FINAL PROJECT REPORT DEPARTMENT OF ENERGY GEOTHERMAL RESERVOIR TECHNOLOGY RESEARCH, DEVELOPMENT AND DEMONSTRATION FOR THE PERIOD JANUARY 1, 1998-SEPTEMBER 30, 2001

PROJECT TITLE: BEHAVIOR OF RARE EARTH ELEMENTS IN GEOTHERMAL SYSTEMS: A NEW EXPLORATION/EXPLOITATION TOOL?

GRANT NUMBER: DE-FG07-98ID13575

December 17, 2001

Scott A. Wood
Department of Geology and Geological Engineering
Box 443022
University of Idaho, Moscow, ID 83844-3022

EXECUTIVE SUMMARY

The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiñon, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

Our results thus far indicate the following: 1) REE contents in geothermal fluids can range over many orders of magnitude, from below detection (10⁻⁷-10⁻⁶ times chondrite) up to almost 10° times chondrite (e.g., Mt. Ruapehu); 2) As previously noted in the literature, pH appears to exert a dominant, first-order control on REE contents, with low-pH, acidsulfate waters having the highest measured REE concentrations and near-neutral to alkaline chloride-bicarbonate waters having lower REE. However, within the latter category, the pH dependence is not clear, and other factors in addition to pH may play important roles in determining REE content; 3) In acidic thermal waters, the concentrations of REE in filtered and unfiltered aliquots are approximately equal, suggesting that most of the REE are present in solution as dissolved species; 4) Acid-sulfate waters also have a distinctive "gull's wing" chondrite-normalized REE pattern that is not seen in near-neutral or alkaline waters; 5) In many near-neutral to alkaline thermal waters, the REE contents in the unfiltered aliquots can be considerably higher than those in the filtered aliquots, suggesting that the bulk of the REE are present in particulate form; 6) Most near-neutral to alkaline chloride-bicarbonate waters have chondrite-normalized patterns which are generally LREE-enriched (i.e., negatively sloped), the exceptions being fluids from Taupo-Tauhara and Kamo warm springs, both in New Zealand, which have HREE-enriched patterns; 7) Among near-neutral to alkaline waters, some of the ones with higher inferred temperatures at depth have positive Eu anomalies. This feature is seen, e.g., in fluids from the Champagne Pool, Ngawha, and Morere in New Zealand, from one well at Dixie Valley, Nevada, and from Heber, California. Because a positive Eu anomaly in hydrothermal fluids may reflect maintenance of a high temperature during flow to the surface, positive Eu anomalies may reflect a favorable feature of geothermal fluids that may be useful in exploration; 8) In the case of both acidsulfate and near-neutral to alkaline chloride-bicarbonate waters, the chondrite-normalized REE patterns of the waters often parallel the chondrite-normalized patterns of inferred reservoir rocks. This implies that, in many cases, REE are brought into solution in the same proportion as they existed in the reservoir rock, i.e., without significant fractionation. However, in acid-sulfate fluids, the REE from La to Pr do appear to preferentially remain behind, and Eu does commonly become fractionated during water-rock interaction. Also, there are exceptions to the general rule, notably the fluids that show HREE-enriched patterns; 9) Somewhat surprisingly, even fluids with extremely high concentrations of carbonate (e.g., those at Te Aroha) do not seem to induce notable fractionation between

fluid and reservoir rock, even though carbonate preferentially forms stronger complexes in solution with the HREE than with the LREE; 10) We did not see obvious differences in REE concentrations between geothermal fluids heated by shallow magmatic activity (e.g., those in the Taupo Volcanic Zone of New Zealand) vs. those heated by deep circulation along faults or subduction zones; 11) In many cases there was relatively little variation in REE content over a period of several years (e.g., fluids from the Champagne Pool were nearly identical over three years of sampling). On the other hand, based on samples from the sample library of the Institute for Geological and Nuclear Science at Wairakei, New Zealand, the REE content of some other geothermal fluids can be highly variable (e.g., fluids from Mt. Ruapehu and White Island appear to have changed drastically in both absolute REE content and chondrite-normalized pattern over several years); and 12) There is some evidence that liquid-vapor phase separation (or boiling) may cause the loss of REE from solution, and this may explain the very low REE contents measured in some thermal fluids from producing wells where phase separation has occurred.

Our results indicate that measurement of the REE content of geothermal fluids can result in a wealth of information about water-rock interactions in geothermal systems that we have only just begun to explore. The results also continue to hold promise that such measurements may one day be a useful, routine tool for exploration for geothermal systems. However, additional developmental work will be necessary to realize the full power of the technique.

RELEVANCE OF PROJECT

Geothermal energy development in the U.S. has been hindered by a lack of reliable techniques for exploration for and evaluation of new resources, and for reservoir monitoring. The premise of the project described in this report was that the behavior of the rare earth elements (REE) in geothermal fluids may yield useful information on the state of the geothermal reservoir. Therefore, a better understanding of the behavior of the REE in geothermal systems may result in the development of additional tools for the exploration for and exploitation of geothermal resources.

Until recently, relatively few studies had been conducted on the behavior of the REE in geothermal fluids. The REE concentrations in these fluids are comparatively low, and techniques for their analytical determination were either unavailable, or prohibitively expensive and difficult to carry out. However, with continued improvements in analytical techniques, the number of studies reporting REE concentrations in both continental and seafloor geothermal fluids has increased slowly but steadily (cf. Michard et al., 1983; Piepgras & Wasserburg, 1985; Michard & Albarède, 1986; Michard et al., 1987; Campbell et al., 1988; Sanjuan et al., 1988; Honda et al., 1989a,b; Lepel et al., 1989; Michard, 1989; Oi et al., 1990; Klinkhammer et al., 1994; Lewis et al., 1994; James et al., 1995; Aggarwal et al., 1996; van Middlesworth & Wood, 1997). Data on the REE in continental geothermal fluids from the Salton Sea geothermal system, California (Lepel et al., 1989; Michard, 1989), the Valles Caldera, New Mexico (Michard, 1989), Yellowstone National Park (Lewis et al., 1994), Larderello, Italy (Michard, 1989), Japan (Honda et al., 1989a,b; Oi et al., 1990), France (Michard et al., 1987; Sanjuan et al., 1988), Bulgaria (Michard & Albarède, 1986), Tibet (Michard & Albarède, 1986), Dominica (Michard, 1989), Iceland (Aggarwal et al., 1996) and Idaho (van Middlesworth and Wood, 1997) have been published. However, prior to this project, the number of studies of REE contents in geothermal fluids remained too small to fully assess the potential of using REE contents in geothermal fluids as a potential exploration tool. Moreover, up until the study reported here, data on REE in geothermal fluids from important geothermal areas in New Zealand, the Philippines, and the U.S. were unavailable.

OBJECTIVES OF PROJECT

The objectives of the project were the following: 1) establish baseline information on REE contents in geothermal fluids from around the world to supplement the meager information that previously existed; 2) determine whether there are any distinctions in REE contents of fluids from producing or potentially producing geothermal fields on the one hand, and geothermal fields which are not economically viable on the other; 3) establish any relationships between REE contents and fluid chemistry and temperature which may exist; 4) establish relationships between REE contents and host (aquifer) rocks; 5) determine whether there are temporal changes in REE geochemistry of geothermal fluids; 6) ascertain whether REE geochemistry changes systematically over the production history of a producing geothermal field; and 7) assess the utility of aqueous REE geochemistry as an exploration tool. After almost four years of DOE funding, each of these objectives has been met to some extent. We have amassed a large database of REE contents in geothermal fluids

from a variety of geologic settings (Objective 1). In several cases, particularly geothermal systems in New Zealand, we have obtained samples during more than one sampling campaign, which permit some assessment of temporal variations (Objective 5). From this database, we have been able to make a number of observations regarding the relationship of REE contents between fluid chemistry and temperature (Objective 3) and host rocks (Objective 4). Finally, we have made some progress towards Objectives 2, 6 and 7. In brief, the results of our study do suggest that the measurement of REE concentrations in geothermal fluids has considerable potential as a geothermal exploration and exploitation tool, and these results provide a strong basis for further development of this tool. However, as always in such research projects, a number of questions arose during this study that will require additional investigation in the future. In the following, we detail the methods used, results obtained and conclusions derived in our study.

METHODS

Sampling Methods

Before leaving for the field, all bottles that were to be used for containing acidified metal samples were cleaned by soaking overnight in 10% nitric acid. Those bottles that were to receive the unacidified samples for anion and silica analyses were soaked in deionized water (DIW) overnight. All bottles were then rinsed at least three times with DIW. The bottles for anion samples were filled with DIW and transported full until emptied in the field and filled with sample. Many of the hot spring samples from New Zealand had very high concentrations of suspended solids. It was decided that sediments and suspended solids should be excluded from all the cation, anion, and silica samples. For the New Zealand samples taken in 1993, this was accomplished by decanting an aliquot for analysis after allowing the well-mixed sample to settle for a few days. All subsequent samples were filtered in the field directly from a designated sampling bottle into the appropriate sample containers. At each site the following fluid samples were taken:

- 1) a 1-liter, unfiltered sample, preserved with 2% Seastar Baseline HNO3 for REE analysis
- 2) a 1-liter, filtered sample (filtered using a 0.45- μ m membrane), preserved with 2% Seastar Baseline HNO₃ for REE analysis
- 3) a 250-mL filtered sample (filtered using a 0.45-µm membrane), preserved with 1% Fisher trace metal grade HNC₃ for alkali, alkaline earth and transition metal analyses
- 4) a 250-mL filtered sample (filtered using a 0.45-µm membrane), for anion analysis and alkalinity determinations
- 5) a 5-mL filtered sample (filtered using a 0.45- μm membrane), diluted with 50 mL of DIW for silica analysis

In all cases, the bottle caps were screwed tightly shut and further sealed with parafilm for transport back to the laboratory.

The following measurements were made in the field at each site: temperature, conductivity, and pH. Determinations of pH and conductivity were made at, or as close to as

possible to, the emergence temperature of the fluid. The pH buffers used to calibrate the electrode were also maintained at as close to the emergence temperature of the fluids as possible. Alkalinity measurements were made by titration as soon as possible after collection, although in some cases several days elapsed between sample collection and alkalinity determination. As alkalinity of samples can change on storage, the delay between sampling and alkalinity determination is likely the main reason for any significant charge-balance errors in the analytical data. Emergence temperature, pH, conductivity, and carbonate and bicarbonate alkalinity (in ppm), silica, and cation concentrations are given for each of the samples in the appendix.

Analytical Methods

Sample Preparation

REE Preconcentration Method. The REE concentrations in many geothermal fluid samples were sufficiently low that preconcentration and separation from the matrix was required prior to analysis by ICP-MS. We selected ferric hydroxide co-precipitation as the main preconcentration technique in this study. However, development of the analytical protocol for the REE was complicated by the difficulty of finding a filter medium that had a low blank value and was also capable of collecting ferric hydroxide precipitate without immediately clogging. Previously employed membrane filters were found to be unsuitable for the large number of samples to be processed in this study because they clogged too quickly. The extraction of samples from high-temperature sources resulted in precipitation of abundant silica, which reduced the rate of filtration and caused a serious bottleneck in sample processing. Borosilicate glass-fiber filters have a very high blank for Sc, Y, Zr, REE, Th, and U, and in addition essentially cannot be cleaned. Quartz-fiber filters were procured that have adequate blank values after cleaning, combined with minimization of temperature and exposure time of the sample to the filter media. Two procedural variations and two filter sizes were tried. Method detection limits were established for each variation. The best method is described below.

The procedure below does not involve drying the precipitate nor exposing the filter medium to heat or hot acid. The first samples processed were from New Zealand and they had high dissolved silica contents. These have a larger volume of precipitate upon ferric hydroxide co-precipitation than anticipated, probably due to the formation of silica gel which hardens to translucent silica on drying. When the procedure was first developed, for low dissolved silica waters, these precipitates were dried after filtration to eliminate dilution errors from moisture in the precipitate. The hardened silica gel from high-dissolved silica samples remained insoluble when the attempt was made to redissolve the precipitate. It was necessary to warm the precipitate in the acid solution (see below) to get the iron hydroxides and REE to dissolve or leach out from the insoluble silica. This raised the REE method blank and method detection limits owing to leaching of REE from the filters. Although the detection limit was adequate for those samples, a comparison between the REE contents of the concentrated extracts and the undiluted samples run at a 1X dilution directly by ICP-MS showed that recovery was more variable than it should have been at 17 times the method

detection limit. We modified the procedure to eliminate drying the precipitate. This also eliminated the need to heat the samples after the acid solution had been reintroduced to encourage the ferric hydroxides to redissolve. This resulted in lower method blanks and method detection limits.

Quartz-fiber filters were prewashed by assembling the filtration apparatus and aspirating two or more successive aliquots of hot 50% aqua regia through a stack of several filters. The filters were then rinsed with deionized water. The cleaned filters were allowed to dry in a clean, enclosed container for later use.

The REE were concentrated for analysis by addition of ferric iron to the sample container such that the final concentration of ferric iron in the sample was about 60 mg/L (ppm). A 50-mL aliquot of each REE sample was saved for direct analysis in case a more sensitive ICP-MS (which would obviate the need for sample preconcentration) became available in the future (in fact, as discussed below, a more sensitive instrument did become available). The remaining sample was weighed to determine the concentration factor and 50 mL of 22% trace-metal-grade ammonia were added to neutralize the 2% acid and raise the pH to between 8 and 9. The sample was mixed and a pronounced color change was observed as the iron precipitated as a gelatinous flocculate. The sample was allowed to stand for at least an hour and the reddish ferric hydroxide precipitate settled to the bottom of the sample bottle.

The next step was vacuum-filtration of the sample through a 55- to 90-mm quartzfiber filter. The filter assembly was prewashed and soaked in an acid bath, then rinsed with >17.6-MegOhm-cm deionized water (DIW) immediately prior to filtration. The apparatus was assembled and rinsed successively with 10% (v/v) trace-metal-grade hydrochloric acid solution, which is particularly good for redissolving trace amounts of iron hydroxides. This was immediately followed by rising with DIW, and finally a rinse with a 2% solution of trace-metal-grade ammonia to remove all traces of acid and bring the pH into the same range as the sample about to be filtered. The filtrate was discarded and the sample filtration proceeded. The sample was poured through the filter being careful to decant as much as possible of the clear supernatant, so as to speed up the filtering process before the settled precipitate clogged the filter. The final portion with most of the suspended precipitate was then placed on the filter and allowed to filter to near dryness. The sample container was then rinsed with the 2% trace-metal-grade ammonia solution and this was added onto the filter. The 2% trace-metal-grade ammonia solution was then used to rinse down the sides of the filter holder and the filter surface. The vacuum filtration was allowed to proceed to near dryness. The filter was extracted with the assistance of tweezers but primarily manipulated directly with acid-cleaned latex gloves. The folded filter was used to wipe any precipitate clinging to the support surface of the filtration assembly.

The filter and moist precipitate were placed into a 50-mL pre-labeled polypropylene centrifuge tube and set aside for no more than two hours prior to the next step. When a batch of 4 to 6 processed samples had accumulated, then a calibrated repippetor was used to add 40 mL of Seastar Baseline 4% nitric-1% hydrochloric acid solution. The centrifuge tubes were tightly capped, and rocked gently to disaggregate the precipitate into the solution without doing the same to the glass-fiber filter. The batch was allowed to stand with periodic agitation for one to two hours so that the ferric hydroxide and co-precipitated REE redissolved. Low temperature and minimization of exposure time were critical to keeping

the REE blanks to acceptable values. The samples were then centrifuged for one hour to separate the liquid from the quartz fibers. The liquid was decanted into a clean polypropylene centrifuge tube and capped until analysis.

Previously, van Middlesworth and Wood (1998) showed that, when pH was adjusted to between 8 and 9 in the co-precipitation step, recovery of the REE was better than 90%. We have made further improvements to their method over time. Method detection limits and spike recoveries were demonstrated with 300 mg of added Si to simulate the natural samples, and similar recoveries were obtained.

Alternate REE Preconcentration Method. Although the iron hydroxide coprecipitation method is relatively straightforward and was effective in the majority of cases, it was not successful in eliminating isobaric interference from Ba in those samples containing relatively high concentrations of this element. Moreover, as noted above, precipitation of large amounts of silica from higher-temperature geothermal waters is also a problem. Finally, samples containing very high concentrations of total dissolved solids, such as those from the Salton Sea geothermal area, were not amenable to the ferric hydroxide coprecipitation method. This is because addition of ammonium hydroxide caused the precipitation of large quantities of solids containing Fe, Al, Pb, Zn, etc., and so the REE could not be separated effectively from the sample matrix. To reduce interference by silica and barium, and to find a method suitable for analysis of the Salton Sea samples, we tested an extraction method based on the partitioning of the REE between the acidified aqueous solution and a mixture of mono- and bis-2-ethylhexyl phosphate esters (Aggarwal et al, 1996; Shabani et al, 1990, Minczewski et al, 1982). These have the form of (RO)_n-PO-(OH)(3-n) where n equals 1 or 2, corresponding to the mono- or bis-2-ethylhexyl phosphate (MEHP and DEHP). The mixed esters are not available in the USA. However, we were able to obtain a supply of mixed ethylhexyl phosphate esters by directly ordering from Merck in Germany. The Merck material is a mixture comprising 45% mono- and 55% bis-ethylhexyl phosphate esters. The ester mixture was dissolved in heptane and shaken with the pHadjusted (2% nitric acid; pH≤1) aqueous sample in a separatory funnel. The REE were extracted into the organic phase. The aqueous phase was discarded and the organic phase was transferred into a smaller separatory funnel. The REE were back-extracted into the aqueous phase by addition of n-octanol and 6N hydrochloric acid. A rhodium spike was added to this extract for calculation of the dilution factor upon analysis. The dissolved noctanol in the extract was removed by shaking with three aliquots of n-heptane. The final cleaned-up volume was approximately 15 mL. An additional evaporation step to eliminate the acid was not deerned necessary. The extract was transferred to a centrifuge tube for storage until analysis.

Using the method outlined above, we encountered difficulties in obtaining a method blank less than 10⁻⁶ times chondrite. The mixed esters we obtained from two different manufacturers were both contaminated with HREE (Er, Tm, Yb, Lu) as well as Y and U. Cleaning the reagents was difficult and resulted in detection limits no better than the iron hydroxide coprecipitation. Finally, we found the method unsatisfactory for continental chloride brines due to high (1000's mg/kg) concentrations of transition metal cations such as Fe. These saturate the exchange capacity of the phosphate esters and prevent or greatly reduce the recovery of the LREE and MREE (La through Ho). A method where the DEHP

esters are added onto a C18 filter disk has potential for lower contamination because it allows the disk and DEHP esters to be acid cleaned prior to extraction (Shabani et al, 1992). However, the saturation of exchange capacity by loading of transition metals remains a problem.

Although the solvent extraction method did not offer a significant improvement over the ferric hydroxide co-precipitation method, a comparison of the two methods was informative. As will be discussed below in the section describing results from geothermal areas of southeast Oregon, results obtained using the two preconcentration methods on the same samples were very similar. This finding lends confidence that the results obtained using the ferric hydroxide co-precipitation method are accurate.

Instrumental Methods

REE: For the first two years of this project, the REE, Y, Th, and U were determined at the Washington State University Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) laboratory using a Perkin Elmer ICP-MS model Elan 250 which had been retrofitted with an EPT multiplier detector, argon mass-flow controllers for coolant, auxiliary, and nebulizer flows, a water-cooled spray chamber to reduce oxide formation, and a high solids Meinhard-style nebulizer. The autosampler and data acquisition from the detector were under computer control. Five concentration levels and an acid blank were read for initial calibration. Yttrium, Sc, Zr, and the 14 REE were calibrated using 200, 40, 8, 2, and 0.4 μg/L solutions. Thorium and U were calibrated from the same solutions at 100, 20, 4, 1, and 0.2 µg/L. A calibration curve was obtained by linear regression dropping the highest two standards as necessary to improve the fit and zero intercept for lower sample values. Transport, ionization, and space-charge interferences were corrected by use of Co, In, and Bi as internal standards. Typically oxide formation was near or below 10% as measured from [ThO]²⁴⁸/Th²³² ratios. Correction for isobaric oxide interferences were made for BaO on Eu¹⁵¹ and Sm¹⁵², PrO on Gd¹⁵⁷, and NdO on Tb¹⁵⁹. Correction was made by periodically running both a 10 mg/L Ba standard and a standard containing 200 µg/L each of Nd and Pr. Although Nd144 and Gd157 were monitored, Nd146 and Gd160 were used exclusively for reporting. Quality control was maintained by periodic analysis of a mid-level calibration standard and blank and by monitoring the internal standard intensities. All data reduction was accomplished off-line using a standardized computer spreadsheet.

Instrument and method detection limits for the REE Y, Th and U were calculated following the procedure recommended in the Federal Register (40 CFR section 136) and numerous other sources. Prepare six to ten spiked samples for analysis following all method procedures for each sample. The Student's t for seven samples (6 degrees of freedom) at 99% confidence (3.143) is multiplied by the standard deviation of the individual determinations and the result is the method detection limit (MDL). The optimal spike amount should result in a concentration of 3 to 5 and no more than 10 times the MDL. This method in 40 CFR section 136 was used to determine estimated instrument detection limits by analyzing multiple blank replicates followed by determination of the true instrument detection limit (IDL) by analyzing multiple replicates of a standard solution of appropriate composition.

The method detection limits for the REE, Sc, Y, Zr, Th, and U were determined by addition of 20 mL Seastar Baseline HNO₃ to one liter of DIW in an HDPE bottle. To this were added 1 mL of a spiking solution containing Sc, Y, Zr, and REE at 4 μ g/L and Th and U at 2 μ g/L. The final concentrations in the sample were therefore 4 ng/L and 2 ng/L (ppt), respectively. The spiked samples were set aside for at least one week. The iron spike was then added and the precipitation procedure was carried out on each replicate. This made the final concentration to be read at the instrument 100 ng/L and 50 ng/L (ppt), respectively. Seven replicates were spiked and prepared as well as six blanks. The blank sample bottles were carried into the field after addition of the baseline nitric acid and subsequently had deionized water added in the lab and were allowed to age for at least a week before extraction. The extracts were analyzed at the Washington State University ICP-MS lab. The MDL's are summarized in Figure 1.

Samples from higher temperature geothermal source waters had very high dissolved silica contents which made sample extraction slow and complex. We were concerned that silica precipitated during the iron hydroxide precipitation would interfere with recovery of the REE. We decided to re-check the MDL's in December of 1998, by adding 300 mg Si (equivalent to 600 mg/L silica) to the MDL samples along with each spike. The addition of silicon to the MDL samples made several things clear. Silica co-precipitates with the iron and REE hydroxides. Silica produces a severe isobaric interference on Sc determination by ICP-MS and therefore Sc results are not reported. Zirconium is not recovered at low concentrations and probably forms an insoluble oxide on addition of ammonia to raise the pH. The blank levels for Y, La, Ce, U, and Th are detectable but acceptably low. It is clear that contamination is present as minor amounts of Y, La, Ce, and perhaps U. The resulting MDL's, recalculated to original sample concentrations, range from about 8 ng/L for La and 3 ng/L for Ce to less than 2 ng/L for Pr through Lu, and Th and U. Initially, these REE MDL's were considered adequate for this project, based on our prior experience with REE in geothermal fluids from around the Idaho batholith. However, as described below, filtered geothermal fluids from many other areas contain REE at concentrations less than these MDL's.

Fortunately, at the start of the second half of this project (January 2000), the Washington State University Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) laboratory installed a new, more sensitive ICP-MS, a Hewlett Packard model 4500. Typically, oxide formation as measured by ¹⁵⁶[CeO]/¹⁴⁰Ce was less than 0.5%, equivalent to ²⁴⁸[ThO]/²³²Th of less than 1%. Corrections for isobaric oxide interferences were made for BaO on Eu and Sm, PrO on Gd, and NdO on Tb. Correction was made by periodically running both a 20-mg/L Ba standard and a mixed 200-µg/L Pr-Nd standard. We used Ru, In, and Re as internal standards for the REE and Rh (spiked for a 20-mL volume to equal 50-µg/L) to correct for sample extract volume. Cobalt and Bi were measured as internal standards for Sc, U, and Th. We measured 147Sm (free of Ba16O interference) for comparison with more sensitive ¹⁵²Sm to evaluate the BaO correction for ¹⁵²Sm and ¹⁵¹Eu. We corrected ¹⁶⁰Gd for ¹⁶⁰Dy using ¹⁶³Dy and measured ¹⁷⁸Hf to correct Yb for isobaric ¹⁷⁴Hf interference. Calibration verification was monitored by periodic analysis of two or more mid-level calibration standard and the calibration blank. The internal standards were used to compensate for instrument drift. All data reduction was accomplished off-line using a standardized computer spreadsheet. Using this newer instrument, the MDL's were

lowered by approximately one order of magnitude (Figure 1). Thus, a significant effort in the latter half of this project, especially in 2001, was the redetermination of the REE content in many samples collected and analyzed in the first half, and found to be near or below the previous MDL.

Other cations: The cations Ag, Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sr, Ti, V, Zn were routinely determined in the sample aliquot reserved for non-REE cations. The cation aliquot analyses represent total dissolved metals as the samples have been filtered through 0.45-µm filters in the field directly into a cleaned, acidified bottle. The analyses were performed on a computer-controlled Perkin Elmer model 3000 XL Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) which is interfaced to an autosampler. The sample is introduced from the autosampler by a computer-controlled peristaltic pump which incorporates in-line addition of internal standard elements. The instrument has a torch orientation that results in an axial light path from the argon plasma which is dispersed with an Echelle Grating onto a Peltier-effect-cooled charge-coupled device (CCD) detector. The computer interface then records the accumulation of counts from the detector and saves the data.

Calibration of the instrument is performed each time the instrument is run. The calibration standards are analyte mixtures typically comprising four levels of five-fold dilution. Analytes were grouped by typical abundances into three sets: high - 40, 8, 1.6, and 0.32 mg/L; moderate - 4, 0.8, 0.16, and 0.032 mg/L; and silver - 0.4, 0.08, 0.016 and 0.0032 mg/L. The elements Be, Sc, and In were used as internal standards to correct for nebulizer transport interference and instrumental drift. A mid-level standard was run periodically along with the calibration blank for quality assurance. The emission line wavelengths were selected for sensitivity, linearity, and freedom from background interferences and are in common use. Background corrections were made on all line intensities and the spectra were visually inspected during post-analysis reduction of data. This is adequate to correct for Ca and Mg baseline interference. Levels of Al (spectral overlap and baseline), and Fe, Cr, Ni (spectral overlap) are generally low enough in these thermal waters that inter-element interference corrections were not used. Initially, Si was determined on a separate sample aliquot. However, analytical results for the cation aliquot were in agreement so often that we stopped taking a separate sample for silicon to estimate dissolved silica. The objective of determining such a comprehensive cation list was to constrain any variables which might have an effect on the solubility of the REE.

Anions: The anions fluoride, chloride, bromide, nitrate, phosphate, and sulfate were analyzed by a Dionex model AI-450 ion chromatograph equipped with a Dionex 4 x 50 mm AG4A-SC guard column and a 4 x 250 mm AS4A-SC analytical column. An advanced gradient pump (AGP) was used to provide a flow of 2mL/minute using an eluent composition of 1.7 mlM NaH(CO₃)/1.8 mM Na₂(CO₃) for isocratic elution of the anions. The eluent reservoirs were degassed with helium and the eluent kept under a helium atmosphere during the analytical run. Detection was by suppressed conductivity. A 4-mm ASRS-I (anion self-regenerating suppressor) is used to suppress the baseline conductivity to about 15.2 μ S. This combination of apparatus and eluent was optimal for natural samples and is relatively insensitive to contamination of the eluent reservoir by carbonate formed

from atmospheric carbon dioxide. Sample introduction is through a nitrogen-switched flow-injection valve body and uses a 50-µL injection loop. In a typical analytical protocol, the target anions elute within 9 minutes from time of injection. The method is programmed to allow eluent to flow through the injection loop in line with the analytical column throughout the duration of the run. Several mL of DI are used to rinse the injection pathway before each new injection.

Fluoride, Cl⁻, Br⁻, NO₃⁻, PO₄³⁻, and SO₄²⁻ were calibrated using 50, 10, 2, 0.4, and 0.08 mg/L mixed anion solutions, a 100 to 200 ppm chloride-sulfate standard, and a DI water blank. Calibration and instrumental drift were verified by periodic analysis of an appropriate dilution of a certified anion quality control standard mixture (SPEX brand ICMIX2) and a DI water blank. All samples, quality-control standards and blanks were injected using the same syringe which was rinsed with DI water between each use. Typically, analyte carryover was not observed or was not significant.

Alkalinity: Alkalinity was determined by potentiometric titration with a standardized reference acid solution. Gran analysis of the millivolt versus volume data was used to calculate equivalent mg/L of carbonate and bicarbonate.

RESULTS

REE Contents of Geothermal Waters by Study Area

Tables of all the analytical data are given as EXCEL files on the accompanying CD. The REE concentrations obtained are shown in chondrite-normalized form in a series of diagrams in a WORD file on the CD. In general, in the figures, filtered aliquots are denoted by symbols connected by short dotted lines whereas unfiltered aliquots are denoted by symbols connected by solid lines.

New Zealand

Samples were obtained from wells and springs from a wide selection of geothermal areas in the Taupo Volcanic Zone (TVZ), namely Broadlands, Kawerau, Mokai, Mount Ruapehu, Orakei Korako, Rotokawa, Taupo-Tauhara, Te Kopia, Tokaanu, Waikite, Waimangu, Waiotapu, and Wairakei. In addition, samples were taken from seven sites on the North Island outside the TVZ: Ngawha, Tarawera, Puketitiri (Mangatatu), Miranda, Te Aroha, Te Puia and Morere. The sites sampled are located on a map of New Zealand in Figures 2 and 3 (modified after Figures IV, III; Mongillo and Clelland, 1984). Four sites, Tarawera, Puketitiri, Miranda and Te Aroha, were selected because they are thought to result from circulation of fluids along deep regional faults, where heating is predominately derived from the geothermal gradient as opposed to the shallower circulation typical of most of the thermal areas in the Taupo Volcanic Zone, where heating is dominated by subvolcanic magmas (Figure 2). Two other sites, Morere and Te Puia, were sampled because they are associated with dewatering of sediments accompanying the Pacific plate, which is being subducted underneath the Indian plate just off the eastern coast of the North Island of New

Zealand (Figure 2). Waimangu, Wairakei, and Taupo-Tauhara are associated with caldera boundaries (Simmons 1995). We also sampled three geothermal areas from the South Island of New Zealand: Hamner Springs, Maruia Springs and Lewis River Springs (Figure 29).

North Island, Inside the Taupo Volcanic Zone

The samples from geothermal areas in the Taupo Volcanic Zone, New Zealand, fall into two main groups. Low-pH, acid-sulfate water samples have been found to have elevated REE contents whereas samples having near-neutral pH, represented by neutral-chloride and neutral-bicarbonate waters have much lower REE contents. The details are described below.

Rotokawa: Lake Rotokawa is an acidic lake fed by numerous springs. We were able to sample two surface springs (in both 1998 and 2000) and a number of wells (in 2000). The acid spring waters made access dangerous because of dissolution and undermining near the springs and in the general area. We observed several boiling mud pots which were inaccessible, but we were able to sample Parariki spring. We took a second sample closer to the margin of Lake Rotokawa. The vent was an upwelling eroded into the margin of a larger pool on the lake margin. The waters from these two springs are low-pH (1.51, 2.79) and have high-conductivity due to mixing between chloride (341, 1084 ppm) and sulfate (895, 455 ppm) source waters. The fluids from two of the wells sampled (Rotokawa #4, Western) were also acidic (~2-2.5), whereas those from wells RK-5 and RK-9 had pH values of ~ 6.5. Moreover, the fluids from RK-5 and RK-9 had somewhat higher chloride and much less sulfate than the other well fluids. Deep temperatures and stored heat have been estimated at 335°C and 4500 PJ, respectively, at Rotokawa (Mongillo and Clelland, 1984).

The REE results for Rotokawa are depicted in Figures 4 and 5. The low-pH geothermal fluids from Rotokawa are distinguished by relatively high REE contents (mostly 10⁻³-10⁻¹ times chondrite) and the filtered aliquots of the various samples have nearly identical concentrations to the unfiltered aliquots, suggesting that the REE are probably in true solution (although a colloidal fraction cannot be excluded). However, the near-neutral fluid from RK-9 has REE concentrations near the detection limit (10⁻⁶ times chondrite) and shows a measurable difference between filtered and unfiltered aliquots. The unfiltered sample of the neutral-chloride fluid from RK-5 also has low REE contents. Also plotted in Figures 4 and 5 are the chondrite-normalized REE patterns for two potential aquifer rocks in the area, the Rotokawa Basalt and the Orakeikorako Basalt (these have been scaled by arbitrary factors so that they plot on the same scale as the waters). Although there are some differences in detail, the general slopes of the REE patterns for the waters parallel those of possible aquifer rocks, suggesting that there is no major fractionation as REE are leached from the aquifer rocks. However, the low-pH fluids have a very distinctive "gull-wing" pattern in which there is a small but noticeable Eu anomaly and a significant depletion of the lightest REE, i.e., La to Pr. The patterns exhibit maxima at Nd and Gd. The left "wing" (LREE) shows significant concavity downward whereas the right "wing" (HREE) is flatter. Finally, there generally is a gentle overall negative slope to the pattern. As will be pointed out below, this "gull-wing" pattern is characteristic of nearly all the low-pH geothermal fluids sampled in New Zealand. Finally, comparison of the pattern for Parariki Spring from

1998 with that from 2000 shows that there was negligible temporal variation for this spring over a period of two years.

Waiotapu Thermal Reserve: The Waiotapu Reserve contains the largest neutral-chloride spring in the region (the Champagne Pool) and a number of acid-sulfate springs. We sampled the acidic (pH = 2-2.5) Oyster pool in both 1998 and 2000, and Frying Pan Flat (pH = 2.5-3.5) in 2000. The Champagne Pool (T = 74.7°C; pH of 5.28) was sampled in 1998, 2000 and 2001. This area has a high maximum deep temperature of 295°C, a high heat flow of 600 MW with an estimated thermal reserve of 6100 PJ, and a surface water flow greater than 250 L/s (Mongillo and Clelland, 1984).

The REE contents for the acid-sulfate features sampled at Waiotapu are summarized in Figure 6. The major features of these acidic fluids are very similar to those observed at Rotokawa, namely: 1) relatively high overall REE contents; 2) a distinctive "gull-wing" chondrite-normalized pattern; 3) patterns generally parallel to potential aquifer rocks; and 4) nearly identical REE contents in filtered and unfiltered aliquots of the same sample. Comparison of REE contents among samples taken in 1998 and 2000 is complicated by the fact that there was considerable spatial variability as seen from the results for Oyster Pool in 1998. However, there was no change in the general form of the patterns between 1998 and 2000.

As can be seen from Figure 7, the REE patterns from the Champagne Pool are significantly different from those of the more acidic features at Waiotapu. First, the overall concentrations of REE are much lower, although generally well above our improved detection limits. Second, the patterns have a very prominent, positive Eu anomaly. Third, the patterns are generally LREE-enriched, exhibiting a relatively steep decrease from La to Gd, and a much flatter slope from Gd to Lu. The pattern for the Champagne Pool can be likened to a "Mexicar Hat" and is distinctly different from the "gull-wing" pattern of the acid-sulfate fluids. Finally, unlike the acid-sulfate fluids, the fluids from the Champagne Pool show noticeable differences in REE concentration between filtered and unfiltered aliquots, with the latter generally having higher REE contents. This finding suggests that some of the REE are present as suspended particles. However, the filtered aliquots still have significant REE contents. Like the more acidic fluids, no major temporal changes are observed for the Champagne Pool over a three-year period. From 1998 to 2001, the REE concentrations in the Champagne Pool varied by no more than a factor of three.

With the exception of the prominent Eu anomaly, the patterns of fluids from the Champagne Pool are very similar to those from the Whakaroa Rhyolite and the Oruanui Ignimbrite, potential aquifer rocks for the Waiotapu fluids. The positive Eu anomaly could be the result of the fluids leaching a lithology at depth with a similar Eu anomaly. However, as pointed out by Sverjensky (1984) and Wood (1990), geothermal fluids also can acquire positive Eu anomalies as a result of the increased stability of aqueous Eu²⁺ relative to Eu³⁺ with increasing temperature. Thus, the Eu anomaly observed here could be a reflection of a relatively high temperature at depth and rapid ascent of the fluid to the surface.

Waikite: The Waikite hot springs lie to the north of the Te Kopia Reserve field along the Paeroa fault zone. The Waikite hot springs sampled are fed by a bicarbonate-chloride water with approximately neutral pH of 7.5. Waikite is proximal (~ 5 Km) to Waiotapu and

may have a hydrological connection to the Waiotapu field (Mongillo and Clelland, 1984). Quartz saturation thermometry suggests a temperature of last equilibration of approximately 156 °C, which is considerably less than that from Waiotapu. The sampling of Waikite in 1998 was immediately followed by a magnitude 4.1 earthquake which had an epicenter at nearby Rotorua. The proprietor of the Waikite springs told us that earthquakes in the general area are periodic in that activity increases for a few weeks at a time followed by several months of little or no activity. This was confirmed by discussion with our colleagues at IGNS. Seismicity may be significant because Lewis et al. (1997) have attributed temporal variations in REE content in Yellowstone National Park to microseismic events.

The geothermal fluids from Waikite are interesting in that their REE patterns are parallel to those of the Champagne Pool except that the former lack a Eu anomaly and may have somewhat lower overall REE contents. However, if the Eu anomaly is removed from the Champagne Pool results, the patterns are nearly parallel with those from Waikite. This finding may support the idea of a hydrological connection between Waiotapu and Waikite. The lack of the Eu anomaly in the Waikite fluids may be a result of the lower temperature of last equilibration compared with the Champagne Pool. As pointed out in the previous section, Sverjensky (1984) has shown that the relative stability of divalent aqueous Eu is a strong function of temperature.

Te Kopia Reserve: The Te Kopia Reserve is comprised of three large pools fed by acid-sulfate springs. All of the samples taken at Te Kopia were strongly acidic with pH ranging from 2.6 to 1.7. The estimated maximum deep temperature is 241°C with an estimated thermal reserve of 2300 PJ (Mongillo and Clelland, 1984). The Te Kopia field may be connected hydrologically to the Orakeikorako field (Mongillo and Clelland, 1984).

Several of the acidic hot springs at Te Kopia (Figure 8) exhibit "gull-wing" patterns reminiscent of the acid-sulfate fluids at Rotokawa and Waiotapu. However, in both 1998 and 2000, the fluid from Te Kopia #3 exhibited a somewhat different pattern, in spite of having a low pH (pH = 1.9 in 2000). From Nd to Lu, the patterns for Te Kopia #3 and the others are identical, including a slight negative Eu anomaly, but Te Kopia #3 does not show the strong depletion in La-Pr shown by other acidic fluids in the TVZ. The reason for the different behavior of Te Kopia #3 is not yet clear. However, the pattern for this fluid is very similar to the patterns for the Whakaroa Rhyolite and the Oruanui Ignimbrite.

Although primarily acid-sulfate features occur at Te Kopia, a neutral-chloride fluid has been encountered at Murphy's Farm Hot Spring. We were unable to sample this feature safely in any of our trips to New Zealand. However, Figure 9 includes the chondrite-normalized REE pattern for a sample of this neutral-chloride fluid taken in 1992 and stored in the IGNS sample library at Wairakei. It is clear that the REE contents of this sample are much lower than those in the acid-sulfate fluids we sampled. Although we cannot exclude the possibility of loss of REE from the sample during storage in the sample library, its lower REE concentrations compared to the acid-sulfate fluids are consistent with trends observed elsewhere. That is, neutral chloride fluids tend to have orders of magnitude lower REE concentrations than acid-sulfate solutions.

Waimangu: The Waimangu area is similar to Waiotapu in that it comprises both acid-sulfate features and neutral-chloride-bicarbonate features. This hydrothermal system

occurs along the southern margin of the Okataina Volcanic Center. The heat source seems to be related to the central rift zone of a nearby volcanic edifice. This volcanic center is the most recently active one in the TVZ. The maximum deep temperature is estimated to be 270°C with stored heat estimated to be 5400 PJ (Mongillo and Clelland, 1984). Samples were obtained from the acidic Frying Pan lake, which had a temperature and pH of 51°C and 5.7, respectively. A sample also was obtained from the neutral-chloride Clamshell Spring which has a higher temperature and pH of 76°C and 8.0, respectively. Finally, Iodine Pool, with a temperature and a pH of 64°C and 8.3, respectively, was sampled.

As demonstrated by Figure 10, the REE patterns of all the fluids we sampled from Waimangu are similar to the "gull-wing" patterns exhibited by the more acidic fluids elsewhere, except that they do not exhibit the extreme depletion in La-Pr shown by more acidic fluids. Thus, all fluids sampled at Waimangu have a slight negative Eu anomaly, show a fairly steep negative slope from La to Nd, and then a much gentler slope (in fact nearly flat) from Gd to Lu. The patterns for the fluids are very similar to those from the Whakaroa Rhyolite and the Oruanui Ignimbrite, suggesting very little fractionation as the REE are leached from aquifer rocks. Unlike more acidic fluids elsewhere, the REE contents of the unfiltered aliquots of fluids from Waimangu are generally much higher than those in the corresponding filtered aliquots. The slightly more acidic fluids from Frying Pan Lake (pH = ~5.7) seem to have higher REE concentrations in the filtered aliquots than those from the more alkaline fluids from Clamshell Springs and Iodine Pool (pH = ~8.0 and 8.3, respectively). The difference in REE concentrations in the unfiltered aliquots is considerably less, although Frying Fan Lake still seems to have somewhat higher values.

Orakeikorako: The Orakeikorako field is reached by a short ferry trip across the east end of lake Ohakuri on the Waikato river. The sinter terrace system produced by the flow of springs is quite large and mostly lies beneath the present lake level. We sampled the Fred and Maggie Pools which have a moderate temperature (93°C) and pH (6.9), and flow out onto the surface of the largest sinter terrace. We also sampled the large Map of Africa Pool which emerged near the base of the upper sinter terrace and had a temperature of 63°C and a pH of 6.9. Slightly closer to the Waikato river we sampled the vent of the Diamond Geyser which has a strong flow of steam-heated water with a temperature of 93°C and a pH of 8.5. Field conductivity measurements suggest that total dissolved solids content is low, which is in agreement with published data on the field. Temperature at depth is estimated to be 266°C with a stored heat reserve of 1700 PJ (Mongillo and Clelland, 1984). This field was drilled for production tests but the flow of produced water was not adequate for power generation due to low permeability (verbal communication, Greg Arehart, 1998). The only acid-sulfate fluid that we sampled from the Orakeikorako field was that from Ruatapu Cave, which has a temperature of 39°C and a pH of 2.5.

Like acid-sulfate fluids elsewhere in New Zealand, the fluids emerging in Ruatapu Cave have overall high REE concentrations, distinctive "gull-wing" patterns, and identical REE concentrations in unfiltered and filtered aliquots (Figure 11). The near-neutral fluids of the Fred and Maggie Pools and the Map of Africa Pool have REE characteristics very similar to those of the fluids from Waimangu. The Map of Africa Pool appears to have higher REE concentrations than the Fred and Maggie Pools, in spite of identical pH values but a lower emergence temperature. The absolute REE concentrations of these hot springs

varied a bit, but the chondrite-normalized patterns are essentially the same, between the two sampling campaigns. The REE concentrations of the outflow from the Diamond geyser were near the detection limit in both 1998 and 2000. These low concentrations are probably a result of three factors: 1) the expected low REE concentrations in fluids of slightly alkaline pH (~ 8.5); 2) the admixture of low-REE steam with liquid in the geyser; and 3) possible loss of REE to solid phases upon steam separation (see below).

