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Abstract

A 3-DIMENSIONAL EXPERIMENTAL AND NUMERICAL
ANALYSIS OF THE 7", INTEGRAL IN ALUMINUM
FRACTURE SPECIMENS

By John H. Jackson and Albert S. Kobayashi

The T*, integral, an elastic-plastic toughness parameter which is based on the incremental
theory of plasticity, has been calculated experimentally and numerically in two-
dimensional (2-D) metallic specimens. These established methods for 2-D
characterization of the T*; integral are used to expand this relatively new elastic-plastic
toughness parameter to 3-D elastic-plastic fracture problems. This is a necessary step
toward completely validating 7%*, integral as an elastic-plastic toughness parameter
capable of characterizing unloading and crack propagation. Since the 7*, parameter was
originally derived to overcome inherent shortcomings involved with the use of creep
fracture toughness parameters such as the C* integral, its use in creep fracture is also

briefly reviewed.

The early foundation that has been set for the 7%, integral is further expanded in this
dissertation as a viable alternative to the J-integral for use as a toughness characterizing
parameter in the presence of a 3-D flaw. Since the J-integral is based on the deformation
theory of plasticity, it lacks the capacity for characterizing a growing flaw that will
inevitably include unloading and extensive plasticity. Further, the J-integral is calculated
along a constant sized contour that moves with the crack tip, meaning it is a measure of
only the energy release rate at the crack tip. The T*, integral approach attempts to
overcome these drawbacks by utilizing incremental (flow) plasticity and a growing
integration contour to capture the material behavior at the advancing crack tip as well as

behind. A 2024-T351, aluminum alloy, which is considered a ductile material, is used for



proof of concept in this study. The research includes experimental work for validation of,
and application to, a numerical model in a generation phase approach for a toughness-
characterization curve. Issues including near field integration contour size, method of
calculation, and comparison between near, and far field J-integral and 7*, are discussed.
An extensive numerical study including the calculation of the 7%, contour integral via the

equivalent domain integral (EDI) method is performed to meet this end.

A numerical model is built incorporating tunneling behavior observed in experimental
work. The behavior in a case of extreme tunneling is relatively unknown so attempts are
made wherever possible to compare to baseline behavior of established parameters.
Comparisons are made between 7%, calculated along an idealized straight crack front,
deformation theory J-integral along an idealized straight crack front, incremental J-
integral calculated in the extreme tunneling case, and 7%*, calculated using nodal
displacements and the deformation theory of plasticity on a truncated contour. The 7%,
integral is observed to behave similarly in a qualitative sense to the CTOA for the case of
extreme tunneling and as the mid-plane of the specimen is approached. The T*,
calculated on the surface of the specimen with experimentally obtained surface
displacements is found to compare quantitatively with near surface, numerically obtained,

T*. values.
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INTRODUCTION

Nonlinear behavior in fracture has been a topic of recent interest, as current knowledge in
this area is known to be inadequate. Most agree that fracture mechanics, as it pertains to
the extension of a crack in a material, is well established only to the point of fracture
initiation. Beyond crack initiation, and with large-scale plastic deformation, even the
well-known J-integral approach loses its validity. Hence, an important class of materials,
namely those exhibiting lower strength and high toughness in which crack instability may
be preceded by extensive stable tearing, are largely uncharacterized. Alternative fracture
parameters must be explored in order to overcome these difficulties associated with the
development of large plastic zones and to allow characterization of toughness in materials

exhibiting extensive stable crack growth.

The concepts of damage tolerance, and life extension are closely tied in with the need to
characterize the regime of stable crack extension. In applications utilizing ductile
materials (high toughness), i.e. boiler pressure vessels, aircraft skins, etc., the ability to
predict the behavior of an existing, growing flaw is of utmost importance. As noted by
Dawicke et al [1], residual strength prediction in an aircraft fuselage requires a fracture
criterion capable of accounting for large-scale stable tearing in thin-sheet materials. It is
apparent that, in comparison to elastic (brittle) fracture, relatively few studies involving
toughness characterization beyond the small-scale yielding regime have been performed
[2]. Thus, in recent years, several stable tearing toughness parameters have been

proposed.

This research is intended to be an exploration of the existing stable crack tearing
characterizing parameters through an experimental-numerical study aimed at extending
the capabilities of elastic-plastic fracture to encompass stable tearing behavior. This will
include an extension of 2-D to 3-D analyses. Recent experimental results are reviewed,

and the current research is explained in detail in this chapter.



CHAPTER 1: REVIEW OF CURRENT KNOWLEDGE

1.1 CRACK TIP GEOMETRY PARAMETERS

1.1.1 COD AND CTOD

Beginning with the work of Wells [3] in 1961, crack tip geometry parameters were
viewed as possible means of characterizing toughness in the event of large plastic
deformation.  The first of these parameters was designated as Crack Opening
Displacement (COD), and was observed to be somewhat of a material constant which
could be reliably measured, even in the presence of significant yielding [3, 4]. It was
noticed that, once initiated, a crack propagates with a characteristic bluntness, leading to
the concept of a material dependent, critical COD [2]. COD, as it is used in this context,
is typically measured very close to the crack tip and is therefore also referred to more
accurately as Crack Tip Opening Displacement (CTOD). Figure 1.1 is a graphical
definition of CTOD or COD and Crack Tip Opening Angle (CTOA), which will be
discussed shortly.

Figure 1.1: Definition of CTOD and CTOA.



CTOD is typically applied in instances of small scale yielding where it may be related to
Griffith’s energy release rate as in equation (1.1) with Irwin’s plastic zone correction, or
equation (1.2) with the strip yield model [5]. Here, G is Griffith’s energy release rate,
oys 1s the yield strength, and m is a parameter set equal to 1.0 for the case of plane stress,

and 2.0 for the case of plane strain.

_4 G

) (L.1)
7T Oyg

0= G (1.2)
Mo yg

In addition, CTOD may be related to Rice’s J-integral [6] as in equation (1.3). Here A is

a material dependent parameter.

o= J
AC 4

(1.3)

Although CTOD is a direct function of the J-integral through equation 1.3, this
relationship is no longer valid in the presence of unloading or crack extension, thus
CTOD will not inherit the many difficulties relating to the use of J-integral as a fracture
toughness characterization. Critical CTOD, measured at the initiation of stable fracture,

corresponds to critical J (Jic).

Typically, CTOD is applied in what is known as a COD design curve approach. This
approach, originally developed by Burdekin and Dawes [7], involves plotting critical
CTOD normalized by the half crack length against the failure strain normalized by the
elastic yield strain [5]. Any state of stress lying above this design curve was considered
safe because all observed experimental failures were below the curve. It is noted that,

when producing a COD design curve, the specimen tested must be of the same thickness



as the structure to which the design curve is applied. Accordingly, it is necessary to carry

out tests on materials representing different regions within a component [5].

1.1.2 CRACK TIP OPENING ANGLE (CTOA)

A more recently studied, similar parameter that has been found to be significant in terms
of quantification of stable crack extension is the Crack Tip Opening Angle (CTOA). This
is defined in either of two ways, as a Crack Opening Angle (COA), which is the ratio of
the original CTOD to the crack extension, or strictly as CTOA (local COA) which is a
measure of the angle of the crack face immediately behind the current crack tip [8].
Obviously, measurement becomes more difficult as the crack tip is approached and the
crack tip behavior becomes more detached from measurement as a crack extends. Thus,
CTOA is typically measured as close to the crack tip as is convenient within the
capability of experimental measurement so that accuracy may be maintained. As noted
by Shih et al [9], the opening profile has a vertical tangent right at the crack tip,
corresponding to a CTOA of 180 degrees. Therefore, the CTOA must be defined at a
small, but reasonably finite distance from the extreme tip in order to have meaning.
CTOA () is typically defined as in equation (1.4), using CTOD (6) measured a specified
distance (d) from the current crack tip.
y=2tan"(22) (1.4)
d

Shih et al [9], provide one of the first significant studies in which the CTOA (or COA)
was utilized as a toughness parameter in studies of stable crack extension. Results were
compared with five different fracture criteria, including CTOA for A533B steel Compact
Tension (CT) specimens and Center Cracked (CN) panels. In their computational
approach, two different measures of COA were employed for comparison with
experimental results. The first is an average COA based on the crack extension (a-ay)

measured from the original crack tip, and on the COD (¢y) measured at the original crack



tip. The second is a so-called local COA (or CTOA) based on the opening displacement
o measured at a fixed distance, Aa, behind the current crack tip. These are similar
measurements at slightly differing scales. Both the local COA4 (CTOA), and average
COA, denoted oy and «p, respectively, showed considerable variation between
experimental and numerical results near initiation but exhibited a leveling off trend as the
crack extended in a stable fashion (Figure 1.2). The CTOA was found to be mildly
sensitive to the mesh size in the finite element model, but was seen as a better measure of
the local deformation characteristics. Based on this work, a CTOA modulus approach to
stable tearing was proposed as an alternative to the previously used, J-integral based
tearing modulus (dJ/da). Equation (1.5) is the proposed CTOA based tearing modulus,
where it is seen that the CTOA (dd/da) must be very large in comparison to the yield
strain. The CTOA, as it is used here, was also observed to be mildly dependent on the
specimen geometry, which is seen as a drawback in terms of its use as a stable tearing
characterization parameter. However, the achievement of a steady state value is a
favorable characteristic for stable tearing.

(in)
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Figure 1.2: CTOA (o) and COA (o) [9].
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In a similar study, Kanninen et al [10] used “generation” and “application” phase finite
element analysis (FEA) studies to observe various elastic-plastic fracture criteria,
including COA and CTOA. In this procedure, the “generation” phase consists of
matching FEA values of load or displacement and crack extension for differing criteria,
with experimentally observed values. In the “application” phase, these previously
evaluated parameters are applied to predict the fracture behavior. In the same spirit as the
study discussed previously, a set of ‘valued’ criteria are outlined, and the various elastic-
plastic fracture criteria are examined with respect to these criteria. It was concluded from
this study that CTOA (local COA) was a viable stable tearing characterization parameter
as it met most of the desired criteria. Table 1 shows the comparisons made in this study.
Note that & and £ are generalized energy release rate and toughness, respectively and F,

is the critical crack tip node force in a FE model of a crack growth process.

Table 1: Listing of appraised ductile fracture parameters (starred quantities indicate relative
superiority to other parameters in this particular area) [10].

Desirable Features F. G, B (COA). (CTOA). J. (dJ/da). R

Constant during stable crack Y* Y Y N Y N N N
growth with fixed fracture mode

Independent of geometry N N Y Y Y N N N
Computer model independent N N Y* Y* N Y* Y Y
Possibility of direct measurement | N N N Y* Y N N N

Computational Efficiency Y* Y N Y* Y* Y* Y Y




Brocks and Yuan [11] observed ductile crack growth phenomena in CT, Center Cracked
Tension (CCT), and Single Edge Crack Bend (SECB) specimens using FEA analyses for
both plane stress, and plane strain cases. Analyses of the plastic zones at the momentary
crack tip showed that the J-integral could no longer represent the stress state during stable
crack extension. The J and Js (displacement at initial crack tip [12]) resistance curves
were found to depend on the specimen geometry, but the CTOA curves were found to be
mostly unaffected by geometry during crack extension and by the development of full
plasticity. Through these analyses, it was shown that a linear relationship between J and

CTOD existed only for tension specimens during stable crack growth.

Newman et al [13] provided numerically determined C7OA results for thin sheet
aluminum alloys by observing three different crack configurations, including a blunt
notch to ensure the capability for characterization under conditions of extreme plastic
yielding. These results were later verified using two different finite element algorithms
[14, 15]. The trends observed in these studies showed an initial high value, attributed to
tunneling, followed by a relatively constant, critical value for stable tearing. Later, these
numerical results were experimentally verified by Dawicke et al [16], who made
measurements of C70OA in 2024-T3, aluminum, middle cracked tension (MT) and

compact tension (CT) specimens.

As noted by Brocks and Yuan [11], and Newman [17], large variations in CTOA (or
CTOD) values for crack extensions less than approximately twice the material thickness
may be due to crack tunneling, or to changes in the triaxial constraint as a crack grows
into a highly deformed region. To account for 3-D constraint effects in thicker (2 mm)
materials, while still using a 2-D analysis for simplicity in calculation, Newman et al and
Dawicke et al [14, 18] and others employed a so-called “plane strain core” (PSC) in their
FE analyses. This essentially consists of assigning plane strain properties to a strip of
elements around the crack plane. The height of this core was empirically determined,
based on a match between calculated and experimental crack opening displacements.

This was intended to model the constraint effects in the crack tip after a study by Hom



and McMeeking [19] which showed that, although the global material may be in a state

of plane stress, material near the crack tip may approach plane strain behavior.

Plane Siress Elements

Plane Stress Elements

Figure 1.3: Plane Strain Core [14].

Using the 2-D model with a plane strain core, Newman et al [14], Dawicke [18], and
others [1, 20] have since shown that a critical CTOA may be used in an ‘application’
phase to correctly model stable crack extension. Most simulations have been run using
2024-T3 aluminum samples of varying thickness with a critical CTOA (y,) of between 5
and 6 degrees. Typically, load-crack extension profiles are compared with experimental
results for validation of the FE models. Since CTOA has been found to be generally
independent of specimen geometry, it has significant potential for stable crack tearing
characterization. Problems with CT7OA seem to center around experimental
measurement, and finite element mesh sensitivity. This will be discussed in more detail

later.



1.2 NONLINEAR-ELASTIC CHARACTERIZATION

1.2.1 JFINTEGRAL AND TEARING MODULUS APPROACH

The use of path independent integrals for the general characterization of energy of
fracture has become widespread since the independent contributions of Eshelby [21],
Rice [6], and Cherapanov [22]. Specifically, the J-integral parameter of Rice [6] has
been of practical use in the study of elastic-plastic fracture. It is given in equation (1.6)
where w is the strain energy density, 7; is the traction component, u; is the displacement,

and ds is an increment along the counterclockwise integration contour, /.
ou,
J=||wdy—-T —ds 1.6
Jr( =T~ ) (1.6)

The J-integral is interpreted as the energy release rate for an extending crack in an
elastic-plastic material, analogous to linear elastic energy release rate, G [23, 24]. It is
based on an assumption of non-linear elastic deformation, and has been shown to
uniquely characterize crack tip stresses within a so-called HRR region by Hutchinson
[25], and Rice and Rosengren [26] in materials that exhibit power law hardening

behavior. The boundary of this region is defined by a 1/

singularity in a polar
coordinate system, where n is the strain-hardening exponent. These materials may be
characterized in the plastic portion of their stress-strain curve with a Ramberg-Osgood
type relation as in equation (1.7) where ¢ is plastic strain, o is stress, n is the strain
hardening exponent, and F is a so-called ‘plastic modulus’. The strain-hardening
exponent and plastic modulus are obtained by plotting the plastic portion of the stress-

strain curve on a log-log plot and performing a linear regression.

J n
e (Fj (1.7)
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The formation of a crack in a ductile material involves initial blunting, followed by crack
initiation. It is at this point that a critical value of the J-integral, (Jic), is defined
analogous to a 0.2% offset yield stress in a stress-strain curve. Beyond initiation,
however, stable crack extension will result in a rising Jx (resistance) curve with a slope
indicative of the relative stability of this crack extension [5]. The slope of the Jz curve is
typically quantified as part of a non-dimensionalized tearing modulus (equation (1.8)),

where oy is the flow stress, and da is the incremental crack extension.

_E dJ

T =
o, da

R

(1.8)

In direct correlation with the R-curve concept of linear elastic fracture, crack extension
becomes unstable when the driving force curve becomes tangent with the Jx curve. Thus,
an applied tearing modulus (1.9) is defined for use here as well. For T,,,<T crack

extension is stable, and for 7,,,>Tk, it is unstable.

E (dJ
1 =—|— 1.9
app 0(2) (da jAT ( )

Unfortunately, since the J-integral is based on the deformation theory of plasticity, it will
lose its validity in any instance of unloading. In the event of the development of a large
plastic zone in front of the crack tip or for an extending crack, unloading is inevitable. In
addition, as a crack extends through a material, a plastic wake zone will form behind the
growing crack, also contributing to non-proportional loading. The J-integral will remain
relatively valid only in instances of J-controlled fracture, which in essence means that the
flaw size remains very small with respect to in-plane specimen dimensions. In this case,
nearly proportional plastic deformation takes place everywhere except within a very
small region surrounding the crack tip. Under these circumstances, there is negligible
difference between the deformation theory of plasticity and the incremental theory, and

an assumption of non-linear elasticity is justified [27].
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1.2.2 MULTIPLE PARAMETER APPROACHES (J-Q THEORY)

In an attempt to provide more detail within a J-dominant region, researchers such as Li
and Wang [28] have derived higher order terms in the HRR series to account for
asymptotic stress, strain and deformation fields for power law hardening materials.
Based on this, Li and Wang [28] developed a two-parameter fracture criterion based on
Jic and the state of triaxial stress ahead of the crack tip. As a result, O’Dowd and Shih
[29, 30] formed the J-Q theory, with the triaxial state of stress represented by a
parameter, Q. Single parameter fracture mechanics assumes that the state of stress is
characterized by the leading term of the HRR infinite power series. Under an assumption
of small strain theory, the stresses within the plastic zone may be characterized by this
series, with the HRR singularity as the leading term and a so-called difference field
representing higher order terms [5]. The summation of higher order terms, which
represents the difference between a single parameter stress field and the actual stress

field, is the parameter, Q, in J-Q theory.

It is noted by Anderson [5] that, while the J-Q approach allows characterization of the
crack tip constraint, it does not account for any relationship between this constraint and
the fracture toughness. Also, in the presence of large scale yielding, constraint
parameters lose their physical meaning. Therefore, J-Q theory merely gives a more
detailed account of near tip stresses in a cracked body than a single parameter
characterization. In addition, as noted by Kobayashi [31], J-Q theory was formed with a
plane strain state in mind. Since the out of plane constraint essentially disappears in thin
materials (plane stress), the J-O theory may not be applicable for evaluation of thin-sheet

problems.

A more recent variant of the J-Q theory, is the J-A4, theory [32] where A4, is the first of the
higher order terms in the Taylor series expansion of the HRR field. This method has been
used to interpret cleavage fracture events and, unlike the Q parameter in J-Q theory, the

A, parameter is an accounting of the actual relationship between crack tip constraint, and
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fracture toughness. More importantly, J-4, theory may be utilized for fracture events
controlled by either stress or strain, or a combination of stress and strain. In contrast to
the J-Q theory, the J-4, method does not rely on correlation of the elastic plastic stress
fields at the crack tip.

Dadkhah et al [33, 34] have calculated experimental values of the J-integral from
measured surface displacements and found that, with the exception of small stable crack
growth of 1-3 mm, the results agreed well with the known solutions. These
experimentally obtained J-integral values were then used in a reverse manner to compute
the HRR displacements in the vicinity of the crack tip. It was found that the computed
tangential displacements compared well, but the radial displacements (parallel to crack)
were found to be substantially different. This behavior was also observed in attempts to
characterize the displacements with the addition of higher order terms such as (Q).
Results of these studies were later verified in a different study by Sciammarella and
Combel [35], who compared the experimental and numerical displacements in the
vicinity of the crack tip. The invalidity of the HRR displacements in these studies
suggests that the J-integral does not fully characterize the strength of the HRR singular
field.

1.2.3 THE I-INTEGRAL

The limitations of the J-integral approach have led to investigations of other line
integrals. Moran and Shih [36] considered the /-integral, which applies to steady state
crack propagation in a true elastic-plastic material, in a study dedicated to the exploration
of generalized line integral interpretations of fracture. The /-integral is given in the same
form as the J-integral with two important distinctions. First, the strain energy density
function, W, is now interpreted as total stress work density, and therefore depends on the
history of deformation and second, the /-integral is only path independent for steady state
crack propagation. The singularity of the stress work density is weaker than that of the

strain energy density and the /-integral will be zero on a contour very close to the crack
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tip, unlike the J-integral which is non-zero [37]. Since work must be expended in the
fracture process zone as well as the surrounding plastic zone during ductile fracture, the

fact that the /-integral reduces to zero near the crack tip presents a potential problem.

