seen in experiment [65], although load drops for indentation
far from a step are more extreme in experiment, producing nearly complete unloading.
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Figure 3.1: Indentation force as a function of depth for both types of steps at
different distances from the step.

When indenting far from a step, Fy approximately equals 105 nN. Fy decreases when the
indenter is centered less than 20 Å from the step, down to values between 10 and 20 nN.
The lowest yield loads are observed when −10 Å ≤ d ≤ 0. To interpret this behavior, the
surfaces of these systems were viewed with atoms colored according to whether or not they
were in contact with the indenter tip. A few of these images are shown in Figure 3.2, and
reveal that a portion of the contact area lies on the step when the indenter is positioned on

dd

ee

a b c d

e f g h

Figure 3.2: Contact area at the yield load for the A-step at distances d = (a)
−20 Å, (b) −10 Å, (c) −5 Å, (d) 30 Å and for the B-step at distances
d = (e) −30 Å, (f) −10 Å, (g) −5 Å, (h) 0. Yellow arrows highlight
the position of the step line.

the low side of the step. For |d| ≤ 20 Å, contact with the step alters the load necessary to
nucleate dislocations. The most extreme situations occur in frames (c) and (g) of Figure 3.2,
in which all of the initial contact occurs on the step edge, although the indenter is centered
off-step. These images were used to estimate the contact area and a contact radius ay at the
onset of dislocation formation. Figure 3.3 shows Fy as a function of distance from the step
normalized by ay. Fy decreases abruptly at normalized distances closer than 1.5, with the
most prominent effects felt at distances closer than or equal to 1.
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Figure 3.3: Indenter load at initial plasticity events and load drops as a function
of distance from the step normalized by contact radius.

Figures 3.2 and 3.3 suggest caution should be used when estimating contact area in
order to calculate mean pressure beneath the indenter, σy = Fy /

(
π a2y

)
. Experimental

measurements [65] showed σy decreasing significantly for values of |d/ay| < 3, indicating a
long-range effect of the step. However, those values were obtained by calculating contact area
with the Hertzian relation ay =

√
Rδy. Use of this relation at the nano-scale is questionable,

as ay is not so well defined near a step. This is clearly observed in Figure 3.4, which compares
A- and B-step data with the Hertzian relation. Although some of the points do coincide with
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Hertz theory
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Figure 3.4: Contact radius as a function of indentation depth at the yield load.
The Hertzian relation is shown as a solid curve for comparison.

the Hertzian curve, most do not. These values of ay calculated in our simulations show that
although the surface step causes a significant variation in the values of σy for normalized
distances less than 1.5, this variation does not necessarily show a downward trend as |d/ay|
approaches zero, as seen in Figure 3.5.

50



3.2. INDENTATION OF AU(111)

5

10

15

20

25 σy  (GPa)

A step: initial event
A step: load drop
B step: initial event
B step: load drop

0 1 2 3 4 5

| d / ay |

Figure 3.5: Mean pressure beneath the indenter at the yield load as a function of
distance from the step normalized by contact radius.

The experiments mentioned above used steps that varied in height from 5 to 30 Å. The
distance from the step at which a spherical indenter first contacts both the planar surface
and the step edge, dc, can be geometrically estimated to equal dc =

√
2Rh − h2, where h

denotes the step height. The purpose of determining dc is to show that if a step effect, such
as a load drop, is noticed at d < dc, the effect is due to direct contact between the indenter
and the step. If such an effect is noticed at d > dc, then contact alone cannot account
for it. For our simulations, if the undeformed value of h = 2.36 Å is used, dc = 13.5 Å.
However, if an “effective” height he ≡ h + δy is used and δy = 4.4 Å, then dc = 22.2 Å.
This agrees with the observations of both step types in Figure 3.2 which show no contact at
d = −30 Å but some contact at d = −20 Å. When d ≈ dc, ay ≈ 15 Å and |dc/ay| = 1.48.
Experimental values of R = 2300 Å, h = 28 Åand δy = 34 Åfor the near-step indentation
shown in Figure 2(b) of [65] yield dc = 358 Å using h and 530 Å using he, both of which
are larger than the measured distance d = 300Å. Thus, the estimate of dc shows that the
indenter actually hits the step, acting as a stress concentrator, rather than the step having
a long-range effect. Using the Hertzian relation produces ay = 280 Å and |dc/ay| = 1.28 if h
is used or |dc/ay| = 1.9 if he is used.

3.2.3 Dislocation structure

Analysis of the dislocation structures produced during indentation leads to a greater under-
standing of their nucleation. Figure 3.6 displays typical dislocation loops produced after the
load drop for indentation far from the steps. The slip vector magnitude in stacking fault
regions, colored green, is 1.662 Å, which is very close to the value for a 〈112〉 partial disloca-
tion in gold (1.666 Å), and the value in regions traversed by a full dislocation, colored red,
lies between 2.7 and 3.0 Å, consistent with the magnitude of a 〈110〉 vector (2.885 Å). Slip
vector components allow identification as to which specific partial dislocation is nucleated
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Figure 3.6: Dislocation loops nucleated for indentation far from the surface steps,
with atoms colored by |sα|.

on a {111} plane. Alteration of indenter position results in some variation in the number
and size of loops produced, as observed in Figure 3.7.
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Figure 3.7: Dislocation loops nucleated for indentation far from the surface steps,
with atoms colored by |sα|.

The planes on which dislocation loops develop change as the indenter approaches the
step. Figure 3.8 shows dislocation structures nucleated when the indenter is at d = −5 Å
and at d = 0. Images for the A-step show a loop formed on the

(
111
)
plane, the inclined

plane intersecting the surface along the step edge direction,
[
110
]
. Although loops grow on

this plane for both distances, the slip direction is
[
211
]
for d = −5 Å and

[
121
]
for d = 0.

For the B-step, the
(
111
)
plane is oriented opposite to the way it is for the A-step. Thus, the

resulting structures possess radically different shapes which are several atomic layers thick
and oriented in the inclined

[
110
]
direction, coinciding with most of the atoms’ slip vectors.

Clearly, the structures that have developed near the surface step are highly influenced by
the crystal orientation. A complete record of which partial and full Burgers vectors are
created for each simulation series can be found in Tables 3.1 and 3.2. For simplicity, the
nomenclature of the Thompson tetrahedron [71] is used to represent the (1̄11̄) [α], (11̄1̄) [β],
(1̄1̄1) [γ] and (111) [δ] planes.
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Table 3.1: Dislocations nucleated for the A-step simulations.

d (Å) bpartial bfull

-30 α [11̄2̄] , β [1̄12̄]
-20 α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1] αβ [1̄1̄0]
-10 α [11̄2̄] , α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1]
-5 γ [2̄11̄]
0 α [11̄2̄] , γ [12̄1̄] αγ [01̄1̄]
5 α [11̄2̄] , γ [12̄1̄] αγ [01̄1̄]
10 β [1̄12̄] , γ [2̄11̄] βγ [1̄01̄]
20 α [11̄2̄] , α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1] αβ [1̄1̄0]
30 α [11̄2̄] , α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1] αβ [1̄1̄0]

Table 3.2: Dislocations nucleated for the B-step simulations.

d (Å) bpartial bfull

-70 α [11̄2̄] , α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1] , δ [1̄1̄2] αβ [1̄1̄0] , βδ [01̄1]
-50 α [11̄2̄] , α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1] , δ [1̄1̄2] αβ [1̄1̄0] , βδ [01̄1]
-30 α [11̄2̄] , α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1] , δ [1̄1̄2] αβ [1̄1̄0] , βδ [01̄1]
-20 α [11̄2̄] , α [2̄1̄1] , β [1̄12̄] , β [1̄2̄1] , δ [1̄1̄2] αβ [1̄1̄0]
-10 α [11̄2̄] , α [2̄1̄1] αβ [1̄1̄0] , αδ [1̄01]
-5 s ∼ [1̄1̄0]
0 s ∼ [1̄1̄0]
5 α [2̄1̄1] , β [1̄2̄1] αβ [1̄1̄0] , γδ [11̄0]
10 α [2̄1̄1] , β [1̄2̄1] , δ [1̄21̄] , δ [21̄1̄] αβ [1̄1̄0]
20 α [2̄1̄1] , β [1̄2̄1] αβ [1̄1̄0]
30 α [2̄1̄1] , β [1̄12̄] , γ [1̄1̄2̄]
50 α [2̄1̄1] , β [1̄2̄1] , γ [2̄11̄]
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Figure 3.8: Dislocation loops nucleated for indentation close to the surface steps,
with atoms colored by |sα|.

3.2.4 Dislocation nucleation

The slip vector is used with the atomic stress tensor to estimate the CRSS required for
dislocation nucleation. Most nanoindentation research has used either the maximum RSS
or the largest RSS for a 〈110〉 or 〈112〉 direction. However, the slip vectors measured in our
simulations show that while slip does occur in 〈112〉 directions, the direction of slip rarely
corresponds to the direction of the largest RSS. For indentation far from a step, the atomic
RSS for slip directions reaches a maximum of 3.26 GPa prior to dislocation nucleation, even
though a higher value of 6.32 GPa occurs for a different 〈112〉 direction. Slip occurs in
the lower RSS direction due to a lower energy barrier for sliding of atomic layers past one
another. The height of this barrier, known as the unstable stacking fault energy γus [72],
has been shown to be asymmetric with regard to the direction of slip [73]. The orientation
of our crystal is such that slip occurs when the RSS is 3.26 GPa in the direction of this
lower energy barrier. Thus, any nucleation criteria within a material model should not only
contain a critical amount of stress, but also the direction and sense of the slip.

