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ABSTRACT 
 
Long-range seismic profiles from Peaceful Nuclear Explosions (PNE) in the Former Soviet Union  (FSU) provide a 
unique data set to investigate several important issues in regional Comprehensive Nuclear-Test-Ban Treaty (CTBT) 
monitoring.  The recording station spacing (~ 15 km) allows for extremely dense sampling of the propagation from 
the source to = 3300 km.  This allows us to analyze the waveforms at local, near- and far-regional and teleseismic 
distances.  These data are used to: 1) study the evolution of regional phases and phase amplitude ratios along the 
profile; 2) infer one-dimensional velocity structure along the profile; and 3) evaluate the spatial correlation of 
regional and teleseismic travel times and regional phase amplitude ratios. We analyzed waveform data from four 
PNE’s (mb = 5.1 – 5.6) recorded along profile KRATON, which is an east-west trending profile located in northern 
Siberia.  
 
Short-period regional discriminants, such as P/S amplitude ratios, will be essential for seismic monitoring of the 
Comprehensive Nuclear-Test-Ban Treaty (CTBT) at small magnitudes (mb<4.0).  However, P/S amplitude ratios in 
the short-period band, 0.5 – 5.0 Hz, show some scatter.  This scatter is primarily due to propagation and site effects, 
which arise from variability in the elastic and anelastic structure of the crustal waveguide. Preliminary results show 
that Pg and Lg propagate efficiently in north Siberia at regional distances.  The amplitude ratios show some 
variability between adjacent stations that are modeled by simple distance trends. The effect of topography, sediment 
and crustal thickness, and upper mantle discontinuities on these ratios, after removal of the distance trends, will be 
investigated.  
 
The travel times of the body wave phases recorded on KRATON have been used to compute the one-dimensional 
structure of the crust and upper mantle in this region. The path-averaged one-dimensional velocity model was 
computed by minimizing the first arriving P-phase travel-time residuals for all distances (∆ = 300 – 2300 km).  A 
grid search approach was used in the minimization. The most significant features of this model are the negative lid-
gradient and a low-velocity zone in the upper mantle between the depths of 100 – 200 km; precise location of the 
LVZ is poorly constrained by the travel time data. We will extend our investigation to additional PNE lines to 
further investigate the amplitude and travel-time variations in eastern and central Eurasia. 
 
Finally, the dense station spacing of the PNE profiles allows us to model the spatial correlation of travel times and 
amplitude ratios through variogram modeling.  The statistical analysis suggests that the correlation lengths of the 
travel-time and amplitude measurements are 12° and 10°, respectively. 
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OBJECTIVE 
 
Peaceful nuclear explosions (PNEs) conducted by the Former Soviet Union (FSU) provide a unique data set to 
investigate the propagation of high-frequency regional phases for Comprehensive Nuclear-Test-Ban Treaty (CTBT) 
monitoring. This paper presents our initial results in calibrating the aseismic eastern FSU using PNEs. The PNE data 
are part of the large dataset of dense, linear, long-range, three-component (at two different instrument gains) profiles 
recorded by Russian scientists between 1965 - 1988. This dataset gives us a unique tool with which to probe the 
crust and mantle structure in Northern Eurasia and investigate regional phase phenomenology. In this paper, we will 
document our analysis in extracting and archiving the KRATON profile in northern Siberia. This dataset consists of 
waveforms at local, near- and far-regional, and upper mantle distances at nominal station spacing of about 15 km. 
Travel times of first arriving P-waves are used to develop one-dimensional models.  Residuals relative to these 
models are characterized by their spatial correlation functions (variograms), which is an essential element of travel-
time correction surface development using the Bayesian kriging method (Schultz et al. 1998). Ratios of high-
frequency (0.5-10 Hz) regional phase amplitudes are widely viewed as important seismic discriminants.  The 
distance and path dependence of regional phase amplitudes and amplitude ratios varies regionally because of 
variations in elastic and anelastic structure of the earth.  The scatter introduced by distance and path effects can 
inhibit identification of explosions from natural seismicity.  We employed the dense sampling of the PNE data to 
investigate the distance and path dependence of regional phase amplitudes.  Additionally, the spatial correlation 
structure of the travel-time and amplitude ratio data is investigated using PNE data sets. Finally, the lateral 
variations of travel-time residuals, with respect to standard global model AK135, and amplitude ratios have been 
compared to variations of Moho and basement thickness. 
 