Taupo-Tauhara Field (De Bretts Thermal Park): The Tauhara-Taupo field contains both acid-sulfate and neutral-chloride features but we were able to sample only neutral-chloride type fluids. We sampled springs emerging within the De Bretts Thermal Park and along the margins of Lake Taupo, and a well at De Bretts. The waters are neutral-bicarbonate-chloride-type with much lesser amounts of sulfate. Field measurements indicate pH values of 5.5 to 6.5.

Surprisingly, the REE systematics of the fluids from the Taupo-Tauhara are distinctly different from most of those observed anywhere else in this project. These fluids are among the only ones that show strong HREE-enriched chondrite-normalized patterns (Figures 12 and 13). The general pattern is relatively flat from La to Gd, and then has a positive slope from Gd to Lu. Most of the fluids exhibit a small negative Eu anomaly. The same patterns were observed in all three years in which samples were taken, although there is some variation in absolute REE concentration from year to year. Interestingly, in the samples from De Bretts and some of the samples from the margin of Lake Taupo, the unfiltered aliquots have somewhat higher LREE concentrations than the filtered samples, but the HREE concentrations tend to converge in the two aliquots. This finding suggests that the LREE are more likely to be present on suspended particles. Sample NZ302-01 from the margin of Lake Taupo is particularly interesting in this regard because the unfiltered aliquot exhibits a strongly LREE-enriched pattern with a large Eu anomaly (very different from the rest of the fluids from this area) whereas the filtered aliquot shows the HREE-enriched pattern characteristic of this thermal area. This finding raises the possibility that the HREEenriched patterns observed in the Taupo-Tauhara area are a result of the preferential removal of LREE onto solid particles (perhaps Mn oxides?).

Wairakei geothermal field: The Wairakei fields are famous as the first liquid-phase geothermal field in the world to produce electric power. A number of geothermal production technologies were developed for the first time at Wairakei. The waters are predominately chloride-bicarbonate-type. Downhole temperature maxima are approximately 270°C; total heat flow is estimated to be 600 MW with a stored capacity of 6700 PJ (Mongillo and Clelland, 1984).

A sample was obtained from well W-207 in 2000 at 7.1 b.g. using a Weber sampler. The results for two replicate analyses of this fluid are shown in Figure 14. In general, the REE concentrations are quite low, < 10⁻⁴ times chondrite, and the filtered aliquot has substantially lower concentrations than the unfiltered aliquot. The chondrite-normalized REE pattern of the unfiltered aliquot is nearly parallel to those of potential reservoir rocks (Whakaroa Rhyolite, Cruanui Ignimbrite), but the filtered aliquot has a much flatter pattern. The reproducibility of the results for the unfiltered aliquot is excellent, and that for the filtered aliquot is good considering the proximity to the detection limit.

Broadlands-Ohaaki Field: Three wells (Br15, Br20 and Br48) were sampled at Broadlands-Ohaaki using a Weber sampler. In addition, Kevin Brown procured downhole samples from two wells (Br9 and Br20); these are all unfiltered aliquots. The waters in our samples are predominately near-neutral to slightly alkaline, chloride-bicarbonate-type with higher bicarbonate than the Wairakei field. Downhole temperature maxima are approximately 308°C with a capacity of 6900 PJ (Mongillo and Clelland, 1984). Few surface springs existed prior to field development and surface heat flow is estimated to be 75 MW (Mongillo and Clelland, 1984).

The results from the Broadlands field are plotted and compared with those from Wairakei in Figures 15-18. The samples obtained using the Weber sampler show characteristics very similar to those from Wairakei. The downhole samples as a group have higher REE contents than the ones obtained with the Weber sampler. Figure 18 shows that, acid washes of the downhole sampler after each sample was taken contain very high REE contents. This finding could possibly suggest that REE were preciptated in or absorbed onto the sampler during sampling. However, blank washes of the sampler indicate that acid washing may be leaching REE out of the ceramic surfaces inside the sampler. Thus, the high REE contents of the acid washes may be an artifact of contamination. This raises the possibility that the higher concentrations observed in down-hole samples may also be an artifact of contamination.

Mokai: At Mokai we sampled wells MK5, MK3, and MK6 with a Weber separator at 18 to 20 bars gauge. In addition, we sampled three natural features, Mokai Spring which is in sight of the Mokai injection wells, Mokai bathing pool, and Mokai stream. Mokai Pool is the only acidic feature sampled, with a pH of 2.9. All other fluids sampled had pH in the range 5.5 to 7.1. This field has a maximum measured temperature at depth of 324°C and a stored heat of 10,000 PJ according to Mongillo and Clelland (1984).

The acidic Mokai Pool exhibits the characteristic "gull-wing" REE pattern of acidic fluids in New Zealand, the unfiltered and filtered aliquots have nearly identical REE concentrations, and the absolute REE concentrations are comparatively high (just under 10^{-2} times chondrite; Figure 19). The unfiltered aliquot of the sample from Mokai Spring (pH = 6.1) has REE concentrations within an order of magnitude of those of Mokai Pool. However, the chondrite-normalized pattern for Mokai Spring does not exhibit depletion in La-Pr like Mokai Pool, and the pattern for the former fluid is nearly parallel to potential aquifer rocks. On the other hand, the filtered aliquot of the sample from Mokai Spring has REE contents almost two orders of magnitude lower than the unfiltered aliquot.

The three wells sampled at Mokai all have similar REE patterns, and their absolute concentrations are much lower than in the surface features (between 10⁻⁶ and 10⁻⁵ times chondrite; Figure 20). The HREE concentrations in the filtered and unfiltered aliquots are essentially identical, but the LREE concentrations are somewhat higher in the unfiltered than the filtered aliquots. The patterns from the well fluids are irregular, which may reflect analytical uncertainty at such low concentrations.

Mt. Ruapehu crater lake: The NZ-032-98 sample was taken by Bruce Christianson from Ruapehu crater lake in March 1998. The crater lake is strongly acidic (pH 1.14). The

salinity measured in the laboratory was 38 parts per thousand. Only one liter of unfiltered sample was obtained owing to logistical difficulties. The fluid from this crater lake is an acid-chloride-sulfate water with extremely high dissolved solids contents including, in order of decreasing abundance, Mg, Ca, Na, Fe, and Al, at greater than 1000 mg/L each. The extremely high Fe and Al in particular reflect the acidic character of the waters. We also analyzed a series of samples taken from Mount Ruapehu between 1993 and 1999, inclusive, and stored in the IGNS sample library.

The samples from Mount Ruapehu are different from most of the other acidic fluids sampled from New Zealand in that they do not have the distinctive "gull-winged" chondrite-normalized REE pattern (Figure 21). Although only unfiltered aliquots are available from Mount Ruapehu, the very low pH permits us to assume that filtered aliquots would have identical REE concentrations, in analogy with all other acidic fluids investigated in this project. The sample we obtained in 1998 has a slightly positively sloped chondrite-normalized REE pattern, without any significant Eu anomaly. The pattern of this sample is parallel to that of the Ruapehu basalt for the HREE, but appears to be relatively depleted in the LREE compared to this basalt. Interestingly, the fluid appears to reflect a slight positive Nd anomaly possessed by the basalt. Thus, although the Mount Ruapehu fluids do not exhibit the "gull-wing" patterns typical of other acidic fluids in New Zealand, they do have in common the apparent fractionation of the LREE compared to potential host rocks.

The samples from the IGNS sample library suggest significant variability in the REE patterns over the period 1993 to 1999. We cannot rule out the possibility that the IGNS samples have changed on storage. However, some measure of the magnitude of this potential problem is given by comparison of our 1998 sample with IGNS-14 RCL. The latter is a separate aliquot of the same sample that Bruce Christenson took for us in March 1998. The only difference is that IGNS-14 was stored for more than two years prior to analysis. It can be seen from Figure 21 that the two aliquots have essentially identical LREE concentrations, and the HREE concentrations differ by less than a factor of two. This finding suggests that the samples did not change much over a period of two years, but the possibility that changes may have occurred over longer periods of time cannot be discounted. Assuming that the IGNS samples did not undergo significant changes during storage, the data in Figure 21 show a significant temporal variation in the REE content of the crater lake. Samples taken in 1993, 1994 and 1995 exhibit nearly identical, LREEenriched patterns. From 1996 to 1998, the patterns flatten and then become slightly HREEenriched. In 1999 there was a sudden change again such that the pattern again became slightly LREE-enriched. If these changes are not artifacts of sample storage, it may be that they are reflective of changes in the chemistry of the crater lake owing to changes of inputs of magmatic volatiles. It is even possible that changes in REE chemistry may represent harbingers of changes in the eruptive status of Mount Ruapehu.

White Island: Samples from the IGNS sample library taken in the years 1993 to 1999 were analyzed for their REE content (Figure 22). White Island is an active andesitic volcano and has a number of hot springs and pools, and fumaroles. The samples analyzed were all taken from the Black Pot feature on White Island, and all but one represent unfiltered samples. The Black Pot spring is reported to be a neutral-chloride feature that is probably reheated sea water with a possible (but unknown) magmatic contribution. The temperatures

recorded at the time of sampling were 83-94°C. As was the case of the Mount Ruapehu samples, we cannot rule out the possibility of changes in these samples during storage. However, Figure 22 shows that there is quite a variation in both the absolute REE concentrations and the chondrite-normalized patterns with time. All samples exhibit REE concentrations (between 10⁻¹ and 10⁻³ times chondrite) that are comparatively high for neutral-chloride fluids in our experience. The patterns vary from slightly LREE-enriched (IGNS-16) to slightly HREE-enriched (IGNS-28), with most of the samples being apparently MREE-enriched. If these patterns are not artifacts of sample storage, the MREE-enrichment is significant in that these samples are the only ones in which such a chondrite-normalized pattern was observed in New Zealand. Finally, it should be mentioned that the variation in REE of these White Island samples as a function of time does not appear to be regular.

Kawerau: This field is exploited for both direct-use heating and electricity generation, primarily by a pulp and paper company. The maximum temperature encountered in a well is 310°C and the stored heat available is 7,700 PJ (Mongillo and Clelland, 1984). The pH of the fluids in this field ranged from 5.9 to 9.3; they range from chloride-dominated to bicarbonate-dominated. Samples of liquid (after phase separation) from Kawerau wells were obtained for us by Bruce Mountain of IGNS. Two down-hole samples were also obtained from Kawerau.

As can be seen from Figure 23, the REE concentrations for all the samples (both filtered and ulfiltered aliquots) taken from Kawerau wells, except the down-hole samples, are very near the detection limit, especially for the HREE. As a result, the patterns are quite irregular. About all that can be said about these fluids is that they appear to be slightly LREE-enriched. On the other hand, the two down-hole samples have much higher REE concentrations. As mentioned above, the down-hole sampler may be introducing REE contamination or the REE may be lost from the liquid to scale on phase separation. Either or both of these factors could contribute to an apparently higher REE content in samples taken with the down-hole sampler before phase separation.

Tokaanu: We sampled chloride pools at Tokaanu near the south end of Lake Taupo. The first sample at Tokaanu was a steam-heated geyser (Taumata Puhipuhi). We then sampled the Hoani and Takarea pools and a hotter, unnamed pool across from the Takarea pool. The pools are near-neutral in pH and high in chloride, boron, and lithium. According to Mongillo and Clelland (1984) the estimated maximum temperature and thermal capacity are 250°C and 3,200 PJ, respectively, but Tokaanu may be part of a much larger geothermal field incuding Waihi.

The sample from the steam-heated geyser (NZ-141-00) shows somewhat unusual behavior (Figure 24). The unfiltered aliquot of this sample has a LREE-enriched pattern with a slight negative Eu anomaly. The filtered aliquot also has a LREE-enriched pattern but the absolute concentrations are about one order of magnitude lower than in the unfiltered aliquot and the Eu anomaly is positive. For all the other samples from Tokaanu, the patterns are LREE-enriched with slight positive Eu anomalies, and there is not as large a discrepancy between filtered and unfiltered aliquots. The fact that the unfiltered aliquot from the geyser has a higher REE content and the filtered aliquot from the geyser has a lower REE content

than any of the other samples (filtered or unfiltered), may be a reflection of the fact that dissolved REE are lost to solid particles on phase separation, as was suggested in the case of the Diamond geyser at Orakeikorako.

North Island, Outside the Taupo Volcanic Zone

Ngawha and Kamo: We sampled two wells at Ngawha, NG-12 and NG-9. Ngawha supports a binary power plant and produces about 10MW from the two wells we sampled. Native antimony has been precipitating from the water in the heat exchangers at Ngawha, and the waters here are also high in chloride, bicarbonate, boron and mercury. We measured pH = 8.6 and 6.6 for NG-12 and NG-9, respectively. The maximum measured temperature at depth is 301°C and the estimated thermal capacity is 15,000 PJ (Mongillo and Clelland, 1984). We also sampled the Kamo soda spring, north of Whangarei. This spring had a temperature of ~ 25°C and is therefore classified by Mongillo and Clelland (1984) as a warm spring. It is a neutral chloride-bicarbonate water with a pH = 6.1 and, according to Mongillo and Clelland (1984), it discharges a considerable amount of CO₂ although we did not note unusual effervescence at the point at which we procured our sample.

The fluid from Kamo is distinctly different from the fluids at Ngawha in that it is one of the few to exhibit HREE-enrichment (Figure 25). In detail, the REE pattern has a negative slope from La to Pr, and then a more or less positive slope from Pr to Lu. Somewhat surprisingly, this lower temperature fluid has higher overall REE contents than the higher temperature fluids from Ngawha, although this could be a result of loss of REE upon liquid-vapor phase separation. Finally, the REE contents in the filtered and unfiltered aliquots from Kamo are very similar, implying the REE are mostly present in dissolved form. The reason for the HREE-enriched trend is not immediately obvious, but it cannot be a result of carbonate complexation because Kamo is not unusually high in bicarbonate compared to some other fluids in New Zealand, including those at Ngawha, none of which show HREE-enrichment.

The REE patterns for the Ngawha fluids bear some resemblance to those from the Champagne Pool. They are generally negatively sloping with a prominent, positive Eu anomaly. However, they differ from the Champagne Pool in that the slope from La-Nd is gentler for the Ngawha fluids.

Miranda hot springs: The Miranda hot springs were sampled because they are heated entirely by the geothermal gradient of a very deep-seated fault system not directly related to magmatic intrusions. The rationale for sampling this type of feature was that there might be significant differences between deeply circulating meteoric waters in contrast to waters that may have a direct magmatic input. The Miranda springs are neutral-chloride-bicarbonate waters and flow at a rate of up to 7 L/s (Mongillo and Clelland, 1984). Field measurements indicate low conductivity, a temperature of 56°C, and a slightly basic pH of 9.1. The REE patterns from Miranda (Figure 26) are similar to those of neutral-chloride fluids from Orakeikorako and Waimangu, among others. There is a slight negative Eu anomaly, and the pattern is gently negatively sloping from La to Nd, and nearly flat from Gd to Lu. The overall concentrations of REE are very low at Miranda, hovering just above our

detection limit. Concentrations of REE in filtered and unfiltered aliquots are similar, but this could be an artifact of the proximity to the detection limit. Unfortunately, there is not much that distinguishes this fluid from outside the TVZ with others within the TVZ, in terms of REE contents.

Te Aroha: The Te Aroha hot springs are a second example of deeply circulating meteoric waters heated entirely by the geothermal gradient and brought to the surface by deep-seated faults. These waters were quite different from Miranda hot springs in that the Te Aroha waters have very high bicarbonate contents (almost an order of magnitude more than any other fluid investigated in this project) and conductivities. These near-neutral bicarbonate waters have pH values ranging from 6.9 to 7.8, and also contain significant chloride, sulfate and borate. These waters have very high dissolved solids contents including Na, K, Mg, Li, Sr, As, and Ba, in order of decreasing abundance. We took samples from Mokena Geyser, which is a drillhole, 70 meters deep (drillhole #1; Mongillo and Clelland, 1984), a warm (24°C) spring (spring #8; Mongillo and Clelland, 1984), and a hand-pumped well (spring #15; Mongillo and Clelland, 1984).

The REE patterns of fluids from Te Aroha (except those from Mokena Geyser) resemble those from Miranda (Figure 26). They have a moderately negative slope – steeper from La-Nd and flatter from Gd to Lu – with a weak negative Eu anomaly. Typically, the unfiltered aliquots have higher REE contents than the filtered aliquots. The sample from Mokena geyser has the lowest REE contents of all fluids from Te Aroha, in keeping with our findings from other geysers. On the other hand, the warm spring has the highest REE concentrations of any fluid at Te Aroha, but quartz saturation temperatures (~ 150°C) for this spring are similar to those of the other fluids. The high bicarbonate concentrations in the Te Aroha fluids do not appear to have a significant effect on the REE patterns (compare Te Aroha and Miranda, for example). This is somewhat surprising given that carbonate complexes of the HREE are much stronger than those of LREE and therefore HREE-enrichment of the fluid would be expected when carbonate complexation is important.

Tarawera: A group of hot springs, probably emerging from the Torlesse Greywacke, is located at Tarawera, about 80 km southeast of Taupo. These fluids are neutral-chloride type. The fluid we sampled emerged from a black plastic pipe and had a temperature of 47°C and a pH of 8.3. The fluid from Tarawera exhibits a REE pattern very similar to those from Miranda and Te Aroha (Figure 26).

Puketitiri (Mangatutu): This spring was of interest because of a reported high fluoride content (Mongillo and Clelland, 1984), fluoride being a strong complexing agent for the REE (Wood, 1990). Puketitiri contained the third highest fluoride content (19 mg L⁻¹) in New Zealand after Mt. Ruapehu (158 mg L⁻¹) and Diamond Geyser at Orakeikorako (21 mg L⁻¹). Tarawera also contained a relatively high fluoride content (13.5 mg L⁻¹). Other fluids in New Zealand ranged in fluoride content from < 0.1 up to 12 mg L⁻¹. Figure 26 shows that the high fluoride content of the fluid from Puketitiri does not appear to result in a REE pattern significantly different from those of Miranda, Te Aroha or Tarawera.

All four of the above thermal springs occur outside the TVZ and are thought to be the products of circulation along deep-seated faults, as opposed to shallow magmatic activity as is the case within the TVZ. However, the observed REE pattern common to all four areas, a gently negative slope with a slight negative Eu anomaly, is also seen in thermal springs at Waimangu and Orakeikorako within the TVZ. Similar patterns have also been observed in some of the Wairakei and Broadlands wells and in the 1998 sample from Mt. Ruapehu. These patterns parallel closely those of many of the likely aquifer rocks, e.g., Whakaroa Rhyolite and the Oruanui Ignimbrite. It thus seems that this pattern is a consequence of inheritance from the wall rocks, without significant fractionation.

Morere: The Morere springs are neutral-chloride waters thought to be derived from dewatering of the sedimentary wedge of the underlying subduction zone. Two springs were sampled from small concrete tanks built around the vents. The first spring sampled had temperature, salinity, and pH of 47°C, 28 per mil, and 6.9, respectively. The second spring sampled had temperature, salinity, and pH of 42°C, 27 per mil, and 6.9, respectively. These waters had high contents of Na, Ca, K, B, Mg, Li, and As, in order of decreasing abundance. In addition, the waters were clearly high in iron and were precipitating iron hydroxides upon emergence to the surface.

If the parent fluid for the Morere springs was originally seawater, the REE systematics have been extensively modified by water-rock interaction. Seawater generally has a HREE-enriched pattern with a strong negative Ce anomaly, no Eu anomaly and generally very low overall REE concentrations. In contrast, the fluids from Morere have much higher overall REE concentrations, no Ce anomaly and a LREE-enriched pattern. Finally, the samples from 2000 exhibit strong positive Eu anomalies. There are rather large differences in REE contents of unfiltered vs. filtered aliquots. In gross characteristics, these patterns resemble those from Ngawha and the Champagne Pool. There do not seem to be any obvious REE characteristics that distinguish these subduction-related fluids from thermal fluids from other settings. The chondrite-normalized patterns for Morere fluids do seem to have somewhat steeper slopes than those of the Whakaroa Rhyolite or the Oruanui Ignimbrite.

Te Puia: Like Morere, Te Puia springs may be derived from dewatering of the underlying subduction zone. Field measurements of the waters indicated high conductivity, neutral pH, and reducing Eh, and the spring seemed to be precipitating sulfur. There is a strong presence of natural gas in the area, suggesting that these waters may interact with organic matter at depth. The samples taken here had temperatures ranging from 50 to 60°C and pH ~ 6.6-6.9. There were high contents of Na, Ca, K, B, Mg, Li, Ba, and As, in order of decreasing abundance. Te Puia fluids have LREE-enriched chondrite-normalized patterns that dip somewhat more steeply than those of the Whakaroa Rhyolite or the Oruanui Ignimbrite (Figure 28). Some of the fluids appear to have a positive Eu anomaly, but in Te Puia #1, any Eu anomaly is quite subdued. There are quite substantial differences in the REE content of unfiltered and filtered aliquots. Fluids from both Morere and Te Puia contained significant Ba, and the broad Sm-Eu hump for sample NZ023 is probably an artifact of incomplete correction of isobaric interference from Ba.

South Island

Three geothermal areas on the South Island were sampled, Hanmer Springs, Maruia Springs and Lewis River Springs (Figure 29), primarily to form a contrast with the North Island systems. Although there are a number of thermal springs on the South Island, the geothermal areas tend to be smaller and cooler than those on the North Island. None of the geothermal areas on the South Island have been exploited for power production; most are used solely for balneological purposes.

Hanmer Springs is the only area on the South Island officially designated as a thermal area (Mongillo and Clelland, 1984). Wells drilled in the area produce water at a temperature approaching 50°C. The sample we obtained had a pH of 8.6 and is dominated by chloride and bicarbonate. The Lewis River Springs consisted of three thermal pools, with a temperature of about 40°C (although at the vent the temperature attained 49°C). The measured pH was 8 and the fluid was dominated by bicarbonate. Maruia Hot Springs was a resort containing a number of indoor and outdoor pools. The reported maximum temperature in the area is 60°C (Mongillo and Clelland, 1984), but the sample we procured from an indoor pool had a temperature of 43°C. This sample also had pH = 8.3 and was dominated by nearly equal amounts of chloride and bicarbonate.

The possibility of contamination of all these samples from the South Island is rather high. Both Hanmer Springs and Maruia Springs are highly developed. In the former case, our sample came from a well and was probably in contact with steel, titanium and concrete, whereas the sample from Maruia Springs came from a pool constructed of concrete and wood and probably had been occupied by bathers a relatively short time prior to sampling. The Lewis River Springs is undeveloped, but was a very popular bathing spot. People were bathing immediately prior to and during sampling. However, for completeness we describe the REE results here.

The concentrations of REE in both aliquots of the samples from Hanmer are very low, near the detection limit and indistinguishable from the trip blank (Figure 30). Whether these low concentrations are characteristic of the deep fluid at Hanmer or result from loss of REE in the plumbing system is not known. The fluid from Maruia has moderately high REE contents, with the filtered aliquot having only slightly less REE than the unfiltered aliquot. The chondrite-normalized pattern is relatively flat from La to Sm, and then dips gently from Gd to Lu. There is a weak negative Eu anomaly. The unfiltered aliquot from Lewis River has the highest REE content measured in thermal fluids from the South Island, and exhibits a consistent LREE-enrichment with a weak negative Eu anomaly. On the other hand, the filtered aliquot from Lewis River has much lower REE concentrations, similar in both absolute value and pattern to the unfiltered aliquot from Maruia (Figure 30). The higher concentration of REE in the unfiltered aliquot is probably a result of material suspended by bathing activity.

Oregon Cascades

The sites sampled are located on a map of Oregon in Figures 31 (modified after Figure 9, in Sherrod et al, 1996). As noted by Sherrod et al. (1996), the thermal areas are located between 1500- and 2500-ft elevations at the bottom of major stream valleys. Eight thermal areas within the western Cascade range were sampled. These included Bagby, Breitenbusch, Bigelow, Bellknap, Terwilliger, Wall Creek, McCredie, and Umpqua hot springs. The tectonic setting is one of convergent margin volcanism. There are many recent volcanic centers in the area.

Bagby: The Bagby site is maintained by a non-profit group "The Friends of Bagby". Two vents were present and the higher flow, hotter vent above the cabins was sampled (OR-033-98). The flow rate was 1-3 L/s and the fluid welled up from the sandy bottom of a concrete orifice less than a foot in diameter and about a foot deep. The vent temperature was 45°C. The pH at the vent was 9.5, typical of carbonate-buffered waters. However, conductivity was relatively low as was the titrated carbonate. Chloride and sulfate content are relatively low and the water has an alkaline-bicarbonate-sulfate-chloride character.

Breitenbush: This area is on private land and is the location of a spiritual retreat. We were given access to the hottest pool located between the administrative headquarters and the lodge. The pool is fenced in, approximately 3 meters in diameter, and relatively shallow at less than a meter deep. The sample (OR-034-98) had near-neutral pH = 7.03 and a relatively low conductivity. The water is neutral-chloride in character.

Bigelow (Deer Lick): The Bigelow pool is located on the west side of the river downstream from the bridge. A small pool is located in a grotto by the side of the river. The fluid appears to infiltrate through a conglomeratic river-bank deposit. The pool contained a lot of suspended material making filtration difficult. The sample (OR-035-98) was cool at 31°C, near-neutral pH (7.0) and relatively low conductivity. Relatively high in chloride with moderate sulfate, the water has a neutral-chloride character.

Bellknap: The Bellknap thermal area is a resort. The proprietors gave us permission to sample (OR-036-98) the source pool which is located across the Mackenzie river from the resort directly at the end of a foot bridge. Galvanized chain link fence is placed vertically to block access to a small collection pool in a grotto that is approximately 3 feet long and less than 2 feet wide, and is walled off with concrete. Galvanized chain-link fence is also placed horizontally over the outflow where water is taken through a 3-inch PVC pipe. The pool has a temperature of 68°C, moderate conductivity, and a pH of 7.6. Chloride is relatively high with moderate sulfate giving the water a neutral-chloride character.

Terwilliger/Cougar: The Terwilliger pools are located along the side of Cougar reservoir and are administered by the U.S. Forest Sevice. The pools are formed by a series of small dams built across a creek drainage. The thermal water emerges from a bedrock vent slightly higher than and to the side of the creek, and from there flows into the hottest pool.

The sample (OR-037-98) was taken at the vent which has a temperature of 38°C, a pH of 8.7, and moderate conductivity. This water has a neutral-chloride character.

Wall Creek: The Wall Creek pool is about 15 feet in diameter and less than 2 feet deep with bubbles coming up in the middle. The sample (OR-038-98) was taken from the hottest part of the pool. The temperature was 32°C with low conductivity and near neutral pH (7.4). The water is neutral-chloride in character.

McCredie: The McCredie pools are built on both sides of the stream. The larger pool has a fissure vent which we sampled (OR-039-98). The vent temperature was 60°C and has near-neutral pH (7.3) and relatively high conductivity. This larger vent had a flow of no more than a few liters per minute. The second sampled (OR-040-98) vent was slightly hotter at 63°C and near neutral pH (7.4) and relatively high conductivity. The second vent is a small seep bubbling out of the ground with a very low volume of flow. This spring is relatively higher in both chloride and sulfate than most of the other Cascade waters and the waters may be characterized as neutral-chloride type. These waters had the second highest (in respective order of decreasing abundances) Na, Ca, K, B, Mg, and notably Li and Sr, in the Cascade samples.

Umpqua: The Umpqua pool is located on a bluff at some elevation about the river below. A bathouse is situated at the lower of two pools. We sampled (OR-041-98) the upper pool above the bathhouse. The temperature of this pool was 40°C; the fluid had a near-neutral pH (6.4) and relatively high conductivity. These waters had the highest chloride and bicarbonate concentrations of the Cascade samples as well as moderate sulfate. They are neutral-chloride in character. These waters also had the highest (in order of decreasing abundance) Na, Ca, K. Mg, B, and notably Fe, Li and Sr, in the Cascade samples.

REE in geothermal fluids from the Oregon Cascades are detectable in all the unfiltered samples and in most of the filtered samples as well (Figure 32). Bagby had both the lowest total dissolved solids and the lowest REE content. Umpqua was unusual in having nearly identical chondrite-normalized La and Lu concentrations and a pronounced scurve REE pattern which reaches a minimum near Nd and a maximum near Er. This same pattern is reproduced in the filtered aliquot (disregarding a possible bump at Sm-Eu from high Ba) about half a log unit lower in REE concentration. However the filtered and unfiltered aliquot have nearly identical La values. In most other cases, the patterns show a gentle negative slope for the LREE, but then flatten out for the HREE. In general there are large differences between the unfiltered and filtered aliquots for each sample.

Alvord Desert, Harney Basin and Owyhee Canyon areas, Southwestern Oregon

Seven thermal areas in southeastern Oregon were sampled in October 1998, including Crane, Mickey, Alvord, North and Middle Borax Lakes, White Horse Ranch, and Snively hot springs (Figure 33). During the same trip, Zims hot springs in southwestern Idaho was also sampled. The areas in southeastern Oregon are part of the Basin and Range

extensional tectonic Province. Geothermal anomalies are related both to the higher heat flow of the Basin and Range Province due to crustal thinning and to basaltic volcanism in the area. Many of the hot springs occur near the middle of the basins and may interact with thick sections of basin sediments.

Crystal Crane Hot Springs: Crystal Crane Hot Springs is a privately developed site located in the Harney Basin along highway 78 between the towns of Burns and Crane, Oregon. The hotsprings are comprised of a large pool fed by an artesian well which has the upper portion cased in a concrete riser with PVC plumbing and a smaller pumped well house which feeds the bathhouses and also had PVC plumbing. We were able to sample (OR-042-98) the artesian vent which had a temperature of 61.5°C and a pH of 8.2, typical of bicarbonate-buffered waters. The conductivity was relatively low at 1550 µMhos. We also sampled (OR-051-98) the well, which had a slightly lower temperature of 49.3°C. No conductivity or pH measurements were made at the well. These waters are dominated by bicarbonate with much smaller contributions of chloride and sulfate and are alkaline-bicarbonate-type.

Mickey Hot Springs: The Mickey Hot Springs are located at the north end of the Alvord Valley. Several sinter structures and pools are present at elevations which vary by a few tens of feet. A vigorously bubbling vent had the highest temperature of 95.0°C and was choosen for sampling (OR-043-98). The pH was 8.73 and the conductivity was 6300 μMhos. Alkalinity was fairly high with very low contents of chloride and sulfate. These waters are therefore alkaline-bicarbonate type waters.

Alvord Hot Springs: The Alvord hot springs are located about 20 miles north of Fields, Oregon. Water flows from multiple vents on the East side of the road across a bog into several concrete pools. The hottest flowing vent near the road was selected for sampling (OR-044-98) to avoid mixing with the cooler water in the bog. The respective measured pH and temperature were 6.76 and 72.5°C. The conductivity was moderate at 9600 µMhos. These waters are near-neutral-bicarbonate-chloride-type.

North Borax Lake Hot Springs: The North Borax Lake hot springs are comprised of multiple sinter vents surrounded by abundant white precipitate which covers the ground over a considerable area. The hottest vent sampled (OR-045-98) had a moderate conductivity of 5200 µMhos, a pH of 7.30, and a temperature of 92.3°C. The surface expression of the vents are low, rounded orifices ranging from one to several feet across and appear to be quite deep. The inner walls are rounded smooth by a covering of white precipitates. Chloride and sulfate content are somewhat elevated but alkalinity is also high. These waters are therefore near-neutral-bicarbonate-type.

Middle Borax Lake Hot Springs: The appearance of the Middle Borax Lake hot springs is similar to those of the northern ones but the temperatures are lower at 72.0°C. The conductivity (4800 µMhos) and pH (7.00) of the sample (OR-046-98) are very similar to the northern hot springs. Borax Lake (Hot Lake) to the south (not sampled) was a large lake surrounded by a low sinter lip beyond which were grassy marsh and bog. The lake had

an even lower temperature of 36°C, and a much larger flow was evident and appeared to originate near the middle of the lake. Chloride and sulfate content are somewhat elevated but alkalinity is also high. These waters are therefore near-neutral-bicarbonate-type.

Whitehorse Ranch Hot Spring: This consists of two small pools improved by the forest service. The smaller, hotter pool (about 15 feet across) flows into the larger pool. The smaller pool was chosen for sampling (OR-047-98) and the temperature was highest about 3 feet down where the spring flows up from a sandy bottom. The temperature was 35.0° C above the hottest portion of the pool. The pH is slightly above neutral at 7.68 and the conductivity is low at $1370 \, \mu$ Mhos. Chloride and sulfate content are moderate to low but alkalinity is relatively high. These waters are therefore near-neutral-bicarbonate-type.

Snively Hot Springs: Several hot springs flow from near the paved road east through a state park and into the Owyhee river. The largest is cased with a sunken, 3-foot diameter, concrete culvert and overflows at a rate of many liters per second. An iron fence post is fixed in the pool but the flow rate is high enough that water composition probably was not significantly affected (OR-048-98). The conductivity was 8300 μMhos, pH was 9.36 and the temperature was 42.4°C. A smaller vent sampled (OR-052-98) at the north end of the park had similar conductivity (8700 μMhos), pH (9.35), and temperature (39.0°C). North and downstream of the park a large aquaduct pipe crosses the river and a small hot spring flows a few liters per minute from the west side of the road north of this pipe. This hot spring sample (OR-049-98) had a lower conductivity (1330 μMhos), similar pH (8.89) and a higher temperature (71.9°C) relative to the higher flow rate hot springs in the park. Chloride and sulfate content are moderate to low but alkalinity is relatively high. These waters are alkaline-bicarbonate in character.

Zims Hot Springs: Zims Hot Springs is a privately owned resort located west of highway 95 about 4 miles north of New Meadows, Idaho. Flow is artesian at 90 gallons per minute into a concrete holding pool which is approximately 30 feet long by 15 feet wide by about 15 feet deep. There was about 3 feet of water in the pool at the time of sampling. The conductivity is relatively low at 1690 µMhos, pH is 9.00, and the temperature is 52.4°C (ID-050-98). Chloride and sulfate content are moderate to low but alkalinity is relatively high. These waters are alkaline-bicarbonate-sulfate type.

The REE in geothermal fluids from Southeastern Oregon are detectable in all the unfiltered samples and in most of the filtered samples as well (Figure 34). Normalized REE concentrations range from 1×10^{-3} chondritic La to around $< 10^{-6}$ chondritic Lu. The REE patterns have a negative slope which tends to be steeper for the LREE than the HREE, and most exhibit slight negative Eu anomalies. The highest REE contents are in the unfiltered aliquots.

Figure 35 provides a comparison of results obtained using the ferric hydroxide coprecipitation method, and the solvent extraction method. With the exception of the unfiltered sample from Sniveley #2, the results are very similar.

Dixie Valley and Beowawe, Nevada

In December, 1998 we obtained samples from Dixie Valley, Nevada (see Figure 36). Wells DV76-A7, 37-33, 28-33,73-B7, and 82A-7, 74-7, 63-7, 73-7, 62-21, 66-21, and 45-14 were sampled, respectively, as NV-053-98 through NV-057-98 and NV-059-98 through NV-064-98. The production well DV76-A7 was sampled (NV-053-98) down stream of the cyclone separator from the brine return line. The wells 37-33 (sample NV-054-89), 28-33 (sample NV-055-98), 73-B7 (sample NV-056-98), 82A-7 (sample NV-057-98), 74-7 (sample NV-059-98), 63-7 (sample NV-060-98), and 73-7(NV-061-98) were sampled from the 2-phase line prior to steam separation. The pH for these wells ranged from 8.92 to 9.20. The fluids in the above wells are alkaline-chloride to alkaline-chloride-bicarbonate in character. Sampling of these wells was done through coiled stainless steel lines that were cooled in barrels of water to give a liquid-phase sample. These are the same sample points used by Oxbow Corporation for routine well monitoring. Also sampled were the Goeringer well (sample NV-058-98) used to supplement re-injection flow at 900 gallons per minute at 58 psig. The Goeringer well had a low temperature of 23.7°C and a near-neutral pH of 7.44. The injection brine was sampled (NV-065-98) downstream of the second flash, had a pH of 9.62 and is alkaline-chloride in character. The steam condensate sample (NV-066-98) had a pH of 6.90.

Wells 62-21, 66-21 and 45-14 are not currently being used as production wells and were capped. These wells are situated in and produce from a slice of different lithology along the Dixie Valley Fault. Well 62-21 is artesian and hot enough to self flash but was capped so the sample (NV-062-98) is from the standing water column. Well 62-21 water is neutral-bicarbonate in character. The water column is 9000 feet with a shut-in pressure of 55.5 psig. The pH was 6.70 and sample had an oily odor which we were told accumulates in the wells when they are completely shut in. Well 66-21 is artesian and was sampled (NV-063-98) from the outflow. We measured a temperature of 37.0°C and a pH of 6.04 at the sample location. Well 66-21 water is neutral-chloride in character. Well 45-14 was capped but had a bleed-off line from which steam and water were escaping but no water was available at the well head. The bleed-off line was closed and the well was vented for about 10 minutes before sampling (NV-064-98) at the wellhead. There was a strong odor of hydrogen sulfide. This well is the only one hosted in shale, is adjacent to a gold mine, and has gold values in the well scale. We measured a pH of 6.73 on this sample at the end of sample collection. Well 45-14 water is neutral-chloride in character. All the Dixie Valley well samples are characterized by high Na and K along with significant B, As, and Al, low Ca, and relatively high fluoride.

Out in the valley a few miles to the northeast of the Dixie Valley power plant is a very large carbonate mound on which are situated many pools of varying temperatures. The higher temperature pools are situated on the southern side of the mound. We sampled (NV-067-98) from an outlet feeding into several pools which had been carved into the carbonate sinter near the lower southwest edge of the mound. The temperature at the vent was 66.5°C and we measured a pH of 6.66. There was abundant carbonate sinter forming on the margins of the pools. A second sample (NV-068-98) was obtained from one of several vents on the south near the highest elevation of the carbonate mound. This vent was hotter with a

temperature of 71.2°C and we measured a pH of 6.99. These are near-neutral-bicarbonate waters.

The Beowawe geothermal field (Figure 36) was sampled at three production wells from the 2-phase lines prior to steam separation. Beowawe wells 77-13, Ginn#1-13, and Ginn#2-13 were sampled as NV-069-98 through NV-071-98. We measured respective pH values of 9.71, 9.82, and 9.78 for the three wells. Well head temperatures provided by the operator are 143, 144, and 145 °C, respectively. The water is alkaline-bicarbonate in character. Conductivities were relatively low, indicating low total dissolved solids. Sampling for these wells was done through coiled stainless steel lines that were cooled in barrels of water to give a liquid-phase sample. These are the same sample points used by Oxbow Corporation for routine well monitoring.

The geothermal fluids from Dixie Valley and Beowawe Nevada are uniformly low in REE as are those from the carbonate mounds (Figures 37-41). This may be due to a combination of relatively high pH and relatively low concentrations of sulfate and chloride.

The three samples with the highest REE, NV-062-98, NV-063-98 and NV-064-98 (Figure 38), also have near-neutral pH. The only sample taken downstream of steam separation (NV-053-98) had mostly undetectable REE in both filtered and unfiltered aliquots. The 7 alkaline-chloride-bicarbonate wells sampled show uniformly flat REE patterns (Figure 37) slightly lower than those of the near-neutral-bicarbonate wells. The distinctive elevated La and Lu relative to depressed middle REE in the near-neutral-bicarbonate wells is likely real.

The near-neutral-bicarbonate fluids from the Carbonate Mound in Dixie Valley have low REE contents and generally flattened patterns (Figure 40). Sample NV-067-98 taken from a lower southwestern exposure in the carbonate mound seems to have a higher REE content than the fluids sampled at NV-068-98. Possibly the difference is due to the slightly lower pH (6.66 and 6.99, respectively) of the sample with the higher REE content.

The fluids sampled from the wells at Beowawe have low REE content and exhibit a decrease in chondrite-normalized concentration from La to Dy, with fairly constant concentrations from Ly to Lu (Figure 41). These alkaline-bicarbonate fluids have the highest pH values and the lowest REE of any of the fluids sampled from Nevada.

Salton Sea and Heber, California

Salton Sea: As described in previous reports, we obtained a number of samples from the Salton Sea geothermal system in California, and anion and non-REE cation determinations have been completed on these samples. However, we were unable to overcome difficulties in the determination of the REE engendered by the very high total dissolved solids content of these fluids (143,000-201,000 mg L-1 chloride). The addition of ammonium hydroxide during ferric hydroxide co-precipitation resulted in the precipitation of silica and other solids containing high concentrations of Al, Zn, Pb and other metals in addition to the ferric hydroxide and REE. Thus, ferric hydroxide co-precipitation was incapable of effecting preconcentration and separation of the REE from matrix elements. The solvent extraction procedure was also unsuccessful because the high concentrations of other metals in the Salton Sea brines insured a lack of selectivity of the extractant for the

REE. Dilution followed by direct analysis by ICP-MS was not a viable option because the dilution factor required to eliminate matrix effects would have reduced the REE concentrations below the instrumental detection limits. The best technique for the accurate determination of the REE in these brines may be neutron activation analysis of the evaporated residue. However, this technique does not permit determination of all naturally occurring REE and the added expense was not permitted by the budget. Thus, the Salton Sea samples remain unanalyzed for REE.

Heber: Although the Heber fluids also contain quite high concentrations of dissolved solids (salinity = 13-15 per mil; 7800-9200 mg L⁻¹ chloride), they are not as concentrated as the Salton Sea brines and we were able to determine their REE contents. It was possible to sample nine wells and the combined injection-brine return at Heber, thanks to the assistance of Sergio Cabanas. Samples were taken after liquid-vapor phase separation, i.e., they were not down-hole samples. The pH of the samples ranged from 6.7 to 8.1, and they were dominated by chloride, making these waters neutral-chloride type.

Most of the Heber fluids are characterized by a "Mexican-hat" type REE pattern (Figure 42), similar to those observed in the fluids from the Champagne Pool in New Zealand. The patterns are concave upward, with a strong positive Eu anomaly. The LREE side of the "brim" of the "hat" is more steeply turned upward than the HREE side. The overall REE contents are also of about the same order of magnitude as those of the Champagne Pool. The REE concentrations of the unfiltered aliquots are distinctly higher than those of the filtered aliquots, but the latter are well above the detection limit. The unfiltered aliquots from samples CA-087-99 and CA-088-99 do not exhibit Eu anomalies, but the filtered aliquots have positive Eu anomalies of the same magnitude as the samples from all the other wells. The REE systematics of the re-injection brine (CA-096-99) are indistinguishable from those of the fluids from production wells.

Palinpiñon, Philippines

Down-hole samples from Palinpiñon in the Philippines were provided by Kevin Brown and Andrew Rae. These samples had been acidified in the field. They were run at a 1X dilution and had sufficiently high levels of the REE that it was unnecessary to proceed with an extraction. The blanks are however, indistinguishable from the 1X detection limit and the Philippine samples are distinctly above the detection limit. The REE for the Philippines are within the range of REE concentrations found for some of the acid-sulfate fluids from New Zealand (Figures, 4-6) despite being near-neutral chloride in character (personal communication, Andrew Rae, October, 1999). The available data for these wells are summarized in the appendix. The Palinpiñon REE patterns bear some resemblence to those of Wairakei and Broadlands in having a slightly positive slope for the lowest REE pattern (Figures 8, 9, 20). The samples from well N1 and PN14 have similar REE patterns with an offset in magnitude which is progressively more depleted in the light REE as one views from heavy to light REE.