The CRSS observed far from a step is nearly constant for distances as close as 5 to 10 Å
from the step. This can be observed in Figure 3.9. Data for the A-step show a decrease in
this value, down to 2.21 GPa, for the simulations where |d| ≤ 5 Å, which may be caused
by the very large deformations which affect γus [74], or by image force effects that are more
prominent when dislocation nucleation occurs at a step edge [73]. Near the step, the B-step
data show a higher CRSS for cases in which the slip direction is not a 〈112〉 direction, as
depicted in Figure 3.8. Nevertheless, our observations show that the value of CRSS remains
roughly constant for similar types of slip directions even though the specific combination of
slip plane and Burgers vectors changes.

The value of CRSS far from the step is very close to the theoretical shear strength of
this EAM potential, µ

2π
= 3.66 GPa. Experimentally determined estimates of the CRSS

range from 1.5 to 2 GPa [62, 63], roughly half the value observed in simulation. This
level of agreement is significant considering that experimental dimensions and loads are 2
to 3 orders of magnitude higher than those used in simulation. Any discrepancy may be
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Figure 3.9: Critical atomic resolved shear stress as a function of distance from
the step. A-step data is shown in red, while B-step data is blue.

due to a size scale effect, which would lead to a more inhomogeneous deformation state
beneath the indenter, and influence the degree that image forces affect nucleation. Our
simulations were performed at zero temperature, whereas the experiments referenced were
done at room temperature. The effect of temperature on the dislocation nucleation process is
not well-understood. In both experimental [75] and theoretical [76, 77] studies, stacking fault
energies show little dependence on temperature below 400 K. However, theoretical models of
dislocation emission from a crack tip show a definitive relationship between activation energy
and temperature [76, 34]. Although further study of finite temperature dislocation formation
is warranted, our results can be considered a successful first attempt at understanding the
mechanics of dislocation emission during nanoindentation, and how surface geometry affects
this process.

Some of our simulations were repeated using EAM potentials[78] that produce a value
for intrinsic stacking fault energy, γsf , closer to the experimental value of 32–33 mJ/m

2

[79, 80, 81]. These simulations show little difference, � 13 %, in the experimentally relevant
quantities of Fy and δy as compared with the original runs, and display the same step
effect. This is because the value for γus is almost identical for the two potentials, 103 and
102 mJ/m2, both of which compare well with the density functional theory prediction of
140 mJ/m2. Only characteristics related to γsf , such as partial dislocation loop size, differ
between simulations. This can be observed in Figures 3.10 and 3.11, which show dislocation
structures for both the original and the modified potential.

3.2.5 Comparison of atomistic and continuum simulations of nanoin-
dentation

Finite element simulations of indentation of a flat surface were performed in order to deter-
mine the accuracy of nonlinear constitutive models. A thorough study of nanoindentation
requires simulating systems with the same dimensions as in experiment. One way to treat
larger systems while still retaining the ability to represent the underlying crystal structure
is to couple atomistic and continuum simulation methods [82, 83], provided the continuum
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(a) (b)

Figure 3.10: Dislocation loops due to indentation far from the A-step using the
(a) original and (b) modified EAM potentials.

(a)

(d)(c)

(b)

Figure 3.11: Dislocation loops due to indentation on the A-step using the (a),(c)
original and (b),(d) modified EAM potentials. (a),(b) show the ini-
tial loops to form while (c),(d) show the loops created upon addi-
tional loading.
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3.2. INDENTATION OF AU(111)

mechanical model can produce deformations consistent with those in the atomistic region.
This is accomplished by using a nonlinear elastic constitutive model incorporating the same
embedded atom potentials used in the atomistic simulation. Determining energies, stresses
and elastic moduli is done by using the Cauchy-Born (C-B) rule [40, 42], which equates
the strain energy density at the continuum scale with the energies of interatomic bonds
present in a unit cell of the deformed underlying microstructure. The continuum scale de-
formation gradient prescribes the deformation of the interatomic bonds and is assumed to
be homogeneous over the representative unit cell.

Figure 3.12 compares the finite element calculations with the atomistic simulations of
nanoindentation far from a surface step. Figure 3.12(a) shows that the load-indentation
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Figure 3.12: (a) Indentation force as a function of depth for Cauchy-Born finite
element and atomistic simulations. (b) Cross-sectional and (c) top,
excluding surface atoms, views of superposed atomistic and finite
element contours of the normal component of the stress tensor in
the indentation direction.

depth curves are very similar to one another, only deviating significantly for loads close
to dislocation nucleation. For example, the continuum analysis predicts a load of 116 nN
at the same depth for which the atomistic calculation yields Fy = 105 nN, a difference of
only 10 %. This deviation may be due to the fundamental assumption of the C-B rule that
the deformation is homogeneous for the crystal lattice that underlies each continuum point.
This condition is violated in the highly deformed region beneath the indenter. The element
dimension in this region is the roughly the same as the lattice constant for gold, 4.08 Å,
and further mesh refinement would be inconsistent with the assumptions used to derive the
constitutive relations.

Contours of the normal stress in the indentation direction are shown in Figures 3.12(b)
and (c). The finite element calculation is observed to reproduce the anisotropic character of
the stress contours as well as the values of stress for very close distances to the contact area.
There is some disagreement in the maximum stress, as the atomic stress is at its largest
values for atoms in the second atomic layer rather than at the free surface itself. A better
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measure of stress at free surfaces in atomistic simulations is needed in order to determine
the accuracy of the finite element calculation.

3.3 Indentation of Au(001)

We can verify that our simulation methods produce reasonable results by comparing dis-
location structures appearing in simulations with equivalent structures observed in experi-
ments. Comparison between the two is only possible by increasing the experimental resolu-
tion around a nanoindentation point down to the atomic scale.

The experiments used to evaluate our simulation methods were performed in ultra high
vacuum conditions on a Au(001) crystal cleaned by repeated sputtering and annealing in
a system described in more detail elsewhere [2]. Nanoindentations were done pushing the
tungsten tip against the sample for distances of a few nanometers from the stable tunnel
distance with the control feedback switched off. The last layer of the Au(001) surface is
reconstructed with the well known “hex” 5×20 reconstruction which appears in STM images
as fringes oriented along a 〈110〉 direction. These fringes arise from aMoiré-like effect between
the topmost layer with an hexagonal arrangement and the lower bulk-like layer with square
symmetry.

A typical image of the surface of the crystal after performing nanoindentations is shown
in Figure 3.13. Indentations themselves are imaged as multi-storied pits, and some material

Figure 3.13: (98×98 nm2) STM image of two nanoindentations in the Au(001)
surface. Rows of hillocks stemming from the nanoindentation points
and following a 〈110〉 direction are visible. Bumps of pile-up material
surround nanoindentation points (the contrast in these bumps is
saturated to enhance the visibility of the hillocks). Capital letters
on one of the hillocks are used to compare their orientations with
the ones in Figure 3.14.

is shown as a pile-up surrounding the pits. Rows of bump-like features with a height of
0.6 ± 0.1 Å, called from now on hillocks, are apparent along the compact 〈110〉 directions
on the (001) surface, at distances of hundreds of nanometers from the indentation points.
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3.3. INDENTATION OF AU(001)

We have also observed similar hillocks in the course of ion irradiation on both Au(001) and
Ag(001) followed by gentle annealing: in these cases the hillock distribution is random, with
no alignments in rows as the ones surrounding nanoindentations.

Close-up STM images of hillocks are shown in Figure 3.14 together with an interpretation
of their sub-surface structure[2], which consists of two stacking faults on intersecting {111}
planes each bounded by two parallel Shockley partial dislocations. The whole configuration
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Figure 3.14: (a) (25×25 nm2) STM image in Au(001) of a hillock, such as seen
near nanoindentation points. (b) Scheme of the dislocation con-
figuration proposed for dissociated loops. Burgers vectors in the
Thompson tetrahedron notation and line directions are shown for
each segment. (c) (11.6×11.6 nm2) A hillock in a Ag(001) surface
previously ion-bombarded and annealed. Note the atomic resolution
and the positions of the emerging partial dislocations.

is held up by a stair-rod dislocation parallel to the surface. We argue that the origin of
the hillocks can be traced to perfect dislocation loops that are punched into the crystal by
the tip displacement into the surface [84]. In our case, a family of such dislocation loops
would consist of V-shaped half-loops intersecting the surface with Burgers vector parallel to
the latter. They would, on energetic grounds, be split into two pairs of Shockley partials
giving rise to the configuration shown in Figure 3.14b, i.e. resulting in hillocks[85]. We
can ascertain that these loops are of interstitial character based on the fact that for Au
(Figure 3.14(a)) we observe a missing reconstruction fringe on top of the hillock. As the
interatomic spacing of the substrate is larger than the one of the uppermost reconstructed
layer, the position of the missing fringe in the Moiré-like pattern[86] corresponds to the
position of the extra row of interstitial atoms below. Furthermore, for the Ag(001) atomic
resolution image of Figure 3.14c, it is clear that each partial dislocation produces a mismatch
of one half interatomic unit between the rows on both sides of each stacking fault, the two
mismatches adding up to one extra row of atoms in the inner side of the hillock.
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To gain insight into the atomic processes involved in the creation of these hillocks, atom-
istic simulations[87] were carried out. A repulsive potential[35] was used to model a spherical
indenter of radius 40 Å penetrating the surface of a Au(001) crystal modeled with the em-
bedded atom method potential [23]. The reconstructed layer is thought to behave like a
floating layer [88]. Thus, it is not expected to affect dislocation generation and behavior
during nanoindentation and was not included in the simulations. A top view of the surface
after quasistatic nanoindentation is shown in Figure 3.15. In agreement with experiment, it

Figure 3.15: Top view of the nanoindentation simulation. The dark region in
the middle of the picture corresponds to the indentation point. Two
hillocks are emitted along 〈110〉 directions. Note the striking sim-
ilarity of these simulated defects with the experimental image of
Figure 3.14c.

is observed that two hillocks have been generated around the nanoindentation trace.
The spatial distribution of the slip vectors moduli |si| around the nanoindentation trace,

with a suitable color scale, is shown in Figure 3.16. The configuration shown in Figure 3.16,
with a height displacement for the topmost atoms of 0.6 Å, strikingly reproduces the previ-
ously proposed subsurface structure of a hillock.