RESEARCH ACCOMPLISHED 
 
Introduction 
 
Central and Eastern FSU is largely aseismic;  therefore, it is impossible to calibrate these regions with earthquake 
data. For instance, it is difficult to use natural seismicity, a dataset widely used in most other parts of the world, to 
estimate these seismic properties. Fortunately, active source seismic data recorded in this region can be used for 
calibration purposes. During the period extending from January 1965 to September 1988, Russian scientists carried 
out dense seismic recordings of 122 PNEs. These explosions were carried out at several distinct geological settings 
and were widely dispersed within the Former Soviet Union (Sultanov et al. 1999). At LLNL, we have archived a 
subset of these PNEs.; namely, data from the profiles QUARTZ, KRATON, KIMBERLITE, METEORITE, and 
RIFT, which traverse regions of Central and Eastern FSU, are available to us (Figure 1). In total, we have data from 
25 PNEs in our database. These profiles cross several different tectonic regions, including the East European 
Platform, Ural Mountains, West Siberian Platform, Siberian Craton, Altay – Sayan Fold Belt, and the Baikal Rift 
region. Two of the salient features of the PNE dataset are the closely spaced stations, between 10 – 20 km, and 
coverage of a wide range of source-to-receiver distances (from near-source to greater than 30°), which allows us to 
model the propagation and evolution of seismic phases with an extremely high resolution.  
 
Dataset 
 
In this paper, we present our analysis using the data from the KRATON line (Figure 1). This is an east-west trending 
profile that crosses, for the major part of its length, the Angara Archean craton, the basement core of the East 
Siberian platform. A significant portion of this profile also crosses the West Siberian Platform, which lies between 
the Uralides and the Angara craton. The western-most PNE lies on the western edge of the West Siberian basin. The 
data were digitized from analogue recordings in a 0.5- to 20-Hz band (Solodilov 1997). The usable frequency range 
for the KRATON data is about 0.5 – 10 Hz, though the signal above 5 Hz is low. So, our analysis is carried out in 
the 0.5- to 5.0-Hz band. For each station, we have three component recordings: vertical, radial and transverse. For 
each of these components, there are low- and high-gain channels. Since the high-gain channels are frequently 
clipped, most of the analysis is carried out using the low gain channel. The signal-to-noise ratio of the first arrival is 
good (Mechie et al. 1997); hence, its travel time can be robustly determined.  In addition, several regional phases are 
clearly observed. Teleseismic Pn is clearly observed at distances up to 2000 km. The Pg phase efficiently propagates 
up to 1500 km. Importantly, we observe a significant difference in the moveout velocities of both Lg and Sn as well 
as the variation of Lg amplitude laterally. As reported in Nielsen et al. (1999), there is a significant scattered 
(“coda”) energy at distances between 1000 – 1500 km.  



 
There were four PNE shots along the KRATON profile, named KRATON1 – KRATON4. The magnitudes for these 
shots are 5.5, 5.2, 5.1 and 5.6 respectively, and had burial depths between 567 – 886 meters (Sultanov et al. 1999). 
In this paper, we show the results from the KRATON3 shot as the results are similar for the other shots.  
 
Travel-Time Modeling 
 
For each PNE, we have picked the travel times of first arriving P wave. Figure 2 shows the residuals of these picks 
as a function of source-receiver distance. The residuals are computed with respect to the predictions of a standard 
global model, AK135 (Kennett et al. 1995). As we observe in Figure 2, there is a significant distance-dependent 
trend in the residuals indicating that AK135 is inadequate for this region. We estimated a 1-dimensional model for 
the line. To avoid complications from Pg - Pn crossover in the travel-time curve, we limit our analysis to stations 
with source-receiver distances being greater than 300 km. The longest source-receiver distance considered for 
KRATON3 is 2301 km. A grid search algorithm is adopted to identify the model that fits the data the best. The grid-
search is carried out in two ways: by varying the crustal structure and by varying the mantle structure. In the former 
case, modeling technique is similar to that of Swenson et al. (2000). Simple crust and upper mantle velocity models 
are generated by varying the crustal thickness (30 – 55 km), upper crustal Vp (5.5 – 7.0 km/s), lower crustal Vp (6.6 
– 8.0 km/s) and the upper mantle Vp (7.9 – 8.1 km/s). The parameters that remain constant are the sediment 
thickness (= 4 km), sediment Vp (=4 km/s), thickness of the mantle lid (= 25 km) and the P-wave mantle velocity in 
the mantle lid. The mantle structure is similar to AK135 below the 410-km discontinuity. A linear gradient, joining 
the lid velocity to the velocity at 410 km, is used for the rest of the upper mantle. We calculate travel times through 
each regionalized P-wave velocity model using the single-valued tau-p formulation similar to that of Buland and 
Chapman (1983) to produce standard travel-time tables.  The tables are populated with travel times, parameterized 
by distance and depth, and a root-mean-square (rms) measure of misfit is adopted. Since the travel-time modeling 
process is non-linear and the number of model parameters limited, the solution is non-unique. In practice, we have a 
suite of models that can fit the data equally well. To avoid this ambiguity, we adopt the following procedure. We 
rank the models based on the rms misfit with the data and select the top 10% of the models; these mo dels fit the data 
nearly equally well. We then compare these models to the global average model AK135 and select the model that is 
closest to AK135 in shape. In the second-grid search, we keep a uniform crustal velocity but vary its thickness. We 
allow for more complicated mantle models with changes in the velocity gradient above the transition zone. This 
allows us to explore the possibility of low-velocity zones (LVZ) in the upper mantle. 
 