Well PN14 has a total depth of 3077.7 meters and is placed to take advantage of the upwelling thermal anomaly. PN14#1 and PN14#2 were sampled at 2300 and 2306 meters with quartz saturation temperatures of 296 and 310 °C, respectively. The pre-exploitation

maximum temperature for well PN14 was 312 °C at 2700 meters depth. The post-exploitation maximum temperature dropped to 261 °C at 2900 meters depth. The quartz saturation temperatures reflect the pre-exploitation maximum temperatures for the PN14 well and show a temperature drop over 6 meters which is reflected in the REE as a 3-fold decrease of light REE from PN14#1 to PN14#2. The magnitude of the REE decrease becomes progressively larger from the heavy toward the light REE. The chloride contents of these samples increases only slightly in the PN14 well between the 2306 meter and 2300 depth from 8506 to 3608 mg/kg, respectively. This is in the appropriate direction for a conserved element if flashing is occurring over the interval.

Well N1 has a total depth of 603.3 meters and is placed to sample the outflow from the upwelling thermal anomaly. N1#1 and N1#3 were both sampled at 500 meters depth with quartz saturation temperatures of 233 and 270 °C, respectively. The pre-exploitation maximum temperature was 199 °C at 400 meters depth. The maximum post-exploitation temperature increased to 206 °C at 300 meters depth. The quartz saturation temperatures reflect somewhat higher temperatures than the pre-exploitation maximum temperatures. Although the N1 well samples are taken at identical depths, the drop in quartz saturation temperature between N1#1 and N1#3 is matched by a depletion of REE which becomes progressively larger from the heavy to the light REE. Using chloride as a conserved element to track the amount of flashing does not seem to be appropriate for the N1 well. The chloride of sample fluid N1#3 is 7040 mg/kg and decreases to 5379 mg/kg in sample fluid N1#1. Because the N1 well is situated over the outflow the decrease in in both quartz saturation temperature and chloride content may be indicative of dilution by a cooler, low-chloride fluid.

The final interpretation of the chemical and thermal history of these fluids must wait for a more complete analysis of cations and anions. This analysis of down hole samples demonstrates that REE are apparently in solution at relatively shallow depths and are easily peturbed by relatively small changes in fluid conditions or depth in the same wells.

Dieng, Central Java, Indonesia

Will Osborne of Cal Energy arranged for us to receive fluid samples from two newly completed wells from the Dieng geothermal field in Java. These were obtained using a Weber separator, and consist of a mixture of unfiltered and filtered samples. Samples were obtained over the space of several days for each well. Unfortunately, the relatively small volume of these samples precluded an effective preconcentration and they were analyzed directly without pre-treatment. None of the samples contained REE above the instrumental detection limit.

EFFECT OF VAPOR-LIQUID PHASE SEPARATION ON REE

We have a number of reasons to suspect that steam loss may be causing loss of REE from the liquid phase to some sort of solid phase. These reasons include: 1) It is well known that release of acid volatiles such as CO₂ and H₂S during steam separation can cause pH to increase in the residual liquid. It is also well known that increased pH should lead to decreased solubility of REE-containing phases and/or increased adsorption or REE onto

solid phases. Thus, from a purely theoretical standpoint, we might expect steam-loss to result in loss of REE; 2) All samples obtained using the Weber sampler (such samples have undergone phase separation) tended to have low absolute REE concentrations. Also, all samples from geysers, which have obviously also undergone phase separation, had low REE contents; 3) Down-hole samples, which were obtained prior to phase separation, tended to have higher REE concentrations than samples obtained using a Weber sampler. However, in the latter case the higher concentrations may result from contamination of the samples by REE-bearing ceramic material from which the sampler is constructed.

As a partial test of the hypothesis that REE might be lost to scale upon vapor-loss, we extracted REE from several scale samples. First, about a gram of scale was ground to a fine powder in an agate mortar and pestle. Then about 0.1 grams of the powdered scale were weighed out and leached with 20 mL of dilute acid (4% HNO₃:1% HCl) for an hour. The solid-liquid mixture was centrifuged, and the liquid decanted and saved for analysis. The solid residue was leached again in an additional 20-mL aliquot of the acid mixture overnight, and the liquid was then separated by centrifugation and analyzed. The acid mixture used for the leaching was the same one used to dissolve the ferric hydroxide co-precipitate during extraction of REE from water samples. We chose a relatively weak leachant so that the only REE that would be extracted from sinter would be the proportion that co-precipitated with relatively soluble minerals in the scale. We did not want to leach REE from minerals in particles of wall rock that had been entrained by the fluid and subsequently trapped in the scale. The results are reported in the EXCEL file Table_REE.xls on the accompanying CD. When expressed in terms of REE concentration in the original scale sample, the scale has typically 3 to 5 orders of magnitude higher concentrations of REE than the corresponding fluids. Also, the concentration of REE in the fluid from the first, shorter leach were typically higher, often by nearly an order of magnitude, than the concentration of REE in the fluid from the overnight leach. These results are consistent with the presence of significant REE in a readily soluble form in the scale samples. Thus, there does seem to be some support for the idea that REE may be lost via co-precipitation and/or adsorption onto scale during liquid-vapor phase separation.

Further development of the REE as an exploration/exploitation tool will require that the possibility of REE loss on phase separation be taken into account when sampling. Ideally, all samples from wells would be taken using a down-hole sampler. However, as noted above, the sampler used by Kevin Brown so successfully to sample fluids for precious metal (Ag, Au) analysis may be introducing REE contamination. The next logical step would be the development of a new down-hole sampler that would be contamination-free for the REE.

DISSEMINATION OF RESULTS OF THE STUDY

In addition to the quarterly reports to DOE, the results of this study have been reported in the following:

Refereed Conference Froceedings

- Shannon, W.M., Wood, S.A., Brown, K., and Arehart, G. (2001) REE contents and speciation in geothermal fluids from New Zealand. In Cidu, R., ed., Water-Rock Interaction. Proceedings of the Tenth International Symposium on Water-Rock Interaction WRI-10, Villasimus, Italy, 10-15 July 2001. A.A. Balkema, Lisse, the Netherlands, p. 1001-1004.
- Shannon, W.M., Wood, S.A., Brown, K., and Arehart, G. (1999) Preliminary measurements of concentrations of lanthanide elements in geothermal fluids from the Taupo Volcanic Zone, New Zealand. Proceedings, Twenty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 25-27, 1999. Stanford Geothermal Program Workshop Report SGP-TR-162, p. 227-235.

Published Conference Abstracts

- Shannon, W.M., Wood, S.A., Brown, K. and Arehart, G. (2000) REE contents and speciation in geothermal fluids from New Zealand and the Philippines. Geol. Soc. Amer. Prog. w. Abstr., v. 32(7), p. A-188.
- Wood, S.A., Shannon, W.M., Brown, K. and Arehart, G. (2000) Rare earth element (REE) contents of geothermal fluids from selected geologic environments. 31st International Geological Congress, Rio de Janeiro, Brazil, August 6-17, 2000. Abstracts volume (CD-ROM).
- Shannon, W.M., Wood, S.A., Brown, K., Arehart, G., and Wright, M. (1999) REE contents of geothermal fluids from selected geologic environments. EOS (Trans. Amer. Geophys. Union), v. 80, p. F1187.
- Shannon, W.M., Wood, S.A., Brown, K. and Arehart, G. (1999) REE contents of geothermal fluids from several geologic environments. Geol. Soc. Amer. Prog. w. Abstr., v. 31, p. A-351-A-352.

Unpublished oral presentations

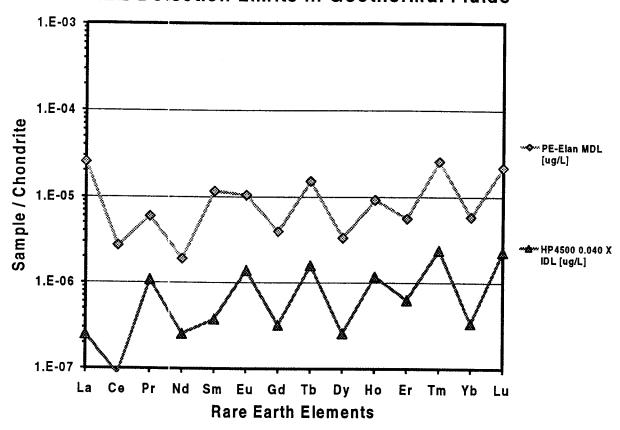
- Wood, S.A. (2000) The geochemistry of the rare earth elements in geothermal systems from New Zealand, the Philippines, and the western U.S. Presentation at the University of Nevada-Reno, November 9, 2000.
- Wood, S.A. (2000) The geochemistry of the rare earth elements in geothermal systems from New Zealand, the Philippines, and the western U.S. Presentation at the University of Auckland, New Zealand, March, 2000.
- In addition to the publications listed above, a number of manuscripts are in preparation for submission as refereed book chapters and refereed journal articles.

PERSONNEL

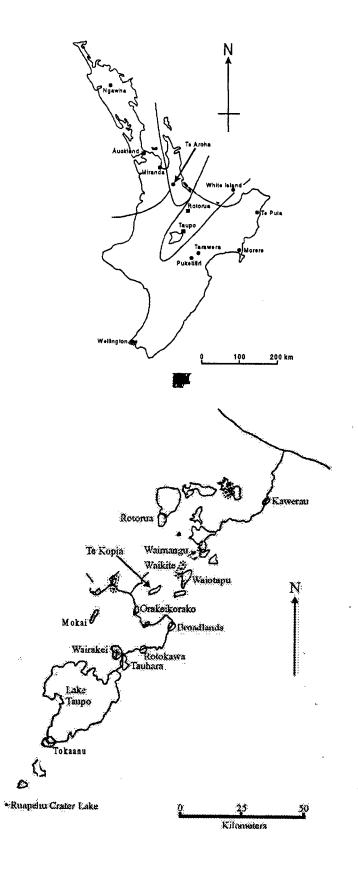
The key personnel on the project were the following: the PI, Scott A. Wood; co-PI's Kevin Brown and Greg Arehart; and postdoctoral researcher William Shannon. In addition, several undergraduate and graduate laboratory assistants have been employed as irregular

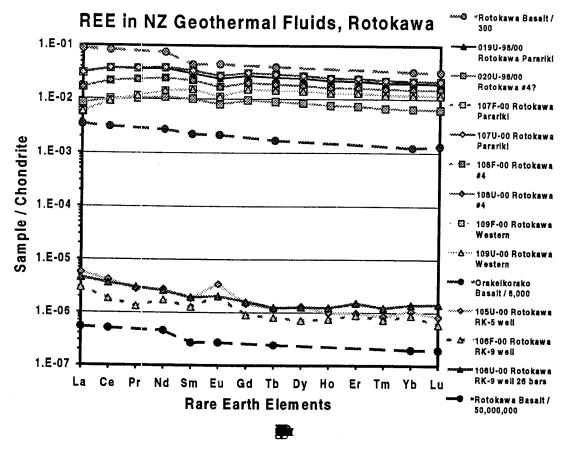
help throughout the project (Chad Ross, Brittany Brown, Shara Leavitt, Erik Makus, Xiaoping Jin, Kate Fulcher, Anne Taunton, and Bethany Armstrong).

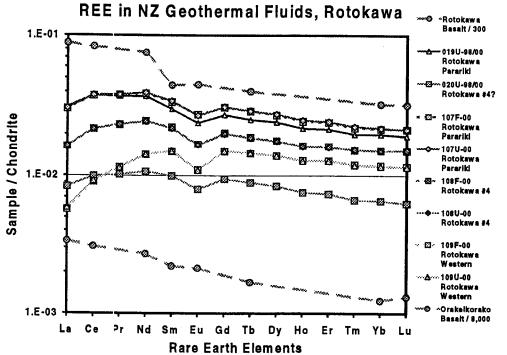
ACKNOWLEDGMENTS

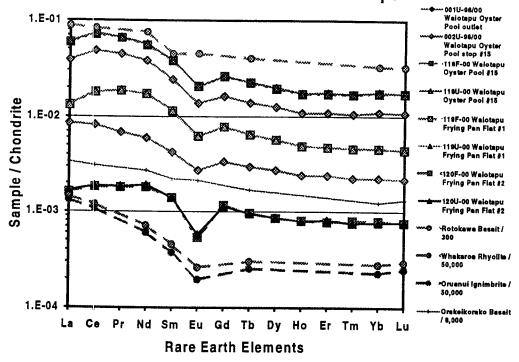

The project has benefitted from the assistance of a number of people who were not paid from project funds including: Ken Johnson, Ziya Cetiner, Leslie Baker, Charles Knaack (Washington State University), Lew Bacon (Contact Energy Ltd-Wairakei), Bruce Christianson (IGNS-Wairakei), Mike Crump (IGNS-Wairakei), Andrew Rae (University of Tasmania), Dick Benoit, Stu Johnson and Kevin Johnson (Oxbow Power), Joe Moore (EGI – University of Utah), Will Osborne and Melinda Wright (Cal Energy), Sergio Cabanas and Dave Zinn (Ogden Geothermal) and Randy Mariner (U.S.G.S.). We are also indebted to the numerous property holders in New Zealand, Oregon and Idaho who permitted us to access hot springs on their property.

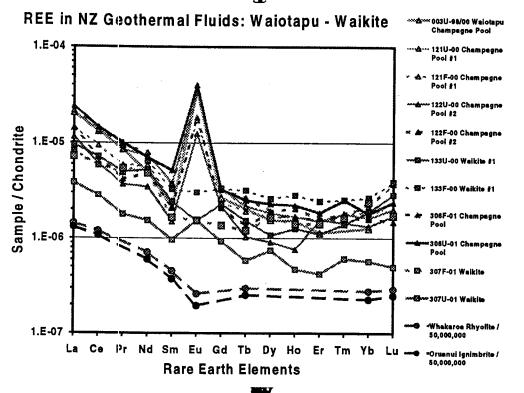
REFERENCES

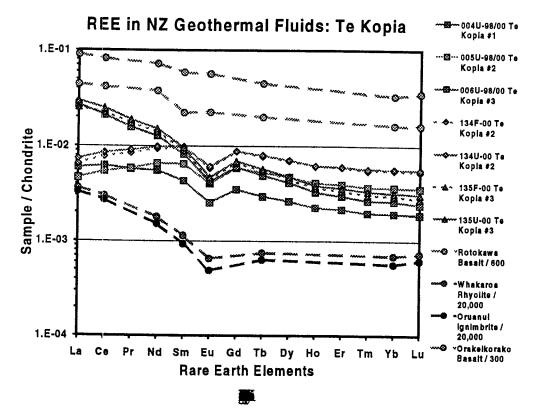

- Aggarwal, J. K., Shabani, M. B., Palmer, M. R., and Ragnarsdottir, K. V., (1996) Determination of the Rare earth Elements in Aqueous Samples at Sub-ppt Levels by Inductively Coupled Plasma Mass Spectrometry and Flow Injection ICPMS. *Analytical Chemistry* 68, 4418-4423.
- Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., and others (1988) Chemistry of hot springs on the mid-Atlantic Ridge. *Nature* 335, 514-518.
- Fournier, R. O., and Potter, R. W. (1982) A revised and expanded silica (quartz) geothermometer: Geothermal Research Council Bulletin, v. 11, p. 3-9.
- Honda, T., Oi, T., Ossaka, T., and others (1989a) Determination of rare earth elements in hot spring and crater lake waters by epithermal neutron activation analysis. *Jour. Radioanal. Nucl. Chem.* 133, 301-315.
- Honda, T., Oi, T., Ossaka, T., and others (1989b) Determination of praseodymium, neodymium and erbium in hot spring and crater lake waters by neutron activation analysis incorporating the standard addition technique. *Jour. Radioanal. Nucl. Chem.* 134, 13-25.
- James, R. H., Elderfield, H., and Palmer, M. R. (1995) The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic Ridge. *Geochim. Cosmochim. Acta* 59, 651-659.
- Klinkhammer, G., German, C.R., Elderfield, H., Greaves, M.J. and Mitra, A. (1994) Rare earth elements in hydrothermal fluids and plume particulates by inductively coupled plasma mass spectrometry. *Mar. Chem.* 45, 179-186.
- Lepel, E.A., Laul, J.C., and Smith, M.R. (1989) Rare earth element patterns in briny groundwaters (analog study). Rad. Waste Manag. Nucl. Fuel Cycle 13, 367-377.
- Lewis, A. J., Palmer, M. R., Sturchio, N. C., and others, (1997) The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. *Geochim. Cosmochim. Acta* 61, 695-706.
- Michard, A. (1989) Rare earth element systematics in hydrothermal fluids. *Geochim. Cosmochim. Acta* 53, 745-750.
- Michard, A., and Albarède, F. (1986) The REE content of some hydrothermal fluids. Chem. Geol. 55, 51-60.
- Michard, A., Beaucaire, C. & Michard, G. (1987) Uranium and rare earth elements in CO₂-rich waters from Vals-les-Bains (France). Geochim. Cosmochim. Acta 51, 901-909.
- Michard, A., Albarède, F., Michard, G., Minster, J.F. and Charlou, J.L. (1983) Rare-earth elements and uranium in high-temperature solutions from the East Pacific Rise hydrothermal vent field (130N). *Nature* 303, 795-797.

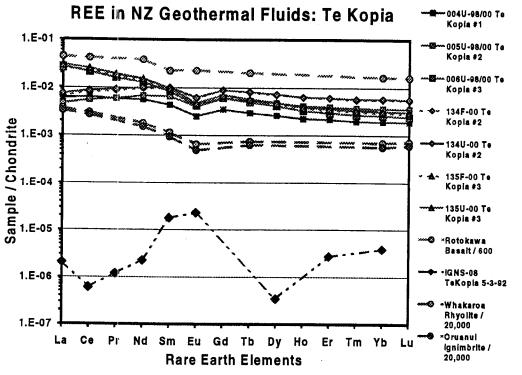

- Minczewski, J., Chwastowska, J., and Dybczynski, R., (1982) Separation and Preconcentration Methods in Inorganic Trace Analysis, Ellis Horwood Series in Analytical Chemistry, Translation Editor M.R. Masson, John Wiley and Sons, Halsted Press, 543 pp.
- Mongillo, M. A., and Clelland, L. (1984) Concise Listing of Information on the Thermal Areas and Thermal Springs of New Zealand, D.S.I.R. Geothermal Report No. 9, 228 p.
- Oi, T., Kikawada, Y., Honda, T., and others (1990) Determination of the lanthanoids in a neutral hot spring water by neutron activation analysis. *Jour. Radioanal. Nucl. Chem.* 140, 365-377.
- Piepgras, D.J. and Wasserburg, G.J. (1985) Strontium and neodymium isotopes in hot springs on the East Pacific Rise and Guaymas Basin. Earth Planet. Sci. Let. 72, 341-356.
- Reed, M.H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. *Geochimica et Cosmochimica Acta* 46, 513-528.
- Sanjuan, B., Michard, A., and Michard, G. (1988) Influence of the temperature of CO₂-rich springs on their aluminium and rare-earth element contents. *Chem. Geol.* 68, 57-67.
- Shabani, M. B., Akagi, T., Shimizu, H., and Masuda, A., (1990) Determination of Trace Lanthanides and Yttrium in Seawater by Inductively Coupled Plasma Mass Spectrometry after Preconcentration with Solvent Extraction and Back-Extraction. *Analytical Chemistry* 62, 2709-2714.
- Shabani, M. B., Akagi, T., Shimizu, H., and Masuda, A., (1992) Preconcentration of Trace Rare-Earth Elements in Seawater by Complexation with Bis(2-ethylhexyl) Hydrogen Phosphate and 2-Ethylhexyl Phosphate Absorbed on a C₁₈ Cartridge and Determination by Inductively Coupled Plasma Mass Spectrometry. *Analytical Chemistry* 64, 737-743.
- Sherrod, D.R., Ingebritsen, S.E., Curless, J.M., Keith, T.E.C., Diaz, N.M., DeRoo, T.G., and Hurlocker, S.L. (1996) Water, rocks, and woods A field excursion to examine the geology, hydrology and geothermal resources in the Clackamas, North Santiam, and McKenzie River drainages, Cascade Range, Oregon. Oregon Geology 58, 103-124.
- Simmons, S. S. (1995) A Field Guide to the Hydrothermal Systems of the North Island, New Zealand: Active and Extinct Epithermal Environments, Pacrim '95 Congress, Auckland, New Zealand, November 20-22, 1995, 105 p.
- Sverjensky, D.A. (1984) Europium redox equilibria in aqueous solution. *Earth Planet. Sci. Let.* **67**, 70-78. Taylor, S. R., and McLennan, S. M., (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publ., Oxford, England, 312 p.
- van Middlesworth, P. E. and Wood, S. A. (1998) The aqueous geochemistry of the rare earth elements and yttrium. Part 7. REE, Th and U contents in thermal springs associated with the Idaho Batholith. *Applied Geochemistry* 13, 861-884.
- Wood, S.A. (1990) The aqueous geochemistry of the rare earth elements and yttrium. Part II. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturated water vapor pressure. *Chem. Geol.* 88, 99-125.

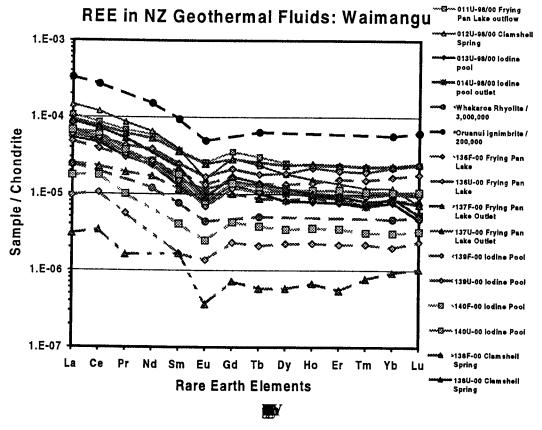

REE Detection Limits in Geothermal Fluids

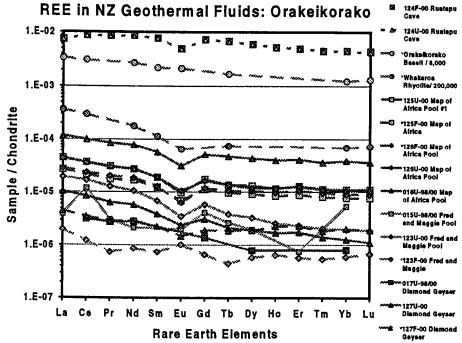


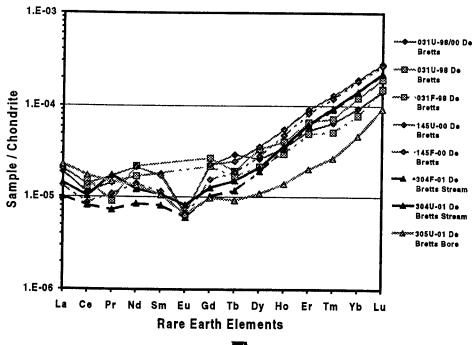


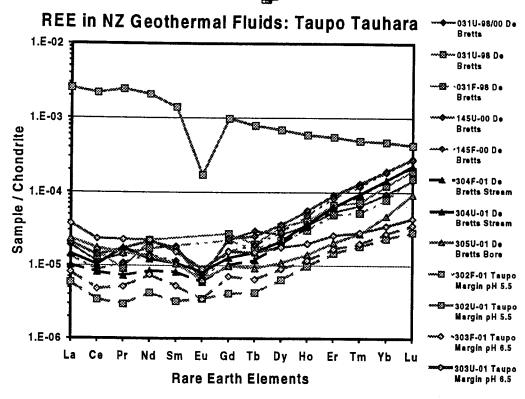


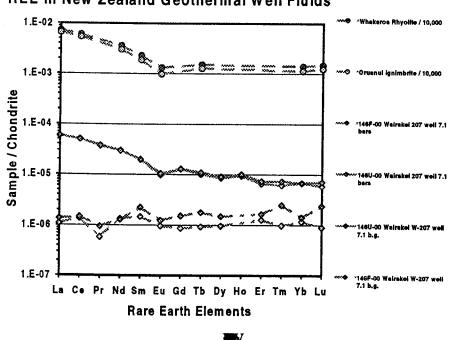

REE in NZ Geothermal Fluids: Waiotapu



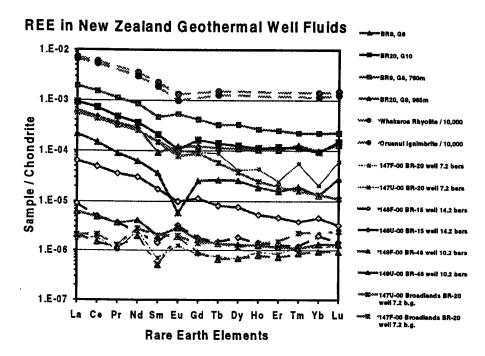


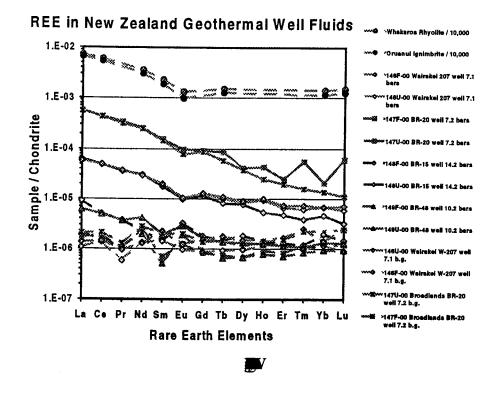


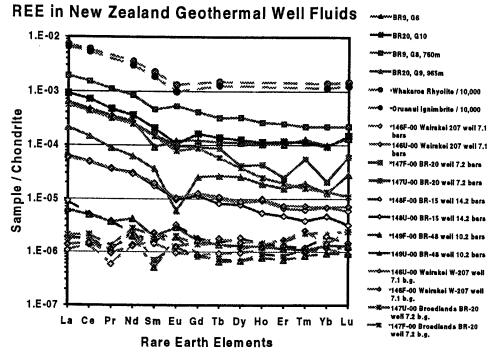


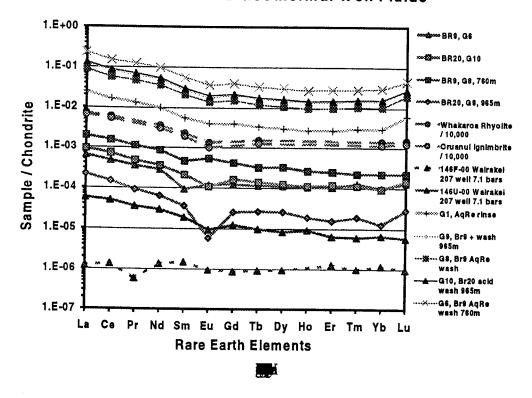


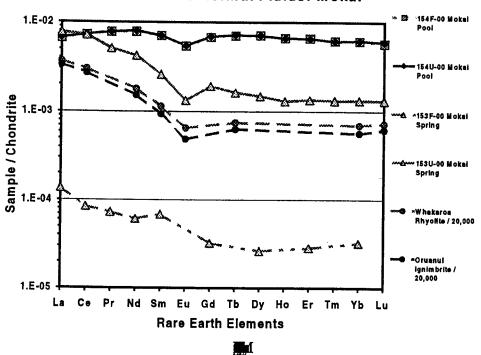
REE in NZ Geothermal Fluids: De Bretts

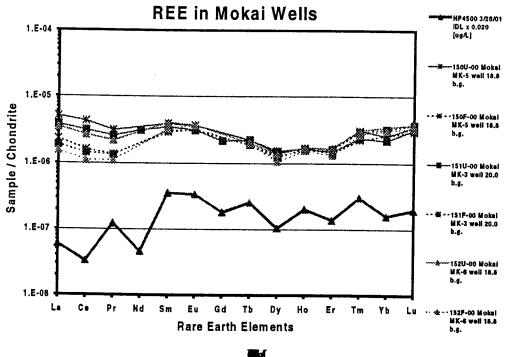



REE in New Zealand Geothermal Well Fluids

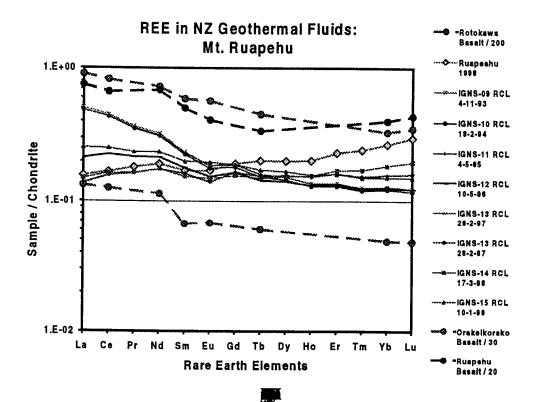




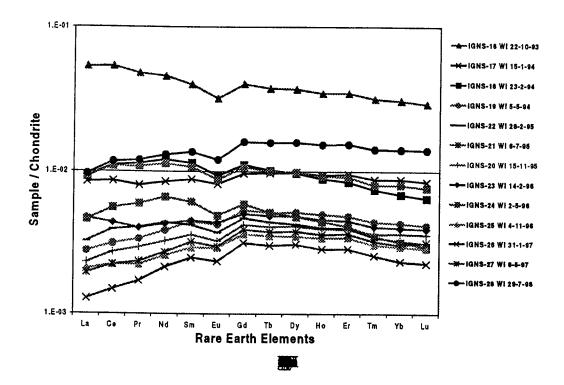


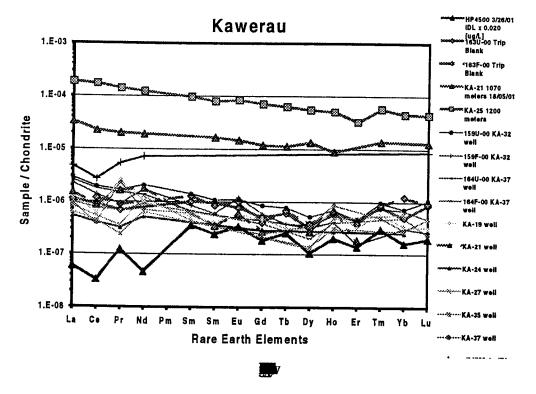


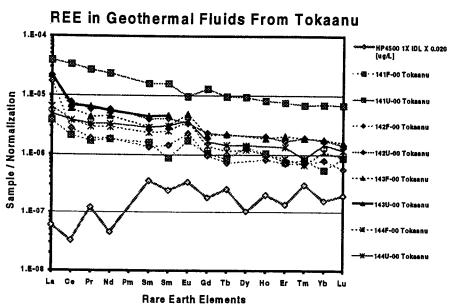
REE in New Zealand Geothermal Well Fluids

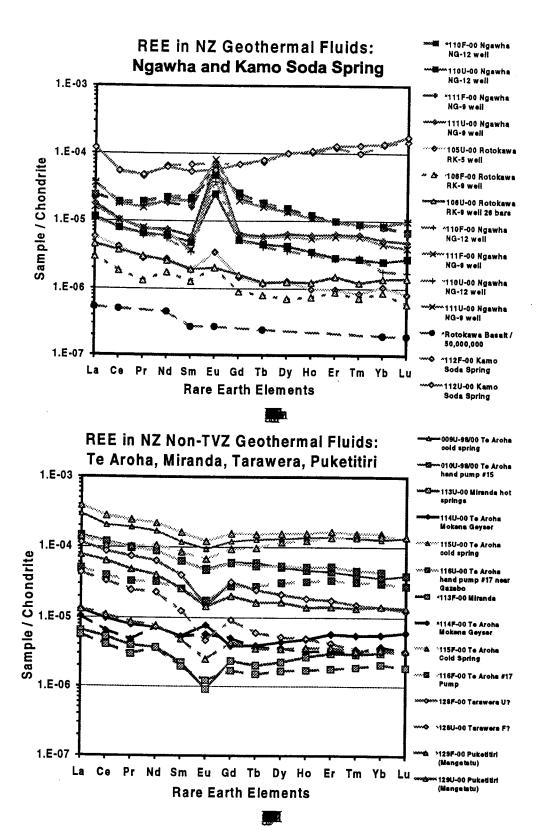


REE in NZ Geothermal Fluids: Mokai

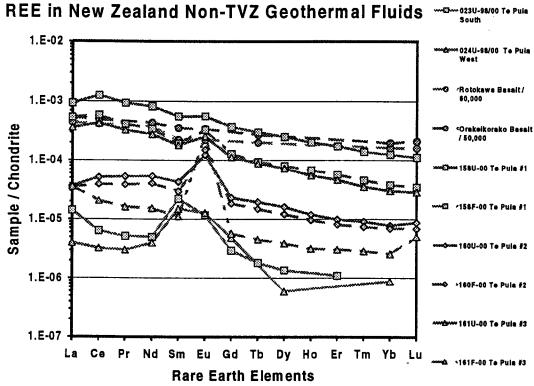


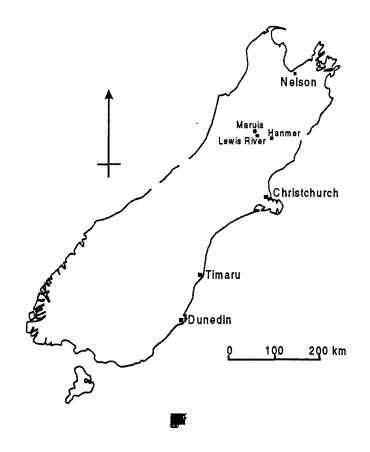


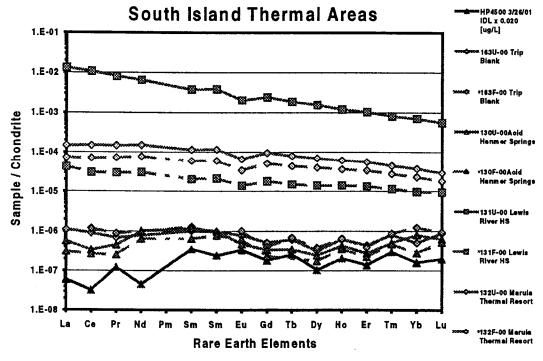


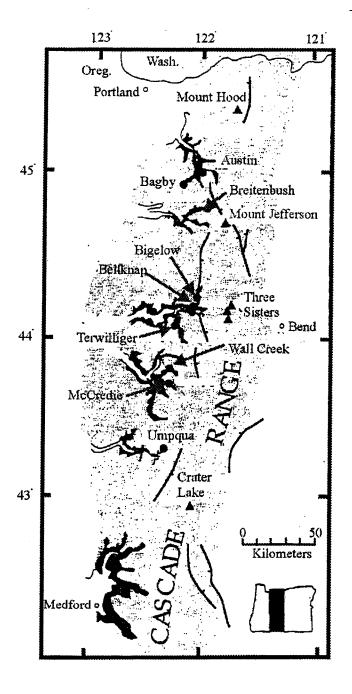


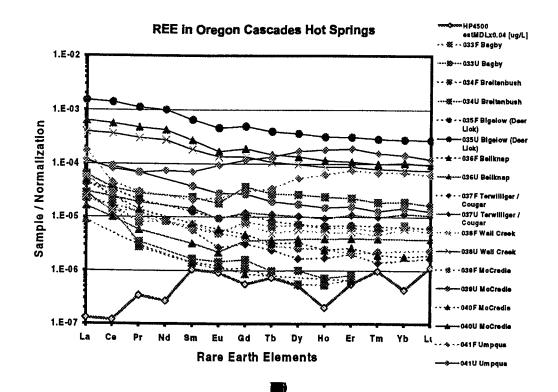
REE in IGNS Library Geothermal Fluid Samples From White Island

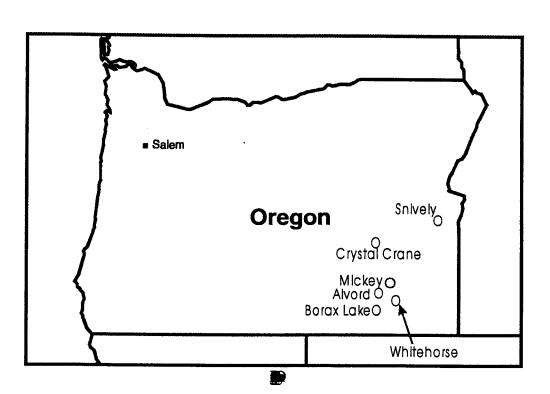


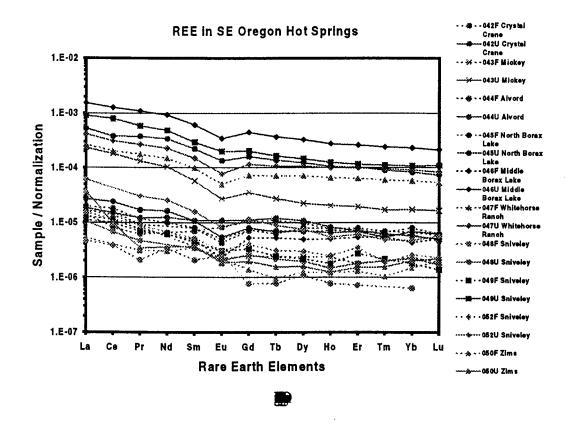


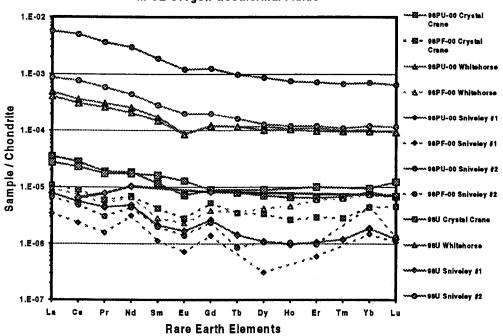


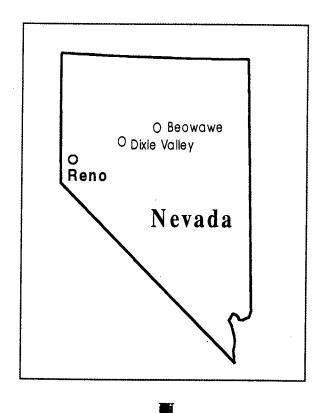


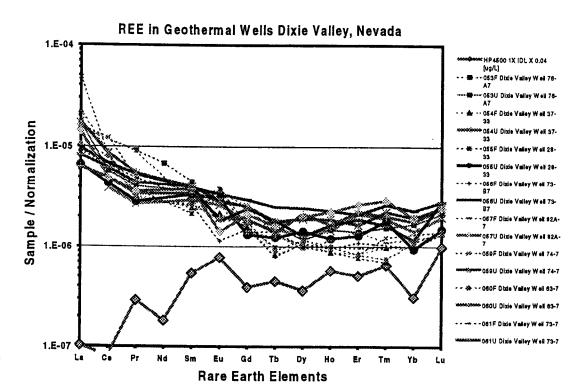


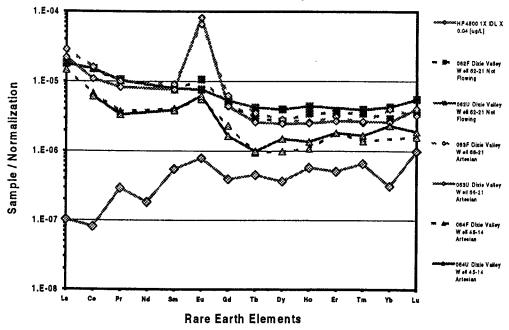


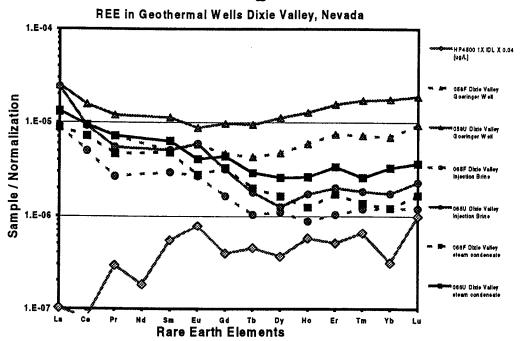


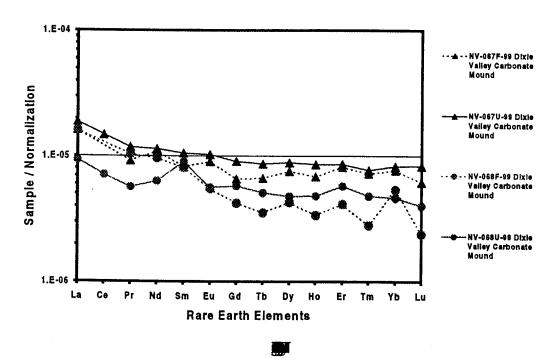


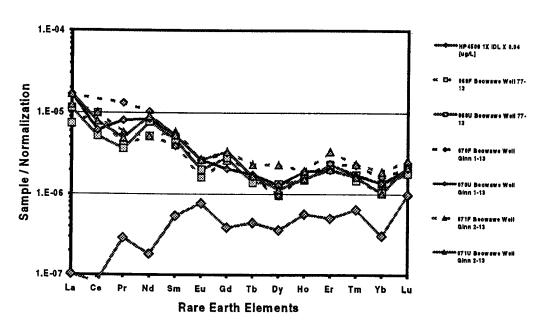


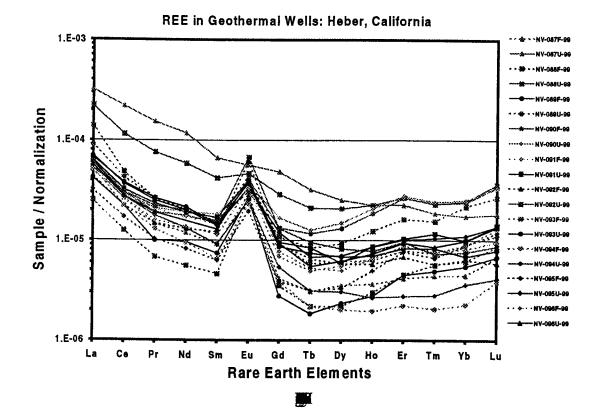


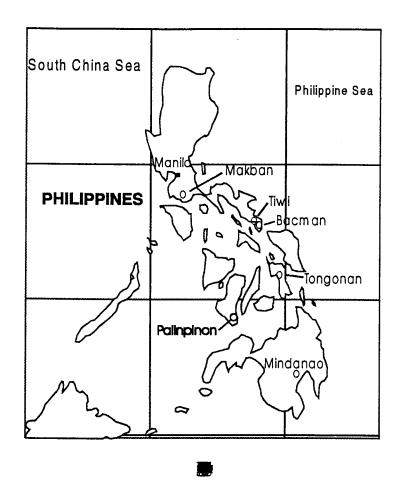


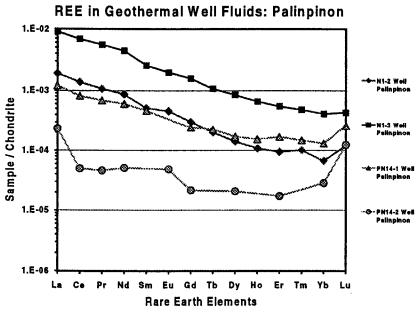









Carbonate Mounds, Dixie Valley, Nevada



REE in Geothermal Wells - Beowawe, Nevada

	a	.				n (6		_ 10						_	Δ1	_	_	•	_	v	.,				•	_	' 0	_	v	v	_	v		,			•	•								
-						. ~														_	_							_					_													
두																																														
>	137	, r	5 6	2 7		586	1 69	2 5	3.56	200	14	167	7.64	34.9	6.93	220	311	652	77.9	10.4	96	621	20.4	30.9	177	46.4	238	693	٧	52	17.7	۷ (0.0	=	9.48	295	20.1	14.8	6.77	40.8	24	22.8	22.8	217	18.2	
3	٧	′ \	195	0 534	100		} \	0 122	0538	0.347	0.169	2.42	9.00	0.408	0.062	3.03	1.97	3.91	2.37	٧	0.881	8.59	V	v	2.65	967.0	3.41	4.52	v	v	V	V	v v	· •	٧	1.48	0.202	0.201	90.0	0.533	0.14	0.162	0.184	2.37	16	
Ϋ́																																														
T																																														
Ē	266042	90000		obore	0000	2000000	oore	· const																			****	an ara																		
***************************************																												<u></u>																		
유	0.038	0.051	0.44	-	0 46	22	0.049	0.27	0.12	0.67	0.36	6.2	0.17	1.0	0.17	8.2	4.4	5	4.6			2		0.89	6.4	4.1	8.4	13								3.9	0.51	0.46	0.16	4.1	0.5	0.59	0.5	7.5	20.0	2
Ą	0.177	0.321	2.26	8 41	25.0	117	. •	1.24	0.535	3.34	1.82	31.4	0.838	5.6	1.07	43.3	17.1	54.3	20.7	1.49	9.48	19	2.71	4.25	32.3	6.1	41.2	54	1.23	2.71	3.32	1.31	1.89	1.25	٧	17.8	2.21	2.28	0.759	7.14	3.16	3.48	2.56	39.7	1	2
2	٧	0.0466	0.313	1 29	0.394	18.8	٧	0.176	0.114	0.522	0.236	5.1	0.136	0.937	0.15	7.01	1.6	6.33	4.27	٧	1.69	18.3	V	0.854	5.21	1.28	7.45	6.81	٧	٧	V	v '	/ V	٧	V	0.888	0.337	0.322	0.112	1.29	0.511	0.566	0.295	6.52	2700	047
3	0004	00000	00000	0004		000000	00000	90004	50555	e de la compansión de l	50000	Server				Verev		var.										erene.																		
Eu				×								***			***		***							***																						
100000000000	9994	00420	MASK.	× 222	8420	*****	 ::22:0	00000	20000	00000	00000	00000	20000	30050	some.	55556	swee.	enero.		en en	enner	conso	esses		onese.	55555		onen		90000	20000		ooonn	ener.			w	····								
ES							****		***																	***	***									***		***		***	***	***				
2						M.					***					***																														ě
ģ	0.335	0.423	0.972	3.4	257	137	0.362	0.707	1.53	2.31	1.62	37	1.27	8.41	1.69	57.1	3.63	8.26	11.6	V	3.41	130	•	2.29	35.5	8.13	57.8	a	V	V ;	1.83	۷ 5	<u> </u>	V	0.85	2.7	1.42	2.06	_	16.2	0.748	1.48	1.12	46.1	0000	770.0
రి	16.9	10.2	13.4	28.3	56	1120	٧	8.02	13.7	v	10.8	293	23.1	72.9	V	449	36.1	65.3	46.6	8.03	26.2	1080	7.9	38.7	285	73.2	466	68.8	15.7	11.5	8 ;	15.7	8.87	20	36.9	30.6	14.6	19.3	1.1	147	6.53	12.1	42	308	0 10	
P	19.8	8.8	6.95	19.6	13.3	460	2.75	5.01	7.07	9.3	7.64	122	17.2	v	14.3	195	53.7	35.7	17.5	٧	ଷ	452	٧	9.97	120	38500	210	41.5	18.1	V (10.9	۷ ۱	/ v	15.3	10.3	48.1	6.11	8.34	5.2	23	4.52	5.7	4.87	166	607	3
			pnet	progr	Q,	ğ	٠	. 9	der/	ger!	¥	À	유	흥	.	욯	•	s	ator,		vish v		•	Ĭ			•	_		Ę		. :	Ε¥				ē	Cra					ora	Soran	-	5
Sample Description	033F Bagby	033U Bachy	034F Breitenbust	034U Breitenbust	035F Bloslow (De	036U Bigelow (De	036F Belliane	036U Bellkmap	037F Terwilliger	037U Terwilliger	038F Wall Creek	038U Wall Creek	039F McCredio	039U McCredle	040F McCredie	040U McCredle	041F Umpqua	041U Umpqua	wberry Cr	USS Bagby	U34 Breitenbush	USS Bigolow	U36 Bellimap	US7 Terwilliger	U38 Wall Creek	USB McCredie	U40 McCredle	U41 Umpqua	F33 Bagdby	F34 Breitenbush	F35 Bigolow	F36 Bellimap	F38 Wall Creek	F39 McCredle	F40 McCredie	F41 Umpque	042F Crystal Cras	M2U Crystal Cra	DASF Micky	043U Micky	DAKF Alvord	D44U Alvord	245F North Bora	045U North Bora	ASSESSMENT DAY	
	589	88	8	88	960	96	85	80	03)	033	88	88	980	888	3	20	3	3	ateiNe	Š	28	Š	Ŝ	OS)	Š	Š	3	3	2	Z	2		2	F36	ž	Ξ	25	25	2	3	3	3	3	945	970	3
Sample ID	OR-033F-98	OR-033U-98	OR-034F-98	OR-034U-98	OR-035F-98	OR-035U-98	OR-036F-98	OR-036U-98	OR-037F-98	OR-037U-98	OR-038F-98	OR-038U-98	OR-039F-98	OR-039U-98	OR-040F-98	OR-040U-98	OR-041F-98	OR-041U-98	Newberry Crate Newberry Crater,	OR-033U-98	OR-034U-98	OR-035U-98	OR-036U-98	OR-037U-98	OR-038U-98	OR-039U-98	OR-040U-98	OR-041U-98	OR-033F-98	OR-034F-98	OH-U35F-98	OR-US61-98	OR-038F-98	OR-039F-98	OR-040F-98	OR-041F-98	OR-042F-98	OR-042U-98	OR-043F-98	OR-043U-98	OR-044F-98	OR-044U-98	OR-045F-98	OR-045U-98	OB-MARE-DR	2
		_			_			_		_	_		_	_						-			_		_	_	_	-	_	_	_					_				_	_	_	_	_		
Analysis Date d-m-y	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Oct-00	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	22.Eah Ot	
Quality D	good 2									good 2:		good 2:		good 2	good 23	good 2		good 2	-		•													fair 13		fair 1	•	good 2	good 2	good 2	••	good 2	•	•	2	•
ő	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	70	70	10	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	îa	ţ	<u>ra</u>	2	. مع	≝,	~ .	<u>.</u> .	5 t	: 🚾	fa.	Ē	Ē	g	8	8	8	8	8	8	ğ	5	D