A dynamical picture of the process is obtained by recording successive frames of the
simulated atomic events, as shown in Figure 3.17. To obtain the sequence, the indenter is
first lowered in increments of 0.1 Å down to a depth of 5.8 Å in a quasistatic way at zero
temperature. At this point dislocation loops are observed below the indenter, in agreement
with previous results[35]. Then, a constant energy molecular dynamics simulation follows the
evolution of the system for 36 ps. A different dislocation configuration is created close to the
tip and, then, glides away in a 〈110〉 direction. We stress that, although the experimentally
observed hillocks are usually much larger than the simulated ones and the indentation itself is
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3.010.38 1.70

2.351.04

Figure 3.16: 3D simulation views from different orientations of the dissociated
dislocation loop, corresponding to the sub-surface configuration of
Figure 3.15, colored according to the slip vector. Atoms which sig-
nify a stacking fault plane are colored green. Blue and yellow atoms
define the core of the leading and trailing partial dislocations, re-
spectively. Red designates atoms which have slipped a full 〈110〉
vector.

also much deeper, we do observe hillocks of the same size in both experiment and simulation.

Hillocks are seen to glide as a whole unit. This behavior can be understood on the
grounds that Shockley partial dislocations bounding a stacking fault are expected to glide
easily on the {111} gliding planes. In our simulation they indeed glide away dragging with
them the stair-rod dislocation. The motion of structures formed by stair-rod dislocations
and Shockley partial dislocations in thin films has been recently reported [89]. We argue
that the rows of hillocks appearing in the STM image of Figure 3.13 are the result of suc-
cessive emission of loops that glide away from the nanoindentation trace. Once started into
motion due to the high stress close to the indentation, the hillocks would glide away from
the indentation point until they collide or interact with other defects in the crystal. The
simulation cell is too small to observe in detail this effect, although the hillocks move with
a constant velocity within the unit cell once they are far enough from the indentation point.
Hillock like structures, although interpreted in a different way, have been observed to drift
in highly stressed regions[90]. The creation of hillocks following ion irradiation can also be
explained in terms of the above model: after long ion irradiation and further annealing, the
surface is known to exhibit a multi-storied pit structure [91], whereas the presence of a large
supersaturation of adatoms, isolated atoms lying on the crystal’s surface, and, probably, sub-
surface interstitials, is suspected. These extra-atoms can cluster on crystallographic planes
and, after relaxation, give rise to perfect loops that start the above mechanism.

In the course of the many simulations performed, a variety of hillock structures has
been found. They differ in the exact arrangement of the loop below the surface: more
complex configurations than the simplest one observed in Figure 3.16, an edge V-shaped
loop dissociated along {111} planes, are possible. But the defining characteristics are the
same for all of them: the Burgers vector of the undissociated loop is a lattice vector, all the
sections of the loop appear dissociated along {111} planes, and the loop glides as a whole
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t = 0 psec t = 10 psec t = 15 psec

t = 20 psec t = 30 psec

Figure 3.17: Frames from the molecular dynamics simulation showing the cre-
ation and movement of the extended dislocation.

unit in a 〈110〉 direction. It is also worth remarking that, in the simulations, the hillocks
remain in place once the tip is retracted from the surface, in agreement with the experiment.

Comparing different experimental images, it is observed that the size distribution of both
the span s, the distance between stacking faults at the surface, and width w, the separation
between partial dislocations again at the surface, of the observed hillocks is rather broad,
ranging from a lowest resolvable size of about one reconstruction period (∼ 14 Å) to a size
of several ones. However, the parameter w, the width of the extended dislocation, is experi-
mentally seen to level off with increasing span s of the hillock. The repulsive interaction force
between two Shockley partial dislocation segments, at a given distance, increases initially
with segment length, proportional to the observed span, but attains a constant value when
this length becomes much larger than the distance between the segments. Within a model
using elemental dislocation theory[71] and taking into account image dislocations to include
the effect of the free surface, the exact form of the w(s) curve can be predicted and is found
to be in agreement with the experimental data. It is worth emphasizing that the parameters
of Burgers vectors, geometry, etc., of this new configuration can be explained in terms of
continuum dislocation theory.
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Chapter 4

Nanoindentation of Glass

The IFM has been used in a nanoindentation mode only for ductile metals coated with self-
assembled monolayers. In order to gain some experience with the nanoindentation behavior
of a brittle material, we chose to make initial measurements on a sodium silicate glass.
This material is known for its slow crack-growth behavior in the presence of water, i.e.
stress-corrosion cracking, and was considered a good starting point for experimentation.
The experiments were done in liquid water with a tungsten probe electrochemically etched
to have a parabolic end form, which turned out to have a tip radius of ∼ 4000 Å. Initial
measurements were in the form of force profiles, or loading curves, which involved hovering
on the surface at a light load, pulling back about 250 Å and then approaching the surface
at a constant rate of approximately 50 Å/sec up to a predetermined load, after which, the
tip was withdrawn at the same rate. A typical example is shown in Figure 4.1, taken to a
maximum load of 120 µN, which results in an average applied stress of 6 GPa. Any kind of
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Figure 4.1: A force profile taken to 120 µN at a speed of 50 Å/sec. The red
curve is for approach and the blue for retraction. No hysteresis is
seen between the two curves indicating no permanent deformation
has occurred

load relaxation during this profile, like cracking, would result in a hysteresis loop between
the approach and withdrawal curves. No such hysteresis is seen in Figure 4.1, except for a
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CHAPTER 4. NANOINDENTATION OF GLASS

region of about 25 Å near the initial contact. This behavior is probably due to the viscous
draining of the water from under the tip as it approaches compared to the similar draining
drag in replacing it as it retracts.

Slow crack-growth systems, however, usually require some nucleation time. Thus, we
decided to change strategy and look at extended-time creep experiments. This measurement
involves initially hovering on the surface at a light load and then suddenly increasing the
normal force to a selected value while recording the tip position required to maintain the
load. The technique allows a direct measure of the relaxation process. An example of this
type of measurement for several maximum-load values is shown in Figure 4.2. These curves,
surprisingly, indicate that after the tip displaced into the sample by about 75Å in order to
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Figure 4.2: Creep curves for three values of constant maximum load. The tip’s
vertical position needed to maintain the load is recorded as a function
of time. Positive values indicate that the tip is moving into the sample.

initially establish the 120 µN load, it retracted by about 25 Å over a period of approximately
120 sec. Ordinarily, as the sample relaxes, by crack or dislocation nucleation, the tip moves
further into the sample in order to maintain the constant load. However, in this case, it pulls
back by about one third of the initial deformation. Regardless of this peculiar behavior, the
results clearly indicate that some relaxation phenomena process has taken place. In order
to visualize just what has happened, we take constant repulsive-force images of the surface
after each relaxation event shown in Figure 4.2 and these results are shown in Figure 4.3.

Figure 4.3 represents the constant repulsive images of the surface after each of the creep
measurements shown in Figure 4.2. The lateral range is 5000 × 5000 Å and the vertical
range of the skirt is 100Å. Figure 4.4 shows the result of a line scan across the middle of each
crack. The approximate values of the widths and depths of each crack are indicated on the
figure. The first thing to note is that the cracks all have the same orientation. This probably
reflects some level of residual stress in the surface of the glass, which has a preferential
direction. In addition, we see that there is a considerable swelling of the edges of the crack
amounting to ∼25Å for the maximum load of 120 µN. This agrees reasonably well with the
observation of the relaxation observed in Figure 4.2. It is clear that as the crack forms, there
is considerable swelling of the material around the edges of the crack. This is a very strange
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Figure 4.3: 5000 Å × 5000 Å constant repulsive-force images of the surface after
each of the creep measurements shown in Figure 4.2. The vertical
scale is 100 Å for the skirt. The label for each graph provides the
applied force, the crack length and the contact diameter.
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Figure 4.4: Constant repulsive-force line scans across the center of the cracks
shown in Figure 4.3. The approximate widths and depths are indi-
cated for each crack.

effect that has not been observed before, as far as we know.
It is clear from these results that this choice of material was not a good one for compar-

ison with sophisticated theoretical modeling. First, because the effect observed is largely a
chemical one and second because the crack nucleation and growth involves a second-order
process, the swelling effect. While the results are fascinating, they are not appropriate for
comparison between atomistic and continuum calculations of the cracking phenomenon. A
second material, MgO, was chosen because cracking under nanoindentation had already been
observed by others and adequate potentials for atomic-level modeling were available. The
modeling results are covered in the next section of this report.
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Chapter 5

Nanoindentation of MgO

Chapter 3 showed that the simulation of nanoindentation on a metal surface produced 〈110〉
and 〈112〉 dislocations. These dislocations, as well as associated surface hillocks, are the
only defects to appear in atomistic simulations. Our original thought was that surface steps
would act as stress concentrators and lead to fracture within the material. Since this was
found not to be true, we turned our attention to the nanoindentation of a brittle material.
Examples of materials that exhibit brittle behavior, fracture to form free surfaces, rather
than ductile deformation, plasticity-the production and motion of dislocations, at moderate
temperatures include ceramics, e.g. SiO2, Al2O3, and Si3N4, and ionic crystals, e.g. MgO,
NaCl, and CsCl. It was decided that further experimental and simulation efforts would study
the nanoindentation of MgO in order to examine the mechanisms operating at the initiation
of brittle fracture.