We obtain significantly better fits when we allow the mantle structure to deviate away from AK135. We show the 
best fitting one-dimensional velocity model for KRATON3 in Figure 3. Note that we have combined the 
measurements from both move-out directions (East and West). We plotted the velocity structure of AK135 for 
reference. It is clear from Figure 3 that both the crust and uppermost mantle velocities, on average, are faster along 
KRATON3 compared to the global average. This result is expected in Siberia, which is underlain by Archean crust 
to the west and Proterozoic crust to the east. The faster velocities are primarily an expression of a stable crustal 
structure. High-resolution global models have also shown high velocities in the upper mantle going to depths of up 
to 450 km (Masters,  et al. (1999).  
 
The travel-time modeling technique described above is adequate for the analysis of data with a global distribution of 
stations and events where the source-receiver paths encounter a wide range of geological settings. To be consistent 
in modeling these paths with the same set of models, it is useful to limit the range of possible models. On the other 
hand, when we have a regional distribution of stations and sources, we can allow ourselves to search over a different 
set of models that are more appropriate for that region. This is particularly true for KRATON where previous studies 
by Solodilov (1997) and Nielsen, et al. (1999) have shown significant low-velocity zones and variations in mantle 
velocity gradients, respectively. To account for these structures, we now search over models where the mantle 
velocity gradient is allowed to vary between –0.002 and 0.002. We find that the best models from this set have 
significantly better fits, i.e., the rms difference between the data and the model predictions is decreased by as much 
as 40 %. The best fitting model is shown in Figure 3. The most significant feature of this model is the presence of a 
LVZ in the upper mantle at a depth of 150 – 200 km, similar to the results of Nielsen, et al. (1999). Importantly, this 
model indicates a negative mantle-lid gradient. Figure 4a shows the spatial variation of the travel-time residuals for 
the best fitting model. We show the topography as a proxy for tectonics. We observe that, though there is no obvious 
correlation of travel-time variations with station location, we see that in general Western Siberia has negative 



residuals compared to Eastern Siberia. This difference might be due to the faster mantle in the west or to the thicker 
crust observed in Eastern Siberia. 
 
The variance structure of the travel-time picks can give us important insights into the correlation length of regional 
structures along with robust estimates of measurement errors Myers and Schultz (2000). We first compute the mean 
square differences of all pairs of observations (travel times) as a function of inter-pair distance, i.e., a variogram. We 
then model this variogram using three statistical parameters: (1) correlation length (range) representing the spatial 
variability; (2) the background variance (σb), representing the overall variability of the data; and (3) the 
measurement error (σM). The measurement error is simply the variance of collocated data, which is the variogram at 
zero lag. Unlike Myers and Schultz (2000), we carry out a shot-specific travel-time analysis. Thus, we will model 
the variograms for each shot separately. We show the variogram for KRATON3 in Figure 4b where we chose to bin 
the squared differences in 1° bins. The measurement error for the dataset is 0.06 s, which is low as the source is a 
single nuclear explosion. The correlation length for KRATON3 is 12°. 
 
Regional Phase Amplitudes 
 
The amplitudes of regional phases (Pn, Pg, Sn and Lg) in the frequency range 0.5-10 Hz are widely recognized as 
effective discriminants for distinguishing explosions from natural earthquakes (Taylor et al, 1988; Walter et al, 
1995; Hartse et al, 1997).  Ratios of regional P- and S-wave phases display distance trends because of differential 
attenuation and geometric spreading.  However, in addition to distance effects, the amplitudes of these phases can 
vary greatly because of lateral variations in crustal and uppermost mantle structure (both elastic and anelastic).  This 
variability is referred to as path effects.  Site effects due to local geology at the recording site can lead to additional 
variability.  After the distance trend is removed, substantial scatter can remain in the ratios because of path effects.   
 