1.3 CREEP FRACTURE

1.3.1 GENERAL TIME DEPENDENT CONSIDERATIONS

Metallic structures under static load and subjected to temperatures close to the melting
point of the material, will exhibit time dependent deformation. Typically, studies have
concentrated on uniform structures that develop microscopic cracks during high
temperature, long duration loading. It is of perhaps equal importance, however, to
consider the stable crack propagation of any existing macroscopic flaw. To account for
fracture behavior under creep cracking conditions, a variable of time must be introduced

into the fracture analysis.

Elastic

Elastic Small Scale Creep
(SSC) Condition
t/tl «1

Transition Creep
(TC) Condition
t/tl ~1-

Creep Zone

Steady-State Creep ( 55)
Condition
'"1 >> 1

Creep Zone

Figure 1.4: Regimes of Creep Behavior [50)].

As in any fracture analysis, the characterizing parameter must have the ability to portray
crack tip behavior. Toward this end, there were early studies such as that of Siverns and

Price [38] which attempted to correlate the linear elastic stress intensity factor, K, to
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creep crack growth rates. A detectable relationship was observed in this study between K

and creep crack growth, but the data exhibited a very high scatter band of approximately
20-30 MPax/m . Since creep is primarily an elastic-plastic phenomenon, this approach
had limited success but served to prove that the capability for characterization of creep

fracture does exist [39]. Based on this study, Siverns and Price [38] concluded that a

reasonable description of the creep crack growth data could be given as;
da/dt = AK" (1.10)

Where da/dt is the crack growth rate, 4 and n are empirical constants obtained from
regressions of data plotted on a log-log plot, and K is the sharp crack stress intensity
factor. This formula provides a rough approximation of the correlation between creep
crack growth rate and linear elastic stress intensity factor. It should be stressed that
creep crack growth is a primarily plastic phenomenon and, as such, will require a non-

linear characterization parameter to provide the required detail.

1.3.2 THE C* INTEGRAL APPROACH TO CREEP FRACTURE

Landes and Begley [39], used a time dependent form of the J-integral, denoted the C*
integral to study high temperature creep crack growth in a Discaloy superalloy. In two-

dimensional form, the C* integral is given as Eq. (1.11);

C = JF(W dy— Z(a]dSJ

" Emn .
w :jo O'ijdé‘ij

(1.11)

Where W* is the strain energy rate density, #, is the displacement rate, &, is the strain

rate, and the other symbols are defined similar to the J-integral. Prior to this study, it had
been shown by Goldman and Hutchinson [40], that the C* integral could be used as a

single parameter to characterize the state of the near-tip stress and strain rate fields,
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analogous to the HRR characterization of near tip stresses and strains by the J-integral. In

this case, the near tip stress and strain rates are given as Eq. (1.12):

1
o, = JO[C*/aaogoln]”ilr(_””)&j(@)

n (1.12)
£, = oggo[C*/acaogoln]E r(_”*l)zy(e)

Where &, 0y, @, and n (creep exponent) are constants defined in the creep law given as

Eq. (1.13);

£ a[ij (1.13)
) 0y
and 7, is a numerical constant which is a function of » and the mode of crack opening.

51‘1’(0) and %(19) are dimensionless functions which define the stress and strain rate

distribution [40]. These stress and strain rate definitions are based on a principle known
as Hoff’s analogy [41] which states that a nonlinear elastic body that obeys a material law

&= f(o), and a nonlinear viscous body characterized by &= f (o), develop the same

stress field when subjected to the same loads. It is noted that the C* integral may only be
applied under an assumption that the material being studied follows a steady state creep
law as in Eq. (1.14), which is a multiaxial representation of equation Eq. (1.13) [39]. The
C* integral may therefore only be applied to a specific range of crack growth, namely
that during which the material is governed by Eq. (1.14) and under steady state conditions

(time independent stresses)

. n—1
& S..
_uzia[ae} Si (1.14)

O, O,

where o, i1s the effective stress, and s; is the stress deviator tensor. It is invalid for

primary (Small Scale —SSC) and tertiary creep.
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It should be noted that other researchers such as Ohji et al [42], and Nikbin et al [43]
were also responsible for the development of this C* integral. Their work was concurrent
with that of Landes and Begley [39], but it seems the Landes and Begley study is

sufficiently comprehensive for this review.

For experimental purposes, the C* integral was calculated by Landes and Begley [39],
using a somewhat complex, six step procedure. The first step involves plotting load and
crack length versus time, and load versus crack length for several applied displacement
rates. The second step was to plot load versus displacement rate for differing crack
lengths, which provided a measure of energy rate, or power input. The final four steps
essentially involve the derivation of C* from these first plots. The C* integral per unit
thickness will be the slope of the power input versus crack length curve. This is
somewhat analogous to calculating the J-integral graphically as in the ASTM standard
test method for J-integral testing [44]. When used in this fashion, the C* integral may be

expressed as;

. oU
C __[a_al (1.15)
U:jOAPdA (1.16)

Landes and Begeley’s preliminary study of the feasibility of using the C* integral to
correlate creep crack growth rates proved to be moderately successful. The C* integral
was shown to apply in this sense, at least to the Discaloy used in this study. This
provided the impetus for future studies in this area. Indeed, other researchers such as
Riedel [45] have since shown similar correlation by employing the C* integral as a creep
crack growth rate correlation parameter within the steady state regime. The lifetimes of
cracked components are calculated by developing relationships between crack growth
rates and the C* integral. This relationship is given by Riedel [46], and Hui et al [47] for

large crack growth increments as;



17

d_a: 7[[5_8(0)]”141/(”1) Q* n/(n+1)[(Aa)l/(n+l) s l/(n+l)] (1.17)
dt  sin[m/(n+1)]e, I, ‘ '

where da/dt is the crack growth rate, x, is a distance ahead of the crack tip of the order of
the material’s microstructural scale, £ is a numerical factor with values of = 0.85, 0.90,
0.95, and 1 for values of n =4, 5, 7.5, and o, respectively, 4 is a temperature dependent
factor from Norton’s creep law, & is the critical strain for local failure, and the rest of the
parameters are as defined in the HRR solutions. The lifetime of a cracked component
may be obtained by performing a time integration of the creep crack growth rate. It is
noted [45] that the creep crack growth rate is a function of crack extension, 4a, which
leads to a steep increase of the crack growth rate in the early stages of crack growth. The
application of this formulation, and observations of growth rate behavior have been
experimentally observed by researchers such as Riedel and Wagner [48], and Detampel
[49] in 1Cr-1/2Mo and 2 "4 Cr-1Mo steels, respectively. The characterization of creep
crack growth rates within the steady state realm is well documented and does not require

further extensive analysis.

1.3.3 THE C, AND C(t) INTEGRALS

Naturally, research on the C* integral extended into the realm of non-steady state, to
accommodation for all instances of creep crack growth. Non-steady state creep (fig 1.4)
is generally defined as small scale (t~0), transitional (between small scale and steady
state), and tertiary creep. Studies such as those by Saxena [50], Ehlers and Riedel [51],
and Ainsworth et al [52] first attempted to address this issue. In [50], a parameter
designated C; was introduced to characterize creep crack growth over a wide range of
creep crack growth behavior, including small-scale creep and transient creep. C; is
shown to be independent of geometry, and is demonstrated over a wide range of crack

growth rates. Under steady-state conditions (£ — o), C, reduces to the path independent

integral, C*. It is interpreted as the instantaneous value of the difference between energy
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rates supplied to two creeping, cracked bodies with incrementally differing crack lengths

(Eq. 1.18);

10U’
C =———"2¢ 1.18
=T (1.18)

where B is specimen thickness, and AU represents the difference in energy rates

supplied to the two creeping bodies. Alternatively, C; may be defined as;

PV, F'
C = V"— (1.19)
BW F
where
. da(1-v? 3 B
I/C — ( )(5) F_2t3—n/n—l(EA)2/(” 1) (120)
E(n—l) B) W
and
2/(;1—1)
1 ((n+1)
a=—|-—>"
27| 2na! (1.21)

F=(K/P)BW" , (F'=dF/d(a/W))

K is the applied stress intensity factor, /" is a K calibration factor, 4 and » are the creep
factor and creep exponent, respectively, and ¥, is the applied load-line deflection rate.
Also, P is applied load, W is specimen width, B is thickness, and E is Young’s Modulus.

This parameter (C;) has since been applied in studies of power law materials by several

other researchers [54-55].

Linkens et al [54] investigated the applicability of procedures for calculating C, within
the transition regime where its definition is questionable, by comparing finite element

models with experimental results for simple geometries. Results were found to be
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conservative when using the R5 method [52] where a crack tip parameter C(z) is defined

using far field estimates of J as;

Jr‘l+1

C(t) = CRS(t) = a4
(n + I)JO J"dt

(1.22)

where 7 is the creep exponent, or using the method given by Saxena [50]. Results were

generally non-conservative with the use of the Ehlers and Riedel method [51], where a

crack tip parameter, C(t) =C *(1 +t,/ t) , 1s used as an estimate of C; within the transition

region. Here, the ratio #,/¢ is representative of the ratio of transition time to test time.

The parameter C(#) of Ehlers and Riedel [51], Ainsworth and Budden [52], and Riedel
and Rice [55], is interpreted as the amplitude of the crack tip stress fields under elastic-
plastic deformation conditions. It is simply an estimate of the C, parameter of Saxena
[50]. Busso et al [56] recently investigated the use of C(?) in a study where the calculated
amplitudes (C(?)) of singular crack tip fields in the non-steady state regime of power law

creeping materials and found that opening stresses had a slightly higher order of

singularity than HRR type fields characterized by the p VD)

singularity. Also, Dogan
et al [53] compared the use of C*, C(?), C;, and J-integral as characterizing parameters in
relatively brittle, 7i-6242 alloys and found that crack growth rate, da/dt, only correlates

with C(?) and C; when the creep component (V'c)of deflection rate is dominant. Thus, the

use of C; for characterizing small scale, and steady state creep, and C(#) for transition

creep may be in question.

Saxena [50], notes that, although it expands the applicability of the C* integral to primary
and small scale creep (SSC) conditions, there are several limitations to C,. First, its use is
restricted to cavitating materials in which creep damage is necessary in the crack tip
region for crack growth to occur. Under these conditions, even in the event of primarily

elastic behavior, K or J will not be able to characterize crack growth (see Egs. (1.19)-
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(1.21)) and there will be no unique relation between K and da/dt. There are no well-
established correlations between void growth phenomena, and creep fracture parameters.
As noted in [8], an interpolation between the small scale (K-dominated) and steady state
(Cy, or C(1)) region must be used, with the exception of the transition time where no
definition is available. In addition, the damage (cavitation) must be very localized. That
is, the process zone must be very small in comparison to the region over which the HRR
type stress and strain rate relations are defined. As noted by Riedel [45], the condition
for valid C* testing is; Aa < (5to 15)% of a or W—a. Further, since C; is dependent on
the extent of creep, it is also time dependent, even at a fixed crack length. For a growing
crack, the reference from which 7 is measured is lost, meaning it is difficult to measure

the value of C, without actually calculating the creep component of deflection rate, V, .

Thus, it is necessary to have both numerical and experimental results available to make
any approximation. Finally, these parameters are valid based on the assumption that a
path independent J-integral (non-linear elasticity) could be used to characterize crack tip
stress and strains in the event of a stationary crack. As discussed previously, this is not a
valid assumption. There is a question concerning the relationship between C; and the

HRR field in the small scale, and transition regions [50].

1.4 THE T', INTEGRAL

1.4.1 ORIGINS OF T, AT¢

In 1982, Atluri [57] introduced AT, a general, time dependent path integral that may be
used to characterize strain energy in the presence of non-steady state, creep crack
extension. This approach was an attempt to overcome the inaccuracies involved in the use
of the C; integral. Another detailed discussion of A7, in the context of creep crack
extension came later in the same year from Stonesifer and Atluri [58] in which a
numerical model was developed for use with a compact tension (CT) sample. A

representation of AT, which is independent of contour size, is given as;
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OAu, oo
AT, = mAW=-n,(o,~Ac,) . as-|, 7 2o (1.23)
where W is the stress work density,
1
AW =| o, +5A0'[jAg[j (1.24)

and oy is understood to be the stress at the beginning of the current time step, /234 is a

Figure 1.5: Contour of integration for AT, [57].

counterclockwise contour (Figure 1.5) beginning at one crack face and extending to the
other, n are unit normals, and V; is the volume enclosed by the contour. This parameter
was compared to the widely accepted, path dependent C* integral which is typically
applied in an instance of steady state creep crack extension and was intended to be an all
encompassing creep characterizing parameter including, the linear elastic approach and
the C* integral approach. Figure (1.6) is a depiction of the path dependence, and the

relative path independence of the C* and AT, integrals respectively.
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Figure 1.6: Relative path dependence or independence of AT, and C* integrals,
g1s contour size [58].

The concept of AT, was slightly modified by Atluri et al [59] to be an incremental form
of the J-integral which, when integrated along the load path under assumptions of non-
linear elasticity, will be equal to J. This incremental parameter, denoted AT*, in this
work, was defined as a path-independent integral which could characterize the crack tip
fields under a flow theory of plasticity. It was also valid for arbitrary loading and
unloading conditions, but under monotonic loading, was equal to the J-integral as defined
by Rice [6]. The modified form, AT*, from the initial discussion in [59] is given in
equation (1.25) as the incremental form of a measure of the crack-tip stress/strain field.
The total value is given as the sum of the incremental steps (2AT*,).

oA —At, 9 g (1.25)

ox, ox,

AT, = jrg AWn, (1, + At;)
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1.4.2 THE LOCAL T*,INTEGRAL

Brust et al [60], and Atluri [61] eliminate the need for summation by defining a local

value, T*,, defined on a small contour, /7 surrounding the crack tip as;

T =Jrc(Wnl —t, a—:}’l‘ (1.26)

W=|"o,de, (1.27)

Here, W is defined as the stress work density, rather than its interpretation as the strain

energy density in Rice’s J-integral. In this total form, 7%, is calculated along a so-called

Moving Contour Path Elongating Contour Path

T: Contour Path I. Contour Path
! /

E

2
f Original Crack Tip Current Crack Tip

Figure 1.7: Moving and elongating integration contours.

“elongating contour” (Figure 1.7) which grows as the crack extends. Pyo [62] showed,
through a series of FEM analyses, that 7*, could be used in this form to predict the load
carrying capacity of cracked structures if the stresses and strains were obtained using the
incremental theory of plasticity. From these definitions, it is seen that 7%, is explicitly
dependent on strain history, which is an essential characteristic for elastic-plastic crack

growth studies.
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The divergence theorem may be applied to obtain a representation of Eq. (1.26) as a
summation of a far-field, contour integral plus a finite domain integral as in Eq. (1.28)
[65]. Here the volume formulation has been generalized to an area domain for 2-D since,
in this case, dz=1.0 such that dVV'=dxdy (area per unit thickness) and out of plane strain
gradients are zero. It is noted here that the numeral 1 appearing in the subscript is
indicative of the fact that 7%, is a vector quantity and in this case we are concerned with

only the x; component.

T1:=J.F(Wn, % jd LA(E_@ 8‘9 jd(A A) (1.28)

In this equation, it is noted that the first term on the right hand side is equal to Rice’s J-
integral, and that 7*,differs by the second term. In the limit as the area tends to zero, 7%,
becomes equal to J because the second term disappears. In a series of FE analyses, Brust
et al [64] observed that the second term became larger as crack growth proceeded. That

is, as J continued to increase, 7*,reached a plateau as seen in Figure (1.8).

To overcome inherent large stress and strain gradients in the vicinity of the crack tip,
Nikishkov and Atluri [63] introduced the “equivalent domain integral” method for

calculating 7%, from remote values as;

T = jré_ (Wnl ~o, %nj JSdF (1.29)

1
Or, by application of the divergence theorem and a 2-D generalization;

. 0 0 ou,
T =- —(WS)— —L 9 A-A 1.30
te A-4, (6xl ( ) ox ( T ox, Bd( g) (1.30)

J
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where S is an arbitrary, smooth function equal to 1 on 7] and 0 on 7, and 4-A4. is the area
per unit thickness encompassed by the domain of integration. The S-function used in this
capacity is an analog to a similar function utilized by Li et al [64], which may be
interpreted as enforcing a unit displacement in the X; direction on the nodes along the
inner contour, /7~ while holding the nodes along the outer contour, /7, stationary. Hence,
it is also analogous to a Virtual Crack Extension technique by virtue of its similarity to
the function employed in [64]. Equation (1.29) may be further decomposed [63] into

two parts, by application of the chain rule of calculus;

T*(S):_J' W@_S_%%i dA
| ox, ox, 0Ox;,

(1.31)
. oe,
W)= | a—W—a,.j—” SdA
4-4, | Ox, Oox,
For the case of a linearly elastic, or nonlinearly elastic, homogeneous material, it is noted

that W _ o, % 50 the second term, 7%(W) is equal to zero and the summation of the two
ox, " ox

is equivalent to the J-integral.
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Like the J-integral, the 7%, integral becomes path dependent in the presence of large
plastic yielding, or unloading. Thus, to be used as a valid fracture criterion, 7%, must be
evaluated along a fixed contour very close to the crack tip. The size of this contour has
been found, in general, to be approximately equal to plate thickness for plane stress by

Narshimhan and Rosakis [66] who observed the level of constraint in front of the crack

tip.

Okada et al [67] investigated the difference between the “moving” contour, which moves
along with the crack tip, and the “elongating” contour, which grows with the crack
(figure 1.7). Using simple energy balances, Okada showed that these two contour types
measured different physical quantities. The moving contour was shown to represent the
energy release at the crack tip, while the elongating contour is interpreted as the energy
dissipation near the crack tip plus the energy release rate at the tip per unit crack
extension. The elongating contour accounts for unloading behind the crack tip, as well as
deformation close to, and in front of it. Values of 7*, calculated using the moving

contour dropped to zero soon after crack initiation as they represent the energy release
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rate at the crack tip. Thus, it was concluded that the elongating contour should be used in
calculation of 7%, because it represents energy dissipation in the extending, near-crack

integral path, per unit crack extension.

There seem to be two major reasons for the success of the 7%, integral for stable crack
extension as opposed to the J-integral. First, the 7*, integral is based on the incremental
(flow) theory of plasticity instead of the deformation theory. This allows it to account for
all loading history events, the most important of which is load/unload history. Second, it
is calculated along a contour, which extends along with the growing crack. This allows

for accounting of all processes occurring within the fracture process zone.

1.4.3 FINITE ELEMENT AND EXPERIMENTAL CALCULATION OF T*,

The majority of the early work involving 7%, was performed using numerical analysis
techniques [60, 61, 65]. T*.resistance curves are typically calculated numerically, using
the EDI method of Nikishkov and Atluri [63] in what is termed the “generation phase” by
Kanninen and Popelar [8]. The resistance curve is then used to control the crack growth
in a FE model by allowing the specimen to reach the critical value of 7%, and then
modeling an increment of crack growth. This fracture parameter controlled crack growth
is known as the “application phase” [8] of the analysis. The numerical results are then

compared to actual load versus crack growth data.

In 1997, Wang et al [68] used a method termed as the Elastic-Plastic Finite Element
Alternating Method (EPFEAM) by Nikishkov and Atluri [69], to predict elastic-plastic
fracture in aircraft structures. This is essentially a superposition scheme, which iterates
between analytical solutions for a cracked body, and an uncracked body. It involves
solving for crack closure tractions under a linear elastic assumption, reversing the
tractions, solving for the residual stress, and iterating until the process converges. This

method was shown to accurately predict fracture behavior in aircraft structures.
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Following the early numerical work, recent attempts have been made to develop
procedures for calculating 7%, directly from experimental displacement data [67, 70].
Most of this work was aimed at overcoming the difficulties inherent in the use of
incremental (flow) theory of plasticity with experimental data. Okada et al [70]
simplified the integration procedure by neglecting the portions of the contour behind the
crack tip. With reference to Figure (1.7), this means that the portions of the contour path
labeled F’-G’, and C’-B’ are neglected by assuming that the stresses acting on a constant
plane were nearly zero close to the traction-free crack and by realizing that along these
portions, n; is zero. The portions labeled G’-H’, and B’-A’ are also considered to be
small in terms of the work density as a result of their being far behind the original crack
tip. This led to a calculation method involving a “cut-off” procedure involving the
truncation of the integral contour from an empirically determined distance behind the
crack tip. Since it is difficult to obtain the incremental history in an experiment, the
deformation theory of plasticity was used to calculate stresses from experimentally
determined strains. This is allowable as long as the cut-off integration contour is
employed. In comparison with 7%, values calculated (FEM) using the incremental theory
of plasticity, the 7%, values calculated using the cut-off integration contour method with

deformation plasticity were shown to agree well.