5.1 Background

The initiation of cracks by means of indentation of a glass or ceramic material is a complex
picture. The structure of these cracks have dependencies not only on the indented material,
but also indenter shape, indentation rate, ambient temperature and loading/unloading se-
quence. A review of experimental indentation cracking can be found in [92]. Crack structures
typically observed have been categorized by the following labels: conical, radial, half-penny,
median and lateral. Figure 5.1 shows radial cracks formed by micro-scale indentation of a
float glass [93]. This indentation was performed using a Vickers indenter at room tempera-
ture. Cracks also appeared for cases where the ambient temperature was as high as 600oC.
Additionally, permanent depressions are formed on the glass surface. Similar experiments
[92] have shown that for amorphous glasses, fracture occurs during unloading rather than
loading of the indenter. For crystalline materials, radial cracks are noticed to form during
loading of the indenter. Other experiments indicate that the shape of the indenter also
plays a role in determining crack structure. Sharp indenters form radial cracks, while blunt
indenters initially form conical cracks and, upon excessive loading, radial cracks.

Indentation of MgO crystals has been performed at both the micro- and nano-scales
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Figure 5.1: Indentation of standard float glass (SiO2 72; Na2O 13.4; CaO 9.6;
MgO 4; Al2O3 0.6 wt.%) at room temperature. [Le Bourhis &
Metayer, 2000]

[94, 95, 96, 97, 98, 99, 100]. MgO is a compound formed by ionic bonding, crystals in which
the dominant mode of bonding is the transference of a valence, i.e. outer shell, electron
and electrostatic attraction exists between + and − charged ions. Its structure, depicted
in Figure 5.2, is referred to as the NaCl lattice type and consists of an FCC lattice of Mg

MgO

Figure 5.2: Crystal lattice of MgO, a NaCl-lattice type.

atoms, with interstitial O atoms located on side edges of the unit cell. In this arrangement,
each atom “sees” six nearest neighboring atoms, all of the opposite type. Severe deformation
of MgO crystals causes the creation of both dislocations and cracks. For microindentation,
radial cracks are noticed to form along 〈110〉 directions with the crack face forming on a {110}
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plane [95]. Additionally, slip bands are observed along 〈100〉 directions. Nanoindentation
experiments primarily show the formation of bands of dislocations [94]. The primary slip
systems for NaCl lattices are {110} / 〈110〉 and {110} / 〈100〉, although other slip directions
are sometimes observed, such as 〈120〉 [100]. Other modes of material failure are sometimes
observed, such as the pile-up and expulsion of atomic layers of material around the indenter
[99]. The variety of modes and structures of material defects seen in experiments shows
that nanoindentation of MgO should provide fundamental information on the formation and
propagation of these defects.

5.2 Atomistic Simulation

In order to perform the simulation in a reasonable timespan, the potential was changed
slightly to reduce the number of interactions calculated. The original form, presented in
section 2.1.4, used a value of Rc = 12.63 Å. This resulted in αD = 3.5/Rc = 0.2772 Å−1.
Since a0 = 4.129795 Å, αD = 1.144/a0. Our altered form uses Rc = 8.5 Å, reducing the
number of neighbors per atom from 957 to 290. Since αD = 3.5/Rc, αD = 0.4118 Å

−1. The
new equilibrium lattice parameter is observed to be a0 = 4.133122129 Å, so αD ≈ 1.7/a0.
Wolf et al. [27] note that this type of alteration has virtually no effect on the value of the
fully converged energy per atom. The change in elastic moduli is small, yielding the new
values of C11 = 393.3 GPa, C12 = C44 = 86.3 GPa and bulk modulus = 189 GPa.

This modified potential was used to do a nanoindentation simulation of a hard sphere
of radius 20 Å to indent the (001) surface of a MgO crystal. The size of the crystal was
approximately 103 Å × 103 Å × 81 Å (25 × 25 × 20 unit cells of 8 atoms per cell, a total
of 100,000 atoms), with periodic boundary conditions used in the “in-plane” dimensions, a
fixed surface at the bottom and a free surface at the top of the “out-of-plane” dimension.
The indentation is performed dynamically at an effective rate of 0.1 Å/psec, the indenter
was lowered 0.1 Å every 10,000 timesteps, with a time step of 0.0001 psec. The force vs.
depth curve for the dynamic simulations is shown in Figure 5.3. The value at each depth is
the average force over the 10,000 steps between depth increments. It can be observed that
somewhere between depths of 2.7 Å and 3.0 Å, a failure of the crystal occurs. The atom-
istic variables of centrosymmetry parameter and slip vector were used to analyze the failed
material. Unfortunately, neither dislocations nor crack-like flaws were apparent. Figure 5.4
shows the simulated, nanoindented MgO crystal with atoms colored by centrosymmetry pa-
rameter, for only those atoms with a value greater than 0.01. Other than the surface atoms,
the atoms that appear have only marginally higher values than 0.01, and no specific type
of defects are clearly visible. Examination of the simulation data also included visualizing
the top few layers of the crystal. The front and top views of the crystal are shown in Fig-
ure 5.5, for which atoms are colored according to height. Although the indentation region
is clearly observed, no dislocations can be discerned within the material. Further simulated
nanoindentation until definitive defect structures are produced is warranted as future work,
and improvement in the atomistic variables of centrosymmetry parameter and slip vector
is needed to resolve defects created during dynamic simulations. Time-averaging of these
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Figure 5.3: Indentation force vs. depth curve for the simulated nanoindentation
of MgO(100). The rate of indentation δ̇ is 0.1 Å/psec.

quantities will be implemented in future research.

5.3 Experimental Nanoindentation

Single-crystal samples of MgO were obtained and experiments were performed in a dry-air
(∼ 5 % RH) environment. MgO is quite hard and it was found that the sharp tungsten tips
used for nanoindentation of Au were not strong enough to cause fracture in these samples.
A diamond tip was subsequently obtained from a commercial vendor, which was advertised
to have a tip radius of 1000 Å.

In actual use, it became obvious that the tip was not only of a larger radius than ad-
vertised, but had a more complex shape. Examination of the force vs. indentation depth
curve, shown in Figure 5.6, shows that the loading appears to be non-Hertzian, and does
not produce fracture in this brittle material within the loading limits of the interfacial force
microscope (IFM). Analysis of the indenter tip was performed using scanning electron mi-
croscopy (SEM). At a magnification of 364× normal size, shown in Figure 5.7, there appears
to be irregular facets and bumps on the diamond tip. The complex shape of the indenter
is even more apparent at a higher magnification of 25,000×, shown in Figure 5.8. These
irregularities effectively make the diamond tip of a much higher radius. The overall result
was that our IFM sensor was not able to develop the force necessary to cause fracture.
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Figure 5.4: Front and side views of top half of the nanoindented MgO crystal.
Atoms are colored according to their value of centrosymmetry pa-
rameter.
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Figure 5.5: Front and top views of uppermost layers of the nanoindented MgO
crystal. Atoms are colored according to their height. Note the differ-
ent scales used for the two figures.
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Figure 5.6: Indentation force vs. depth curve for nanoindentation of MgO.

Figure 5.7: A SEM image of the diamond tip used to nanoindent MgO, magnifi-
cation = 365×.

Figure 5.8: A SEM image of the diamond tip used to nanoindent MgO, magnifi-
cation = 25,000×.
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Chapter 6

Steady-State Crack Growth

In this chapter, we compare continuum simulations using a cohesive modeling approach
with the predictions of atomistic simulations. As previously stated, cohesive approaches to
modeling fracture differ from classical approaches by embedding the physics of the fracture
process by means of a traction-separation relationship to provide the constitutive relations
for the localized failure mode of deformation. These relations can either be applied to all
the material in the system, as in Cauchy-Born elasticity, or as traction-separation relations
between discrete material elements, otherwise known as cohesive surface elements. For mod-
eling brittle fracture, the form of these traction-separation relations are typically based on
simple physical arguments and motivation from semi-empirical atomistic potentials. First,
we derive the parameters for the cohesive relations based on evaluation of Griffiths condition
with an atomistic system. We then compare the fracture behavior predicted by this cohesive
model with the results of atomistic simulations under quasistatic and dynamic loading con-
ditions. We will discover that while cohesive approaches adequately reproduce the atomistic
results under quasistatic loading, dynamic conditions reveal the significant effects dispersion
has on the behavior of dynamically propagating cracks.

