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Abstract 

A 3-DIMENSIONAL EXPERIMENTAL AND NUMERICAL 
ANALYSIS OF THE T*

ε INTEGRAL IN ALUMINUM 
FRACTURE SPECIMENS 

By John H. Jackson and Albert S. Kobayashi 

The T*ε integral, an elastic-plastic toughness parameter which is based on the incremental 

theory of plasticity, has been calculated experimentally and numerically in two-

dimensional (2-D) metallic specimens.  These established methods for 2-D 

characterization of the T*ε integral are used to expand this relatively new elastic-plastic 

toughness parameter to 3-D elastic-plastic fracture problems.  This is a necessary step 

toward completely validating T*ε integral as an elastic-plastic toughness parameter 

capable of characterizing unloading and crack propagation.  Since the T*ε parameter was 

originally derived to overcome inherent shortcomings involved with the use of creep 

fracture toughness parameters such as the C* integral, its use in creep fracture is also 

briefly reviewed.  

The early foundation that has been set for the T*ε integral is further expanded in this 

dissertation as a viable alternative to the J-integral for use as a toughness characterizing 

parameter in the presence of a 3-D flaw.  Since the J-integral is based on the deformation 

theory of plasticity, it lacks the capacity for characterizing a growing flaw that will 

inevitably include unloading and extensive plasticity.  Further, the J-integral is calculated 

along a constant sized contour that moves with the crack tip, meaning it is a measure of 

only the energy release rate at the crack tip.  The T*ε integral approach attempts to 

overcome these drawbacks by utilizing incremental (flow) plasticity and a growing 

integration contour to capture the material behavior at the advancing crack tip as well as 

behind.  A 2024-T351, aluminum alloy, which is considered a ductile material, is used for 



 

 

proof of concept in this study.  The research includes experimental work for validation of, 

and application to, a numerical model in a generation phase approach for a toughness-

characterization curve.   Issues including near field integration contour size, method of 

calculation, and comparison between near, and far field J-integral and T*ε are discussed.  

An extensive numerical study including the calculation of the T*ε contour integral via the 

equivalent domain integral (EDI) method is performed to meet this end.   

A numerical model is built incorporating tunneling behavior observed in experimental 

work.  The behavior in a case of extreme tunneling is relatively unknown so attempts are 

made wherever possible to compare to baseline behavior of established parameters.  

Comparisons are made between T*ε calculated along an idealized straight crack front, 

deformation theory J-integral along an idealized straight crack front, incremental J-

integral calculated in the extreme tunneling case, and T*ε calculated using nodal 

displacements and the deformation theory of plasticity on a truncated contour.  The T*ε  

integral is observed to behave similarly in a qualitative sense to the CTOA for the case of 

extreme tunneling and as the mid-plane of the specimen is approached.  The T*ε 

calculated on the surface of the specimen with experimentally obtained surface 

displacements is found to compare quantitatively with near surface, numerically obtained, 

T*ε values. 
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INTRODUCTION 

Nonlinear behavior in fracture has been a topic of recent interest, as current knowledge in 

this area is known to be inadequate.  Most agree that fracture mechanics, as it pertains to 

the extension of a crack in a material, is well established only to the point of fracture 

initiation.  Beyond crack initiation, and with large-scale plastic deformation, even the 

well-known J-integral approach loses its validity.  Hence, an important class of materials, 

namely those exhibiting lower strength and high toughness in which crack instability may 

be preceded by extensive stable tearing, are largely uncharacterized. Alternative fracture 

parameters must be explored in order to overcome these difficulties associated with the 

development of large plastic zones and to allow characterization of toughness in materials 

exhibiting extensive stable crack growth.  

The concepts of damage tolerance, and life extension are closely tied in with the need to 

characterize the regime of stable crack extension.  In applications utilizing ductile 

materials (high toughness), i.e. boiler pressure vessels, aircraft skins, etc., the ability to 

predict the behavior of an existing, growing flaw is of utmost importance.   As noted by 

Dawicke et al [1], residual strength prediction in an aircraft fuselage requires a fracture 

criterion capable of accounting for large-scale stable tearing in thin-sheet materials.  It is 

apparent that, in comparison to elastic (brittle) fracture, relatively few studies involving 

toughness characterization beyond the small-scale yielding regime have been performed 

[2].  Thus, in recent years, several stable tearing toughness parameters have been 

proposed.  

This research is intended to be an exploration of the existing stable crack tearing 

characterizing parameters through an experimental-numerical study aimed at extending 

the capabilities of elastic-plastic fracture to encompass stable tearing behavior.  This will 

include an extension of 2-D to 3-D analyses.  Recent experimental results are reviewed, 

and the current research is explained in detail in this chapter.   
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CHAPTER 1: REVIEW OF CURRENT KNOWLEDGE 

1.1 CRACK TIP GEOMETRY PARAMETERS 

1.1.1 COD AND CTOD 

Beginning with the work of Wells [3] in 1961, crack tip geometry parameters were 

viewed as possible means of characterizing toughness in the event of large plastic 

deformation.  The first of these parameters was designated as Crack Opening 

Displacement (COD), and was observed to be somewhat of a material constant which 

could be reliably measured, even in the presence of significant yielding [3, 4].  It was 

noticed that, once initiated, a crack propagates with a characteristic bluntness, leading to 

the concept of a material dependent, critical COD [2].  COD, as it is used in this context, 

is typically measured very close to the crack tip and is therefore also referred to more 

accurately as Crack Tip Opening Displacement (CTOD).  Figure 1.1 is a graphical 

definition of CTOD or COD and Crack Tip Opening Angle (CTOA), which will be 

discussed shortly. 

Figure 1.1: Definition of CTOD and CTOA. 
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CTOD is typically applied in instances of small scale yielding where it may be related to 

Griffith’s energy release rate as in equation (1.1) with Irwin’s plastic zone correction, or 

equation (1.2) with the strip yield model [5].  Here, G is Griffith’s energy release rate, 

σYS is the yield strength, and m is a parameter set equal to 1.0 for the case of plane stress, 

and 2.0 for the case of plane strain.   

δ
π σ

=
4 G

YS

    (1.1) 

δ
σ

=
G

m YS

    (1.2) 

In addition, CTOD may be related to Rice’s J-integral [6] as in equation (1.3).  Here λ is 

a material dependent parameter.  

δ
λσ

=
J

YS

    (1.3) 

Although CTOD is a direct function of the J-integral through equation 1.3, this 

relationship is no longer valid in the presence of unloading or crack extension, thus 

CTOD will not inherit the many difficulties relating to the use of J-integral as a fracture 

toughness characterization.  Critical CTOD, measured at the initiation of stable fracture, 

corresponds to critical J (JIC).   

Typically, CTOD is applied in what is known as a COD design curve approach.  This 

approach, originally developed by Burdekin and Dawes [7], involves plotting critical 

CTOD normalized by the half crack length against the failure strain normalized by the 

elastic yield strain [5].  Any state of stress lying above this design curve was considered 

safe because all observed experimental failures were below the curve.  It is noted that, 

when producing a COD design curve, the specimen tested must be of the same thickness 
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as the structure to which the design curve is applied.  Accordingly, it is necessary to carry 

out tests on materials representing different regions within a component [5].   

1.1.2 CRACK TIP OPENING ANGLE (CTOA) 

A more recently studied, similar parameter that has been found to be significant in terms 

of quantification of stable crack extension is the Crack Tip Opening Angle (CTOA).  This 

is defined in either of two ways, as a Crack Opening Angle (COA), which is the ratio of 

the original CTOD to the crack extension, or strictly as CTOA (local COA) which is a 

measure of the angle of the crack face immediately behind the current crack tip [8]. 

Obviously, measurement becomes more difficult as the crack tip is approached and the 

crack tip behavior becomes more detached from measurement as a crack extends.  Thus, 

CTOA is typically measured as close to the crack tip as is convenient within the 

capability of experimental measurement so that accuracy may be maintained.  As noted 

by Shih et al [9], the opening profile has a vertical tangent right at the crack tip, 

corresponding to a CTOA of 180 degrees.  Therefore, the CTOA must be defined at a 

small, but reasonably finite distance from the extreme tip in order to have meaning. 

CTOA (ψ) is typically defined as in equation (1.4), using CTOD (δ) measured a specified 

distance (d) from the current crack tip. 

ψ δ
= −2 21tan ( )

d
   (1.4) 

Shih et al [9], provide one of the first significant studies in which the CTOA (or COA) 

was utilized as a toughness parameter in studies of stable crack extension.   Results were 

compared with five different fracture criteria, including CTOA for A533B steel Compact 

Tension (CT) specimens and Center Cracked (CN) panels.   In their computational 

approach, two different measures of COA were employed for comparison with 

experimental results.  The first is an average COA based on the crack extension (a-a0) 

measured from the original crack tip, and on the COD (δ0) measured at the original crack 
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tip.  The second is a so-called local COA (or CTOA) based on the opening displacement 

δl measured at a fixed distance, ∆a, behind the current crack tip.  These are similar 

measurements at slightly differing scales.  Both the local COA (CTOA), and average 

COA, denoted αl and α0, respectively, showed considerable variation between 

experimental and numerical results near initiation but exhibited a leveling off trend as the 

crack extended in a stable fashion (Figure 1.2). The CTOA was found to be mildly 

sensitive to the mesh size in the finite element model, but was seen as a better measure of 

the local deformation characteristics.  Based on this work, a CTOA modulus approach to 

stable tearing was proposed as an alternative to the previously used, J-integral based 

tearing modulus (dJ/da).  Equation (1.5) is the proposed CTOA based tearing modulus, 

where it is seen that the CTOA (dδ/da) must be very large in comparison to the yield 

strain.  The CTOA, as it is used here, was also observed to be mildly dependent on the 

specimen geometry, which is seen as a drawback in terms of its use as a stable tearing 

characterization parameter.  However, the achievement of a steady state value is a 

favorable characteristic for stable tearing. 

Figure 1.2: CTOA (α0) and COA (αl) [9].  



 

 

6

T d
da

E
δ

δ
σ

= >>
0

1   (1.5) 

In a similar study, Kanninen et al [10] used  “generation” and “application” phase finite 

element analysis (FEA) studies to observe various elastic-plastic fracture criteria, 

including COA and CTOA.  In this procedure, the “generation” phase consists of 

matching FEA values of load or displacement and crack extension for differing criteria, 

with experimentally observed values.  In the “application” phase, these previously 

evaluated parameters are applied to predict the fracture behavior.  In the same spirit as the 

study discussed previously, a set of ‘valued’ criteria are outlined, and the various elastic-

plastic fracture criteria are examined with respect to these criteria.  It was concluded from 

this study that CTOA (local COA) was a viable stable tearing characterization parameter 

as it met most of the desired criteria.  Table 1 shows the comparisons made in this study.  

Note that G and R are generalized energy release rate and toughness, respectively and Fc 

is the critical crack tip node force in a FE model of a crack growth process. 

Table 1: Listing of appraised ductile fracture parameters (starred quantities indicate relative 
superiority to other parameters in this particular area) [10]. 

 
Desirable Features Fc Goc R (COA)c (CTOA)c Jc (dJ/da)c R 

Constant during stable crack 

growth with fixed fracture mode 

Y* Y Y N Y N N N 

Independent of geometry N N Y Y Y N N N 

Computer model independent N N Y* Y* N Y* Y Y 

Possibility of direct measurement N N N Y* Y N N N 

Computational Efficiency Y* Y N Y* Y* Y* Y Y 
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Brocks and Yuan [11] observed ductile crack growth phenomena in CT, Center Cracked 

Tension (CCT), and Single Edge Crack Bend (SECB) specimens using FEA analyses for 

both plane stress, and plane strain cases.  Analyses of the plastic zones at the momentary 

crack tip showed that the J-integral could no longer represent the stress state during stable 

crack extension.  The J and δ5 (displacement at initial crack tip [12]) resistance curves 

were found to depend on the specimen geometry, but the CTOA curves were found to be 

mostly unaffected by geometry during crack extension and by the development of full 

plasticity.  Through these analyses, it was shown that a linear relationship between J and 

CTOD existed only for tension specimens during stable crack growth.   

Newman et al [13] provided numerically determined CTOA results for thin sheet 

aluminum alloys by observing three different crack configurations, including a blunt 

notch to ensure the capability for characterization under conditions of extreme plastic 

yielding.  These results were later verified using two different finite element algorithms 

[14, 15].  The trends observed in these studies showed an initial high value, attributed to 

tunneling, followed by a relatively constant, critical value for stable tearing.  Later, these 

numerical results were experimentally verified by Dawicke et al [16], who made 

measurements of CTOA in 2024-T3, aluminum, middle cracked tension (MT) and 

compact tension (CT) specimens.  

As noted by Brocks and Yuan [11], and Newman [17], large variations in CTOA (or 

CTOD) values for crack extensions less than approximately twice the material thickness 

may be due to crack tunneling, or to changes in the triaxial constraint as a crack grows 

into a highly deformed region.  To account for 3-D constraint effects in thicker (2 mm) 

materials, while still using a 2-D analysis for simplicity in calculation, Newman et al and 

Dawicke et al [14, 18] and others employed a so-called “plane strain core” (PSC) in their 

FE analyses. This essentially consists of assigning plane strain properties to a strip of 

elements around the crack plane.  The height of this core was empirically determined, 

based on a match between calculated and experimental crack opening displacements.  

This was intended to model the constraint effects in the crack tip after a study by Hom 
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and McMeeking [19] which showed that, although the global material may be in a state 

of plane stress, material near the crack tip may approach plane strain behavior.  

 

Figure 1.3: Plane Strain Core [14]. 

 

Using the 2-D model with a plane strain core, Newman et al [14], Dawicke [18], and 

others [1, 20] have since shown that a critical CTOA may be used in an ‘application’ 

phase to correctly model stable crack extension.  Most simulations have been run using 

2024-T3 aluminum samples of varying thickness with a critical CTOA (ψc) of between 5 

and 6 degrees.  Typically, load-crack extension profiles are compared with experimental 

results for validation of the FE models.  Since CTOA has been found to be generally 

independent of specimen geometry, it has significant potential for stable crack tearing 

characterization.  Problems with CTOA seem to center around experimental 

measurement, and finite element mesh sensitivity.  This will be discussed in more detail 

later.   
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1.2 NONLINEAR-ELASTIC CHARACTERIZATION 

1.2.1 J-INTEGRAL AND TEARING MODULUS APPROACH 

The use of path independent integrals for the general characterization of energy of 

fracture has become widespread since the independent contributions of Eshelby [21], 

Rice [6], and Cherapanov [22].   Specifically, the J-integral parameter of Rice [6] has 

been of practical use in the study of elastic-plastic fracture.  It is given in equation (1.6) 

where w is the strain energy density, Ti is the traction component, ui is the displacement, 

and ds is an increment along the counterclockwise integration contour, Γ. 

J wdy T u
x

dsi
i= −

∂
∂

F
HG

I
KJzΓ    (1.6) 

The J-integral is interpreted as the energy release rate for an extending crack in an 

elastic-plastic material, analogous to linear elastic energy release rate, G [23, 24].  It is 

based on an assumption of non-linear elastic deformation, and has been shown to 

uniquely characterize crack tip stresses within a so-called HRR region by Hutchinson 

[25], and Rice and Rosengren [26] in materials that exhibit power law hardening 

behavior.  The boundary of this region is defined by a 1/r1/n+1 singularity in a polar 

coordinate system, where n is the strain-hardening exponent. These materials may be 

characterized in the plastic portion of their stress-strain curve with a Ramberg-Osgood 

type relation as in equation (1.7) where ε is plastic strain, σ is stress, n is the strain 

hardening exponent, and F is a so-called ‘plastic modulus’.  The strain-hardening 

exponent and plastic modulus are obtained by plotting the plastic portion of the stress-

strain curve on a log-log plot and performing a linear regression. 

ε σ
= FHG
I
KJF

n

    (1.7) 
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The formation of a crack in a ductile material involves initial blunting, followed by crack 

initiation.  It is at this point that a critical value of the J-integral, (JIC), is defined 

analogous to a 0.2% offset yield stress in a stress-strain curve.  Beyond initiation, 

however, stable crack extension will result in a rising JR (resistance) curve with a slope 

indicative of the relative stability of this crack extension [5].  The slope of the JR curve is 

typically quantified as part of a non-dimensionalized tearing modulus (equation (1.8)), 

where σ0 is the flow stress, and da is the incremental crack extension.  

T E dJ
daR

R=
σ 0

2     (1.8) 

In direct correlation with the R-curve concept of linear elastic fracture, crack extension 

becomes unstable when the driving force curve becomes tangent with the JR curve.  Thus, 

an applied tearing modulus (1.9) is defined for use here as well.  For Tapp≤TR, crack 

extension is stable, and for Tapp≥TR, it is unstable.   

T E dJ
daapp

T

= F
HG
I
KJσ 0

2
∆

   (1.9) 

Unfortunately, since the J-integral is based on the deformation theory of plasticity, it will 

lose its validity in any instance of unloading.  In the event of the development of a large 

plastic zone in front of the crack tip or for an extending crack, unloading is inevitable.  In 

addition, as a crack extends through a material, a plastic wake zone will form behind the 

growing crack, also contributing to non-proportional loading.  The J-integral will remain 

relatively valid only in instances of J-controlled fracture, which in essence means that the 

flaw size remains very small with respect to in-plane specimen dimensions.  In this case, 

nearly proportional plastic deformation takes place everywhere except within a very 

small region surrounding the crack tip.  Under these circumstances, there is negligible 

difference between the deformation theory of plasticity and the incremental theory, and 

an assumption of non-linear elasticity is justified [27].   
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1.2.2 MULTIPLE PARAMETER APPROACHES (J-Q THEORY) 

In an attempt to provide more detail within a J-dominant region, researchers such as Li 

and Wang [28] have derived higher order terms in the HRR series to account for 

asymptotic stress, strain and deformation fields for power law hardening materials.  