Using the method developed by Okada et al [70], Omori et al [71, 72] have successfully
measured 7% experimentally in A606 HSLA steel [71], and 2024-T3 aluminum [72].
Using single edge notched (SEN) type specimens of 1 mm thickness, 7*, integral values
were obtained numerically and experimentally for the A606 HSLA steel in [71]. It was
found that 7*.values calculated from FEM and experimental displacements were in good
agreement, and that values were contour dependent but tended to converge to a steady
state value at a distance approximated by the thickness of the specimen. In [72],
aluminum (SEN), compact tension (CT), and center notched (CN) type specimens were
analyzed in a similar manner. Again, these preliminary test results showed good

agreement between numerical and experimental values. It should be noted that, while
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these studies showed promising results, the amount of experimental data collected was

small.

Walker and MacKenzie [73] have investigated the use of the 7%, integral in creep
relaxation cases. This study did not involve any crack extension, but served to illustrate
the utility of using the 7%, integral for characterization in creep studies. Since the crack
did not grow in this case, the contour of integration remained stationary. AT*
contributions were summed throughout the loading history to give the 7%, integral with
an incremental plasticity assumption. The 7*, integral was shown to be calculable as
long as the creep dominated zone was contained within the inner contour of integration.
When the creep zone grew beyond the contour, the elastic and plastic strains required

decoupling in order to allow accurate calculation.

Brust [74] performed an analysis of time dependent deformation under variable load
conditions in 316 stainless steel. This study consisted of both numerical and
experimental analyses. Here a variable load history was input to a servohydraulic load
frame and load line displacement versus time was recorded. The finite element model
was forced to follow the observed crack length versus time behavior. Based on this
study, it was concluded that the 7*, integral approach is potentially useful in studies

involving variable load histories.

1.5 RECENT WORK, TWO DIMENSIONAL T*

Over the past ten years, much work has been done to characterize the 7%, integral
experimentally, for two-dimensional cases. This includes characterization in thin, plane
stress samples [71, 72, 92, 100], somewhat thick (3.1 mm), plane stress/plane strain CT
samples [91, 93], and plane stress, wide panel multiple site damage (MSD) samples [92].
The studies mentioned here incorporated experimental characterization of the 7*, integral

with numerical evaluation. Comparisons between numerical results and experimental
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values calculated using Okada’s truncated contour agreed very well in all cases. In [92],
a full ‘generation’ and ‘application’ phase analysis was carried out for thin (0.8 mm)
2024-T3 aluminum MSD wide panels. T*; resistance curves (Figure 1.9) were generated
and used to drive an FE model in its application phase. Load versus crack extension was
compared between the FE and experimental results to validate the 7*, master curve and
FE model. Figure 1.10 shows the load versus crack extension comparison from this
study. Figures 1.11 and 1.12 show experimental and numerical comparisons for
monotonic and low-cycle fatigue, 3.1 mm thick, 2024-T3 aluminum CT specimens from
[91] and [93] respectively. These curves demonstrate the viability of the 7*, integral as a
stable tearing characterizing parameter by demonstrating the achievement of a ‘steady-
state’ value upon reaching a crack extension approximated by the thickness of the

specimen.
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alloy specimens [92].
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1.6 THREE DIMENSIONAL CONSIDERATIONS

1.6.1 3-D, J-INTEGRAL

A majority of practical fracture mechanics applications involve complex, three-
dimensional geometries. As a result, analysis of fracture parameters along crack fronts of
essentially three-dimensional flaws has been considered for many years. Authors such as
Newman and Raju [75], and Shah and Kobayashi [76], among others, offered linear
elastic solutions based on finite element analyses for semi-elliptical flaws in finite, three-
dimensional bodies undergoing tensile and bending loading. Linear elastic, 3-D solutions
are well documented in several texts such as references [5] and [8]. These analyses were
intended to provide linear elastic solutions for flaws such as those surrounding bolts or

rivets, or for part through cracks in pressure vessels.
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More recently, analysis of fracture toughness characterization in three-dimensional, finite
bodies has been extended to the elastic-plastic regime. Rice’s J-integral provides a
quantification of material toughness in 2-D, but application in fully 3-D situations is often
abandoned in favor of characterization by CTOD. A possible reason for this, aside from
the obvious complexities involved in experimentally obtaining a value of the 3-D surface
integral, is uncertainty over the proper definition of a 3-D J-integral for point-wise
characterization along a crack front. There are three numerical approaches that have been
developed to compute the energy release rate along a crack front. Two involve methods
of virtual crack extension [85], both directly and indirectly by utilizing the ability to
virtually extend the crack in an arbitrary, point-wise fashion along the crack front and
measuring the resulting change in energy. The distinction between direct and indirect
methods involves the proximity of these displaced nodes to the actual crack tip with the
former involving actual tip nodes and the latter involving a volume removed from the
crack tip area. The third method involves generalization of the J contour integral to a
three-dimensional surface integral [77] which has been done by authors, such as Amestoy
et al [78], and Raynund and Palusamy [79]. The direct, and indirect virtual crack
extension methods are applicable to both deformation theory, and incremental theory (J-
integral and 7%, integral respectively) calculations and allow straightforward point-wise
characterization of the energy release rate. As noted in [64], the generalization of the J
contour integral to a 3-D surface integral merely gives an overall average value of J-

integral and would be extremely difficult to evaluate on a point-wise basis.

Sakata et al [80] proposed an extension of the J-integral, denoted as the J -integral. This
parameter represents the energy release per unit of a crack-tip translation in a three
dimensional, elastic-plastic material. It is not simply a generalization of the Rice’s J-

integral into 3-D. Considering the energy balance on a thin disk during a translation of

the crack in the x; direction (self-similar crack growth), the J -integral is given as;

J = JL ;€44 ~ J; Tu; \dl — J. L (03u;,) 5dA4 (1.32)
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where / denotes any curve surrounding the crack tip, and 4 is the area surrounded by the

curve and the crack surfaces. In this study, a finite element model was developed to

calculate the J -integral along the crack front for comparison to the ASTM accepted

value, which is calculated with the Merkle-Corten formulation [44]. The FE calculated

J -integral was observed to be higher in the center of moderately thick specimens in
accordance with what are commonly believed to be conditions of near plane strain.
These mid-thickness values also compared well with the values of Jjc calculated in
accordance with the ASTM standard E-813 [44], indicating the relevance of the ASTM
requirement for specific specimen thickness. The path independence of this parameter
was also observed by comparing pointwise values along the crack front for different

contour sizes.

De Lorenzi [82] derived a general expression for calculation of the energy release rate
from an arbitrary crack propagation in a general 3-D crack configuration using a

continuum mechanics approach as;

ou. 0Ax ou.
G*= —L W, k_ f L Ax. Wd 1.33
'[V {(UH 0x; ]k] ox; / ox, j} ’ (39

where Jj is Kronecker’s delta, ¥ is the strain energy density, and f; are body forces. This
formula is derived from the general formula for J contour integral by application of the
divergence theorem to obtain a volume integral. It is a very general form of the crack tip
integral, which is applicable to isotropic or anisotropic materials, as well as conditions of
non self-similar crack propagation. Under certain simplifying assumptions, namely that
the crack is forced to grow in a self-similar manner and that symmetry conditions are
fulfilled (plane strain, or plane stress), this general form will reduce to the 3-D form of

the J-integral.

Carpenter et al. [81] performed a review of the proposed path independent integrals

intended for inclusion of plasticity effects. The compared parameters included those of
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Sakata et al [80], and Amestoy et al. [78] and a newly proposed integral, J, which

allowed characterization under an assumption of an incremental theory of plasticity

model. For 3-D, this integral is given as the sum of two contour integrals and three area

integrals;
TJ=Jduy+Je+J +J ,+J (1.34)

where;

I = _J. wids
T =] 0,8 .dS (1.35)
d
A3 =7 S*a_(o_zsui,l)dS

Figure 1.13: Contour of integration for J [81].
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the counter-clockwise direction which does not include the crack faces, S$* is the total
surface area defined by C’, the two crack faces, and an inner contour, C, for the slice,

x3=0 (see Figure 1.13). It is easily seen that J¢; is Rice’s 2-D J-integral. It is also shown

that Sakata’s J -integral is simply the sum J¢;+J42+J43, and that Amestoy’s integral is
Jei+J43, both for nonlinear elasticity. It is noted that the quantities J4;, J42 and J¢; are
zero for deformation plasticity. This study qualified the various parameters with regard
to their energy interpretation with respect to crack extension. The significance of both
Amestoy’s and Sakata’s integrals are unknown for incremental plasticity models, but are
interpreted as potential energy release rate per unit of crack extension under an
assumption of non-linear elasticity. The J-integral is interpreted identically for a
deformation theory assumption, but is interpreted as the rate of change of total energy,
per unit crack extension for 3-D, incremental theory. In application to a 3-point bend
sample, the J -integral was observed to be approximately 25% higher in the center than
on the surface, similar to the observation by Sakata. While this approach showed
considerable promise, it was concluded that the fine-mesh requirements for calculating

the J -integral can overshadow the viability of using this parameter for 3-D calculations.

Dodds et al. [77] calculated the J -integral for a numerical model of a 3-point bend
sample, and compared it against an average, experimental J-integral calculated by way of
the crack mouth opening displacement (CMOD) method suggested by Sumpter and
Turner [83]. Here, the experimental J-integral is calculated from the load-versus CMOD

curve as;

J,

2
exp:K—{ A+ 1 } W, (1.36)
E

B(W— a) a+ 0.4(W— a)

where P; and P, are the loads for establishing an effective limit load. In this study, it was

observed that the numerically calculated J -integral, and experimental J are both linearly

related to the CTOD as;



37
J=ma ,, CTOD (1.37)

where m is a constraint parameter whose value lies between the computed center plane

(higher constraint) value of /.73, and the surface value of 1.21.

Li et al. [64], and Shih et al. [84] derived 2-D and 3-D domain integral formulation for
the J-integral. Specifically, in [84], an area/volume domain integral expression for the
energetic force in a thermally stressed body was derived. This expression is ideally
suited to point-wise characterization of energy release rate along a 3-D crack front
because it is naturally compatible with the FE formulation of the crack tip field equations.
Point-wise values of J-integral are calculated using an analog to the virtual crack
extension method employed by Parks [85], whereby the crack is extended successively at
each node along the crack front to measure the local energy release per unit of local crack
extension. The use of a domain integral is intended to circumvent the difficulties
involved in calculating a near-tip value for J-integral. In the three-dimensional case, in
order for the J-integral to be the characterizing parameter in the surrounding HRR fields,
it must be assumed that a state of plane strain exists. It is argued [64] that as the crack tip
is approached asymptotically, the out of plane strain, &3, remains bounded while the in-
plane strains become singular. Thus, a plane strain state is approximated and the point-
wise values of energy release rate may be used in place of the J-integral for
characterizing the stresses within the HRR field. In order for this assumption to be made,
however, the inner domain boundary must be shrunk onto the crack tip to capture the

near-tip material behavior.

Nikishkov and Atluri [86] presented a 3-D analog to their 2-D, J-integral calculation [63]
by means of the EDI method. Here, an isoparametric formulation is utilized to calculate
the J contour integral over a finite domain, remote from the crack tip. Values of J-
integral are calculated at the center of each crack tip element and a non-straight crack
front is accounted for through a point-by-point coordinate transformation. Point-wise J-

integral is thus calculated through the thickness, including the effects of a curved or
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tunneled crack. The author notes that this approach (EDI) presents the opportunity to
relatively easily automate the calculation of J-integral by means of Matlab, or Fortran
programs. The 2-D EDI method has been successfully used for calculation of 7%, by
many authors [67, 71, 72, 91-93]. After a translation to a 3-D formulation, it should

allow calculation of the 3-D T*, integral with the same success.

More recent studies of application of 3-D J-integral include those of Dodds and Read
[87], Kolednik, et al [88], and Ohgi and Hatanaka [89]. The studies performed in [87]
and [89] concern the assessment of 3-D energy release rate for surface cracked structures
both experimentally and numerically. Kolednik et al [88] only perform the numerical

calculation.

In [87], a surface cracked plate was instrumented with several strain gages along a
longitudinal symmetry plane (Figure 1.14) that corresponds to the point of maximum
depth of the surface flaw. This allowed experimental evaluation of the contour portion of
Carpenter et al’s [81] J-integral.  Finite element results indicated negligible
contributions from the area integrals on a symmetry plane, so the evaluation along a
longitudinally symmetric contour was seen as a good estimate of the fracture driving
force. In comparisons between finite element results and experimental results,
exceptional agreement was found between the two for cases of small scale yielding
(SSY), net ligament yielding (NLY), and net section yielding (NSY) for measured strains
(&) of up to 1.6 times the material yield strain (g,) (Figure 1.15). The area integral
contribution was found to be approximately 10% of the contour integral contribution.
This study represents one of the only attempts at departing from ‘mean’ J-integral value
calculations based on CMOD, and involves calculating 3-D J-integral from experimental

strain data obtained on the specimen surface.
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Another approach to calculating J-integral was offered by Narasimhan and Rosakis, and
Zhender and Rosakis [66, 90]. Here, the method of caustics was used to calculate mean
value of 3-D J-integral in a plane stress analysis of a 3-point bend specimen. The size of

the caustic was calibrated to a J-integral curve to allow characterization of J based strictly
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on the size of the caustic zone. Experimental results were compared to numerically
determined results, which were obtained using a 3-D generalization of the J-integral
(calculated on a 3-D surface contour surrounding the crack tip). This procedure was
developed for use in dynamic J-integral characterization and is specimen type and
material dependent. However, a correlation between J-integral and caustic size was

found to be obtainable either experimentally, or numerically.

In summary, there seem to be three main methods for calculation of 3-D J-integral as
discussed in this section. These are methods of virtual crack extension, domain integral
methods, and generalized contour integral methods. There seem to be, however, no
methods currently available for pointwise characterization of experimental, 3-D energy
change rate. The displacements would need to be measured in slices located within the
interior of the sample to provide the required data for such a calculation. There are
currently no techniques known which allow for this in opaque materials. For this reason,
researchers have typically employed methods such as the CTOD measurement technique
to calculate an ‘average’ value of 3-D J-integral across the crack front. Alternatively,
correlations are drawn between surface phenomena such as caustic zone size, and J-
integral [66, 90]. All of these experimental approximation methods rely in some form on
a numerical analysis to aid in the calculation. It is seen as sufficient to perform extensive
numerical analyses of these 3-D integrals and subsequently compare load versus crack
extension, or load versus displacement data between numerical and experimental tests.
Numerical studies typically employ a virtual crack extension method for calculation of 3-
D, point-wise values of the J-integral. The work of Dodds and Read [87] represents the
most promising of the experimental approaches for 3-D calculation of the J-integral.
Nikishkov and Atluri’s EDI approach [86] provides the basis for simplified calculation of

any of the contour integrals via a modification to the virtual crack extension method.
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1.6.2 3-D CTOA

In the recent past, researchers primarily at NASA have undertaken the task of qualifying
CTOA as a stable tearing characterization parameter for thin, ductile aluminum alloys.
This includes the work of Dawicke et al. [1] and Gullerud et al. [20] on modeling of
tunneling behavior in 2024-T3 specimens. In [1], through a series of FE analyses, it was
found that during the initial, transient stage of crack propagation, the CTOA is on the
order of a few degrees smaller than its steady state value in the center of the specimen
and is a few degrees higher on the surface. When steady state (stable tearing) crack
growth is reached, the two values become nearly equal and coincide with the typical
steady state value. This study used a unique finite element model that incorporated crack
tunneling during the initial stable tearing phase which was measured experimentally by
fatigue marking the extent of tunneling after subjecting the specimen to various load
levels and crack extensions. These crack front shapes were digitized from photographic
images and fit with polynomial curves to describe the crack front shape as a function of
through-thickness position. The elastic-plastic portion of the FE analysis relied on the
incremental theory of plasticity, and was composed of several layers of elements to

model the curved crack front. Figure 1.16 shows a typical FE mesh for this study.
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Figure 1.16: Crack front profiles in FE mesh for CTOA [1].

Gullerud et al. [20] use steady state CTOA as a crack tip node release parameter for 3-D
FE analyses. That is, nodes are released to allow crack extension when all values of

CTOA are equivalent across the crack front. Following this, the load versus displacement
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trends were compared between FE analyses and experimental data. CT specimens of W=
50 and 100 mm were validated in this study, as well as constrained (with buckling
guides) 75, 300, and 600 mm wide MT specimens. Errors of between 7 and 9 percent
were observed in the CT specimen study, but better agreement was exhibited in the MT

specimens.
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CHAPTER 2: RESEARCH SCOPE AND OBJECTIVES

2.1 SCOPE

This research is intended to be a study on a potential stable crack growth characterizing
parameter for use with 3-D crack fronts. Based on the previous discussion, it is
reasonable to approach this subject by focusing on the 7* integral since it is the only
energetic parameter available which seems to allow reproducible quantification of the
energy to fracture in a stable tearing case. Since several numerical and experimental
studies [65, 91-93] have recently been applied to two dimensional, plane stress
specimens, it also seems reasonable to expand this study into three dimensional
characterization for a plane strain state of stress where there is less information readily
available with regard to the state of interior material behavior. The previous chapter was
dedicated to illustrating some of the more successful attempts at applying stable crack
characterization to two-dimensional specimens, and to three-dimensional geometries in
the case of 3-D J-integral, and three-dimensional FEA analysis of CTOA by Dawicke et
al [1]. These studies provide a basis for the current work, which will encompass the
characterization of room temperature stable tearing resistance for basic three-dimensional

geometries in aluminum 2024-T3 samples.

As suggested by Kanninen and Popelar [8], a scheme for developing a new elastic plastic
fracture toughness characterizing parameter would involve a generation-application phase
process. In essence, data corresponding to crack initiation and stable crack growth is
gathered. This data collection will involve numerous specimen types, and specimens of
each type to establish consistency. The output from this so-called “generation phase”
will then be used in an “application phase” to predict the load and crack growth behavior
in a candidate material. The application phase will be numerical in nature (finite element

modeling). This generation, application phase approach is the foundation of the current
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study which is intended to determine the feasibility of calculating the 7%, integral in the

generation phase.

2.2 RESEARCH OBJECTIVE

The objective of this research is to numerically and experimentally characterize the 7*,
integral under stable tearing conditions in a thick aluminum 2024-T3 aluminum sample.
The numerical characterization will be on a point-wise basis, through the thickness, along
a tunneling crack front. Experimental values are only obtainable on the surface of the
specimen and will therefore be used to compare against average, through-thickness,

numerically obtained values.

To truly model the triaxial state of stress at the crack tip, a three-dimensional analysis is
needed. This approach has been avoided in the past, primarily due to the cumbersome
nature of performing a 3-D analysis and because an approximation may be obtained with
a 2-D analysis by utilizing several assumptions. A 3-D analysis is proposed to provide a
thorough understanding of crack tip behavior. The experimental analysis here will
provide a benchmark with which to compare results from a numerical model, which will
be developed in its generation phase using a hybrid experimental numerical approach
[70-72, 93]. When the model is fully developed within the context of the generation
phase, it is hoped that it may then be applied in an application phase in future studies to
estimate the stable tearing toughness of aluminum structures under normal operating

conditions with pre-existing flaws.



45

CHAPTER 3: METHODS OF APPROACH

3.1 SPECIMEN CONFIGURATION

To permit a valid, 3-D analysis, the thickness of the specimen to be tested should be in
the transitional stage between a state of plane stress, and a state of plane strain. In
addition, since the objective of this study is to build a fracture resistance curve through a
stable crack extension on the order of the specimen thickness, a fairly thick specimen
must be used. In plane stress specimens, the 7", integral has been observed [71, 72, 91-
94] to reach a steady state value at a crack extension approximately equal to the thickness
of the sample. Thicker, plane strain specimens may reach steady state at a different

crack extension.