6.1 Background

6.1.1 Crack propagation in materials

The primary purpose of this project is to model the nucleation and growth of cracks in
materials. This subject is not trivial, and has been the focus of studies in experimental,
computational and theoretical arenas. Ravi-Chandar and Knauss [101, 102, 103, 104] ob-
served the propagation of cracks in a clear, brittle polymer called “Homalite”, noting how the
fracture surface has a “mirror-mist-hackle” appearance – first, the crack propagates smoothly
(mirror), then begins to oscillate once a speed of approximately 30 % of the Rayleigh wave
speed cR is reached (mist), and finally, oscillates wildly and begins branching once the crack
is going a speed approximately 50 % of cR (hackle). This surface appears in Figure 6.1.
Other studies, such as those by Fineberg et al. [105, 106], have also examined the behavior
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propagation direction

hackle

branch

mistmirror

Figure 6.1: “Mirror-mist-hackle” appearance of a fracture surface in Homalite,
observed by Ravi-Chandar and Knauss [1984].

and propagation speeds of cracks in brittle solids. Computational studies include those by
Abraham et al. [3, 4, 5, 6, 7], who present atomistic simulations of crack growth in two
and three dimensional solids. They observe oscillation and branching of the fracture plane,
accompanied by the creation of dislocations. These calculations show similar speed charac-
teristics to the aforementioned experiments, although the length scales of the oscillation and
branching behavior are significantly smaller.

6.1.2 Theories of limiting speeds

Theoretical analysis of crack propagation has been centered on the prediction of limiting
speeds, the maximum speed at which the crack grows. The earliest such analyses were
done by Yoffe [107], who predicted that smooth crack propagation, the crack growing in the
direction of its original orientation, can occur up to speeds of 60 % of cR, beyond which the
point of maximum hoop stress around the crack tip moves from a point directly ahead of the
tip to a point 60o off axis. Later work was done by considering the balance of energy around
the crack tip region. Freund’s analysis [108] showed that the energy release rate goes to zero
as the crack approaches cR,

G (a, ȧ) =

[
1− ȧ

cR

]
G (a, 0) . (6.1)

Presumably, the strain energy arriving at the tip from regions ahead is consumed by some
combination of kinetic energy radiated from the moving tip or is being consumed in the stress
field surrounding the moving crack tip. The energy required for continued propagation is
constant, Γ, so the zero velocity crack driving force must overcome the effect of the crack
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propagating at a finite speed,

G (a, 0) ≈ Γ[
1− ȧ

cR

] . (6.2)

Thus, Freund’s results predict that the terminal speed of the crack will approach cR asymp-
totically with increasing driving force. Liu and Marder [109] also begin from an energy
balance perspective, but arrive at the conclusion that as long as the driving force exceeds
the fracture energy, the crack speed will continue to accelerate towards cR:

ä ∼
[
1− Γ(ȧ)

G (a, ȧ)

] [
1−
(
ȧ

cR

)2
]
. (6.3)

The analyses of both Freund and Liu and Marder do not consider the possibility of off-axis
crack propagation.

More recent work by Gao has been able to explain the limiting speeds observed in ex-
periments and simulations being below cR. In 1993, Gao [1] used a wavy crack model to
predict a crack propagation speed of 50 % of cR. Considering the relation (6.2) by Freund,
it is a straightforward calculation to show that the energy dissipated by a moving crack tip
is maximal at 50 % of cR,

Γ̇ (a, ȧ) = ȧG (a, ȧ) = ȧ

[
1− ȧ

cR

]
G (a, 0) . (6.4)

By taking a microscopically wavy path, a nominally straight crack propagating at half the
Rayleigh wave speed has the ability to dissipate more energy through an increase in appar-
ent fracture energy, as depicted in Figure 6.2. Higher propagation speeds are unfavorable,

amacro
.

amicro
.

Figure 6.2: The wavy behavior of crack propagation required to maximize dissi-
pated energy during the fracture process, as theorized by Gao [1].

as they reduce the energy release rate. This analysis focuses on the multiscale nature of
the mechanisms governing the macroscopically observed fracture behavior. The wavy crack
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model allows the local crack speed to increase, to allow more dissipation, while the macro-
scopic crack speed remains at approximately 1/2 of cR to maximize the crack tip energy flux,
Γ̇. Although the crack trajectory changes with respect to the orientation of the macroscopic
loading, this model is assumed to be independent of the mode of loading in the microscopic,
near tip view. Later, Gao used the concept of local limiting speed to predict terminal crack
speeds at approximately one third of cR, assuming a cohesive strength of E/30 [110]. This
estimation was based on the bottleneck state for the propagation of the bond breaking sig-
nal on a hyperelastic, cohesive medium. Gao’s analysis shows that the characteristic wave
speed of a solid depends on both its material tangent modulus and its current states of
stress and deformation. At the cohesive limit, the tangent modulus approaches zero, and the
material’s wave speed depends solely on the cohesive strength of the underlying constitutive
model. Unlike the previous analysis, the local limiting speed concept relies on the hypere-
lastic, nonlinear properties of the material in the vicinity of the crack tip. Additionally, the
mechanism controlling the crack’s limiting speed is less a function of the driving force and
more a function of the rate limited processes surrounding the moving crack tip.

As we have already discussed, depending on the material system, the fracture processes
may be numerous and complicated. Here, we consider only brittle fracture, which we define to
mean that all dissipation during the fracture process is associated directly with the creation
of new free surfaces. Accordingly, our continuum simulations employ a rate and history
independent bulk constitutive model. The atomistic system used in this study is similar to
the one considered by Abraham et al. [3] to study the behavior of crack growth under severe
loading conditions. Although this system activates several mechanisms of dissipation during
fracture given sufficient driving force, in this study, crack driving forces are maintained
below a level at which these dissipation mechanisms are activated. Therefore, we expect to
understand the fracture behavior in terms of the surface dissipation and the transport of
strain energy by elastic waves or dispersion by phonons for the atomistic system.

6.2 Models and Methods

The problem we’re considering is crack growth in a “long” strip. The strip needs to be long
enough to allow the crack to reach steady state propagation conditions. The strip geometry
used in this study is illustrated in Figure 6.3. If the strip is sufficiently long in the lateral

h
h/2

a = 0.83h

L = 6.86h

δ/2

δ/2

Figure 6.3: Geometry of the two-dimensional strip.
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dimension, a J -integral analysis can be used to determine the static crack driving force under
plane stress,

J1 =

∫
C

(
Wn1 − σijnj

∂ui
∂x1

)
ds (6.5)

where the crack propagation direction is taken as x1, W is the strain energy density of the
material, and C denotes, in two dimensions, a line contour which surrounds the crack tip.
This driving force can also be calculated by using the definition of the energy release rate as
the derivative of the potential energy,

G = −∂U
∂a

=
U (1) − U (2)

w
, (6.6)

where (1) and (2) refer to thin strips of width w ahead of, and behind the crack tip, re-
spectively, as shown in Figure 6.4. Using this relation, and assuming small strain isotropic

(1)(2)

σyy

x

Figure 6.4: The steady-state crack. The crack driving force is estimated from the
difference in potential energy between regions (1) and (2).

elasticity, the energy release rate is

G =
E h ε2

2 (1− ν2) , (6.7)

where E is Young’s modulus, ν is Poisson’s ratio, and ε = δ
h
is the nominal applied strain.

This quasistatic analysis only applies to the onset of crack growth. Accurate predictions
of the response of either the continuum or atomistic system during dynamic propagation
remains a challenge for analysis.

We simulated growth in the strip using atomistics and using the finite element method,
with a layer of cohesive surface elements along the cleavage plane. The models used for
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both the atomistic and continuum calculations have intentionally been kept as simple as
possible. The atomistic calculations use a simple pair interaction, while the continuum
calculations use a standard small strain finite element formulation to model the behavior
of the bulk. Fracture is introduced by seeding the cleavage plane with a layer of cohesive
elements. Unlike the atomistic calculations, this seeding predefines the fracture path for the
continuum simulations.

Over a domain Ω with a boundary C , the variational form of the dynamic equation of
equilibrium in the absence of body forces may be written as∫

Ω

ρ
∂2u

∂t2
· δu dΩ +

∫
Ω

σ : δε dΩ +

∫
Cint

T(∆) · δ∆ds =

∫
Ch

T · δu ds, (6.8)

where ρ is the mass density, u is the displacement field, ε = 1
2

(
∇u+ (∇u)T

)
is the in-

finitesimal strain tensor, and the Cauchy stress σ and traction T are related through the
normal n as T = σn. Contributions from surface tractions in (6.8) appear over regions
of the boundary Ch ⊆ C with externally applied tractions and over pairs of internal sur-
faces Cint due to the variation in the surface opening displacement δ∆. For this study, we
use a model traction-separation relation similar to the one introduced by Tvergaard and
Hutchinson [111]. The magnitude of the cohesive traction is expressed as a function of a
nondimensional effective opening displacement

Λ =

√
(∆t/δt)

2 + (∆n/δn)
2, (6.9)

where δt and δn represent the characteristic tangential and normal opening displacements,
respectively. The total displacement vector ∆, is given as ∆ = {∆t,∆n}. As illustrated in
Figure 6.5, the tri-linear magnitude of the traction T̂ (Λ) depends on a single shape factor

T(Λ)

Λ
Λ* 1

σc

ˆ

Figure 6.5: The traction-separation relation used for this work.