Based on this, Li and Wang [28] developed a two-parameter fracture criterion based on 

JIC and the state of triaxial stress ahead of the crack tip.  As a result, O’Dowd and Shih 

[29, 30] formed the J-Q theory, with the triaxial state of stress represented by a 

parameter, Q.  Single parameter fracture mechanics assumes that the state of stress is 

characterized by the leading term of the HRR infinite power series.  Under an assumption 

of small strain theory, the stresses within the plastic zone may be characterized by this 

series, with the HRR singularity as the leading term and a so-called difference field 

representing higher order terms [5].  The summation of higher order terms, which 

represents the difference between a single parameter stress field and the actual stress 

field, is the parameter, Q, in J-Q theory.   

It is noted by Anderson [5] that, while the J-Q approach allows characterization of the 

crack tip constraint, it does not account for any relationship between this constraint and 

the fracture toughness.  Also, in the presence of large scale yielding, constraint 

parameters lose their physical meaning.  Therefore, J-Q theory merely gives a more 

detailed account of near tip stresses in a cracked body than a single parameter 

characterization.  In addition, as noted by Kobayashi [31], J-Q theory was formed with a 

plane strain state in mind.  Since the out of plane constraint essentially disappears in thin 

materials (plane stress), the J-Q theory may not be applicable for evaluation of thin-sheet 

problems.   

A more recent variant of the J-Q theory, is the J-A2 theory [32] where A2 is the first of the 

higher order terms in the Taylor series expansion of the HRR field.  This method has been 

used to interpret cleavage fracture events and, unlike the Q parameter in J-Q theory, the 

A2 parameter is an accounting of the actual relationship between crack tip constraint, and 
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fracture toughness. More importantly, J-A2 theory may be utilized for fracture events 

controlled by either stress or strain, or a combination of stress and strain.   In contrast to 

the J-Q theory, the J-A2 method does not rely on correlation of the elastic plastic stress 

fields at the crack tip.   

Dadkhah et al [33, 34] have calculated experimental values of the J-integral from 

measured surface displacements and found that, with the exception of small stable crack 

growth of 1-3 mm, the results agreed well with the known solutions.  These 

experimentally obtained J-integral values were then used in a reverse manner to compute 

the HRR displacements in the vicinity of the crack tip.  It was found that the computed 

tangential displacements compared well, but the radial displacements (parallel to crack) 

were found to be substantially different.  This behavior was also observed in attempts to 

characterize the displacements with the addition of higher order terms such as (Q).  

Results of these studies were later verified in a different study by Sciammarella and 

Combel [35], who compared the experimental and numerical displacements in the 

vicinity of the crack tip.  The invalidity of the HRR displacements in these studies 

suggests that the J-integral does not fully characterize the strength of the HRR singular 

field.   

1.2.3 THE I-INTEGRAL 

The limitations of the J-integral approach have led to investigations of other line 

integrals.  Moran and Shih [36] considered the I-integral, which applies to steady state 

crack propagation in a true elastic-plastic material, in a study dedicated to the exploration 

of generalized line integral interpretations of fracture.  The I-integral is given in the same 

form as the J-integral with two important distinctions.  First, the strain energy density 

function, W, is now interpreted as total stress work density, and therefore depends on the 

history of deformation and second, the I-integral is only path independent for steady state 

crack propagation.  The singularity of the stress work density is weaker than that of the 

strain energy density and the I-integral will be zero on a contour very close to the crack 
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tip, unlike the J-integral which is non-zero [37].   Since work must be expended in the 

fracture process zone as well as the surrounding plastic zone during ductile fracture, the 

fact that the I-integral reduces to zero near the crack tip presents a potential problem.   

1.3 CREEP FRACTURE  

1.3.1 GENERAL TIME DEPENDENT CONSIDERATIONS 

Metallic structures under static load and subjected to temperatures close to the melting 

point of the material, will exhibit time dependent deformation.  Typically, studies have 

concentrated on uniform structures that develop microscopic cracks during high 

temperature, long duration loading.  It is of perhaps equal importance, however, to 

consider the stable crack propagation of any existing macroscopic flaw.  To account for 

fracture behavior under creep cracking conditions, a variable of time must be introduced 

into the fracture analysis.   

Figure 1.4: Regimes of Creep Behavior [50]. 
 

As in any fracture analysis, the characterizing parameter must have the ability to portray 

crack tip behavior.  Toward this end, there were early studies such as that of Siverns and 

Price [38] which attempted to correlate the linear elastic stress intensity factor, K, to 
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creep crack growth rates.  A detectable relationship was observed in this study between K 

and creep crack growth, but the data exhibited a very high scatter band of approximately 

20-30 MPa m .  Since creep is primarily an elastic-plastic phenomenon, this approach 

had limited success but served to prove that the capability for characterization of creep 

fracture does exist [39].  Based on this study, Siverns and Price [38] concluded that a 

reasonable description of the creep crack growth data could be given as; 

da dt AKn=     (1.10) 

Where da/dt is the crack growth rate, A and n are empirical constants obtained from 

regressions of data plotted on a log-log plot, and K is the sharp crack stress intensity 

factor.  This formula provides a rough approximation of the correlation between creep 

crack growth rate and linear elastic stress intensity factor.   It should be stressed that 

creep crack growth is a primarily plastic phenomenon and, as such, will require a non-

linear characterization parameter to provide the required detail. 

1.3.2 THE C* INTEGRAL APPROACH TO CREEP FRACTURE 

Landes and Begley [39], used a time dependent form of the J-integral, denoted the C* 

integral to study high temperature creep crack growth in a Discaloy superalloy.  In two-

dimensional form, the C* integral is given as Eq. (1.11); 

C W dy T u
x

ds

W d

i
i

ij ij
mn

* *

*

= −
∂
∂
F
HG
I
KJ

F
HG

I
KJ

=

z
z
Γ

σ ε
ε

0

    (1.11) 

Where W* is the strain energy rate density, ui  is the displacement rate, ε ij  is the strain 

rate, and the other symbols are defined similar to the J-integral. Prior to this study, it had 

been shown by Goldman and Hutchinson [40], that the C* integral could be used as a 

single parameter to characterize the state of the near-tip stress and strain rate fields, 
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analogous to the HRR characterization of near tip stresses and strains by the J-integral.  In 

this case, the near tip stress and strain rates are given as Eq. (1.12): 

σ σ ασ ε σ θ

ε αε ασ ε ε θ

ij n
n n

ij

ij n

n
n

n
n

ij

C I r

C I r

=

=

+
−

+
F
HG
I
KJ

+
−

+
F
HG
I
KJ

0 0 0

1
1

1
1

0 0 0
1 1

*

*

~

~

b g

b g
  (1.12)  

Where ε0, σ0, α, and n (creep exponent) are constants defined in the creep law given as 

Eq. (1.13); 

ε
ε

α σ
σ0 0

=
F
HG
I
KJ

n

    (1.13) 

and In is a numerical constant which is a function of n and the mode of crack opening.  
~σ θij b g  and ~ε θij b g  are dimensionless functions which define the stress and strain rate 

distribution [40].  These stress and strain rate definitions are based on a principle known 

as Hoff’s analogy [41] which states that a nonlinear elastic body that obeys a material law 

ε σ= f b g , and a nonlinear viscous body characterized by ε σ= f b g , develop the same 

stress field when subjected to the same loads.  It is noted that the C* integral may only be 

applied under an assumption that the material being studied follows a steady state creep 

law as in Eq. (1.14), which is a multiaxial representation of equation Eq. (1.13) [39].  The 

C* integral may therefore only be applied to a specific range of crack growth, namely 

that during which the material is governed by Eq. (1.14) and under steady state conditions 

(time independent stresses)  

ε
ε

α σ
σ σ

ij e

n
ijs

0 0

1

0

3
2

=
L
NM
O
QP

−

   (1.14) 

where σe is the effective stress, and sij is the stress deviator tensor.  It is invalid for 

primary (Small Scale –SSC) and tertiary creep. 
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It should be noted that other researchers such as Ohji et al [42], and Nikbin et al [43] 

were also responsible for the development of this C* integral.  Their work was concurrent 

with that of Landes and Begley [39], but it seems the Landes and Begley study is 

sufficiently comprehensive for this review.   

For experimental purposes, the C* integral was calculated by Landes and Begley [39], 

using a somewhat complex, six step procedure.  The first step involves plotting load and 

crack length versus time, and load versus crack length for several applied displacement 

rates.  The second step was to plot load versus displacement rate for differing crack 

lengths, which provided a measure of energy rate, or power input.  The final four steps 

essentially involve the derivation of C* from these first plots.  The C* integral per unit 

thickness will be the slope of the power input versus crack length curve.  This is 

somewhat analogous to calculating the J-integral graphically as in the ASTM standard 

test method for J-integral testing [44].  When used in this fashion, the C* integral may be 

expressed as; 

C U
a

* = −
∂
∂
F
HG
I
KJ ∆

    (1.15) 

U Pd= z ∆
∆

0
    (1.16) 

Landes and Begeley’s preliminary study of the feasibility of using the C* integral to 

correlate creep crack growth rates proved to be moderately successful.  The C* integral 

was shown to apply in this sense, at least to the Discaloy used in this study.  This 

provided the impetus for future studies in this area.  Indeed, other researchers such as 

Riedel [45] have since shown similar correlation by employing the C* integral as a creep 

crack growth rate correlation parameter within the steady state regime.  The lifetimes of 

cracked components are calculated by developing relationships between crack growth 

rates and the C* integral.  This relationship is given by Riedel [46], and Hui et al [47] for 

large crack growth increments as; 
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da
dt

A
n n

C
I

a xe
n n

f n

n n
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+
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β
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sin ( )
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( ) ( )0

1

1 1 1
1 1 1 1Db g   (1.17) 

where da/dt is the crack growth rate, xc is a distance ahead of the crack tip of the order of 

the material’s microstructural scale, β is a numerical factor with values of β = 0.85, 0.90, 

0.95, and 1 for values of n = 4, 5, 7.5, and ∞, respectively, A is a temperature dependent 

factor from Norton’s creep law, εf is the critical strain for local failure, and the rest of the 

parameters are as defined in the HRR solutions.  The lifetime of a cracked component 

may be obtained by performing a time integration of the creep crack growth rate.  It is 

noted [45] that the creep crack growth rate is a function of crack extension, ∆a, which 

leads to a steep increase of the crack growth rate in the early stages of crack growth.  The 

application of this formulation, and observations of growth rate behavior have been 

experimentally observed by researchers such as Riedel and Wagner [48], and Detampel 

[49] in 1Cr-1/2Mo and 2 ¼ Cr-1Mo steels, respectively.  The characterization of creep 

crack growth rates within the steady state realm is well documented and does not require 

further extensive analysis.   

1.3.3 THE Ct, AND C(t) INTEGRALS 

Naturally, research on the C* integral extended into the realm of non-steady state, to 

accommodation for all instances of creep crack growth.  Non-steady state creep (fig 1.4) 

is generally defined as small scale (t~0), transitional (between small scale and steady 

state), and tertiary creep.  Studies such as those by Saxena [50], Ehlers and Riedel [51], 

and Ainsworth et al [52] first attempted to address this issue.  In [50], a parameter 

designated Ct was introduced to characterize creep crack growth over a wide range of 

creep crack growth behavior, including small-scale creep and transient creep.  Ct is 

shown to be independent of geometry, and is demonstrated over a wide range of crack 

growth rates.  Under steady-state conditions t → ∞b g , Ct reduces to the path independent 

integral, C*.  It is interpreted as the instantaneous value of the difference between energy 
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rates supplied to two creeping, cracked bodies with incrementally differing crack lengths 

(Eq. 1.18); 

C
B

U
at

t= −
∂
∂

1 *

    (1.18) 

where B is specimen thickness, and ∆Ut
* represents the difference in energy rates 

supplied to the two creeping bodies.  Alternatively, Ct may be defined as; 

C PV
BW
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'     (1.19) 
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  (1.21) 

K is the applied stress intensity factor, F is a K calibration factor, A and n are the creep 

factor and creep exponent, respectively, and Vc  is the applied load-line deflection rate.  

Also, P is applied load, W is specimen width, B is thickness, and E is Young’s Modulus.  

This parameter (Ct) has since been applied in studies of power law materials by several 

other researchers [54-55].   

Linkens et al [54] investigated the applicability of procedures for calculating Ct within 

the transition regime where its definition is questionable, by comparing finite element 

models with experimental results for simple geometries.  Results were found to be 
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conservative when using the R5 method [52] where a crack tip parameter C(t) is defined 

using far field estimates of J as; 

C t C t J

n J dt
R

n

nt( ) ( )≅ =
+

+

z5

1

0
1b g

   (1.22) 

where n is the creep exponent, or using the method given by Saxena [50].  Results were 

generally non-conservative with the use of the Ehlers and Riedel method [51], where a 

crack tip parameter, C t C t t( ) *= +1 1b g , is used as an estimate of Ct within the transition 

region.   Here, the ratio t1/t is representative of the ratio of transition time to test time.  

The parameter C(t) of Ehlers and Riedel [51], Ainsworth and Budden [52], and Riedel 

and Rice [55], is interpreted as the amplitude of the crack tip stress fields under elastic-

plastic deformation conditions. It is simply an estimate of the Ct parameter of Saxena 

[50].  Busso et al [56] recently investigated the use of C(t) in a study where the calculated 

amplitudes (C(t)) of singular crack tip fields in the non-steady state regime of power law 

creeping materials and found that opening stresses had a slightly higher order of 

singularity than HRR type fields characterized by the r n− +1 1/( )b g  singularity.  Also, Dogan 

et al [53] compared the use of C*, C(t), Ct, and J-integral as characterizing parameters in 

relatively brittle, Ti-6242 alloys and found that crack growth rate, da/dt, only correlates 

with C(t) and Ct when the creep component Vcc hof deflection rate is dominant.   Thus, the 

use of Ct for characterizing small scale, and steady state creep, and C(t) for transition 

creep may be in question. 

Saxena [50], notes that, although it expands the applicability of the C* integral to primary 

and small scale creep (SSC) conditions, there are several limitations to Ct.  First, its use is 

restricted to cavitating materials in which creep damage is necessary in the crack tip 

region for crack growth to occur. Under these conditions, even in the event of primarily 

elastic behavior, K or J will not be able to characterize crack growth (see Eqs. (1.19)-
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(1.21)) and there will be no unique relation between K and da/dt. There are no well-

established correlations between void growth phenomena, and creep fracture parameters.  

As noted in [8], an interpolation between the small scale (K-dominated) and steady state 

(Ct, or C(t)) region must be used, with the exception of the transition time where no 

definition is available.  In addition, the damage (cavitation) must be very localized.  That 

is, the process zone must be very small in comparison to the region over which the HRR 

type stress and strain rate relations are defined.  As noted by Riedel [45], the condition 

for valid C* testing is; Da a W a£ -(5 to 15)% of or .  Further, since Ct is dependent on 

the extent of creep, it is also time dependent, even at a fixed crack length.  For a growing 

crack, the reference from which t is measured is lost, meaning it is difficult to measure 

the value of Ct without actually calculating the creep component of deflection rate, Vc .  

Thus, it is necessary to have both numerical and experimental results available to make 

any approximation.  Finally, these parameters are valid based on the assumption that a 

path independent J-integral (non-linear elasticity) could be used to characterize crack tip 

stress and strains in the event of a stationary crack.  As discussed previously, this is not a 

valid assumption.  There is a question concerning the relationship between Ct and the 

HRR field in the small scale, and transition regions [50].    

1.4 THE T*
ε INTEGRAL 

1.4.1 ORIGINS OF T*
ε, ∆TC 

In 1982, Atluri [57] introduced ∆Tc, a general, time dependent path integral that may be 

used to characterize strain energy in the presence of non-steady state, creep crack 

extension. This approach was an attempt to overcome the inaccuracies involved in the use 

of the Ct integral.  Another detailed discussion of ∆Tc in the context of creep crack 

extension came later in the same year from Stonesifer and Atluri [58] in which a 

numerical model was developed for use with a compact tension (CT) sample. A 

representation of ∆Tc, which is independent of contour size, is given as; 
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∆ ∆ ∆ ∆
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where W is the stress work density, 

∆ ∆ ∆W ij ij ij= +FHG
I
KJσ σ ε1

2
    (1.24) 

 and σij is understood to be the stress at the beginning of the current time step, Γ234 is a 

counterclockwise contour (Figure 1.5) beginning at one crack face and extending to the 

other, n are unit normals, and Vt is the volume enclosed by the contour. This parameter 

was compared to the widely accepted, path dependent C* integral which is typically 

applied in an instance of steady state creep crack extension and was intended to be an all 

encompassing creep characterizing parameter including, the linear elastic approach and 

the C* integral approach.  Figure (1.6) is a depiction of the path dependence, and the 

relative path independence of the C* and ∆Tc integrals respectively.   

Figure 1.5: Contour of integration for ∆Tc [57]. 
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The concept of ∆Tc was slightly modified by Atluri et al [59] to be an incremental form 

of the J-integral which, when integrated along the load path under assumptions of non-

linear elasticity, will be equal to J.  This incremental parameter, denoted ∆T*p in this 

work, was defined as a path-independent integral which could characterize the crack tip 

fields under a flow theory of plasticity.   It was also valid for arbitrary loading and 

unloading conditions, but under monotonic loading, was equal to the J-integral as defined 

by Rice [6].  The modified form, ∆T*p from the initial discussion in [59] is given in 

equation  (1.25) as the incremental form of a measure of the crack-tip stress/strain field.  

The total value is given as the sum of the incremental steps (Σ∆T*p). 

D D D D
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dSp i i
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ε

  (1.25) 

Figure 1.6: Relative path dependence or independence of ∆Tc and C* integrals, 
ε is contour size [58]. 
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1.4.2 THE LOCAL T*ε INTEGRAL 

Brust et al [60], and Atluri [61] eliminate the need for summation by defining a local 

value, T*ε, defined on a small contour, Γε surrounding the crack tip as; 

T Wn t u
x

di
i

ε
ε

* = - ∂
∂

F
HG

I
KJz 1

1
G

G    (1.26) 

W dij ij
ij= z σ ε

ε

0
    (1.27) 

Here, W is defined as the stress work density, rather than its interpretation as the strain 

energy density in Rice’s J-integral.  In this total form, T*ε is calculated along a so-called 

“elongating contour” (Figure 1.7) which grows as the crack extends. Pyo [62] showed, 

through a series of FEM analyses, that T*ε could be used in this form to predict the load 

carrying capacity of cracked structures if the stresses and strains were obtained using the 

incremental theory of plasticity.   From these definitions, it is seen that T*ε is explicitly 

dependent on strain history, which is an essential characteristic for elastic-plastic crack 

growth studies.   
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Figure 1.7: Moving and elongating integration contours. 
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The divergence theorem may be applied to obtain a representation of Eq. (1.26) as a 

summation of a far-field, contour integral plus a finite domain integral as in Eq. (1.28) 

[65].  Here the volume formulation has been generalized to an area domain for 2-D since, 

in this case, dz=1.0 such that dV=dxdy (area per unit thickness) and out of plane strain 

gradients are zero.  It is noted here that the numeral 1 appearing in the subscript is 

indicative of the fact that T*ε is a vector quantity and in this case we are concerned with 

only the x1 component.   