We measured the amplitude ratios Pg/Lg, Pn/Lg and Pn/Sn using the KRATON PNE shots. Amplitude 
measurements were made in the time domain filtering the traces, windowing the phases and computing the rms 
amplitude.  Individual phases were isolated with group velocity windows (Pn 8.3-7.6 km/s; Pg 6.8-5.8 km/s; Sn 4.6-
4.0 km/s & Lg 3.6-3.0 km/s).  Problems associated with digitization and band-limited instrument response restrict 
the usable frequency content of the data.  Thus, we simply measured the rms amplitude of each phase in the band 
0.5-5 Hz.  This is a fairly broad bandwidth.  We will investigate if narrower frequency bands can be used with these 
data. 
 
Figure 5 shows the Pg/Lg, Pn/Lg and Pn/Sn amplitude ratios (0.5-5 Hz) versus distance for the KRATON 3 shot.  
Linear regression fits to the log10 ratios are plotted along with 1-σ uncertainties.  The data are well modeled by the 
linear trend; however, deviations are apparent.  In particular, ratios for the eastern and western stations (relative to 
the shot location) show different behavior in Figure 5.  This behavior reveals that path and site effects impact the 
observed P/S ratios. 
 
Much effort has been focused on modeling the path effects on regional phases (e.g., Fan and Lay 1998; Rodgers et 
al, 1999; Phillips 1999).  It is now well established that correction surfaces produced by Bayesian kriging (Schultz et 
al, 1998) is the optimal method for representing path effects on regional phases (Rodgers et al, 1999; Phillips 1999).  
In order to perform the kriging calculations, it is necessary to characterize the statistical properties and spatial 
correlation of the data by modeling the variogram. Figure 6 shows a map of the Pg/Lg amplitude ratios of the 
KRATON 3 shot and the associated variogram.  The distance trend of the Pg/Lg ratios was removed revealing the 
path and site effects.  The variogram demonstrates that the data become more poorly correlated as the inter-pair 
distance increases.  We modeled the variogram with a monotonically increasing function that asymptotically 
approaches the sum of measurement and background variances (Figure 6b).  The range (10º) governs the rise of the 
function.  This characteristic range is typical of other regions we have studied (Rodgers et al, 1999).  The 
measurement uncertainty (σM) is low because the source is a single nuclear explosion.  Errors in the variogram 
measurements (error bars in Figure 6b) are small because the dense station spacing provides many measurement 
pairs at small inter-station ranges. 
 



CONCLUSIONS AND RECOMMENDATIONS 
 
We document our analyses of the KRATON PNE (shot 3) in northern Siberia. The 1-D travel-time modeling shows 
a significant low-velocity zone between 150- to 200-km depths. We are developing 2-D travel-time correction 
models for this region following the technique of Swenson et al, (2000). The amplitude ratios show a linear trend 
with distance. The variogram modeling suggests that the correlation lengths for the travel times are 12° and for the 
amplitude ratios about 10°. In the future, we will try to model the waveforms to predict the travel-time and 
amplitude behavior of the upper mantle triplication P-waves. This will also allow us to refine the 1-D velocity 
developed in this study. We will also investigate the frequency dependence of regional-phase amplitude behavior 
and document the propagation efficiency of the regional phases as a function of frequency. The analysis for all of 
the KRATON shots will be completed. 
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Figure 1. Soviet Peaceful Nuclear Explosion (PNE) datasets available at LLNL. Permanent three 
component, broadband stations in the region are also shown. The PNE shot points are shown by  
circles and PNE stations are shown by +. The permanent stations are shown by the triangles.
The names of each PNE profile are indicated.
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Figure 2. Travel-time residuals as a function of distance range for KRATON3. 
We observe a strong distance dependence for the AK135 residuals, suggesting that 
this model cannot adequately explain the data. The distance trend for the best-fit 
model is much less pronounced. We also see that the amplitude of the misfit is 
significantly decreased for the best-fit model.  
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Figure 3. Best-fitting 1-dimensional model for the KRATON3 profile is shown in the solid line. 
The global reference model, AK135, is shown in the dotted line. The crust and the uppermost 
mantle are significantly faster for KRATON3 compared to the global average. We also find evidence 
for a significant low-velocity zone below the mantle lid at depths between 150 - 200 km. Note the 
negative velocity gradient in the mantle lid.
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Figure 4. Spatial variation of travel-time residuals for the best-fitting 1-D model for KRATON3 
(Model_2 as described in text). (a) Map of residuals plotted at station locations on top of topography. 
Removal of the travel-time predictions of the best-fitting model largely reduces the distance trend 
revealing path and site effects. We observe faster (negative) residuals for the Eastern stations. 
(b) Variogram of the travel-time residuals along with our model. The model is parameterized by a range,
the measurement error (σM) and the background error (σB). The range gives us an estimate 
of the correlation length for the region. The low background variance suggests that the fit to the data
is excellent. The low measurement error indicates the robustness of the travel-time picks.
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