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1 Introduction

Extracting information about the internal structure of a medium from noisy observations of scat-
tered electromagnetic energy obtained along the boundary is a problem arising in a wide range of
environmental monitoring and remediation applications. In many cases the processing goal is the
characterization of an anomalous area such as the presence of a pollution plume in the overall re-
gion of interest. Often, this is approached by discretizing the medium, speci�cally the space-varying
complex electrical permittivity, into a large number of small pixels. An estimate is obtained via
the solution of a high dimensional, often non-linear optimization problem [1].

Such an approach is diÆcult for a number of reasons. First, because there can be anywhere
from thousands to hundreds of thousands of pixels or voxels in the region, the computational
burden of solving the optimization problem can be prohibitive. Second, these problems are highly
underdetermined. Generally the number of pixels or voxels in the region is far less than the
number of measurements collected at the boundary. Thus, there are many permittivity pro�les
which provide an adequate �t to the data but whose basic structures are physically unrealistic.
For example, there may be negative permittivity values or the structure may be characterized by
high frequency, large amplitude oscillations. Stabilizing the solution to these inverse problems (also
known as regularizing them) to obtain physically plausible reconstructions is a diÆcult and subtle
task [2{4].

Under this contract, we have considered two methods for approaching this inverse medium
problem which attempt to address these two fundamental issues. The �rst approach is based on
the idea that if one is looking for an object against a fairly well-behaved background then it should
be possible to avoid the high price of using a �ne scale pixelation. Rather, a low-dimensional
parameterization of the unknown should be possible with �ne scale variation used sparingly in
areas of marked interest such as near boundaries between the object and the background or between
layers in the background. The technical issue here is in adaptively determining where such detail
should be placed as the algorithm progresses. To address this problem we represent the unknown
permittivity pro�le using a sparse collection of re�nable B-spline functions. Beginning with a
coarse scale reconstruction of the unknown we exploit the mathematical structure of the B-splines
to alternatively add detail in regions of large variability and then remove unneeded degrees of
freedom from areas where there is little \interesting" behavior. By controlling the degrees of
freedom (DOF) like this, we obtain an optimization problem with hundreds rather than thousands
of unknowns. The controlled use of the B-splines results in a high degree of 
exibility allowing us to
recover geometric and contrast structure of anomalous regions against unknown backgrounds with
a rather compact representation of the unknown pro�le. We have examined the performance of this

1



approach using a 2D crosswell radar tomography problem in which a simple, linearized physical
model was employed. We obtained comparable results relative to a single, �ne scale reconstruction
using only about 12% of the unknowns in about half of the time. A full discussion of this method
is provided in the Master's Thesis attached to this document.

In addition to our B-spline method, we have developed a new imaging method for the problem
where one knows both the contrast of the objects as well as that of the background and is only
seeking to determine the number, shapes, and locations of these perturbations. Here we have drawn
heavily on recent work in the image processing community to derive a level-set-based curve evolution
method which essentially \shrink-wraps" a curve around the objects of interest. In addition a very
eÆcient algorithm using a so-called \source-type" formulation of the relevant physics has been
synthesized to determine an initial contour for the level-set technique. We have explored the
performance of these methods on a two dimensional, cross-well radar tomography problem using a
full physical model so that the unknown permittivity was related non-linearly to the scattered �eld
data. Our results indicate that this method is highly robust both to the presence of noise in the
data as well as modeling errors in the assumed known background medium electrical properties.
A detailed discussion of the mathematics underlying our approach and its evaluation on simulated
data is provided in reprints of two papers attached to the end of this report.

The results of these two e�orts are encouraging. The B-spline work indicates the utility of
adaptive methods for reducing the complexity and ill-posedness of these complex inverse problems.
The highly robust performance of the level-set approach points to the utility of parameterizing
these problems in terms of the geometry of the unknown. In the future, we intend on exploring the
following issues related to these methods

1. On the algorithmic side, the performance of the curve evolution method can be traced in
part to the assumptions underlying the algorithm regarding knowledge of the background
structure and contrast of the objects. Developing level-set type techniques in which these
assumptions are removed is a key area of future work.