n.a. Not Analyzed < Less Than MDL

																								_	_			_				_								_	_	_	_	_	.,		_	_	
-	6.82	9.61	0.332	0.374	161	254	12	12.9	0.0844	0.142	0.0968	0.314	0.0789	0.0553	2.48	16.3	2.73	92.9	25.3	22.7	2 2	200	. J. J	0.07	6.7	٧	247	1.7	4.05	3.86	8	2.69	1.83	6.4	٧	167	7.	0.61	0.93	161	159(168(193(1.0	•	1.2	1.3	0.848	
두	25.5	39.5	0.818	1.07	0.899	59.4	1.49	4.32	0.0432	0.0458	0.0412	\ 	0.0444	0.043	V	٠,	1.96	36	287	1.53	1 7	306	29.0	81 :	40.7	1.18	58.4	4	3.09	4.24	1.03	2.53	٧	26.4	0.611	0.623	1.17	0.528	-	60.1	37.1	28.2	39	1.39	٧	0.943	1.22	1.76	
>	150	225	1.62	3.81	4.17	242	5.29	14	7.16	14	7	244	0.785	2.09	1.32	1400	22.6	7	34.8	6 66	0.75	2.70	D 2	279	8	12.3	5 58	21.8	21.4	8.7	26.4	21.4	19.8	137	4.97	5.24	6.77	2.27	3.39	27.1	7.29	117	152	11.2	٧	3.58	3.62	3.87	
3															_				_					_			_			.,	.,	.,	.,		.,	.,	.,			_	_	_		.,	.,		٠,		
Ą.				_	_		_							_															_					_													٠.	_	
Ē																																																	
E																							eren.		erenne.	eren.	www.	anne.	00000	2000	****	200	3555	2000	2200	2000	93300	20000	222		22.20	2000	0.000	0200	****	2020	w.v	2020	
																																		***		***								***	***				
웃																																		_				_				_				_			
5																											_							_				_							٠.	_	٠.	_	
욘	3.34	5.07	0.0367	0.102	0.113	7.79	0.144	0.42	0.16	0.378	0 472	2 2	3 '	0.0682	140		? \ F	*	5	200	9.0	۷ 6	77.0	17.3	5.56	٧	7.69	٧	٧	•	٧	•	•	2.37	•	•	•	0.0453	0.0732	•	2.41	3.87	7.8	•	•	0.0493	•	0.078	
P 5	18.7	30	283	990	0.853	2	70	292	*	6 R	600		ğ	1 1 1 E					2 6	•	•	۷ (9	2	8	2.92	23.7	3.67	234	1.39	2.59	2.56	٧	8	2.52	٧	1.82	0.359	0.5	15,2	12.8	12.7	35.1	OI OI	٧	0.506	٧	0.648	
Π	3.67	5.66	0.18	0.15	0.222	14.7	0 23	0.601	0.212	0 541	0 179	21.5	0543	124			200			9.70		97.	16.8	 6. 6.	6.27	V	14.8	0.909	**** V	V	2.29	1.2	 6.	4.15	V	···	V	0.161	0.134	6.53	8.01	7.45	13.6	1.07	····	0.363	····	0.203	
S.													_	•																																			
PN																																33333	83,688																
							**																***						***				***		***	**				**		×					***	0.492	
	163	_						, A																			979	49.9	13.6		5.39		8.24	50	V	60.9	15.7		7.98 0.			48.8					v	4.6	
రి				LG.				o ca	7 727								•		·		<u> </u>			_		< 5.21			۸ 5	89.	۸ ن	۸ م	89	74	v	<u>ق</u>	۸ 1 5							_	۸ 4		يو		
Ľ	83		•	3.2	3.47	283	4 73	5	67			2 (1)	•				1070			P. '					127		27.1	18.8	*			_	5	7				1.61	11.7			3 24.7				4.3			
e e	047F Whitehorse	247U Whitehorse	votovh	M8U Solvalev	Valevi	049U Snivelev	John	MEZU Sniveley	OR-042PF-98 Cov	OB MADE I AS CO.		OR-04/77-98 WIII	OR-04/20-36 WIII	OR OASPILOR SE		E STANTON	OH-ORNORS OF	oaz crystan cram	, .	z) Alvord	D .	Vord	U45 North Borex	U46 Middle Born	U47 Whitehorse	Iveley	Iveley	Iveley	F42 Crystal Gran	¥	p.o/	F45 North Borax	F46 Middle Borax	F47 Whitehorse	ivoloy	Veley	Ivoley	38	Ē	ID-01F-00 Jerry J	ID-01U-00 Jerry J	ID-02F-00 Jerry J	D-02U-00 Jerry			053F-98 Dixle Val	053F Dixle Valley	063U Dixie Valley	
Semple Description	047F W	W 0470	048F Snivelev	8 USF	040F Sniveley	8 D670	052E Srivedey	S 0.290	OB-042				1 2 2					757	U43 MICKY		U44 ANORG	4402 Alvord	U45 No	C46 K	U47 WI	U48 Sniveley	U49 Sniveley	U52 Sniveley	F42 CF	F43 Micky	F44 Alvord	F45 No	746 K	F47 W	F48 Sniveley	F49 Sniveley	F52 Sniveley	050F Zlms	050U Zime	10-01F	500	ID-02F	D-020	USo Zime	F50 Zlms	063F-0	053F	063U	
e D	86-	86-N	86.7	861	9	86-0	a d	8	PE A	3 9		8 2		90		96.1				OR-044U(1+2)-50 044(1+2) ANORA	5	02-98	0-98 1	98 -38	0-98	96-D	96-D	8 6 -0	F-98	F-98	F-98	F-98	F-98	F-98	F-98	F-98	F-98	-98	96-[8	8	8	8	96-D	F-98	F-98	F-98	86-7	
Sample ID	OB-047E-98	OR-047U-98	OR-048F-98	OR-04811-98	OR-049F-98	OR-049U-98	OBJOSSEAR	OR-052U-98	OB-042PE-98	OB 042BI 98		OR-04/FF-96	OR-047 PO-30	On-04671-90	OR-040PC-90	מיל היינו היינו	OR-049F0-30	OH-0420-80	OH-0430-98	100	OH-04401-98	OH-044U2-98	OR-045U-98	OR-046U-98	OR-047U-98	OR-048U-98	OR-049U-98	OR-052U-98	OR-042F-98	OR-043F-98	OR-044F-98	OR-045F-98	OR-046F-98	OR-047F-98	OR-048F-98	OR-049F-98	OR-052F-98	ID-050F-98	1D-050U-98	ID-01F-00	10-010-00	ID-02F-00	ID-02U-00	OR-050U-98	OR-050F-98	NV-053F-98	NV-053F-98	NV-053U-98	
Analysis Date d-m-y	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	23-Feb-01	01-Sep-00	Sop of Control	345	01-3ep-00	or Septon	or-Seption	01-Sep-00	po-dec-10	00-des-10	Se-Made	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	30-Aug-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	23-Feb-01	23-Feb-01	23-Oct-00	23-Oct-00	23-Oct-00	23-Oct-00	30-Aug-99	12-Apr-99	25-May-01	12-Feb-01	12-Feb-01	
Quality Da	23 23																							fair 30	fair 30	fair 30	fair 30	fair 30	fair 12		fair 12		fair 13	fair 13	fair 1;	fair 13	fair 13	good 23	•							_			
•																																																	

n.a. Not Analyzed < Less Than MDL

Þ	4 20	07.7	9.19	5. 5.	_	0.98	0.796	1 .6	0.744	1090	2000	8.39	0.532	0.933	0.719	1.29	0.699	7.09	6.28	0.517	0.308	0.396	0.372	1.83	1.06	1.87	2.11	ស	4.96	6.11	0.03	8.8	12	12.8	9.11	우 (1.13	1.04	V.19	v	v	1.37	2.44	15.2	10.7	6.01	9
두																														6 0.8																	1 2 4 4
>	2																													4.16													< 22.	< 52.	^	> 33.	96
3			_		_	_	_	_	_				_	_	-															3 0.0701													v	<u> </u>	v	v	
Ϋ́																														19 0.343								v	∵	× 2.6	v	v	v	< 2.0	v	v	
T																														62 0.0749								2	3	10	8	•	¥	3	٧		300
Ē	***									***								***												0.122 0.512			****			****		****		****	****				*****	••• •	
کر ہ																														0.313 0																2.94	
<u>م</u>																														0.0779 0															٧	٧	
																														2980															4	200	
n D		0.159	0.192	0.279	0.223	0.0838	0.246	0.263	0.105	0.431	0.64	0.189	0.214	0.138	0.144	0.275	0.134	0.776	0.564	4.81	6.01	0.408	0 45R	0 198	0.437	0.204	0.301	0.119	0.15	0.196	0.197	0.203	0.659	0.754	0.402	0.413	v	V	v	V	1.65	8.47	×	V	V	*** V	,50
Sm		0.476	. 0.57	0.417	. 0.649	. 0.503	0.764	0.553	47.0	98 C	6	į	0.78	0.519	990	0.603	0.779	4.48	i.	178	8 7)	0 780	67.0	0.676	900	3	78.		***	0.771		***			***					×	¥	v 	· ·	v w	× ×	. a	
PN		× •					¥.	· ·	9	. 9				' '	· · ·	7	7			 			2 2	9 5	4 0		88			59 6.19																	
Ŧ		_																												< 1.59		80.8		, 1			3.91 0.										
రి			< 3.13	14.8 6.6	2.06 3.48		2.97 5.55		4.37 3.98		773 126			3 28 6 45			257 499		5.40 121			,	•	/8.4 v ac		•						3.84					۸ ښ	9	10.3 12								
La		ley 6.88	Ē,		_		CAI.								_						•																<u>•</u>	. <u>•</u>				_				. Y	, k
Sample	in aduna	054F Dixie Valley	054U Dixie Valle)	055F Dixte Valley	055U Dixle Valley	056F Dixte Valley	056U Dixie Valley	057F Dixle Valley	057U Dixle Valley	OSSE Obte Valley	ocel Dixle Velloy	OSOU DIANG VALIEY	OFOI Dixle Valles	OSOE Disde Valley	OGO! Divis Valle	ORTE Dixte Valley	06111 Dixle Valler	OERE Dixle Valley	ocali Dista Vallos	DESE Dixle Valley	oest Dixle Valley	OCAE Diele Valley	OGGE DAME VE	OGGO DIXXO VALIGO	USOF LIKE VAILEY	SECULIANO VIDEO	O6611 Davis Valley	069F Beowawe M	Memman 1	070F Becwave W	070U Beowawe M	071F Beowawe W	0710 Beowawe w	NV-06/1-99 Dixie	NV-068F-09 Divis	NV-068U-99 Dix	U60 Dixe Valley	U61 Dixle Valley	U62 Dixe Valley	U63 Dixe Valley	USA Dixto Valley	USE Dixie Valley	1166 Divis Valley	U67 Dixto Valley	USB Dixle Valley	He Bourage 95	CON Decree
Sample ID	_	NV-054F-98	NV-054U-98	NV-055F-98	NV-055U-98	6F-98	NV-056U-98	NV-057E-98	NV-057U-98	NV-058E-08	NV OFFIL OF	NV 0505-08	NV-05911-98	NV OCOE OR	NV-060 1-98	NV-061E-08	NV-06111-98	NV-062E-08	06-1700-NN	NV 063E-08	NV 06311.08	NV 064E 08	96-17-	NV-0040-88	NV-05511 00	NV-Occi og	NV-06611-08	NV-069F-98	NV-069U-98	NV-070F-98	NV-070U-98	NV-071F-98	86-01/0-AN	NV-06711-89	NV-OFRE-99	66-0890-AN	66-U090-VN	NV-061U-99	NV-062U-99	66-DE90-AN	NV-064[1-99	66-0590-AN	66-050-VN	66-090-AN	66-0 (90-AN	NV-06011-09	のなりもの
																													_	_		_ `															_
Analysis	Date d-m-y	12-Feb-01	12-Feb-01	12-Feb-01	12-Feb-01	12-Feb-01	12-Feb-01	12-Fab-01	12-Feb-01	12 Feb 01	12-rep-04	12-Feb-01	12 Eab 01	12-Feb-01	12 Eab 01	12 Eab 01	12 Eath 01	42 Eab 04	10 704 04	10 40 50	12-rep-0	12-1-60-01	12-Feb-0	12-1-01	12-Feb-01	12-1-01-21	12-Feb-01	12-Feb-01	12-Feb-01	12-Feb-01	12-Feb-01	12-Feb-01	12-Feb-01		Se land	26-Jan-01	03-Sep-99	03-Sep-99	03-Sep-99	03-Sep-99	03-50-00	03-Sep-99	2-Cep-00	03-Cap-99	03-Cap-00	400.00	カルムのクラウ
Quality		poob	9 000	9 00	0000	0000	000		5	3 6	3	5	3 6	3	3 6	3 6	3 6	3	5	3 7	5	6 6	6 6	0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	000	3 50 50 50 50 50 50 50 50 50 50 50 50 50	3 6	5 6	poo6	boog	9006	0 0 0 0	8 6	3 6	8 8	fair	ĮĘĮ	Į.	<u> </u>	<u> </u>		<u> </u>			181 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Tall

n.a. Not Analyzed < Less Than MDL

¬	10.8	'	٧	٧	٧	٧	1170	٧	11.5	6.24	w	5.74	9.52	٧	٧	5.92	v	٧	1080	7.57	٧	٧	5.52	٧	٧	0.984	0.896	11.9	8.49	0.268	20.2	2.56	6.87	0.393	0.465	0.216	2 6	0.203	0.010	0.523	0.234	0.372	0.111	0.202	0.23	0.642
두	1.15	2.23	2.14	0.724	1.06	0.92	1.17	1.23	1.29	1.18	0.817	٧	1.07	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	0.335	0.78	1.24	1.22	0.339	0.647	924.0	696.0	0.203	0 22	131	0.254	0.54	0.175	0.344	0.197	696.0
>	34.9	24.5	20.4	17.6	21.4	24.3	37.8	8	36	21.4	5.4	5.64	7.74	4.17	4.17	V	٧	4.51	17.6	5.61	6.13	4.32	우	13.8	7.32	6.59	4.31	18.8	12	16	73.3	34.8	65.2	16.7	27.3	32.1	5 6	30.6	28.4	36.7	30.8	31.3	19.3	21.6	19	40.3
3	٧	٧	٧	٧	0.85	1.01	٧	0.886	v	٧	v	v	٧	v	V	٧	v	v	٧	V	٧	٧	٧	0.8	٧	٧	٧	٧	٧	0.218	0.58	0.868	1.18	0.22	0.359	- 1	2 6	0.451	0.19	0.284	0.278	0.256	0.123	0.132	0.38	0.44
Ϋ́																																		1.15												
Ę	v	v	٧	٧	v	v	v	v	v	v	v	v	v	v	v	v	v	٧	v															0.158												
i	\$	٧	٧	٧	56	8	583	٧	٧	8	٧	٧	٧	٧	٧	٧	٧	٧	52	00000	00000	900420	00000	00000	oonse	80000	55555	esses.	00000	00000	00000	00000	ovens.	1160	40000							w				
	v																														₩			0.197 0.												***
웃			_			_			_																																					
5	۸ ک	2.	2.0	۸ .:	3;	α ν	; v	× 2.5	3.3	× 5	v	v	v	v	v	v	<u>~</u>	v	.:	v	v	v	A 1.5	^ 21	^	v	v							2 0.752												
<u>e</u>	2000000	00000	00000	04240	10000	12000	2000	50500	o.co	2000	****														*****		****	****						0.0872												
9	2	£	8	282	7:	(8)	7.89		* 28	4.77	•	•	v	N		242	28.3	2	2.85	2.08	121	##"	4.57	•	241	=	1.76	3.83	3.3	. .	*	4.13	8.46	8		í	·	382	341	4.37	2.97	3.69	2.19	2.75	.	ę,
Ēu	V	14.8	2.74	2.89	17.9	16.9	9.15	14.1	3.2	1.42	V	٧	٧	V	V	V	V	V	٧	٧	1.02	1.08	٧	٧	٧	٧	٧	٧	٧	2.09	4.18	2.27	3.45	1.95	3.56	2 6	27	2 91	4.53	'n	1.93	2.75	1.7	1.88	1.43	2.47
ES	٧	v	٧	٧	٧	٧	٧	٧	٧	V	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	1.76	13.1	3.18	8 23	3.45	9	3	2	2 c	236	298	0,901	2.81	1.27	1.79	2	273
P	222	#	14.3	4.69	10.5	16.2	=	12.3	809	7 d	3.96	6. T	2 2 3	- +	8 7	90	4.92	7	* *	4 .09	 •	rð.	4.95	15.3	6.15	5.71	3,53	5.73	6.25	7.13	70.3	٧	**	5.76	: :	7	6 91		2	2	3.34	12.9	8.68	7.92	3	2
Ā	1.03	0.873	1.19	1.25	1.45	1.57	9.1	1.76	1.17	 6.	···	1.29	**** V	**** V	**** V	**** V	**** V	**** V	*** V	**** V	**** V	v	0.884	0.934	v	**** V	**** V	v	0.758	1.79	18.7	3.18	9.28	1.22	7. C	2 57	25	2.8	1.81	2.69	0.829	3.24	1.59	2.16		3.07
ల	6.04	3.93	3.83	4.18	5.24	4.2	7.36	7.14	5.61	4.56	9.9	195	6.08	24.1	15.5	3.42	4.4	92.4	11.4	7.48	4.2	29.8	20.8	10.1	4.09	2.55	3.41	25.4	28.1	21.1	176	39.5	93.4	18	24.5	333	7 96	26.2	8	24.4	10.2	30.7	18	27	13.9	5 8.8
و	v	v	20.9	v	V	10.8	v ;	9.55	v	٧	v	v	v	v	V (10.8	v	v	v	v	v	v	v	11.8	v	v	v	v	٧	16.9	97.7	£3	68.8	13.1	16.5	186	17.4	20	13.6	19.1	7.84	21.2	16.2	8	유 :	8
	ş	alley	alley	alley	alloy Y	alley	<u>}</u>	alley	alloy .	2	•	•	2 :	je S	À.	, <mark>1</mark> 6	<u> </u>	<u>></u>	ž	Hey	Hey	Hey	Hey	Hey	Hey	.	Hey (alley (dley (7, 20	7, 20	9, Zo	9, Zo	11, z		7 8 7	16. Z	16, Z	14, Z	14, Z	12, Z	12, Z	10, Z	10, Z	8, Zo	, ,
Sample Description	U71 Beowawe	US3 Dixio Valley	U54 Dixio Valley	USS Dixto Valley	US6 Dixie Valley	US7 Dixde Valley	USB Goeringer W	U69 Dixio Valley	U68 Dixle Valley	UGB Beowawe	F69 Beowawe	F70 Beowawe	F/1 Beowawe	F53 Dixie Valley	F54 Dixie Valley	F55 Dixie Valley	F56 Dixie Valley	TO THINK VALIDAY	F58 Goeringer W	P59 Dixle Valley	F60 Dixle Valley	F61 Dixle Valley	F62 Dixle Valley	F63 Dixle Valley	F64 Dixie Valley	F65 Dixte Valley	F66 Dtcle Valley (F67 Dtxle Valley (F68 Dixle Valley (Heber HGU#7, Zo	Heber HGU#7, Zo	Heber HGU#9, Zo	Heber HGU#9, Zo	Heber HGU#11, Z	Haber HGIII19 7	Heber HGU#13, Z	Jaber HGU#16, Z	Heber HGU#16, Z	Heber HGU#14, Z	Heber HGU#14, Z	Heber HGU#12, Z	Heber HGU#12, Z	Haber HGU#10, Z	Heber HGU#10, Z	leber HGU#8, Zo	Heber HGU#8, Zo
	-		_		_	_	_	_	_								_			_						_	_		_	_	_	_	_				_	_	_	_			_	_		_
Sample ID	NV-071U-99	NV-053U-99	NV-054U-99	NV-055U-99	05-099-09	NV-057U-99	NV-058U-99	050-AN	06-0890-AN	NV-069U-99	NV-069F-98	NV-070F-98	BR-LICOAN	NV-055F-98	NV-CS4P-88	NV-055F-88	NV-USER-96	NV-05/ F-98	NV-058F-98	NV-059F-98	NV-060F-98	NV-061F-98	NV-062F-98	NV-063F-98	NV-064F-98	NV-065F-98	NV-066F-98	NV-067F-98	NV-068F-98	CA-087F-99	CA-087U-99	CA-088F-99	CA-088U-99	CA-089F-99 CA-0891-99	CA-090F-99	CA-090U-99	CA-091F-99	CA-091U-99	CA-092F-99	CA-092U-99	CA-093F-99	CA-093U-99	CA-094F-99	CA-094U-99	CA-095F-99	CA-095U-99
Analysis Date d-m-y			_	_																					_	_	_	_	_	_	_	_	_		_	-	_	_	_	_	-	-	_	-		•
	03-5	31-At	31-A1	31-A	31-A	31-A	9A	31-AL	31-AL	31-AL	4.4 4.4	12-Apr-99	¥ 2	66-JEW-67	24-Mar-99	24-Mar-93	Z4-Mar-93	24-IMAT-93	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	24-Mar-99	26-Jan-01	26~Jan-01	26-Jan-01	26-Jan-01	26-Jan-01	26-Jan-01	26-Jan-01	26-Jan-01	26~Jan-01	26-Jan-01	26~Jan-01	26-Jan-01	26~Jan-01	26-Jan-01	26-Jan-01	26-Jan-01	26-Jan-01
Quality	fair	fair	fair	fair	fair	<u>ta</u> :	Ta :					Tall.	¥ 4			<u> </u>			Tait			fair	fair	fair	fair	fair	fair	ia :		6 000	900	900g	90 90 90	8 8	0000	000	000	000	9006	good	9006	good	6 000	900g	000	8 8 8

n.a. Not Analyzed < Less Than MDL

Page 4 of 15

ם	0.212	U.320 <	22.8	4.5	3 ^	V	V	V	v 1	v v	' V	٧	٧	٧	v	0 00.5	0.36.0 V	' V	0.0981	0.0737	0.0972	0.0723	0.0967	0.106	0.0839	0.109	0.0797	0.15	0.064	0.0989	0.0962		/ V	7050	0.67	3510	6.74	1.1	2.08	906.0	_	0.867	;
두	0.171	4.	0.612	2.05	· ·	٧	٧	٧	V 6	0.00 V	0.741	0.587	0.835	0.497	0.803	1 72	¥ V	0.851													0.203				000	8650	1.09	0.695	1.09	1.16	0.681	111	:
>	29.7	7.32	62.3	. 188 188	9.7	13.8	39.5	48.2	20.4	20.1	25.7	24.2	27	14.1	18.2	37.0	3 2	28.3	0.486	0.387	0.476	0.389	1.51	-	0.779	0.895	1.19	- -	0.705	<u>.</u>	0.83	475	7.7	2000	20070	21900	31.7	15.5	34.3	31.1	14	28.3	1
Ľū	0.423	0.438 A	' V	2.1	<u> </u>	٧	V	٧	۷ ۱	v v	' V	3.14	2.17	2.05	1.94	7.07	2.13	2.22	0.0301	0.0281	0.0155	0.0136	0.142	0.0322	0.0267	0.0588	0.0395	٧	0.0222	0.038	0.021	<u>;</u>	1 78	9	9 9	261	0.219	0.088	0.217	0.156	0.0555	0.127	į
Q	1.83	۲. ۲.	3.87	8.53	0 V	٧	4.84	5.11	1.8	¥	· v		1.96	v		2.16							280								0.119		/ v	7 020	0080	1810	1.87	0.674	1.82	1.31	0.38	0.944	5
-	0.244	6/X/0	' v	9.	<u>,</u>	٧	٧	V	۷ ۱	v v	· v	٧	٧	v	V	v	/ V	/ V	0.0281	0.026	0.0161	۷ ا	0.125	0.0327	0.021	0.0652	0.0174	v	0.0233	0.016	0.0179	0.000.0	/ \	/ c	, ,	560	0.29	0.0877	0.286	0.198	0.0911	0.186	; ;
苗	4 !	¥ V	3.99	3.73 57	ų v	1.84	3.08 3.08	C)	۷ ;	9 V	v	1,32	£8;	¥	2	# JO 6	3 3	259	yaana	anna	on man	0.0548	000000	00000		0.119				****	0.0994											****	w
운	0.474	0.52b <	1.17	2.06	6.33 V	٧	v	0.977	V 1	v v	' V	٧	v	v	٧	v \	, v	, v	****	***		0.0276 6.2.1	<u> </u>	****					****	***	0.0311								***		<u> </u>	0 389	iii.
~ ~	1.78	<u>}</u> >	7.37	4.36	\ 7.0 0	v			۲ ۲	? v	1.87	v	2.21	1.2	1.27	1.35 5.47	2.49	6.				0.103 0				0.253 0	_				0.142 0					3000	4.91	1.36	4.35	~	1.15	1.89	<u>.</u>
_ _	0.234	802.	v	v	v v	٧	v	٧	٧ ،	v v	' V	٧	٧	v	v	v v	v v	/ V	0.0321 (_										0.0235										0.195	263	7
	æ 5	9 64 62 2 4 42 62	1.5	689	e v	79.	e.	9	2 (* (7.57	4	4	3.76	ا دو دو	0 6 0 8 1 11	15	000202		0.132 0.			essa.		0.162				0.0726 0.			ì	Service		e	٠٠٠٠	near.	·verer	5.46		34	2	
e n	2.4	7.37 V	' V	v	v v	٧	v	v	v ,	v v	' V	٧		0.889	v	v	, ,	, v				0.0517			***				(XXX		0.0669		V \						5.38		2.76	4 18	2
ш														0					0.0	0	9	<u> </u>	รี	, 2	5 6		0		3	∺	۲ç	•		- 7	6	_							
E	ន្ទ	, ·	v	٧	v v	٧	٧	٧	٧	v v	v	٧	٧	٧	٧	۷.	•	/ V	90000	107	137	40000	2000	0020	88844	8000	222	٧	## ***		www.		٧,	eren.		4400	2000	****	2000	0000	992	8	
ES P	1.19 2.22	- v - v - v	v 99	×	v v	13.5 A	3.6 A	y 9:1	v V	9.00 × ×		× 683	Y 50	i.28 ×	× +1.	7.4.	y \ n 0	19 19 1	90000	< 0.197	< 0.137	.		0.47	0.328	0,134	0.202	٧	0.118	0.166	7	3		,	3	4146	4,07	0.941	Ŧ	0000	992	670 813	
PN	8.19	y 6 C		21 22.1							2.4 14.5 <			.66 5.28 <					< 0.248	٧	٧	. v	0.514 0.254 4.48 0.858	0.864 0.47	0.493 0.328	0,628 0,134	0.971 0.202	v v	0.459 0.118	0.882 0.166	0.562 0.224	4.00 1.000				10500 4140	13.3 4.07	3.6 0,941	11.1 3.11	4.41 1.16	3.25 0.685	# TB	<u>.</u>
Pr Nd	4 1.93 B.19	2.32 < 1.94 ±0.3	19.4	5.21	0.76	2.77	1.99	22	3.31	123	2.4	٧	2.79	1.66	1.93	0.92	177	2.11	0.106 < 0.248	0.0826 ←	0.0784 <	0.0647 < 0.1	0.104 U.B13 U.Z3G	0.0942 0.864 0.47	0.0695 0.493 0.328	0.138 0.628 0.134	0.0797 0.971 0.202	У У	0.161 0.459 0.118	0.0953 0.882 0.166	0.0553 0.562 0.224	500:3 50:4 50:00 V		Total Cont		2910 10800 4140	2.35 13.3 4.07	0.791 3.6 0.941	2.04 11.1 3.11	0.925 4.41 1.16	0.743 3.25 0.685	0.05	G
PN	21.4 1.93 8.19	26.9 1.94 10.3	162 19.4	44.7 5.21	20 0.76 20 0.76	32.9 2.77	26.2 1.99	24.7 2.2	27.2 3.31	2/./ 6.44 19.7 1.23	26.9 2.4	6.2	21.7 2.79	13.8 1.66	16.2 1.93	10.2 0.92	16 177	17.1 2.11	0.942 0.106 < 0.248	0.727 0.0826 <	0.852 0.0784 <	0.743 0.0647 < 0.1	13 0.04 U.B.S 0.258	0.618 0.0942 0.864 0.47	0.583 0.0695 0.493 0.328	0.693 0.138 0.628 0.134	0.825 0.0797 0.971 0.202	v v	0.595 0.161 0.459 0.118	0.833 0.0953 0.882 0.166	0.554 0.0553 0.562 0.224	200 - 200 -	V V V	A TOO A COOL COOL	60000 /USO 31150 BSUD	25000 2910 10800 4140	15.3 2.35 13.3 4.07	6.34 0.791 3.6 0.941	14 2.04 11.1 3.11	8.36 0.925 4.41 1.18	6.23 0.743 3.25 0.685	801 005 418	05.4 05.0 17.0
Pr Nd	15.7 21.4 1.93 8.19	1/./ 22.4 2.32 < 2.32 < 21 26.9 1.94 10.3	91.5 162 19.4	48 44.7 5.21	15.2 20 0.76	26.2 32.9 2.77	17.6 26.2 1.99	19.6 24.7 2.2	19.2 27.2 3.31	ZU.9 Z/./ 6.44	20.9 26.9 2.4	20.8 6.2 <	23.7 21.7 2.79	21.8 13.8 1.66	21.8 16.2 1.93	13.2 10.2 0.92	21.9 16 177	23 17.1 2.11	< 0.942 0.106 < 0.248	0.0826 ←	0.852 0.0784 <	0.743 0.0647 < 0.1	0.104 U.B13 U.Z3G	0.618 0.0942 0.864 0.47	0.583 0.0695 0.493 0.328	0.693 0.138 0.628 0.134	0.0797 0.971 0.202	v v	0.595 0.161 0.459 0.118	0.833 0.0953 0.882 0.166	0.554 0.0553 0.562 0.224	4.65 0.093 4.65 0.055	V V V	A TOO A COOL COOL	29900 60000 / 060 31100 8900	11800 25000 2910 10800 4140	7.24 15.3 2.35 13.3 4.07	3.62 6.34 0.791 3.6 0.941	7.75 14 2.04 11.1 3.11	5.41 8.36 0.925 4.41 1.15	3.2 6.23 0.743 3.25 0.685	489 821 0.95 £18	0.14 CE.O 17.0 FO.4
don La Ce Pr Nd	15.7 21.4 1.93 8.19	1/./ 22.4 2.32 < 2.32 < 21 26.9 1.94 10.3	91.5 162 19.4	48 44.7 5.21	15.2 20 0.76	26.2 32.9 2.77	17.6 26.2 1.99	19.6 24.7 2.2	19.2 27.2 3.31	ZU.9 Z/./ 6.44	20.9 26.9 2.4	20.8 6.2 <	23.7 21.7 2.79	21.8 13.8 1.66	21.8 16.2 1.93	13.2 10.2 0.92	21.9 16 177	23 17.1 2.11	< 0.942 0.106 < 0.248	0.34 0.727 0.0826 <	< 0.852 0.0784 <	0.365 0.743 0.0647 < 0.1	0.357 0.607 0.104 0.513 0.286 0.738 13 0.383 148 0.898	0.432 0.618 0.0942 0.864 0.47	0.324 0.583 0.0695 0.493 0.328	0.409 0.693 0.138 0.628 0.134	0.476 0.825 0.0797 0.971 0.202	¥	0.32 0.595 0.161 0.459 0.118	0.4 0.833 0.0953 0.882 0.166	0.344 0.554 0.0553 0.562 0.224	ZO.8 4.65 U.085 4.06	V	A TOO COOL COOL COOL	29900 60000 / 060 31100 8900	11800 25000 2910 10800 4140	7.24 15.3 2.35 13.3 4.07	3.62 6.34 0.791 3.6 0.941	7.75 14 2.04 11.1 3.11	5.41 8.36 0.925 4.41 1.15	3.2 6.23 0.743 3.25 0.685	489 821 0.95 £18	0.14 CE.O 17.0 FO.4
Semple La Ce Pr Nd	15.7 21.4 1.93 8.19	26.9 1.94 10.3	91.5 162 19.4	48 44.7 5.21	20 0.76 20 0.76	26.2 32.9 2.77	26.2 1.99	19.6 24.7 2.2	19.2 27.2 3.31	2/./ 6.44 19.7 1.23	20.9 26.9 2.4	20.8 6.2 <	23.7 21.7 2.79	13.8 1.66	21.8 16.2 1.93	10.2 0.92	21.9 16 177	23 17.1 2.11	< 0.942 0.106 < 0.248	0.727 0.0826 <	0.852 0.0784 <	0.365 0.743 0.0647 < 0.1	13 0.04 U.B.S 0.258	0.432 0.618 0.0942 0.864 0.47	0.324 0.583 0.0695 0.493 0.328	0.409 0.693 0.138 0.628 0.134	0.825 0.0797 0.971 0.202	v v	0.32 0.595 0.161 0.459 0.118	0.4 0.833 0.0953 0.882 0.166	0.344 0.554 0.0553 0.562 0.224	ZO.8 4.65 U.085 4.06	V V V	A TOO COOL COOL COOL	29900 60000 / 060 31100 8900	11800 25000 2910 10800 4140	15.3 2.35 13.3 4.07	3.62 6.34 0.791 3.6 0.941	7.75 14 2.04 11.1 3.11	5.41 8.36 0.925 4.41 1.18	3.2 6.23 0.743 3.25 0.685	489 821 0.95 £18	0.14 CE.O 17.0 FO.4
Semple La Ce Pr Nd	Heber Injection B 15.7 21.4 1.93 8.19	Heber Injection B 17.7 ZZ.4 Z.3Z < Heber Heber HGU#7. Zo 21 26.9 1.94 10.3	Haber HGU#7, Zo 91.5 162 19.4	Heber HGU#9, Zo 48 44.7 5.21	Heber HGU#11, Z 15,2 20 0,76	Heber HGU#11, Z 26.2 32.9 2.77	Heber HGU#13, Z 17.6 26.2 1.99	Heber HGU#13, Z 19.6 24.7 2.2	Heber HGU#16, Z 19.2 27.2 3.31	Habar HGU#14, 2 15,1 19,7 1.23 6	Heber HGU#14, Z 20.9 26.9 2.4	Heber HGU#12, Z 20.8 6.2 <	Heber HGU#12, Z 23.7 21.7 2.79	Hober HGU#10, Z 21.8 13.8 1.66	Hobor HGU#10, Z 21.8 16.2 1.93	Haber HGU#8, Zo 13,2 10,2 0.92	Heber Interest of S.	Hober Infection B 23 17.1 2.11	Trip Blank < 0.942 0.106 < 0.248	Trip Blenk 0.34 0.727 0.0826 ≪	Trip Blank < 0.852 0.0784 ≪	Trip Blank 0.365 0.743 0.0647 < 0.1	0.357 0.607 0.104 0.513 0.286 0.738 13 0.383 148 0.898	Trip Blank 0.432 0.618 0.0942 0.864 0.47	Trio Blank 0.324 0.583 0.0695 0.493 0.328	Trip Blank 0.409 0.693 0.138 0.528 0.134	Trip Blank 0.476 0.825 0.0797 0.971 0.202	Trip Blank < < < <	Trip Bloank 0.32 0.595 0.161 0.459 0.118	Trip Blank 0.4 0.833 0.0953 0.882 0.166	Trip Blank 0.344 0.554 0.0553 0.562 0.224	ZO.8 4.65 U.085 4.06	INDEPENDENT OF A C.	Section Section Section 1998 Section 1998	29900 60000 / 060 31100 8900	arnics Ngawha overni 11800 25000 2910 106000 4140	7.24 15.3 2.35 13.3 4.07	3.62 6.34 0.791 3.6 0.941	7.75 14 2.04 11.1 3.11	5.41 8.36 0.925 4.41 1.15	110U-00 Noswitts 3.2 6.23 0.743 3.25 0.685	1111.00 Norwha 4 89 8 91 0 95 4 18	CCCO 1700 ACC CCCO
don La Ce Pr Nd	CA-096F-99 Heber Injection B 15.7 21.4 1.93 8.18	1/./ 22.4 2.32 < 2.32 < 21 26.9 1.94 10.3	CA-087U-99 Heber HGU#7, Zo 91.5 162 19.4	CA-088F-99 Heber HGU#9, Zo 48 44.7 5.21	15.2 20 0.76	CA-089U-99 Haber HGU#11, Z 26.2 32.9 2.77	CA-090F-99 Heber HGU#13, Z 17.6 26.2 1.99	CA-090U-99 Heber HGU#13, Z 19.6 24.7 2.2	Heber HGU#16, Z 19.2 27.2 3.31	CA-0910-99 Heber HGUR16, Z. ZU.9 Z/./ 0.44	CA-092U-99 Heber HGU#14, Z 20.9 26.9 2.4	CA-093F-99 Heber HGU#12, Z 20.8 6.2 <	CA-093U-99 Heber HGU#12, Z 23.7 21.7 2.79	CA-094F-99 Heber HGU#10, Z 21.8 13.8 1.66	CA-094U-99 Hober HGU#10, Z 21.8 16.2 1.93	13.2 10.2 0.92	CA-USOU-SS HEDER HUNES, ZG ZO.0 ZS.5 Z.05	CA-096U-99 Heber Injection B 23 17.1 2.11	NZ-163F-00 Trip Blank < 0.942 0.106 < 0.248	NZ-163U-00 Trip Blunk 0.34 0.727 0.0826 <	NZ-163F-00 Trip Blank < 0.852 0.0784 <	NZ-163U-00 Trip Blank 0.365 0.743 0.0647 < 0.1	THE BLANK U.35/ U.50/ U.104 U.513 DIZEG	NZ-300F-01 Trip Blank 0.432 0.618 0.0942 0.864 0.47	NZ-300U-01 Trip Blank 0.324 0.583 0.0695 0.493 0.328	NZ-117F-00 Trip Blank 0.409 0.693 0.138 0.628 0.134	NZ-117U-00 Trip Blank 0.476 0.825 0.0797 0.971 0.202	NZ-300F-01 Trip Blank < < < <	NZ-300U-01 Trip Blank 0.32 0.595 0.161 0.459 0.118	NZ-117U-00 Trip Blank 0.4 0.833 0.0953 0.882 0.166	NZ-117F-00 Trip Blank 0.344 0.554 0.0553 0.562 0.224	NZ-0000-96 Inplant Z0.8 4.63 0.093 4.64 1.003	INDEPENDENT OF A C.	NE-COOC-36 OUT IN EAST CO. 1	Ngawna Inf 8 Ngawha Ihr 29900 60000 /060 31188 4900	Ngawha overnics Ngawha overni 11800 25000 2910 10600 4140	110F-00 Ngawha 7.24 15.3 2.35 13.3 4.07	110U-00 Ngewha 3.62 6.34 0.791 3.6 0.941	NZ-111F-00 111F-00 Ngawha 7.75 14 2.04 11.1 3.11	NZ-111U-00 111U-00 Naawha 5.41 8.36 0.925 4.41 1.18	NZ-110U-00 110U-00 Noswiths 3.2 6.23 0.743 3.25 0.685	NZ-1111-00 1111-00 Norman 4 89 8 9 1 0 95 #18	NZ-1110-00 03:00 4:09 0.Z1