Figure 3.1: 3-D, semi-elliptical flaw aluminum 2024-T351
specimen.
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Figure 3.1 shows the sample used in an initial attempt at observing 7*, behavior in thick,
plane strain samples. Unfortunately, the stiffness of the Instron loading frame that was
used for these tests was not sufficient to allow extensive stable tearing in this relatively
thick, tensile type specimen. Failure loads for this specimen configuration were of the
order of 30 to 35 KN, which is a significant portion of the 45 KN capacity of the load
frame available for testing. The highly compliant load frame tends to store elastic
energy at these load levels, which is eventually released through the specimen flaw,

resulting in unstable crack propagation.

To allow a sufficient amount of stable crack propagation in a 3-D flaw specimen while
avoiding the problem of larger than desirable machine compliance, a very low
compliance specimen must be utilized. The two most obvious of these specimens are the
3-point bend specimen and the wedge loaded double cantilever beam (DCB) specimen.
From historical and practical standpoints, the 3-point bend sample is the most relevant
candidate geometry. Several of the 3-D J-integral studies that have been carried out [84,
90] have utilized the 3-point bend specimen. In addition, if the need arises, the 3-point
bend specimen will allow replication of a moiré grating on both sides of the specimen for
additional data recording. The expected, significant crack tunneling in a thick, 3-point
bend specimen will allow simulation of a 3-D flaw in the same manner as the studies of
Dawicke [1] and Gullerud et al [20]. The amount of tunneling will be a function of
specimen thickness, so a fairly thick specimen must be used. Figure 3.2 is a graphical

representation of these two specimen types.
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Figure 3.2: Wedge loaded DCB and 3-Point
Bend [SENB] specimen geometries.

The other possible specimen is the surface cracked tensile sheet similar to that used by
Dodds and Read in their experimental study of the 3-D contour J-integral [87].
Unfortunately, similar to the 3-D elliptical flaw sample discussed previously, this sample
will likely approach the stiffness limits of the load frame. However, a small enough

specimen could provide usable moir¢é interferometry data.

For this study, the three point bend [ASTM SE(B)] type geometry is chosen in
accordance with the reasoning above. It is assumed that a stable crack propagation length
of approximately five millimeters will be sufficient for 7 ", characterization in this study.
Therefore, a specimen width, W = 25.4 mm with an initial notch size, a = 10.75 mm is
chosen to give a value of ay/W=0.42. This specimen roughly complies with the ASTM
Standard (E 813) for J-integral testing, where ay/W should be approximately 0.5,
including the fatigue pre-crack. This standard dictates that the support span (S) be
approximately four times the width (W) so the specimen is chosen to be 115 mm. Figure

3.3 shows the specimen used for this study.
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Figure 3.3: Three Point Bend [SENB] specimen.

The material chosen for this research is 2024-T351 aluminum alloy. This alloy is
typically used in airframe structures and thus represents an important class of materials
for which fracture properties must be characterized. In addition, it has been used in
several prior studies [91-94] for characterization of the 7*, integral and will allow
comparison for validation of the proposed research. 2024-T351 aluminum is sufficiently
ductile to generate a sizable elastic-plastic crack tip region. For the 3-D T*, integral
analysis, an 8 mm thick plate stock will be used and the specimens are machined in the L-
T orientation so that the plane of the crack lies parallel to the rolling direction. Table 2
lists the published major characteristics of this alloy. Table 3 is a test matrix for the

experimental work.

Table 2: Properties of 2024-T3 aluminum alloy [103].

ou (MPa) | o, (MPa) E (GPa) G (GPa) v Twm (C)

485 345 72.4 28 0.33 502
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Table 3: Test matrix for T*, evaluation.

Specimen Specimen Geometry Peak Load | End Load
(KN) (KN)
JHJO1, JHJ02, Dogbone (ASTM tensile) N/A N/A
JHJO3 8.1 mm thick
T6-3PB 3 Point Bend, 8.1 mm thick 4.16 3.79
(ao/W=0.45, Aa=0.5 mm)
T4-3PB 3 Point Bend, 8.1 mm thick 4.17 2.85
(ao/ W=0.45, Aa=1.75 mm)
T3-3PB 3 Point Bend, 8.1 mm thick 4.10 2.15
(a//W=0.45, Aa=3.0 mm)
T2-3PB 3 Point Bend, 8.1 mm thick 3.70 1.63
(not used) (ag/W=0.55, Aa=3.0 mm)
T1-3PB 3 Point Bend, 8.1 mm thick 3.93 1.70
(not used) (ao/W=0.53, Aa=4.0 mm)
T5-3PB 3 Point Bend, 8.1 mm thick 4.20 0.97
(ag/W=0.45, Aa=5.5 mm)

Since the numerical analysis portion of this research will rely heavily on the plastic
portion of the stress-strain curve, the material properties listed here are only used as a
reference. Uniaxial tension tests were performed in a direction perpendicular to the
rolling direction on three dog-bone specimens machined from the same plate stock as the
three point bend specimens used in the study. Figure 3.4 shows the data obtained from
this testing, including relevant parameters of strain hardening exponent (n), and the so-
called “plastic” modulus (a), which are used in the Ramberg-Osgood curve fit. This

material data is prescribed in both the experimental and numerical analyses.
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Figure 3.4: Measured tensile properties for 2024-T351 used in this study

3.2 EXPERIMENTAL ANALYSIS

3.2.1 DATA COLLECTION

A high-accuracy displacement measurement method must be utilized to calculate full
field strain with resolution desired for experiments of this type. These surface
displacement measurements must be of the full-field type. That is, a relatively high-
resolution map of displacements in both x and y directions must be available at each stage
of crack growth. These types of measurements tend to lend themselves toward optical
techniques of one sort or another. The method most commonly used by researchers who
have employed Okada’s experimental 7%, calculation procedure [70], is a technique

known as moir¢ interferometry [71, 72].
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Moir¢ interferometry is described in detail by Post in [98]. In essence, it is an optical
technique involving interference of two collimated beams of light at the surface of a
specimen. The two interfering beams create a regular array of lines in space, which
interact with the reflected light from a diffraction grating replicated on some surface. As
the physical grating deforms with the surface, a fringe pattern is formed due to
interference between the diffracted light field and the original light field. Each fringe that
is produced represents a measure of in-plane displacement at each point as a function of
the grating frequency. The displacements are given as:
u, =lN,. for i=1, 2 (3.1)

In equation (3.1), the subscript i represents either of the Cartesian directions, fis twice the
specimen grating frequency, and N is the whole fringe number. From this formula, it is
easily seen that the resolution of displacement measurements is a direct function of the

specimen grating frequency. This must be carefully taken into account when considering

the grating for use in testing.

When used with a grating consisting of a grid pattern parallel to both the x and y
directions (cross grating) and four orthogonal collimated beams, the moiré method has
the capability of measuring both displacement fields.  The sensitivity of the
measurements is easily adjusted within certain limits. For measurements of displacement
in metals, a very high frequency grating is needed. These gratings are typically created

using photographic techniques described in detail by Ifju and Post [99].

Another common method for measuring in-plane displacements called digital image
correlation (DIC) was employed by Newman et al [14] for obtaining CTOA values. It
involves coating the specimen surface with a speckle pattern and comparing images of
the deformed surface with images of the undeformed surface. While DIC has produced

very good results, it is usually used in applications where large deformations are
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expected. Therefore, for this research, the high resolution attainable with moiré
interferometry is desirable. However, DIC methods may need to be utilized for creep

fracture studies.

The method described by Wang et al [100] is applicable when measuring relatively large
deformations. This method utilizes a low spatial frequency steep grating of about 40
lines/mm on a highly polished surface to achieve very high contrast fringes. It combines
the advantages of the geometric and traditional moiré interferometry methods to allow
measurement of large deformations. Here, two collimated beams are directed onto the
surface of the specimen at a very shallow angle of approximately 6 degrees. A moiré¢
pattern is visible to the naked eye and can be photographed without the need to capture
the 1* order diffraction, which is the typical way to extract moiré data. Figure 3.5 shows

the method used to create these gratings.

(1) Substrate preparation

Polish from 9 to 1/4 microns
to mirror quality

(2) Coating

AZ4903 or 1400 Series Photo-Resist
(H = 5000 to 10000 nm)

(3) Expose

Yy vy vy vy vy oty

Mask Grating 40 lines/mm,
UV light

""" HH B
.................................................... Developer

Figure 3.5: Photo-resist grating replication procedure [101].

3.2.2 SPECIMEN TESTING APPROACH

For the 3-D T*, integral study, specimens were cut from plate stock aluminum and
machined to the specified geometry. The specimens were then fatigue pre-cracked to

produce a sharp, natural crack on the order of 1.5 mm. This fatigue pre-cracking
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followed the recommendations in ASTM standard E-813 for J-integral testing. In
essence, specimens are subjected to a 15 Hz sinusoidal waveform loading with a load

ratio, R=0.1, and not exceeding 60% of K;¢, the material’s accepted linear elastic fracture
toughness (K. = 33Mpar/m for 2024-T3 aluminum). Each specimen endured

approximately 10,000 cycles to produce the 1.5 mm fatigue pre-crack.

Following fatigue pre-cracking, the front side of the specimens were polished to a mirror
surface finish of 1 um through a series of several polishing stages, beginning with 200
grit, wet-dry sandpaper. This was done to prepare the specimen surface for application of
a photo-resist type moiré grating. Following the procedure graphically depicted in Figure
3.5, the moiré grating was applied via a photo-resist spin coating method. Here, photo-
resist was dripped on a specimen that was being spun at high speed in a modified
centrifuge. The grating was applied by exposing the photo-resist to high intensity light
through a 40 line/mm mask, and then developing it in a developer solution. The back
side of each specimen was also marked at intervals of 0.25 mm (Figure 3.6) to record

levels of crack extension on the surface.

Figure 3.6: Back side of 3 Point Bend specimen showing crack level markings at 0.25
mm increments and pre-fatigue crack.

Following the aforementioned preparation, the specimen configurations listed in Table 3

were subjected to a monotonic load in a screw driven, displacement controlled Instron, 45
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KN capacity load frame. A moiré¢ interferometry bench, which has been previously
constructed, [91] was used to capture the displacement fields in both u (parallel to crack),
and v (perpendicular to crack) directions during specimen testing. The specimens were
monotonically loaded at a rate of 0.254 mm/min until stable crack growth initiated. Here
the test was stopped and the first displacement fields were captured via a CCD camera,
connected to a frame grabber in a Windows NT computer. The load rate was then
reduced to 0.127 mm/min to maintain stable crack propagation and the ensuing
monotonic loading was stopped at crack extension intervals of 0.25 mm to again capture
the u, and v displacement fields. Photographs of the experimental setup are shown in

Appendix C.

Since the 3-D flaw analysis will rely on the tunneling present in the interior of the
specimen, the experimental approach involved marking the crack front at various crack
extensions by post-fatigue marking. Six different specimens were tested in this
experimental work and each was loaded to a different crack extension length to provide a
view of the tunneling behavior as the crack extends. Post-fatigue cycling was used to
mark the new crack front in a similar manner compared with pre-fatigue cycling.
However, since the extent of tunneling was unknown prior to fatigue marking, an
estimated average crack length had to be used for calculation of the K;c values. This
tunneling analysis is similar to the approach used by Dawicke [1], and Gullerud et al [20]
in their 3-D CTOA analyses. The post-fatigue crack front profiles were digitized into a
computer from photographic images and curve fit to allow it to be mapped in the finite
element model. Figure 3.7 shows a typical specimen fracture surface and its

corresponding, digitized crack front.



55

X (mm)

Bt
: g?80@(

Figure 3.7: Typical pre, and post-fatigue crack profiles.

3.2.3 CALCULATION OF EXPERIMENTAL (SURFACE) T*,

Currently there are no known methods available for calculating 7*, in a point-wise
fashion along a tunneling crack front from experimental data, which is limited to
measurements on the specimen surface. If an assumption of plane strain is made for the
location of the integration contour, these experimentally obtained surface values should
be comparable to the average of the numerically obtained, point-wise, through-thickness
values calculated along this same contour. Once the size of the integration contour is set
at the point of transition in plane states, it should be used for all levels of crack extension
for both experimental, and numerical calculations because the calculation becomes
essentially a 2-D comparison. Values of experimental 7%, are calculated by performing a
truncated contour integration at this distance from the crack. The calculation utilizes
measured surface displacements and the material constitutive relationship to obtain

values of T%*, at each level of crack extension.
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A program was written in Matlab® 5.1 to allow calculation of displacements at chosen
node points on the surface of the specimen (Appendix B). The program first imports the
previously saved data file. A grid of x-y coordinates with resolution defined by the user
is then assigned to the data set. A “nearest point” interpolation routine calculates the
approximate fringe number at each of the grid points by interpolating between whole
fringe numbers from the original data set. In this manner, each of the grid points is
assigned a fractional fringe number. The fringe numbers are then multiplied by the half
pitch of the specimen grating to obtain a displacement at each point. This displacement
data is output in a three-column text file containing x-y coordinates of the grid in the first
two columns, and displacements in the third column. As a final step, a contour plot of the
displacement is created so that the user can determine if the data is acceptable. Figure
(3.8) shows contour plots from this program of data corresponding to the images in figure

(3.9).

3u4 3v4

Figure 3.8: u and v-field displacement contours from digitized moiré, Aa=0.5 mm.
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3u4 3v4

Figure 3.9: Typical moiré fringe patterns from experimental work, Aa = 0.5 mm.

For this work, a grid resolution of 0.25 millimeters was chosen. This allowed relatively
accurate correspondence of the crack tip to a node, and optimized the accuracy of the
interpolation scheme. Displacements were calculated over a fixed interval, which
spanned from 2 millimeters behind the crack tip to 7 millimeters in front of, and above
the crack tip (total window size of 7 x 9 mm). The displacement data from the left half of
the specimen was “mirrored” onto the right half, and a point-wise average value was
taken for each of the node points. Any rotation in the fringe pattern was corrected for by

averaging the left and right data sets.

The displacement data calculated using the aforementioned Matlab® program was used
as input data for calculating experimental values of 7*,. Two input files were created for
each data set. The first input file is simply a four-column text file containing node
number, u-displacement, v-displacement, and w-displacement in the first through fourth
columns respectively. For these data sets, w-displacement (out of plane) was set to zero
for every point. The second input file was an ABAQUS® mesh file containing element

connectivity, and node-element assignments.
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A FORTRAN program to calculate 7*, was written at Georgia Institute of Technology in
1996 by C. Pyo and H. Okada. The program was then modified by Y. Omori to calculate
T*,.based on the experimentally obtained displacement data and material properties. This
program was based on the work by Okada et al. in [70]. For each calculation of 7%, an
initial crack tip is specified, along with an integration contour size, and EDI region size.
Displacement data is then used by the program to calculate strains from which stresses
are calculated using the equivalent stress-strain relation. Finally, 7%, is calculated using
the stresses and strains with Okada’s truncated EDI method, and a deformation theory of

plasticity as suggested in [70].

3.2.4 CALCULATION OF EXPERIMENTAL 3-D T*,

It would be most beneficial to have the ability to calculate the locally varying 7%, integral
in a point-wise fashion along a 3-D crack front. However, the absence of a technique for
obtaining displacement values within the interior of the specimen will inevitably require a
mathematical modeling of the interior state. Several, untested possibilities exist for
estimation of a ‘mean’ 3-D energy parameter. These include a method similar to that
utilized by Dodds and Read [87], in which only the contour portion of the integral was
obtained experimentally, and estimates of the remaining area integral are provided by FE
analyses. Here, the T*, integral would be calculated along a truncated contour, analogous
to the way 2-D J-integral and 7%, integral are related. It is tempting to use a crack tip
geometry interpretation for the estimation of a ‘mean’ energy release rate term, but no
direct correlations have been made between 7%, and crack tip geometry parameters such
as CTOD as they have between J-integral and CTOD. For now, it is assumed that by
analogy to the relationship between the 2-D J-integral and 3-D J-integrals, the 3-D T*,
integral may be calculated along a truncated contour, albeit extended an additional
dimension. Since measurements cannot be made in the interior of the specimen, this
would conceivably be done on two surfaces of the specimen to allow an estimate of

average 7*,through the thickness which may then be compared with the local, point-wise
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values obtained numerically. However, since the 3-point bend specimen is symmetric,
calculation on both sides would be repetitive. Therefore, with the absence of a method for
through-thickness, experimental contour integrations, a surface value of the
experimentally determined 7%, must suffice for the time being. As stated previously, the
surface value of 7*, will be compared with the numerically obtained, average through-
thickness values if the contour of integration is set at the point of transition in plane

states.

3.3 NUMERICAL MODELING

3.3.1 THE T*.INTEGRAL FOR 3-D GEOMETRIES

The principles of virtual crack extension have been applied successfully by many of the
authors discussed in Chapter 1. These methods rely on comparison of strain energy
present in two different cracked configurations. Since the value of the 7%, integral lies
mainly within its use with the incremental theory of plasticity, these methods will be
applicable only if it is assumed they are valid for incremental plasticity which has been
suggested by Sakata et al [80]. The method employed by Nikishkov and Atluri [86] for
numerical analysis of the J-integral is likely more applicable for use here as it allows
characterization under the incremental theory of plasticity at a location removed from
near crack tip events. For this study, an extending contour and the incremental theory of
plasticity is used to calculate the 7*; integral for the 3-D numerical model. The model is
built to accommodate the tunneling behavior of a real crack (see figure 1.12). Thus, the
resolution of the mesh in the z direction (parallel to the crack front) must be sufficiently
refined to model the acute crack front curvature seen in actual specimens. This resolution
is empirically determined using experimental measurements as a basis. Stresses and
strains are recorded at each stage of crack extension along the elements within each layer
that encompass the crack front for calculating the local 7%, integral value at several

points along the crack front. Figure 3.10 is a graphical representation of the contour of
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integration for a representative layer. Note that ¢is a small quantity such that the contour
is close enough to capture the crack tip behavior while avoiding numerical difficulties
associated with extreme plasticity in the near-tip process zone or the influence of external

boundary conditions.

Figure 3.10: 3-D T*, contour of integration.

3.3.2 NUMERICAL MODEL OF 3-POINT BEND SPECIMEN

Since it is inefficient to model the entire specimen, one quarter of the 3-point bend
specimen was modeled due to symmetry, and this quarter-model is further truncated at a
prescribed distance from the plane of the crack. In the first step in the hybrid
experimental-numerical approach, a finite element analysis utilizing a relatively course
mesh was carried out on a full quarter model of the 3-point bend specimen. Since interior
conditions along the 3-D crack front cannot be measured and/or prescribed, this initial
analysis allowed the determination of the distance from the crack plane where the states
of stress and strain are uniform through the thickness of the specimen. Displacements are
then measured experimentally at this distance from the crack plane, and prescribed as

boundary conditions to the FE model.
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The 8 mm thick, 3-point bend specimen (Figure 3.3) is modeled in the commercial Finite
Element Analysis (FEA) code, ABAQUS using 8 node, isoparametric, brick elements
with incompatible modes for control of shear locking. As previously discussed,
symmetry allows one quarter of the specimen to be modeled, and the model is further
truncated at a specific distance from the crack plane for computational efficiency. This
distance was determined by building an initial full quarter model of the specimen with a
relatively course mesh of 0.5 mm elements in the vicinity of the crack tip and
transitioning to 1.0, and 2.0 mm elements further away. The coarse model (Figure 3.11)

contained only four elements through the half thickness of the specimen.

ABAQUS

Figure 3.11: Initial, course model for determination of truncation boundary.

The coarse model was loaded to a level equivalent with the load at which crack extension
was expected to have begun which will be close to the maximum load the specimen will
support. From experimental observations, this value was taken to be approximately 3.6
KN for crack initiation. The von Mises stress (Figure 3.12) was obtained at the centroid

of each of the elements through the thickness and at several different distances from the
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crack face. A truncation distance for prescribing experimentally obtained displacements
in the FE model was determined as the distance from the crack face where the von Mises
stress was approximately constant through the thickness. Figure 3.13 is a set of typical
plots of von Mises stresses through the thickness at specified distances from the crack
plane, and at several points in the x-direction (height). For this analysis, the truncation

distance was determined to be at y=15 mm.

ABAQUS

ABAQUS VERSION: 5.8=1  DATE: 1S-ARR-I001 TIME: 15:47:1€

Figure 3.12: Distribution of von Mises stress in course, initial model with P=3.6 KN
and a=12.5 mm.
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Figure 3.13: Von Mises stresses through the thickness for varying distances from the
crack plane, Aa = 0.00 mm.