2. The method by which we adaptively re�ne the B-spline representation of the permittivity
requires speci�cation of threshold parameter. Currently, that parameter is set by hand;
however to make the approach both reliable and automatic, it is important develop a more
rigorous approach. Similarly, the manner in which we prune degrees of freedom from the
representation can be improved. Currently, a simple greedy-type approach is used to solve
what is essentially a combinatorial optimization problem. It would be useful to consider
alternate approximation methods for such problems as well as approaches from the subset
selection literature.

3. In reality, these two methods complement each other and should ultimately be combined.
The B-spline approach provides rough geometric information regarding areas where anomalies
might be located as well as the contrast structure of the anomaly and background contrast.
Such information can be of signi�cant use to the level-set technique. Similarly, the boundary
information from the level-set approach can be used to delineate disjoint regions over which
low order B-spline models can be used to parameterize the contrast. Determining how to
make optimal joint use of these two modeling methods is at the heart of this type of work.

4. Both techniques need to be extended to consider fully 3D problems and veri�ed on real
sensor data. Currently, we are collaborating with INEEL on just such a project. The initial
work has been in extending the level-set approach to a three dimensional, cross-borehole
electrical resistivity problem. The physics here are far more tractable than is the case for
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higher frequency radar imaging so we can concentrate our e�ort more on the information
extraction problem. Over the next coupe of years, we anticipate validation of the level-set
type approach and ultimately its fusion with something like the adaptive B-spline method as
a means of dealing with unknown contrast in the background medium and anomalies.

The remainder of this �nal report is composed of reprints of the three major technical papers
arising from this contract:

1. An Adaptive B-Spline Method for Low-order Image Reconstruction Problems by Xin Li. A
Master's Thesis completed under the supervision of Prof. Miller at Northeastern University.

2. A shape reconstruction method for electromagnetic tomography using adjoint �elds and level

sets by Oliver Dorn, Eric L. Miller and Carey Rappaport which appeared in Inverse Problems
special issue on Electromagnetic Imaging and Inversion of the Earth Subsurface, October 2000.

3. Shape reconstruction in 2D from limited-view multifrequency electromagnetic data by Oliver
Dorn, Eric L. Miller, and Carey M. Rappaport which will be published in the AMS Contem-
porary Mathematics Series.
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Abstract

A common problem in signal processing is to estimate the structure of an object

from noisy indirect measurements linearly related to the desired image. These prob-

lems are broadly known as inverse problems. A key feature which complicates the

solution to such problems is their ill-posedness. That is, small perturbations in the

data arising e.g. from noise can and do lead to severe, non-physical artifacts in the

recovered image. The process of stabilizing these problems is known as regularization

of which Tikhonov regularization is one of the most common. While this approach

leads to a simple linear least squares problem to solve for generating the reconstruc-

tion, it has the unfortunate side e�ect of producing smooth images thereby obscuring

important features such as edges. Therefore, over the past decade there has been

much work in the development of edge-preserving regularizers. This technique leads

to image estimates in which the important features are retained, but computationally

they require the solution of a nonlinear least squares problem, a daunting task in

many practical multi-dimensional applications.

In this thesis we explore low-order models for reducing the complexity of the re-

construction process. Speci�cally, B-Splines are used to approximate the object. If a

"proper" collection B-Splines are chosen so that the object can be eÆciently repre-

sented using a few basis functions, the dimensionality of the underlying problem will

be signi�cantly decreased. Consequently, an optimum distribution of splines needs

to be determined. Here, an adaptive re�ning and pruning algorithm is developed to
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7

solve the problem. The re�ning part is based on curvature information, in which

the intuition is that a relatively dense set of �ne scale basis elements should cluster

near regions of high curvature while a sparse collection of basis vectors are required

to adequately represent the object over spatially smooth areas. The pruning part

is a greedy search algorithm to �nd and delete redundant knots based on the esti-

mation of a weight associated with each basis vector. The overall algorithm iterates

by inserting and deleting knots and end up with much fewer knots than pixels to

represent the object, while the estimation error is within a certain tolerance. Thus,

an eÆcient reconstruction can be obtained which signi�cantly reduces the complexity

of the problem.

In this thesis, the adaptive B-Spline method is applied to a cross-well tomography

problem. The problem comes from the application of �nding underground pollution

plumes. Cross-well tomography method is applied by placing arrays of electromag-

netic transmitters and receivers along the boundaries of the interested region. By

utilizing inverse scattering method, a linear inverse model is set up and furthermore

the adaptive B-Spline method described above is applied. The simulation results

show that the B-Spline method reduces the dimensional complexity by 90%, com-

pared with that of the pixel-based method, and decreases time complexity by 50%,

without signi�cantly degrading the estimation.