Λ∗. The traction response is assumed to be reversible up to Λ = 1, after which the surface
is assumed to have failed. Defining a traction potential

ϕ(∆) = δn

Λ∫
0

T̂ (ξ) dξ (6.10)
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yields the rate-independent, mixed-mode traction-separation relation

T(∆) =
∂ϕ(∆)

∂∆
= δn T̂ (Λ)

∂Λ

∂∆
(6.11)

and a fracture energy

Gc =
1

2
σcδn. (6.12)

The cohesive surface relation (6.11) is not intended to represent the response of any specific
material. Surrounded by an elastic medium, the detailed shape of the relationship is not
expected to have a significant effect. The relationship simply introduces a well-defined
fracture energy into the simulation procedure with a clear point of complete failure in a form
that facilitates analytical study. The stress response of the bulk is defined by

σij = [µ δijδrs + λ (δirδjs + δisδjr)] εrs, (6.13)

where µ and λ are Lamé constants.
The approach for the atomistic simulations similarly makes use of a model system. The

single crystal sample is constructed from a two-dimensional, hexagonal lattice bound by the
Lennard-Jones 6-12 potential

ULJ(r) = 4 ε
[
− (σ/r)6 + (σ/r)12

]
, (6.14)

where σ sets the length scale of the potential and −ε is the depth of the potential well.
In order to allow us to control the range of influence of the potential without introducing
abrupt behavior at a cut-off distance, we use the modified potential

U(r) = ULJ (r)− ULJ (rc)− (r − rc)U ′
LJ(rc) , (6.15)

where rc is the distance at which the potential and its first derivative pass through zero. This
cut-off distance is selected to include up to the fifth nearest neighbors in the undeformed
configuration. The crystal is a triangular lattice with an interatomic spacing a0. We choose
h
a0
= 212 to distance the fracture process zone from the rigidly imposed boundary conditions.

The characteristic dimension of the finite elements near the cleavage plane is hmin = a0.

6.3 Simulation Results

The parameters for the continuum and atomistic systems are selected to correspond with
each as closely as the differing descriptions permit. Due to the centrosymmetry of the
undeformed lattice, the initial elastic properties of the crystal display Cauchy symmetry, for
which λ = µ. The shear modulus µ is matched to the elastic properties calculated for the
crystal, and the density ρ is selected to correspond with the atomic mass and volume of the
undeformed lattice. The fracture properties of the systems cannot be compared so directly.
The fracture energy φ is not solely dependent on ε, the energy of a single bond, and the
effective opening displacement Λ (6.9) does not correspond to the bond length r.
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6.3.1 Quasistatic fracture

The fracture parameters in the cohesive relation T(∆) (6.11) are selected in order to match
the traction distribution on the cleavage plane of the strip model at the critical boundary
displacement. The critical displacement is identified by applying Griffith’s condition to the
atomistic system. The boundaries are displaced until the uncleaved configuration of the
strip is no longer energetically favored. Comparing the bond energy per undeformed volume
“far” ahead of the pre-crack with the reference energy of the crystals yields the fracture
energy Gc. Gc is estimated from the atomistic system by observing that fracture occurs
during quasistatic loading exactly when the potential energy available ahead of the crack
tip reaches the level of the surface energy needed to propagate the crack by creating new
surfaces, as seen in Figure 6.6. In general, strain energy remaining within the material after

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.2

0.4

0.6

0.8

1.0

1.56

ε (%)

U 
/ 

(U
(2

) +
 2

γw
)

U(1)

Figure 6.6: Bond potential energy in the atomistic system as a function of applied
strain.

cracking
(
U (2) �= 0

)
, as well as any energy associated with dissipation mechanisms, e.g. a

plastic zone, will require that the potential energy U (1) be greater than 2γw.
The traction distribution for the atomistic system is calculated from the force in all

bonds crossing the cleavage plane, averaged over segments of length a0 along the fracture
surface. This calculation yields a peak traction, σc, of approximately E/18, where E is
Young’s modulus of the crystal. The cohesive surface parameters σc and Gc = 2γ are chosen
to match the atomistic results, producing σc = 0.3635 eV/Å2 and Gc = 0.708 eV/Å. The
values for δt, δn and Λ

∗ were chosen to equal 3.8955 Å, 3.8955 Å and 0.1839, respectively.
These calculations are subject to plane stress, however the elastic modulus is matched to
the atomistic system’s properties. The traction distributions produced are illustrated in
Figure 6.7. Quasistatic analysis of the strip configuration yields a failure strain εc =

δ
h
≈

1.5 %. The continuum simulation cleaves at a strain within 1 % error of the predicted
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Figure 6.7: A comparison of the traction distribution on the cleavage plane.

value. Correcting the Griffith analysis to account for the compliance of the cohesive surface
layer reveals that the continuum simulation reproduces the expected failure strain to within
an error of nearly 0.1 %. These results indicate that the model has sufficient extent both
ahead and behind the crack tip to match the steady-state cracking assumptions and that
the tractions are well resolved over the elements in the fracture process zone.

The atomistic model cleaved at a strain of 1.56 %, approximately 4% higher than that
predicted by the Griffith analysis, which we attribute to the nonlinear response of the inter-
atomic potentials. Figure 6.7 illustrates that the region on the traction distribution behind
the peak is a tail that decays over a distance of approximately 10a0, and the stresses ahead
of the tip stay well above the far field values to a distance of nearly 25a0.

We wished to determine the influence of the cut-off radius rc on the atomistic model
with regard to both quasistatic and dynamic crack propagation. As such, we compared
the model already introduced which includes out to fifth nearest neighbor interactions, for
which rc ≈ 4.01 a0, with a shorter-range interaction that goes out only to second nearest
neighbors, rc ≈ 2.36 a0. We adjusted the parameters of the potential in order to preserve
the values of Young’s modulus and fracture energy

E5th

E2nd
=
G5th
c

G2nd
c

= 1. (6.16)

The change in rc alters the value of the lattice parameter,

a5th0
a2nd0

= 0.81, (6.17)

although the system geometry is scaled with lattice parameter to make our analyses self-
similar. In changing from a fifth to a second neighbor interaction range, the fracture process
zone, which we associate with the “tail” following to the left of the peak, shrinks by about
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Figure 6.8: Traction distribution along the crack plane for the atomistic models.
Fifth and second nearest neighbor interaction ranges are colored in
red and blue, respectively.

a factor of two, as seen in Figure 6.8. Gao’s analysis of the cohesive state wave speed [110]
includes an estimate of the effect of dispersion on the speed at which the bond-breaking
signal can propagate ahead of the moving tip. The rate at which energy propagation occurs
is known as the group velocity vg. Since vg is a function of wavelength in a dispersive medium,
we wanted to alter the length scale of the shape of the bond-breaking zone with the intention
of altering the wavelength of the so-called “bond-breaking wave”. From this alteration, the
Cauchy-Born elasticity expression for the equibiaxial cohesive stress increases by a factor
of about 3 % when a second neighbor interaction range is used. This is not in agreement
with the atomistic calculations shown in Figure 6.8, which show σ5thc slightly greater than
σ2ndc . However, the atomistic simulation used to generate Figure 6.8 does posses a level of
computational uncertainty, caused by the sharp peak or the rapidly varying traction, which
could explain this discrepancy. The larger lattice spacing leads to a lower density and a
higher value of cR. This modification to cR more than compensates for the reduced cohesive
stress, predicting the limiting speed for the fifth neighbor case to be slightly faster than
for the second neighbor case, which is not in agreement with the cohesive state wavespeed
analysis.

6.3.2 Dynamic crack propagation

Next, we examine the dynamic response of the continuum system subject to a fixed crack
driving force. This fixed driving force was achieved by first loading the system quasistatically,
then applying a final short, but smooth, displacement of the boundaries to achieve the final
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level of driving force. The continuum calculations, like the atomistic ones, are done with
explicit dynamics. In Figure 6.9, we compare the calculated variation of the terminal speed
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Figure 6.9: Terminal, or limiting speed of a dynamic crack as a function of over-
load, the ratio of energy remotely applied to the system to the fracture
energy required for quasistatic crack growth.

with driving force with Freund’s and Liu and Marder’s predictions. Our calculations show the
terminal speed does vary with driving force, as predicted by Freund; however, the asymptotic
approach to an upper limit occurs more quickly with increasing driving force than predicted
by Freund. We would expect some differences here because Freund’s calculations do not
accurately account for the finite height of the strip. The asymptotic terminal speed also
appears to be somewhat lower than cR, an effect that may also be a result of finite strip
size. Figure 6.10 looks at the history of the crack speed with crack length. We observe
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Figure 6.10: Crack speed history as functions of (a) normalized crack length and
(b) Liu and Marder’s time scaling factor.

that not only does the terminal speed vary with driving force, but the time to reach this
terminal speed also depends on the driving force. Figure 6.10(b) shows that although Liu
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and Marder’s solution does not seem to capture the variation in terminal speed with driving
force, their time scaling factor of t̂,

t̂ = t
cd
h

[
1− Gch

U∞

]
, (6.18)

does seem to describe the transient portion of the crack history very well. With this scaling
applied, all the curves for the different driving forces overlap, though each curve reaches a
different terminal value. It is important to note that in Liu and Marder’s solution, all cracks
will eventually propagate at cR, but those with lower driving force will take longer to reach
this speed.

We compared fracture behavior of the atomistic and continuum systems subject to con-
stant velocity displacement of the upper and lower surfaces. The stress component σyy for
the continuum system, shown in Figure 6.11, shows the expected behavior: the crack is
restricted to propagate along the cleavage plane and the stress field appears as if the tip field

Figure 6.11: Frozen time frames of the propagating continuum crack stress com-
ponent σyy .

is translating through the body as the crack grows. The constitutive models used for this
simulation are rate independent, thus, so are the results. Figure 6.12 shows the results for
the atomistic simulations at two different displacement rates. At the slower rate, the crack
propagates without any kinking in the fracture path and without emitting any dislocations.
At the higher rate, the fracture path does vary from straight-ahead propagation every time a
dislocation is emitted. We concentrate the remainder of our analysis to the former case, since
the behavior is potentially more straightforward to explain. One feature that is immediately
obvious in Figure 6.12 is the fine scale wavelength content in the atomic stress field. This
fine scale behavior is entirely missing from the continuum calculations. We will investigate
this further with the next series of calculations. Notice that elastic waves do not appear in
Figure 6.11, due to the scale of the stress contours.