*
1 1

1 1 1

( )iji
i ijA A

u WT Wn t d t d A A
x x xε

ε ε

ε
Γ −

∂   ∂ ∂
= − Γ − − −   ∂ ∂ ∂   

∫ ∫   (1.28) 

In this equation, it is noted that the first term on the right hand side is equal to Rice’s J-

integral, and that T*ε differs by the second term.  In the limit as the area tends to zero, T*ε 

becomes equal to J because the second term disappears.  In a series of FE analyses, Brust 

et al [64] observed that the second term became larger as crack growth proceeded.  That 

is, as J continued to increase, T*ε reached a plateau as seen in Figure (1.8).  

To overcome inherent large stress and strain gradients in the vicinity of the crack tip, 

Nikishkov and Atluri [63] introduced the “equivalent domain integral” method for 

calculating T*1ε from remote values as; 
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∫     (1.29) 

   

Or, by application of the divergence theorem and a 2-D generalization; 
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where S is an arbitrary, smooth function equal to 1 on Γ, and 0 on Γε, and A-Aε is the area 

per unit thickness encompassed by the domain of integration.  The S-function used in this 

capacity is an analog to a similar function utilized by Li et al [64], which may be 

interpreted as enforcing a unit displacement in the X1 direction on the nodes along the 

inner contour, Γ while holding the nodes along the outer contour, Γε, stationary.  Hence, 

it is also analogous to a Virtual Crack Extension technique by virtue of its similarity to 

the function employed in [64].   Equation (1.29) may be further decomposed [63] into 

two parts, by application of the chain rule of calculus; 
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1 1
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1 1
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∫

∫
   (1.31) 

For the case of a linearly elastic, or nonlinearly elastic, homogeneous material, it is noted 

that 
1 1

ij
ij

W
x x

ε
σ

∂∂
≡

∂ ∂
 so the second term, T*(W) is equal to zero and the summation of the two 

is equivalent to the J-integral. 
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Like the J-integral, the T*ε integral becomes path dependent in the presence of large 

plastic yielding, or unloading.  Thus, to be used as a valid fracture criterion, T*ε must be 

evaluated along a fixed contour very close to the crack tip.  The size of this contour has 

been found, in general, to be approximately equal to plate thickness for plane stress by 

Narshimhan and Rosakis [66] who observed the level of constraint in front of the crack 

tip.   

Okada et al [67] investigated the difference between the “moving” contour, which moves 

along with the crack tip, and the “elongating” contour, which grows with the crack  

(figure 1.7).  Using simple energy balances, Okada showed that these two contour types 

measured different physical quantities.   The moving contour was shown to represent the 

energy release at the crack tip, while the elongating contour is interpreted as the energy 

dissipation near the crack tip plus the energy release rate at the tip per unit crack 

extension.  The elongating contour accounts for unloading behind the crack tip, as well as 

deformation close to, and in front of it.  Values of T*ε calculated using the moving 

contour dropped to zero soon after crack initiation as they represent the energy release 

Figure 1.8: Divergence of J and T* integrals with crack extension 
[65].
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rate at the crack tip.  Thus, it was concluded that the elongating contour should be used in 

calculation of T*ε because it represents energy dissipation in the extending, near-crack 

integral path, per unit crack extension.   

There seem to be two major reasons for the success of the T*ε integral for stable crack 

extension as opposed to the J-integral.  First, the T*ε integral is based on the incremental 

(flow) theory of plasticity instead of the deformation theory.  This allows it to account for 

all loading history events, the most important of which is load/unload history.  Second, it 

is calculated along a contour, which extends along with the growing crack.  This allows 

for accounting of all processes occurring within the fracture process zone.    

1.4.3 FINITE ELEMENT AND EXPERIMENTAL CALCULATION OF T*ε 

The majority of the early work involving T*ε was performed using numerical analysis 

techniques [60, 61, 65].  T*ε resistance curves are typically calculated numerically, using 

the EDI method of Nikishkov and Atluri [63] in what is termed the “generation phase” by 

Kanninen and Popelar [8].  The resistance curve is then used to control the crack growth 

in a FE model by allowing the specimen to reach the critical value of T*ε and then 

modeling an increment of crack growth.  This fracture parameter controlled crack growth 

is known as the “application phase” [8] of the analysis. The numerical results are then 

compared to actual load versus crack growth data. 

In 1997, Wang et al [68] used a method termed as the Elastic-Plastic Finite Element 

Alternating Method (EPFEAM) by Nikishkov and Atluri [69], to predict elastic-plastic 

fracture in aircraft structures.  This is essentially a superposition scheme, which iterates 

between analytical solutions for a cracked body, and an uncracked body.  It involves 

solving for crack closure tractions under a linear elastic assumption, reversing the 

tractions, solving for the residual stress, and iterating until the process converges.  This 

method was shown to accurately predict fracture behavior in aircraft structures.   
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Following the early numerical work, recent attempts have been made to develop 

procedures for calculating T*ε directly from experimental displacement data [67, 70].  

Most of this work was aimed at overcoming the difficulties inherent in the use of 

incremental (flow) theory of plasticity with experimental data.  Okada et al [70] 

simplified the integration procedure by neglecting the portions of the contour behind the 

crack tip. With reference to Figure (1.7), this means that the portions of the contour path 

labeled F’-G’, and C’-B’ are neglected by assuming that the stresses acting on a constant 

plane were nearly zero close to the traction-free crack and by realizing that along these 

portions, n1 is zero.  The portions labeled G’-H’, and B’-A’ are also considered to be 

small in terms of the work density as a result of their being far behind the original crack 

tip.  This led to a calculation method involving a “cut-off” procedure involving the 

truncation of the integral contour from an empirically determined distance behind the 

crack tip.  Since it is difficult to obtain the incremental history in an experiment, the 

deformation theory of plasticity was used to calculate stresses from experimentally 

determined strains.  This is allowable as long as the cut-off integration contour is 

employed.  In comparison with T*ε values calculated (FEM) using the incremental theory 

of plasticity, the T*ε values calculated using the cut-off integration contour method with 

deformation plasticity were shown to agree well.   

Using the method developed by Okada et al [70], Omori et al [71, 72] have successfully 

measured T*ε experimentally in A606 HSLA steel [71], and 2024-T3 aluminum [72].  

Using single edge notched (SEN) type specimens of 1 mm thickness, T*ε integral values 

were obtained numerically and experimentally for the A606 HSLA steel in [71].  It was 

found that T*ε values calculated from FEM and experimental displacements were in good 

agreement, and that values were contour dependent but tended to converge to a steady 

state value at a distance approximated by the thickness of the specimen.  In [72], 

aluminum (SEN), compact tension (CT), and center notched (CN) type specimens were 

analyzed in a similar manner.  Again, these preliminary test results showed good 

agreement between numerical and experimental values.  It should be noted that, while 
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these studies showed promising results, the amount of experimental data collected was 

small.   

Walker and MacKenzie [73] have investigated the use of the T*ε integral in creep 

relaxation cases.  This study did not involve any crack extension, but served to illustrate 

the utility of using the T*ε integral for characterization in creep studies.  Since the crack 

did not grow in this case, the contour of integration remained stationary.  ∆T* 

contributions were summed throughout the loading history to give the T*ε integral with 

an incremental plasticity assumption.  The T*ε integral was shown to be calculable as 

long as the creep dominated zone was contained within the inner contour of integration.  

When the creep zone grew beyond the contour, the elastic and plastic strains required 

decoupling in order to allow accurate calculation.    

Brust [74] performed an analysis of time dependent deformation under variable load 

conditions in 316 stainless steel.  This study consisted of both numerical and 

experimental analyses.  Here a variable load history was input to a servohydraulic load 

frame and load line displacement versus time was recorded.  The finite element model 

was forced to follow the observed crack length versus time behavior.  Based on this 

study, it was concluded that the T*ε integral approach is potentially useful in studies 

involving variable load histories.   

1.5 RECENT WORK, TWO DIMENSIONAL T* 

Over the past ten years, much work has been done to characterize the T*ε integral 

experimentally, for two-dimensional cases.  This includes characterization in thin, plane 

stress samples [71, 72, 92, 100], somewhat thick (3.1 mm), plane stress/plane strain CT 

samples [91, 93], and plane stress, wide panel multiple site damage (MSD) samples [92].  

The studies mentioned here incorporated experimental characterization of the T*ε integral 

with numerical evaluation.  Comparisons between numerical results and experimental 
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values calculated using Okada’s truncated contour agreed very well in all cases.  In [92], 

a full ‘generation’ and ‘application’ phase analysis was carried out for thin (0.8 mm) 

2024-T3 aluminum MSD wide panels.  T*ε resistance curves (Figure 1.9) were generated 

and used to drive an FE model in its application phase.  Load versus crack extension was 

compared between the FE and experimental results to validate the T*ε master curve and 

FE model.  Figure 1.10 shows the load versus crack extension comparison from this 

study.  Figures 1.11 and 1.12 show experimental and numerical comparisons for 

monotonic and low-cycle fatigue, 3.1 mm thick, 2024-T3 aluminum CT specimens from 

[91] and [93] respectively.  These curves demonstrate the viability of the T*ε integral as a 

stable tearing characterizing parameter by demonstrating the achievement of a ‘steady-

state’ value upon reaching a crack extension approximated by the thickness of the 

specimen.   

Figure 1.9: T*ε for center notched (CN), 2024-T3 aluminum 
alloy specimens [92].  
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(a) Reaction load of first crack linkup (b) Reaction load of second crack linkup
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Figure 1.10: Crack growth simulation with T*ε criterion 
for MSD specimens [92]. 

 

Figure 1.11: T*ε curves for 2024-T3 aluminum CT specimens 
under monotonic load [91]. 
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Figure 1.12: T*ε curves for 2024-T3 aluminum CT 
specimens under low cycle fatigue [93]. 

 

 

1.6 THREE DIMENSIONAL CONSIDERATIONS 

1.6.1 3-D, J-INTEGRAL 

A majority of practical fracture mechanics applications involve complex, three-

dimensional geometries.  As a result, analysis of fracture parameters along crack fronts of 

essentially three-dimensional flaws has been considered for many years.  Authors such as 

Newman and Raju [75], and Shah and Kobayashi [76], among others, offered linear 

elastic solutions based on finite element analyses for semi-elliptical flaws in finite, three-

dimensional bodies undergoing tensile and bending loading.  Linear elastic, 3-D solutions 

are well documented in several texts such as references [5] and [8].   These analyses were 

intended to provide linear elastic solutions for flaws such as those surrounding bolts or 

rivets, or for part through cracks in pressure vessels.   
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More recently, analysis of fracture toughness characterization in three-dimensional, finite 

bodies has been extended to the elastic-plastic regime.  Rice’s J-integral provides a 

quantification of material toughness in 2-D, but application in fully 3-D situations is often 

abandoned in favor of characterization by CTOD.  A possible reason for this, aside from 

the obvious complexities involved in experimentally obtaining a value of the 3-D surface 

integral, is uncertainty over the proper definition of a 3-D J-integral for point-wise 

characterization along a crack front.  There are three numerical approaches that have been 

developed to compute the energy release rate along a crack front.  Two involve methods 

of virtual crack extension [85], both directly and indirectly by utilizing the ability to 

virtually extend the crack in an arbitrary, point-wise fashion along the crack front and 

measuring the resulting change in energy.  The distinction between direct and indirect 

methods involves the proximity of these displaced nodes to the actual crack tip with the 

former involving actual tip nodes and the latter involving a volume removed from the 

crack tip area.  The third method involves generalization of the J contour integral to a 

three-dimensional surface integral [77] which has been done by authors, such as Amestoy 

et al [78], and Raynund and Palusamy [79].  The direct, and indirect virtual crack 

extension methods are applicable to both deformation theory, and incremental theory (J-

integral and T*ε integral respectively) calculations and allow straightforward point-wise 

characterization of the energy release rate.  As noted in [64], the generalization of the J 

contour integral to a 3-D surface integral merely gives an overall average value of J-

integral and would be extremely difficult to evaluate on a point-wise basis.    

Sakata et al [80] proposed an extension of the J-integral, denoted as the J -integral.  This 

parameter represents the energy release per unit of a crack-tip translation in a three 

dimensional, elastic-plastic material.  It is not simply a generalization of the Rice’s J-

integral into 3-D.  Considering the energy balance on a thin disk during a translation of 

the crack in the x1 direction (self-similar crack growth), the J -integral is given as; 

( ), , , ,J dA Tu d u dAijA ij i i iA i= − −zz z zzσ ε σ1 1 3 1 3Γ
Γ   (1.32) 
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 where Γ denotes any curve surrounding the crack tip, and A is the area surrounded by the 

curve and the crack surfaces.  In this study, a finite element model was developed to 

calculate the J -integral along the crack front for comparison to the ASTM accepted 

value, which is calculated with the Merkle-Corten formulation [44]. The FE calculated 

J -integral was observed to be higher in the center of moderately thick specimens in 

accordance with what are commonly believed to be conditions of near plane strain.  

These mid-thickness values also compared well with the values of JIC calculated in 

accordance with the ASTM standard E-813 [44], indicating the relevance of the ASTM 

requirement for specific specimen thickness.  The path independence of this parameter 

was also observed by comparing pointwise values along the crack front for different 

contour sizes.   

De Lorenzi [82] derived a general expression for calculation of the energy release rate 

from an arbitrary crack propagation in a general 3-D crack configuration using a 

continuum mechanics approach as;  
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where δjk is Kronecker’s delta, W is the strain energy density, and fi are body forces.  This 

formula is derived from the general formula for J contour integral by application of the 

divergence theorem to obtain a volume integral.  It is a very general form of the crack tip 

integral, which is applicable to isotropic or anisotropic materials, as well as conditions of 

non self-similar crack propagation.  Under certain simplifying assumptions, namely that 

the crack is forced to grow in a self-similar manner and that symmetry conditions are 

fulfilled (plane strain, or plane stress), this general form will reduce to the 3-D form of 

the J-integral.   

Carpenter et al. [81] performed a review of the proposed path independent integrals 

intended for inclusion of plasticity effects.  The compared parameters included those of 
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Sakata et al [80], and Amestoy et al. [78] and a newly proposed integral, ~J , which 

allowed characterization under an assumption of an incremental theory of plasticity 

model.  For 3-D, this integral is given as the sum of two contour integrals and three area 

integrals; 

~J J J J J JC C A A A= + + + +1 2 1 2 3   (1.34) 

where; 
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where superscripts indicate elastic (e) and plastic (p) portions, C’ is a far-field contour in 

Figure 1.13: Contour of integration for ~J  [81]. 
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the counter-clockwise direction which does not include the crack faces, S* is the total 

surface area defined by C’, the two crack faces, and an inner contour, Cε for the slice, 

x3=0 (see Figure 1.13).  It is easily seen that JC1 is Rice’s 2-D J-integral.  It is also shown 

that Sakata’s J -integral is simply the sum JC1+JA2+JA3, and that Amestoy’s integral is 

JC1+JA3, both for nonlinear elasticity.  It is noted that the quantities JA1, JA2 and JC2 are 

zero for deformation plasticity.  This study qualified the various parameters with regard 

to their energy interpretation with respect to crack extension.  The significance of both 

Amestoy’s and Sakata’s integrals are unknown for incremental plasticity models, but are 

interpreted as potential energy release rate per unit of crack extension under an 

assumption of non-linear elasticity.  The ~J -integral is interpreted identically for a 

deformation theory assumption, but is interpreted as the rate of change of total energy, 

per unit crack extension for 3-D, incremental theory.  In application to a 3-point bend 

sample, the ~J -integral was observed to be approximately 25% higher in the center than 

on the surface, similar to the observation by Sakata.  While this approach showed 

considerable promise, it was concluded that the fine-mesh requirements for calculating 

the ~J -integral can overshadow the viability of using this parameter for 3-D calculations.  

Dodds et al. [77] calculated the ~J -integral for a numerical model of a 3-point bend 

sample, and compared it against an average, experimental J-integral calculated by way of 

the crack mouth opening displacement (CMOD) method suggested by Sumpter and 

Turner [83].  Here, the experimental J-integral is calculated from the load-versus CMOD 

curve as; 
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where P1 and P2 are the loads for establishing an effective limit load.  In this study, it was 

observed that the numerically calculated ~J -integral, and experimental J are both linearly 

related to the CTOD as; 
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J m CTODflow= σ   (1.37) 

where m is a constraint parameter whose value lies between the computed center plane 

(higher constraint) value of 1.73, and the surface value of 1.21.   

Li et al. [64], and Shih et al. [84] derived 2-D and 3-D domain integral formulation for 

the J-integral.  Specifically, in [84], an area/volume domain integral expression for the 

energetic force in a thermally stressed body was derived.  This expression is ideally 

suited to point-wise characterization of energy release rate along a 3-D crack front 

because it is naturally compatible with the FE formulation of the crack tip field equations.  

Point-wise values of J-integral are calculated using an analog to the virtual crack 

extension method employed by Parks [85], whereby the crack is extended successively at 

each node along the crack front to measure the local energy release per unit of local crack 

extension.  The use of a domain integral is intended to circumvent the difficulties 

involved in calculating a near-tip value for J-integral.  In the three-dimensional case, in 

order for the J-integral to be the characterizing parameter in the surrounding HRR fields, 

it must be assumed that a state of plane strain exists.  It is argued [64] that as the crack tip 

is approached asymptotically, the out of plane strain, εi3, remains bounded while the in-

plane strains become singular.  Thus, a plane strain state is approximated and the point-

wise values of energy release rate may be used in place of the J-integral for 

characterizing the stresses within the HRR field.  In order for this assumption to be made, 

however, the inner domain boundary must be shrunk onto the crack tip to capture the 

near-tip material behavior.   