Chapter 1

Introduction

A common problem in signal processing is to estimate the structure of an object

from noisy indirect measurements. These problems are broadly known as inverse

problems with many applications such as radar/medical imaging, mine detecting and

image reconstruction [1] [2] [3] [4]. Among these, a common application is the cross-

well tomography problem, where we need to locate and estimate the buried objects

by observations of scattered electromagnetics radiation taken along the boundaries

[6] [7] .

In this thesis, we will �rst introduce the cross-well tomography problem, then set

up the linear inverse model based on inverse scattering theory [8] [18]. The diÆculty of

solving the linear inverse problem lies in the ill-posed nature of the degradation kernel.

The classical solutions tend to have large high-frequency artifacts which contaminate

the solution. To make the solution more stable, i.e. smooth out those high-frequency

components, a smoothing constraint is added to the underlying optimization problem,

a procedure called regularization. Many regularization methods have been widely

explored [19] [20], among which the Tikhonov regularization is the most common

[21].

Tikhonov regularization actually adds a smoothing constraint on the solution so

8



9

that the high-frequency artifacts are �ltered out. However, at the same time, it

also blurs the edges of the object, which are frequently the most interesting areas

to us. Therefore, more speci�c constraint should be added to preserve the edges.

Edge-preserving regularization using non-quadratic regularizers is such an idea [24]

[25] [26] [27] . The assumption is that, in the reconstruction, large changes in the

parameters we are estimating are likely to be true edges which we want to preserve,

while smaller ones are mostly artifacts which we want to smooth out. Use of such

a regularizer leads to non-linear least squares problem, which can be solved by the

Gauss-Newton method [28] or other iterative methods.

In practical multi-dimensional cases, the Gauss-Newton method needs to produce

an estimate of all the pixels at each iteration, thus the complexity is very large. One

idea is to represent the object by eÆciently using some basis functions to aggregate

the pixels. A straightforward solution is to use shape-based template if the shape

of the objects are known [29]. However, in most cases, the structure of the object

is complex and unknown to us, so a general basis which can be suitable to a wide

variety of objects should be used.

B-Splines have been thoroughly explored and proved to be very useful in approx-

imation and have been widely used in computer aided designs [30] [32] [31]. The

B-Spline basis has several good properties and can be easily manipulated by dealing

with knots. Furthermore, some eÆcient algorithms of construction, evaluation, and

knot insertion/deletion exist [36] [37] [38] [39], so that not too much e�ort is needed

to deal with B-Splines themselves.

If proper B-Splines are chosen so that the object can be eÆciently represented

using few basis functions, the dimension of the problem will be signi�cantly decreased.

To select those proper B-Splines, we should �nd an appropriate number of B-Splines to

be used and a suitable distribution of these B-Splines. The number of basis functions

to be used is the number of unknowns in the revised problem, thus determining the
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complexity of the B-Spline-based problem. The placements of these knot represent

where to put those B-Splines, which a�ects how close the object can be approximated

by using these �xed number of knots. The intuition is to place few knots at 
at regions

and more knots at rough regions with more details [40] [41] [42]. In this thesis, an

adaptive knot re�ning and pruning algorithm is developed to solve the problem. The

knot re�ning part eÆciently inserts knots based on curvature information. The knot

pruning part is a greedy search algorithm to �nd and delete redundant knots based

on an estimate of the weight of each knot. The overall e�ect is to select proper

number of knots to be used and, at the same time, relocate these knots to �nd a

suitable distribution. And as the algorithm converges, the �nal result uses many

fewer knots than pixels to represent the object while keeping the error of estimate

within certain tolerance. A 2D cross-well tomography example will be provided to

test the algorithm. The simulation results show that the B-Spline method reduces the

dimensional complexity by 90%, compared with that of the pixel-based method, and

decreases time complexity by 50%, without signi�cantly degrading the estimation.

1.1 Contribution

In this thesis, we propose using B-Splines to represent the object to be reconstructed.