n.a. Not Analyzed < Less Than MDL

Page 5 of 15

¬	5.81	184	١ '	′	V	0.255	0.268	V	٧	٧	14.9	15.5	48	9.21	14.3	87.8	8.12	13.5	10.2	6.77	17.6	13	5.	45	424	2 6	20.7	20°.	ָהֵי ק	8.1	50.0	3.67	1.04	2.69	٧	0.623	v	ଷ	2.19	1.51	14.8	17.2	5.28	2.95	1.35	6.08	0.417
두	0.924	0.963	2 4	9 (7.4/	0.721	0.535	٧	0.54	٧	1.73	1.52	7.35	5.8	1.13	4.8	1.36	٧	2.54	3.05	٧	4.98	r.	7 2	2 5	4. C	9.0	40.1 1.0	3.59	0.23	1.47	5. S	0.276	14.1	٧	4.97	1.08	36.5	4.01	1.98	7.42	288	1.18	3.6	1.13	88.6	V
>	29.1	2	9 6	2 6	305	8.95	5.47	3.42	8.59	7.53	17.2	17.1	332	116	9.01	307	80.1	6.37	321	115	17.1	319	127	1 1	n 0	ב ב ב	223	מנטו	81.4 4 i	71	16.3	6.Fe	10.9 10.4	44.9	14.5	29.7	24	45.2	47.5	48.9	170	405	28.1	27.4	17.7	104	6.03
3	0.192	0.20R	200	9 .	4.04	0928	.0611	v	v	17.3	0.168	٧	4.83	1.3	0.0875	4.58	0.903	٧	4.2	1.19	0.91	5.52	2 18	2 6	9 6	د. /ن د. /و	20.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0	15.2	1.17	3.0842	V :	0.432	0.035	0.402	٧	0.181	4.14	11.5	V	3.09	1.03	3.52	0.168	0.242	0.0647	0.863	v
Ϋ́						_	_								_													_																_			_
Ē																														_												_	_	_			·.
i i																										vana.				····	ecco.	V10000	600000	oteoni.		00000	00000	90000	00000	00000	00000		90000	09200	000200	000000	00000
웊																															***					***							.				
																																								_	_	_					
6																																															
2																																															
99																																							▓								***
Eu	3 77		0.0	v	v	0.067	0.092	0.132	٧	٧	٧	0.439	8.82	3.47	0.401	5.12	1.29	٧	6.83	3.57	V	٧	' \	′	7	27.7	V ;	36	4.06	0.756	1.06	9.34	7.7	2.95	0.758	2.39	25.9	19.6	5.62	24.9	8.97	26.1	1.18	2.06	0.90	7.89	0.918
ES	S		1	٧	٧	0.436	0.426	٧	¥	٧	0.955	8	31.5	<u>6</u>	0.959	6.9	495	٧	×	11.6	٧	٧	•	•	٧	٧	٧	٧	٧	8	203	7		901	172	7.51	٧	¥	٧	٧	37.5	107	r.	•	1.62	34.8	0,851
PN	÷		• }	Š	\ 3	C.	2.23	0,167	202	3.81	÷	4.35	132	52.5	6	7	5		P 166	47.2	251	103			981	772	16.4	3	18.8	9	9.73	8	ጀ `	20	532	31.4	13.3	45.7	82.2	14.9	200	487	88	31.7	8.57	99	1.69
Ā	 200	6	20 L	 	2.96	0.482	0.36	0.155	v	×	.995	1.12	8	11.8	0.58	12.6	4.08	98C O	23.5	12.1	٧	2 2	į		× ;		v ;		3.57	1.53	S.63	17.7	38.9	13.8	1.54	9.5	2.73	13.6	5.54	3.77	50.1	113	4.69	6.41	1.97	39.8	0.603
_ පී	15.7					4.26	3.33	1.41	4.73																								60					92	49.8	34.2		866	31.4			345	
-	7.75					•	1.77	v	v	v	3.76			42.5								80.3								13.1	13.1	75.4	1/6	9 6	2.4	41.2	15.1	9	20.2	26.4	164	286	9.16	10.2	8.28	110	v
La			•		_	_	_	<u>=</u>										Ā			Š																		•	•		i ali	-		-	į	ē.
Sample Description	110E.00 Monuths	1	III P-00 INGRAFIA	NZ-112F-00 Karnk	NZ-112U-00 Kam	113U-00 Miranda	113F-00 Miranda	NZ-007U-98 Mira	U7 Miranda	F7 Miranda	114U-00 Te Aroh	114U-00 Te Arch	115U-00 Te Aroha	116U-00 Te Aroha	114F-00 Te Aroha	115F-00 Te Arohe	116F-00 Te Arohe	WZ-00811-08 To A	NZ-009U-98 Te Au	NZ-010U-98 Te A	Us Te Aroha Gev	No Te Arobe cold		UTU 16 AFORM DAY	F8 Te Aroha Geys	Po Te Archa cold	F10 Te Aroha har	Po Te Aroha cold	F10 Te Archa han	156F-00 Morere #	156U-00 Morere 4	157F-00 Morere #	157U-00 Morers 4	1621-00 Morece	NZ-021U-98 More	NZ-022U-08 More	U21 Morere	U22 Morere	F21 Morere	F22 Morere	158F-00 Te Pula /	158U-00 Te Pula ;	160F-00 Te Pula /	160U-00 Te Pula :	161F-00 Te Pula (161U-00 Te Pula i	NZ-023U-98 Te Pı
Sample Descrip	7			Ž	Ž	113	113	Ž	7			141	1151	1161	114	115	116	N	Ž	Ž	US I	2				_	_	Ē	Fig	156	156	157	79	16.2	Ž	Ž	U21	U22	F21	72	158	158	3	3	191	161	Ż
Sample ID	N7-110E-00	114 114 00	20-1111-20	00-47LL7N	NZ112U-00	NZ-113U-00	NZ-113F-00	NZ-007U-98	NZ-007U-98	NZ-007F-98 1X	NZ-114U-00	NZ-114U-00	NZ-115U-00	NZ-116U-00	NZ-114F-00	NZ-115F-00	NZ-116F-00	80-11800-ZN	86-11600-ZN	NZ-010U-98	NZ-008U-98	NZ-DOGILOR	00 00 CT	WZ-0100-88	NZ-008F-98 1X	NZ-009F-98 1X	NZ-010F-98 1X	NZ-009F-98	NZ-010F-98	NZ-156F-00	NZ-156U-00	NZ-157F-00	NZ-157U-00	NZ-16211-00	NZ-021U-98	NZ-022U-98	NZ-021U-98	NZ-022U-98	NZ-021F-98	NZ-022F-98	NZ-158F-00	NZ-158U-00	NZ-160F-00	NZ-160U-00	NZ-161F-00	NZ-161U-00	NZ-023U-98
Analysis Date d-m-y		_			_	20-Apr-01 N	26-Mar-01 N	23-Oct-00 N	17-Dec-98 N	_	_		_	_	_			_	_							_	_	_		_	_	_		10-Aug-01		_	_	_		_	_	_	_		_		_
Quality D	,			good		boog	boog		poor	-											•			_		fair						boob	0000	3 8	500	000	000						0000	poob	, poo	0 006	good

n.a. Not Analyzed < Less Than MDL

ם	1.37	23	86.7	٧	5.33	2.04	3.15	4.28	0.789	0.0296	0.591	0.0419	0.747	28.7	122	4.09	4.36	1.67	0.0704	0.129	0.0271	9	0.0417	0.034	0.0607	0.856	0.0882	0.104	0.045	0.0316	22300	39000	56400	345	0.086	0.0554	0.115	0.0739	0.0674	0.0833	0.0692	0.0611	13.1	14.9	23.4	24.9	23.9
																																													5.27		
>	12	48.8	89.8	28.5	34.1	9.39	26.8	45	12.5	0.136	5.79	0.213	10.4	37.7	2230	84.1	132	11.4	1.02	0.72	0.29	8	29.0	0.42	0.728	1.63	0.895	1.27	0.46	0.444	41200	42100	48000	1180	19.5	20.8	0.928	1.88	0.538	0.82	0.477	0.783	1.6	18.9	3.7	17.1	5.81
Ξ																												_			٠.	_	_			_			_	_	_					_	_
g Q																																															
ጀ																																															44.45
ü																			***						****			*****	• • • • • •	·····	•••••	~~~	~~~	*****	•••••			~~~				~	.,,,,,,	*****	~~~		****
웊																																															
፭	0.261	54.3	90.6	٧	٧	1.13	5,35	98'9	1.68	0.0559	0.574	0.078	1.67	4.6	498	12.8	22.7	4.3	0.0982	0.0863	٧	17.7	0.0412	0.0445	0.111	٧	0.114	0.167	0.0643	0.102	7200	7520	V	328	1 .6	1.7	0.0914	0.304	0.089	0.0924	0.0811	0.14	0.194	3.93	0.741	3.5	1.15
2	v	12.2	26.7	1.45	1.69	0.167	0.785	1.17	0.285	٧	0.073	0.0163	0.292	0.717	88	2.08	3.78	0.539	0.0148	٧	٧	2.97	٧	٧	٧	٧	0.0178	0.0368	٧	٧	1190	1130	5610	٧	0.219	0.252	0.046	0.0969	0.0419	٧	٧	0.0347	0.0276	0.666	0.1	0.521	0.184
PS	0.431	104	240	324	2.88	#:	528	8	24	8	0.479	1,087.1	~	£ 72	624	3.5	24.8	3.09	0.12	10702	0.073	18.2	٧	٧	690	٧	0.154	0.219	0000	0.115	68870	5750	37900	460	7.5	*	0379	0.523	0.249	0.372	0.286	0.278	0.196	4 .52	0.626	3.16	**
															***						***			***	::::::::::::::::::::::::::::::::::::::	***	***		****		***	****	:::::::::::::::::::::::::::::::::::::	***	***	***	***	***	****	***	***	***	***	·	0.157	9	2000
E																																															
92		***										***																					***							***	<u> </u>		.,				٧
200000000000000000000000000000000000000	****					****	***			****							***		****	****												***		****	****	****								****		****	.27
ď		_																																									2.8 0.	9 09		46	
రి	2.57				-		51.4	69.8	1 26.8	0	2.69	0.273	24.9	24	8630	58.3	120	17.9	0.49		0.32		0						0		00289	54700	7 426000	7230					2 1.69	3 2.11	2 1.49				8 8.77		5 14.8
2		23.9	40.3	15.4	11.1	4.11	2	35.5	13.4	9	1.47	0.173	13.9	13.1	4070	22.6	45.7	10.2	0.379	0.462	0.166		_	0.198	0.288				0		29100	24900	뜻	`	_		0		0.822	. 0.949	0.632	1.18	0.759			19.2	5.5
u g	NZ-024U-98 Te P	Puls	Puls	Pula	Pula	129F-00 Pulcettiri	129U-00 Puketitir	128F-00 Tarawere	128U-00 Tarawen	130F-00Acid Hear	130F-00 Harrmer	130U-00Acid Hem	30U-00 Hamner	131F-00 Lewis Ri	131U-00 Lewis Ri	132F-00 Marula T	132U-00 Marula T	070 mete	3	3	7	200 meter	7	7	- T	DD! wate	159F-00 KA-32 w	159U-00 KA-32 w	164F-00 KA-37 w	164U-00 KA-37 W	Low pre	I LowPre	drotte.	Throttle	NZ-100F-00 Kawa	NZ-100U-00 Kawa	NZ-101F-00 Kawa	NZ-101U-00 Kaw	NZ-102F-00 Kaw	NZ-102U-00 Kaw	NZ-103F-00 Kaw	NZ-103U-00 Kaw	138F-00 Clarnshe	138U-00 Clemshe	139F-00 lodine Po	139U-00 lodine P	140F-00 lodine Po
Sample Description	NZ-024	U23 Te Pula	U24 Te Pula	F23 Te Pula	F24 To Pula	129F-0	1290-0	128F-0	1280-0	130F-00	130F-0	1300	130U-0	131F-0	1310-0	132F-00	1320-0	\$ KA-21	KA-19 well	KA-21 well	KA-24 well	£ KA-25	KA-27 well	KA-35 vrei	KA-37 well	BLANK	150F-0	1590-0	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	1640-0	8 2 KA-2	812 KA-2	1 3 KA-2	C3 KA-2	NZ-100	NZ-100	NZ-101	NZ-101	NZ-102	NZ-102	NZ-103	NZ-103	138F-0	1380-0	130F-0	1390-0	140F-0
<u>e</u>	1-98	86-1	86-0	96-	F-98	8	8	5	8	8	ş	89 -	8	ş	8	8	8	KA-21 1070 met/KA-21 1070 meter				CA-25 1200 met KA-25 1200				KA-BLANK DDI BLANK DDI WEDE	8	9	8	8	KA-21 Low pres 2 KA-21 Low pres	KA-21 LowPres: 2 KA-21 LowPres	KA-21 throttle 1 3 KA-21 throttle 1	KA-21 Throttle c3 KA-21 Throttle	5	8	3	8	8	89 5	8	00-j	3	8	9	9 2 2	9
Sample ID	NZ-02413-98	NZ-023U-98	NZ-024U-98	NZ-023F-98	NZ-024F-98	NZ-129F-00	NZ-129U-00	NZ-128F-00	NZ-128U-00	NZ-130F-00	NZ-130F-00	NZ-130U-00	NZ-130U-00	NZ-131F-00	NZ-131U-00	NZ-132F-00	NZ-132U-00	KA-211	KA-19	KA-21	KA-24	KA-25	KA-27	KA-35	KA-37	KA-BL	NZ-159F-00	NZ-159U-00	NZ-164F-00	NZ-164U-00	KA-211	KA-211	KA-211	KA-21]	NZ-100F-00	NZ-100U-00	NZ-101F-00	NZ-101U-00	NZ-102F-00	NZ-102U-00	NZ-103F-00	NZ-103U-00	NZ-138F-00	NZ-138U-00	NZ-139F-00	NZ-139U-00	NZ-140F-00
Analysis Date d-m-y	23-Oct-00		17-Dec-98	29-Sep-98	29-Sep-98	20-Apr-01	20-Apr-01	20-Apr-01	20-Apr-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	16-Jul-01	16~Jul-01	16-Jul-01	16-기대-01	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	16-Jul-01	16-Jul-01	16-기대-01	16-Jul-01	16-Jul-01
										• • •															•										_	-					_						
Quality	000	000	000	000	<u>8</u>	boog 6	D 000	pood	800	900	000	000	900	9000	800	000	900	900	fair	fair	fair	fair	fair	fair	į į	fair	fair	fair	fair	fair	book	boog	poop	good	fair	fair	fair	fair	fair	fair	fair	fair	000	dood	boog	boob	6 000

n.a. Not Analyzed < Less Than MDL

	28	PS	5 ;	50	_	53	77	8.	2	2 4		Ţ.	9.	05	3.2	1.7	19	4	4	: 2	5 9	42	5	2	62	2	2	94	55		3.4		24	1 0	13	2	v	28	20	v	76	40	1.3	9.0	9.0	175	54	20	0.4	8.3	
																												_	_			. `	0.0434	, .				_	_		_	_	_	_			_		_	_	
두																												_	_	_	_				- 	_		_ '	_	_	_	_		_						_	
>	19.6	72	5 5	43.	Ñ	20.	52.7	č	14.5		: ?		20.	49.	33.	•	8	99	33		7	4.	499	2120	·	3120	3160	860	860	170	170		4.54 7.6		9 0	3	·	417	1690	59.	564	2590	4.7	8.1		7.2	2.3		_	466	:
3	0.347	0.57	20.0	0.762	0.261	0.789	0.788	0.298	0.228	0.05	0.433	V	V	0.911	٧	٧	٧	٠,	' \	7 0 0 0	0.040	0.0753	6.69	348	٧	260	555	141	140	24.4	24.6	2000	0.0052	3	0.14	5.007	V	78	389	18	90.8	461	0.0528	0.0128	V	0.127	0.0916	٧	٧	60.4	,
ą.	2.2	2 42	? !	7.07	1.7	4.8	4.62	2.51	1 64		60.	4.	V	5.04	2.32	٧	٧	٠,	' \	/ 1000	200	0.381	460	2300	0.273	3740	3740	935	942	164	159	2 6	0.383	2 4 4 6	0.440	0.470	٧	514	2590	48.3	555	3030	0.501	0.122	٧	0.553	0.393	٧	٧	404	!
Ē	0.356	0.400	204.0	0.614	0.249	0.732	0.724	0.393	0 232	1000	0.430	٧	V	V	٧	٧	٧	٠,	' \	/ FI	0.000	0.0818	71.6	341	٧	558	552	140	146	25.6	24.3		0.05/2	20000	00000	,	V	73.2	355	8.13	85	445	0.054	0.0203	٧	0.0817	0.0455	٧	٧	62 8	į
'n	Ç	ċ	•	e P	Ξ	4.92	62.	œ C	8		¥ ,	•	7	187	3,05	٧	٧	Ž		•	5	7.88°.	6	2280	0.245	3690	3710	98	0	1	3 6				2 u c c		٧	818	2390	55.9	1 93	2910	0,303	80601	٧	0.512	0.232	٧	٧	5	
£			₩																								***								<u></u>					***				***		<u> </u>					8
<u></u>																																	0.533																		
<u>e</u>																										_	_	_	_								.,	_	٠.		_	_	_	_	٠,		_				
95																					_												-																		
Eu														***										▓																											*
E											-														••••								7250															esseni	200000	8000	30
S PX			w																																																8
2					₩															***			***							***		***	0.722	***							×			***							8
4	Y .																																																		
రి	2				18.4	62.3		o yo					39.9	65.1	90.1		2	2 4			n		6580	39200	10.5	LO.											15.4	6040	35800	17.1	999	4		2.33					99	•	
La	7 4 6		14.S	21.2	7.67	28.7	31.7	W	-	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	20.	11.2	12.1	24.1	98	`	′ \	<i>,</i> `	, r	50.5	4.46	7.49	2620	11900	5.16	18800	1900	4090	4130	2 2	5 6	3	4.46	5.75	0.67	3.54	•	2240	10200	•	2630	_		1.14	•	2.55	2 94	,	•	4010	
Semple Description	14011 on tading D.		136F-00 Frying Pa	136U-00 Frying P	137F-00 Frying Pi	137U-00 Frying P.	NZ-011U-98 Frvin	N7-6131-00 Clem	100 100 ZN	ME-0130-98 100M	NZ-014U-98 lodin	U13 lodine Pool	U14 lodine Pool (U11 Prying Pan L	U12 Clemshell Sc	E12 Clemehell &	E10 Jodine Dool		Tit logine Pour	F11 Frying Pan L	306F-01 Champer	306U-01 Champa.	NZ-001U-08 Walo	NZ-002U-98 Walo	NZ-003U-98 Walo	NZ-118F-00 Welor	NZ-118(J-00 Walo	NZ-1195-00 Well	N7-1101-00 Well	OF A DO-DAIL-TH	NZ-120F-00 Walo	NZ-1200-00 W&O	NZ-121F-00 Char	NZ-121U-00 Chan	NZ-122F-00 Charr	NZ-122U-00 Chan	Us Walotapu, Chr	U1 Walotapu, Oyı	U2 Walotapu, Oyı	F3 Welotapu, Che	F1 Walotapu, Oys	F2 Welotapu. Ove	307F-01 Walldte	S07U-01 Walkha	NZ-018U-98 Walk	NZ.188E.00 Walk	NZ-1831-00 Well	U18 Walkto	F18 Walkha	ATT OF THE PARTY OF	N = 1 84-04-0-70
Sample ID	NZ-440ILOO	142 100 00	NZ-1361-00	NZ-136U-00	NZ-137F-00	NZ-137U-00	NZ-011U-98	NZ-01211-08	NZ-0120-96	NZ-0130-98	NZ-014U-98	NZ-013U-98	NZ-014U-98	NZ-011U-98	NZ-012U-98	NZ-042E-08	NZ 042E 08	MZ-013F-90	NZ-0141-30	86-4LL0-7N	NZ-306F-01	NZ-306U-01	NZ-001U-98	NZ-002U-98	NZ-003U-98	NZ-118F-00	NZ-11811-00	NZ110E-00	NZ44011.00	N21190-00	NZ-120F-00	00-0071-7N	NZ-121F-00	NZ-1210-00	NZ-122F-00	00-022L-7N	NZ-003U-98	NZ-001U-98	NZ-002U-98	NZ-003F-98 1X	NZ-001F-98 1X	NZ-002F-98 1X	NZ-307F-01	NZ-30711-01	NZ-018U-98	NZ-133E-00	NZ-13311-00	NZ-018U-98	NZ-0185-98	N7 0041 00	NZ-040-90
Analysis Date d-m-v	46. hid 04	9 10	25-May-01	25-May-01	25-May-01	25-May-01	23-Oct-00	20.00	2000	23-Oct-00	23-001-00	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	30 Con 08	00 dep-00	30 Oct 00	00-deb-90	30-5ep-98	07-May-01	07-May-01	23-Oct-00	23-Oct-00	23-Oct-00	11-Oct-00	11-02-1-00	11-02-00	500	11-05-60	11-06-00	11-001-00	01-Sep-00	01-Sep-00	01-Sep-00	01~sep-00	17-Dec-98	17-Dec-98	17-Dec-98	20-Oct-98	20-Oct-98	20-Oct-98	07-May-01	07-May-01	23-Oct-00	01-Sep 00	01-8-100 01-8-100	17-Dec-98	29-Sep-98	2000000	73-70-67
Quality	1000	3	good	good	poob	poop	poop	9000	50	9000	good	fair	fair	fair	fair			2	<u> </u>	Tall	goog	boob	boob	000	boop	pood	to ob	3 8	5	5	00 g	000 000	00 00 00 00 00 00 00 00 00 00 00 00 00	9000	0000	0005	poor	boog	0000	, 00d	- 0 00	poop	pood	000	bood	5000	8 8		2 2	1	0000

Page 8 of 15

-	400	680	7	2 :	792	1130	1820	120	512	1	711	88.6	404	514	0.47	3.38	2.99	3.3	1.74	1.82	0.303	277	9080		20.0	1.16	443	430	٧	3.8	٧	٧	3.49	1.01	٧	0.155	0.423	0.182	0.152	202	4	22	218	228	242	18.9	28.5	=======================================	289	í
E	621	3600	4460	2	1340	3930	4880	153	695	9	3400	130	292	2430	2.5	3.8	2.4	3.81	1.67	1.09	0.878		۱ ۱	/ 6 L	9.03 0.03	۷ ;	308	288	٧	8.37	0.578	0.651	6.08	0.874	٧	0.44	0.76	0.537	0.29	3670	60	3490	3600	1030	1040	160	192	11.2	4100	
>	8370	6770	2 5	3	2100	7190	7500	4250	7290		2830	4630	8300	6320	6.17	25.8	23.3	25.7	6.38	3.81	202	200	7 2	200	23.3	0.851	000	0400	19.2	96.2	٧	10.2	63.6	16	٧	3.55	3.15	2.2	1.78	45100	14700	48200	48700	31400	31100	24900	24900	58.1	37000	<u> </u>
Ę																														_														_				٠.	_	
J Q.																																																		
																																												_						
Ę																																ومعامرون													,,,,,			erene.		20
ā			**																				×,					<u> </u>						***	×											₩	<u></u>			*
운	289	2	3 5	440	452	263	276	173	319		250	<u>1</u>	336	5 66	0.18	0.835	0.709	0.847	0.163	0 122	277	2.0	200	2000	2.87	0.10	386	383	•	3.01	•	•	1.17	•	•	0.088	•	0.0713	0.054	158(54	1771	1800	118	117	929	92	2.55	140	ŗ
ል	1500	1340	2 6	27	2320	1400	1540	860	1590		1380	8	1570	1200	1.06	4.24	3.36	3.78	6090	0.616	9 6	9 6	404	0.70	13.7	0.321	1950	1950	٧	14.2	1.32	6.63	9.5	٧	٧	0.406	٧	0.418	0.229	7890	2700	8820	8930	5780	5740	4500	4500	8.54	7010) }
4	543	32.2	3 6	200	380	257	569	130	243		214	159	267	228	0.184	0.642	0.5	0 644	0882	101.0	200	0.454	100	48.0	2.09	V	322	318	٧	1.78	٧	٧	1.04	9.0	٧	0.0589	v	0.0568	0.0382	1200	417	1370	1380	899	890	683	069	'	1040) }
8																																																		
								167			***							₩																***												***	***	, v	***	×
																															oon.									****	w				vent.	ooraa	eesse	100/12	00000	20
Sa		**																																					***					***						※
PN																							***				***	***		***	***				***						***	***	88	***		***	₩	****	***	⋘
Ā	705	5 6	5	2	13	215	231	670	67	5	185	2	7	149	1.5	3.7	2.4	~	, ē	2 6	5	3	i S	0.4.0 0.4.0	Ġ.	0.36	5	5		10			9.9			0.36		0.34	0.16	454	124	461	460	280	287	140	141	. 2	; ¿	2
පී	4300	2 6	200	6420	7030	18400	20400	4700	4020		15900	5200	4340	12900	13.4	29.4	18.9	28.8	9 6		9 6	7 1 1 1 1	6.71	9.58	79.3	2.49	7000	7000	12.4	77.2	2.94	4.87	51.9	5.62	٧	2.95	٧	3.39	1.5	30800	8030	30400	30700	17700	17800	7320	7460	46	20.00	3
Ę	5	3 6	0/70	2040	2310	7970	9230	1640	1250	3	7420	1820	1390	5480	5.92	13.8	8 76	7 7	-	† ¢	3 5	1000	, i	-	35.6	٧	2320	2300	٧	31.4	v	v	16.3	٧	٧	1.41	٧	1.79	0.907	9740	2570	9400	9530	5090	5130	1770	1830	25.4	05.40	2400
c	7	2 1	2	o Te K	O Te K	O Te Kc	O Te K	9		ij	4	≝	=	_5	od and	A to on	4 70 0			Di Bollino			4 0 de	8 Fred	. dwM 8	8 Diam	0 Orado	6 Orași	and May	A Affice	ond Ge	T Me	A Africa	ond Ge	otokaw	otokan	otokaw	otolome	otokaw	38 Rotal	Rotol	Rotol	No Rotol	O Rotol	00 Rotol	Potot	No Roto	2K9 8-7.		COWE I'C
Sample Description	MY coell co To K.		NZ-006U-86 10 K	NZ-134F-00 To Ko	NZ-134U-00 Te Ka	NZ-136F-00 Te Ko	NZ-136U-00 Te K	U4 Te Koble	IS To Konde		US Te Kopla	F4 Te Kopla	P5 Te Kopla	F6 Te Kopla	123U-00 Fred and	125U-00 Man of	126E-00 Map of A	1261-00 Man of 4	To the man on the state of	ATT OF DESIGNATION	2/0-00	123F-00 Fred and	25F-00 Map of A	NZ-015U-98 Fred	NZ-016U-98 Map	NZ-017U-98 Diam	NZ-124F-00 Orado	NZ-124F-06 Orak	U15 Fred and Ma	U16 Map of Africe	U17 Diamond Ge	F15 Fred and Me	F16 Map of Africa	F17 Dlemond Ge	105F-00 Rotokav	106U-00 Rotokan	106F-00 Rotokan	106U-00 Rotoka	106F-00 Rotokav	NZ-019U-98 Roto	NZ-020U-08 Roto	NZ-107F-00 Rotol	NZ-107U-00 Roto	NZ-108F-00 Roto	NZ-10811-00 Botol	NZ-109F-00 Botol	NZ-10941-00 Botol	CNS. DR		U19 HOGSKAWS PE
											-			-		-								_	_	_											2	8	8	88	8					3 8		9	5	
Sample ID	NIZ OCELL DO	1000	06-0000-7N	NZ-134F-00	NZ-134U-00	NZ135F-00	NZ135U-00	VZ-004U-98	A7-00511-98	7	NZ-006U-98	NZ-004F-98 1X	NZ-005F-98 1X	NZ-006F-98 1X	NZ-123U-00	NZ-125U-00	NZ-126E-00	NZ 1261 00	12 127E 00	12/F-00	70/71-7	NZ-123F-00	NZ-125F-00	NZ-015U-98	NZ-016U-98	NZ-017U-98	NZ124F-00	NZ124U-00	NZ-015U-98	NZ-016U-98	NZ-017U-98	NZ-015F-98	NZ-016F-98	NZ-017F-98	NZ-105F-00	VZ-106U-00	NZ-105F-00	NZ-105U-00	NZ-106F-00	86-U610-ZN	NZ-020U-98	NZ107F-00	NZ107U-00	NZ-108F-00	NZ-108(1-00	NZ-109E-00	NZ-109[1-00	GNS-03 BK9 8-7/GNS-03 BK9 8-7	10101	98-0810-7N
			_		_	Ξ			_				_					_				_ :	_ `	_	_	_		_	_		_		_	_			_		_		_		_	_	_	_				_
Analysis Date d-m-y	, 60, 40, 60	2 6	23-0cl-00	11-0ct-00	11-0ct-00	11-0ct-00	11-0ct-00	17-Dec-98	17.Dec08	5	17-Dec-98	20-Oct-98	20-Oct-98	20-Oct-98	20-Apr-01	20-Apr-01	20-Apr-01			20 Apr 01	April 1	Ze-Mar-01	26-Mar-01	23-Oct-00	23-Oct-00	23-Oct-00	11-Oct-00	11-0ct-00	17-Dec-98	17-Dec-98	17-Dec-98	30-Sep-98	30-Sep-98	29-Sep-98	25-May-01	20-Apr-01	26-Mar-01	26-Mar-01	26-Mar-01	23-Oct-00	23-Oct-00	11-0ct-00	11-Oct-00	11-Oct-00	11-0-1-00	11-021-0	11-05-00	01-8-00	3 2	1/-000-38
Quality	7000	5	8 8	0 000	pood	good	0000	pood	200	3	good	boog	book	000	poop	0000	- Te	3 6	3 7	5000	6 6 6	900	900 000	g g	p oof	boog	pood	bood	fair	fair	fair	Dood	fair	5000	fair	900	900	poop	800	000	poop	0000	poop	0000		2 6	3 6	3 6	3	000G
G																																																		

n.a. Not Analyzed < Less Than MDL

Name Part		9		. 10		. 6	· (4	9	ဗ	9	,		4	4	81	טז	ဗ	rc S	,	8	က	S.	Q	4	8	4	4	o O	9	9	7.	4	Ω :	ŧ g	2 22	o,	7	Ξ	က္	89	<u>ი</u>	8	89	4	ឌ	8	Ļ
Analysis Sample ID Sample ID <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td>_</td><td></td></th<>																						_									_								_		_		_		_	_	
Decision	Ę	703	4040	425	4030	3470	404	348	0.302	0.569	0.314	0.383	0.296	0.57	0.291	0.498	0.309	0.502	0.273	0.684	1.27	1000	195	532	0.736	501	19.2	Ξ	211	355	0.35	13.5	0.80	0.40	44.3	8.53	1.86	3.8	7.6	13.5	18.5	0.40	0.29	0.32	0.29	0.35	
Name	>	13000	49900	16000	42300	42800	14100	14900	1.49	2.1	1.44	1.69	0.951	1.41	1.27	1.78	1.34	1.57	0.798	1.31	50.1	2570	10700	13700	7.35	1290	66.7	2360	12600	12600	2.28	47.4	61.1	2.0	160	82.9	3.61	O	14.1	20.1	69.5	0.42	0.68	0.805	1.01	1.13	
Name	ב	220	718	249	829	694	268	212	.0973	0.112	0.121	0.102	0.107	0.122	.0401	0.034	0285	0.047	.0341	0.036	0.862	46.2	157	198	0.135	19.2	٧	41.6	183	189	0803	0.368	0.226	0484	1.48	0.861	0.0732	0.121	0.16	0.232	0.664	.0277	.0141	.0218	.0228	.0297	
Main		_		_	_	_	_	_							Ξ.			_	-				_	_			_		_	_		_				_		_	_		_	_	_			_	
Analysis Simple ID beneficiare is consistent at the consistent at																																						_				Ţ					
Decision Company Com				w.v.	,,,,,			www.										ww			,,,,,,			www		waren	00000	*****		0200	02000	2220	22000	20000	000000	MAZW.	MANAGE .	00000	00000	week	waa.	ww.	0020	00000	000000	9220	×
Part																▓													▓		<u></u>									<u>_</u>	ૂ	ૢૻ		Ü			
Date drivy Sample ID Description Date drivy Dat	운	53	180		203	Ē	9	9	0.12	0.12	0.11	0.	0.11	0.1	0.05	0.080	0.043	0.070	0.051	0.048	1.4	2	36	32	0.22	51		92	4	4	0	#. #:	7.5	200	5.4	~	0.18	0.32	0.59	0.78	2,	0.03	0.0		0.037	0.0	
Date d-rry Campile Campil	5	2570	8690	2850	10000	8540	3500	2880	0.391	0.46	0.421	0.497	0.342	0.442	0.117	0.178	0.231	0.258	0.163	0.335	6.3	505	1930	2440	0.931	260	8.28	470	2280	2290	0.381	7	7.14	0.400	32.4	15.2	0.632	1.84	2.73	4.4	13.9	0.12	0.0764	0.112	0.11	0.166	
Date d-rry California Date d-rry Date d-rry Date	ē	389	1370	465	1640	1410	572	504	0.0901	0.107	0.0914	0.107	0.0956	7960	0.0429	0.0649	0.0374	.0651	0.041	0.0378	0.897	81.1	281	355	0.136	43.1	V	76.2	336	341	0.0714	2.8	1.2	0.000	6.42	2.48	0.119	0.316	0.5	0.698	2.42	0.0187	٧	٧	v	0.0296	
Control Cont																											••••					وورور				****	****										
Date d.n. Amilysis Sample Date d.n. Date d.n. Amilysis Ami																																															
17-Dec-98 NZ-020U-98 U20 Routismus 1 2300 7380 1180 5880 29-Co-698 NZ-020U-98 Y20 Routismus 1 2300 7380 1180 5880 29-Co-698 NZ-020U-98 Y20 Routismus 1 2400 23600 24000 29-Co-698 NZ-020U-98 Y20 Routismus 1 2600 23600 24000 29-Co-698 NZ-020U-98 Y20 Routismus 1 2600 23200 4770 24300 29-Co-698 NZ-020U-98 NZ-020U-98 Y20 Routismus 1 2600 23200 4770 24300 29-Co-699 NZ-020U-98 NZ-020U-99																											www	····		,,,,,,,		,,,,,,,,	ueser.	-	essa.			anne.	aanaa						000020	00000	
Aralysis Sample ID baserpiden La Ce Date drinty 20-Oct-68 NZ-020U-98																																															١
Analysis Sample ID Sample La Ce Date d-m-y 17-Dec-98 NZ-020U-98 U2D Rockwaws 4 2300 7380 20-Oct-98 NZ-020F-98 1X F19 Rockkwws 4 2300 7380 29-Sep-98 NZ-020F-98 1X F19 Rockkwws 4 10500 33600 29-Sep-98 NZ-020F-98 1X F19 Rockkwws 4 2470 3100 29-Sep-98 NZ-020F-98 1X F20 Rockkwws 4 2700 3730 29-Sep-91 NZ-150U-00 150U-00 Mocked MI 0.727 1.31 05-Sep-01 NZ-151F-00 150U-00 Mocked MI 0.727 1.31 05-Sep-01 NZ-151F-00 150U-00 Mocked MI 1.19 2.56 05-Sep-01 NZ-151F-00 150F-00 Mocked MI 1.19 2.56 05-Sep-01 NZ-151F-00 150F-00 Mocked MI 1.19 2.57 10-Aug-01 NZ-151F-00 150F-00 Mocked MI 1.11 2.18 10-Aug-01 NZ-152H-00 150F-00 Mocked MI 1.11				888	₩	***							****		888		***	***	***				***	888			***				***					***	***	***	***		***		***			***	8
Analysis Sample ID Sample La Date d-m-y 17-Dec-98 NZ-020U-98 U20 Rotakawa 84 2300 20-Oct-98 NZ-020U-98 U20 Rotakawa 84 2470 29-Sep-98 NZ-019F-98 T19 Rotakawa 84 2470 59-Sep-99 NZ-019F-98 T19 Rotakawa 84 2500 65-Sep-01 NZ-150U-00 150U-00 Mokel M 1.59 65-Sep-01 NZ-150U-00 150U-00 Mokel M 1.19 65-Sep-01 NZ-151U-00 150U-00 Mokel M 1.11 10-Aug-01 NZ-151U-00 150U-00 Mokel W 1.11 10-Aug-01 NZ-155U-00 150U-00 Mokel W 1.14 10-Aug-01 NZ-155U-00 150U-00 Mokel W 1.14 10-Aug-01 NZ-155U-00 150U-00 Mokel W <th>ዾ</th> <td>1180</td> <td>5050</td> <td>1280</td> <td>4970</td> <td>4750</td> <td>1370</td> <td>1280</td> <td>0.168</td> <td>0.38</td> <td>0.164</td> <td>0.318</td> <td>0.135</td> <td>0.269</td> <td>0.138</td> <td>0.353</td> <td>0.117</td> <td>0.286</td> <td>990'0</td> <td>0.216</td> <td>6.23</td> <td>99</td> <td>780</td> <td>883</td> <td>0.594</td> <td>328</td> <td>8.74</td> <td>616</td> <td>9</td> <td>947</td> <td>0.16</td> <td>39.6</td> <td>1.96</td> <td>0.25</td> <td>57.7</td> <td>12.7</td> <td>Ξ</td> <td>2.41</td> <td>4.98</td> <td>6.33</td> <td>18.2</td> <td>0.0777</td> <td>0.076</td> <td>0.1</td> <td>0.35</td> <td>0.278</td> <td></td>	ዾ	1180	5050	1280	4970	4750	1370	1280	0.168	0.38	0.164	0.318	0.135	0.269	0.138	0.353	0.117	0.286	990'0	0.216	6.23	99	780	883	0.594	328	8.74	616	9	947	0.16	39.6	1.96	0.25	57.7	12.7	Ξ	2.41	4.98	6.33	18.2	0.0777	0.076	0.1	0.35	0.278	
Analysis Sample ID Sample La Date d-m-y NZ-020U-98 U20 Rotakawa #4 2300 20-0ct-98 NZ-020U-98 U20 Rotakawa #4 2300 20-0ct-98 NZ-020F-98 TP3 Rotakawa #4 2470 29-Sep-98 NZ-020F-98 TP3 Rotakawa #4 2790 29-Sep-98 NZ-020F-98 TP3 Rotakawa #4 2790 29-Sep-98 NZ-020F-98 TP3 Rotakawa #4 2790 29-Sep-99 NZ-020F-98 TP3 Rotakawa #4 2790 29-Sep-91 NZ-020F-98 TP3 Rotakawa #4 2790 29-Sep-01 NZ-150F-00 150F-00 Mockal M 1.590 05-Sep-01 NZ-150F-00 150F-00 Mockal M 1.19 05-Sep-01 NZ-150F-00 150F-00 Mockal M 1.10 10-Aug-01 NZ-150F-00 150F-00 Mockal M 1.11 10-Aug-01 NZ-150F-00 150F-00 Mockal M 1.11 10-Aug-01 NZ-155F-00 150F-00 Mockal M 1.11 10-Aug-01 NZ-155F-00 150F-00 Mockal M 1.10	కి	7380	33600	8100	31800	33300	8710	8320	1.31	3.51	1.17	2.56	0.891	2.18	1.07	3.24	1.02	2.2	0.661	1.97	44.5	6420	5070	6460	3.8	3530	6.99	5760	5870	5940	1.79	357	13.1	8. C	500	108	6.43	20.4	32.2	26	160	0.585	0.545	0.607	0.532	0.76	
Analysis Sample ID Sample Date d-m-y 17-Dec-98 NZ-020U-98 U20 Rotakowa #4 20-Oct-98 NZ-020H-98 U20 Rotakowa #4 20-Oct-98 NZ-019F-98 1X F19 Rotakowa #4 29-Sep-98 NZ-020F-98 1X F10 Rotakowa #4 29-Sep-98 NZ-020F-98 1X F10 Rotakowa #4 29-Sep-99 NZ-020F-98 10X F20 Rotakowa #4 29-Sep-01 NZ-150L-00 150L-00 Mokal MI 05-Sep-01 NZ-150L-00 151F-00 Mokal MI 05-Sep-01 NZ-150L-00 152L-00 Mokal MI 10-Aug-01 NZ-150L-00 152L-00 Mica we 10-Aug-01 NZ-150L-00 152L-00 Mica we 10-Aug-01 NZ-155L-00 152L-00 Mica we </th <th>Ē</th> <th>2300</th> <th>0090</th> <th>2470</th> <th>080</th> <th>050</th> <th>2790</th> <th>2640</th> <th>727</th> <th>1.59</th> <th>.592</th> <th>1.19</th> <th>3,483</th> <th>=</th> <th>.658</th> <th>1.48</th> <th>491</th> <th>1.13</th> <th>0.41</th> <th>1.01</th> <th>28.2</th> <th>2580</th> <th>1710</th> <th>2180</th> <th>2.4</th> <th>1440</th> <th>38.9</th> <th>2380</th> <th>2040</th> <th>2070</th> <th>0.68</th> <th>178</th> <th>5.89</th> <th>0 20</th> <th>239</th> <th>48.1</th> <th>3.52</th> <th>10.1</th> <th>16.3</th> <th>28</th> <th>76.2</th> <th>0.242</th> <th>0.296</th> <th>0.417</th> <th>0.448</th> <th>0.628</th> <th> </th>	Ē	2300	0090	2470	080	050	2790	2640	727	1.59	.592	1.19	3,483	=	.658	1.48	491	1.13	0.41	1.01	28.2	2580	1710	2180	2.4	1440	38.9	2380	2040	2070	0.68	178	5.89	0 20	239	48.1	3.52	10.1	16.3	28	76.2	0.242	0.296	0.417	0.448	0.628	
Analysis 17-Dec-98 20-Oct-98 29-Sep-98 29-Sep-98 29-Sep-98 29-Sep-98 29-Sep-98 65-Sep-01 65-Sep-01 10-Aug-01 10-Aug-01 10-Aug-01 10-Aug-01 11-Oct-00 11-Oct-00 11-Oct-00 11-Oct-00 11-Oct-00 11-Oct-00 11-Oct-00 11-Oct-00 11-Oct-00 129-Aug-01 29-Aug-01			•			-		7			_		_			_		_		φ. φ.	35	- 55 - 55	Z Z	Call P.	S	Kral Si	Moka	Mola	Moka	Moka	ad par	adju-							19/3/0	78/8/7	Xoq						
Analysis 17-Dec-98 20-Oct-98 29-Sep-98 29-Sep-98 29-Sep-98 29-Sep-98 29-Sep-98 65-Sep-01 65-Sep-01 10-Aug-01 10-Aug-01 10-Aug-01 10-Aug-01 11-Oct-00 11-Oct-	mple scription	0 Rotska	9 Rotaka	0 Rotaton	9 Robaton	D Potestra	0 Rotaka	0 Rotaka	0F-00 Mo	ON-00-NO	1F-00 Mo	1U-00 Mo	2F-00 Mol	2U-00 Mo	0F-00 MK	OU-00 MK	1F-00 LK	10-00 MK	2F-00 MK	2U-00 MK	3F-00 Mo	3U-00 Mo	4F-00 Mo	4U-00 Mo	6F-00 Mo	5U-00 Mo	2-153F-00	2-153U-00	2-154F-00	2-1540-00	7F-00 Bro	7U-00 Bro	1-08 well	100 Medi	3-18 week	3-24 wed!	3.31 well	3-42 well	3-48 well	3-48 well	1-48 wier	3-Blank	3-10 well	3-15 well	3-20 well	3-22 well	
Analysis 17-Dec-98 20-Oct-98 29-Sep-98 29-Sep-98 29-Sep-98 29-Sep-98 29-Sep-98 65-Sep-01 65-Sep-01 10-Aug-01 10-Aug-01 10-Aug-01 10-Aug-01 11-Oct-00 11-Oct-			×			10X E1	2	10X F2	3					15	5	15	.	15	15	15	4		·		·	•	_		2			·	ä	\$ 6			•	8	19/3/ BF	7/3/9 BF	box BF	ă	ä	8	8	8	
Analysis 17-Dec-98 20-Oct-98 22-Oct-98 22-Sep-98 22-Sep-98 22-Sep-98 22-Sep-98 22-Sep-98 22-Sep-98 22-Sep-98 22-Sep-98 10-Aug-01 10-Aug-01 10-Aug-01 10-Aug-01 11-Aug-01 11-Aug-01 11-Aug-01 11-Aug-01 11-Aug-01 11-Aug-01 11-Aug-01 12-Aug-01 13-Aug-01	nple II	98-N020	19F-98	20F-98	19F-98	TOT OF	20F-98	20F-98	50F-00	50U-00	51F-00	510-00	52F-00	52U-00	50F-00	500-00	51500	510-00	52F-00	520-00	53F-00	530-00	54F-00	540-00	55F-00	155U-00	153F-00	1530-00	54F-00	540-00	47F-00	47C-00	38 Well		18 well	24 well	31 well	42 well	48 Well	48 Well	48 wier	Blank	10 well	15 well	20 well	22 well	
			-							_		_					_	_				_	_	_		_	_	_	_	_											_				_		
	Analysi: ate d-m	7-Dec-9	0-0ct-9	0-0ct-0	9-Sep-9	O-Co-Co	6-de9-6	6-deS-6	5-Sep-0	5-500-0	5-Sep-0	5-Sep-0	5-Sep-0	5-Sep-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	0-Aug-0	11-Oct-0	11-Oct-0	11-0ct-0	11-Oct-0	5-Sep-0	5-Sep-C	9-Aug-C	S-Aug-	9-Aug-0	9-Aug-0	9-Aug-0	9-Aug-6	9-Aug-0	9-Aug-6	9-Aug-6	9-Aug-6	9-Aug-6	9-Aug-0	9-Aug-C	9-Aug-C	,
	Quality D													_						-	•	Ċ	•	•	_														-				•			fair 2	