Nikishkov and Atluri [86] presented a 3-D analog to their 2-D, J-integral calculation [63] 

by means of the EDI method.  Here, an isoparametric formulation is utilized to calculate 

the J contour integral over a finite domain, remote from the crack tip.  Values of J-

integral are calculated at the center of each crack tip element and a non-straight crack 

front is accounted for through a point-by-point coordinate transformation.   Point-wise J-

integral is thus calculated through the thickness, including the effects of a curved or 
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tunneled crack.  The author notes that this approach (EDI) presents the opportunity to 

relatively easily automate the calculation of J-integral by means of Matlab, or Fortran 

programs.   The 2-D EDI method has been successfully used for calculation of T*ε by 

many authors [67, 71, 72, 91-93].  After a translation to a 3-D formulation, it should 

allow calculation of the 3-D T*ε integral with the same success. 

More recent studies of application of 3-D J-integral include those of Dodds and Read 

[87], Kolednik, et al [88], and Ohgi and Hatanaka [89].  The studies performed in [87] 

and [89] concern the assessment of 3-D energy release rate for surface cracked structures 

both experimentally and numerically.  Kolednik et al [88] only perform the numerical 

calculation.  

In [87], a surface cracked plate was instrumented with several strain gages along a 

longitudinal symmetry plane (Figure 1.14) that corresponds to the point of maximum 

depth of the surface flaw.  This allowed experimental evaluation of the contour portion of 

Carpenter et al’s [81] ~J -integral.  Finite element results indicated negligible 

contributions from the area integrals on a symmetry plane, so the evaluation along a 

longitudinally symmetric contour was seen as a good estimate of the fracture driving 

force.  In comparisons between finite element results and experimental results, 

exceptional agreement was found between the two for cases of small scale yielding 

(SSY), net ligament yielding (NLY), and net section yielding (NSY) for measured strains 

(εg) of up to 1.6 times the material yield strain (εy) (Figure 1.15).  The area integral 

contribution was found to be approximately 10% of the contour integral contribution.  

This study represents one of the only attempts at departing from ‘mean’ J-integral value 

calculations based on CMOD, and involves calculating 3-D J-integral from experimental 

strain data obtained on the specimen surface.  
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Figure 1.14: Instrumentation for experimental evaluation of 3-D J-
integral [87]. 

 

Figure 1.15: Variation of J-integral along crack front for 
different strain levels [87]. 

 
Another approach to calculating J-integral was offered by Narasimhan and Rosakis, and 

Zhender and Rosakis [66, 90].  Here, the method of caustics was used to calculate mean 

value of 3-D J-integral in a plane stress analysis of a 3-point bend specimen.  The size of 

the caustic was calibrated to a J-integral curve to allow characterization of J based strictly 
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on the size of the caustic zone.  Experimental results were compared to numerically 

determined results, which were obtained using a 3-D generalization of the J-integral 

(calculated on a 3-D surface contour surrounding the crack tip).  This procedure was 

developed for use in dynamic J-integral characterization and is specimen type and 

material dependent.  However, a correlation between J-integral and caustic size was 

found to be obtainable either experimentally, or numerically.   

 

In summary, there seem to be three main methods for calculation of 3-D J-integral as 

discussed in this section.  These are methods of virtual crack extension, domain integral 

methods, and generalized contour integral methods.  There seem to be, however, no 

methods currently available for pointwise characterization of experimental, 3-D energy 

change rate.  The displacements would need to be measured in slices located within the 

interior of the sample to provide the required data for such a calculation.  There are 

currently no techniques known which allow for this in opaque materials.  For this reason, 

researchers have typically employed methods such as the CTOD measurement technique 

to calculate an ‘average’ value of 3-D J-integral across the crack front.  Alternatively, 

correlations are drawn between surface phenomena such as caustic zone size, and J-

integral [66, 90].  All of these experimental approximation methods rely in some form on 

a numerical analysis to aid in the calculation.  It is seen as sufficient to perform extensive 

numerical analyses of these 3-D integrals and subsequently compare load versus crack 

extension, or load versus displacement data between numerical and experimental tests.  

Numerical studies typically employ a virtual crack extension method for calculation of 3-

D, point-wise values of the J-integral.  The work of Dodds and Read [87] represents the 

most promising of the experimental approaches for 3-D calculation of the J-integral.  

Nikishkov and Atluri’s EDI approach [86] provides the basis for simplified calculation of 

any of the contour integrals via a modification to the virtual crack extension method.   
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1.6.2 3-D CTOA 

In the recent past, researchers primarily at NASA have undertaken the task of qualifying 

CTOA as a stable tearing characterization parameter for thin, ductile aluminum alloys.  

This includes the work of Dawicke et al. [1] and Gullerud et al. [20] on modeling of 

tunneling behavior in 2024-T3 specimens.  In [1], through a series of FE analyses, it was 

found that during the initial, transient stage of crack propagation, the CTOA is on the 

order of a few degrees smaller than its steady state value in the center of the specimen 

and is a few degrees higher on the surface.  When steady state (stable tearing) crack 

growth is reached, the two values become nearly equal and coincide with the typical 

steady state value.  This study used a unique finite element model that incorporated crack 

tunneling during the initial stable tearing phase which was measured experimentally by 

fatigue marking the extent of tunneling after subjecting the specimen to various load 

levels and crack extensions.  These crack front shapes were digitized from photographic 

images and fit with polynomial curves to describe the crack front shape as a function of 

through-thickness position.  The elastic-plastic portion of the FE analysis relied on the 

incremental theory of plasticity, and was composed of several layers of elements to 

model the curved crack front.  Figure 1.16 shows a typical FE mesh for this study. 

Gullerud et al. [20] use steady state CTOA as a crack tip node release parameter for 3-D 

FE analyses.  That is, nodes are released to allow crack extension when all values of 

CTOA are equivalent across the crack front.  Following this, the load versus displacement 

Figure 1.16: Crack front profiles in FE mesh for CTOA [1]. 
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trends were compared between FE analyses and experimental data.  CT specimens of W= 

50 and 100 mm were validated in this study, as well as constrained (with buckling 

guides) 75, 300, and 600 mm wide MT specimens.  Errors of between 7 and 9 percent 

were observed in the CT specimen study, but better agreement was exhibited in the MT 

specimens.  



 

 

43

CHAPTER 2: RESEARCH SCOPE AND OBJECTIVES 

2.1 SCOPE 

This research is intended to be a study on a potential stable crack growth characterizing 

parameter for use with 3-D crack fronts.  Based on the previous discussion, it is 

reasonable to approach this subject by focusing on the T*ε integral since it is the only 

energetic parameter available which seems to allow reproducible quantification of the 

energy to fracture in a stable tearing case.  Since several numerical and experimental 

studies [65, 91-93] have recently been applied to two dimensional, plane stress 

specimens, it also seems reasonable to expand this study into three dimensional 

characterization for a plane strain state of stress where there is less information readily 

available with regard to the state of interior material behavior.  The previous chapter was 

dedicated to illustrating some of the more successful attempts at applying stable crack 

characterization to two-dimensional specimens, and to three-dimensional geometries in 

the case of 3-D J-integral, and three-dimensional FEA analysis of CTOA by Dawicke et 

al [1].  These studies provide a basis for the current work, which will encompass the 

characterization of room temperature stable tearing resistance for basic three-dimensional 

geometries in aluminum 2024-T3 samples.   

As suggested by Kanninen and Popelar [8], a scheme for developing a new elastic plastic 

fracture toughness characterizing parameter would involve a generation-application phase 

process.  In essence, data corresponding to crack initiation and stable crack growth is 

gathered.  This data collection will involve numerous specimen types, and specimens of 

each type to establish consistency.  The output from this so-called “generation phase” 

will then be used in an “application phase” to predict the load and crack growth behavior 

in a candidate material.  The application phase will be numerical in nature (finite element 

modeling).  This generation, application phase approach is the foundation of the current 
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study which is intended to determine the feasibility of calculating the T*ε integral in the 

generation phase.   

2.2 RESEARCH OBJECTIVE 

The objective of this research is to numerically and experimentally characterize the T*ε 

integral under stable tearing conditions in a thick aluminum 2024-T3 aluminum sample.  

The numerical characterization will be on a point-wise basis, through the thickness, along 

a tunneling crack front.  Experimental values are only obtainable on the surface of the 

specimen and will therefore be used to compare against average, through-thickness, 

numerically obtained values. 

To truly model the triaxial state of stress at the crack tip, a three-dimensional analysis is 

needed.  This approach has been avoided in the past, primarily due to the cumbersome 

nature of performing a 3-D analysis and because an approximation may be obtained with 

a 2-D analysis by utilizing several assumptions. A 3-D analysis is proposed to provide a 

thorough understanding of crack tip behavior.  The experimental analysis here will 

provide a benchmark with which to compare results from a numerical model, which will 

be developed in its generation phase using a hybrid experimental numerical approach 

[70-72, 93].  When the model is fully developed within the context of the generation 

phase, it is hoped that it may then be applied in an application phase in future studies to 

estimate the stable tearing toughness of aluminum structures under normal operating 

conditions with pre-existing flaws.   
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CHAPTER 3: METHODS OF APPROACH 

3.1 SPECIMEN CONFIGURATION 

To permit a valid, 3-D analysis, the thickness of the specimen to be tested should be in 

the transitional stage between a state of plane stress, and a state of plane strain.  In 

addition, since the objective of this study is to build a fracture resistance curve through a 

stable crack extension on the order of the specimen thickness, a fairly thick specimen 

must be used.  In plane stress specimens, the T*
ε integral has been observed [71, 72, 91-

94] to reach a steady state value at a crack extension approximately equal to the thickness 

of the sample.   Thicker, plane strain specimens may reach steady state at a different 

crack extension. 

Figure 3.1: 3-D, semi-elliptical flaw aluminum 2024-T351 
specimen. 
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 Figure 3.1 shows the sample used in an initial attempt at observing T*ε behavior in thick, 

plane strain samples.  Unfortunately, the stiffness of the Instron loading frame that was 

used for these tests was not sufficient to allow extensive stable tearing in this relatively 

thick, tensile type specimen.  Failure loads for this specimen configuration were of the 

order of 30 to 35 KN, which is a significant portion of the 45 KN capacity of the load 

frame available for testing.   The highly compliant load frame tends to store elastic 

energy at these load levels, which is eventually released through the specimen flaw, 

resulting in unstable crack propagation.  

To allow a sufficient amount of stable crack propagation in a 3-D flaw specimen while 

avoiding the problem of larger than desirable machine compliance, a very low 

compliance specimen must be utilized.  The two most obvious of these specimens are the 

3-point bend specimen and the wedge loaded double cantilever beam (DCB) specimen.   

From historical and practical standpoints, the 3-point bend sample is the most relevant 

candidate geometry.   Several of the 3-D J-integral studies that have been carried out [84, 

90] have utilized the 3-point bend specimen.  In addition, if the need arises, the 3-point 

bend specimen will allow replication of a moiré grating on both sides of the specimen for 

additional data recording.  The expected, significant crack tunneling in a thick, 3-point 

bend specimen will allow simulation of a 3-D flaw in the same manner as the studies of 

Dawicke [1] and Gullerud et al [20].  The amount of tunneling will be a function of 

specimen thickness, so a fairly thick specimen must be used.  Figure 3.2 is a graphical 

representation of these two specimen types. 
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Figure 3.2: Wedge loaded DCB and 3-Point 
Bend [SENB] specimen geometries. 

 

The other possible specimen is the surface cracked tensile sheet similar to that used by 

Dodds and Read in their experimental study of the 3-D contour J-integral [87].   

Unfortunately, similar to the 3-D elliptical flaw sample discussed previously, this sample 

will likely approach the stiffness limits of the load frame.  However, a small enough 

specimen could provide usable moiré interferometry data.   

For this study, the three point bend [ASTM SE(B)] type geometry is chosen in 

accordance with the reasoning above.  It is assumed that a stable crack propagation length 

of approximately five millimeters will be sufficient for T*
ε characterization in this study.  

Therefore, a specimen width, W = 25.4 mm with an initial notch size, a = 10.75 mm is 

chosen to give a value of a0/W=0.42.  This specimen roughly complies with the ASTM 

Standard (E 813) for J-integral testing, where a0/W should be approximately 0.5, 

including the fatigue pre-crack.  This standard dictates that the support span (S) be 

approximately four times the width (W) so the specimen is chosen to be 115 mm.  Figure 

3.3 shows the specimen used for this study.   
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Figure 3.3: Three Point Bend [SENB] specimen. 

The material chosen for this research is 2024-T351 aluminum alloy.  This alloy is 

typically used in airframe structures and thus represents an important class of materials 

for which fracture properties must be characterized.  In addition, it has been used in 

several prior studies [91-94] for characterization of the T*ε integral and will allow 

comparison for validation of the proposed research. 2024-T351 aluminum is sufficiently 

ductile to generate a sizable elastic-plastic crack tip region.  For the 3-D T*ε integral 

analysis, an 8 mm thick plate stock will be used and the specimens are machined in the L-

T orientation so that the plane of the crack lies parallel to the rolling direction.  Table 2 

lists the published major characteristics of this alloy.  Table 3 is a test matrix for the 

experimental work. 

Table 2: Properties of 2024-T3 aluminum alloy [103].  

σu (MPa) σy (MPa) E (GPa) G (GPa) ν Tm (0C) 

485 345 72.4 28 0.33 502 
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Table 3: Test matrix for T*ε evaluation. 

Specimen Specimen Geometry Peak Load 

(KN) 

End Load 

(KN) 

JHJ01, JHJ02, 
JHJ03 

Dogbone (ASTM tensile) 

8.1 mm thick 

N/A N/A 

T6-3PB 3 Point Bend, 8.1 mm thick  

(a0/W=0.45, ∆a=0.5 mm) 

4.16 3.79 

T4-3PB 3 Point Bend, 8.1 mm thick 

(a0/W=0.45, ∆a=1.75 mm) 

4.17 2.85 

T3-3PB 3 Point Bend, 8.1 mm thick 

(a0/W=0.45, ∆a=3.0 mm) 

4.10 2.15 

T2-3PB 

(not used) 

3 Point Bend, 8.1 mm thick 

(a0/W=0.55, ∆a=3.0 mm) 

3.70 1.63 

T1-3PB 

(not used) 

3 Point Bend, 8.1 mm thick 

(a0/W=0.53, ∆a=4.0 mm) 

3.93 1.70 

T5-3PB 3 Point Bend, 8.1 mm thick 

(a0/W=0.45, ∆a=5.5 mm) 

4.20 0.97 

 

Since the numerical analysis portion of this research will rely heavily on the plastic 

portion of the stress-strain curve, the material properties listed here are only used as a 

reference.  Uniaxial tension tests were performed in a direction perpendicular to the 

rolling direction on three dog-bone specimens machined from the same plate stock as the 

three point bend specimens used in the study.   Figure 3.4 shows the data obtained from 

this testing, including relevant parameters of strain hardening exponent (n), and the so-

called “plastic” modulus (a), which are used in the Ramberg-Osgood curve fit.   This 

material data is prescribed in both the experimental and numerical analyses.    
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Figure 3.4: Measured tensile properties for 2024-T351 used in this study 
 

3.2 EXPERIMENTAL ANALYSIS 

3.2.1 DATA COLLECTION 

A high-accuracy displacement measurement method must be utilized to calculate full 

field strain with resolution desired for experiments of this type. These surface 

displacement measurements must be of the full-field type.  That is, a relatively high- 

resolution map of displacements in both x and y directions must be available at each stage 

of crack growth.  These types of measurements tend to lend themselves toward optical 

techniques of one sort or another.  The method most commonly used by researchers who 

have employed Okada’s experimental T*ε calculation procedure [70], is a technique 

known as moiré interferometry [71, 72].   



 

 

51

Moiré interferometry is described in detail by Post in [98].  In essence, it is an optical 

technique involving interference of two collimated beams of light at the surface of a 

specimen.  The two interfering beams create a regular array of lines in space, which 

interact with the reflected light from a diffraction grating replicated on some surface.  As 

the physical grating deforms with the surface, a fringe pattern is formed due to 

interference between the diffracted light field and the original light field.  Each fringe that 

is produced represents a measure of in-plane displacement at each point as a function of 

the grating frequency.   The displacements are given as: 

u
f

Ni i=
1   for  i=1, 2    (3.1) 

In equation (3.1), the subscript i represents either of the Cartesian directions, f is twice the 

specimen grating frequency, and N is the whole fringe number.  From this formula, it is 

easily seen that the resolution of displacement measurements is a direct function of the 

specimen grating frequency.  This must be carefully taken into account when considering 

the grating for use in testing.   

When used with a grating consisting of a grid pattern parallel to both the x and y 

directions (cross grating) and four orthogonal collimated beams, the moiré method has 

the capability of measuring both displacement fields.  The sensitivity of the 

measurements is easily adjusted within certain limits.  For measurements of displacement 

in metals, a very high frequency grating is needed.  These gratings are typically created 

using photographic techniques described in detail by Ifju and Post [99]. 

Another common method for measuring in-plane displacements called digital image 

correlation (DIC) was employed by Newman et al [14] for obtaining CTOA values. It 

involves coating the specimen surface with a speckle pattern and comparing images of 

the deformed surface with images of the undeformed surface.  While DIC has produced 

very good results, it is usually used in applications where large deformations are 
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expected.  Therefore, for this research, the high resolution attainable with moiré 

interferometry is desirable.  However, DIC methods may need to be utilized for creep 

fracture studies.   

The method described by Wang et al [100] is applicable when measuring relatively large 

deformations.  This method utilizes a low spatial frequency steep grating of about 40 

lines/mm on a highly polished surface to achieve very high contrast fringes.  It combines 

the advantages of the geometric and traditional moiré interferometry methods to allow 

measurement of large deformations.  Here, two collimated beams are directed onto the 

surface of the specimen at a very shallow angle of approximately 6 degrees.  A moiré 

pattern is visible to the naked eye and can be photographed without the need to capture 

the 1st order diffraction, which is the typical way to extract moiré data.  Figure 3.5 shows 

the method used to create these gratings.  