The application of boundary conditions at a truncation point in the case of bending is a
complex issue. The v-displacements (normal to the plane of the crack) are easy enough
to apply as long as they vary linearly from top to bottom. However, special care must be
taken with application of u-displacement boundary conditions at the y=15 mm truncation
point since it is very easy to introduce improper loads with these boundary conditions. It
is therefore sufficient, and necessary to apply the u-displacement boundary condition at

only one point on the 15 mm truncation boundary since the v-displacement ensures a
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bending condition and the u-displacement is approximately constant in the vertical
direction. At least one prescribed u-displacement is required to enforce the shear
condition in the 3-point bend specimen. To ensure that the u-displacements were
prescribed to reflect reality, several different scenarios were explored in a simple 2-D
model of one quarter of the specimen with actual bending employed (Figure 3.14).
Figure 3.15 shows the different methods of boundary condition application explored.
Shear stresses were extracted from a set of elements 2.5 mm behind the truncation plane
for comparison. This extraction point is chosen so that stresses are not influenced by
application of boundary conditions on the truncation plane. Figure 3.16 is a plot of these
shear stresses and shows that case (c¢) from Figure 3.15 offers the best comparison in
shear condition to the full model. Therefore, the final 3-D model incorporates this

scheme for application of displacement boundary conditions.

Viewport: 1  ODB: d:fusersfjackjhitcalc/single-layer2ifirstba.odb

%FD comparison ftor single layer 3-D T-Star

9 DE: firstha.odb ABAQUS/Standard 6.2-1 Fri aug 10 22:02:39 Pacific D
dtep: Step-1
Increment 1: gtep Time = 1.000

Figure 3.14: 2-D model for verification of boundary conditions.
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Figure 3.15: Application of boundary conditions for simulation of bending.
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Figure 3.16: Shear stress distribution through specimen width near boundary for

Aa = 0.00 mm.

The final model used in this analysis is shown in Figure 3.17. The extent of tunneling

seen in the experimental analysis required a sufficient resolution of element layers
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through the specimen thickness (Figure 3.8). To accommodate the extreme slope of the
tunneled crack front, thin (0.25 mm) layers were utilized in the areas of the steep crack
front gradient with a transition to thicker, 0.5 mm element layers near the center of the
specimen where the crack front gradient is not as large. The final model (Figures 3.17,
3.19) consisted of ten, 0.25 mm thick layers near the outer surface followed by three, 0.5
mm thick layers to total the specimen half-thickness of 4.0 mm for a total of 13 element
layers. This arrangement of layering also helps to accommodate the natural surface
singularity that is expected near the free surface. Element sizes were 0.25 mm in the x,
and y directions near the crack tip area and transitioning to 0.5 mm and 1.0 mm further
away. Figure 3.17 also shows the model y-direction truncation distance of 15 mm, with

experimentally obtained displacement boundary conditions prescribed.

Yiewport: 1 ODB: d:/users/jackjhitealc/final3-b.odb
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Figure 3.17: Side view of final, 13 layer model with boundary conditions at Aa = 0.75
mm.
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Figure 3.18 shows the crack tunneling profiles for one side (symmetry) of the specimen,
with the polynomial curve fits for each crack extension. These tunneling profiles were
prescribed as boundary conditions defining the crack face in the final model as seen in
Figure 3.19 where the remaining ligament nodes have been prescribed in accordance with

the third crack extension level in Figure 3.18.

X (mm)

Specimen Mid-plane

O—=NWEAUNAAIXR\O

01 2 3 4
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Figure 3.18: Curve fit, symmetry crack tip boundaries.
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Figure 3.19: Typical crack face profile in final, 13 layer model.

3.3.3 POST PROCESSING OF NUMERICAL ANALYSIS

No commercially available finite element analysis packages currently incorporate the
incremental formulation for calculating J-integral, or any other contour integral for a 3-D
curved crack front. Post processing software has been successfully written in the Fortran
programming language by at least two groups, Okada et al. [70] and Ghadiali and Brust
[95], both of which are based on Nikishkov and Atluri’s paper [69]. Unfortunately, these
programs were designed primarily for two-dimensional analysis, with the exception of
Ghadiali and Brust’s program [95], which had been written to handle three-dimensional
analyses, but has been used only up to the point of crack initiation. Therefore, a major
portion of this research involved the development of post processing software for
calculation of the T, integral in three dimensions and including extensive crack front
tunneling. The equivalent domain integral method (EDI) suggested by Nikishkov and
Atluri [86] provided a means for calculating the 7%, integral and was utilized here for

formulation of the post-processing software. A detailed explanation of the mathematics
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outlined in [86] is provided here since it is the basis for the post-processing work.
Appendix A contains the 7', calculation program that is written, based on this

mathematical approach.

Figure 3.20: 3-D EDI formulation.

The 2-D EDI formulation for 7%, is generalized to a 3-D formulation by considering a
volume analog to the 2-D area between the inner 7, contour, and the far-field 7" contour.
Figure 3.20 is a representation of the EDI region and the s-function for 3-D calculation.
Here, the bounding contours are generalized to tubes encircling the crack tip. The s-
function, which is an arbitrary function of x, and y in two dimensions now becomes an
arbitrary function of x, y, and z. To remove this dependency on the out of plane
coordinate, an s-function could be chosen such that it is always equal to 1 on the inner
contour and 0 on the outer contour, regardless of position through the thickness.
However, the surface area portions (4;, and 4,) on the ends of the annular EDI region

must then be included in the integration.

After application of the divergence theorem the 7*, for this EDI formulation and s-

function and a crack undergoing self-similar propagation is;
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where the area term represents the surface areas at the end of the annular region. For
convenience, and after application of the chain rule of calculus, the integral may be

separated into terms as;

Ou; Os
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Here, the area term (7*;(A)) has been simplified by noting that if the ends are assumed to
be perpendicular to the volume, and the normals, n;=n,=0, n;=1 on A; and n3=-1 on 4.
For equilibrium, and in the absence of body forces, the middle term in Eq. 3.4 is zero so

T*(W) becomes:

W)=—m.rc{g o, ai ZZ } sdV (3.7)

The integration in Eq. 3.3 is carried out by utilizing 2x2x2 gaussian quadrature for a
numerical estimation. Values of nodal displacement are easily obtained from ABAQUS
via a Fortran post-processing subroutine, and the s-function is assigned based on each
particular node within the EDI region. Stress work density, and stress are also extracted

from ABAQUS, but are then averaged over each element in the integration since these
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variables are not involved in a direct integration, and precise local values are

unnecessary. With an isoparametric mapping, Eq. 3.3 for each element becomes;

111 k m k
. ON" ON™ ON %
T (s)=- W—=:s"—0o, ———u"s" (det(J)d&dnd 3.8
" (s) Hj{ - I,axlaxj,} ())d&dndg (3.8)
where J is the Jacobian matrix, and N* (é, n,¢ ) are the isoparametric shape functions.

With 2x2x2 gaussian quadrature, Eq. 3.8 is now calculated with a simple summation as;

n

TO--LYyy

2
=1 =1 ¢=1

k m k
w N st — o, ON™ ON u"s" woww det(J) (3.9)
ox, ox, Ox;

where the calculation is performed over n elements in the EDI region, and w” are the

gaussian quadrature weights (w’ =1 for 2x2x2 integration).

Values of stress, strain and work density are only available at gaussian points after a
numerical analysis. The mathematical development underlying the coding structure of the
post-processing program is such that values of all parameters are required at node points.
Specifically, the complication with Eq. 3.7 arises from the fact that in this portion of the
calculation, in contrast with the calculation of Eq. 3.3, local gradients of these values are
required. Therefore, an extrapolation of gaussian point values to nodal values must be
performed, followed by a one point integration at the center of each element, as shown in
[86]. A method for locally smoothing stresses (or strains) obtained from isoparametric
elements is outlined by Hinton, et al [96], and provides a means for obtaining nodal
values by ‘averaging’ out the gaussian values. A trilinear variation of stresses or strains

1s assumed to occur in a three-dimensional element as
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G(&,m.0) =[LEn.¢.En.E¢ n¢ énd |

5(&.m,¢) =[p]{a}

(3.10)

where &(&,7n,¢)are the variables anywhere within the element, and &,7,{ are the

isoparametric mapping coordinates such that at the gaussian quadrature points,

At the node points, a similar relationship holds, i.e.
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{o} =[P]{a}
so that, (3.12)

{a}=[P]" {0}

where,

(3.13)

—
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I
—

Now, the nodal values of stresses, extrapolated from the gaussian values are expressed as

follows;

{6} =[p][P] {o} (3.14)

So that nodal values of stress and strain may easily be obtained from the reported
gaussian point values. These extrapolated values are then inserted into Eq. 3.7 and the

integration is performed using gaussian quadrature as in Eq. 3.9.

The third portion of the numerical integration would involve the calculation of the area
terms at the ends of the EDI volume (Eq. 3.5) if this s-function formulation were desired.
This calculation would require a 2x2 gaussian quadrature of the end areas, 4; and 4, in

Figure 3.21, and would make use of the simplifications noted earlier.
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CHAPTER 4: RESULTS AND DISCUSSION

4.1 EXPERIMENTAL RESULTS

4.1.1 STABLE CRACK PROPAGATION ANALYSIS

A total of six 3-point bend specimens (Table 3) were ramp loaded to obtain different
amounts of stable crack propagation, varying between 0.5 and 5.5 mm. Following the
monotonic loading, each specimen was subjected to post-fatigue crack propagation to
mark the extent of tunneling at each level. This post fatigue cracking was a very delicate
operation whereby the specimens were cycled at a load ratio of R=0.1 to a maximum of
sixty percent of the final load that each withstood under monotonic loading.  Since the
crack extension behavior is somewhat difficult to control, only four of these tests yielded

usable results. Images of these four tunneling profiles are shown in Figure 4.1.
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Figure 4.1: Progression of tunneling crack between 0.5 mm and 5.5 mm.
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Each of these images was calibrated to known dimensions, and the pre-crack and
tunneling crack front profiles were digitized using Sigma Scan software. The digitized
crack fronts were then fit to polynomials of varying orders from 4™ order to 6™ order
depending on their level of complexity. The polynomial curve fit served to fill in sparse
data at regular (0.25 mm) increments through the thickness (z) direction and to provide a
means for calculating local crack front tangents via differentiation for use with the
numerical analysis. Since the amount of stable crack propagation is difficult to control in
an experimental environment, tunneling profiles at very sparse points were obtained. To
address this sparseness of data without performing what could amount to hundreds of
tests, the specimens were intentionally loaded to obtain these discrete crack extension
levels to show the progression of tunneling. Following the collection of these discrete
data points, a linear interpolation scheme was written using Matlab to guess at what
intermediate tunneling profiles would look like and to increase the data resolution by two
times. This interpolation is repeated for the profiles between experimentally obtained
crack fronts at Aa=3.5 mm (T3-3PB) and A4a=5.5 mm (T5-3PB) so that this data
resolution is actually increased twice to roughly three times the initial number of data
points. Figure 4.2 shows the interpolated crack fronts obtained after the initial
interpolation, Figure 4.3 shows the interpolated crack fronts after the second
interpolation, and Figure 4.4 is a comparison of the raw, digitized data to the polynomial

fit data.

Although a fairly insignificant specimen shear lip was expected, and observed in this
thick specimen configuration, it is worth noting its value. For this specimen
configuration, a shear lip of approximately 0.5 mm per side was measured. This amounts

to total a shear lip of 1.0 mm, or 13% of the specimen thickness.
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Figure 4.2: Interpolated crack front tunneling profiles.
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Figure 4.3: Crack fronts after second interpolation.
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Figure 4.4: Polynomial curve fits compared to raw data.

After approximately 2.0 mm of surface crack extension, the crack is observed to
propagate in a relatively self-similar manner. After several levels of crack extension
however, the near mid-plane crack front flattens as it approaches the externally applied
mid-span load. This will affect the tunneling as well as the numerical analysis of these

crack fronts.

4.1.2 EXPERIMENTAL T*, RESULTS

Results from the experimental work include moiré fringe patterns for each crack
extension step as measured at the surface of the specimen. The moiré fringe patterns
provide a full-field map of displacements that can be used to calculate the localized
strain, and then the stress via Hencky’s total stress-strain relationship, which is given as

[104];
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o 35

=5 e’ (4.1)

where &/ is the current state of plastic strain, o, is the equivalent stress (or yield stress in
this case), & is the yield strain, and Sj is the stress deviator tensor. 7%, is calculated by
utilizing Okada’s [70] approach with a truncated contour as described in Chapter 1. The
deformation theory of plasticity is also used here since the truncated contour
encompasses the area in front of the crack tip, which has not yet undergone extensive
unloading. This allows the calculation of 7*,, without the inclusion of strain history, for

each crack extension step in the experimental analysis.

Figure 4.5 shows the 7%, calculated for test “T5-3PB” in which the surface crack was
extended to 5.5 millimeters. Here, T*, was calculated on three different contour sizes of
£=1.0, 2.0 mm and 3.0 mm. Figure 4.6 shows calculated 7*, for two other test cases,
“T3-3PB”, and “T4-3PB” where the crack was extended to shorter lengths. The results
for “T5-3PB” are of particular interest because here the crack was extended to the longest
possible length in this specimen configuration. This data set will be used for comparison
with the numerical analysis results. The 7%, curve in Figure 4.5 shows a peak values of
approximately 157 MPa-mm (for £= 2.0 mm) and 125 Mpa-mm (for &= 1.0 mm), which
compares well, quantitatively, with the experimentally obtained results of Ma [92]
(Figure 1.9) who obtained experimental 7%, in plane stress, center notched (CN) samples
of 2024-T3 aluminum alloy. It is noted that the results for the /7 contour size of €= 1.0
mm are somewhat of an estimation because the displacement field cannot actually be
viewed this close to the crack tip due to the gross deformation and consequent dimpling
effect at the crack tip. The displacement field this close to the crack tip is based on an
extrapolation of the moiré fringes to the crack face, resulting from the curvature of each
fringe as it enters the high deformation zone. As a result, the 7%, calculated on this

contour can show significant noise due to the approximated strain gradients in this area.
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Figure 4.5: Experimental T*, for different contours, T5-3PB
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Figure 4.6: Experimental T", for two other experiments, £=3.0 mm.
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4.1.3 EXPERIMENTAL CTOA RESULTS

The CTOA was calculated on the surface of the three specimens T3-3PB, T4-3PB, and
T5-3PB.  The CTOA calculation consisted of extracting the v-displacement at
approximately 1.0 mm behind the current crack tip, obtaining the inverse tangent, and
multiplying by 2.0 (symmetry). Figure 4.7 is a plot of the resulting CTOA plots for these

three experiments.
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Figure 4.7: Surface CTOA from experimental measurements.

4.2 NUMERICAL ANALYSIS PRELIMINARIES

4.2.1 DETERMINATION OF I; CONTOUR SIZE

To avoid numerical difficulties and to ensure a valid comparison between experimental
T*, values obtained at the surface of the specimen, and the numerically obtained through-

thickness values, a similar size contour must be used for both analyses. This contour
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should be such that an assumption of near 2-D behavior can be made if this comparison is
to be drawn. An examination of the out-of-plane strains (&33) directly in front of the
crack tip shows that after a short amount of crack extension, the level of out-of-plane
strain becomes constant at a specific distance ahead of the crack tip. Figures 4.8 and 4.9
show the extent of out-of-plane strain (with respect to the x-y plane) through the thickness
of the numerical model at different distances, 7, from the crack tip for crack extensions of
Aa = 0.0 mm, and Aa = (.75 mm, respectively. This attainment of a constant value of &3;
is indicative of a transition to a plane strain state at a distance from the crack tip
corresponding to this value of ». Since there is now a level of constancy through the
thickness, this distance can be used as the inner, / contour size, & For a short amount
of crack extension (0.75 mm), it is seen that this transition begins to occur at a distance of
approximately 2 mm and that out of plane strain becomes essentially constant and very
close to zero between 2 and 3 mm from the crack tip. Figure 4.9 shows strain behavior
after several crack extension steps. Here, it is seen that the distance for plane strain
transition increases to between 3 and 4 mm from the crack tip. The paper by Narisimhan
and Rosakis [66] discussed a correlation between specimen thickness and distance to this
plane state transition for plane stress specimens. It was found that the distance to the
transition point was roughly equivalent to half the specimen thickness in correlation with

what is seen here in Figures 4.8 and 4.9 for the near surface, plane stress portions.

The extent of tunneling seen in this analysis leads to numerical difficulties with regard to
explicitly prescribing the aforementioned transition point as the exact location of the
inner, / integration contour. A preliminary inspection of the behavior of the 7*; integral
through the thickness of the specimen after a few crack extensions revealed sensitivity of
the analysis to the location of the integration contour. After a short amount of crack
propagation, the expected path dependency of the 7*. integral becomes very evident. For
contour sizes of 1.0, 2.0 mm, and 3.0 mm, the behavior of the local crack tip integral can
change by 10-20%. There is also a slight dependence of T7*; integral on the size of the
EDI region. Since the T%*; calculation should be independent of EDI size, this
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dependence is indicative of numerical errors due to loss of stress and strain data as the
crack tip is approached and extreme plasticity is present or, possibly boundary effects if a
large enough contour is used. It is also indicative of a loss of resolution since the s-
function is assigned at node points, based on their location within the EDI boundaries.
Fewer node points through the width of the EDI region will obviously adversely affect
the accuracy of the calculation. As an example, if the extreme cases of either only one
element through the EDI region width or, say four elements through the EDI region width
are considered, it is easy to see that the former case will utilize s-function values of 1 and
0, whereas the latter would have s-functions of 1, 0.75, 0.5, 0.25, and 0 as the EDI region
is traversed. Thus, very small, or very large contour sizes should be avoided due to the
numerical inaccuracies and a reasonable number of elements through the EDI region
should be assigned.
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Figure 4.8: Out of plane strain levels in the x-y plane shortly after crack initiation.
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Figure 4.9: Out of plane strain levels in the x-y plane after several crack extensions.

Since the crack is modeled with extreme tunneling, the contour will also have to adapt
with the changing crack front. The contour grows with the extending crack front, that is,
the portion behind the original crack tip remains fixed throughout the analysis. This
means the contour will actually be larger for layers near the mid-plane than those at the
surface. Figure 4.10 shows how this is accommodated in this analysis. Here, the blue
highlighted elements represent the EDI region, and the red circles indicate nodes in the

remaining ligament.
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Figure 4.10: EDI definition for T*, calculation with extending, tunneling contour.

4.1.2 CHOICE OF §-FUNCTION

The EDI formulation is a variation of the VCE method wherein an arbitrary function is
applied in place of the virtual displacements. This arbitrary function, referred to as the s-
function by Nikishkov and Atluri [86], takes on a new level of complexity for 3-D
situations. For 2-D, it has been applied as a simple ramp function that is equal to 1 on the
near field, 7 contour, and 0 on a far field contour. Several types of 3-D s-functions are
reviewed in [86], of which only a few are eligible for use in this research. Since the
numerical model used in this study employs linear elements, and a fairly course
resolution through the thickness, candidate s-functions will include a triangular s-
function, and a linear s-function (Figure 4.11). Upon initial inspection, it would seem

that the linear s-function would be appealing from a programming standpoint. However,
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the areas on the two ends of the current layer of calculation must be included in this case.
The triangular s-function, on the other hand, allows a major simplification since the value
of the s-function in this case is equal to zero at the end of the EDI region. The difficulty
with the triangular s-function then becomes the lack of resolution through the thickness
due to the fact that it must be calculated over at least two element layers for 8 node, linear
elements. This difficulty is easily overcome by employing a calculation scheme as
depicted in Figure 4.12, where two iterations of calculation are performed, each offset by
one node with respect to the other. The final result is a capability for calculating the
contour integral at each layer interface with the exception of the surface node layer, and
the mid-plane node layer. This does not prove to be a major problem as the resolution of

the model allows calculation very close to these two points.

Triangular s-function Linear s-function

Figure 4.11: S-functions for EDI calculation.