n.a. Not Analyzed < Less Than MDL

Page 10 of 15

)	0.22	0.122	0.184	0.156	0.21	2.64	4.03	6.18	0.0525	0.0777	0.133	60800	1720	1870	2690	2250	318	2490	1290	0.76	2.52	1.22	1.3	0.18	0.221	٧	0.475	0.52	٧	6.22	39.8	٧	V	V	0.137	0.911	0.116	0.942	V	0.0565	v	_	٧	٧	٧	v v	
두	0.352	0.246	0.303	0.273	0.192	7.76	13.2	18.2	0.219	0.234	0.438	46200	11500	2390	5280	3730	1100	4460	2370	0.293	14.8	0.423	5.6	0.262	0.514	٧	٧	٧	٧	12.9	34.5	3.55	٧	0.695	0.332	4.22	0.143	4.39	V	٧	٧	1.74	٧	٧	1.95	0.836	
>	1.27	0.507	1.71	1.2	0.222	14.5	20.6	63.6	0.327	0.533	0.581	53000	2090	8420	10700	98000	4620	13300	4200	2.09	48	3.4	10.9	2.14	3.04	٧	2.38	0.103	٧	٧	4.82	26.8	13.7	55.6	6.37	14.3	6.47	14.2	v ;	0.974	٧	V	V	٧	18.9	14.7 17.7	
			_									•				٠,																													v	v v	
Ϋ́			_			_					_	_				_														_																	
																																														v v	
********		****	eren e	aaraa																																										v v :	
																																															ě
																																														V V	
																																														v v	
욘	0.0292	•	0.0333	0.0223	٧	0.475	0.676	2.34	•	•	٧	4050	244	364	4680	9	219	456	165	0.0364	4.26	0.0722	0.399	0.0321	0.0666	٧	٧	•	V	2.81	12.3	5.27	0.994	V .	0.0854	0.533	0.0444	0.4/4	V	v	v	V	V	V (1.32	1.3 3.83	
P 5		0.123	0.247	0.156	0.0987	2.95	4.36	14.9	0.0608	0.0715	0.0496	27600	2030	9 7 7	6200	27700	866	3110	950	922	7	0.485	3.05	0.246	0.44	0.248	0.436	0.46	240	8	86	5	٧	٧	388	3	Š		2 I	2	۷ ا	2	6.	٧	V i	X 8	Market Second
Eu	0.188	0.0727	0.137	0.155	0.072	0.576	0.969	3.83	0.0379	**** V	V	78700	1410	827	5510	28100	221	1370	827	 -	7.45	0.257	0.761	0.156	0.228	0.638	0.531	0.211	15.8	7.94	30.4	V	: :	×	.0924	0.787	11/07	 27.0	V 6	S ;	0.147 0.147	3.41 	**** V	V (5.78	2.76 >	:
E	000000	- 2000	×220	2000	0000	020	Maan (2220	~	9920	99200	0020	eeee	enen.				en en en	Acres 6		w						****	****			****				_ ~~~		_ 									v v	
										₩																																				725	
<u>-</u>						***																					***																				:
			0.86						0.42 0.0			_								1.58 0.		4.24 0.		1.2						_										5 0							
పి		1 0.567			0.368					2 0.384	7 0.424	0 382000	0 44700			w			÷				4		•	v		< 0.819					× 5.18								, ,		s. 5.19	v :		8 × 4.4 ×	
La	_	0.311	0.76	0.612	0	رد 17.3 دو			0.189	0.302	0.337	e. 149000				h 32300		_		0		m 2.92	_			•	4.97	_	_	1 57.5	_	-	-44 .	. .		10.0			V 00-							2.7. 5. ^.	
uogd.	llow	Well	B well	Ned.	BR-448 well	BR-48 s.p. 5.7 b.g	e.p. 5.7 b	Wierbox	ttle Blank			1 calcite	1 calche	2 1hr30m	2 New up	2 Oct99 1	2 Oct99 o	2-2theta i	2-2theta i	147F-00 BR-20 w	147U-00 BR-20 w	148F-00 BR-15 w	148U-00 BR-15 w	149F-00 BR-48 W	149U-00 BR-48 w	NZ-028U-96 Bros	NZ-029U-08 Bros	NZ-030U-98 Bros	U28 Broadlands #	U29 Broadlands	U30 Broadlands (F28 Broadlands 4	F29 Broadlands	F30 Broadlands	146F-00 Walraka	1460-00 Walrake	140F-00 Warraca		M2-0-22-27	MZ-020-98 WAR	NZ-02/0-98 Walf	UZS Walrakal #22	U26 Walraksi #22	U27 Walraksi #21	F25 Walrakel #22	F25 Walrakoi #22 F27 Walrakoi #21:	
Sample Description	BR-36 well	BR-43 well	BR-43B well	BR-44 well		BR-48	b BR-48	X BR-48	ik BR-Bo	BR-16	BR-20	3C 7 BR-1	BC 7 BR-1	in 4 BR-2	8 4 BR-2	hi 6 BR-2	V(6 BR-2	in 5 BR-2	in 6 BR-2	1475-0	1470-0	148F-0	148U-0	149F-0	149C-0	NZ-02	NZ-028	NZ-03	U28 Br	U29 Br	U30	F28 Br	F20 B	130 190	1467-0		7 1041		20-72	20-7N	720-27	87 5	U26 W	U2/ W	F26 W	F27 W	
Sample ID	well	Well	B well	well	₩e B	BR-48 19-3-97	BR-48 s.p. 5.7 b BR-48 c.p. 5.7 b.g	BR-48 Wierbox BR-48 Wierbox	BR-Bottle Blank BR-Bottle Blank			BR-11 calcite sc 7 BR-11 calcite &	BR-11 calcite sc 7 BR-11 calcite s	BR-22 1hr30min 4 BR-22 1hr30mir	BR-22 New up s 4 BR-22 New up 4	BR-22 Oct99 1hi 6 BR-22 Oces9 1h	BR-22 Oct99 ov. 6 BR-22 Oct99 ov	BR-22-2theta lin 5 BR-22-2theta Ik	BR-22-2theta lin 5 BR-22-2theta lir	Ĭ 8	8	<u> </u>	00-D1	<u>1</u>	80	26-98 36-98	8 6-5	86- <u>7</u> :	86- <u>7</u> :	86-j	86-0	86 L	23 G	8 S	3 8	3 8	3 5	3 8	8 8 5 5				2 c	9 5 5 1	ž u	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	BR-36 well	BR-43 well	BR-43B wel	BR-44 well	BR-44B well	BH-48	BR-48	BH 48	BR-B 0	BR-15	BR-20	BR-11	BR-11	BR-22	BR-22	BR-22	BR-22	BR-22	BH-22	NZ-147F-00	NZ-147U-00	NZ-148F-00	NZ-148U-00	NZ-149F-00	NZ-149U-00	NZ-028U-98	NZ-029U-98	NZ-030U-98	NZ-028U-98	NZ-029U-98	86-0300-58	NZ-028F-98	NZ-029F-98	NZ-030F-90	NZ-1401-00	NZ-1460-00	NZ-1461-00	NZ 02511 09	NZ-0250-96	NZ-0200-80	NZ-02/0-30	176-042 117 000	NZ-026U-98	NZ-02/U-98	NZ-025F-98	NZ-027F-98	
Analysis Date d-m-y	29-Aug-01	29-Aug-01	29-Aug-01	29-Aug-01	29-Aug-01	10-Aug-01	10-Aug-01	10-Aug-01	10-Aug-01	10-Aug-01	10-Aug-01	16-Jul-01	16-Jul-01	16-Jul-01	6-Jul-01	16-Jul 01	16-2년-01	16-Jul-01	16-Jul-01	16-Jul-01	16-Jul-01	16시네-01	16-Jul-01	16-Jul-01	16-시네-01	23-0ct-00	23-Oct-00	23-Oct-00	17-Dec-98	17-Dec-98	17-Dec-98	29-2ep-92	26-dec-67	29-24b-90	05-5-p-01	oc May 01	S. May 01	23-Oct-On	200100	00100	42 Per 08	7 040-80	17-Dec-38	26-08G-71	28-28b-82	29-Sep-98	
Quality			fair 2			-			·	fair 1	fair 1	good		•	•	good	•				•	good 1	•	•	_				•					7000 E			•	•							5000		

n.a. Not Analyzed < Less Than MDL

כ	212000	39700	11.2	36.6	8.4	9.18	274	260	5.71	228	11.3	6.9	292	5 64	4640	14000	1.94	1.34	4.	1.18	<u></u>	1.04	1.59	0.677	13800	13300	13700	7380	7260	7370	14100	6910	25800	19500	33.1	76.2	573	2 5		52.4	20.8	56.9	45.9	62.9	45.5	26.9	25.7
£	6110	994	0.512	147	0.534	2.81	0.771	=	1.12	٧	0.0604	0.0757	0.602	٧	14300	21200	0.22	3.35	0.21	0.668	0.193	0.278	0.551	0.333	63200	61100	64100	14700	7080	7200	11900	17500	21900	20000	11.6	471	1010	2 6	282	22.	4. [413	26.4	754	340	197	51.7
>	344000	77800	24.5	1070	26.5	45.1	62.4	67.4	3	85.4	93.1	110	88.3	5	89300	20000	3.77	16.9	4.31	6.21	9.49	9.07	5.71	5.1	240000	235000	240000	263000	321000	319000	317000	302000	412000	421000	13800	15600	65700	0000	300	10100	9160	18100	8360	8990	8810	7110	6350
7	9420	1370	0.917	7	1.14	1.42	7.26	7.32	3.02	4.55	8.76	9.05	5.8	4.73	120	3890	0.0278	0.221	0.0179	0.0468	0.0506	v	0.0283	0.0378	3970	3770	3970	3950	5130	5150	6350	4810	9650	9940	160	202	938	7/7	Ŝ.	132	116	246	5	128	95.6	93.3	72.8
χp																									_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	٠.	_		_
π	9250	1180	0.616	16	0.663	0.937	3.07	3.15	0.893	2.12	3.87	4.18	2.22	1.65	1330	4440	0.0259	0.222	0.0222	0.0614	0.0602	V	0.0215	0.027	4000	3870	4060	3970	4940	4970	5540	4800	7800	6800	180	218	1020	70.7	241	143	118	528	12	133	114	99.3	83.4
ù																																															
유				***								****							***	****										****		****					****		***		***	***	w				9998
፩																																						_	_	_	_	_	_	_	_		_
P	***																																														
ē																																															
Eu	•																				***			***					****								***		***	****		****				***	***
																																													anne.		44400
ES		***							***		***				***						***						***	***	***																		
P	269000	4330	e e	132	=	3	4.8	7	9	*	7.6	÷	9	4.8	1040¢	22000	ë	Ť	ï	Ŧ.	ત્રં	ö	*	<u>.</u>		00691	7300	985	9710	9896	9580	2008	11700	1020	147	247	2510	#1#	3	219	2	8	24	250	8	#	110
P	44400	5410	0.371	300	0.643	2.81	0.0	2.16	1.83	1.69	1.32	CH	1.04	٧	25900	49500	0.206	3.29	0.231	0.712	0.531	0.791	0.358	0.4	44000	42900	43500	26400	20100	19800	2000	28700	22100	20600	179	460	5810	980	1390	411	360	1320	499	493	729	27.1	208
ပီ	175000	29700	2.87	1810	4	19	69'9	8.43	14.2	8.46	96.9	#1.1	11.5	10.3	229000	370000	1.68	26.9	2.23	6.16	4.8	5.58	3.08	3.06	362000	348000	350000	182000	128000	120000	131000	203000	135000	128000	684	3160	43100	6940	8920	2530	22	8780	3200	3560	4520	1790	1210
La			1.56	808	2.37	11.4	2.75	4.02	6.75	2.98	4.09	6.25	٧	٧	04000		1.17	12.1	5.33	6.72	6.9	6.81	1.99	5.5				65900	42600	41900	46100	79200	48700	44300	146	1290	16500	2630	5800	863	716	2880	1010	1470	1440	642	397
Sample Description	retts NZ-145	rette NZ-145	302F-01 Tauro M	302U-01 Taubo M	303F-01 Taupo M	303U-01 Taupo M	304F-01 De Brette	304U-01 De Brett	305U-01 De Brett	NZ-031U-98 De B	NZ-145F-00 De Br	NZ-145U-00 De Bi	U31 De Brette	F31 De Bretts	.N.T NZ-143	.N.T. NZ-143	141F-00 Tokenu	141U-00 Tokmenu	142F-00 Tokanu	142U-00 Tokannu	143F-00 Tokannu	143U-00 Tokannu	144F-00 Tokmanu	144U-00 Tokanu	5-09 RCL 4-1	10 RCL 18:	F11 RCL 4-5	7-12 RCL 10-	3-13 RCL 28-:	2-13 BCL 28:	3-14 RCL 17-	3-15 RCL 10-	tuepehu Crat	tuapehu Grat	NZ-104F-00 White	NZ-104U-00 White	3-16 WI 22-10	3-17 WI 16-14	8-18 WI 23-2-	3-19 WI 5-6-0-	8-20 WI 15-11	3-21 WI 6-7-94	8-22 WI 28-2+	S-23 WI 14-2≺	8-24 WI 2-6-9	8-25 WI 4-11+	8-26 WI 31-14
Sample Descrip	14.0e B	14: De B	302F	302U	383	3030	304	3040	306U	NZ.	ZZ.	ZŽ	U31	F31	3491.8	43.91.8	141F	1410	142F	1420	143F	1430	144	1440	4- IGNS	18 ICNS	4-1GN	10 CNS	28 IGN	28 IGA	17 IGN	10101	×	5X MR R	7 <u>7</u>	Ϋ́	2-1 GN	5-1-5	3-2 GN	5-: CSN	5-1 GR	-Y-:E	8-2 GR	4-21GN	<u> </u>	-1 SE	1-1 GR
Sample ID	De Bretts NZ-14 De Bretts NZ-145 151000	De Bretts NZ-14: De Bretts NZ-145	NZ-302F-01	NZ-302U-01	NZ-303F-01	NZ-303U-01	NZ-304F-01	NZ-304U-01	NZ-305U-01	NZ-031U-98	NZ-145F-00	NZ-145U-00	NZ-031U-98	NZ-031F-98	L.S.N.T NZ-143-19 L.S.N.T NZ-143- 104000 229000	L.S.N.T. NZ-143.9 L.S.N.T. NZ-143 159000	NZ-141F-00	NZ-141U-00	NZ-142F-00	NZ-142U-00	NZ-143F-00	NZ143U-00	NZ-144F-00	NZ-144U-00	IGNS-09 RCL 4-1GNS-09 RCL 4-1: 155000	IGNS-10 RCL 18 IGNS-19 RCL 18: 150000	IGNS-11 BCL 4-10NS-11 BCL 4-5 149000	GNS-12 RCL 10 GNS-12 RCL 194	IGNS-13 RCL 28 IGNS-13 RCL 28:	IGNS-13 BCI 28 iGNS-13 BCL 28-	IGNS-14 RCL 17 IGNS-14 RCL 17	IGNS-15 RCL 10 IGNS-15 RCL 10-	NZ-032U-98 1X Mt Ruapehu Crat	NZ-032U-98 25X Mt Ruspehu Grat	NZ-104F-00	NZ-104U-00	IGNS-16 WI 22-1 IGNS-16 WI 22-10	IGNS-17 WI 15-1 IGNS-17 WI 15-14	IGNS-18 WI 23-2 IGNS-18 WI 23-24	IGNS-19 WI 5-5-! IGNS-19 WI 5-6-0	IGNS-20 WI 15-1 IGNS-20 WI 15-11	IGNS-21 WI 6-7-! IGNS-21 WI 6-7-9	IGNS-22 WI 28-2 IGNS-22 WI 28-2+	IGNS-23 WI 14-2 IGNS-23 WI 14-2+	IGNS-24 WI 2-5-11GNS-24 WI 2-6-0	IGNS-25 WI 4-11 IGNS-25 WI 4-11+	IGNS-26 WI 31-1 IGN8-26 WI 31-14
Analysis Date d-m-y	16-Jul-01												_	29-Sep-98	16-Jul-01	16-Jul-01	25-May-01	25-May-01	25-May-01	25-May-01	25-May-01			25-May-01	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	29-Sep-98	29-Sep-98	11-0ct-00	11-0ct-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00	01-Sep-00
Quality	poop	pood	pood	poop	poop	000	poop	000	000	000	000	0000	fair	fair	boog	6 00	good	goog	boob	9006	000	900	0000	000	000	0000	000	000	000	3 E	poop f	0000	0000	900 000	book	poob	boob	0 006	boob	good	0 006	6 006	6 006	good	good	boog	boob

n.a. Not Analyzed < Less Than MDL

	_	_				٠,	_	_		v	_	_	_	~	~	v	•	~	v	v	v			. ~	. 60	ı.	· v	, 60			· 6	7	9	80	6	v	v	v	v	v	v	v	v	v	7	80	7	7	
-	ĕ	4		5 8	3 3	3	2	494	. 99		360	480	0 96	12.	86.	·	.99	4.0	·	·	•	23	9	. ^	14	- 7		4	1.5	}	2.79	.e.	23	3.1	ď										0.49	0.288	0.69	0.42	
Ħ	239	576	1360	2 6	0 0	22.2	388	7280	136	73	5410	7220	12200	25.8	169	2.12	56.5	7.12	4.08	٧	٧	44.8	221	63.8	13	2 V	1.15	· ·	172		' V	V	V	٧	V	V	V	V	V	V	V	٧	V	٧	0.989	0.624	0.961	0.719	
. >	7510	00700	244	1 20	200	2000	640	28900	50.9	٧	20900	31200	58200	332	1440	٧	460	159	٧	٧	٧	378	1550	501	183	70.8	66.7	75.4	74.1	66.7	71.9	73.1	77.4	74.8	78.5	٧	٧	٧	V	٧	V	٧	٧	٧	5.19	2.97	4.63	4.61	
3																										g v					2.34		_	_		٧	v	V	٧	٧	V	v	٧	٧	0741	0.0553	.0652	0.203	!
_ م																													2 23	4 42	6.62	6.97	6.31	5.57	6.98	٧	v	v	٧	v	v	v	٧	٧		0.395 0			
- -								_				_							_					98.0			′ \	/ v	/ \	/ v	/ V	· v	٧	v	2.03	٧	v	v	v	v	٧	٧	٧	٧	.0811		0.0553		,
Ę																														. 9		Q.	*	ceces		٧	٧	٧	v	v	¥	v	v	v	····			corror	æ
ū	788																											i ir	; ; / \	, r	, id / V	, k	. V	¥ •	- 0 0 0 0 0 0	v	v	v	v	v	· ·	v	v	· v	٠	6 0.312			
웊	260	2	5	¥. 6	2 3	<u></u>	18	94	•	•	689	103	191	7.6	47.5	•	-		•	•	•	36	ŝ	44.9	8	3																			0.13	0.0876	0.15	0.28	ļ
፩	1230	200	2000	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	₹ ;	962	<u>5</u>	4800	8.34	٧	3400	5200	9640	45.5	276		22	۲	236	} `	′ \	13	3 5	1 5	7 98	0 0 4 4	2.0	6.27	2 4	7.73	7.72	8.62	6.31	9.89	10.4	V	٧	٧	٧	٧	٧	٧	٧	٧	0.941	0.761	0.993	-	•
P	179	2746	9 ,	5.42	0.55	157	15	760	٧	٧	549	823	1530	9.18	48.9	V	10.4	٧	٠ ٧	0 825	}	35.7	3 6	40 A		<u>•</u>	, \	700	, v	/ \	/ V	2.14	2.7	٧	2.06	٧	V	٧	٧	٧	٧	٧	٧	٧	0.12	0.0799	0.138	0.303	,
70	Ş		3 1	3	•	0/0	2	2430	9.54	٧	4030	5810	0800	97	Ş	266		7	e e	ı a								- u	į			2	10	18.6	6	٧	٧	٧	٧	٧	٧	٧	٧	٧	7697	5			
פר								1230			×				143			.							, ,	V \					74.0			٧	v	V	V	×	v	V	٧	×	**	/ V		0.108			×
_															4 65									۷,		۷,		<i>y</i> ,			·	/ V	¥	¥	٧	٧	٧	٧	٧	٧	٧	٧	٧	V		0.568			
S																					, <u>.</u>	0 9	2 5	3 1		ų ,	<i>,</i>	3 1	, .	• •	4.5		19	2	7.06	٧	٧	٧	٧	٧	٧	y	v	, ,	· •				
2					**														***		***			***		Y .			***		9 6						v	**************************************	V	v	v	······································	· V	/ / \	, v				
ڇ)BC		4	43.	29.	157	13	767	10.	•	260	839(1490	13	. 69	, •	98	, d	; `	, u	5	Ö Ý	2 6	ò	2 2	5.45 0. 7		•		4 6	3.5	9 60	}	5.0	3.8										0 63		0 775		,
కి	400	3 5	9440	391	604	12900	1210	62300	116	5.64	44800	68400	119000	1120	5640	2 83	100	3 5		3 '	′	V (2 5	3340	2 6	5.0	0.0	9.0	0.0	4.4	0.4 0.4 0.4	5.94	5.93	8.92	5.95	٧	٧	٧	٧	٧	V	٧	' v	/ V	7 63	7.07	8 72	6.14	;
۳	603	3 8	2980	8	282	7200	280	35700	59.2	9.6	25800	39200			2890	24.6	2	3 5	18	R C	7.50	1.14	2 6	7860	3 6	92.0	6.30	V 9	7,00	2.5	£.00 -		, A	2.27	٧	V	٧	٧	٧	٧	٧	٧	٧	′ \	/ d	5.00 0.00	4.5	, c	;
_	9	7	28-74			98	50m		965m	ank					- Francisco	200					5	KOD.		;		‡ 5						_				sh poe	ch poer	sh poer	ch poe	ch poer	e de	- G	2	4 d	en poe	2/0/20	2400	2000	2407
Sample Description	. 600	W /2-CN	NS-28 W	BR9, G6	BR20, G10	G1, AqRe rinse	BR9, G8, 760m	Go, Br9 + wach 9	BR20, G0, 965m	DDI Field Bank	G8. Br9 AnRe wa	G10. Br20 acld w	Ge Bro AnBawa	I low c-1	S Well	- Hamping		774 6 775				Tes. Blen	Mel N #1	# - Z = 3	WORL PTOTA # 1	Well PN14 #2	HCE 30A-1	HCE 30A-2	MCE 50A-6	HCE 30A-	HCR 30A-5	HOR SUA-	HCE 35-2	HCE 33-3	HCE 33-4	ottle Les	ottle Les	office Les	ottle Lea	ottle Lee	otte Lee	and all a	and all	and different		- F-0-1	1	- Marie - Mari	
	200	5 :- C-0 :-	29-716											Aline	aline N	֡֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓						אַ בּיבּיבּ		1									: =	. I	=	-053-48	-054-B	-055-4B	-056-B	-057±8	-058-E	103528	1041	247		20/0/C	30/8/0	20/8/0	7687
Sample ID		W 12-C	IGNS-28 WI 29-7 ICNS-28 WI 29-74	NZBR-00-01	NZBR-00-02	NZBR-00-03	NZBR-00-04	NZBR-00-05	NZBR-00-06	NZBR-00-07	NZBB-00-08	N788-00-09	NZBB-00-10	N4-2 Well Palinr N1-2 Well Paling	N1-3 Well Palinc N1-3 Well Palind	Dationing DDI Palmang DDI B		FN 14-1 Well Fall Fride 1 Well Falls		as. UU	Falliplication Du Patriplication Du	U. I as. Blankupi v. Tas. Blankupi	Well N #1	Well N1 #3	Well PN14#1	Well PN14 #2	HCE SUA-1	HCE 30A-2	HCE SUA-S	4400 101	HCE 30A-5	HCE 32.1	HCE 33-2	HCE 33-3	HCE 33-4	LEACH NV-053-4 Bottle Leach pos	LEACH NV-054-1 Bottle Leach pos	LEACH NV-0554 Bottle Leach pos	LEACH NV-056-4 Bottle Leach pos	LEACH NV-057-: Bottle Leach pos	LEACH NV-058-1 Bottle Leach pos	FACH OB-035- Bottle Leach pos	EACH OB-041- Bottle sech sog	LEACH OR 041- Bome Leach por		Diank-01 12/6/9c Blank-01 12/8/96	Diank-02 12/0/90 Bumm-02 12/0/90 Bisself-03 12/0/90	Diank-0.3 (2/0/90 Burnk-0.3 (2/0/98 Blank-0.4 (2/0/98	
									_															_	-										-														
Analysis Date d-m-v	200	or-Sep-on	01-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	44.04.0	11-0ct-00			11-05-05-05-05-05-05-05-05-05-05-05-05-05-		110011	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	12-Apr-99	90-100-LL	11-Oct-00	2010-11	11-0cf-00	11-005-00	41-04-6	11-0ct-00	11-0ct-00	11-0ct-00	25-May-99	25-May-99	25-May-99	25-May-99	25-May-99	25-May-99	25-May-00	25 May 99	A May	25-May-99	26-Mar-01	O-Mar of	26 Mar 01	TOUR OF
Quality ,					good 2	good 2				-				•															200	00.	000		-	-		_							•					0000	0006
2	i	ნი	Ď	Ŏ	Ď	Ď	Ō	ō) ð	1 6	n č	ח ל	n č	n t	n č	ภเ	י ת	on i	30	0	0	σ.	<u>a</u>	a.	<u>a</u>		а.	.	-	-	1	- 6	_ 0	_ =		. o	. 0	. 0	, 0	, 0	, 0	,, (,, (<i>)</i> 10	ונט) بر	,, (J, (-1

n.a. Not Analyzed < Less Than MDL

	7	: 5	4	7.	6	53	55	22	32	4	5	27	55	98	1	38	ν	v	٧	v	v	٧	.7	8	<u>ස</u>	89.	6.	o .	<u> </u>	5 4 5	54	22	26	4 :		9 6	2 t	- 6	8	28	ເຊ	29		72
¬	_	. –																																								9 2.67		
Ę	0.555	0.408	2.25	2.23	2.01	2.18	2.06	C4	2.2	1.12	1.25	1.04	Ξ	1.42	1.37	1.35	٧	٧	٧	٧	٧	٧	29.	28.7	33.4	30.	35.6	33.4	28.		5.8	5.8	6.17	2.6			, L	. K	5.4	5.6	6.7	6.9	6.9	9
>	2.95	2.02	5.19	5.6	5.24	5.22	5.53	5.17	6.19	8.1	90.6	9.58	9	9.23	11.6	10.8	٧	٧	٧	٧	٧	٧	75.9	71.2	76.9	69.9	88.9	75.4	90.2	8.07	8.21	8.06	8.38	8.4	8.59	4.04	4.04 A 0.4	, r.	4.06	4.52	4.96	5.21	6.44	5 A
ב	0.0506	0.0392	3.47	3.46	3.44	3.52	3.4	3.4	3.49	3.29	3.77	3.53	3.88	3.65	3.89	3.79	v	v	٧	v	v	v	88.3	90.2	95.3	91.9	89.4	88.8	92.9	06. K	8.24	8.11	8.17	8.19	æ ;	2. 4	4.07 A A	4.7. 4.43	4.49	4.87	4.58	5.6	5.23	u
χ	0.276	0.284	3.89	3.61	3.89	3.53	3.64	3.72	3.8	3.29	4.2	3.38	4.33	3.91	3.64	3.78	٧	٧	٧	v	٧	٧	117	116	121	125	121	114	114	2 2	9.24	8.79	9.8	8.74	4.0	ה ה לי	5.02 5.73	5. c	4 49	5.88	5.74	6.4	8.09	7 20
Ę	0438	0.0395	3.52	3.44	3.59	3.53	3.48	3.5	3.51	2.9	3.55	3.1	3.43	3.2	3.62	3.47	v	v	v	v	v	٧	80.8	7.97	81.2	84.8	80	79.1	78.9	9.00 4.00	8.02	7.83	8.21	8.29	8.02	0/:4	4.03	4.74 A 76	463	4.38	4.4	5.15	5.46	2
Ä	0218	278	8.8	3.69	3.56	3,75	3.79	3.67	3.62	321	3,33	331	e G	2.78	3.96	2.7	٧	٧	٧	٧	٧	٧	128	9	3	3	8	8	8 !	 6 6	7.0	10.2	- 6	4.0	3 i		: S	4 t t	, PO P	91.9		6.83	6.94	j,
	.0858																																											
	0.708 0	, 0																																										
욘	0.0794	0.0635	3.71	3.7	3.67	3.72	3.71	3.64	3.62	2.28	2.77	2.56	2.68	2.47	2.93	2.87	V	V	v	v	v	v	87	91.2	93.2	89.2	9.6	87.8	88.1	0.0	8.13	8.15	8.15	8.43	8.06	0.7	4.5.4 A A A	1.54	. P	4.49	4.69	5.32	5.33	
P 5	0.448	0 449	396	7	æ 	Ş	A.	3.99	4.62	ø	3.84	3.52	333	3.36	3.53	424	٧	٧	٧	٧	٧	٧	138	<u>:</u>	135	147	143	153	3) 0 0 0 0	926	10.5	<u>-</u> -	2				9 44 1 4	9	, 7 7	8.7.3	. 199	B.7.7	Ç
Ē		0805	3.48	3.47	3.49	3.48	3.53	3.4	3.5	2.29	2.39	2.6	2.88	2.56	2.26	2.21	V	v	V	**	V	V	99	73.3	92	9.07	67.9	61.9	2 i	0.70	98.6	9.6	9.79	 8.6	9.91		 6.0.4	 2.0.4	 6.73	2.63	5.58	6.15	5.32	
ES	n KR7	0.383	436	4.59	4	4.51	4	4.27	£	٧	٧	٧	٧	v	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	v	٧	٧	٧	: "	2	*	1 3.1	90. **	3.0	• (2)	•	2 # 4	u u	183	9	9	ā	
2	4 75	128	4.97	6.17	4.74	4.75	5.16	19.	5.55	4.48	4.79	4.32	5.56	e) #	557	5.37	٧	٧	٧	٧	٧	٧	99	78.1	H	7.08	1.79	75.6	75.9) - 0	146	2	10.1	8.98	57.5	7 (2)		a a t	;;	804	8.15	8.92	6.74	. 0
	373	0 29	3.48	3.52	3.4	3.5	3.49	3.47	3.69	1.88	2.33	2.09	2.4	2.23	2.54	2.4	V	V	V	V	v	٧	99	65.2	68.3	⊚ €.69	65.7	- K	62.5 -	7.35 7.10	7.4	7.4	99'	7.83	7.59		5.57 6.15	0.10 n 71	 c 64	E 97	53	5.73	5.48	
<u>n</u> .	4.38 0							7.07											v	v	v	v								20.00									6.13 6.11					
రి			æ							۸ بن	۸ بن	۸ دن	۸ <u>4</u>	۸ ښ	^ A			v	v	v	v	v			7 97																			٠
Ë	2			8.6	6.66	5.92	6.28	13.7	8.13							11.3							71.2	-	_	85.9	73.1	73.7			0.					5.33	6.13 1.04	, ,	5.0 A 2.4	5 99	6.17	5.88	6.26	
Sample Description	Blank-05 12/8/9F Blank-05 12/8/98	Blank-06 12/8/9£ Blank-06 12/8/98	MDL-02 12/8/98	MDL-03 12/8/98	MDL-04 12/8/98	MDL-05 12/8/98	MDL-06 12/8/98	MDL-07 12/8/98	MDL-01 12/8/98	MDL-01	MDL-02	MDL-03	MDL-04	MDL-05	MDL-06	MDL-07	BLK-01	BLK-02	BLK-03	BLK-04	BLK-06	BLK-06	DL1 = 0.08 ppb IDL1 = 0.08 ppb	IDL2 = 0.08 ppb 10L2 = 0.08 ppb	IDL3 = 0.08 ppb IDL3 = 0.08 ppb	IDL4 = 0.08 ppb IDL4 = 0.08 ppb	IDL5 = 0.08 ppb ious = 0.08 ppb	IDL6 = 0.08 ppb ible = 0.08 ppb	IDL7 = 0.08 ppb 10L7 = 0.08 ppb		DL-3 = 0.008 pc IDL3 = 4.006 pc	DL-4 = 0.008 pp i DL-4 = 0.008 ppb	IDL-5 = 0.008 pp IDL-5 = 0.008 ppb	IDL-6 = 0.008 pp IDL-6 = 0.008 ppb	IDL-7 = 0.008 pp IDL-7 = 0.008 ppb	IUL = 0.005 ppb IDL = 0.005 ppb	UL = 0.005 ppb lDL = 0.005 ppb	IDL = 0.005 ppp int = 0.006 ppp	IDL = 0.003 ppp IDL = 0.006 ppc	DL = 0.003 ppb ibt = 0.005 ppb iDL = 0.005 ppb	DL = 0.005 ppb ibt = 0.005 ppb ibt = 0.005 ppb	IDL-1	10F-2	1 2
Sample ID	12/8/9E	12/8/9E	MD1-02 12/8/98 MDL-02 12/8/98	MDL-03 12/8/98	MDL-04 12/8/98			MDL-07 12/8/98	MDL-01 12/8/98														1 = 0.08 ppb	2 = 0.08 ppb	3 = 0.08 ppb	4 = 0.08 ppb	5 = 0.08 ppb	6 = 0.08 ppb	7 = 0.08 ppb	-1 = 0.008 pp	3 = 0.008 pc	4 = 0.008 pp	5 = 0.008 pp	-6 = 0.008 pp	.7 = 0.008 pp	= 0.005 ppp	= 0.005 ppp	= U.UGS DAG	יישקע הייטי ה הקק הייטי ה	- 0.005 ppb	- 0.005 ppb	- 1 0.000 Pr	- o	
Sar	R	2 6	9	B	_	_	_				8 MDL-02		8 MDL-04	_		_	_			BLK-04	8 BLK-05	8 BLK-06	_									_	_	_										
	- -			-	-										~	. ≈	ă	ক্	õ	ਰ	ਰ	ਰ	ಕ	ğ	ð	φ	φ	क्	ð í	þċ	Þφ	Ŷ	9	P	Q i	ə 8	ъċ	٦ŕ					·	, (
Analysis Date d-m-v	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	17-Dec-98	20-Oct-98	20-Oct-98	20-Oct-98	20-Oct-98	20-0ct-98	20-Oct-98	20-Oct-98	26-Mar-03	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	26-Mar-01	26-Jan-01	26-Jan-02	26 Jan 51	26-Jan Of		26-Jan-01	23-Feb-01	23-Feb-01	10100

n.a. Not Analyzed < Less Than MDL

T C		5.93 2.45								_	_	_	_	_	_	_	
>		5.21								_	_	_	_	_	_	_	
ב		32 5.05								_	_	_	_	_	_	_	
rm Yb		4.78 6.32				_				_			Ξ.	_		_	
E		7,93								_	_	_	_	_	_	_	
웊	5.48	5.43	0.286	0.253	0.3	0.291	0.27	0.247	0.253	0.0005	0.0004	0.0004	0.0003	0.0005	0.0003	0.0004	3
<u>\$</u>		.02 5.85		_	_	_			_	٠			-				
ed Tb		7.14 5.02								_	_	_	_	_	_	_	
Eu		5.72			888			***	***			×.	****	***			
ES -		27 9,16															:
Pr Na		5.28 7.27										***					
3	6.81									·	·	_	_	_	_	_	
Ľ		6.14															
Semple Description	IDL-6	IDL-7	MDL-1 200 pg/L	MDL-2 200 pg/L	MDL-3 200 pg/L	MDL-4 200 pg/L	MDL-5 200 pg/L	MDL-6 200 pg/L	MDL-7 200 pg/L	Method Blank-1	Method Blank-3	Method Blanks	Method Blank-7	Method Blank-2	Method Blank	Method Blank-6	
Sample ID	IDL-5	IDF-7	Blank 1	Biank 2	Blank 3	Blank 4	Blank 5	Blank 6	Blank 7	LMB-4	LMB-5	LMB-6	LMB-7	MDL-4	MDL-5	MDL-6	
Analysis Date d-m-y	23-Feb-01	23-Feb-01	07-May-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01	27-Aug-01							
Quality	poop	poob	poob	pood	pood	b 000	pood	boop	b 000	8000	000	0000	poop	pood	600	000	

Sample ID	Ag	₹	₽	œ	Ва	æ	Ca	8	ಕಿ	ర	75	Đ.	¥	La	ם	Mg
MDL [mg/kg]	0.00115	0.00469	0.0206	0.0677	0.0057	0.00671	0.209	0.00614	0.00628	0.00464	0.0046	0.0437	0.034	0.00136	0.0325	0.0515
3	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
OB-033-98	\				•	Da	3.1	v	e	~	v	V	0.974	na	0.0644	0.0164
OR-034-98	' V	v	0.0435	2.8	v	na	82.8	٧	na	V	V	0.0248	43.9	па	2.21	0.933
OR-035-98	v	V	0.029	3.86	0.0528	na	160	٧	na	V	٧	0.132	23.4	na	1.14	1.06
OR-036-98	· •	V	0.0475	5.24	0.0289	na	200	V	na	V	V	0.0206	27.5	ВП	1.28	0.347
OR-037-98	v	v	٧	4.13	0.074	na	198	٧	na	٧	٧	٧	10.6	na	0.631	0.14
OR-038-98	v	v	٧	5.2	0.0128	na	101	V	na	٧	٧	٧	13.8	na	0.501	0.367
OR-039-98	V	V	v	17.6	0.0474	na	447	•	E	٧	v	0.00513	42.7	ВП	2.21	1.15
OR-040-98	v	٧	V	17.8	0.15	na	464	v	na	V	V	0.00987	42.7	na	2.21	Ξ
OR-041-98	٧	V	0.295	33.7	0.151	na	328	v	æ	V	•	1.29	9 6	na	4.02	43.4
OR-042-98	V	•	•	8.47	٧	פת	4.77	•	na na	•	•	•	2.07	na	0.116	v
OR-051-98	•	V	v	8.99	v	na	4.7	v	E	٧	v	v	1.1	na	0.128	v
OR-043-98	v	0.102	0.0916	11.4	v	na	0.798	v	E	٧	v	v	45	e E	1.58	V !
OR-044-98	V	v	0.484	34.1	0.127	BU	16.4	V	na	V	V	V	90.7	E E	3.52	2.07
OR-045-98	V	0.0376	0.12	15.8	0.0628	na	15.4	v	na	V	V	v :	36.3	EC.	0.843	V 3
OR-046-98	v	0.567	0.113	16	0.0853	па	24.6	V	пa	V	V	1.12	37.6	E.	0.902	0.691
OR-047-98	V	0.176	V	1.75	V	na	7.36	V	na	v	٧	V	8.9	na	0.662	v
OR-048-98	•	V	V	V	V	na	3.12	V	na	٧	V	V	5.	B.C	0.0488	V
OR-049-98	٧	0.0602	٧	V	v	na	4.78	V	na	V	V	V	4.24	na	0.0593	V
OR-052-98	BC	2	na	Ba	na	EU	na	na	E	na	na	na	na	ΒC	ВC	na
1D-050-98	•	0.0609	V	V	٧	na	13.6	v	na	v	V	V	4.75	na	0.0763	V
NV-053-98	٧	1.09	0.944	12.3	0.071	na	10	٧	a E	v	V	V	72.6	กล	2.58	٧
NV-054-98	V	1.37	0.802	9.7	0.00799	na na	7.82	V	na	v	V	v	99	פט	2.39	٧
NV-055-98	٧	1.43	0.794	9.76	0.0094	na	8.2	V	na	V	V	V	62.9	na	2.37	V
NV-056-98	٧	1.03	0.943	12.5	0.074	na	10.3	V	BU	V	V	٧	72.2	na	2.39	V
NV-057-98	٧	1.02	0.822	12.1	0.0754	na	10.3	V	na	V	V	0.0207	69.3	na	2.2	V
NV-058-98	V	0.0107	٧	2.97	0.0381	па	53.9	0.00438	E	V	v	0.128	24.9	ВП	0.968	45.6
NV-059-98	٧	1.08	1.15	12.2	0.0689	па	9.47	V	па	V	V	٧	70.1	B.	2.56	v
NV-060-98	V	1.08	1.28	12	0.0709	E.	9.68	0.00437	BC	V	V	٧	69.5	na	2.43	v
NV-061-98	V	1.03	1.32	11.9	0.0724	E C	9.5	0.00393	na	V	V	V	68.5	EC.	2.4	V
NV-062-98	v	0.0181	0.514	5.86	0.144	na Da	16.4	0.00686	E C	v	V	5.66	ង	D.	0.504	0.6
NV-063-98	0.000798	0.057	V	6.44	0.313	na	45	0.00519	na	V	V	5.77	89.1	E E	5.4	0.329
NV-064-98	v	0.259	0.793	7.26	0.052	E C	24.4	0.00368	ā	V	٧	0.128	44.2		Z1.1	0.0304
NV-065-98	v	1.38	0.951	13.1	0.0617	E	10.3	V	æ	V	v	0.0174	75.1	E	6.2	v 9
NV-066-98	v	0.00499	V	0.384	0.0027	E .	0.248	0.0049	e C	V	v	0.100	0.256	2	0.0403	0.042
NV-067-98	v	v	v	0.7729	V	ē	46.64	V	BC	V	V	V :	20.08	EC	v	11.41
NV-068-98	•	V	v	V	V	Ē	41.75	٧	BC	v	V	5.488	19.4	E .	V	2
86-690-AN	•	0.58	v	v	V	B	3.38	v	E.	v	V	V	22.33	EC.	٧	٧
NV-070-98	٧	0.424	v	v	V	na	3.4	٧	na	V	٧	V	21.62	EC.	V	V
NV-071-98	v	0.402	v	V	V	BC	3.44	٧	en E	V	V	٧	21.41	EC.	V	V
CA-087-99	•	0.04627	•	6.941	3.922	V	832	V	٧	V	٧	0.7067	329	V	5.23	2.273
CA-088-99	٧	0.01855	٧	7.821	4.34	٧	762	V	V	V	V	1.302	348	V	5.607	3.03
CA-089-99	٧	0.01128	٧	7.692	4.073	v	729	V	٧	V	٧	0.09462	345	٧	5.56	4.359
CA-090-99	٧	0.04461	•	8.788	4.552	٧	772	•	•	•	v	0.139	363	V	6.393	3.248
CA-091-99	•	0.03733	0.02101	8.634	4.303	v	742	v	v	V	V	0.5356	331	v	5.713	4.216