(1) Substrate preparation

Polish from 9 to 1/4 microns
to mirror quality

(2) Coating

AZ4903 or 1400 Series Photo-Resist
(H = 5000 to 10000 nm)

(3) Expose

Mask Grating 40 lines/mm,
UV light

(4) Develop

Developer  

Figure 3.5: Photo-resist grating replication procedure [101].  

3.2.2 SPECIMEN TESTING APPROACH 

For the 3-D T*ε integral study, specimens were cut from plate stock aluminum and 

machined to the specified geometry.  The specimens were then fatigue pre-cracked to 

produce a sharp, natural crack on the order of 1.5 mm.  This fatigue pre-cracking 
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followed the recommendations in ASTM standard E-813 for J-integral testing.  In 

essence, specimens are subjected to a 15 Hz sinusoidal waveform loading with a load 

ratio, R=0.1, and not exceeding 60% of KIC, the material’s accepted linear elastic fracture 

toughness ( 33ICK Mpa m=  for 2024-T3 aluminum). Each specimen endured 

approximately 10,000 cycles to produce the 1.5 mm fatigue pre-crack.   

Following fatigue pre-cracking, the front side of the specimens were polished to a mirror 

surface finish of 1 µm through a series of several polishing stages, beginning with 200 

grit, wet-dry sandpaper. This was done to prepare the specimen surface for application of 

a photo-resist type moiré grating.  Following the procedure graphically depicted in Figure 

3.5, the moiré grating was applied via a photo-resist spin coating method. Here, photo-

resist was dripped on a specimen that was being spun at high speed in a modified 

centrifuge.  The grating was applied by exposing the photo-resist to high intensity light 

through a 40 line/mm mask, and then developing it in a developer solution.  The back 

side of each specimen was also marked at intervals of 0.25 mm (Figure 3.6) to record 

levels of crack extension on the surface.  

 

Figure 3.6: Back side of 3 Point Bend specimen showing crack level markings at 0.25 
mm increments and pre-fatigue crack. 

Following the aforementioned preparation, the specimen configurations listed in Table 3 

were subjected to a monotonic load in a screw driven, displacement controlled Instron, 45 
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KN capacity load frame.  A moiré interferometry bench, which has been previously 

constructed, [91] was used to capture the displacement fields in both u (parallel to crack), 

and v (perpendicular to crack) directions during specimen testing.  The specimens were 

monotonically loaded at a rate of 0.254 mm/min until stable crack growth initiated.  Here 

the test was stopped and the first displacement fields were captured via a CCD camera, 

connected to a frame grabber in a Windows NT computer.  The load rate was then 

reduced to 0.127 mm/min to maintain stable crack propagation and the ensuing 

monotonic loading was stopped at crack extension intervals of 0.25 mm to again capture 

the u, and v displacement fields. Photographs of the experimental setup are shown in 

Appendix C. 

Since the 3-D flaw analysis will rely on the tunneling present in the interior of the 

specimen, the experimental approach involved marking the crack front at various crack 

extensions by post-fatigue marking.  Six different specimens were tested in this 

experimental work and each was loaded to a different crack extension length to provide a 

view of the tunneling behavior as the crack extends.  Post-fatigue cycling was used to 

mark the new crack front in a similar manner compared with pre-fatigue cycling.  

However, since the extent of tunneling was unknown prior to fatigue marking, an 

estimated average crack length had to be used for calculation of the KIC values.   This 

tunneling analysis is similar to the approach used by Dawicke [1], and Gullerud et al [20] 

in their 3-D CTOA analyses.  The post-fatigue crack front profiles were digitized into a 

computer from photographic images and curve fit to allow it to be mapped in the finite 

element model.  Figure 3.7 shows a typical specimen fracture surface and its 

corresponding, digitized crack front. 
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Figure 3.7: Typical pre, and post-fatigue crack profiles. 
 

3.2.3 CALCULATION OF EXPERIMENTAL (SURFACE) T*ε 

Currently there are no known methods available for calculating T*ε in a point-wise 

fashion along a tunneling crack front from experimental data, which is limited to 

measurements on the specimen surface.  If an assumption of plane strain is made for the 

location of the integration contour, these experimentally obtained surface values should 

be comparable to the average of the numerically obtained, point-wise, through-thickness 

values calculated along this same contour.  Once the size of the integration contour is set 

at the point of transition in plane states, it should be used for all levels of crack extension 

for both experimental, and numerical calculations because the calculation becomes 

essentially a 2-D comparison.  Values of experimental T*ε are calculated by performing a 

truncated contour integration at this distance from the crack.  The calculation utilizes 

measured surface displacements and the material constitutive relationship to obtain 

values of T*ε at each level of crack extension. 
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A program was written in Matlab® 5.1 to allow calculation of displacements at chosen 

node points on the surface of the specimen (Appendix B).  The program first imports the 

previously saved data file.  A grid of x-y coordinates with resolution defined by the user 

is then assigned to the data set.  A “nearest point” interpolation routine calculates the 

approximate fringe number at each of the grid points by interpolating between whole 

fringe numbers from the original data set.  In this manner, each of the grid points is 

assigned a fractional fringe number.  The fringe numbers are then multiplied by the half 

pitch of the specimen grating to obtain a displacement at each point.   This displacement 

data is output in a three-column text file containing x-y coordinates of the grid in the first 

two columns, and displacements in the third column.  As a final step, a contour plot of the 

displacement is created so that the user can determine if the data is acceptable.  Figure 

(3.8) shows contour plots from this program of data corresponding to the images in figure 

(3.9).   

  
3u4      3v4 

 
 

Figure 3.8: u and v-field displacement contours from digitized moiré, ∆a=0.5 mm.  
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3u4      3v4 
 
 

Figure 3.9: Typical moiré fringe patterns from experimental work, ∆a = 0.5 mm. 
 

For this work, a grid resolution of 0.25 millimeters was chosen.  This allowed relatively 

accurate correspondence of the crack tip to a node, and optimized the accuracy of the 

interpolation scheme.  Displacements were calculated over a fixed interval, which 

spanned from 2 millimeters behind the crack tip to 7 millimeters in front of, and above 

the crack tip (total window size of 7 x 9 mm).  The displacement data from the left half of 

the specimen was “mirrored” onto the right half, and a point-wise average value was 

taken for each of the node points.  Any rotation in the fringe pattern was corrected for by 

averaging the left and right data sets.   

The displacement data calculated using the aforementioned Matlab® program was used 

as input data for calculating experimental values of T*ε.  Two input files were created for 

each data set.  The first input file is simply a four-column text file containing node 

number, u-displacement, v-displacement, and w-displacement in the first through fourth 

columns respectively.  For these data sets, w-displacement (out of plane) was set to zero 

for every point.  The second input file was an ABAQUS® mesh file containing element 

connectivity, and node-element assignments.   
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A FORTRAN program to calculate T*ε was written at Georgia Institute of Technology in 

1996 by C. Pyo and H. Okada. The program was then modified by Y. Omori to calculate 

T*ε based on the experimentally obtained displacement data and material properties.  This 

program was based on the work by Okada et al. in [70].  For each calculation of T*ε, an 

initial crack tip is specified, along with an integration contour size, and EDI region size.  

Displacement data is then used by the program to calculate strains from which stresses 

are calculated using the equivalent stress-strain relation.  Finally, T*ε is calculated using 

the stresses and strains with Okada’s truncated EDI method, and a deformation theory of 

plasticity as suggested in [70]. 

3.2.4 CALCULATION OF EXPERIMENTAL 3-D T*ε 

It would be most beneficial to have the ability to calculate the locally varying T*ε integral 

in a point-wise fashion along a 3-D crack front.  However, the absence of a technique for 

obtaining displacement values within the interior of the specimen will inevitably require a 

mathematical modeling of the interior state.  Several, untested possibilities exist for 

estimation of a ‘mean’ 3-D energy parameter.  These include a method similar to that 

utilized by Dodds and Read [87], in which only the contour portion of the integral was 

obtained experimentally, and estimates of the remaining area integral are provided by FE 

analyses.  Here, the T*ε integral would be calculated along a truncated contour, analogous 

to the way 2-D J-integral and T*ε integral are related.  It is tempting to use a crack tip 

geometry interpretation for the estimation of a ‘mean’ energy release rate term, but no 

direct correlations have been made between T*ε and crack tip geometry parameters such 

as CTOD as they have between J-integral and CTOD.  For now, it is assumed that by 

analogy to the relationship between the 2-D J-integral and 3-D J-integrals, the 3-D T*ε 

integral may be calculated along a truncated contour, albeit extended an additional 

dimension. Since measurements cannot be made in the interior of the specimen, this 

would conceivably be done on two surfaces of the specimen to allow an estimate of 

average T*ε through the thickness which may then be compared with the local, point-wise 
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values obtained numerically.  However, since the 3-point bend specimen is symmetric, 

calculation on both sides would be repetitive. Therefore, with the absence of a method for 

through-thickness, experimental contour integrations, a surface value of the 

experimentally determined T*ε must suffice for the time being.  As stated previously, the 

surface value of T*ε will be compared with the numerically obtained, average through-

thickness values if the contour of integration is set at the point of transition in plane 

states.         

3.3 NUMERICAL MODELING 

3.3.1 THE T*ε INTEGRAL FOR 3-D GEOMETRIES 

The principles of virtual crack extension have been applied successfully by many of the 

authors discussed in Chapter 1.  These methods rely on comparison of strain energy 

present in two different cracked configurations.  Since the value of the T*ε integral lies 

mainly within its use with the incremental theory of plasticity, these methods will be 

applicable only if it is assumed they are valid for incremental plasticity which has been 

suggested by Sakata et al [80].  The method employed by Nikishkov and Atluri [86] for 

numerical analysis of the J-integral is likely more applicable for use here as it allows 

characterization under the incremental theory of plasticity at a location removed from 

near crack tip events. For this study, an extending contour and the incremental theory of 

plasticity is used to calculate the T*ε integral for the 3-D numerical model.   The model is 

built to accommodate the tunneling behavior of a real crack (see figure 1.12).  Thus, the 

resolution of the mesh in the z direction (parallel to the crack front) must be sufficiently 

refined to model the acute crack front curvature seen in actual specimens.  This resolution 

is empirically determined using experimental measurements as a basis. Stresses and 

strains are recorded at each stage of crack extension along the elements within each layer 

that encompass the crack front for calculating the local T*ε integral value at several 

points along the crack front.  Figure 3.10 is a graphical representation of the contour of 
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integration for a representative layer.  Note that ε is a small quantity such that the contour 

is close enough to capture the crack tip behavior while avoiding numerical difficulties 

associated with extreme plasticity in the near-tip process zone or the influence of external 

boundary conditions.    

 

Figure 3.10: 3-D T*ε contour of integration. 
 

3.3.2 NUMERICAL MODEL OF 3-POINT BEND SPECIMEN 

Since it is inefficient to model the entire specimen, one quarter of the 3-point bend 

specimen was modeled due to symmetry, and this quarter-model is further truncated at a 

prescribed distance from the plane of the crack.  In the first step in the hybrid 

experimental-numerical approach, a finite element analysis utilizing a relatively course 

mesh was carried out on a full quarter model of the 3-point bend specimen. Since interior 

conditions along the 3-D crack front cannot be measured and/or prescribed, this initial 

analysis allowed the determination of the distance from the crack plane where the states 

of stress and strain are uniform through the thickness of the specimen.  Displacements are 

then measured experimentally at this distance from the crack plane, and prescribed as 

boundary conditions to the FE model.   
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The 8 mm thick, 3-point bend specimen (Figure 3.3) is modeled in the commercial Finite 

Element Analysis (FEA) code, ABAQUS using 8 node, isoparametric, brick elements 

with incompatible modes for control of shear locking.  As previously discussed, 

symmetry allows one quarter of the specimen to be modeled, and the model is further 

truncated at a specific distance from the crack plane for computational efficiency.  This 

distance was determined by building an initial full quarter model of the specimen with a 

relatively course mesh of 0.5 mm elements in the vicinity of the crack tip and 

transitioning to 1.0, and 2.0 mm elements further away.  The coarse model (Figure 3.11) 

contained only four elements through the half thickness of the specimen. 

 
 
 
Figure 3.11: Initial, course model for determination of truncation boundary.

 

The coarse model was loaded to a level equivalent with the load at which crack extension 

was expected to have begun which will be close to the maximum load the specimen will 

support.  From experimental observations, this value was taken to be approximately 3.6 

KN for crack initiation.  The von Mises stress (Figure 3.12) was obtained at the centroid 

of each of the elements through the thickness and at several different distances from the 
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crack face.  A truncation distance for prescribing experimentally obtained displacements 

in the FE model was determined as the distance from the crack face where the von Mises 

stress was approximately constant through the thickness.   Figure 3.13 is a set of typical 

plots of von Mises stresses through the thickness at specified distances from the crack 

plane, and at several points in the x-direction (height).  For this analysis, the truncation 

distance was determined to be at y=15 mm.   

 
 
Figure 3.12: Distribution of von Mises stress in course, initial model with P=3.6 KN 

and a=12.5 mm.  
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Figure 3.13: Von Mises stresses through the thickness for varying distances from the 
crack plane, ∆a = 0.00 mm. 

The application of boundary conditions at a truncation point in the case of bending is a 

complex issue.  The v-displacements (normal to the plane of the crack) are easy enough 

to apply as long as they vary linearly from top to bottom.  However, special care must be 

taken with application of u-displacement boundary conditions at the y=15 mm truncation 

point since it is very easy to introduce improper loads with these boundary conditions. It 

is therefore sufficient, and necessary to apply the u-displacement boundary condition at 

only one point on the 15 mm truncation boundary since the v-displacement ensures a 
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bending condition and the u-displacement is approximately constant in the vertical 

direction.  At least one prescribed u-displacement is required to enforce the shear 

condition in the 3-point bend specimen.  To ensure that the u-displacements were 

prescribed to reflect reality, several different scenarios were explored in a simple 2-D 

model of one quarter of the specimen with actual bending employed (Figure 3.14).  

Figure 3.15 shows the different methods of boundary condition application explored.  

Shear stresses were extracted from a set of elements 2.5 mm behind the truncation plane 

for comparison.  This extraction point is chosen so that stresses are not influenced by 

application of boundary conditions on the truncation plane.  Figure 3.16 is a plot of these 

shear stresses and shows that case (c) from Figure 3.15 offers the best comparison in 

shear condition to the full model.  Therefore, the final 3-D model incorporates this 

scheme for application of displacement boundary conditions. 

 
 
 

Figure 3.14: 2-D model for verification of boundary conditions. 
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(a)    (b) (c)  

 
 

Figure 3.15: Application of boundary conditions for simulation of bending. 

 
Figure 3.16: Shear stress distribution through specimen width near boundary for 

∆a = 0.00 mm. 
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The final model used in this analysis is shown in Figure 3.17.  The extent of tunneling 

seen in the experimental analysis required a sufficient resolution of element layers 



 

 

66

through the specimen thickness (Figure 3.8).  To accommodate the extreme slope of the 

tunneled crack front, thin (0.25 mm) layers were utilized in the areas of the steep crack 

front gradient with a transition to thicker, 0.5 mm element layers near the center of the 

specimen where the crack front gradient is not as large.  The final model (Figures 3.17, 

3.19) consisted of ten, 0.25 mm thick layers near the outer surface followed by three, 0.5 

mm thick layers to total the specimen half-thickness of 4.0 mm for a total of 13 element 

layers.  This arrangement of layering also helps to accommodate the natural surface 

singularity that is expected near the free surface.  Element sizes were 0.25 mm in the x, 

and y directions near the crack tip area and transitioning to 0.5 mm and 1.0 mm further 

away.  Figure 3.17 also shows the model y-direction truncation distance of 15 mm, with 

experimentally obtained displacement boundary conditions prescribed. 

 
 
 
 

Figure 3.17: Side view of final, 13 layer model with boundary conditions at ∆a = 0.75 
mm. 
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Figure 3.18 shows the crack tunneling profiles for one side (symmetry) of the specimen, 

with the polynomial curve fits for each crack extension.  These tunneling profiles were 

prescribed as boundary conditions defining the crack face in the final model as seen in 

Figure 3.19 where the remaining ligament nodes have been prescribed in accordance with 

the third crack extension level in Figure 3.18. 

Figure 3.18: Curve fit, symmetry crack tip boundaries. 
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Figure 3.19: Typical crack face profile in final, 13 layer model. 
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3.3.3 POST PROCESSING OF NUMERICAL ANALYSIS 

No commercially available finite element analysis packages currently incorporate the 

incremental formulation for calculating J-integral, or any other contour integral for a 3-D 

curved crack front.  Post processing software has been successfully written in the Fortran 

programming language by at least two groups, Okada et al. [70] and Ghadiali and Brust 

[95], both of which are based on Nikishkov and Atluri’s paper [69].  Unfortunately, these 

programs were designed primarily for two-dimensional analysis, with the exception of 

Ghadiali and Brust’s program [95], which had been written to handle three-dimensional 

analyses, but has been used only up to the point of crack initiation.  Therefore, a major 

portion of this research involved the development of post processing software for 

calculation of the T*
ε integral in three dimensions and including extensive crack front 

tunneling.  The equivalent domain integral method (EDI) suggested by Nikishkov and 

Atluri [86] provided a means for calculating the T*ε integral and was utilized here for 

formulation of the post-processing software.  A detailed explanation of the mathematics 
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outlined in [86] is provided here since it is the basis for the post-processing work.  

Appendix A contains the T*
ε calculation program that is written, based on this 

mathematical approach.   

 

Figure 3.20: 3-D EDI formulation. 

x 

y 

z

 

The 2-D EDI formulation for T*ε is generalized to a 3-D formulation by considering a 

volume analog to the 2-D area between the inner Γε contour, and the far-field Γ contour.  

Figure 3.20 is a representation of the EDI region and the s-function for 3-D calculation.  

Here, the bounding contours are generalized to tubes encircling the crack tip.  The s-

function, which is an arbitrary function of x, and y in two dimensions now becomes an 

arbitrary function of x, y, and z.  To remove this dependency on the out of plane 

coordinate, an s-function could be chosen such that it is always equal to 1 on the inner 

contour and 0 on the outer contour, regardless of position through the thickness.  

However, the surface area portions (A1, and A2) on the ends of the annular EDI region 

must then be included in the integration.   