1* calculation

2™ calculation

Figure 4.12: Integration scheme for high calculation resolution.
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4.2.3 CRACK FRONT COORDINATE TRANSFORMATION

To accommodate the tunneling crack front, which is continually turning with respect to
the thickness, the global variables are normally transformed with respect to the crack
front coordinate system to “straighten” the crack front. This becomes more and more of
an issue as the inner contour of integration is collapsed onto the crack tip. The coordinate
transformation simply involves calculating local tangents to the crack front and
transforming stresses, strains, work densities, displacements, and coordinates to the crack
front coordinate system. These transformations from global to local coordinates are

applied in the x-z plane (plane of the crack) and are simply:

_ G
X, = al./.xi

(4.2)

_ G
S = Aip@jgS p

for vectors, and tensors respectively. However, as the inner contour of integration is
moved further away from the crack tip, the transformation of global variables to the crack
front coordinate system becomes less reasonable. Instead, a rotation of the entire EDI
region with respect to the global coordinate system is likely required in addition to the
transformation of global variables. This is an extremely complex operation that would
require a very refined, radial mesh surrounding the current crack tip. The mesh would
also need to adapt intelligently as the crack tip moves. Figure 4.13 is a representation of
the effect of transforming the variables within the EDI region and of transforming the
EDI variables in addition to a rotation of the entire EDI region with respect to the crack
front. Since this is not feasible for the current numerical model, 7%, is estimated without
any transformation of the EDI quantities. Regardless of contour size, the integration is
performed over elements sufficiently far from the crack front to allow this approximation,
especially after several steps of crack extension where the contour has extended far
behind the current crack tip. Results from a short analysis with transformed parameters
are shown in the numerical results section of this chapter to illustrate the difficulty in

calculating this way.
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(A)

Figure 4.13: Transformation of EDI variables (A) and transformation of EDI
variables with rotation (B).

4.3 NUMERICAL RESULTS FOR TUNNELING CRACK

4.3.1 POINT-WISE T*, FOR TUNNELED CRACK

T*. was calculated for each of seventeen, 0.25mm and 0.50 mm crack extension steps,
with the extent of experimentally observed tunneling reflected in the crack face boundary
conditions at each step. Using a post-processing program written in Matlab (Appendix
A), point-wise values were obtained at each layer interface through the thickness of the
quarter model to build a plot of behavior for the extending, tunneling crack. Since the
integration program utilized the triangular s-function, values were unobtainable on the
extreme surface, and center plane. The remaining values provide adequate resolution, so

this is not a major problem.
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Figure 4.14 is shown here merely to illustrate the effect of transforming global variables
to the crack front coordinate system. Here, the derivative of the polynomial curve fit at
each particular level of crack extension was used as a local slope for determining the
degree of transformation. Since the slope may change by 5-10% from one layer to the
next, even though the ‘mean’ slope is identical, very noisy results are produced. As
stated before, the global variables for the main analysis are not transformed because of

the numerical noise involved.
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Figure 4.14: Sensitivity of T*. calculation to coordinate transformation, & = 2.0 mm.

Figures 4.15, 4.16, and 4.17 are plots of numerically obtained, pointwise 7*, calculated
with inner, /zcontours of £= 3.0, 2.0, and 1.0 mm respectively for the full extent of crack
extension observed in experiment “T5-3PB”. Here all values are reported at the
corresponding surface crack extension, rather than the local crack extensions. Based on
the previous discussion (Section 4.2.1), an inner (/) contour size of £ = 3.0 mm and
outer (/) contour size of 4.0 mm should be used for comparison with experimental values
which are based on a plane stress assumption and would be dictated by the observations

in [66]. However values for a 2.0 mm contour and a 1.0 mm contour are included here
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for completeness and comparison to the previous plane stress analyses of Ma [92].
Regardless of its size, the /7 contour grows with crack extension, but usually remains &
mm from the crack tip in the positive x and y directions (Figure 4.10). Through-thickness

(z) trends are shown here for each of the levels of crack extension.

Figures 4.18, 4.19 and 4.20 contain plots of 7*, for the extending crack at different points
through the thickness (z-direction) and contour sizes of & = 3.0, 2.0 and 1.0 mm. For
these plots, local values of crack extension have been used since these plots would
represent local resistance curves. The T*, values increase much more slowly near the
mid-plane than on the surface, due to the lack of formation of a significant region of
deformation. Since the 7%, would be interpreted as a crack driving force in an
application phase analysis, it would make sense that there is far less energy required

(crack driving force) to extend the crack front near the mid-plane.

Figure 4.20 shows the numerically obtained 7*; calculated on a /7 contour of £= 1.0 mm
for local crack extensions. The extreme scatter in these results is due to the extremely

close proximity to the crack tip and the active wake zone.

At a surface crack extension of approximately 1.75 mm, the center has tunneled to a
crack extension of approximately 8.0 mm and with an inner /; contour of £= 3.0 mm
begins to suffer from boundary effects from the top load point. If a /7 contour size of &
= 2.0 mm is used, this boundary effect problem becomes evident slightly later at a surface
crack extension of 2.25 mm. The boundary effect is an unfortunate side effect from the
geometry of this model. The only way to overcome this effect is to begin reducing the
size of the integration contour as this point is approached. While this will violate the
consistency of the analysis since 7*; is a path dependent integral, it will still provide a
picture of what is happening at this point. Beginning with the Aa=1.50 mm curve in
Figure 4.15, the frontal portion of the 7/ contour for layers close to the mid-point is

moved closer to the crack tip by anywhere from 0.25 mm to 2.0 mm in the extreme
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tunneling cases (Aa = 4.00, and Aa = 5.00 mm). Since this is only a truncation of the
frontal portion of the contour, it is thought to have only a small effect on the calculation.
Figure 4.21 is an example of an extreme case of frontal truncation where the inner layers

have also had a reduction in EDI region width to 0.5 mm.
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Figure 4.15: FEA T* . variation along tunneled crack front at different
levels of surface crack extension, & = 3.0 mm.
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Figure 4.16: FEA T* . variation along tunneled crack front at different
levels of surface crack extension, & = 2.0 mm.

200 -
175 | ——da=0.00
—W—da=025
150 da=0.5
ol da=0.75
T 1251 —¥—da=1.00
z ——da=125

e 100
2 —+—da=1.50
£ 75 ——da=1.75
———da=225
50 1 4 da=2.50
da=3.00

25 1
da=3.5

0 T v
0 1 2 3 4

Distance from surface, z (mm)

Figure 4.17: FEA T*.variation along tunneled crack front at different levels
of surface crack extension, £ = 1.0 mm.
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Figure 4.18: T*, for different positions along tunneled crack front for local crack
extension values, € = 3.0 mm.
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Figure 4.19: T*, for different positions along tunneled crack front for local crack
extension values, &€ = 2.0 mm.
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Figure 4.21: Truncation of frontal portion of EDI region after extensive tunneling.

For comparison, 7*, was also calculated for the same situations but using Okada’s
truncated contour approach. This is the same approach that was used to calculate surface
values from moir¢ displacements in the experimental analysis. Nodal displacements were
extracted from the FE analysis output at each crack extension step and are easily placed
on a local element layer grid of x, and y coordinates for input to the aforementioned
Fortran program. Figures 4.22 through 4.24 show point-wise 7%, calculated using the
deformation theory of plasticity and a truncated contour with FEA produced nodal
displacements and based on surface crack extension levels. Figures 4.25 and 4.26 show
local T*, resistance curves from this analysis for 7 contour sizes of €= 2.0 mm and 1.0

mm, respectively.

Figures 4.24, and 4.26 are plots of 7%, calculated on an & = 1.0 mm contour. As
previously observed, the data shows a fairly significant amount of scatter due to the close

proximity to the crack tip. It is noted that, even at this location, the results show much
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less scatter than those calculated using the incremental theory of plasticity and the full,

elongating contour.
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Figure 4.22: FEA T* calculated from nodal displacements at different levels of
surface crack extension, £ = 3.0 mm.
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Figure 4.26: FEA T* calculated from nodal displacements for local crack extensions, & =
1.0 mm.

Figure 4.27 shows the CTOA calculated at three locations through the thickness at
approximately 1.0 mm behind the crack tip for the surface, the quarter point (midpoint of
numerical model), and the specimen mid-point. The surface CTOA trend shows the
typical sharp increase at the beginning of crack growth, followed by a decline to a fairly
steady state value of approximately 7-8 degrees. The quarter point and mid-point trends
exhibit an interesting slow rise as the crack extends. This behavior is due to the rapid
crack propagation in the center (tunneling) near the beginning of the test, which will
produce a small amount of crack tip blunting and hence low CTOA. As the tunneling

slows, the CTOA on the inner layers should increase as seen here due to increasing
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amounts of plastic deformation and crack tip blunting. It is observed that the CTOA
roughly follows the same trend as the near-field 7*; calculated on an ¢ = 1.0 mm contour.
Both the CTOA and the near-field 7*, show a decreasing trend followed by a fairly sharp

increase at local crack extensions longer than approximately 6.0 mm.
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Figure 4.27: CTOA for different through-thickness locations on tunneled crack front.

It should be noted that one of the drawbacks to C7TOA is its extreme mesh sensitivity.
Although this is not extremely evident in Figure 4.27, some of the CTOA values are
suspect, namely those near the beginning of the analysis. As the crack extension reaches

1.0 mm, the original crack tip blunting causes a bump in C7OA value. This blunting
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influence decreases as the mid-plane is approached since development of large

deformation occurs more slowly here.

4.3.2 POINT-WISE J-INTEGRAL (INCREMENTAL) FOR TUNNELED CRACK

The J-integral differs from the 7%, integral in two ways. First, the J-integral is based on a
deformation theory of plasticity and by definition cannot account for unloading, or
extensive plasticity. In fact, the J-integral is calculated with only the elastic portion of
the stress-strain work (strain energy density), whereas the 7*; integral is calculated using
the summation of elastic strain energy plus the plastic dissipation, which increases
incrementally as the crack extends. The second primary difference is that the near field
J-integral is calculated on a moving contour and, as noted by Okada, et al. [70], is a
measure of only the energy release rate at the crack tip. The near field J-integral exhibits
a peak followed by a drop to nearly zero, which is expected under the aforementioned

circumstances.

Figure 4.28 shows the variation of J-integral through the thickness, calculated on a
moving contour and under an assumption of incremental plasticity. Limitations in the
ABAQUS FEA package do not allow J-integral to be calculated for the particular
geometry used in the present FE model. For ABAQUS J-integral, the crack front must be
defined on a smooth, continuous crack front. Hence, for this analysis, J-integral is
calculated with incremental formulation using the same post processing formulation as

used for the 7*, calculation and with a moving contour.
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Figure 4.28: Point-wise, incremental J-integral for tunneled crack, € = 3.0 mm.

Figure 4.28 only includes the through-thickness trends for crack extensions up to a
surface crack extension, Aa = 2.25 mm since the data points beyond this become very
erratic and would only serve to remove clarity from the plot. It is obvious from Figure
4.28 that the J-integral drops to zero at points closer and closer to the surface as the crack
extends. This is because, as the crack extends, the elastic unloading zone in the wake of
the crack tip is passed through much sooner on the interior layers. It is interesting to note
that one can almost “track” the progression of the layers through the wake zone by

observing the point at which each distinct crack extension curve drops off.

Figure 4.29 shows plots of incremental J-integral from the two extreme cases of near

surface, and near mid-plane to illustrate the point discussed here.
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Figure 4.29: Incremental J-integral near surface and near mid-plane, &= 3.0 mm.

4.3.3 COMPARISON OF 3-D T*. AND J-INTEGRAL

It 1s difficult to draw a direct comparison between the 7%, and J-integral for the extreme
tunneled case. Up to the point of crack initiation, and slightly beyond, 7*, and
incremental J-integral should be almost identical due to the negligible differences
between the moving contour and extending contour at these points. However, as the
moving contour passes into the wake zone behind the current crack tip, the incremental J-
integral is invalidated. Figure 4.30 contains plots of 7*, and incremental J-integral from

the two extreme points overlaid with each other.
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Figure 4.30: Comparison of T*, and incremental J-integral, & = 3.0 mm.

4.4 COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

Since the numerical results are obtained in a point-wise fashion along a tunneled crack
front, it is difficult to directly compare them to experimental values obtained at the
surface. The primary reason for this is the simple fact that an average value of T*,
through the thickness at each step in the FE analysis would not take into account the fact
that center values are obtained at a point of crack extension that could be up to 4 mm
longer than the amount of crack extension at the surface. However, experimental values
could still be compared to numerically obtained values near the surface. Since the
behavior in the extreme outer layer is a reflection of a surface singularity effect, which is
difficult to quantify, the second layer in from the outside surface should be used. Figures
4.31, 4.32 and 4.33 are overlay plots of surface 7*, from moiré displacements in test “T5-
3PB” with numerically obtained 7%, from the element interface located 0.25 mm from the
surface. The general trend of numerically obtained 7%, is lower than the experimental,

surface values primarily because of the fact that it is not obtained on the extreme surface.
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It is tempting to apply some sort of correlation between surface values of 7*, and perhaps
some average of 7%*. through the thickness for the tunneled crack. Unfortunately, the
surface values seem to be relatively detached from the behavior through the thickness. It
is seen from the plots of numerically obtained 7*, that the state of energy is very
different on the interior of the specimen for cases of extreme tunneling. The only
physically meaningful correlation would be between the experimental 7*, values and the

near surface, numerically obtained values.

4.5 DISCUSSIONS

4.5.1 THE TRUNCATED INTEGRATION CONTOUR APPROACH

Originally, Okada [70] devised the T*, calculation with a truncated contour approach to

allow calculation of 7*, from experimentally obtained displacements where there is no



107

material loading history available. However, this should not imply that this method
should not be used in cases where this history is available. It is evident from the data
presented that it would be reasonable to use a truncated contour and hence, the
deformation theory of plasticity to calculate 7*, for both experimental and numerical
analyses. Even though the 7*, values using this method were approximately 5-10% on
the non-conservative side in comparison to experimental results, the practicality of the
approach is very appealing from the standpoint of a field technician. In comparison to
using the incremental theory with an extending contour of integration, this method is
unquestionably, far easier to apply. All that is needed is a current displacement field
surrounding the current crack front point of interest. Output from a FE analysis is
naturally compatible with this requirement as nodal displacements are easily extracted

during a post-processing application.

Since nodal displacements are used, and the contour is truncated at the crack tip, Okada’s
method will have a smearing effect on localized events in an FE analysis. It can be
argued that to be completely valid, one must apply the incremental theory of plasticity
formulation with an extending integration contour to include the effect of such localized
events. However, given the comparison between the results in the previous sections in
this chapter and considering the difficulty encountered in using a full incremental theory
approach and the intricacies of defining an extending contour in complex cases, this
approach seems more feasible. This is especially true if the analysis were being
performed in reverse, i.e., the application phase where the toughness curve is being used

as a criterion for fracture in the FE analysis.

There is excellent correlation between the surface T*, calculated via Okada’s truncated
contour with nodal displacements approach and the surface 7*; calculated via the
incremental theory with a full contour. This is indicative of a very small contribution
from the portions of the integration contour that trail the crack tip and the fact that, with a

truncated contour only the portions which are still undergoing loading are considered,
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allowing valid use of the deformation theory of plasticity in this case. The numerical
difficulties seen in the calculation of incremental J-integral are likely a direct result of
closing the integration contour through this wake zone which is not done for the

extending contour 7*; calculation, or the truncated contour 7*, calculation.

4.5.2 COMPARISON OF SURFACE T*,TO PLANE STRESS T*,

A validation of this research comes with a comparison to plane stress 7*, from Ma [92]
where 7%, was calculated for thin (0.8 mm) 2024-T3 aluminum, center notched
specimens. Since the extreme surface of the 3-D case is thought to be near a plane stress
state based on the existence of an approximately 13% shear lip observed on the fracture
surface, 7*, values from this location should compare quantitatively with those of a plane
stress analysis as long as similar sized /; contours are used. The numerical and
experimental 7%, for £=1.0 mm, in Figures 4.25 and 4.5, compare well in a quantitative
sense with those in [92] which were obtained in a plane stress analysis. As seen in
Figures 4.24 and 4.5, the results for a 7 contour of &£ = 2.0 mm also agree well with those
in [92] for the same reasons. It must be assumed that the 7%, calculation through the
thickness will also be correct since the surface values are acceptable. Since the 7%,
integral has never been calculated in a state of high triaxiality such as the present, 3-D
tunneled crack case, validation must come in the form of comparison to other known
values. Figure 4.34 is an overlay plot of 7%, calculated at the surface numerically and
experimentally for /7 contour sizes of ¢= 1.0 mm and 2.0 mm with plane stress 7*, from

Ma [92] for the same contour sizes.



109

200
180
|
= [
160 - ° ([
140 - Mug ®
E 120 - ® X X
g Qmy X X X
§ 100 A X .. @ FEA, 1.0 mm contour
5 804 }*Q B FEA, 2.0 mm contour
=
. .
60 V Experimental, 1.0 mm contour
? Experimental, 2.0 mm contour
40
(] XMa [92], 1.0 mm contour
20 @ Ma [92], 2.0 mm contour
0 T T T T T T 1
0 2 4 6 8 10 12

Surface Aa (mm)

Figure 4.34: Comparison of surface T*. to plane stress T*, from Ma [92].

4.5.3 PLANE STRESS (SURFACE) AND PLANE STRAIN (MID-PLANE)

The numerically obtained 7*, shows a decreasing trend as the mid-plane is approached
which is contrary to energy release rate behavior up to the point of crack initiation seen in
previous studies involving J-integral. However, the extreme tunneling should not
directly imply a trend of rising crack driving force toward the center. It is instead a result
of lower resistance near the mid-plane, which is reflected in the lower 7% values at this
crack front location. The specimen being modeled is relatively thick and will exhibit
fairly thin region of plane stress near the surface and transition to a plane strain state as
the mid-plane is approached. This trend is seen directly in the plots of &3 shown in
section 4.1.1 of this chapter (Figures 4.8, and 4.9). In light of this, 7%, should instead be
compared to a more local, physical parameter such as CTOA. This comparison is best
made with the T*; calculated on an &= 1.0 mm contour size since C70A4 is local to the
crack tip. As the mid-plane of the specimen is approached and for extensive tunneling,

the 7*, extending contour integral begins to exhibit characteristics similar to those of a
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T*, integral calculated with a moving contour as seen by Okada et. al. [70]. It is likely
that the reason for this is the decreasing contribution from those portions of the contour in
the wake of the extending crack. That is, each step in this case is more similar to a case
of T*, calculated on a truncated contour as the strain history never builds as in the case of
a controlled, stably growing crack. Regardless, some comparison must be drawn
between mid-plane and surface 7*, in order to allow use of experimentally obtained

values for prediction of crack extension throughout the thickness of a specimen.

At crack initiation, and within the first few steps of crack growth, the surface and mid-
plane values are quantitatively similar. However, as the crack extends, the surface 7%,
rapidly increases while the mid-plane value stays fairly steady, with a slight trend toward
rising. After approximately 5-6 mm of crack growth, the two reach a steady state with
respect to each other and a comparison can be made between the plane stress (surface)

values and plane strain (mid-plane) values.

For the linear elastic case, a comparison of Jc and Jj¢ for very thin specimens (plane
stress) and thick specimens (near plane strain) respectively is made for 2024-T3

aluminum alloy as (K values from [105]);

(K,Cj 1 :[33Mpa\/EJ( L 000 43)

K& ) (1=v?) (115 MPav/m ) (1-.347)

which shows plane strain Jjc to be roughly 9% of plane stress Je. Since J-integral is

incapable of characterizing the crack tip behavior after crack extension, this comparison
cannot realistically be made for the case of extended crack extension and extreme
tunneling. However, this comparison can be used to make an analogy to the behavior of
a steady state 7*, toughness behavior since this would represent the “critical” value of
T*,.. An inspection of the plots of 7%, for all contour sizes, and especially the very near-
tip €= 1.0 mm contour reveals a relationship between plane stress (surface) 7*, and plane

strain (mid-plane) 7%, While the 3-point bend specimen configuration did not allow
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sufficient crack extension to achieve the complete steady state 7%, value, it comes close
enough to begin to show signs of achieving a steady state value which should occur at a
crack extension roughly equivalent to half the specimen thickness. At the final point of
crack extension (5.0 mm on the surface), the ratio between surface 7%, and mid-plane 7*,
is roughly 10 %, regardless of contour size, or method of calculation. The much lower
plane strain 7% is a direct reflection of the much lower resistance to crack extension in
the plane strain region in comparison to the surface, plane stress region. The very close
agreement with the ratio of linear elastic fracture toughnesses is an encouraging
development since this would indicate the possibility for using plane stress (surface) 7%
values to predict the fracture resistance on the interior of a thick specimen. Figure 4.35
highlights this comparison for the near-tip plane stress and plane strain 7*, resistance

curves.