Page 1 of 12

	0.00614 0.00628 0.00 [mg/kg] [mg/kg] [mg/kg]	9.000.9 PT	6.00437 0.034 [mg/kg] [mg/kg] 0.1979 356 7.858 351 0.8967 363 0.8967 363 0.07999 379 na na 1.041 1.953 0.02516 na (0.1224) 0.07803 79.02 8.774 32.02 < 2.422 3.24 49.1 0.02014 56.16 0.159 50.5 0.0421 65.66 0.0421 65.66 0.0997 89.4 0.8995 59.57 1.296 54.97 1.296 54.97 1.296 54.97 1.296 54.97 1.296 56.98	0.00136 [mg/kg] [mg/kg]	
	mg/kg m	E	m 1.0.00 22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		
Color Colo	0.00966		,	, VVVV scov v scov v v scov scov scov scov sco	
Color	0.1098 0.119 0.11		1.1.0 2.7.4 3.3.7.6 6.9 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	· · · · · ·	
1,000, 1,000,	0.1098 0.139 0.11			<u>-</u>	
Color	A CO0000 CO00000 CO000000000000000000000				
Colored Colo	0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012			<u>-</u>	
Name	0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012			-	0 00 00 00 7
Colone	0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012 0.008012			_	
Colored Colo	0.0000000000000000000000000000000000000	* * E * * * * * * * * * * * * * * * * *		_	9 00 00 00 00 00 00 00 00 00 00 00 00 00
Coulty		と	2. 7. 4. 7.	↑ ┗ ↑ ↑ ♥ ↑ ♥ ↑ ♥ ↑ ♥ ↑ ♥ ↑	0 0 0 0 0 0
Day	0 0 0 0 0	E	558-9460 688848084	品 / / A 項 / 品 / 品 / 品 / 品 / 品 /	0.0,00.
0.2212 810 0.8834 < 5.763 0.0296	000000000000000000000000000000000000000		5 5 6 4 5 4 5 8 8 8 8 8 8 8 8 8 8 8	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.0,00, 7,4
0.2212 810 0.7976 < 5.542	000		5 1 1 4 1 2 1 2 1 2 1 2 1 3 1 1 1 1 1 1 1 1 1 1	~ ~ E ~ E ~ E ~ E ~ E ~ E ~	9, 99, 7, 4
42.89 1.44 < 304.8	0.0			∧ ॼ ∧ ॼ ∧ ॼ ∧ ॼ ∧ ॼ ∧	0.00
4.87 - na 2.71 0.00272 1.27 2.94 0.167 na 19.7 0.00456 1.23 2.34 0.0175 na 19.7 0.00456 1.23 2.30 0.175 na 7.09 0.00456 1.22 148.4 0.166 - 7.313 0.007408 1.22 148.4 0.166 - 7.313 0.007408 1.22 148.4 0.166 - 7.313 0.007408 1.23 147.5 0.1398 - 4.06 0.007408 2.73 147.5 0.1398 - 4.06 0.00744 2.73 147.5 0.1398 - 4.06 0.00744 2.73 147.5 0.1398 - 4.06 0.00744 2.73 147.7 - - 2520 - 0.07 4.24 1.47 - 2520 - 0.07 5.49 1.47 - 4.47 - - - - 0.07 5.49 <td>0.0</td> <td></td> <td></td> <td>西</td> <td>0.00</td>	0.0			西	0.00
Section Sect	000000000000000000000000000000000000000		94 38 80 8 88 88 88 88 8 8 4 8 8 8 8 8 8 8 8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 7 4
1.27 204 0.167 na 19.7 0.00456 0.8015 130.3 0.13 < 23.94 0.00719 1.23 230 0.175 na 7.09 0.00456 1.22 148.4 0.166 < 7.313 0.007408 1.22 148.4 0.166 < 7.313 0.007408 1.23 147.5 0.1398 < 4.06 0.007798 2.7 54.8 5.251 < 2670 < 0.00 2.33 54.7 < na 2650 < 0.00 2.33 54.7 < na 2650 < 0.00 2.33 54.7 < na 2650 < 0.00 2.34 71.2 5.492 < 2510 < 250 2.35 54.8	0.0		4 6 7 9 7 8 7 9 7 4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. 4
0.8015 130.3 0.13 < 23.94 0.00719 1.23	0.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 4
1,23 230 0.175 na 7.09 0.00456 1,22 148,4 0.166 < 7.313 0.007408 1,23 147,5 0.1398 < 4.06 0.007798 2,7 54,8 < 40.1	0.0		2	편 / 편 / 편 / 전 /	•
1.22 148.4 0.166	0.0		6 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\	•
1.2 214 0.176 na 6.15 0.00344 1.23 147.5 0.1398	0.0		8 8 8 8 8 8 9 4	편 / 편 / A 편 /	
1.23 147.5 0.1398	0.0			∧ <u>Б</u> ∧ Б ∧	
2.7 54.8 < na 2690 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.	A 0.008011 A 0.008011 A 0.008011 A 0.008015 A 0.008015 A 0.008012	v v v v v v v v v v v v v v v v v v v		ĕ ∧ Å Å Å	
43.8 5.251 < 2670	 0.008011 0.00798 0.008 0.008 0.008 0.008 0.008 0.008015 0.008015 0.008012 0	v v v v v v v v v v v v v v v v v v v		V V E V	
2.33 54.7 5.401 < 2520 < 0.1 2.33 54.7 < na 2520 < 0.1 2.34 54.2 5.492 < 2510 < 56.2 3.009 < 536 < 6.8 0.934 71.2 3.37 na 624 < 64.8 1.47 < 615 < 60.8 3.063 < 581 < 0.00 2.10 < 60.8 3.063 < 581 < 0.00 2.10 < 10.01 < 11.32 < 11.32 < 6.8 2.19 <	 0.00798 0.008 0.008 0.008 0.008 0.008 0.008 0.008015 0.008015 0.008012 0.00802 0.00802 0.00803 0.00803 0.00804 0.00804 0.00807 0.0080	v v v v v v		∨ <u>E</u> ∨	
2.53 54.7	A 0.0088	v v v v v		na v	
42.2 5.492 < 2510	0.008 0.008 0.008 0.008 0.008015 0.008012 0.00802	v v v v		v	
Section Sect	 0.008 0.008015 0.008015 0.008012 0.008012 0.00802 0.00802 0.00802 	v v 1			
0.934 71.2 337 na 624 < 64.8 1.47 < 615 < 65.8	 A 0.008 A 0.008015 A 0.008012 A 0.008012 A 0.00802 A 0.008012 A	v	< 48.2	v	
1 84.7 2.12	 0.008 0.008015 0.008015 0.008012 0.00802 	,		na	
04.7	 A 0.008015 A 0.008012 A 0.008012 A 0.00802 A	,	< 66.78	v	
Color Colo	 0.008015 0.008012 0.00802 0.00802	v		na	
1.23 1.23 1.34 1.35	 <	v v	0.04884 63.34	v	1.333 9.332
 42.8 0.0525 40.8 0.03717 4.058 0.03717 1.331 0.3555 14.21 0.2349 0.3555 14.21 0.2349 0.3555 14.21 0.2349 0.3555 14.21 0.2349 0.77 45.3 na na 1.1 na 0.17 47.7 na na 1.4 na 1.239 1.239 39.58 0.8454 1.239 39.58 0.8454 1.239 39.58 1.239 39.5	<pre></pre>	v v	< 1.32	v	
4.05 0.0525 5.678 4.05 0.03717 < 7.187	<pre></pre>	v v	< 8.42	v	
4.058 0.03717 < 7.859 < 1.331 < 7.187 < 7.187 < 0.3555 14.21 0.2349 < 8.969 < 0.3555 14.21 0.2349 < 8.969 < 0.3555 14.21 0.2349 < 8.969 < 0.77 47.3 na na 1.1 na 0.17 47.3 na na na 1.4 na 1.239 39.58 < 0.8454 < 1.239 39.58 < 0.8454 < na	 < 0.008012 < 0.00802 < < <	v	< 8.367	v	
0.3555 14.21 0.2349 < 7.187 < 0.3555 14.21 0.2349 < 8.969 < 0.3555 14.21 0.2349 < 8.969 < 0.77 45.3 na na 1.1 na 0.17 47.7 na na 1.4 na 1.239 39.58 < 0.8454 < 1.239 39.58 < 0.8454 < na	0,00802	v v	> 5.66	v	
0.3555 14.21 0.2349 < 8.969 0.3555 14.21 0.2349 < 8.969 0.77 45.3 na na 1.1 0.17 47.7 na na 1.4 1.239 39.58 < 0.8454 1.239 39.58 < 0.8454 na na na na na		v	< 4.318	v	0.5747 0.434
0.3555 14.21 0.2349 < 8.969 0.77 45.3 na na 1.1 0.17 47.7 na na 1.4 1.239 39.58 < 0.8454 1.239 39.58 < 0.8454 na na na na na		< 0.02153	< 46.34	v	
0.77 45.3 na na 1.1 0.17 47.7 na na 1.4 1.239 39.58 < < 0.8454 1.239 39.58 < < 0.8454 na na na na na	ת פת פת	< 0.02153	< 46.34	v	0.2876 0.9314
0.17 47.7 na na 1.4 1.239 39.58 < < 0.8454 1.239 39.58 < < 0.8454 na na na na na	ת פע פע	na na	na 106	na	5.3 0.01
1.239 39.58 < < 0.8454 1.239 39.58 < < 0.8454 na na na na		กล	na 112	na	5.6 0.02
1.239 39.58 < < 0.8454 na na na na na	v v	< 0.0206	<i>L.T.</i> >	v	3.944
na na na na	v v	< 0.0206	<i>L.11.</i>	v	3.944
	na na n	na na	กล	na	na
na na na na na	na	na		. EC	

Page 2 of 12

Mg	0.0515	[mg/kg]	0.01	٧	٧	na	٧	na	n a	0.0	0.005	פיי	9.581	200.50	0.00331	\$150.0	1.034	*	· `	v '	V 6	0.0269	0.0237	0000	0.0000	0.00910	0.06769	1.64	1.654	2.24	2.74	3.749	6	212.0	0.215	V !	0.712	0.836	1.162	0.293	0.4636	0.0456	•	0.123	0.1082	0.243
-	0.0325	[mg/kg]	ĸ	v	V	na	3.324	na	na	4.2	6.3	E .	v	V 6	900	5 6	2 403	2 7E	6,70	2.042	2.112	V	v	9	0.40	0.40	6.415	2.79	2.31	4.38	2.89	2.011	6	7 7	1.841	0.4633	0.038	0.417	0.4543	V	V	4.21	3.698	3.79	3.289	3.4
La	0.00136	[mg/kg]	na	v	V	E C	v	na	BC	na	na	BU	v	v '	,	<u> </u>	, \	/ e	<u> </u>	v	V	E C	na	;	E '	v	V :	0.002112	V	na	E C	0.01524	1	<u>=</u>	V	V	na	na	0.001729	na	0.008039	na	v	na	V	e C
¥	0.034	[mg/kg]	74	0.7748	0.7748	BU	70.9	Ba	B	1	121	an d	12.79	12.79	4.70	4.07	100.1	24.0	9. C. C.	59.92	50.14	44.3	37.5	ŝ	B.50	9.5	156.8	65.98	57.42	42.2	28.6	51.21	;	4.7	8.59	4.166	5.51	13.1	27.3	6.17	9.343	41.6	51.48	35.6	49.96	36
Ā	0.0437	[mg/kg]	na	v	V	ВC	0.1427	B	na	na	na	פר	5.561	5.561	V 0 0 4	0.0143	0 4067	200.0	0.030	v	V	v	v		v '	v	v	5.581	2.675	1.83	11.1	11.19		v	V	V	8.2	8.75	13.11	11.4	6.937	V	v	V	v	0.0595
3	0.0046	[mg/kg]	na	v	V	na	v	na	2	na	na	na L	0.01568	0.01568	v '	v '	V 00 11 0	0.1329	v '	٧	v	v	v		v	v	v	V	V	V	V	V		V	V	v	V	v	v	V	v	V	٧	٧	v	V
ర	0.00464	[mg/kg]	Па	v	V	na	v	na	na	na	υa	Pa Pa	٧	V	v '	v '	v '	, ·	v ·	v	v	v	v		v	v	V	V	V	V	V	v		0.00735	V	v	٧	V	٧	v	v	٧	٧	v	V	0.00739
8	0.00628	[mg/kg]	na na	٧	V	na	0.008022	na	na	na	na	Da B	٧	٧ (0.00803	EU COTOO C	0.00000	0.000020	LIA COST	0.008018	0.008011	EC.	뿉		EL .	v	V	V	V	gu	e C	v		E .	0.008028	V	r D	na	0.008046	e C	0.007991	na	٧	na	V	E.
8	0.00614	[mg/kg]	E	v	V	na	V	na	na	na	פר	na	V	V	V 0000	0.00358	v '	V 600	0.003	٧	v	v	0.00348		0.0028	v	v	V	v	0.00289	0.00443	٧		0.0124	V	v	0.00451	0.00428	٧	0.00555	v	0.0131	٧	0.0128	v	0.013
ప్	0.209	[mg/kg]	0.54	V	V	na	1.309	na	e.	1.5	9.76	ac :	26.11	26.11	0.210	90.08	57.7	0.00	5.44	2.73	2.707	3.34	2.72	;	32.1	33.89	35.31	23.63	17.8	20.2	21.9	24.93	I		7.492	V	5.6	4.51	6.25	0.214	0.401	1.42	1.683	1.58	1.739	1.88
Be	0.00671	[mg/kg]	na L	v	v	na	V	na	na	na	Ba	na	V	V	v	EC.	v '	۷ ;	na	V	V	пa	E .		E .	v	v	V	V	na n	B	٧		na Da	V	V	E.	E.	٧	na	٧	E C	٧	Ē	٧	na
B	0.0057	[mg/kg]	na	٧	V	na	•	na	na	na	па	E .	0.278	0.278	0.04416	0.043	0.06715	0.00230	0.066	0.01032	0.01014	0.0123	0.0139		0.00949	v	V	0.05679	0.08749	0.0651	0.04	0.0166		V	0.009464	V	0.0773	0.119	0.1122	0.107	0.101	V	V	0.00703	٧	0.00613
6	0.0677	[mg/kg]	38.7	0.6824	0.6824	e C	32.1	EC.	BC	32	50.6	na	0.9863	0.9863	5.207	5.18	5.537	0.800	5.98	6.502	6.456	96.9	7.09	!	25.5	31.02	31.69	12.22	10.57	=	6.12	8.548		v	1.195	0.9661	V	v	0.298	V	٧	٧	4.558	v	4.614	V
· 8	0.0206	[mg/kg]	0.13	٧	٧	E C	0.2656	BU	na na	0.25	60.1	na	V	v	0.35/1	715.0	0.4787	0.4943	0.69	0.7566	0.7327	1.29	1.14	!	5.37	6.297	6.487	٧	1.58	1.51	1.74	1.52		0.194	0.2156	٧	V	V	0.06396	٧	v	0.556	0.5472	0.265	0.7569	0.376
ਕ	0.00469	[mg/kg]	0.75	0.02347	0.02347	80	0.6014	na	a.	0.77	6.0	na	V	V	0.07367	V (0.0/432	0.0966	v !	0.117	0.1107	V	v		V :	0.1723	0.1676	17.52	1.59	4.1	42.8	50.92		V	0.01122	0.2544	1.97	7.55	6.94	31.9	66.41	V	0.1092	٧	0.06619	٧
Ag	0.00115	[mg/kg]	na L	V	V	n	V	na	P.	na	na	BC	v	v	v	V	ν '	v	V	v	V	V	٧		V	v	v	•	•	٧	٧	v	parking lot	v	v	•	•	•	٧	٧	0.001232	V	٧	•	٧	•
Sample ID	MDL [mg/kg]		NZ-167-00	NZ-103-00	NZ-103-00	NZ-159-00	NZ-159-00	00-660-ZN	00-660-ZN	NZ-168-00	NZ-169-00	NZ-164-00	NZ-100-00	NZ-100-00	NZ-138-00	NZ-012-98	NZ-136-00	00-7EL-ZN	NZ-011-98	NZ-139-00	NZ-140-00	NZ-014-98	NZ-013-98	NZ-306-01	NZ-003-98	NZ-121-00	NZ-122-00	NZ-119-00	NZ-120-00	NZ-001-98	NZ-002-98	NZ-118-00	NZ-307-01	NZ-018-98	NZ-133-00	NZ-232-00	NZ-004-98	NZ-005-98	NZ-134-00	NZ-006-98	NZ-135-00	NZ-017-98	NZ-127-00	NZ-015-98	NZ-123-00	NZ-016-98

Page 3 of 12

Sample ID	Ą	4	As	œ	Ba	8	ğ	8	8	ర	J.	T.	¥	Ē	5	Mg
MDL [mg/kg]	0.00115	0.00469	0.0206	0.0677	0.0057	0.00671	0.209	0.00614	0.00628	0.00464	0.0046	0.0437	0.034	0.00136	0.0325	0.0515
.	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
NZ-149-00	V	0.3377	3.05	39.2		٧	2.737	٧	0.008012	v	0.09253	v	149.6	v	6.831	٧
NZ-028-98	V	0.181	4.02	45.7	0.0662	na	5.2	0.0138	na	0.00989	•	0.0887	4	ВП	v ;	0.0452
NZ-170-00	æC	S S	1.3	17.7	80	E.C.	9.6	na	D.	na	na	na	16	na	 	io i
NZ-188-00	ΒC	0.14	0.84	26	na			na	na	na	na	פת	72	Б	3.5	S
NZ-146-00	٧	0.184	3.84	26.27	٧	٧	_	٧	0.00801	V	V	V	174.9	v	8.523	V 1
NZ-027-98	v	0.233	4.61	29.2	٧	пa		0.0123	8	V	v	0.0453	170		v '	0.0443
NZ-026-98	v	0.155	4.09	25.9	•	E L	21.4	0.012	e e	v	V	0.0601	151	ב ב	v '	0.0533
NZ-025-98	V	0.247	4.7	29.9	•	na	24.3	0.0126	na e	٧	V	V	172	ē	V	0.0476
NZ-302-01																
NZ-303-01																
NZ-304-01																
NZ-305-01	,		•	9	0	5	15.3	0.0131	6	٧	٧	v	22.8	na E	2.92	5.09
NZ-031-98	,	v ،	V 1000	9.00	4261	Ē \	16.79	. \	0.00008	· •	· •	V	33.02	٧	2.236	5.87
NZ-145-00	v	V 67 60 6	0.004 14	0.930	0.120	<i>,</i> `	90.00	/ \	0.0000	′ \	· V	· v	113	٧	17.42	0.106
NZ-141-00	V	0.02649	9.249	7.5 7.5	0.0129	۷ ۱	39.20	, ,	0.0000	/ V	/ V	' V	142	· •	18.8	0.3487
NZ-142-00	V	0.030/1	10.18	0.70	0.01329	, ,	20.43 40.43	<i>,</i> \	0.000023	/ \	′ \	· •	136	· •	18.57	0.256
NZ-143-00	v	0.006401	01	89.7	0.03150	,	43.02	, \	0.00003	/ \	/ \	′ ∨	130	' V	18.42	0.1204
NZ-144-00	v	0.02149	8.008	93.3	0.0101	,	37.04	, ,	,	4 680	/ \	360.4	183.5	0.1297	0.4347	277.9
NZ-233-00	V	751.4	ν ,	16.71	0.2527	ν '	720	/ \	/ \	1561	/ \	338.7	176.3	0.1178	0.4	254.8
NZ-234-00	v	723.2	V '	10.97	0.5578	,	130	/ \	, \	1 871	′ \	424	196.2	0.1288	0.408	282
NZ-235-00	v '	758.4	,	16.52	0.3031	/ \	1110	, \	/ V	0.5284	/ V	612.8	80.87	0.03882	1.35	705.4
00-987-7N	ν ,	9 4 6 6	,	10.04	- 0	, ,	4417	/ \	/ \	0.2373	· v	592	91.6	٧	2.168	1552
00-752-7N	v	7.705	2711	22.03	<u> </u>	/ V	2048	/ V	′ V	0.6915	' V	1207	83.13	•	2.82	2001
NZ-230-00	, \	575 1	0.5409		0.4871	′ ∨	1309	, A	v	1.061	٧	606.4	194.9	•	1.795	1381
NZ-023-08	/ V	1160	2.83			, פה ה	2240	0.318	e C	1.13	٧	1560	7.97	na na	3.25	2580
NZ-240-00	/ V	32.51	} `	•		V	257.7	٧		٧	V	22.36	37.8	v	0.4667	203.7
NZ-241-00	' V	36.02	· •	1.02	•	•	209.4	٧	٧	•	•	34.2	47.16	٧	0.2803	187.5
NZ-242-00	v	15.84	٧	0.842	0.1569	٧	215.1	٧	v	V	V	18.26	43.6	٧	0.2409	177.1
NZ-243-00	٧	14.11	٧	0.735	٧	V	180.8	V	v	V	V	17.35	41.47	v	0.2399	165.1
NZ-244-00	٧	6.73	•	0.6299	V	V	172.4	٧	٧	٧	V	4.971	37.82	v	0.2409	128.8
NZ-245-00	٧	24.75	V	0.7604	0.463	v	219	٧	V	V	V	37.4	47.35	ν '	0.2383	107.5
NZ-246-00	٧	1.958	•	0.6174		v	178.8	V	V	V	V	1.96.1	37.89	,	0.2001	174 3
NZ-247-00	V	27.49	٧	0.8278	0.2414	V	182.9	V	V	V	v	25.43	45.68	۰ ۷	0.2013	456.5
NZ-248-00	V	10.99	v	0.6727	V	v	183.9	V	V	V	V	15.68	39.83	v '	0.2143	130.6
NZ-249-00	٧	10.29	V	0.5453	٧	v	159.8	v	V	V	V	8.616	35.32	v '	0.220	140
NZ-250-00	•	4.852	V	0.5438	V	v	155.8	٧	٧	V	V	6.364	37.43	ν '	0.2141	149.0
NZ-251-00	٧	8.22	٧	0.5209		v	149.6	V	V	V	V	15.99	3.00	v	0.2009	* 0
NZ-252-00	٧	25.52	٧	0.6402		v	213.3	v	٧	V	V	37.18	41.84	V	0.2903	104.2
NZ-104-00	٧	0.9926	V	0.862	0.02915	v	162	٧	V	V	V	0.1833	52.57	v	0.07021	109.4
NZ-259-00	na na	na	BU	เกล	an .		na	na na	BU	BC	na	B C	E	EC.	מב ב	
NZ-255-00	na	na	na	Da	D.		na	na Bu	E	8 2	BC.	e C	e C	פר	E 1	
NZ-254-00	na	na	E.C.	E.C.			22	na	na	er.	B.		E L	e E		
NZ-261-00	an	na	na		na	En	BC	na E	E	an a	BU.	E .	e c	ВC	E	

Mg	0.0515	[mg/kg]	na n	na	na	na	na	na	ВП	BC	3.276	4.953	٧	V	na	na	a	13	na	E E	V	V	V	٧
_	0.0325	[mg/kg]	na	na	a C	na	E.	na	BU	E C	na E	na	na	na	er E	E .	BC	E E	æ	na n	E.	E.	a E	E.
	0.00136	[mg/kg]	na	na	na	па	na	na	na	ВП	E.	na	na	Ē	na	E.	na C	na	Da	E E	na	na	na	E.
¥	0.034	[mg/kg]	na	BE	ē	na	פת	a a	na	na	508.4	511.2	916	916.7	na n	E.	E.	na R	E C	na	3003	2946	3108	3096
g.	0.0437	[mg/kg]	na	B	na	na	na	na	E C	na	24.58	79.03	27.54	3.907	na	na	na	na	na	na	V	V	V	1.067
3	0.0046	[mg/kg]	E	na	B.C.	na na	na E	na	פר	na B	na	EC.	na E	BU	EC.	BU	na	na	Da	na	B	na	na	ВП
ర	0.00464	[mg/kg]	na	na	e.	na	na	na	na	na	EC.	מנו	na	na	na	na	ВП	B	E	na	na	na	na	na
8	0.00628	[mg/kg]	E	na	na	E	na na	BU	na	na	na	na	БŪ	na	na	na	na	na	BU	na	ā	na	na	na
8	0.00614	[mg/kg]	п	na	na	Ē	na	na	na	Б	na	P.	BU	n a	na	na	ם	na						
ឌី	0.208	[mg/kg]	na	פח	na	E.	па	пa	пa	na	442.8	447.5	263.4	277.6	na	na	BU	na	an	e C	525.5	510	537.5	532.1
Be	0.00671	[mg/kg]	na	EC.	na	na	na	na	na	na	BC	na	na	S.C.	BC	an	EC.	na	ВП	na	na	na	na	Ē
Ba	0.0057	[mg/kg]	na	БП	EC.	na	na	an L	na Eu	Da	БП	BU	BC	ē	e C	ВC	E C	na	EC.	EC.	na	na	na	E
ω.	0.0677	[mg/kg]	na	na	na	na	na	BC	ā	23	٧	79.8	97.11	125.1	Ē	na e	na	E.	EL	na	111.9	386.7	376.7	390.4
æ	0.0206	[mg/kg]	Da	na	пa	na	na	an	na	BU	BE	E C	na	na	2	E C	na	na	na	na	na	na	Ē	æC
₹	0.00469	[mg/kg]	E C	na	EC.	g	па	na E	ec.	ē	E C	- E	. E	na	. E	80	an C	na	na	na	E	EC	E	Ē
Ag	0.00115	[mg/kg]	2	æC	na	na	E	na E	na	EC	. EC	E	E	2	. E	E	EL.	an	E C	EC.	E.	E	ē	ec.
Sample ID	MDL [mg/kg]		NZ-253-00	NZ-262-00	NZ-256-00	NZ-260-00	NZ-258-00	NZ-257-00	NZ-263-00	PP-264-00	PP-265-00	PP-266-00	PP-267-00	PP-268-00	DD-269-00	DJ-270-00	DJ-271-00	DJ-272-00	DJ-273-00	DJ-274-00	DJ-275-00	DJ-276-00	DJ-277-00	DJ-278-00

Sample ID	W.	Mo	S B	Z	۵	&	g	Se	জ	Š	F	>	>	Zu
MDL [mg/kg]	0.0051	0.00494	0.0432	0.00613	0.0675	0.0243	0.0247	0.0198	0.098	0.0132	0.0042	0.00416	0.00355	0.00683
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
OR-033-98	٧	0.0223	51.5	•	•	v	•	•	32	0.0258	0.00132	v	na	v
OR-034-98	0.165	V	620	V	V	V	v	v	65.1	0.56	V	•	na	v
OR-035-98	0.0453	v	260	v	v	v	V	V	29.8	0.914	V	v	an a	v
OR-036-98	0.00505	V	638	V	•	V	٧	V	38.8	1.13	•	•	Da Da	v
OR-037-98	٧	v	358	v	V	V	V	V	19.1	-:	٧	٧	E C	v
OR-038-98	0.0374	v	304	v	V	V	V	V	26.3	0.98	V	V	na	v
OR-039-98	0.0923	v	1030	v	v	V	V	V	32.1	4.18	V	V	na	v
OR-040-98	0.09	V	1010	v	V	V	V	V	31.8	4.06	v	V	na na	v
OR-041-98	0.239	V	2570	V	v	V	V	V	37.5	8.1	v	V	па	v
OR-042-98	V	0.0807	161	v	v	V	V	v	40.6	0.0471	V	V	na	v
OR-051-98	V	0.0926	113	V	v	V	V	v	46	V	V	V	na	v
OR-043-98	v	0.0717	260	V	V	v	0.044	V	115	0.181	V	v	na	v
OR-044-98	v	0.04	696	v	V	v	0.082	0.0444	68.3	0.912	V	٧	na	V
OR-045-98	0.047	v	428	v	V	V	V	V	78.9	0.362	V	•	na	v
OR-046-98	0.204	v	414	V	V	v	v	V	80.6	0.577	V	v	na	V
OR-047-98	v	v	238	v	V	V	V	V	37.8	0.115	V	v	na	v
OR-048-98	v	0.0388	105	v	V	v	V	٧	46.2	V	٧	٧	מם	V
OR-049-98	v	0.0388	114	v	V	V	V	V	72.7	V	v	V	na	v
OR-052-98	пa	Bu	2	E.C.	Ē	na	na	Па	ā	B	na	กล	na	na
ID-050-98	v	٧	172	V	v	٧	٧	V	33.3	0.118	V	V	na	v
NV-053-98	0.00335	0.0728	475.3	V	V	0.0287	0.0953	V	8	0.415	v	0.0113	ac	v
NV-054-98	0.00209	0.0775	407.3	V	V	0.0289	0.0851	V	302	0.295	٧	0.00964	na	v
NV-055-98	0.00209	0.0824	409.1	V	V	0.0267	0.0824	V	316	0.314	V	0.00937	na	v
NV-056-98	0.00216	0.0813	487.2	V	V	0.0283	0.0916	V	318	0.445	V	0.0109	E.	V
NV-057-98	0.00296	0.0772	482.2	٧	V	v	0.0893	V	280	0.441	V	0.0103	מנו	V
NV-058-98	0.245	0.013	235.6	v	٧	0.0273	٧	v	30.2	1.22	V	0.0212	E	V
NV-059-98	0.0024	0.0781	494.3	V	V	٧	0.0921	٧	338	0.457	٧	0.0115	na	V
NV-060-98	0.00322	0.09	487.7	0.0302	V	0.0332	0.098	V	333	0.445	V	0.0129	na n	V
NV-061-98	0.00309	0.092	484.1	0.0259	٧	0.0534	0.102	٧	322	0.444	٧	0.0138	пa	0.02
NV-062-98	0.0557	٧	505.1	0.0237	V	0.058	V	V	87.1	0.641	v	V	פת	v
NV-063-98	0.108	v	874	0.0313	V	0.066	v !	V	144	2.36	0.00239	V	Ē	V
NV-064-98	0.0191	V	396.4	0.028	V	0.0628	0.0317	v	138	1.07	0.00307	V	Ē	v
NV-065-98	0.00267	0.0941	206.7	0.0385	V	0.0734	0.111	V	362	0.489	0.00303	0.0144	æ	v
86-990-AN	0.00451	0.0134	0.5431	0.0244	V	v	0.0156	v	0.776	0.0064	0.00284	v	EC.	v
86-290-NN	V	V	335.5	V	V	V	V	V	31.76	1.37	V	V	E C	V
NV-068-98	V	V	328.3	V	V	V	V	V	29.07	1.28	V	V	B.C.	V
NV-069-98	V	V	207	V	v	V	V	V	141.2	0.0824	V	V	E.C.	V
NV-070-98	V	V	203.7	v	V	V	V	V	138.4	0.0823	V	V	er.	V
NV-071-98	V	v	202.4	V	V	V	V	v	145.6	0.0836	V	V	E C	v
CA-087-99	0.1556	V	4000	0.006791	٧	V	٧	V	209.4	29.75	٧	V	٧	v
CA-088-99	0.3814	v	4040	0.006251	v	V	V	V	209.4	30.34	v	V	٧	V
CA-089-99	0.1668	V	4220	0.008459	v	V	٧	v	209.4	30.26	٧	V	v	v
CA-090-99	0.1606	v	4390	0.01297	V	V	V	V	209.4	33	٧	V	٧	v
CA-091-99	0.1794	•	4130	0.0147	0.07032	v	v	0.04017	186.9	31.33	v	v	v	v

Page 7 of 12

Sample ID	Man	₩	Z B	Z	۵	æ	Sp	Š	জ	Ġ	F	>	>	Zu
MDL [mg/kg]	0.0051	0.00494	0.0432	0.00613	0.0675	0.0243	0.0247	0.0198	0.098	0.0132	0.0042	0.00416	0.00355	0.00683
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
CA-092-99	0.1763	•	4110	0.01056	V	•	V	v	160	30.61	v	v	٧	v
CA-093-99	0.5304	V	4200	0.02076	V	V	V	0.02107	209.4	31.74	•	•	~	٧
CA-094-99	0.1479	V	4080	0.01411	V	V	V	0.05041	209.4	29.8	٧	v	٧	V
CA-095-99	0.1277	v	4020	0.01502	V	v	V	0.04012	193	29.04	٧	٧	٧	٧
CA-096-99	0.165	V	4480	0.01352	V	V	V	0.0452	209.4	пa	٧	٧	٧	٧
NZ-000-98	80	กล	na	na B	na Bu	na	na	ВП	æ	na	na	na	na	na E
CA-072-99	0.08781	0.1302	1.68	0.1226	1.12	V	V	V	1.892	V	٧	٧	٧	0.1
NZ-117-00	V	v	1.62	0.008663	V	V	0.04943	0.0252	V	0.01495	٧	0.005257	٧	v
NZ-163-00	V	V	6.644	0.007577	0.1159	V	v	0.03708	0.3099	0.1811	•	٧	v	V
NZ-300-01	na	ec .	na	BC	na	na na	Bu	na na	Bu	Пa	na	na na	E	na
NZ-110-00	0.01819	0.009071	808.2	0.008557	v	V	1.198	V	176.3	1.23	٧	٧	٧	v
NZ-111-00	0.02486	0.009474	800.6	0.01292	0.3727	V	1.255	V	176.9	1.212	V	V	V	v
NZ-112-00	0.3593	0.006364	297.6	0.00974	0.3036	v	V	V	50.24	3.817	V	v	٧	v
86-200-ZN	V	v	122	v	V	V	V	V	26.2	0.0845	V	V	B.C	v
NZ-113-00	V	v	122.2	0.00884	V	V	0.03575	0.02682	31.32	0.116	V	0.004667	V	v
86-600-ZN	0.138	v	3270	v	V	v	v	v	48.2	1.98	V	٧	na	0.0173
NZ-115-00	0.03463	0.01076	2499	0.009415	0.168	v	v	V	57.35	2.37	V	0.006779	V	0.08277
NZ-010-98	V	٧	3470	V	V	v	v ,	V	49.7	1.96	V	V	na	0.013
NZ-116-00	V	0.01093	2854	0.007093	0.2209	v	V	V	65.21	2.495	٧	0.004279	v	v
NZ-008-98	V	٧	3530	v	V	v	V	v	51.8	1.21	V	V	na	v
NZ-114-00	٧	0.008593	2851	0.01002	0.2052	v	0.02514	v	72.39	1.061	V	0.004402	٧	V
NZ-021-98	0.116	0.188	6800	V	V	V	V	V	13.6	٧	V	V	na	v
NZ-156-00	0.1157	V	6040	0.01211	0.1313	V	٧	v	16.09	na	v	•	•	v
NZ-15/-00	0.1076	V !	5730	0.01331	0.126	V	v	V	15.06	na	v	V	٧	V
NZ-022-98	0.101	0.187	6420	۷ إ	V :	0.0205	v	v	12.8	v	v	v	BE	٧
NZ-162-00	1101.0	v	5740	0.01177	0.1304	v	v	V	15.16	na	V	V	v	v
NZ-158-00	0.06027	V 6	3330	0.009716	0.116	v	V	v	23.76	39.82	v	v	v	٧
NZ-023-96	0.0237	0.0893	46/0	V 500	V (v	V	V	19.5	٧	V	V	na	v
NZ-150-00	0.1280	V 000 0	3710	0.00813	0.1086	v '	v '	v	27.74	ET.	v	V	v	V
NZ-161-00	0.128	/880.0 '	4320	V 0000 0	v 5	v '	۰ ۷	v '	2.53	v 5	v	v	E	V 0000
NZ-129-00	, v	/ V	8	0.01006	4 V	/ V	0 03353	0.03172	36.05	0.03394	, ,	0.005308	٧	0.00200
NZ-128-00	0.007088	v	367.8	0.00948	' v	' v	٧	· V	20.76	0.4711	′ ∨	0.005047	/ V	/ v
NZ-130-00	V	V	260	0.008984	٧	V	V	V	24.47	0.4951	· •	0.004939	'	v
NZ-131-00	0.005786	0.0107	97.3	٧	0.09652	V	V	V	32.84	0.5137	V	V	٧	v
NZ-132-00	0.0324	V	63.8	٧	V	V	٧	V	20.91	0.4006	٧	V	٧	v
NZ-101-00	0.02509	0.04335	200	٧	V	V	0.0453	٧	100	0.3134	٧	V	٧	v
NZ-101-00	0.02509	0.04335	206.8	٧	٧	V	0.0453	V	105.7	0.3134	٧	٧	٧	٧
NZ-165-00	Bu	BC	742	na	na	na	na	na	na	na	na	BU	BU	na
NZ-166-00	E L	BC	708	na	na	na	na	na	na	Pa Da	na	na	na	па
NZ-102-00	0.03501	0.01501	444	v	v	v	v	v	217	0.03281	V	v	V	v
NZ-102-00	0.03501	0.01501	445.5	V	V	v	V	v	217.4	0.03281	V	v	v	v
00-860-ZN	en Eu	BC	B	au	E L	BC	e C	ВП	na	BL	Б	En.	na	na
NZ-098-00	E L	na	na	S.	na na	E C	E.	e L	na n	na	na n	BC	EC.	ВП

Sample ID	Ma	Wo	e e	Z	۵	8	Sp	Š	ೲ	ซั	F	>	>	Zu
MDL [mg/kg]	0.0051	0.00494	0.0432	0.00613	0.0675	0.0243	0.0247	0.0198	0.098	0.0132	0.0042	0.00416	0.00355	0.00683
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
NZ-167-00	ВП	na	640	na	na	na	na	na	Da	na	na	na	na	na
NZ-103-00	0.02513	v	3.137	V	•	V	•	٧	3.691	v	•	V	٧	0.01111
NZ-103-00	0.02513	v	3.137	v	V	v	•	•	3.691	٧	v	V	v	0.01111
NZ-159-00	BU	na	na	na	na	na	ВП	na	na	na	па	па	a E	na
NZ-159-00	0.0155	0.01269	440	0.008471	0.1113	٧	٧	٧	203.6	0.1361		V	٧	٧
NZ-099-00	BC	na	na	E.	an	na	na	na	EC.	п	na	E.	па	na
NZ-099-00	na	na	na	na	na	a	ВG	a E	na	na	na	Б	na	na
NZ-168-00	na	กล	578	na	БП	Б	na	Ba	na	e E	Ba	ВП	ВП	Пâ
NZ-169-00	па	ВП	260	EL	na	na	na n	BC	æ	na L	na na	na	na	ВП
NZ-164-00	8 C	na	na		EC.	na	БП	na	na	na	na	na	na	na
NZ-100-00	2.472	0.0063	59.9	V	0.2402	V	V	V	59.7	0.1954	V	V	V	v
NZ-100-00	2.472	0.0063	60.01	٧	0.2402	٧	٧	٧	59.75	0.1954	٧	٧	V	٧
NZ-138-00	0.01136	0.01221	402	٧	0.134	٧	0.03414	V	153	0.04491	٧	0.008157	V	٧
NZ-012-98	0.0148	v	425	٧	V	٧	٧	٧	176	0.0318	٧	0.0088	na	٧
NZ-136-00	0.4028	0.01764	418	٧	0.1003	٧	٧	٧	142	0.04234	٧	0.004741	V	٧
NZ-137-00	0.2831	0.01782	438	٧	٧	٧	0.02748	٧	144	0.04301	٧	. v	٧	٧
NZ-011-98	0.291	0.0156	480	· •	v	· •	٧	· •	173	0.0328	· v	v	. BC	V
NZ-139-00	•	0.01396	448	0.006282	0.132	٠ ٧	0.0846	٠ ٧	178	0.0324	٠ ٧	0.01374	۱ ۷	٠ ٧
NZ-140-00	· •	0.01424	452	0.007163	0.1392	· v	0.1035	' V	179	0.03367	' V	0.01415	' v	· v
NZ-014-98	٠ ٧	0.0131	531	`	\	' \	0.0886	' \	222	0.0182	' \	`	' a	' \
NZ-013-98	′ \	0.012	486	′ \	/ \	′ \	0.0000	/ \	2 2 2	0.007	′ \	0.00773	# n	′ \
NZ-306-01	,	1	}	′	,	,	0.0	′	2	0.050	,	2000	=	,
NZ-003-08	0.0060	`	1240	١	`	`	0 100	`	500	90.0	`	`	8	`
NZ-121-00	0.08098	/ V	100	0.01068	/ \	/ \	0.06813	0.02149	171 9	0.3789	/ \	0.005238	<u> </u>	/ \
NZ-122-00	0.08222	′ \	1130	0.0100	′ \	′ \	0.000	2	180.1	0.3769	/ \	0.003230	/ \	<i>,</i> \
NZ-119-00	0.263	/ V	511.6	0.009246	/ V	/ V	0.03811	/ V	136.6	0.208	0.03413	0.0000	0.007471	0.0306
NZ-120-00	902.0	′ \	447 5	0.000377	0 1571	′ \	0.0054	/ \	140.7	0.4636	2	0.003033	- \	0.0000
NZ-001-09	0.209	, \	0.74	//seoo.o	. \ <u>.</u>	، ۱	0.0634	,	196	0.1033	٧	0.000927	V 9	0.007312
NZ-003-98	0.500	/ \	8 8	/ \	<i>,</i> ,	, \	, \	<i>,</i> \	36	5 6	<i>,</i> ,	7 6	= 1	10.0
142 OC - 30	6000	,	674	/ 000	,	,	/ 0700	•	1	0.121	′	0.0101	B.1	0.100
NZ-307-01	0.5829	v	345.3	0.0186	v	v	0.03136	v	152.7	0.122	V	0.01269	0.02863	0.2008
NZ-018-98	0.0407	0.0205	260	٧	•	٧	•	٧	80.4	0.0335	•	٧	80	٧
NZ-133-00	0.06188	0.01913	140	V	٧	٧	٧	٧	53.4	0.0578	٧	v	V	V
NZ-232-00	v	na	64.3	na	٧	v	V	٧	59.88	٧	٧	V	٧	v
NZ-004-98	0.237	V	6.8	٧	٧	v	V	٧	65.8	0.0252	v	٧	ğ	0.0113
NZ-005-98	0.255	0.0119	25.7	٧	٧	v	v	V	116	0.038	0.0613	V	Ē	0.0214
NZ-134-00	0.3174	0.01723	39.5	٧	٧	v	٧	٧	194	0.05041	v	v	0.0127	0.03233
NZ-006-98	0.0848	v	2.61	V	٧	٧	٧	٧	99	0.0146	0.164	v	æ	٧
NZ-135-00	0.106	0.00725	1.599	٧	٧	٧	٧	٧	76.24	٧	0.007017	V	0.008632	0.01164
NZ-017-98	٧	0.0425	315	V	٧	٧	٧	V	180	٧	V	v	Ē	v
NZ-127-00	0.005515	0.03424	283.3	0.01129	٧	v	0.06888	0.0395	136	0.038	V	0.00759	V	v
NZ-015-98	V	0.0148	241	٧	٧	v	٧	٧	26	٧	٧	٧	B	٧
NZ-123-00	0.01426	0.01328	240.2	0.01088	٧	v	0.09682	0.0441	119.5	0.03779	V	0.005944	٧	v
NZ-016-98	V	0.0246	248	'	· •	•	V	*	78	V	· •	· V	, ec	' V