After application of the divergence theorem the T*ε for this EDI formulation and s-

function and a crack undergoing self-similar propagation is; 
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∫∫∫ ∫∫  (3.2) 

where the area term represents the surface areas at the end of the annular region.  For 

convenience, and after application of the chain rule of calculus, the integral may be 

separated into terms as; 
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 * * * *
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Here, the area term (T*1ε(A)) has been simplified by noting that if the ends are assumed to 

be perpendicular to the volume, and the normals, n1=n2=0, n3=1 on A1 and n3=-1 on A2.  

For equilibrium, and in the absence of body forces, the middle term in Eq. 3.4 is zero so 

T*(W) becomes: 

 ( )*
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1 1

i
ij

j

uWT W sdV
x x xε

ε σ
Γ

 ∂∂ ∂ = − − ∂ ∂ ∂  
∫∫∫   (3.7) 

The integration in Eq. 3.3 is carried out by utilizing 2x2x2 gaussian quadrature for a 

numerical estimation.  Values of nodal displacement are easily obtained from ABAQUS 

via a Fortran post-processing subroutine, and the s-function is assigned based on each 

particular node within the EDI region.  Stress work density, and stress are also extracted 

from ABAQUS, but are then averaged over each element in the integration since these 
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variables are not involved in a direct integration, and precise local values are 

unnecessary.  With an isoparametric mapping, Eq. 3.3 for each element becomes; 

 
1 1 1

*
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1 11 1 1

( ) det( )
k m k

k m k
ij i

j

N N NT s W s u s J d d d
x x x

σ ξ η ζ
− − −

 ∂ ∂ ∂ = − − ∂ ∂ ∂  
∫ ∫ ∫  (3.8) 

where J is the Jacobian matrix, and ( ), ,kN ξ η ζ  are the isoparametric shape functions. 

With 2x2x2 gaussian quadrature, Eq. 3.8 is now calculated with a simple summation as; 

 
2 2 2

*
1

1 1 1 1 1 1
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k m k G G G
ij i
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N N NT s W s u s w w w J
x x xξ η ζ

σ
= = =

 ∂ ∂ ∂
= − −  ∂ ∂ ∂ 

∑∑∑∑  (3.9) 

where the calculation is performed over n elements in the EDI region, and wG are the 

gaussian quadrature weights (wG = 1 for 2x2x2 integration). 

Values of stress, strain and work density are only available at gaussian points after a 

numerical analysis. The mathematical development underlying the coding structure of the 

post-processing program is such that values of all parameters are required at node points.  

Specifically, the complication with Eq. 3.7 arises from the fact that in this portion of the 

calculation, in contrast with the calculation of Eq. 3.3, local gradients of these values are 

required.  Therefore, an extrapolation of gaussian point values to nodal values must be 

performed, followed by a one point integration at the center of each element, as shown in 

[86].  A method for locally smoothing stresses (or strains) obtained from isoparametric 

elements is outlined by Hinton, et al [96], and provides a means for obtaining nodal 

values by ‘averaging’ out the gaussian values.  A trilinear variation of stresses or strains 

is assumed to occur in a three-dimensional element as  
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where ( , , )σ ξ η ζ are the variables anywhere within the element, and , ,ξ η ζ are the 

isoparametric mapping coordinates such that at the gaussian quadrature points,      
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At the node points, a similar relationship holds, i.e.  



 

 

73

 
{ } [ ]{ }

{ } [ ] { }1

P
     so that,

P

a

a

σ

σ−

=

=

 (3.12) 

where, 

 [ ]

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

P
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

− − − 
 − − − − 
 − − − −
 − − − − =  − − − −
 

− − − − 
 
 

− − − −  

 (3.13) 

Now, the nodal values of stresses, extrapolated from the gaussian values are expressed as 

follows; 

 { } [ ][ ] { }1p Pσ σ−=  (3.14) 

So that nodal values of stress and strain may easily be obtained from the reported 

gaussian point values.  These extrapolated values are then inserted into Eq. 3.7 and the 

integration is performed using gaussian quadrature as in Eq. 3.9.   

The third portion of the numerical integration would involve the calculation of the area 

terms at the ends of the EDI volume (Eq. 3.5) if this s-function formulation were desired.  

This calculation would require a 2x2 gaussian quadrature of the end areas, A1 and A2 in 

Figure 3.21, and would make use of the simplifications noted earlier.   
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 EXPERIMENTAL RESULTS 

4.1.1 STABLE CRACK PROPAGATION ANALYSIS 

A total of six 3-point bend specimens (Table 3) were ramp loaded to obtain different 

amounts of stable crack propagation, varying between 0.5 and 5.5 mm.  Following the 

monotonic loading, each specimen was subjected to post-fatigue crack propagation to 

mark the extent of tunneling at each level.  This post fatigue cracking was a very delicate 

operation whereby the specimens were cycled at a load ratio of R=0.1 to a maximum of 

sixty percent of the final load that each withstood under monotonic loading.    Since the 

crack extension behavior is somewhat difficult to control, only four of these tests yielded 

usable results.  Images of these four tunneling profiles are shown in Figure 4.1. 

 
Figure 4.1: Progression of tunneling crack between 0.5 mm and 5.5 mm. 

8.1 mm 
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Each of these images was calibrated to known dimensions, and the pre-crack and 

tunneling crack front profiles were digitized using Sigma Scan software.  The digitized 

crack fronts were then fit to polynomials of varying orders from 4th order to 6th order 

depending on their level of complexity.  The polynomial curve fit served to fill in sparse 

data at regular (0.25 mm) increments through the thickness (z) direction and to provide a 

means for calculating local crack front tangents via differentiation for use with the 

numerical analysis.  Since the amount of stable crack propagation is difficult to control in 

an experimental environment, tunneling profiles at very sparse points were obtained.  To 

address this sparseness of data without performing what could amount to hundreds of 

tests, the specimens were intentionally loaded to obtain these discrete crack extension 

levels to show the progression of tunneling.  Following the collection of these discrete 

data points, a linear interpolation scheme was written using Matlab to guess at what 

intermediate tunneling profiles would look like and to increase the data resolution by two 

times.  This interpolation is repeated for the profiles between experimentally obtained 

crack fronts at ∆a=3.5 mm (T3-3PB) and ∆a=5.5 mm (T5-3PB) so that this data 

resolution is actually increased twice to roughly three times the initial number of data 

points. Figure 4.2 shows the interpolated crack fronts obtained after the initial 

interpolation, Figure 4.3 shows the interpolated crack fronts after the second 

interpolation, and Figure 4.4 is a comparison of the raw, digitized data to the polynomial 

fit data. 

Although a fairly insignificant specimen shear lip was expected, and observed in this 

thick specimen configuration, it is worth noting its value.  For this specimen 

configuration, a shear lip of approximately 0.5 mm per side was measured.  This amounts 

to total a shear lip of 1.0 mm, or 13% of the specimen thickness.   
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Figure 4.2: Interpolated crack front tunneling profiles.  
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Figure 4.3: Crack fronts after second interpolation.  
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Figure 4.4: Polynomial curve fits compared to raw data. 
 

After approximately 2.0 mm of surface crack extension, the crack is observed to 

propagate in a relatively self-similar manner.  After several levels of crack extension 

however, the near mid-plane crack front flattens as it approaches the externally applied 

mid-span load.  This will affect the tunneling as well as the numerical analysis of these 

crack fronts.   

4.1.2 EXPERIMENTAL T*ε RESULTS 

Results from the experimental work include moiré fringe patterns for each crack 

extension step as measured at the surface of the specimen.  The moiré fringe patterns 

provide a full-field map of displacements that can be used to calculate the localized 

strain, and then the stress via Hencky’s total stress-strain relationship, which is given as 

[104]; 
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ij

e

S
ε ε

σ
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where εij
p is the current state of plastic strain, σe is the equivalent stress (or yield stress in 

this case), εp is the yield strain, and Sij is the stress deviator tensor. T*ε  is calculated by 

utilizing Okada’s [70] approach with a truncated contour as described in Chapter 1.  The 

deformation theory of plasticity is also used here since the truncated contour 

encompasses the area in front of the crack tip, which has not yet undergone extensive 

unloading.  This allows the calculation of T*ε, without the inclusion of strain history, for 

each crack extension step in the experimental analysis.   

Figure 4.5 shows the T*ε calculated for test “T5-3PB” in which the surface crack was 

extended to 5.5 millimeters.  Here, T*ε was calculated on three different contour sizes of 

ε = 1.0, 2.0 mm and 3.0 mm.  Figure 4.6 shows calculated T*ε for two other test cases, 

“T3-3PB”, and “T4-3PB” where the crack was extended to shorter lengths.  The results 

for “T5-3PB” are of particular interest because here the crack was extended to the longest 

possible length in this specimen configuration.  This data set will be used for comparison 

with the numerical analysis results.  The T*ε curve in Figure 4.5 shows a peak values of 

approximately 157 MPa-mm (for ε = 2.0 mm) and 125 Mpa-mm (for ε = 1.0 mm), which 

compares well, quantitatively, with the experimentally obtained results of Ma [92] 

(Figure 1.9) who obtained experimental T*ε in plane stress, center notched (CN) samples 

of 2024-T3 aluminum alloy.  It is noted that the results for the Γε contour size of ε = 1.0 

mm are somewhat of an estimation because the displacement field cannot actually be 

viewed this close to the crack tip due to the gross deformation and consequent dimpling 

effect at the crack tip.  The displacement field this close to the crack tip is based on an 

extrapolation of the moiré fringes to the crack face, resulting from the curvature of each 

fringe as it enters the high deformation zone.  As a result, the T*ε calculated on this 

contour can show significant noise due to the approximated strain gradients in this area.   
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Figure 4.5: Experimental T*ε for different contours, T5-3PB 
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Figure 4.6: Experimental T*
ε for two other experiments, ε=3.0 mm.  
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4.1.3 EXPERIMENTAL CTOA RESULTS 

The CTOA was calculated on the surface of the three specimens T3-3PB, T4-3PB, and 

T5-3PB.  The CTOA calculation consisted of extracting the v-displacement at 

approximately 1.0 mm behind the current crack tip, obtaining the inverse tangent, and 

multiplying by 2.0 (symmetry).  Figure 4.7 is a plot of the resulting CTOA plots for these 

three experiments. 
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Figure 4.7: Surface CTOA from experimental measurements. 
 

4.2 NUMERICAL ANALYSIS PRELIMINARIES 

4.2.1 DETERMINATION OF Γε CONTOUR SIZE 

To avoid numerical difficulties and to ensure a valid comparison between experimental 

T*ε values obtained at the surface of the specimen, and the numerically obtained through-

thickness values, a similar size contour must be used for both analyses.  This contour 
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should be such that an assumption of near 2-D behavior can be made if this comparison is 

to be drawn.  An examination of the out-of-plane strains (ε33) directly in front of the 

crack tip shows that after a short amount of crack extension, the level of out-of-plane 

strain becomes constant at a specific distance ahead of the crack tip.  Figures 4.8 and 4.9 

show the extent of out-of-plane strain (with respect to the x-y plane) through the thickness 

of the numerical model at different distances, r, from the crack tip for crack extensions of 

∆a = 0.0 mm, and ∆a = 0.75 mm, respectively.  This attainment of a constant value of ε33 

is indicative of a transition to a plane strain state at a distance from the crack tip 

corresponding to this value of r.  Since there is now a level of constancy through the 

thickness, this distance can be used as the inner, Γε contour size, ε.   For a short amount 

of crack extension (0.75 mm), it is seen that this transition begins to occur at a distance of 

approximately 2 mm and that out of plane strain becomes essentially constant and very 

close to zero between 2 and 3 mm from the crack tip.  Figure 4.9 shows strain behavior 

after several crack extension steps.  Here, it is seen that the distance for plane strain 

transition increases to between 3 and 4 mm from the crack tip.  The paper by Narisimhan 

and Rosakis [66] discussed a correlation between specimen thickness and distance to this 

plane state transition for plane stress specimens.  It was found that the distance to the 

transition point was roughly equivalent to half the specimen thickness in correlation with 

what is seen here in Figures 4.8 and 4.9 for the near surface, plane stress portions.   

The extent of tunneling seen in this analysis leads to numerical difficulties with regard to 

explicitly prescribing the aforementioned transition point as the exact location of the 

inner, Γε integration contour.  A preliminary inspection of the behavior of the T*ε integral 

through the thickness of the specimen after a few crack extensions revealed sensitivity of 

the analysis to the location of the integration contour.  After a short amount of crack 

propagation, the expected path dependency of the T*ε integral becomes very evident.  For 

contour sizes of 1.0, 2.0 mm, and 3.0 mm, the behavior of the local crack tip integral can 

change by 10-20%.  There is also a slight dependence of T*ε integral on the size of the 

EDI region.  Since the T*ε calculation should be independent of EDI size, this 
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dependence is indicative of numerical errors due to loss of stress and strain data as the 

crack tip is approached and extreme plasticity is present or, possibly boundary effects if a 

large enough contour is used.  It is also indicative of a loss of resolution since the s-

function is assigned at node points, based on their location within the EDI boundaries.  

Fewer node points through the width of the EDI region will obviously adversely affect 

the accuracy of the calculation.  As an example, if the extreme cases of either only one 

element through the EDI region width or, say four elements through the EDI region width 

are considered, it is easy to see that the former case will utilize s-function values of 1 and 

0, whereas the latter would have s-functions of 1, 0.75, 0.5, 0.25, and 0 as the EDI region 

is traversed.   Thus, very small, or very large contour sizes should be avoided due to the 

numerical inaccuracies and a reasonable number of elements through the EDI region 

should be assigned.      
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Figure 4.8: Out of plane strain levels in the x-y plane shortly after crack initiation. 
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Figure 4.9: Out of plane strain levels in the x-y plane after several crack extensions. 
 

Since the crack is modeled with extreme tunneling, the contour will also have to adapt 

with the changing crack front.  The contour grows with the extending crack front, that is, 

the portion behind the original crack tip remains fixed throughout the analysis.  This 

means the contour will actually be larger for layers near the mid-plane than those at the 

surface.  Figure 4.10 shows how this is accommodated in this analysis.  Here, the blue 

highlighted elements represent the EDI region, and the red circles indicate nodes in the 

remaining ligament.   
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Figure 4.10: EDI definition for T*ε calculation with extending, tunneling contour. 
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1.0 mm 

 

4.1.2 CHOICE OF S-FUNCTION 

The EDI formulation is a variation of the VCE method wherein an arbitrary function is 

applied in place of the virtual displacements.  This arbitrary function, referred to as the s-

function by Nikishkov and Atluri [86], takes on a new level of complexity for 3-D 

situations.  For 2-D, it has been applied as a simple ramp function that is equal to 1 on the 

near field, Γε contour, and 0 on a far field contour.  Several types of 3-D s-functions are 

reviewed in [86], of which only a few are eligible for use in this research.  Since the 

numerical model used in this study employs linear elements, and a fairly course 

resolution through the thickness, candidate s-functions will include a triangular s-

function, and a linear s-function (Figure 4.11).  Upon initial inspection, it would seem 

that the linear s-function would be appealing from a programming standpoint.  However, 
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the areas on the two ends of the current layer of calculation must be included in this case.  

The triangular s-function, on the other hand, allows a major simplification since the value 

of the s-function in this case is equal to zero at the end of the EDI region.  The difficulty 

with the triangular s-function then becomes the lack of resolution through the thickness 

due to the fact that it must be calculated over at least two element layers for 8 node, linear 

elements.  This difficulty is easily overcome by employing a calculation scheme as 

depicted in Figure 4.12, where two iterations of calculation are performed, each offset by 

one node with respect to the other.  The final result is a capability for calculating the 

contour integral at each layer interface with the exception of the surface node layer, and 

the mid-plane node layer.  This does not prove to be a major problem as the resolution of 

the model allows calculation very close to these two points.  

 

Figure 4.11: S-functions for EDI calculation. 

Triangular s-function Linear s-function 

S = 1.0 

S = 0.0 

x 
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Figure 4.12: Integration scheme for high calculation resolution. 

1st calculation 

2nd calculation 
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4.2.3 CRACK FRONT COORDINATE TRANSFORMATION 

To accommodate the tunneling crack front, which is continually turning with respect to 

the thickness, the global variables are normally transformed with respect to the crack 

front coordinate system to “straighten” the crack front.  This becomes more and more of 

an issue as the inner contour of integration is collapsed onto the crack tip.  The coordinate 

transformation simply involves calculating local tangents to the crack front and 

transforming stresses, strains, work densities, displacements, and coordinates to the crack 

front coordinate system.  These transformations from global to local coordinates are 

applied in the x-z plane (plane of the crack) and are simply: 

 
G

i ij i

G
ij ip jq pq

x a x

s a a s

=

=
 (4.2) 

for vectors, and tensors respectively.  However, as the inner contour of integration is 

moved further away from the crack tip, the transformation of global variables to the crack 

front coordinate system becomes less reasonable.  Instead, a rotation of the entire EDI 

region with respect to the global coordinate system is likely required in addition to the 

transformation of global variables.  This is an extremely complex operation that would 

require a very refined, radial mesh surrounding the current crack tip.  The mesh would 

also need to adapt intelligently as the crack tip moves.  Figure 4.13 is a representation of 

the effect of transforming the variables within the EDI region and of transforming the 

EDI variables in addition to a rotation of the entire EDI region with respect to the crack 

front.  Since this is not feasible for the current numerical model, T*ε is estimated without 

any transformation of the EDI quantities.  Regardless of contour size, the integration is 

performed over elements sufficiently far from the crack front to allow this approximation, 

especially after several steps of crack extension where the contour has extended far 

behind the current crack tip.  Results from a short analysis with transformed parameters 

are shown in the numerical results section of this chapter to illustrate the difficulty in 

calculating this way. 
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Figure 4.13: Transformation of EDI variables (A) and transformation of EDI 

variables with rotation (B). 