In order to compare the continuum and atomistic models of smooth crack propagation,
the systems were loaded from a strain near to their critical strains with a constant velocity
of cd/δ̇ = 7500, where cd is the dilatational wave speed in the material. The variation of
the crack velocity as a function of crack length is shown in Figure 6.13(a). The velocity
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ε ~ 2 x 108 sec-1.

ε ~ 2 x 106 sec-1.

Figure 6.12: Frozen time frames of the propagating atomistic crack stress com-
ponent σyy . Two different loading rates are shown.

is normalized by the Rayleigh wave speed cR, the limit speed for cracks propagating under
mode I loading. While the crack speed in the continuum simulation steadily climbs towards
the limiting speed with increasing driving force, the crack speed in the atomistic simulation
does not exceed approximately 20% of cR. In contrast to expectations from the cohesive
state wave speed, the crack limiting speed in the second neighbor interaction model, 23 %
of cR, slightly exceeds the speed in the fifth neighbor interaction model, 21 % of cR, giving
a ratio of

(ȧ/cR)
5th

(ȧ/cR)
2nd

≈ 0.91, (6.19)

rather than the ratio estimated from Gao’s local limiting speed theory,

(ȧ/cR)
5th

(ȧ/cR)
2nd

= 1.02. (6.20)

Figure 6.13(b) reveals the markedly different energetics associated with crack growth for
each system. The figure shows the rate of kinetic energy generation with crack extension
∆T
∆a

as a function of crack length. The continuum simulation shows that approximately 3%
of the strain energy required for quasistatic crack growth is converted to kinetic energy for
1 < a

h
< 4, corresponding to 0.2 < ȧ

cR
< 0.7. For a

h
> 4, acceleration of the crack slows

and the rate of kinetic energy generation decreases although the driving force continues
to increase. The smoothed results from the atomistic simulation, the dark, solid line in
Figure 6.13(b), reveal a rate of kinetic energy generation that initially increases linearly.
This rate of generation levels off as the crack tip approaches the strip’s far boundary. The
results suggest that the terminal crack speed for the continuum simulation is determined
largely by limits in the driving strain energy release rate, while the terminal crack speed in
the atomistic system is controlled by an intrinsic limit on the rate of bond breaking at the

85



CHAPTER 6. STEADY-STATE CRACK GROWTH

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

a/h

a
.

cR

0 1 2 3 4 5 6

0.02

0.04

0.06

0.08

0.11

0.12

a/h

(      )∆T
∆a

Gc

(a) (b)

Figure 6.13: Comparison of the continuum simulations with a cohesive surface in-
terface (colored green) with atomistic simulations (colored blue). (a)
normalized crack speed vs. crack length (b) kinetic energy generation
rate.

crack tip. Excess energy is converted to kinetic energy rather than increasing the speed of
fracture.

We can get another view of the differing behavior in each system’s tendency to transform
stored energy to kinetic energy by choosing a vertical strip of observation and monitoring
the kinetic energy in this strip as the moving crack passes. The graph of this kinetic energy
variation is shown in Figure 6.14(a) for the continuum calculation and in Figure 6.14(b)
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Figure 6.14: Kinetic energy history for (a) a strip of material ahead of the initial
crack tip for the continuum simulation and (b) two strips of material
ahead of the initial crack tip for the atomistic simulation.

for the atomistic calculation. The continuum simulation shows very little kinetic energy in
the strip of observation before the crack arrives. As the crack passes, the kinetic energy
jumps, but returns to the same quiescent state after the crack tip has passed. The lack
of kinetic energy in the wake of the crack seems to indicate that the energy generated is
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tied to the moving crack tip and is not radiated as the crack propagates. However, there
must be some residual kinetic energy behind the crack tip. In Figure 6.9, it is observed
that the crack speed as a function of overload does not approach cR, but rather, some lower
value. This implies that the energy must be shed by some other means, even though kinetic
energy is not apparent in Figure 6.14. Two points of observation are shown for the atomistic
simulation. Like its continuum counterpart, the kinetic energy peaks and then drops quickly
as the moving tip passes. However, the atomistics do show an increase in a “background”
kinetic energy with seemingly random character that we associate with thermal vibrations.

6.3.3 Discussion and analysis

Modeling dispersion as viscous dissipation

We have observed that some significant amount of strain energy reaching the moving crack
tip is transformed into random vibrations of the lattice that we might interpret as heat.
From a continuum point of view, we may ask if this lost energy can be modeled as viscous
dissipation. Viscous dissipation could be added to the bulk material, the cohesive zone
relation, or both. We chose to restrict the viscous dissipation to the cohesive zone in order
to make it easier to control and monitor. From a physical point of view, we justify this
modeling assumption by imagining that the random thermal vibrations are generated in or
near the fracture process zone and then propagate out into the crystal. For the continuum
simulation, this energy is simply removed from the cohesive zone rather than being allowed
to propagate away. The viscous traction in the cohesive zone, T visc, is related to the opening
displacement rate by a viscosity parameter that decreases linearly from an initial value to
zero as the nondimensional opening parameter varies from 0 to 1,

T visc = η (λ) ∆̇ = η0 (1− λ) ∆̇. (6.21)

The energy removed by this viscous dissipation can be quantified by

Γvisc =

∫ δn
0

T visc · d∆. (6.22)

These relations can be combined with the Tvergaard-Hutchinson cohesive zone relation. The
assumption of a constant opening rate yields

Γvisc =
1

2
η0 δn ∆̇ =

1

2
η0 δ

2
n

ȧ

@zone
. (6.23)

The parameters of this model were selected such that a viscous dissipation rate of 5 % of
the rate independent, quasistatic fracture energy would occur for a crack moving at 20 %
cR. Using a cohesive zone length, @zone , equal to 5a0 = 20.4 Å, equation (6.23) yields a value
of 0.01166 for η0. The crack propagation history and viscous dissipation rate are shown
in Figure 6.15. We see that the crack does accelerate more slowly, but still appears to be
approaching a much higher terminal speed than seen in the atomistic simulations. The crack
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Figure 6.15: (a) Crack speed history for the continuum simulation that includes
viscous dissipation. The damped calculation is shown in red, with
the original cohesive zone and atomistic simulations shown in their
original colors (green and blue, respectively) for comparison. (b)
Viscous dissipation rate for the damped simulation.

accelerates so slowly that the strip is not long enough for it to reach its terminal speed. The
plot of viscous dissipation rate shows that the rate increases with crack speed and length;
however, the additional dissipation does not allow the continuum simulations to reproduce
the behavior of the atomistic system. Instead, the additional dissipation appears to have
the effect of slowing the approach to the terminal speed in a manner suggested by the time
scaling proposed by Marder and Liu.

Spectral analysis of the moving crack tip

Because wave propagation in the lattice is dispersive, we focus in on the characteristic
wavelengths in the motions of the atoms around the moving crack tip. In order to remove
the gross displacement of the lattice from the spectral analysis, we first apply a low-pass
filter to the motions of the atoms and remove this content from the displacements,

ψy (x, a) = uy (x)−
∫
φa (x− y)uy (y) dy. (6.24)

We then look at the Fourier spectrum (� (ψy)) of the y-direction displacements of the atoms
in a region behind and a region ahead of the moving crack tip. These spectra are shown in
Figure 6.16. Ahead of the crack, we see a fairly broad spectrum of vibrations. Behind the
moving tip, we see a clear concentration of the displacements at a wavelength approximately
five times the lattice parameters. Surprisingly, nearly the same wavelength appears for both
the second and fifth neighbor cases, showing an insensitivity to the fracture process zone size.
The appearance of this strong peak is relatively insensitive to the location of the sampling
window behind the crack tip, indicating the spatial extent and stability of this crack surface
feature. The origins of this 5 a0 wave as well as its relation to the terminal speed of the
crack are still unclear.
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Figure 6.16: Fourier spectra of the crack-plane displacements behind, and ahead
of, the crack tip.

We did investigate whether any characteristic wavelengths are predicted by simple analogs
to the moving crack in solutions for linear elastic media. Although the near tip region
is highly deformed, most of the strip away from the tip is in a relatively mild state of
deformation. Additionally, we had seen some period features in the stress field trailing a
moving tip in other continuum simulations. As shown in the Figure 6.17, the σyy component
of the stress field trailing the moving crack tip shows periodic fluctuations [112]. In this

Figure 6.17: σyy stress field for a cohesive zone simulation at a high loading rate.

case, the crack is driven significantly harder than in the simulations done for this study.
These calculations showed that these oscillations in the stress field developed only after the
crack had achieved its limiting speed while subject to large driving forces. We have not
verified that the oscillations in the stress field shown in the figure are indeed related to
the y-displacement oscillations displayed by the moving crack in the atomistic calculations.
Notably, the oscillations appear at different crack tip speeds, though limiting speeds in both
cases.
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Propagation of energy through a lattice

Following Gao, our assumption about the terminal speeds seen in the atomistic calculations
is that it is governed by the rate of propagation of the bond breaking signal. We have
mentioned that propagation of waves through a lattice is dispersive. This behavior can be
quantified by calculating the dispersion curves. This is done by linearizing the equations of
motion,

mαδu̇α =
N∑
β �=α

∂Fα

∂uβ
δuβ , (6.25)

where

Fα = − ∂U
∂uα

. (6.26)

We then use the Brillouin solution for a moving plane wave,

δu (X, t) = A exp i (k ·X− ωt), (6.27)

and substitute into (6.25) to obtain an expression for ωα (k) where ω is defined as the circular
frequency and k is the wave vector. The group velocity vg is defined as

vαg =

∣∣∣∣∂ωα∂k
∣∣∣∣ . (6.28)

For the triangular lattice, we find the second and fifth neighbor potentials display identical
dispersion relations in the undeformed configuration, as shown in Figure 6.18. For this
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Figure 6.18: Longitudinal Acoustic (LA) and Transverse Acoustic (TA) disper-
sion curves for plane wave propagation for a 2-dimensional, triangu-
lar lattice. Here, k2 is fixed at a value of 4π/
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)
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2-dimensional case, the curves show the dispersion relations for the longitudinal (LA) and
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transverse (TA) acoustic modes. As mentioned earlier, the speed at which energy propagates
through the lattice is vg. As the wave vector approaches zero, the group velocities for the
longitudinal and transverse normal modes should approach the macroscopic dilatational and
shear wave speeds, respectively. This analysis can be done using either the undeformed
lattice, as in (6.27), or using the deformed lattice by substituting x for X.