Page 9 of 12

Υ Zn	0.00355 0.00683	[mg/kg] [mg/kg]	v	· •	0.0091	· ·	· v	< 0.1937	< 0.1783	v	< 0.1708	< 0.1886	na ^	0.02957 0.05203	0.02343 0.01413	0.04554 0.1211	na 0.0989	v v	v v	v v	v v	v v	0.0128 0.02528	v v	v v	na	na	na	v v	na ^	na	na	v	na ^	na	na	na	na	na	na	na	na	na			
>	0.00416 0.	[mg/kg] [mg	4	0.00522			v	v	· •	v	v	v	v	0.007842 0.	°0	v 0	v	0.006656	0.00508	0.004283	0.0044	0.004209		v	v	E	Z.	na	0.00826	v	na	na	0.00821	v	na	na	z a	E C	na	BC	E C	Б	Ē	ВĽ	БП	!
F	0.0042	[mg/kg]		V	٧	٧	٧	٧	· V	٧	V	٧	٧	٧	٧	٧	٧	V	٧	٧	V	٧	٧	٧	V	ē	na	na	٧	٧	na	na	V	V	na B	na Na	na	E.	กล	na	na	Ba	na	na	e C	! ;
જં	0.0132	[mg/kg]	0.03519	0.03372	0.04575	v	٧	0.02907	v	٧	٧	V	0.203	0.0838	0.04283	0.1179	0.0846	٧	0.0138	0.04763	0.07009	0.03916	0.069	0.1538	0.06596	na	na	na	0.0402	٧	BG	пa	0.03369	٧	na	8	na	па	ВП	an a	na	EC		B.C.	Da	
জ	0.098	[mg/kg]	115.1	117	106.4	206	119.4	113	139.1	65.33	335.5	244	130	110	83.16	132.3	133	346.9	366.2	329	309	371	76.5	68.57	74.32	BL	na	er.	255	272	æ	80	214	228	na	ac	na	an	na	na	E.	e L	na na	na	na	! ;
S	0.0198	[mg/kg]	0.02543	0.02496	0.0352	٧	V	٧	v	1.168	٧	V	v	•	V	0.01988	v	٧	V	V	٧	V	0.03718	0.04537	0.03544	na	na	na	V	•	E.	na na	V	V	<u>د</u>	na na	na	E C	Ba	na	na	na	na	na	na	! ;
Sp	0.0247	[mg/kg]	0.05868	0.0521	0.0416	٧	٧	V	٧	٧	٧	٧	٧	V	v	0.03038	٧	0.07595	0.2803	0.0251	0.08058	0.1452	0.02546	٧	0.03675	na	na	па	8.919	9.8	na	na	0.1644	0.1	e C	B C	ВП	na na	B	na	na	na	na	Ē	na	
£	0.0243	[mg/kg]	•	٧	V	٧	٧	٧	V	V	٧	V	V	V	V	V	V	٧	V	V	٧	v	V	٧	v	пa	na	na	v	0.0208	Pa	ВП	v	0.0271	28	28	na B	er.	na	na	na	na	na	na	םם	
۵	0.0675	[mg/kg]	V	٧	٧	V	٧	٧	V	٧	٧	V	v	V	V	٧	v	٧	V	0.124	0.1208	0.1274	0.1388	0.3641	0.2309	na	na	กล	0.1058	V	na na	na	0.168	V	B	e C	BC	er.	na	er.	ā	na	BC	па	na	8
Z	0.00613	[mg/kg]	0.01112	0.01087	0.03339	na	na	na	na	пa	na	na	•	٧	V	0.00992	v	v	V	0.00896	0.008714	0.009187	0.01021	0.007882	0.008178	Ba	ВП	BC	V	V	æ	na	0.007769	V	EC.	ec E	E.	BC	80	BC	BU	80	ac	Ba	EC.	9
S S	0.0432	[mg/kg]	219	219.5	110.3	326	350.1	87.84	345.7	326	337.3	287.6	691	316.3	274.6	300.3	414	320	347	1220	1200	1200	25.27	152	214	672	736	726	621	704	849	112	693	740	400 400	799	728	800	788	801	745	977	1004	847	994	847
Wo	0.00494	[mg/kg]	0.02737	0.02817	٧	na	na	na	na	na	na	Bu	0.0108	v	V	v	v	0.02093	0.03859	0.03618	0.02541	0.03708	0.005269	0.0147	0.006004	na	EU	BC	0.03342	0.0104	EC.	EC.	0.0404	V	EC.	EC.	2	Ba	e C	BC	Bu	na	ВU	룓	na	a c
ž	0.0051	[mg/kg]	0.01604	0.01621	0.09858	٧	•	0.1879	•	•	•	v	0.607	1.23	1.138	1.25	1.28	•	•	0.03198	0.02397	0.03916	0.1779	0.3078	0.02932	na	na	Bu	v	٧	Bu	na	V	v	E	æ	R	B C	æ	E E	E C	ВП	BU	na	E.C	5
Sample ID	MDL [mg/kg]		NZ-125-00	NZ-126-00	NZ-124-00	NZ-225-00	NZ-226-00	NZ-227-00	NZ-228-00	NZ-229-00	NZ-230-00	NZ-231-00	NZ-020-98	NZ-108-00	NZ-109-00	NZ-107-00	NZ-019-98	NZ-105-00	NZ-106-00	NZ-151-00	NZ-150-00	NZ-152-00	NZ-154-00	NZ-153-00	NZ-155-00	NZ-171-00	NZ-172-00	NZ-173-00	NZ-148-00	NZ-029-98	NZ-174-00	NZ-175-00	NZ-147-00	NZ-030-98	00-9/L-7N	00-//L-7N	00-8/1-7N	NZ-179-00	NZ-180-00	NZ-182-00	NZ-181-00	NZ-183-00	NZ-184-00	NZ-185-00	NZ-186-00	N7-187-00

0.00494 0.0432 0.00613 0.0675 0.0243 [mg/kg] [0.0172
240 c.006264 0.005966 1390 0.00668 0.007603 1640 0.006481 0.006136 1690 0.006417 0.006261 1610 0.007184
na 300.4 na na 282.3 na na 285.5 na na na 569.1 na na 1122 na na 969.4 na 969.4 na 265.6 na na 265.6 na na 265.6 na na na na na 265.6 na na na na na 265.6 na
192 181.9 180 194.3 180.1 176.7
na 167 na na 163.6 na na 154.8 na c 230.3 c na na na

Zu		[mg/kg]	Ba	EC.	na	EU	БG	na															B.C	
		[mg/kg]		EC.	na	na	na	na	na na	Ē	na	na	па	na Eu	na	מם	na na	EC.	EC.	na	na	na	na	na
>	0.00416	[mg/kg]	na E	na	na	ВП	E C	E.	na	na	Бū	ВП	au	na	na	na	na	na	na	na	na	na	Ē	na
F	0.0042	[mg/kg]	E	na	na	na	Ē	na	na	na	пa	na	na	БП	ВП	na	пa	n a	na	E C	n	na na	ē	BC
ര്	0.0132	[mg/kg]	na	na	na	B	υ	na	EC.	na	na	na	E.	na	na	na	na	BC	BU	BC	na	na	Ē	na
ত	0.098	[mg/kg]	E	ВU	na	B.C.	na	na E	na	na	184.7	286.7	391	432.9	EC	EC.	EC.	na	na	na Br	512.9	503.5	513.3	260
8S	0.0198	[mg/kg]	na	e C	EC.	E.	na	na	na	na	na	na	na	na	na	na	na	EC.	na	na	БП	na	EC.	na
Sp	0.0247	[mg/kg]	ВC	na	na	na	na	na na	na	na	na	па	na	ВП	na	BU	æc	ā	ē	æC	an a	ВП	an a	С 8
윤	0.0243	[mg/kg]	na	na	na	na	na	na	E L	e L	na E	пa	BC	BU	BU	BC	e u	æC	BC	e C	e.	па	an a	a B
۵.	0.0675	<u>k</u> g	na	Pa	na	na	na	ВП	E.	na	ВG	กล	E	na	ВП	BU	ā	ā	Da	na	na	na	na	ВП
		[mg/kg]																						
Z	0.00613	[mg/kg] [mg/	E	ВП	B	па	na	na	BU	BC	na	na	na	Βū	na L	na	er.	ē	BC	e C	a	na	па	na
Na	0.0432 0.00613	_	กล	กล	กลิกล	กล	na	na	na	_	3569 na					กล			กล			_	8483 na	
Mo Na NI		[mg/kg]	na na na	na na na	na na na	na na na	na na na	na na na	_	_			4529		e c		na	æť	28		8580	8320		8718
	0.0432	[mg/kg] [mg/kg]	na na na	na na na na	na na na	na	e e	na	na	na	na 3569	3634	na 4529	na 4524	กล	E.C.	กล	กล	28	28	8580	8320	8483	8718

1	Sample Description	Cond	Salinity	T[C]	Sampling	Enthalpy	Н	Total	ů.		Br.	PO4 -3	N03 -	S04 -2
Date d/m/y		[mwoHS/	je je		Pressure [bars			Alk as HC03	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
					gage]			[mg/kg]						
06/13/98	Bagby	448		44.8			9.46	72.5	0.543	14.2	0.024	v	v	44.7
06/13/98	Breitenbush	6200	4	48.8			7.03	143	1.91	1030	4.55	v	~	123
06/14/98	Bigelow (Deer Lick)	4450	2.7	30.8			7.03	36.5	0.317	1120	4.35	v	v	132
06/14/98	Beliknap	0066		67.6			7.59	26.6	0.0751	1480	4.14	v	v	173
06/14/98	Terwilliger / Cougar	3700		38.4			8.66	48.2	0.334	807	3.54	v	v	254
06/14/98	Wall Creek	2480	9.0	31.8			7.38	49.7	3.42	609	1.95	v	v	138
06/15/98	McCredie	13800	5.8	60.1			7.34	38.0	2.01	2550	5.12	٧	~	269
06/15/98	McCredie	12000		62.5			7.44	45.4	2.02	2550	5.36	v	v	271
06/15/98	Umpqua	15900	7.5	39.9			6.44	1507	1.24	3840	9.4	v	v	210
10/04/98	Crystal Crane Hot Spring	1550	0.5	61.5			8.20	753	9.07	70.1	0.266	v	0.573	73
10/04/98	Crystal Crane Hot springs	1550		49.3			8.20	924	9.56	69.7	0.432	٧	0.211	71.9
10/04/98	Micky Hot Springs	6300		95.0			8.73	1639	15.1	0.0154	0.743	٧	0.09	18.1
10/05/98	Alvord Hot Springs	0096		72.5			6.76	1227	9	430	2.6	v	0.341	201
10/05/98	North Borax Lake Hot Sp	5200		92.3			7.30	1605	6.07	237	1.6	v	0.042	280
10/05/98	Middle Borax Lake Hot S	4800		72.0			7.00	1507	6.16	243	1.6	٧	0.213	282
10/05/98	Whitehorse Ranch Hot Si	1370		35.0			7.68	1468	19	46	0.236	v	2.29	80.3
10/06/98	Sniveley Hot Springs Far	8300		42.4			9.36	371	15.2	16	0.0675	v	0.032	77.77
10/06/98	Sniveley North of main He	1330		71.9			8.89	371	14	21.3	0.0939	~	0.1	81.2
10/06/98	Sniveley Hot Springs sma	8700		39.0			9.35							
10/06/98	Zims Hot Springs	1690		52.4			9.00	198	1.74	32.4	0.237	٧	0.0938	293
12/03/98	Dixie Valley Well# 76-A7	1780	1.2		6.4		9.11	262	11.5	561	0.472	٧	0.103	227
12/03/98	Dixie Valley Well# 37-33	1480	1.2		6.8		9.20	252	13.6	469	0.354	>	>	208
12/03/98	Dixie Valley Well# 28-33	1810	=		6.9		8.92	257	13.6	473	0.362	>	>	211
12/03/98	Dixie Valley Well# 73-B7	980	1.3		6.4		9.12	212	12.9	580	0.492	v	٧	242
12/03/98	Dixie Valley Well# 82A-7	4230			6.2		8.78	222	12.9	275	0.524	٧	٧	244
12/03/98	Goeringer Well	1670	8.0	23.7	3.9		7.44	414	0.67	294	0.198	٧	0.874	201
12/03/98	Dixie Valley Well# 74-7	1820	1.2		6.0		9.07	23	12.2	572	0.54	>	٧	233
12/03/98	Dixie Valley Well# 63-7	2220	-		6.1		9.01	217	12.8	578	0.584	٧	٧	241
200000	Dixie Valley Well# /3-/	20807	7.5		0.9		9.08	508	13	581	0.598	v	٧	539
12/03/38	Dixie Valley Well# 62-21	1580	- 3		3.8		6.70	1107	4.94	80.8	0.0765	٧	v	231
12/03/98	Dixie Valley Well# 66-21	0000	2.9	37.0			6.0 40.0	216	12.3	1410	v	12.7	٧	86.7
12/03/36	Dixie Valley Well# 45-14	3820					6.73	148	5.52	499	0.36	v	٧	217
\top	Dixie Valley Injection Brin	4020		110.0			9.62	234	14.3	564	0.424	v	0.406	252
\neg	Dixie Valley steam conde	178					0.90	34.4	٧	0.536	٧	0.103	26.7	18.7
7	Carbonate Mound SW ed	3180		66.5			99.9	957	5.7	43.1	>	>	0.29	128
Т	Carbonate Mound Top so	3250		71.2			6.99	925	5.92	42	0.1	٧	٧	121
12/04/98	Beowawe Well# 77-13	1560		142.8	3.1		9.71	382	13.1	54.8	0.0593	~	٧	111
12/04/98	Beowawe Well# Ginn 1-1	28		144.4	3.1		9.82	376	13.2	55.4	0.0778	٧	>	110
12/04/98	Beowawe Well# Ginn 2-1	150		145.6	3.4		9.78	365	12.8	54.2	0.0565	>	>	109
	Heber HGU#7, Zone 2	26500	13.4	146.1	3.4		7.70		2.67	8360	10	>	٧	96.1
Т	Heber HGU#9, Zone 2	28300		138.9	3.2		6.74		2.44	7770	10.6	v	٧	91.4
06/10/99	Heber HGU#11, Zone 2	23900	12.9	131.1	2.6		8.08		2.08	8250	11.1	~	v	85.2

Sample ID	Collect	Sample Description	Cond	Salinity	T [C]	Sampling	Enthalpy	Ha	Total	Ė	-13	Br-	P04 -3	NO3 -	S04 -2
	Date d/m/y		[uMOHS/	_ [ber					Alk as	[ma/ka]	[ma/ka]	Ξ	_=	[ma/ka]	[ma/km]
			cm]	E E		[bars			HCO3		6			6	n h
				•		gage]		-	[mg/kg]						
CA-090-99	06/10/99	Heber HGU#13, Zone 4	27000	14.9	127.2	2.3		7.82		2.47	8760	11.2	٧	~	85.8
CA-091-99	06/10/99	Heber HGU#16, Zone 3	25200	13.8	136.7	2.6		7.75		2.31	8180	9	v	~	84.4
CA-092-99	06/10/99	Heber HGU#14, Zone 1	26600	13.8	123.3	1.3		8.05		2.24	8370	=	v	V	85.4
CA-093-99	06/10/99	Heber HGU#12, Zone 1	29600	13.9	134.4	3.1		7.42		2.4	8700	11.2	٧	~	87.1
CA-094-99	06/10/99	Heber HGU#10, Zone 1	32200		138.9	3.2		7.44		2.63	8580	11.2	v	v	94.9
CA-095-99	06/10/99	Heber HGU#8, Zone 1	37000	16	140.0	3.4		7.05		2.46	8600	2.79	v	~	114
CA-096-99	06/10/99	Heber Injection Brine Line	33000	14.4	75.0			8.13		2.37	9200	12.3	v	v	97.4
NZ-000-98	03/22/98	Trip Blank													
CA-072-99	66/60/90	Heber/Salton Sea DI Water Blank	ar Blank					7.01		v	٧	v	٧	v	v
NZ-117-00	03/30/00	Trip Blank								٧	v	v	v	v	~
NZ-163-00	04/10/00	Trip Blank								٧	0.282	0.00978	v	~	v
NZ-300-01	01/01/01	Inp Blank													
NZ-110-00	03/20/00	Ngawha NG-12 well cooli	2200	2.9		11.8		8.58	741	1.14	1070	6.44	v	v	30.2
NZ-111-00	03/20/00	Ngawha NG-9 well coolin	2800	ဇ		18.15		6.59	749	1.85	1030	6.1	98.0	v	8.86
NZ-112-00	03/20/00	Kamo Soda Spring	3100	9.1	24.7			6.14	1804	0.229	253	0.504	v	0.108	0.371
NZ-007-98	03/23/98	Miranda hot springs	280		56.0			9.08	71.8	v	28	~	v	11.2	3.36
NZ-113-00	03/21/00	Miranda hot springs	880		51.3			9.15	98.7	0.791	136	0.388	v	v	11.5
86-600-ZN	03/23/98	Te Aroha cold spring	8800	4.9	25.1			6.88	6849	0.32	432	~	~	18.2	282
NZ-115-00	03/21/00	Te Aroha cold spring	802	4.1	23.6			6.94	6257	0.986	529	1.2	0.357	5.26	302
NZ-010-98	03/23/98	Te Aroha hand pump #15	16600	6.8	46.1			7.20	9589	1.28	208	v	v	32.4	177
NZ-116-00	03/21/00	Te Aroha hand pump #17	14300	6.3	43.8			7.13	6971	₽	477	1.3	0.415	0.162	333
86-800-7N	03/23/98	le Aroha Mokena Geyse	23300		77.7			7.82	8299	0.349	444	٧	٧	19.6	288
NZ-114-00	03/21/00	le Arona Mokena Geyse	1100		70.0			8.12	7121	<u>-</u> 요	481	1.31	0.46	0.518	339
NZ-021-98	03/26/98	Morere not spring #1 upp	20000	28.2	46.6			6.91	36.5	٧	16300	43.3	v	>	v
NZ-130-00	04/08/00	Morere not spring #1 upp	20000	26.0	47.2			6.94	38.5	v	22000	48.9	٧	0.425	v
MZ-13/-00	04/00/00	Moreire not spring #2 dow	2000	262	44.6			7.10	41.6	v	21400	47.9	v	0.627	0.58
NZ-162-00	04/00/00	Moreign bot poring #2 sme	2000	8,00	41.9			6.93	40.2	~	15800	40.8	٧	v	٧
NZ-162-00	04/09/00	To Daile Spring #2 sma	2000	797	94.6			7.26	41.6	v	21100	48.3	٧	0.5	0.0187
NZ-033-08	03/26/08	To Duis Codons #1 oppos	20000	15.2	22.0			6.70	143	v	8270	3.1	v	v	47.6
NZ-160-00	04/09/00	To Duis Springs #1, Smail	73000	604	- 6			6.66	137	v 8	7330	4	٧	v	প্র
NZ-024-98	03/26/98	Te Puia Springs #2 up tr	2000	0.5	0.00			46.0	20.5	2120.0	0000	87 5	v	0.947	500
NZ-161-00	04/09/00	To Duia Springs #2 End of	2440	47.0	0.00			0.02	\dagger	40.0	200	20.4	v	٧	43
NZ-120 O	03/24/00	Pulcettiri (Afonceteti)	3	3.5	 			4 6	十	0.00604	8700	27.1	v	٧	155
NZ-128-00	03/24/00	Toronton (Mangaratu)	1020	7.0	43.5			9.32	1,0	18.7	20.2	0.0711	٧	0.0652	9
NZ-120-00	Т	- arawera	3320	.53	47.3			8.30	181	13.5	671	1.83	>	0.0336	15.7
NZ-130-00	\top	Hamner Springs	2220	-	48.4			8.61	191	5.21	432	1.48	٧	>	28.3
00-151-7N	Т	Lewis Hiver Hot Spring	28	,	48.7			7.96	349	3.84	13.1	v	0.155	0.051	4.2
NZ-132-00		Marula I hermal Hesort	98	0.5	43.0			8.34	81.9	2.9	76	0.167	v	0.0398	20
20-101-72	Т	Kawerau district swimmin	_]։			5.5		6.41	529	0.705	30.	1.09	>	٧	10.4
NZ-101-00	\neg	Kawerau district swimming pool we	πΓ	5.5 bars g	даде мер	5.5		6.20		0.78	314	-:	٧	٧	10.8
20-cg1-7N	7	Kawerau KA-19 well				0	1123	9.25		3.4	1010	3.7			10.6
NZ-100-7N	08/18/98	Kawerau KA-21 well				10.7	1278	7.4		2.5	994	3.7			4.7

Cleamag	Collect	Sample Description	Cond	Salinity	Ţ	Sampling Enthalpy	Enthalov	Ha	Total	ī.	- 10	Br.	PO4 -3	NO3 -	S04 -2
•	Date d/m/y	•	[uMOHS/	[per	1	Pressure [bars		,	Alk as HCO3	[mg/kg]	[mg/kg] [mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
			•			gage]			[mg/kg]						
NZ-102-00	03/10/00	Kawerau KA-23 well 5 ba	2940			2		6.10	241	1.69	816	2.91	v	٧	7
NZ-102-00	03/10/00	Kawerau KA-23 well 5 bars gage weber sampler but 11	s gage we	ber samp	er but 11	2		5.92		1.7	798	2.8	>	٧	3.9
NZ-098-00	04/06/00	Kawerau KA-24 unfiltered raw sample	raw samp	9					270	2.24	900	2.14	٧	٧	10
NZ-098-00	04/06/00	Kawerau KA-24 unfiltered raw sample	raw samp	9		0				٧	٧	٧	٧	٧	٧
NZ-167-00	08/18/98	Kawerau KA-27 well				10.7	1025	7.6		2.4	767	2.8			10.3
NZ-103-00	03/15/00	Kawerau KA-30 well 2 ba	620			2		6.24	313	0.00774	7.58	v	٧	v	18.7
NZ-103-00	03/15/00	Kawerau KA-30 well 2 bars gage w	s gage we	eber sampler, close	er, closed	2		6.20		>	5.1	v	٧	٧	1.8
NZ-159-00	04/06/00	Kawerau KA-32 well							315	2.15	741	2.67	v	٧	8.14
NZ-159-00	04/06/00	Kawerau KA-32 well				5.6									
00-660-ZN	03/28/00	Kawerau KA-34 well						5.67	284	0.404	1110	29.5	٧	v	8.02
00-660-ZN	03/28/00	Kawerau KA-34 well				0				٧	٧	v	٧	٧	v
NZ-168-00	08/20/98	Kawerau KA-35 well				10.7	1138	7.96		2.4	760	2.9			12.6
NZ-169-00	08/21/98	Kawerau KA-36 well				6.6	1385	7.85		2.6	100	3.8			3.8
NZ-164-00	04/02/00	Kawerau KA-37 well				10.6									
NZ-100-00	03/09/00	Kawerau Thermal Motel v	548		39.6			5.82	282	0.153	23.3	0.1	٧	٧	٧
NZ-100-00	00/60/20	Kawerau Thermal Motel well	₽ Te			0		6.42		0.19	23	0.08	٧	٧	0.76
NZ-138-00	04/01/00	Waimangu Clamshell Spi	2800	2.4	83.8			7.85	171	0.778	468	1.7	0.0823	0.262	159
NZ-012-98	03/24/98	Waimangu Clamshell Spr	2200		75.7			8.04	154	>	431	1.82	٧	8.43	132
NZ-136-00	04/01/00	Waimangu Frying Pan La	3750	1.6	51.5			6.15	64.9	3.23	603	1.86	٧	٧	230
NZ-137-00	04/01/00	Waimangu Frying Pan La	4080	1.8	50.5			6.14	38.7	3.52	521	2.02	٧	v	234
NZ-011-98	03/24/98	Waimangu Frying Pan La	3950		50.5			5.70	36.7	1.59	521	٧	٧	15	171
NZ-139-00	04/01/00	Waimangu lodine Pool	2800	2.4	73.5			8.50	183	3.82	538	2.08	٧	V	98.2
NZ-140-00	04/01/00	Waimangu lodine Pool	2800	2.4	74.5			8.50	181	3.83	530	2.08	٧	0.204	9.96
NZ-014-98	03/24/98	Waimangu lodine pool; other end near outlet	her end ne	ear outlet	68.0			8.34	152	2.9	556	1.51	٧	9.73	74.7
NZ-013-98	03/24/98	Waimangu lodine pool; st	2500		64.3			8.33	152	3.74	295	1.52	٧	17.6	77.4
NZ-306-01	01/01/01	306-01 Champagne Pool													
NZ-003-98	03/22/98	Waiotapu Champagne Pd	2000		74.4			5.28	25.4	2.28	- 28	4.04	٧	35.4	77.3
NZ-121-00	03/23/00	Waiotapu Champagne Po	9800		76.2			5.57	52.4	4.95	1540	5.88	٧	0.639	89.4
NZ-122-00	03/23/00	Waiotapu Champagne Po	8		76.2			5.46	48.9	4.92	1510	5.92	V	0.364	702
NZ-119-00	03/23/00	Waiotapu Frying Pan Fla	7200	3.5	42.0			2.53		0.0512	5/3	2.32	v 3	4100.0	80 2
NZ-120-00	03/23/00	Waiotapu Frying Pan Flat	2007	2.9	86.5			3.40		_	750	2.14	0.244	20.40	321
NZ-001-98	03/22/98	Waiotapu Oyster Pool ou	4520	087	28.4			2.47		Ç.2	200	6.30	/\	5 9	863
NZ-005-98	03/22/98	Waiotapu Oyster Pool sto	200		51.3			2.01		v	0/0	,	/	0.0	300
NZ-118-00	03/23/00	Waiotapu Oyster pool sto	10900	4.9	73.5			1.94		0.0039	ວາດ	- Sc.	v	0.273	26
NZ-307-01	01/01/01	307-01 Waikite								1				4,	010
NZ-018-98	03/25/98	Waikite #1; first pool on r	2420		92.0			7.46	ğ	0.478	9	V	v	er.r	27.6
NZ-133-00	03/31/00	Waikite #1; first pool on r	2580	1.1	97.8			7.53	322	2.77	129	0.38	v	v	35
NZ-232-00	03/05/92	IGNS-08 TeKopia 5-3-92												!	
NZ-004-98	03/22/98	Te Kopia Reserve #1 U s		0.2	39.6			2.61		8.33	24	v	v	10.2	\$
NZ-005-98	03/22/98	Te Kopia Reserve #2 edg		0.7	47.0			2.40		٧	20.4	v	v	1.16	225
NZ-134-00	Н	Te Kopia Reserve #2 edg		1.1	53.6			2.37		0.995	29.3	0.0496	0.179	v	376
NZ-006-98	03/22/98	Te Kopia Reserve #3 fiss	7500		87.4			1.74		v	4.67	V	٧	14.5	926

Sample ID Coll	Collect	Sample Description	Cond	Salinity	1[0]	Sampling	Enthalov	Ŧ	Total	i	-i o	B.	PO4 -3	N03 -	S04 -2
	Date d/m/v		/SHOWn]	per					Alk as	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg] [mg/kg] [mg/kg]	[mg/kg]	[mg/kg]
			[m	Ē		[bars gage]			HCO3 [mg/kg]						
N7.135.00 03/3	03/31/00	To Konia Basawa #3 fiss	2000		79.4			1 90		0.853	0.275	V	0.575	0.859	1230
+	\top	Orakai Korako Diamond d	4280		93.4			8.46	257	20	256	~	~	20.8	65.4
+	T	Orakei Korako Diamond 6	3300		79.0			8.55	320	11.6	268	0.952	٧	1.6	80.9
╀	03/25/98	Orakei Korako Fred and M	3750		93.0			6.93	181	6.24	211	>	٧	6.7	89.8
┼-	03/23/00	Orakei Korako Fred and P	3900		92.2			6.92	157	12.1	243	0.794	0.049	v	106
╀	03/25/98	Orakei Korako Map of Afr	2430		62.6			06.9	158	11.3	205	v	٧	Ξ	83.7
╀	03/23/00	Orakei Korako Map of Afr	2900		61.2			7.74	172	11.1	242	0.79	٧	1.9	108
┼-	03/23/00	Orakei Korako Map of Afr	2900		61.2			7.74	168	11.1	248	0.74	٧	0.23	Ξ
╀	03/23/00	Orekei Korako Ruatapu C	2620	1.2	39.2			2.48		5.62	128	0.38	v	0.309	428
╀	12/22/97	IGNS-01 RK9 22-12-97													
┝	10/05/98	IGNS-02 RK9 5-10-98													
┼-	26/80/20	IGNS-03 RK9 8-7-97													
NZ-228-00 02/0	02/09/99	IGNS-04 RK9 9-2-99													
-	10/08/98	IGNS-05 RK5 8-10-98													
NZ-230-00 02/0	05/09/99	IGNS-06 RK5 9-2-99													
-	12/22/97	IGNS-07 RK5 22-12-97													
╀	03/25/98	Rotokawa #4?	10200		79.3			2.79		2.75	1080	2.3	٧	41.1	455
╄	04/05/00	Rotokawa #4?	7000	2.9	83.5			2.56		0.558	395	1.3	v	٧	773
╀	04/05/00	Rotokawa NW Western	5700	2.3	83.5			2.76		1.57	351	1.22	٧	0.619	482
-	04/02/00	Rotokawa Parariki	8600	3.6	87.0			1.96		0.455	384	1.31	0.67	0.044	1030
╀╌	03/25/98	Rotokawa Parariki sulfur	8200		83.3			1.51		٧	<u>શ</u>	v	v	16.1	895
NZ-105-00 04/0	04/02/00	Rotokawa RK-5 well 26 b	2200	1.2		5 6		6.51	81.1	3.13	702	1.89	٧	0.0543	17.3
NZ-106-00 04/0	04/02/00	Rotokawa RK-9 well 26 b	2570	1.4		26		6.38	92.5	3.08	546	7	v	0.0338	6.98
NZ-151-00 04/0	04/02/00	Mokai MK-3 well 20.0 bar	10000	5.3		20		2.67	9.4	4.32	2570	5.22	0.15	0.0328	9
NZ-150-00 04/0	04/02/00	Mokai MK-5 well 18.8 bar	9100	4.9		18.8		6.16	12.5	5.68	2540	6.31	v	0.0322	8.01
-	04/02/00	Mokai MK-6 well 18.8 bar	8600	4.9		19.2		5.54	7.3	4.4	2670	4.97	0.116	0.32	3.68
Н	04/02/00	Mokai Pool	1020	0.2	35.6			2.91		0.134	7.95	V	0.0679	27.7	198
\dashv	04/02/00	Mokai Spring	1200	0.3	49.7			6.07	46	0.404	24.5	0.0967	0.244	0.0297	40.0
-	04/02/00	Mokai Stream	2260	0.8	56.9	07.07		3 5	0.08 0.00	77.	4/4	0.60	0.242	2.0	13.8
\dashv	05/01/99	Broadlands BR-10 well				21-01		20.0		2.0	4.25	2.5			6.3
+	05/05/99	Broadlands BR-14 well				5.5	1917	0.03		0.0	1120	0			8 8
+	04/0//9/	Broadlands BH-15 Well	0230	00		3 5	101	7.05	276	2 4	1140	3.49	V	0.46	9
NZ-148-00 04/C	04/04/00	Drodiends on-13 well in	200	5.3		40		88	122	4 24	1020	2.56	V	V	2.78
-	13/7/00	Broadlands BR-13 well, in	3			3.8		7.13		3.3	1230	4.9			15.6
+	02/26/00	Broadlands BR-20 well				8.3	1095	8.44		5.1	1030	3.7			99
+	04/04/00	Broadlands BR-20 well 7	4510	2.3		7.2		8.81	655	3.32	089	1.86	0.133	0.0509	96.9
╀	03/28/98	Broadlands BR-20 well; h	7200			4.5		8.48	484	3.82	830	2.13	٧	٧	59.3
╀	04/07/97					9.8	1242	7.2		6.4	1610	5.1			21
╁	03/17/98	Broadlands BR-24 well				6.9	1592	6.92		4.4	1400	4.7			7.5
╁-	04/10/97	Broadlands BR-25 well				10.9	1059	8.64		7.8	837	2.8			ន
╁-	03/17/98	Broadlands BR-31 well				3.4	1157	7.9		5.5	1120	4.1			43
1										ĺ					

Please Pressure	Sample Description		
14.1 215 684 814 1120 3.7 1141 215 684 814 1140 3.7 1141 215 684 814 1140 3.7 1141 215 684 814 1140 3.7 1141 215 684 814 1140 3.7 1141 215 684 814 1140 3.7 1140 2.2 2.2 2.4 2.4 2.2 2.4 2.4 2.4 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	d] /SHOWN]		
14.1 2155 684 814 1120 3.7 114.1 2155 684 814 1140 3.7 114.1 2155 684 814 1140 3.7 114.1 2155 684 814 1140 3.7 1140 3.7 1140 3.7 1140 3.7 1140 3.7 1140 3.7 1140 3.6 1140 3.7 1140 3.8 1140 3.6 1140 3.7 1140 3.8 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 1140 3.8 3.6 3.8			
14.1 2156 684 84 1140 3.7 8.7 1970 7.24 8.8 1200 4 8.7 1970 7.24 8.8 1200 4 8.7 1970 7.2 1600 5.6 9.7 1675 7.05 6.1 1410 6.3 5.7 1422 6.88 128 1410 5.3 1422 6.88 18 6.6 1400 4.62 < 0.174 10.2 6.81 178 6.6 1400 4.62 < 0.174 10.2 6.81 178 6.6 1400 4.62 < 0.174 10.3 6.34 178 6.6 1400 4.16 < < < < < < < < < <	Broadlands BR-36 well		
10.5 991 724 9.1 1040 3.6	Broadlands BR-42 well		
87 1970 74 88 1200 4 0 0 42 172 1600 5.6 5 1422 819 6.6 1410 4.9 5 1422 819 6.6 1640 5.7 6.3 1422 8.8 6.6 1400 4.1 < 0.174	4.89 6.49 2.9 < < < < < < < < < < < < < < <td>4.89 6.49 2.9 < <</td> <td>Broadlands BR-43 well</td>	4.89 6.49 2.9 < < < < < < < < < < < < < < < < < < <	Broadlands BR-43 well
6.7 1575 765 6.1 1410 4.9 6.6 1410 4.9 6.6 1410 4.9 6.6 1410 4.9 6.6 1410 5.5 6.6 1410 5.5 6.6 1410 5.7 6.7 6.6 1422 6.6 1400 4.6 6.7 6.1 6.6 1400 4.6 6.7 6.1 6.7 6.1 6.7 6.1 6.7 6.1 6.7 6.1 6.1 6.7 6.1 6.1 6.1 6.7 6.1	Broadlands BR-44 well		
5.7 1875 7.05 6.1 1410 5.7 6.81 7.0 6.81 178 6.81 178 6.81 178 6.81 178 6.81 178 6.81 178 6.81 179 4.62 < 0.174	Broadlands BR-48 well		
5 1422 8.19 6.6 1640 5.7 6 1422 6.81 178 6.6 1400 4.62 102 6.81 178 6.6 1400 4.62 0.174 80.3 3.6 958 7.45 8.56 1460 4.1 <	Broadlands BR-48 well		
10.2 6.88 5.8 1410 5.3 5.3 5.5 1410 5.3 5.5 1450 4.1 5.4 5.5 1450 4.1 5.4 5.5 1450 4.1 5.4 5.5 1450 4.1 5.4 5.5 1450 4.1 5.4 5.5 5	Broadlands BR-48 well		
102 178 178 180 4.15			
88.3 3.6 958 7.50 163 3.50 4.1 5.7 5.2<	4150		
Signature Sign	Broadlands BR-48 well; a 12300		
Signature Sign	Broadiands BRA 00 moditor well		
Section 7.86 48.8 6.49 2110 4.16 < < < < < < < < < < < < < < < < < <	Wairakai W-207 well 7 1 7600 3.1		
Sign	16300		
63.4 6.34 286 < 202	<u> </u>		
63.4 6.34 285 < 202 < < < < < < < < < < < < < < < < <	Wairakei W-229 well weir 14800		
63.4 6.34 295 < 202 < < < < < < < < < < < < < < < < <	Northern Lake Taupo Margin pH 5.5		
63.4 285 <	Northern Lake Taupo Margin pH 6.5		
63.4 6.34 295 < 202 < < < < < < < < < < < < < < < < <	De Bretts Stream		
634 634 295 < 202 <			
61.6 6.26 293 0.412 221 0.772 0.214 2.5 94.9 7.48 76.6 1.24 2310 9.62 < 0.786 56.6 5.3 7.54 1.25 2670 10.6 < 0.0751 63.0 6.19 41.6 1.28 2510 10 < 1.48 82.9 6.91 65.3 1.19 2380 10.1 < 1.32 22.3 1.14 158 11500 13 < <	r 2670		
94.9 7.46 7.50 1.24 2510 3.02 0.0751 56.6 7.32 75.4 1.25 2670 10.6 0.0751 63.0 6.19 41.6 1.28 2510 10 1.48 82.9 6.91 65.3 1.19 2380 10.1 1.32 22.3 1.14 158 11500 13 <	2640		
6.19 41.6 1.28 2510 10. < 1.48 6.91 65.3 1.19 2380 10.1 < 1.32 6.91 65.3 1.19 2380 10.1 < 1.32 6.91 65.3 1.19 2380 10.1 < 1.32 6.91 65.3 1.19 2380 10.1 < 1.32 6.91 65.3 1.19 2380 10.1 < 1.32 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91	Fun 24200		
82.9 6.91 65.3 1.19 2380 10.1 < 1.32 82.9 6.91 65.3 1.19 2380 10.1 < 1.32 82.3 1.14 158 11500 13 < <	1/300		
22.3 1.14 158 11500 13 < < < < < < < < < < < < < < < < < <	4		
22.3 1.14 158 11500 13 <			
22.3 1.14 158 11500 13 < < < < < < < < < < < < < < < < < <	IGNS-10 RCL 18-2-94		
22.3 1.14 1.58 11500 13 < < < < < < < < < < < < < < < < < <	IGNS-11 RCL 4-5-95		
1.14 158 11500 13 < <	IGNS-12 RCL 10-5-96		
22.3 1.14 158 11500 13 < < <	IGNS-13 RCL 28-2-97		
22.3 1.14 158 11500 13 < < <	IGNS-14 RCL 17-3-98		
22.3 1.14 158 11500 13 < < <	IGNS-15 RCL 10-1-99		
	ke; 50000		
	IGNS-16 WI 22-10-93		
	IGNS-17 WI 15-1-94		
	IGNS-18 WI 23-2-94		
	IGNS-19 WI 5-5-94		
	IGNS-20 WI 15-11-95		
	IGNS-21 WI 6-7-95		
	IGNS-22 WI 28-2-95		
	IGNS-23 WI 14-2-96		

SO4 -2	n h					1000	2071													336	411	122	132																
NO3 -						700	5																																
						,	v																																
F. C1- Br. PO4-3	(Rybin)					0	2.38													21.8	22.3	27.4	29.4																
C I -	[gawgiii]					200	296													7544	7806	9549	9393																
F -	[mg/kg]					3	4.96													Ш	6.26	7.44	6.49																
Total	HCO3 HCO3 [mg/kg]					,	113	acidified	acidified	acidified	acidified	acidified	acidified	acidified	acidified	aciditied	acidified	acidified	acidified	acidified	acidified	acidified	acidified												_				
표							5.57													7.60	7.60	7.14	7.14																
Enthalpy																				986	886	1039	1039																
Sampling Enthalpy	Pressure [bars gage]																			3.3	3.3		7																
T[C]							96.0													199, 206	199, 206	312, 261	312, 261																
S	jed Ein																																						
Cond	[nwoHs/						3950																																
Sample Description		IGNS-24 WI 2-5-96	IGNS-25 WI 4-11-96	IGNS-26 WI 31-1-97	IGNS-27 WI 6-5-97	IGNS-28 WI 29-7-98	White Island Black Pot, a	DDI Field Bank	G1, AqRe rinse	G10, Br20	G10, Br20	G6, Br9	G6, Br9	G8, Br9	G8, Br9	G9, Br20	G9. Br9	12/10/1997 U.Tas. DDI Blank	12/10/1997 Palinoinon DDI Blank	N1-2 Well Palinoinon		12/07/1997 PN14-1 Well Palinging	PN14-2 Well Palinpinon		HCE 30A-2	HCE 30A-3	HCE 30A-4	HCE 30A-5	HCE 30A-6	HCE 33-1	HCE 33-2	HCE 33-3	HCE 33-4						
Collect	Date d/m/y	05/02/96	11/04/96	01/31/97	05/06/97	07/29/98	03/18/00											12/10/1997	12/10/1997	12/06/1997	12/06/1997	12/07/1997	12/07/1997	1970's															
Sample ID		NZ-248-00	NZ-249-00	NZ-250-00	NZ-251-00	NZ-252-00	NZ-104-00	NZ-260-00	NZ-256-00	NZ-255-00	NZ-262-00	NZ-254-00	NZ-263-00	NZ-257-00	NZ-261-00	NZ-259-00	NZ-258-00	PP-264-00	PP-265-00	DD-266-00	00-25-00	DD-268-00	00-096-00	NZ-270-00	NZ-271-00	NZ-272-00	NZ-273-00	NZ-274-00	NZ-275-00	NZ-276-00	NZ-277-00	NZ-278-00	NZ-279-00						

6 ^[6]	Т	П						\exists						T		\top	
SO4 -2 [mg/kg]																	
NO3 - [mg/kg]																	
Br - [mg/kg]																	
F- CI- Br- PO4-3 [mg/kg] [mg/kg] [mg/kg]																	
Total Alk as HCO3 [mg/kg]																	
Hd.																	
Enthalpy																	
Sampling Enthalpy Pressure [bars gage]																	
1 [C]																	
Salinity [per mil]																	
Cond [uMOHS/ cm]																	
Sample Description																	
Collect Date d/m/y																	
Sample ID																	