(A) (B) 

 

4.3 NUMERICAL RESULTS FOR TUNNELING CRACK 

4.3.1 POINT-WISE T*ε FOR TUNNELED CRACK 

T*ε was calculated for each of seventeen, 0.25mm and 0.50 mm crack extension steps, 

with the extent of experimentally observed tunneling reflected in the crack face boundary 

conditions at each step.  Using a post-processing program written in Matlab (Appendix 

A), point-wise values were obtained at each layer interface through the thickness of the 

quarter model to build a plot of behavior for the extending, tunneling crack.  Since the 

integration program utilized the triangular s-function, values were unobtainable on the 

extreme surface, and center plane. The remaining values provide adequate resolution, so 

this is not a major problem.    



 

 

88

Figure 4.14 is shown here merely to illustrate the effect of transforming global variables 

to the crack front coordinate system.  Here, the derivative of the polynomial curve fit at 

each particular level of crack extension was used as a local slope for determining the 

degree of transformation.  Since the slope may change by 5-10% from one layer to the 

next, even though the ‘mean’ slope is identical, very noisy results are produced.  As 

stated before, the global variables for the main analysis are not transformed because of 

the numerical noise involved. 
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Figure 4.14: Sensitivity of T*ε calculation to coordinate transformation, ε = 2.0 mm. 
 

Figures 4.15, 4.16, and 4.17 are plots of numerically obtained, pointwise T*ε calculated 

with inner, Γε contours of ε = 3.0, 2.0, and 1.0 mm respectively for the full extent of crack 

extension observed in experiment “T5-3PB”.  Here all values are reported at the 

corresponding surface crack extension, rather than the local crack extensions.  Based on 

the previous discussion (Section 4.2.1), an inner (Γε) contour size of ε = 3.0 mm and 

outer (Γ) contour size of 4.0 mm should be used for comparison with experimental values 

which are based on a plane stress assumption and would be dictated by the observations 

in [66].  However values for a 2.0 mm contour and a 1.0 mm contour are included here 
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for completeness and comparison to the previous plane stress analyses of Ma [92].  

Regardless of its size, the Γε  contour grows with crack extension, but usually remains ε 

mm from the crack tip in the positive x and y directions (Figure 4.10).  Through-thickness 

(z) trends are shown here for each of the levels of crack extension.   

Figures 4.18, 4.19 and 4.20 contain plots of T*ε for the extending crack at different points 

through the thickness (z-direction) and contour sizes of ε = 3.0, 2.0 and 1.0 mm.  For 

these plots, local values of crack extension have been used since these plots would 

represent local resistance curves.  The T*ε values increase much more slowly near the 

mid-plane than on the surface, due to the lack of formation of a significant region of 

deformation.  Since the T*ε would be interpreted as a crack driving force in an 

application phase analysis, it would make sense that there is far less energy required 

(crack driving force) to extend the crack front near the mid-plane.    

Figure 4.20 shows the numerically obtained T*ε calculated on a Γε contour of ε = 1.0 mm 

for local crack extensions.  The extreme scatter in these results is due to the extremely 

close proximity to the crack tip and the active wake zone.   

At a surface crack extension of approximately 1.75 mm, the center has tunneled to a 

crack extension of approximately 8.0 mm and with an inner Γε contour of ε = 3.0 mm 

begins to suffer from boundary effects from the top load point.  If a Γε contour size of  ε 

= 2.0 mm is used, this boundary effect problem becomes evident slightly later at a surface 

crack extension of 2.25 mm.  The boundary effect is an unfortunate side effect from the 

geometry of this model.  The only way to overcome this effect is to begin reducing the 

size of the integration contour as this point is approached.  While this will violate the 

consistency of the analysis since T*ε is a path dependent integral, it will still provide a 

picture of what is happening at this point.   Beginning with the ∆a=1.50 mm curve in 

Figure 4.15, the frontal portion of the Γε contour for layers close to the mid-point is 

moved closer to the crack tip by anywhere from 0.25 mm to 2.0 mm in the extreme 
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tunneling cases (∆a = 4.00, and ∆a = 5.00 mm).   Since this is only a truncation of the 

frontal portion of the contour, it is thought to have only a small effect on the calculation.  

Figure 4.21 is an example of an extreme case of frontal truncation where the inner layers 

have also had a reduction in EDI region width to 0.5 mm.    
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Figure 4.15: FEA T*ε variation along tunneled crack front at different 
levels of surface crack extension, ε = 3.0 mm. 
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Figure 4.16: FEA T*ε variation along tunneled crack front at different 
levels of surface crack extension, ε  = 2.0 mm. 
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Figure 4.17: FEA T*ε variation along tunneled crack front at different levels 
of surface crack extension, ε = 1.0 mm. 
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Figure 4.18: T*ε for different positions along tunneled crack front for local crack 
extension values, ε = 3.0 mm. 
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Figure 4.19: T*ε for different positions along tunneled crack front for local crack 

extension values, ε = 2.0 mm. 
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Figure 4.20: T*ε for different positions along tunneled crack front for local crack 
extension values, ε = 1.0 mm. 
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Figure 4.21: Truncation of frontal portion of EDI region after extensive tunneling. 

3.0 mm 

Original crack front 

 

For comparison, T*ε was also calculated for the same situations but using Okada’s 

truncated contour approach.  This is the same approach that was used to calculate surface 

values from moiré displacements in the experimental analysis.  Nodal displacements were 

extracted from the FE analysis output at each crack extension step and are easily placed 

on a local element layer grid of x, and y coordinates for input to the aforementioned 

Fortran program.  Figures 4.22 through 4.24 show point-wise T*ε calculated using the 

deformation theory of plasticity and a truncated contour with FEA produced nodal 

displacements and based on surface crack extension levels.  Figures 4.25 and 4.26 show 

local T*ε resistance curves from this analysis for Γε  contour sizes of ε = 2.0 mm and 1.0 

mm, respectively.    

Figures 4.24, and 4.26 are plots of T*ε calculated on an ε = 1.0 mm contour.  As 

previously observed, the data shows a fairly significant amount of scatter due to the close 

proximity to the crack tip.  It is noted that, even at this location, the results show much 
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less scatter than those calculated using the incremental theory of plasticity and the full, 

elongating contour.   
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Figure 4.22: FEA T* calculated from nodal displacements at different levels of 
surface crack extension, ε = 3.0 mm.  
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Figure 4.23: FEA T* calculated from nodal displacements at different levels of 
surface crack extension, ε = 2.0 mm. 

 

0

20

40

60

80

100

120

140

0 1 2 3 4 5

Distance from surface, z (mm)

T*
 (M

Pa
-m

m
)

da = 0.00
da = 0.25
da = 0.50
da = 0.75
da = 1.0
da = 1.25
da = 1.5
da = 2.25
da = 2.50
da = 3.00
da = 3.50
da = 4.00
da = 4.50
da = 5.00

 
 
 

Figure 4.24: FEA T*ε calculated from nodal displacements at different levels of 
surface crack extension, ε = 1.0 mm. 
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Figure 4.25: FEA T* calculated from nodal displacements for local crack extensions, ε = 
2.0 mm.  
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Figure 4.26: FEA T* calculated from nodal displacements for local crack extensions, ε = 
1.0 mm.  

Figure 4.27 shows the CTOA calculated at three locations through the thickness at 

approximately 1.0 mm behind the crack tip for the surface, the quarter point (midpoint of 

numerical model), and the specimen mid-point.  The surface CTOA trend shows the 

typical sharp increase at the beginning of crack growth, followed by a decline to a fairly 

steady state value of approximately 7-8 degrees.  The quarter point and mid-point trends 

exhibit an interesting slow rise as the crack extends.  This behavior is due to the rapid 

crack propagation in the center (tunneling) near the beginning of the test, which will 

produce a small amount of crack tip blunting and hence low CTOA.  As the tunneling 

slows, the CTOA on the inner layers should increase as seen here due to increasing 
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amounts of plastic deformation and crack tip blunting.  It is observed that the CTOA 

roughly follows the same trend as the near-field T*ε calculated on an ε = 1.0 mm contour.   

Both the CTOA and the near-field T*ε show a decreasing trend followed by a fairly sharp 

increase at local crack extensions longer than approximately 6.0 mm.   

surface

0

2

4

6

8

10

12

0 1 2 3 4 5

Local ∆a  (mm)

C
TO

A
 (0 )

 

quarter point, z = 2.0 mm

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8

Local ∆a  (mm)
C

TO
A

 (0 )

 
center, z = 4.0 mm

0
2
4
6
8

10
12

0 1 2 3 4 5 6 7 8 9

Local ∆a  (mm)

C
TO

A
 (0 )

 
 

Figure 4.27: CTOA for different through-thickness locations on tunneled crack front. 

 

It should be noted that one of the drawbacks to CTOA is its extreme mesh sensitivity.  

Although this is not extremely evident in Figure 4.27, some of the CTOA values are 

suspect, namely those near the beginning of the analysis.  As the crack extension reaches 

1.0 mm, the original crack tip blunting causes a bump in CTOA value.  This blunting 
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influence decreases as the mid-plane is approached since development of large 

deformation occurs more slowly here. 

4.3.2 POINT-WISE J-INTEGRAL (INCREMENTAL) FOR TUNNELED CRACK 

The J-integral differs from the T*ε integral in two ways.  First, the J-integral is based on a 

deformation theory of plasticity and by definition cannot account for unloading, or 

extensive plasticity.  In fact, the J-integral is calculated with only the elastic portion of 

the stress-strain work (strain energy density), whereas the T*ε integral is calculated using 

the summation of elastic strain energy plus the plastic dissipation, which increases 

incrementally as the crack extends.  The second primary difference is that the near field 

J-integral is calculated on a moving contour and, as noted by Okada, et al. [70], is a 

measure of only the energy release rate at the crack tip.  The near field J-integral exhibits 

a peak followed by a drop to nearly zero, which is expected under the aforementioned 

circumstances.    

Figure 4.28 shows the variation of J-integral through the thickness, calculated on a 

moving contour and under an assumption of incremental plasticity.  Limitations in the 

ABAQUS FEA package do not allow J-integral to be calculated for the particular 

geometry used in the present FE model.  For ABAQUS J-integral, the crack front must be 

defined on a smooth, continuous crack front.  Hence, for this analysis, J-integral is 

calculated with incremental formulation using the same post processing formulation as 

used for the T*ε calculation and with a moving contour. 
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Figure 4.28: Point-wise, incremental J-integral for tunneled crack, ε = 3.0 mm. 
 

Figure 4.28 only includes the through-thickness trends for crack extensions up to a 

surface crack extension, ∆a = 2.25 mm since the data points beyond this become very 

erratic and would only serve to remove clarity from the plot.  It is obvious from Figure 

4.28 that the J-integral drops to zero at points closer and closer to the surface as the crack 

extends.  This is because, as the crack extends, the elastic unloading zone in the wake of 

the crack tip is passed through much sooner on the interior layers.  It is interesting to note 

that one can almost “track” the progression of the layers through the wake zone by 

observing the point at which each distinct crack extension curve drops off.   

Figure 4.29 shows plots of incremental J-integral from the two extreme cases of near 

surface, and near mid-plane to illustrate the point discussed here.    
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Figure 4.29: Incremental J-integral near surface and near mid-plane, ε = 3.0 mm.  

4.3.3 COMPARISON OF 3-D T*ε AND J-INTEGRAL 

It is difficult to draw a direct comparison between the T*ε and J-integral for the extreme 

tunneled case.  Up to the point of crack initiation, and slightly beyond, T*ε and 

incremental J-integral should be almost identical due to the negligible differences 

between the moving contour and extending contour at these points.  However, as the 

moving contour passes into the wake zone behind the current crack tip, the incremental J-

integral is invalidated.  Figure 4.30 contains plots of T*ε and incremental J-integral from 

the two extreme points overlaid with each other.   
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Figure 4.30: Comparison of T*ε and incremental J-integral, ε  = 3.0 mm. 
 

4.4 COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 

Since the numerical results are obtained in a point-wise fashion along a tunneled crack 

front, it is difficult to directly compare them to experimental values obtained at the 

surface.  The primary reason for this is the simple fact that an average value of T*ε 

through the thickness at each step in the FE analysis would not take into account the fact 

that center values are obtained at a point of crack extension that could be up to 4 mm 

longer than the amount of crack extension at the surface.  However, experimental values 

could still be compared to numerically obtained values near the surface.  Since the 

behavior in the extreme outer layer is a reflection of a surface singularity effect, which is 

difficult to quantify, the second layer in from the outside surface should be used.  Figures 

4.31, 4.32 and 4.33 are overlay plots of surface T*ε from moiré displacements in test “T5-

3PB” with numerically obtained T*ε from the element interface located 0.25 mm from the 

surface.  The general trend of numerically obtained T*ε is lower than the experimental, 

surface values primarily because of the fact that it is not obtained on the extreme surface. 
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Figure 4.31: Comparison of experimental and numerical surface T*ε, ε = 3.0 mm.
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Figure 4.32: Comparison of experimental and numerical surface T*ε, ε = 2.0 mm.  
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Figure 4.33: Comparison of experimental and numerical surface T*ε, ε = 1.0 mm. 

It is tempting to apply some sort of correlation between surface values of T*ε and perhaps 

some average of T*ε through the thickness for the tunneled crack.  Unfortunately, the 

surface values seem to be relatively detached from the behavior through the thickness.  It 

is seen from the plots of numerically obtained T*ε, that the state of energy is very 

different on the interior of the specimen for cases of extreme tunneling.   The only 

physically meaningful correlation would be between the experimental T*ε values and the 

near surface, numerically obtained values.   

4.5 DISCUSSIONS 

4.5.1 THE TRUNCATED INTEGRATION CONTOUR APPROACH 

Originally, Okada [70] devised the T*ε calculation with a truncated contour approach to 

allow calculation of T*ε from experimentally obtained displacements where there is no 
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material loading history available.  However, this should not imply that this method 

should not be used in cases where this history is available.  It is evident from the data 

presented that it would be reasonable to use a truncated contour and hence, the 

deformation theory of plasticity to calculate T*ε for both experimental and numerical 

analyses.  Even though the T*ε values using this method were approximately 5-10% on 

the non-conservative side in comparison to experimental results, the practicality of the 

approach is very appealing from the standpoint of a field technician.  In comparison to 

using the incremental theory with an extending contour of integration, this method is 

unquestionably, far easier to apply.  All that is needed is a current displacement field 

surrounding the current crack front point of interest.  Output from a FE analysis is 

naturally compatible with this requirement as nodal displacements are easily extracted 

during a post-processing application.   

Since nodal displacements are used, and the contour is truncated at the crack tip, Okada’s 

method will have a smearing effect on localized events in an FE analysis.  It can be 

argued that to be completely valid, one must apply the incremental theory of plasticity 

formulation with an extending integration contour to include the effect of such localized 

events.  However, given the comparison between the results in the previous sections in 

this chapter and considering the difficulty encountered in using a full incremental theory 

approach and the intricacies of defining an extending contour in complex cases, this 

approach seems more feasible.  This is especially true if the analysis were being 

performed in reverse, i.e., the application phase where the toughness curve is being used 

as a criterion for fracture in the FE analysis.   

There is excellent correlation between the surface T*ε calculated via Okada’s truncated 

contour with nodal displacements approach and the surface T*ε calculated via the 

incremental theory with a full contour.  This is indicative of a very small contribution 

from the portions of the integration contour that trail the crack tip and the fact that, with a 

truncated contour only the portions which are still undergoing loading are considered, 
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allowing valid use of the deformation theory of plasticity in this case.  The numerical 

difficulties seen in the calculation of incremental J-integral are likely a direct result of 

closing the integration contour through this wake zone which is not done for the 

extending contour T*ε calculation, or the truncated contour T*ε calculation.   

4.5.2 COMPARISON OF SURFACE T*ε TO PLANE STRESS T*ε 

A validation of this research comes with a comparison to plane stress T*ε from Ma [92] 

where T*ε was calculated for thin (0.8 mm) 2024-T3 aluminum, center notched 

specimens.  Since the extreme surface of the 3-D case is thought to be near a plane stress 

state based on the existence of an approximately 13% shear lip observed on the fracture 

surface, T*ε values from this location should compare quantitatively with those of a plane 

stress analysis as long as similar sized Γε contours are used.  The numerical and 

experimental T*ε for ε =1.0 mm, in Figures 4.25 and 4.5, compare well in a quantitative 

sense with those in [92] which were obtained in a plane stress analysis.  As seen in 

Figures 4.24 and 4.5, the results for a Γε contour of ε = 2.0 mm also agree well with those 

in [92] for the same reasons.  It must be assumed that the T*ε calculation through the 

thickness will also be correct since the surface values are acceptable.  Since the T*ε 

integral has never been calculated in a state of high triaxiality such as the present, 3-D 

tunneled crack case, validation must come in the form of comparison to other known 

values.  Figure 4.34 is an overlay plot of T*ε calculated at the surface numerically and 

experimentally for Γε contour sizes of ε = 1.0 mm and 2.0 mm with plane stress T*ε from 

Ma [92] for the same contour sizes.   
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Figure 4.34: Comparison of surface T*ε to plane stress T*ε from Ma [92].  

4.5.3 PLANE STRESS (SURFACE) AND PLANE STRAIN (MID-PLANE) 

The numerically obtained T*ε shows a decreasing trend as the mid-plane is approached 

which is contrary to energy release rate behavior up to the point of crack initiation seen in 

previous studies involving J-integral.  However, the extreme tunneling should not 

directly imply a trend of rising crack driving force toward the center.  It is instead a result 

of lower resistance near the mid-plane, which is reflected in the lower T*ε values at this 

crack front location. The specimen being modeled is relatively thick and will exhibit 

fairly thin region of plane stress near the surface and transition to a plane strain state as 

the mid-plane is approached.  This trend is seen directly in the plots of ε33 shown in 

section 4.1.1 of this chapter (Figures 4.8, and 4.9).  In light of this, T*ε should instead be 

compared to a more local, physical parameter such as CTOA.  This comparison is best 

made with the T*ε calculated on an ε = 1.0 mm contour size since CTOA is local to the 

crack tip.  As the mid-plane of the specimen is approached and for extensive tunneling, 

the T*ε extending contour integral begins to exhibit characteristics similar to those of a 
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T*ε integral calculated with a moving contour as seen by Okada et. al. [70].  It is likely 

that the reason for this is the decreasing contribution from those portions of the contour in 

the wake of the extending crack.  That is, each step in this case is more similar to a case 

of T*ε calculated on a truncated contour as the strain history never builds as in the case of 

a controlled, stably growing crack.  Regardless, some comparison must be drawn 

between mid-plane and surface T*ε in order to allow use of experimentally obtained 

values for prediction of crack extension throughout the thickness of a specimen.   