In order to explain the low limiting speeds observed in the atomistic simulations, and
looking for any insight into the strong peak of the Fourier spectrum behind the crack tip,
we are now left with a search for the rate limiting process. Considering the propagation of
phonons through a lattice we can expect three effects: ballistic propagation, the effects of
elastic scattering and the effects of inelastic scattering. Ballistic propagation is the propaga-
tion of phonons without any alteration in their frequency or wave vector. Elastic scattering
describes a change in the phonon wave vector without altering its frequency, while inelastic
scattering results from coupling between the normal modes that leads to changes in both
the frequency and wave vectors of phonons. Figure 6.19 shows two sets of curves describing
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Figure 6.19: Group velocity as a function of the dimensionless wave vector k1a0
for (a) the undeformed lattice and (b) the lattice at the equibiaxial
cohesion limit.

the wavelength-dependent group velocities for the second and fifth neighbor lattices. In the
undeformed configuration, Figure 6.19(a), the group velocities are the same. At the equibi-
axial cohesive limit, Figure 6.19(b), the curves do show some differences. The speeds of the
LA and TA modes are more similar at the cohesive point than in the undeformed configu-
ration. The differences are bigger for the fifth neighbor case than for the second. Even at
the cohesive state, the group velocity curves indicate speeds from zero to almost 40 % of the
shear wave speed. There also does not seem to be anything especially outstanding about
either the speed associated with a k1a0 = 1/5, or the wavelength associated with vg = 0.2cR.

As mentioned, elastic scattering alters the wave vector of phonons without affecting the
frequency. A diffuse distribution of mass defects can produce this type of scattering. For this
case, the rate of scattering has a strong ω4 frequency dependence. Elastic scattering converts
a coherent set of wave vectors into a more random distribution. As a result, scattering
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leads to diffusive transport of phonon energy where the diffusion constant can be related
to the scattering rate and the group velocity, usually ignoring dispersion. In the steady
state cracking simulations, the system contains no mass or other defects, aside from the
newly created free surfaces. Strain centers, like dislocation cores, are known to produce both
elastic and inelastic scattering. For the most part, this effect has only been analyzed by
treating the dislocations statistically and only within the context of trying to calculate the
effect on a material’s thermal conductivity. We have not seen any analysis of the elastic
scattering of phonons around the highly deformed region around a crack tip.

Spontaneous phonon decay by inelastic scattering is due to the coupling in the vibra-
tional modes of the crystal resulting from anharmonicity in the interatomic potentials. The
large gradient in bond stretches surrounding a crack tip suggests inelastic scattering may
be important. We could not find any references discussing inelastic scattering from inho-
mogeneous strain fields. On a related topic, we do not know what happens when phonons
propagate through a medium with varying dispersive properties. As already shown, the dis-
persion behavior of the lattice changes dramatically from the lattice in its undeformed state
to the lattice stretched to the equibiaxial cohesive limit. Phonons moving from the near tip
region may experience both elastic and inelastic transformations. Even in the absence of
large strains or highly inhomogeneous deformations, phonons decay anharmonically.

This process has a strong ω5 frequency dependence, becoming more likely for higher
energy phonons. For simple 3-phonon reactions, the rate of spontaneous decay is a function
of the phonon wave vectors and the 3rd order elastic moduli [113]. Calculation of the
scattering rate involves considering all sets of 3 phonons whose frequencies and wave vectors
satisfy restrictions on the conservation of energy and momentum. These restrictions have a
clear graphical representation on the dispersion curve, as is illustrated for the decay of a LA
phonon into a pair of TA phonons, shown in Figure 6.20.
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Figure 6.20: The decay of a LA phonon into a pair of TA phonons for the unde-
formed triangular lattice.
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We have not calculated the scattering rate in our Lennard-Jones crystal; however, results
for Si are available in the literature [114]. We find that the lifetime of very high energy
phonons is on the order of the bond breaking rate, if we assume the crack is propagating
at 20 % of the Rayleigh wave speed. This suggests that if very high energy phonons are
generated by the bond breaking process, we would need to account for their decay when
trying to predict the rate at which this bond breaking information is propagated to regions
ahead of the crack tip. To verify this anharmonic process acts in the vicinity of the crack
tip for our case, we need to calculate the scattering rate given the dispersion relations we
already have. Additionally, we need to develop a method for directly identifying the phonons
generated in the bond breaking zone, observing how they evolve as they propagate.

In summary, we have compared the response of a continuum and atomistic system under
conditions of quasistatic and dynamic fracture. Under quasistatic conditions, the cohesive
surface approach reproduces the predicted response of the strip model. This result is expected
since the traction potential, with a simple change of variables, is equivalent to the J -integral
evaluated on a contour over crack surfaces surrounding the tip. Under dynamic conditions,
simply adopting a cohesive approach cannot reproduce crack dynamics of an atomistic system
even when restricted to purely brittle propagation. At this point, we still know relatively
little about what limits the speed at which the crack can propagate in our atomistic system
or how the bond energy is transformed into kinetic energy or heat. However, understanding
this limit could provide insight into the origins of crack tip instability and, ultimately, crack
branching.
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Chapter 7

Conclusion

We have conducted a coordinated project in which experimental investigation of prototypical
fracture events was used in conjunction with atomistic and continuum simulation techniques.
Our goals were to merge ideas of atomistic and continuum analyses, to determine the areas
in which continuum models need to be enriched to reflect atomic-scale processes, and to
validate these methods by comparison with nano-scale experiments.

We have investigated the relationship between atomic-level processes and the longer-range
behavior of the stress field through the analysis of nanoindentation near steps on a metal
surface. The stress concentration at the step is by its nature an atomic-level property while
the behavior of the stress field away from the step is better characterized by a continuum
approach. We discovered that contact between the step edge and the indenter is sufficient to
explain any seemingly “long-range” effect of the load needed to initiate yield. Efforts were
then made to study nanoindentation of brittle materials, specifically sodium silicate glass
and MgO. The experimental nanoindentation of the glass proved to be too complex for the
current state of our modeling methods. Although experiments and atomistic simulation of
nanoindentation of MgO has been performed, both need to be enhanced before meaningful
information about crack nucleation and growth processes can be obtained. Finally, we have
also analyzed and compared the static and dynamic responses of atomistic and continuum
models of steady-state, 2-dimensional crack propagation. Specific characteristics have been
quantified for both systems such as the limiting propagation speed and the generation rate of
kinetic energy. Additionally, the atomistic system displays a concentration of kinetic motion
into specific wavelengths. All of this analysis will help elucidate the origins of crack tip
instabilities. This model problem allowed us identify specific directions in which continuum
simulation needs to be enhanced by using a non-local description of material behavior.

Publications

The following publications have been produced as a result of the work for this project, and
have either been published or are awaiting publication:
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“Defect-dependent elasticity: Nanoindentation as a probe of stress state”, K.F. Jarausch,
J.D. Kiely, J.E. Houston and P.E. Russell, J. Mater. Res., Vol. 15, No. 8, p. 1693 (2000).

“Surface Step Effects on Nanoindentation”, J.A. Zimmerman, C.L. Kelchner, P.A. Klein,
J.C. Hamilton and S.M. Foiles, Phys. Rev. Lett., Vol. 87, No. 16, p. 165507 (2001).

“In-Situ STM Studies of Strain Stabilized Thin Film Dislocation Networks Under Applied
Stress”, O. Schaff, A.K. Schmid, N.C. Bartelt, J. de la Figuera and R.Q. Hwang, Mater.
Sci. Engin. A, in press (2001).

“Dislocation Emission around Nanoindentations on a (001) fcc Metal Surface Studied by
STM and Atomistic Simulations”, O. Rodŕiguez de la Fuente, J.A. Zimmerman, M.A.
González, J. de la Figuera, J.C. Hamilton, W.W. Pai and J.M. Rojo, Phys. Rev. Lett., in
review (2001).

“Lattice dispersion explanation for limiting speeds in steady-state crack propagation”, P.A.
Klein, J.A. Zimmerman and E.P. Chen, in preparation (2001).

“Effect of Surface Steps on Dislocation Structure During Nanoindentation”, J.A.
Zimmerman, P.A. Klein and S.M. Foiles,Mater. Res. Soc. Symp. Proc., Vol. 649
(Fall 2000 MRS meeting).

“Development of cohesive models from the study of atomic scale fracture processes”, P.A.
Klein, J.A. Zimmerman and E.P. Chen, 10th International Conference on Fracture,
December 2-6, 2001.
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