It is evident in Figures 4.22, 4.23, and 4.24 that the 7%, values calculated using the
truncated contour with deformation theory are far less susceptible to numerical noise and
tend to be a slightly lower than those calculated with incremental theory and a full,
extending contour. This discrepancy is due to the fact that the deformation theory
calculation on a truncated contour is based solely on the displacement field and therefore
cannot account for the explicit strain history. However, it is obvious that the T7*,
calculated this way is similar, quantitatively with both the experimentally obtained values
and the numerical values obtained using incremental plasticity and an extending contour

of integration.

If the analysis is restricted to a contour very near the crack tip (localized crack tip driving
force), Okada’s truncated contour and deformation theory analysis procedure can be used
most effectively. In addition, a comparison can be drawn between the 7*, behavior on
this very near-tip contour and CTOA, which is itself a very local crack tip parameter.
Since CTOA seems to be able to accurately predict crack extension (see Dawicke,

Newman ,et al. [1], [13], [14], [16]), a comparison between CTOA and near-tip 7%,
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provides a measure of validation. Figure 4.35 is a combined plot from Figure 4.26 of
surface and mid-plane 7*, calculated on an & = 1.0 mm contour, representing the
difference between a plane stress resistance curve, and a plane strain resistance curve.

Figure 4.36 shows the CTOA plotted in the same manner.

The ratio of surface CTOA to mid-plane C7TOA4 is roughly 40-50%, which is much higher
than the ratio between surface and mid-plane 7*,. Since there is no known quantitative
comparison between the two parameters, this observation is inconclusive. However, it is
sufficient to note that the two compare in a qualitative manner. It is well known that
CTOA is incapable of fracture resistance characterization in the initial stages of crack
growth where the “hump” in the surface curve is generally attributed to tunneling.

Beyond this initial transient, the two parameters compare well qualitatively.
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Figure 4.35: Plane stress and plane strain, near-tip T*, &= 1.0 mm.
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Figure 4.36: Plane stress and plane strain CTOA.

It is noted that the plane strain (mid-plane) 7*, and CTOA resistance curves exhibit a
drop followed by a sharp rise at a local crack extension of approximately 7.0 mm. This is
a function of the numerical model and the way the crack tip interacts with the external
loading. At this crack extension level, the slowed tunneling combined with an interaction
with the boundary condition induced stress field produces a blunting effect at the mid-
plane crack tip. This is very evident in the CTOA resistance curve, and local 7%, (¢= 1.0

mm) curve where crack tip behavior has a strong influence.

4.5.4 RELATIONSHIP BETWEEN PLANE STATE AND INTEGRATION CONTOUR

In past analyses and for this analysis as well, one integration contour size has been used
to observe 7%, behavior for any particular data set. That is, if a contour size of 2.0 mm is
chosen, all values are calculated using this contour size, regardless of position along the
crack front. In order to explicitly follow the strategy laid out here for assigning an
integration contour, the integration contour size would need to change according to
position along the tunneled crack front or, more appropriately, as a function of the

constraint present at each particular through-thickness position. If a transition point to
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plane strain is defined as the location of the integration contour, then the &3 plots
(Figures 4.8 and 4.9) would dictate a changing integration contour size along the tunneled
crack front. An examination of the 7*, data presented for this analysis also tends to
support this theory, albeit in a weak way. 7*, near the surface is also slightly closer to
the plane stress values of Ma [92] for larger contour sizes. A correlation cannot be drawn
for mid-plane values of 7%, but it could be assumed that the same will likely be true of

plane strain 7*,.

4.5.5 IDEALIZED CASE: STRAIGHT CRACK FRONT T*.AND J-INTEGRAL

Since a new post-processing program was written for calculation of 7%, in this study, an
idealized numerical analysis was performed to get a baseline comparison between 7*,
and J-integral in simplified conditions since the two can be considered approximately
equal prior to, and just beyond crack initiation. As further validation, the general trend of
T*. should be one of an increase-peak-flattening. In this portion of the analysis, a model
was built which incorporated a straight crack front for several steps of crack extension.
The geometrical characteristics of the general model are identical to the “real” numerical
model except that fewer layers are utilized since there is no tunneling that would require
high resolution through the thickness. Also, the displacement boundary conditions
applied to this model have been estimated based loosely on the displacement conditions
prescribed in the “real” model (obtained from experimental analysis) and the stepwise
progression is compressed to get a comparison between average crack extensions in the

tunneled case, and the straight crack extension level.

For this simple, idealized analysis a 7/ contour of £ = 2.0 mm is chosen to expediate the
numerical processing since larger contours can result in hundreds more EDI elements
included in the calculation. The width of the EDI region is set at 1.0 mm to provide
adequate resolution. Also, only 2.0 mm of crack extension is analyzed here since the

analysis served its purpose at this amount of crack extension.
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Figure 4.37 shows the 7%, trend for the idealized case up to a crack extension of 2.0 mm.
In this plot, trends for different locations along the crack front (z) are shown. The
“hump” seen in these curves for the near surface 7*; at a crack extension of 1.25 mm is
likely due to an artificially fast formation of a plastic zone at the surface and then a
transition of this plasticity toward the center as the crack extends. The higher values of
T*. near the mid-plane are expected since tunneling would be expected in a real crack
extension case due to the increasing crack tip energy requiring dissipation (7*;). Figure
4.38 is a plot of J-integral from the same analysis. As expected, the J-integral is
quantitatively similar to 7%, especially near the quarter thickness point (1.00 mm). It
also exhibits the expected peak-decrease behavior while 7*, exhibits its classic peak-

flattening behavior.
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Figure 4.37: T*, for idealized, straight crack front, £ = 2.0 mm.
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Figure 4.38: J-integral for idealized, straight crack front, &£ = 2.0 mm.

Figures 4.39, and 4.40 show trends of 7*, and J-integral extracted from the plots in
Figures 4.37 and 4.38. These figures highlight the differences in J-integral and 7*; for
this idealized case. The mid-plane trends are very similar at small crack extensions but
show divergence in behavior as the crack extends. Far-field J-integral would continue
rising, but near field J-integral will peak and then drop. These expected trends are

evident in Figures 4.39, and 4.40.
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4.5.6 IMPLICATIONS ON THE STRAIGHT CRACK ASSUMPTION

It is obvious that there is a significant, qualitative difference between the 7*, calculated
in the idealized, straight crack case and the real, tunneled crack front case. In comparison
to the straight crack case, the tunneled crack front 7*; (and hence, J-integral) drops
significantly as the mid-plane of the relatively thick specimen is approached, and with a
short amount of crack extension. The single specimen technique for J-integral estimation
in ASTM E 813 relies on an assumption of a straight crack front, with an average,
estimated crack front calculated via a compliance measurement. Hence, through-
thickness behavior similar to the idealized case discussed in the previous section would
be expected. The existence of the discrepancy between the idealized, straight crack front
case and the tunneling case casts some doubt on the validity of the single specimen
technique for J-integral estimation. Since the mid-plane values vary so significantly
between the two cases, the single specimen technique for J estimation will likely produce

non-conservative results.

4.5.7 GENERATION PHASE-APPLICATION PHASE VALIDATION

An objective in this research was to build 7*, resistance curves in their generation phase
through a combined experimental and numerical approach so that they could eventually
be utilized in the application phase. The localized T*, resistance curves were obtained
for several points along the crack front for this 2024-T351 aluminum alloy in the 3-point
bend specimen configuration. In the previous sections, these localized resistance curves
were reported for the surface (plane stress), quarter-plane (transition), and mid-plane
(plane strain) regions. These curves may now be applied as a fracture criterion in an
application phase numerical analysis to predict the tunneling behavior in a similar
specimen geometry. The successful prediction of crack front tunneling along with a
match with far field parameters such as Crack Mouth Opening Displacement (CMOD)

would validate the local 7*, resistance curves.
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CHAPTER 5: CONCLUSIONS AND RECCOMENDATIONS

5.1 SUMMARY

The T*, contour integral has been numerically evaluated along a 3-D, tunneling crack
front in a thick, plane strain specimen. This numerical value has been compared near the
surface with 7%, calculated on the surface of the aluminum, 3-point bend specimen from
a moiré¢ displacement field generated in the experimental process. In addition, values of
incremental J-integral and CTOA were obtained for the purpose of comparison. Since
T*, has been primarily studied experimentally and numerically in 2-D form, or 3-D form
without crack extension, the evaluation of 7%, for this 3-D tunneling case with crack
extension and a plane strain interior represents a unique contribution to the study of the

mechanics of ductile fracture.

A good correlation between 7*, calculated with incremental theory of plasticity and an
extending contour and 7%, calculated using deformation theory of plasticity and a
truncated contour was observed. This implies that the far simpler, deformation theory
approach may be used in place of the extremely difficult and time consuming incremental
theory approach. In addition, much less mesh refinement would likely be required if only
the current displacement field is used for the calculation. The ability to use this approach
would vastly improve the status of 7%, as an applicable “in the field” fracture toughness

parameter.

The downward trend in 7*, values as the mid-plane is approached is indicative of the lack
of development of an appreciable amount of strain energy and/or plastic dissipation. The
crack tunnels to an extreme extent in comparison to the propagation of the crack tip at the
surface because there is far less resistance to crack propagation in the interior of the

specimen where the 7%, toughness value is lower. The constraint present in the interior
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of the specimen forces this state of plane strain much closer to the crack tip than near the
surface where almost a complete plane stress state exists. Up to, and at the point of crack
extension for a mildly tunneled, or straight crack, the material surrounding the crack tip is
allowed to build up elastic strain energy and very little plastic dissipation. In this case,
the 7*, integral behaves in a fashion similar to the J-integral, that is, a slight rising trend
along the crack front toward the specimen mid-plane. At this point, both 7%, and J-
integral are functions of elastic strain energy, and are directly related to the linear elastic
fracture toughness, so this is expected. After tunneling begins, the 7*; integral is larger
at the surface and smaller near the mid-plane, because there is far more plastic distortion
near the surface where a majority of the current load is carried. This trend is reflected in
the CTOA variation through the thickness as well. At the surface, where there is large
plastic deformation, CTOA 1is close to its accepted value of between 5-8 degrees but drops
as the mid-plane is approached in a similar manner as the 7%, integral. Although there is
no direct correlation between the two parameters, the fact that CTOA is a geometrical
parameter that is generally accepted as a stable fracture characterizing parameter means a

similar trend in 7%, is a good sign.

The interior 7%, values are similar to incremental J-integral, except that they are still
calculated on a contour that has extended with the crack and therefore contain the entire
history of the crack extension. It is interesting to note that incremental J-integral trends
seem to follow a pattern of reaching a peak in an ever-closer proximity to the model
surface as the crack extends. This tends to imply some physical connection between
incremental J-integral and the formation of plasticity in front of the crack tip. Regardless,
incremental J-integral has no physical meaning after a crack extension equal to the
contour size because of the contribution of the integration is in the wake zone behind the
current crack tip. In addition, closing the contour of integration through an active wake
zone will definitely lead to numerical difficulties. This effect is seen in the difference

between 7%, and incremental J-integral.
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A reasonably good correlation is seen between experimentally obtained, surface values of
T*, and the near surface, numerically obtained values. The fact that the numerically
obtained values are slightly lower than the experimental surface values can be attributed
to the inability to obtain numerical results at the extreme surface. Rather, they are
obtained at the interface between the first and second element layers (0.25 mm from real
surface). The reasons for this are; first, the surface singularity was very coarsely
modeled, using a thin (0.25 mm) element layer near the surface and the effects of this are
unknown, second, the use of a triangular s-function does not allow a calculation at the

extreme outer and inner nodes.

5.2 CONCLUSIONS

e T*.values generally reach a peak of approximately 175 MPa-mm on the surface
and approximately 30 MPa-mm in the mid-plane. This significant difference is
due to the existence of a plane stress state at the extreme surface, and a plane

strain region at the mid-plane of the specimen.

e A deformation theory of plasticity with a truncated contour can be used in the FE
analysis to provide a good measure of ease of use in comparison to a full
calculation involving the incremental theory of plasticity and an elongating

integration contour.

e T*, for the 3-D configuration and tunneling crack front behaves similarly to the
local crack tip parameter, CTOA for corresponding through-thickness resistance
curves. Thus, local T*, is assumed to represent the point-wise energy inflow to

the crack front.

e T*.is very sensitive to the constraint level in the material surrounding the crack

tip and will exhibit distinct plane stress and plane strain values. The ratio of the
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plane strain 7%, and planes stress 7*, values is approximately 10% for this

material and specimen geometry.

A good quantitative comparison between the ratios of plane strain and plane stress
linear elastic fracture toughness and plane strain and plane stress 7*, presents the
possibility for a relationship to exist between plane states and corresponding 7*,

values.

The J-integral estimation within the single specimen technique of ASTM E 8§13
may require additional thought with regard to the implications of assuming an

average, straight crack front.

5.3 RECCOMENDATIONS

1)

2)

3)

4)

As computing power becomes more readily available, the numerical model should
be refined to include more layers through the specimen thickness and a different

approach to focusing the mesh to the crack tip.

The post-processing software should be enhanced to allow use with a variety of
element types. It should also be build to accommodate the tunneling crack front

by allowing rotation of the EDI region to adapt to the current crack front.

A detailed analysis of the deformation field in the vicinity of the crack tip should
performed with a goal of defining how the EDI region should be defined for thick

model configurations that incorporate tunneling.

This work should be extended to a creep analysis. This would incorporate large
deformation and would highlight connections between the 7%, integral and the

amount of plastic dissipation in the region of interest.



5)

6)

7)

8)
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The resulting local 7*, toughness curves should be used in an application phase to

attempt prediction of tunneling behavior in a numerical model.

A further exploration of the use of the truncated contour of integration approach
should be considered for use with FE analyses. While this approach is not a
replacement for the incremental plasticity approach, it still provides a reasonable

estimate of numerical 7%,.

T*, should be calculated for the case of a growing, semi-elliptical surface flaw in
a tensile specimen. Tunneling will be much less severe for this type of specimen.
The elliptical surface flaw should also allow a more natural EDI region to be used
and will still have the capability for characterizing plane stress and plane strain

T*,, but only for short crack extensions.

The extreme crack tunneling case should be studied further as it may lead to a
mechanistic explanation of the ductile to brittle transition by way of differences

seen in constraint levels as the specimen thickness is traversed.



124

BIBLIOGRAPHY

. Dawicke, D.S., Newman, J.C. Jr., and Bigelow, C.A., “Three Dimensional CTOA and
Constraint Effects During Stable Tearing In A Thin-Sheet Material.” NASA TM-
109183, February, 1995.

. Atkins, A.G., and Mai, Y.W., Elastic and Plastic Fracture, Ellis Horwood Limited,
1985, pp. 269-368.

. Wells, A. A., “Unstable Crack Propagation in Metals: Cleavage and Fast Fracture.”
Proceedings of the Crack Propagation Symposium, Vol. 1, Paper 84, Cranfield, UK,
1961.

. Cottrell, A. H., I.S.1. Special Reports No. 69, 1961, p. 281.

. Anderson, T.L., Fracture Mechanics: Fundamentals and Applications, nd Edition,

CRC Press, Boca Raton, 1995.

. Rice, J.R., “A Path Independent Integral and the Approximate Analysis of Strain by
Notches and Cracks.” Journal of Applied Mechanics, Vol. 35, 1968, pp. 379-386.

. Burdekin, F.M., and Dawes, M.G., “Practical Use of Linear Elastic and Yielding
Fracture Mechanics with Particular Reference to Pressure Vessels.” Proceedings of

the Institute of Mechanical Engineers Conference, London, May 1971, pp. 28-37.

. Kanninen, M.F., and Popelar C.H., Advanced Fracture Mechanics, Oxford University
Press, Inc., New York, 1985.



125

9. Shih, C. F., De Lorenzi, H.G., and Andrews, W. R., “Studies on Crack Initiation and

10.

11.

12.

13.

14.

Stable Crack Growth.” Elastic-Plastic Fracture, ASTM STP 668, J. D. Landes, J. A.
Begley, and G. A. Clark, Eds., American Society for Testing and Materials, 1979, pp.
65-120.

Kanninen, M. F., Rybicki, E. F., Stonesifer, R. B., Broek, D., Rosenfield, A. R.,
Marschall, C. W., and Hahn, G. T., “Elastic-Plastic Fracture Mechanics in Two-
Dimensional Stable Crack Growth and Instability Problems.” Elastic-Plastic
Fracture, ASTM STP 668, J. D. Landes, J. A. Begley, and G. A. Clark, Eds.,
American Society for Testing and Materials, 1979, pp. 121-150.

Brocks, W., and Yuan, H., “Numerical Studies on Stable Crack Growth.” Defect
Assessment in Components - Fundamentals and Applications, ESIS/EGF9, Blauel, J.
G., and Schwalbe, K. -H., Eds., Mechanical Engineering Publications, London, 1991,
pp. 19-33.

Schwalbe, K. H., and Cornec, A., “The Engineering Treatment Model (ETM) and its
Practical Application.” Fatigue and Fracture of Engineering Materials and

Structures, Vol. 14, No. 4, 1991, pp. 405-412.

Newman, J. C. Jr., Bigelow, C. A., and Dawicke, D. S., “Finite-Element Analysis and
Fracture Simulation in Thin-Sheet Aluminum Alloy.” Proceedings of the
International Workshop on Structural Integrity of Aging Airplanes, Atluri, S. N.,
Harris, C. E., Hoggard, A., Miller, N., and Sampath, S. G., Eds., 1992, pp. 167-186.

Newman, J. C. Jr., Dawick, D. S., Sutton, M. A., and Bigelow, C. A., “A Fracture
Criterion for Widespread Cracking in Thin-Sheet Aluminum Alloys.” International

Committee on Aeronautical Fatigue: 17" Symposium, Stockholm, Sweden, 1993.



15.

16.

17.

18.

19.

20.

21.

22.

126

Bakuckas, J. G. Jr., and Newman, J. C. Jr., “Prediction of Stable Tearing of 2024-T3
Aluminum Alloy Using the Crack-Tip Opening Angle Approach.” NASA-TM-
109023, September, 1993.

Dawicke, D. S., Sutton, M. A., Newman, J. C. Jr., and Bigelow, C. A., “Measurement
and Analysis of Critical CTOA for an Aluminum Alloy Sheet.” Fracture Mechanics:
25" Volume ASTM STP 1 220, Erdogan, F., Ed., American Society for Testing and
Materials, Philadelphia, 1995, pp. 359-379.

Newman, J. C. Jr., Shivakumar, K. N., and McCabe, D. E., “Finite Element Fracture
Simulation of A533B Steel Sheet Specimens.” Defect Assessment in Components —
Fundamentals and Applications, ESIS/EGF9, Blauel, J. G., and Schwalbe, K.-H.,
Eds., Mechanical Engineering Publications, London, 1991, pp. 117-126.

Dawicke, D. S., “Residual Strength Predictions using a CTOA Criterion.”
Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of
Aircraft Structures, July 1997, pp. 555-566.

Hom, C. L., and McMeeking, R. M., “Large Crack Tip Opening in Thin Elastic-
Plastic Sheets.” International Journal of Fracture, Vol. 45, 1980, pp. 103-122.

Gullerud, A. S., Dodds, R. H. Jr., Hampton, R. W., and Dawicke, D. S., “3-D Finite
Element Modeling of Ductile Crack Growth in Thin Aluminum Materials.” Fatigue
and Fracture Mechanics: 30" Volume, Jerina, K. L., and Paris, P. C., Eds., ASTM,
1998.

Bilby, B. A., and Eshelby, J. D., “Dislocations and the Theory of Fracture.” Fracture,
An Advanced Treatise, Vol. Al, Liebowitz, H., Ed., Academic Press, New York,
1968, pp. 99-182.

Cherapanov, G. P., “Crack Propagation in Continuous media.” Prikl. Mat. Mekh.,
Vol. 31, 1967, pp. 476-488.



23.

24.

25.

26.

27.

28.

29.

30.

31.