At crack initiation, and within the first few steps of crack growth, the surface and mid-

plane values are quantitatively similar.  However, as the crack extends, the surface T*ε 

rapidly increases while the mid-plane value stays fairly steady, with a slight trend toward 

rising.  After approximately 5-6 mm of crack growth, the two reach a steady state with 

respect to each other and a comparison can be made between the plane stress (surface) 

values and plane strain (mid-plane) values.    

For the  linear elastic case, a comparison of JC and JIC for very thin specimens (plane 

stress) and thick specimens (near plane strain) respectively is made for 2024-T3 

aluminum alloy as (K values from [105]); 

 
( ) ( )

22

0.8 2 2
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t mm
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K m
K mν=

  
= =    − −   

 (4.3) 

which shows plane strain JIC to be roughly 9% of plane stress JC.  Since J-integral is 

incapable of characterizing the crack tip behavior after crack extension, this comparison 

cannot realistically be made for the case of extended crack extension and extreme 

tunneling.   However, this comparison can be used to make an analogy to the behavior of 

a steady state T*ε toughness behavior since this would represent the “critical” value of 

T*ε.  An inspection of the plots of T*ε for all contour sizes, and especially the very near-

tip ε = 1.0 mm contour reveals a relationship between plane stress (surface) T*ε and plane 

strain (mid-plane) T*ε.  While the 3-point bend specimen configuration did not allow 
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sufficient crack extension to achieve the complete steady state T*ε value, it comes close 

enough to begin to show signs of achieving a steady state value which should occur at a 

crack extension roughly equivalent to half the specimen thickness.    At the final point of 

crack extension (5.0 mm on the surface), the ratio between surface T*ε and mid-plane T*ε 

is roughly 10 %, regardless of contour size, or method of calculation.  The much lower 

plane strain T*ε is a direct reflection of the much lower resistance to crack extension in 

the plane strain region in comparison to the surface, plane stress region.  The very close 

agreement with the ratio of linear elastic fracture toughnesses is an encouraging 

development since this would indicate the possibility for using plane stress (surface) T*ε 

values to predict the fracture resistance on the interior of a thick specimen.  Figure 4.35 

highlights this comparison for the near-tip plane stress and plane strain T*ε resistance 

curves. 

It is evident in Figures 4.22, 4.23, and 4.24 that the T*ε values calculated using the 

truncated contour with deformation theory are far less susceptible to numerical noise and 

tend to be a slightly lower than those calculated with incremental theory and a full, 

extending contour.  This discrepancy is due to the fact that the deformation theory 

calculation on a truncated contour is based solely on the displacement field and therefore 

cannot account for the explicit strain history.  However, it is obvious that the T*ε 

calculated this way is similar, quantitatively with both the experimentally obtained values 

and the numerical values obtained using incremental plasticity and an extending contour 

of integration. 

If the analysis is restricted to a contour very near the crack tip (localized crack tip driving 

force), Okada’s truncated contour and deformation theory analysis procedure can be used 

most effectively.  In addition, a comparison can be drawn between the T*ε behavior on 

this very near-tip contour and CTOA, which is itself a very local crack tip parameter.  

Since CTOA seems to be able to accurately predict crack extension (see Dawicke, 

Newman ,et al. [1], [13], [14], [16]), a comparison between CTOA and near-tip T*ε 
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provides a measure of validation.  Figure 4.35 is a combined plot from Figure 4.26 of 

surface and mid-plane T*ε calculated on an ε = 1.0 mm contour, representing the 

difference between a plane stress resistance curve, and a plane strain resistance curve.  

Figure 4.36 shows the CTOA plotted in the same manner.   

The ratio of surface CTOA to mid-plane CTOA is roughly 40-50%, which is much higher 

than the ratio between surface and mid-plane T*ε.  Since there is no known quantitative 

comparison between the two parameters, this observation is inconclusive.  However, it is 

sufficient to note that the two compare in a qualitative manner.  It is well known that 

CTOA is incapable of fracture resistance characterization in the initial stages of crack 

growth where the “hump” in the surface curve is generally attributed to tunneling.  

Beyond this initial transient, the two parameters compare well qualitatively.    
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Figure 4.35: Plane stress and plane strain, near-tip T*ε, ε = 1.0 mm. 
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Figure 4.36: Plane stress and plane strain CTOA.  

It is noted that the plane strain (mid-plane) T*ε and CTOA resistance curves exhibit a 

drop followed by a sharp rise at a local crack extension of approximately 7.0 mm.  This is 

a function of the numerical model and the way the crack tip interacts with the external 

loading.  At this crack extension level, the slowed tunneling combined with an interaction 

with the boundary condition induced stress field produces a blunting effect at the mid-

plane crack tip.  This is very evident in the CTOA resistance curve, and local T*ε (ε = 1.0 

mm) curve where crack tip behavior has a strong influence.   

4.5.4 RELATIONSHIP BETWEEN PLANE STATE AND INTEGRATION CONTOUR 

In past analyses and for this analysis as well, one integration contour size has been used 

to observe T*ε behavior for any particular data set.  That is, if a contour size of 2.0 mm is 

chosen, all values are calculated using this contour size, regardless of position along the 

crack front.  In order to explicitly follow the strategy laid out here for assigning an 

integration contour, the integration contour size would need to change according to 

position along the tunneled crack front or, more appropriately, as a function of the 

constraint present at each particular through-thickness position.  If a transition point to 
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plane strain is defined as the location of the integration contour, then the ε33 plots 

(Figures 4.8 and 4.9) would dictate a changing integration contour size along the tunneled 

crack front.  An examination of the T*ε data presented for this analysis also tends to 

support this theory, albeit in a weak way.  T*ε near the surface is also slightly closer to 

the plane stress values of Ma [92] for larger contour sizes.  A correlation cannot be drawn 

for mid-plane values of T*ε, but it could be assumed that the same will likely be true of 

plane strain T*ε.   

4.5.5 IDEALIZED CASE: STRAIGHT CRACK FRONT T*ε AND J-INTEGRAL 

Since a new post-processing program was written for calculation of T*ε  in this study, an 

idealized numerical analysis was performed to get a baseline comparison between T*ε 

and J-integral in simplified conditions since the two can be considered approximately 

equal prior to, and just beyond crack initiation.  As further validation, the general trend of 

T*ε should be one of an increase-peak-flattening. In this portion of the analysis, a model 

was built which incorporated a straight crack front for several steps of crack extension. 

The geometrical characteristics of the general model are identical to the “real” numerical 

model except that fewer layers are utilized since there is no tunneling that would require 

high resolution through the thickness.  Also, the displacement boundary conditions 

applied to this model have been estimated based loosely on the displacement conditions 

prescribed in the “real” model (obtained from experimental analysis) and the stepwise 

progression is compressed to get a comparison between average crack extensions in the 

tunneled case, and the straight crack extension level. 

For this simple, idealized analysis a Γε contour of ε = 2.0 mm is chosen to expediate the 

numerical processing since larger contours can result in hundreds more EDI elements 

included in the calculation.  The width of the EDI region is set at 1.0 mm to provide 

adequate resolution.  Also, only 2.0 mm of crack extension is analyzed here since the 

analysis served its purpose at this amount of crack extension.   
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Figure 4.37 shows the T*ε trend for the idealized case up to a crack extension of 2.0 mm.  

In this plot, trends for different locations along the crack front (z) are shown.  The 

“hump” seen in these curves for the near surface T*ε at a crack extension of 1.25 mm is 

likely due to an artificially fast formation of a plastic zone at the surface and then a 

transition of this plasticity toward the center as the crack extends.  The higher values of 

T*ε near the mid-plane are expected since tunneling would be expected in a real crack 

extension case due to the increasing crack tip energy requiring dissipation (T*ε).  Figure 

4.38 is a plot of J-integral from the same analysis.  As expected, the J-integral is 

quantitatively similar to T*ε, especially near the quarter thickness point (1.00 mm).  It 

also exhibits the expected peak-decrease behavior while T*ε exhibits its classic peak-

flattening behavior.   

Figure 4.37: T*ε for idealized, straight crack front, ε = 2.0 mm. 

0

10

20

30

40

50

60

70

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

∆a  (mm)

T*
 (M

Pa
-m

m
)

z = 0.25
z = 0.50
z = 0.75
z = 1.00
z = 1.50
z = 2.00
z = 2.50
z = 3.25

 



 

 

116

Figure 4.38: J-integral for idealized, straight crack front, ε = 2.0 mm.
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Figures 4.39, and 4.40 show trends of T*ε and J-integral extracted from the plots in 

Figures 4.37 and 4.38.  These figures highlight the differences in J-integral and T*ε for 

this idealized case.  The mid-plane trends are very similar at small crack extensions but 

show divergence in behavior as the crack extends.  Far-field J-integral would continue 

rising, but near field J-integral will peak and then drop.  These expected trends are 

evident in Figures 4.39, and 4.40. 
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Figure 4.39: T*ε and J-integral near specimen surface (z=0.25 mm), ε=2.0 mm.  
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Figure 4.40: T*ε and J-integral for mid-plane (z=3.25 mm), ε =2.0 mm.   
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4.5.6 IMPLICATIONS ON THE STRAIGHT CRACK ASSUMPTION 

It is obvious that there is a significant, qualitative difference between the T*ε calculated 

in the idealized, straight crack case and the real, tunneled crack front case.  In comparison 

to the straight crack case, the tunneled crack front T*ε (and hence, J-integral) drops 

significantly as the mid-plane of the relatively thick specimen is approached, and with a 

short amount of crack extension.  The single specimen technique for J-integral estimation 

in ASTM E 813 relies on an assumption of a straight crack front, with an average, 

estimated crack front calculated via a compliance measurement.  Hence, through-

thickness behavior similar to the idealized case discussed in the previous section would 

be expected.  The existence of the discrepancy between the idealized, straight crack front 

case and the tunneling case casts some doubt on the validity of the single specimen 

technique for J-integral estimation.  Since the mid-plane values vary so significantly 

between the two cases, the single specimen technique for J estimation will likely produce 

non-conservative results.  

4.5.7 GENERATION PHASE-APPLICATION PHASE VALIDATION 

An objective in this research was to build T*ε resistance curves in their generation phase 

through a combined experimental and numerical approach so that they could eventually 

be utilized in the application phase.  The localized T*ε resistance curves were obtained 

for several points along the crack front for this 2024-T351 aluminum alloy in the 3-point 

bend specimen configuration.  In the previous sections, these localized resistance curves 

were reported for the surface (plane stress), quarter-plane (transition), and mid-plane 

(plane strain) regions.  These curves may now be applied as a fracture criterion in an 

application phase numerical analysis to predict the tunneling behavior in a similar 

specimen geometry.  The successful prediction of crack front tunneling along with a 

match with far field parameters such as Crack Mouth Opening Displacement (CMOD) 

would validate the local T*ε resistance curves.  
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CHAPTER 5: CONCLUSIONS AND RECCOMENDATIONS 

5.1 SUMMARY 

The T*ε contour integral has been numerically evaluated along a 3-D, tunneling crack 

front in a thick, plane strain specimen.  This numerical value has been compared near the 

surface with T*ε calculated on the surface of the aluminum, 3-point bend specimen from 

a moiré displacement field generated in the experimental process.  In addition, values of 

incremental J-integral and CTOA were obtained for the purpose of comparison.  Since 

T*ε has been primarily studied experimentally and numerically in 2-D form, or 3-D form 

without crack extension, the evaluation of T*ε for this 3-D tunneling case with crack 

extension and a plane strain interior represents a unique contribution to the study of the 

mechanics of ductile fracture. 

A good correlation between T*ε calculated with incremental theory of plasticity and an 

extending contour and T*ε calculated using deformation theory of plasticity and a 

truncated contour was observed.  This implies that the far simpler, deformation theory 

approach may be used in place of the extremely difficult and time consuming incremental 

theory approach.  In addition, much less mesh refinement would likely be required if only 

the current displacement field is used for the calculation.  The ability to use this approach 

would vastly improve the status of T*ε as an applicable “in the field” fracture toughness 

parameter.   

The downward trend in T*ε values as the mid-plane is approached is indicative of the lack 

of development of an appreciable amount of strain energy and/or plastic dissipation.  The 

crack tunnels to an extreme extent in comparison to the propagation of the crack tip at the 

surface because there is far less resistance to crack propagation in the interior of the 

specimen where the T*ε toughness value is lower.  The constraint present in the interior 



 

 

120

of the specimen forces this state of plane strain much closer to the crack tip than near the 

surface where almost a complete plane stress state exists.  Up to, and at the point of crack 

extension for a mildly tunneled, or straight crack, the material surrounding the crack tip is 

allowed to build up elastic strain energy and very little plastic dissipation.  In this case, 

the T*ε integral behaves in a fashion similar to the J-integral, that is, a slight rising trend 

along the crack front toward the specimen mid-plane.  At this point, both T*ε and J-

integral are functions of elastic strain energy, and are directly related to the linear elastic 

fracture toughness, so this is expected.  After tunneling begins, the T*ε integral is larger 

at the surface and smaller near the mid-plane, because there is far more plastic distortion 

near the surface where a majority of the current load is carried.  This trend is reflected in 

the CTOA variation through the thickness as well.  At the surface, where there is large 

plastic deformation, CTOA is close to its accepted value of between 5-8 degrees but drops 

as the mid-plane is approached in a similar manner as the T*ε integral.  Although there is 

no direct correlation between the two parameters, the fact that CTOA is a geometrical 

parameter that is generally accepted as a stable fracture characterizing parameter means a 

similar trend in T*ε is a good sign.   

The interior T*ε values are similar to incremental J-integral, except that they are still 

calculated on a contour that has extended with the crack and therefore contain the entire 

history of the crack extension.  It is interesting to note that incremental J-integral trends 

seem to follow a pattern of reaching a peak in an ever-closer proximity to the model 

surface as the crack extends.  This tends to imply some physical connection between 

incremental J-integral and the formation of plasticity in front of the crack tip. Regardless, 

incremental J-integral has no physical meaning after a crack extension equal to the 

contour size because of the contribution of the integration is in the wake zone behind the 

current crack tip.  In addition, closing the contour of integration through an active wake 

zone will definitely lead to numerical difficulties. This effect is seen in the difference 

between T*ε and incremental J-integral. 
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A reasonably good correlation is seen between experimentally obtained, surface values of 

T*ε and the near surface, numerically obtained values.  The fact that the numerically 

obtained values are slightly lower than the experimental surface values can be attributed 

to the inability to obtain numerical results at the extreme surface.  Rather, they are 

obtained at the interface between the first and second element layers (0.25 mm from real 

surface).  The reasons for this are; first, the surface singularity was very coarsely 

modeled, using a thin (0.25 mm) element layer near the surface and the effects of this are 

unknown, second, the use of a triangular s-function does not allow a calculation at the 

extreme outer and inner nodes.   

5.2 CONCLUSIONS 

• T*ε values generally reach a peak of approximately 175 MPa-mm on the surface 

and approximately 30 MPa-mm in the mid-plane.  This significant difference is 

due to the existence of a plane stress state at the extreme surface, and a plane 

strain region at the mid-plane of the specimen. 

• A deformation theory of plasticity with a truncated contour can be used in the FE 

analysis to provide a good measure of ease of use in comparison to a full 

calculation involving the incremental theory of plasticity and an elongating 

integration contour. 

• T*ε for the 3-D configuration and tunneling crack front behaves similarly to the 

local crack tip parameter, CTOA for corresponding through-thickness resistance 

curves.  Thus, local T*ε is assumed to represent the point-wise energy inflow to 

the crack front. 

• T*ε is very sensitive to the constraint level in the material surrounding the crack 

tip and will exhibit distinct plane stress and plane strain values.  The ratio of the 
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plane strain T*ε and planes stress T*ε values is approximately 10% for this 

material and specimen geometry. 

• A good quantitative comparison between the ratios of plane strain and plane stress 

linear elastic fracture toughness and plane strain and plane stress T*ε presents the 

possibility for a relationship to exist between plane states and corresponding T*ε 

values.   

• The J-integral estimation within the single specimen technique of ASTM E 813 

may require additional thought with regard to the implications of assuming an 

average, straight crack front. 

5.3 RECCOMENDATIONS 

1) As computing power becomes more readily available, the numerical model should 

be refined to include more layers through the specimen thickness and a different 

approach to focusing the mesh to the crack tip. 

2) The post-processing software should be enhanced to allow use with a variety of 

element types.  It should also be build to accommodate the tunneling crack front 

by allowing rotation of the EDI region to adapt to the current crack front. 

3) A detailed analysis of the deformation field in the vicinity of the crack tip should 

performed with a goal of defining how the EDI region should be defined for thick 

model configurations that incorporate tunneling. 

4) This work should be extended to a creep analysis.  This would incorporate large 

deformation and would highlight connections between the T*ε integral and the 

amount of plastic dissipation in the region of interest.   
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5) The resulting local T*ε toughness curves should be used in an application phase to 

attempt prediction of tunneling behavior in a numerical model.   

6) A further exploration of the use of the truncated contour of integration approach 

should be considered for use with FE analyses.  While this approach is not a 

replacement for the incremental plasticity approach, it still provides a reasonable 

estimate of numerical T*ε.   

7) T*ε should be calculated for the case of a growing, semi-elliptical surface flaw in 

a tensile specimen.  Tunneling will be much less severe for this type of specimen.  

The elliptical surface flaw should also allow a more natural EDI region to be used 

and will still have the capability for characterizing plane stress and plane strain 

T*ε, but only for short crack extensions.   

8) The extreme crack tunneling case should be studied further as it may lead to a 

mechanistic explanation of the ductile to brittle transition by way of differences 

seen in constraint levels as the specimen thickness is traversed. 
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APPENDIX A: EXPERIMENTAL SETUP WITH MOIRE BENCH 

 

                 
Figure A1: Moire bench with redirecting 

mirrors, mask, and collimating 
lens. 

 

 
 
Figure A2: Spatial filter assembly in front 

of collimating lens. 

 
Figure A3: Front view of specimen in load 

frame, and front camera. 
 
 

 
Figure A4: Closeup view of specimen with 

CMOD gage attached. 
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