The goal is to decrease the large complexity brought by the edge-preserving regular-

izer, and adaptively �nd the solution. Our contributions are mainly in the following

aspects:

� We make a thorough analysis of the edge-preserving regularizer, especially the

CRB(Cram�er-Rao Bound) analysis. The result is very interesting. The edge-

preserving regularizer does preserve edges better compared with Tikhonov reg-

ularization. As to the variance of estimate, however, the edge-preserving reg-

ularizer performs worse than Tikhonov one. This partly re
ects the di�erence
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between the two regularization methods. Tikhonov regularization add equally

constraint on all areas, while an edge-preserving regularizer puts more e�ort on

locating the edges. The price is that the variance of estimate is increased.

� We use B-Splines to represent the object and remodel the inverse problem. By

�nding the optimum knot distribution, the result has a signi�cant decreasing in

dimension. More e�orts are made on how to adaptively �nd the optimum knot

distribution. A knot re�ning and pruning algorithm is developed to automati-

cally �nd the edges as well as select proper B-Splines.

� For knot re�ning, a curvature based knot insertion method is developed to

intelligently insert knots. The intuition is that the optimum knot distribution

should re
ect the underlying smoothness structure of the object. Speci�cally,

more knots should cluster at regions with large curvatures, while fewer knots

are needed for 
at regions. Therefore, simply doubling the number of knots will

bring overhead for the insertion, i.e. most knots inserted in 
at regions will have

to be deleted later. Assuming a current coarse estimate is a good hint for further

re�ned structures, we can use the curvature information as a guide to only insert

new knots in areas of potential edges. By doing so, the knots inserted will be

mostly useful and need not to delete them later. In the 2D case, the idea can be

further re�ned by using principle directions used in computing curvatures. The

principle directions are directions where the minimal and maximal curvature lie

on a surface. If at a point, the large curvature only happens along x dimension,

and in the y dimension, the curvature is very small, we will only want to increase

resolution along the x dimension. By using the principle directions, we will be

able to determine whether to insert knot in one dimension or both.

� For knot pruning, we should �nd which knots need to be deleted. A greedy
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search algorithm is developed using the estimate of the weight of each knot. The

weight of each knot is measured as the change in reconstruction when deleting

the knot. The more the change, the larger the weight. Knots with small weight

are considered redundant, i.e. they were previously placed in regions where

enough knots had already been assigned. With the weight information, we will

be able to sort knots in the order of their importance and delete them one at a

time until the error of resulting reconstruction (computed by the cost function

of the edge-preserving regularizer) exceeds a certain tolerance. We also notice

the vicinity e�ects of each knot, i.e. deleting a knot changes the actual weight

of adjacent knots. An eÆcient solution is to avoid deleting adjacent knots.

1.2 Organization

This thesis is organized into �ve chapters; the main body is Chapter 2, 3 and

4. Chapter 2 introduces related background of the problem, including linear inverse

problem and Tikhonov regularization, B-Splines basis and geometric computations.

Chapter 3 investigates the edge-preserving regularization method and makes some

analysis. Chapter 4 presents the developments of the adaptive B-Splines methods

incorporated with edge-preserving regularizer solving the image reconstruction prob-

lem.

Chapter 2 introduces some related background knowledge of this thesis. Firstly,

the cross-well tomography problem is set up. The electromagnetic inverse scattering

theory is introduced to solve the problem, and the Born approximation is used to

get the linear inverse problem model. Secondly, the Tikhonov regularization method

is introduced to solve the problem. The idea of edge-preserving regularization is

proposed after analyzing the smoothing e�ects of Tikhonov regularization. Thirdly,

we introduce the basics of B-Spline basis. With the good properties it possesses, we
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propose using it to decrease the complexity of the problem. Lastly, some advanced

geometric computation of B-Splines are introduced. The most important is computing

the curvature of B-Spline surfaces, which will be helpful to our knot re�ning algorithm

developed in Chapter 4.

Chapter 3 analyzes the de�ciency of Tikhonov regularization. It then introduces

the edge-preserving regularizer using non-quadratic regularization functions. The

common properties of regularization functions are introduced. Furthermore, a CRB

analysis is provided to examine the estimation properties of the edge-preserving reg-

ularizer. Finally, we apply the edge-preserving regularizer to solve the cross-well

tomography problem.