127

Griffith, A. A., “The Phenomena of Rupture and Flow in Solids.” Philosophical
Transactions, Series A., Vol. 221, 1920, pp. 163-198.

Irwin, G. R., “Onset of Fast Crack Propagation in High Strength Steel and Aluminum
Alloys.” Sagamore Research Conference Proceedings, Vol. 2, 1956, pp. 289-305.

Hutchinson, J. W., “Singular Behavior at the End of a Tensile Crack Tip in a
Hardening Material.” Journal of the Mechanics and Physics of Solids, Vol. 16, 1968,
pp. 13-31.

Rice, J. R, and Rosengren, G. F., “Plane Strain Deformation near a Crack Tip in a
Power Law Hardening Material.” Journal of the Mechanics and Physics of Solids,
Vol. 16, 1968, pp. 1-12.

Hutchinson, J. W., and Paris, P. C., “Stability Analysis of J-Controlled Crack
Growth.” Elastic-Plastic Fracture, ASTM STP 668, Landes, J. D., Begley, J. A., and
Clarke, G. A., Eds., American Society for Testing and Materials, 1979, pp. 37-64.

Li, Y, and Wang, Z., “Higher-Order Asymptotic Field of Tensile Plane-Strain
Nonlinear Crack Problems.” Scientia Sinica, Series A, Vol. 29, No. 9, pp. 941-955.

O’Dowd, N. P., and Shih, C. F., “Family of Crack-Tip Fields Characterized by a
Triaxiality Parameter —I. Structure of Fields.” Journal of the Mechanics and Physics

of Solids, Vol. 39, 1991, pp. 898-1015.

O’Dowd, N. P., and Shih, C. F., “Family of Crack-Tip Fields Characterized by a
Triaxiality Parameter —II. Fracture Applications.” Journal of the Mechanics and

Physics of Solids, Vol. 40, 1992, pp. 939-963.

Kobayashi, A. S., “3-D Experimental Fracture Analysis at High Temperature I1.”
Proposal to Department of Energy, University of Washington, Oct. 1, 1996.



32.

33.

34.

35.

36.

37.

38.

39.

128

Chao, Y., and Lam, P., “On the Use of Constraint Parameter 42 Determined from
Displacement in Predicting Fracture Event.” Engineering Fracture Mechanics, Vol.

61, 1998, pp. 487-502.

Dadkhah, M. S., Kobayashi, A. S., and Morris, W. L., “Further Studies in the HRR
Field of a Moving Crack, An Experimental Analysis.” Journal of Plasticity, Vol. 6,
1990, pp. 636-650.

Dadkhah, M. S., and Kobayashi, A. S., “Two Parameter Crack Tip Stress Field
Associated with Stable Crack Growth in a Thin Plate.” Fracture Mechanics, Twenty
Fourth Volume, ASTM STP 1207, Landes, J. D., McCabe, D. E., and Boulet, J. A. M.,
Eds., 1994, pp. 48-61.

Sciammarella, C. A., and Combel, O., “An Elasto-Plastic Analysis of the Crack Tip
Field in a Compact Tension Specimen.” Engineering Fracture Mechanics, Vol. 55,

No. 2, 1996, pp. 209-222.

Moran, B., and Shih, C. F., “Crack Tip and Associated Domain Integrals from
Momentum and Energy Balance.” Engineering Fracture Mechanics, Vol. 27, No. 6,
1987, pp. 615-642.

Cotterell, B., and Atkins, A. G., “A review of the J and [ integrals and their
Implications for Crack Growth Resistance and Toughness in Ductile Fracture.”

International Journal of Fracture, Vol. 81, 1996, pp. 357-372.

Siverns, M. J., and Price, A. T., “Crack Propagation Under Creep Conditions in a
Quenched 2 4 Chromium 1 Molybdenum Steel.” International Journal of Fracture,

Vol. 9, No. 2, 1973, pp. 199-207.

Landes, J. D., and Begley, J. A., “A Fracture Mechanics Approach to Creep Crack
Growth.” Mechanics of Crack Growth: ASTM STP 590, American Society for Testing
and Materials, 1976, pp. 128-148.



40.

41.

42.

43.

44,

45.

46.

47.

129

Goldman, N. L., and Hutchinson, J. W., “Fully Plastic Crack Problems: The Center-
Cracked Strip Under Plane Strain.” International Journal of Solids and Structures,

Vol. 11, 1975, pp. 575-591.

Hoff, N. J., “Approximate Analysis of Structures In the Presence of Moderately Large
Creep Deformations.” Quarterly of Applied Mathematics, Vol. 12, No. 1, 1954, pp.
49-55.

Ohji, K, Ogura, K., and Kubo, S., Transactions, Japanese Society of Mechanical
Engineers, Vol. 42, 1976, pp. 350-358.

Nikbin, K. M., Webster, G. A., and Turner, C. E., Cracks and Fracture (Q’h
Conference), ASTM STP 601, American Society for Testing and Materials,
Philadelphia, 1976, pp. 47-62.

“Standard Test Method for J;c, A Measure of Fracture Toughness.” ASTM Standard
E813-89, 1993, pp. 738-752.

Riedel, H., “Creep Crack Growth.” Fracture Mechanics: Perspectives and Directions
(Twentieth Symposium) ASTM STP 1020, Wei, R. P., and Gangloff, R. P., Eds.,
American Society for Testing and Materials, Philadelphia, 1989, pp. 101-126.

Riedel, H., “The Extension of a Macroscopic Crack at Elevated Temperature by the
Growth and Coalescence of Microvoids.” Creep in Structures, Ponter, A. R. S., and

Hayhurst, D. R., Eds., Springer-Verlag, Berlin, 1981, pp. 504-519.

Hui, C. Y., and Banthia, V., “Extension of Cracks at High Temperatures by Growth
and Coalescence of Voids.” International Journal of Fracture, Vol. 25, 1984, pp. 53-
67.



48.

49.

50.

51.

52.

53.

54.

55.

130

Riedel, H., and Wagner, W., Advances in Fracture Research, Proceedings 6"
International Conference on Fracture, Vol. 3, Valluri, S. R., et al, Eds., Pergamon

Press, Oxford, 1985, pp. 2199-2206.

Detampel, V., “An Investigation of Creep Crack Growth in Creep-Resistant Pipe
Steels.” Ph.D. Thesis, RWTH Aachen, Germany, 1987.

Saxena, A., “Creep Crack Growth under Non-Steady-State Conditions.” Fracture
Mechanics: Seventeenth Volume, ASTM STP 905, Underwood, J. H., Chait, R., Smith,
C. W., Wilhelm, D. P., Andrews, W. A., and Newman, J. C., Eds., American Society
for Testing and Materials, Philadelphia, 1986, pp. 185-201.

Ehler, R., and Riedel, H., “A Finite Element Analysis of Creep Deformation in a
Specimen Containing a Macroscopic Crack.” Advances in Fracture; Proceedings of
the Fifth International Conference on Fracture, Vol. 2, Francois, D., Ed., Pergamon,

New York, 1981, pp. 691-698.

Ainsworth, R. A., and Budden, P. J., “Crack Tip Field under Non-Steady Creep
Conditions—I. Estimates of the Amplitude of the Fields.”, Fatigue Fracture in
Engineering Structures, Vol. 13, 1990, pp. 263-276.

Dogan, B., Saxena, A., and Schwalbe, K. H., “Creep Crack Growth in Creep-Brittle
Ti-6242 Alloys.” Materials At High Temperatures, Vol. 10, No. 2, 1992, pp. 138-143.

Linkens, D., Busso, E. P., Dean, D. W., “Predictions of Non-Steady Asymptotic
Crack Tip Fields in Power Law Creeping Materials.” Nuclear Engineering and

Design, Vol. 158, No. 2-3, 1995, pp. 377-385.

Riedel, H., and Rice, J. R., “Tensile Cracks in Creeping Solids.” Fracture Mechanics:
Twelfth Conference, ASTM STP 700, American Society for Testing and Materials,
1980, pp. 112-130.



56.

57.

58.

59.

60.

61.

62.

63.

131

Busso, E. P., Dean, D. W., and Linkens, D., “On the Effects of Loading Conditions
and Geometry on Time-Dependent Singular Crack Tip Fields.” Engineering Fracture

Mechanics, Vol. 50, No. 2, 1995, pp. 231-247.

Atluri, S. N., “Path Independent Integrals in Finite Elasticity and Inelasticity, With
Body Forces, Inertia, and Arbitrary Crack Face Conditions.” Engineering Fracture

Mechanics, Vol. 16, 1982, 341-364.

Stonesifer, R. B., and Atluri, S. N., “On a Study of the (47) and C* Integrals for
Fracture Analysis Under Non-Steady Creep.” Engineering Fracture Mechanics, Vol.
16, No. 5, 1982, pp. 625-643.

Atluri, S. N., Nishioka, T., and Nakagaki, M., “Incremental Path-Independent
Integrals in Inelastic and Dynamic Fracture Mechanics.” Engineering Fracture

Mechanics, Vol. 20, No. 2, 1984, pp. 209-244.

Brust, F. W., Nishioka, T., Atluri, S. N., and Nakagaki, M., “Further Studies on
Elastic-Plastic Stable Fracture Utilizing the 7* Integral.” Engineering Fracture
Mechanics, Vol. 22, No. 6, 1985, pp. 1079-1103.

Atluri, S. N., “Energetic Approaches and Path Independent Integrals in Fracture.”
Computational Methods in the Mechanics of Fracture, Atluri, S. N., Ed., North
Holland Publishing Company, 1986, pp. 121-162.

Pyo, C. R., Okada, H., and Atluri, S. N., “Residual Strength Prediction for Aircraft
Panels with Multiple-Site Damage, Using the ‘EPFEAM’ for Stable Crack Growth.”
Computational Mechanics, Vol. 16, 1995, pp. 190-196.

Nikishkov, G. P., and Atluri, S. N., “An Equivalent Domain Integral Method for
Computing Crack-Tip Integral Parameters in Non-Elastic, Thermo-Mechanical

Fracture.” Engineering Fracture Mechanics, Vol. 26, 1987, pp. 851-867.



64.

65.

66.

67.

68.

69.

70.

132

Li, F. Z., Shih, C. F., and Needleman, A., “A Comparison of Methods for Calculating
Energy Release Rates.” Engineering Fracture Mechanics, Vol. 21, No. 2, 1985, pp.
405-421.

Brust, F. W., McGowan, J. J., and Atluri, S. N., “A Combined Numerical/
Experimental Study of Ductile Crack Growth after a Large Unloading using 7%, J,
and CTOA Criteria.” Engineering Fracture Mechanics, Vol. 23, No. 3, 1986, pp. 537-
550.

Narasimham, R., and Rosakis, A. J., “Three-Dimensional Effects Near a Crack Tip in
a Ductile Three-Point Bend Specimen: Part [-A Numerical Investigation.” Journal of

Applied Mechanics, Vol. 57, 1990, pp. 607-617.

Okada, H. and Atluri, S. N., “A Further Study on the Near Tip Integral Parameter

T*.in Stable Crack Propagation in Thin Ductile Plate.” Proc. Of Aerospace Division,
ASME AD-Vol. 52, Chang, J. C. L. et al, Eds. 1996, pp. 281-288.

Wang, L., Brust, F. W., and Atluri, S. N., “The Elastic-Plastic Finite Element
Alternating Method (EPFEAM) and the Prediction of Fracture under WFD
Conditions in Aircraft Structures. Part I: EPFEAM Theory.” Computational
Mechanics, Vol. 19, 1997, pp. 356-369.

Nikishkov, G. P., and Atluri, S. N., “An Analytical-Numerical Alternating Method
for Elastic-Plastic Analysis of Cracks.” Computational Mechanics, Vol. 13, No. 6,
1994, pp. 427-442.

Okada, H., Atluri, S. N., Omori, Y., and Kobayashi, A. S., “Direct Evaluation of

T, Integral From Experimentally Measured Near Tip Displacement Field, for A Plate
With Stably Propagating Crack.” International Journal of Plasticity, Vol. 15, 1999,
pp. 869-897.



71.

72.

73.

74.

75.

76.

77.

133

Omori, Y., Okada, H., Ma, L., Atluri, S. N., and Kobayashi, A. S., “T*, Integral
Under Plane Stress Crack Growth.” Fatigue and Fracture Mechanics, 27" Volume,
ASTM STP 1296, Piascik, R. S., Newman, J. C., and Dowling, N. E., Eds., American
Society for Testing and Materials, 1997, pp. 61-71.

Omori, Y., Kobayashi, A. S., Okada, H., Atluri, S. N., and Tan, P., “T*, Integral
Analysis of Aluminum Specimens.” Proceedings of Aerospace Division, ASME AD-
Vol. 52, Chang, J. D. L., et al, Eds., 1996, pp. 281-288.

Walker, C. and MacKenzie, P., “The Assessment of the 7* Fracture Parameter
During Creep Relaxation.”, unpublished conference proceedings, Strathclyde

University, U. K., 1998.

Brust, F. W., “Investigations of High Temperature Deformation and Crack Growth
Under Variable Load Histories.” International Journal of Solids and Structures, Vol.

32, No. 15, 1995, pp. 2191-2218.

Newman, J. C. Jr., and Raju, L. S., “Analysis of Surface Cracks in Finite Plates under
Tension, or Bending Loads.” NASA TP 1578, National Aeronautics and Space
Administration, Washington D. C., 1979.

Shah, R. C., and Kobayashi, A. S., “Stress Intensity Factor for an Elliptical Crack
Approaching the Surface of a Plate in Bending.” Stress Analysis and Growth of
Cracks, ASTM STP 513, American Society for Testing and Materials, Philadelphia,
1972, pp. 3-21.

Dodds, R. H. Jr., Carpenter, W. C., and Sorem, W. A., “Numerical Evaluation of a 3-
D J-Integral and Comparison with Experimental Results for a 3-point Bend

Specimen.” Engineering Fracture Mechanics, Vol. 29, No. 3, 1988, pp. 275-285.



78.

79.

80.

81.

82.

83.

&4.

85.

134

Amestoy, M., Bui, H. D., and Labbens, R., “On the Definition of Local Path
Independent Integrals in Three-Dimensional Crack Problems.” Mechanics Research

Communications, Vol. 8, No. 4, 1981, pp. 231-236.

Raynund, M., and Palusamy, S. S., “J-integral for 3-D With Center-Cracked Plate
Tests.” Computers and Structures, Vol. 13, 1981, pp. 691-697.

Sakata, M., Aoki, S., Kishimoto, K., and Takagi, R., “Distribution of Crack Extension
Force, the J - integral , Along a Through-Crack-Front of a Plate.” International
Journal of Fracture, Vol. 23, 1983, pp. 187-200.

Carpenter, W. C., Read, D. T., and Dodds, R. H., “Comparison of Several Path
Independent Integrals Including Plasticity Effects.” International Journal of Fracture,

Vol. 31, 1986, pp. 303-323.

De Lorenzi, H. G., “On the Energy Release Rate and the J-integral for 3-D Crack
Configurations.” International Journal of Fracture, Vol. 19, 1982, pp. 183-193.

Sumpter, J. D., and Turner, C. E., “Method of Laboratory Determination of J¢.”
ASTM STP 601, American Society for Testing and Materials, 1976, pp. 3-18.

Shih, C. F., Moran, B., and Nakamura, T., “Energy Release Rate Along a Three-
Dimensional Crack Front in a Thermally Stressed Body.” International Journal of

Fracture, Vol. 30, 1986, pp. 79-102.

Parks, D.M., “The Virtual Crack Extension Method for Nonlinecar Material
Behavior.” Computer Methods in Applied Mechanics and Engineering, Vol. 12, 1977,
pp. 353-364.



86.

87.

88.

89.

90.

91.

92.

93.

135

Nikishkov, G. P., and Atluri, S. N., “Calculation of Fracture Mechanics Parameters
for an Arbitrary Three-Dimensional Crack, By the ‘Equivalent Domain Integral’
Method.” International Journal For Numerical Methods In Engineering, Vol. 24,
1987, pp. 1801-1821.

Dodds, R. H. Jr., Read, D. T., “Experimental and Numerical Studies of the J-Integral
for a Surface Flaw.” International Journal of Fracture, Vol. 43, 1990, pp. 47-67.

Kolednik, O., Yan, W. Y., Shan, G. X., and Fischer, F. D., “Tridimensional FE-
Analysis of Stable Crack Growth in a CT-Specimen of a Structural Steel.”
Proceedings of the ASME Aerospace Division, AD-Vol. 52, Chang, J. C. L, et al,
Eds., American Society of Mechanical Engineers, 1996.

Ohgi, J., and Hatanaka, K., “Assessment of J-integral for Three-Dimensional Surface
Crack at Notch Root.” JSME International Journal, Series A., Vol. 40, No. 3, 1997,
pp- 290-297.

Zehnder, A. T., and Rosakis, A. J., “Three-Dimensional Effects Near a Crack Tip in a
Ductile Three-Point Bend Specimen: Part [I-—An Experimental Investigation Using

Interferometry and Caustics.” Journal of Applied Mechanics, Vol. 57, 1990, pp. 618-
626.

Jackson, J. H., Characterization of the T*. Integral Under Stable Crack Growth

Conditions, Master’s Thesis, University of Washington, 1998.

Ma, L., Crack Link Up and Residual Strength of Aircraft Structures Containing
Multiple Site Damage, Ph.D. Dissertation, University of Washington, 1999.

Woldemicheal, B., T*, Integral Analysis Under Conditions of Low-Cycle Fatigue
Crack Growth, Master’s Thesis, University of Washington, 1998.



136

94. Lam, P. W., Kobayashi, A. S., Okada, H., Atluri, S. N., and Tan, P. W., “T*, Integral
for Curved Crack Growth.” Proceedings of FAA/NASA Symposium on Continued
Airworthiness of Aircraft Structures, Vol. 11, Bigelow, C. A., Ed., DOT/FAA/AR-97-
2, 1997, pp. 643-653.

95. Ghadiali, N. D., and Brust, F. W., “Final Report on TSTAR Software to Thiokol

Corporation.” Battelle, Columbus Laboratories, 1989.

96. Hinton, E., Scott, F. C., and Ricketts, R. E., “Local Least Squares Stress Smoothing
For Parabolic Isoparametric Elements.” International Journal For Numerical

Methods in Engineering, vol. 9, 1975, pp. 235-256.
97. ABAQUS Theory Manual V. 5.8, Hibbit, Karlsson & Sorenson, Inc., 1998.

98. Post, D., “Moiré Interferometry.” Handbook on Experimental Mechanics, o Edition,
Kobayashi, A. S., Ed., Society for Experimental Mechanics, 1993, pp. 297-364.

99. Ifju, P., and Post, D., “Zero-Thickness Specimen Gratings for Moir¢ Interferometry.”
Experimental Techniques, Vol. 15, No. 2, 1991, pp. 45-47.

100. Wang, F. X., May, G. B., and Kobayashi, A. S., “Low-Spatial-Frequency Steep
Grating for Use in Moiré Interferometry.” Optical Engineering, Vol. 33, No. 4, 1994,
pp. 1125-1131.

101. Santana, L. F., “Experimental Characterization of Stable Crack Tearing in 4130
Steel Center Cracked Tension Specimen.” Master’s Thesis, University of

Washington, 1997, p. 61.

102. Kokaly, M. T., Omori, Y., Kobayashi, A. S., Atluri, S. N., and Tan, P. W., “T*.as a
Low-Cycle Fatigue Crack Growth Parameter.” Fatigue in New and Aging Aircrafft,
Poole, P., and Cooke, R., Eds., EMAS Publishing, 1997, pp. 155-164.



137

103. “Aluminum 2024-T3 Properties” http./ www.matweb.com, 1999.

104. Mendelson, Alexander, Plasticity: Theory and Application, Krieger Publishing
Company, Malabar, FI., 1968.

105. Damage Tolerant Design Handbook, Metals And Ceramics Information Center,
Battelle Columbus Laboratories, Columbus, OH., 1975.



138

APPENDIX A: EXPERIMENTAL SETUP WITH MOIRE BENCH

Figure Al: Moire bench with redirecting
mirrors, mask, and collimating
lens.

Figure A3: Front view of specimen in load
frame, and front camera.

Figure A2: Spatial filter assembly in front

of collimating lens. Figure A4: Closeup view of specimen with

CMOD gage attached.
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