skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inertial Confinement Fusion Quarterly Report January-March 1999, Volume 9, Number 2

Technical Report ·
DOI:https://doi.org/10.2172/791659· OSTI ID:791659

This quarterly report covers the following topics: (1) Properties of and Manufacturing Methods for NIF Laser Glasses (J. H. Campbell)--The NIF amplifiers require 3380 Nd-doped laser glass slabs; continuous glass melting methods will be used for the first time to manufacture these slabs. The properties of the laser glasses are summarized and the novel continuous melting method is described. (2) Diffractive Optics for the NIF (J. A. Britten)--We have fabricated demonstration diffractive optics according to the NIF baseline design at full scale, via wet-chemical etching of patterns into fused silica. We have examined the effects of dip-coated sol-gel antireflection coatings on the performance of these optics, and have concluded that diffractive optics should remain uncoated to minimize laser-induced damage to downstream optics and to maximize environmental stability. We have also demonstrated the feasibility of combining all diffractive structures required by NIF, which vary over orders of magnitude in lateral and vertical scales, onto a single surface. (3) Producing KDP and DKDP Crystals for the NIF Laser (A. K. Burnham)--Rapid-growth KDP has overcome most of the hurdles for production of boules for NIF switch crystals and doublers, but some improvements in process reliability at the tripler's 3{omega} damage threshold are needed. The ability to meet KDP finishing specifications has been demonstrated, and the equipment for efficient NIF production is being built. (4) Engineering High-Damage-Threshold NIF Polarizers and Mirrors (C. J. Stolz)--High-fluence polarizer and mirror coatings for the NIF can be realized by engineering the coating process and design once the laser interaction with coating defects is understood. (5) Improved Antireflection Coatings for the NIF (P. K. Whitman)--We summarize our progress in developing antireflection coatings and applications processes for the NIF laser optics. We describe new materials and coating treatments to minimize the sensitivity of these porous sol-gel coatings to environmental humidity and organic contamination. (6) Developing Optics Finishing Technologies for the National Ignition Facility (T. G. Parham)--Fabrication of the 7500 meter-class lenses and flats for the NIF required extension of finishing technologies to meet cost and schedule targets. Developments at LLNL and our industrial partners are described for improved shaping, grinding, polishing, figuring, and metrology of large optics. (7) Laser-Damage Testing and Modeling Methods for Predicting the Performance of Large-Area NIF Optics (M. R. Kozlowski)--Laser damage to high-quality laser optics is limited by localized, defect-initiated processes. The damage performance of such materials is better described by statistical distributions than by discrete damage thresholds. The prediction of the damage performance of a Beamlet focus lens, based on new statistics-based damage data measurement and analysis techniques, is demonstrated. (8) Development of the NIF Target Chamber First Wall and Beam Dumps (A. K. Burnham)--NIF target designs and target chamber ablations are listed by a 1-nm/shot contamination rate of the final optics debris shield, as determined by transmittance and damage lifetime. This constraint forces a self-cleaning louvre design for the first wall and unconverted-light beam dumps. Nickel-free stainless steel is the cheapest and most practical material.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE Office of Defense Programs (DP) (US)
DOE Contract Number:
W-7405-Eng-48
OSTI ID:
791659
Report Number(s):
UCRL-LR-105821-99-2; TRN: US0205237
Resource Relation:
Other Information: PBD: 31 Mar 1999
Country of Publication:
United States
Language:
English