Chapter 4 �rst points out the large complexity the edge-preserving regularization

brings, then B-Spline basis is proposed to be used. By representing the object by

B-Splines, the inverse problem is remodeled. It is shown that if the B-Splines are

carefully selected, we can obtain a good reconstruction while signi�cantly decreasing

the dimension of the problem. An adaptive knot re�ning and pruning algorithm

is developed to automatically �nd a suitable knot distribution. The knot re�ning

part involves knot insertion under the guidance of curvature information; the knot

pruning part involves knot deletion based on the estimate of weight of each knot. As

the algorithm converges, which is generally within 10 iterations, the result will be

the fewest possible number of knots that can be used to make an estimate within a

certain error. Also, the 2D example used in Chapter 3 is revisited here to illustrate

the algorithm.

Chapter 5 discusses some conclusions of this thesis and some possible ideas for

the future work.



Chapter 2

Background

2.1 Cross-well Tomography Problem

In this section, we will set up the cross-well tomography problem which is the

motivation of this thesis. We will revisit the problem as an example later in the

following chapters to examine our approach.

2.1.1 Problem Setup

The problem comes from the application of �nding underground pollution plumes.

It is proposed to use a cross-well tomography method: one array of electromagnetic

transmitters and one array of receivers are placed in two wells along the boundaries of

the region of interest(Fig. 2.1). By measuring the scattered electromagnetic waves at

receivers, we can determine the physical properties, such as conductivity, permittivity

and permeability, of the medium in the region. Since the pollution plumes will have

di�erent electromagnetic properties than common soils, we will be able to determine

the existence and shape of the plumes.

14
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Figure 2.1: Cross-well tomography problem.

For the work in this thesis, as shown in Fig. 2.1, 21 equally-spaced dipole trans-

mitters and receivers are placed along the boundaries respectively. The frequency

of electromagnetic transmitted is ! = 5 � 107Hz. To represent the electromagnetic

properties of the region, we use typical settings for wet soils, where electric permit-

tivity " = 20, magnetic permeability � = �0 is the permeability of free space, and

electric conductivity � = 0:01s=m.

2.1.2 Electromagnetic Inverse Scattering

Electromagnetic scattering theory has played an important role in many appli-

cations, which are concerned with the e�ect an inhomogeneous medium has on an

incident wave. More speci�cally, it involves two aspects of the problem, one is direct

scattering problem, which is to determine the scattered �eld from the incident �eld;

another is inverse scattering problem we will be focusing on, which is to determine the
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nature of the inhomogeneity from the knowledge of the scattered �eld. Lots of work

has been done in this region and many di�erent approaches exist [8] [9] [10]. The

inverse scattering problem is important in cases where details about the structure or

composition of an object are required but can not be measured directly, instead, the

measurements are often taken remotely without a�ecting the object. Thus, inverse

scattering has been applied in many areas such as radar/sonar, medical diagnostics,

and nondeconstructive testing [11] [12] [13].

The cross-well tomography problem we have set up can be shown, from the wave

scattering point of view, in Fig. 2.2.

Incident

Scattering
Potential

Wave
Scattering

Receiver
Array

Wave

Source

V(x)

Figure 2.2: Cross-well tomography problem.

where we consider a �nite scattering region mathematically described by a scattering

potential V (x) embedded in a homogeneous medium of permittivity "1. Thus the

distribution of permittivity through the scatterer can be written as:
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"(x) = "1 +4"(x) (2.1)

where 4"(x) = 0 outside the scatterer. With k2 represents the wave number, we have

the non-homogeneous Helmholtz equation [8]:

r2	+ k2("1 +4"(x))	 = 0 (2.2)

where � is the incident angle of the plane wave and r2 is the square of the gradient

operator:

r2 = r � r =
@2

@x2
+

@2

@y2
+

@2

@z2
(2.3)

Now we introduce the Green's function which will translate equation (2.2) into

an integral form. The Green's function g(x j x0) is de�ned as the solution to the

following equation [14]:

r2g(x;x0) + k2"1g(x;x
0) = �Æ(x� x0) (2.4)

where x0 is the coordinate of source and x is the position to be measured with respect

to x0. And it has been proved [8] if the Green's function satis�es certain boundary

conditions, it possesses an important property:

g(x0;x00) = g(x00;x0) (2.5)

Thus, equation (2.2) can be rewritten as:

8><
>:
	(x) = 	inc(x) +

R
k24"(x0)g(x;x0)	(x0)dx0 (a)

	scat(x) = k2
R
g(x;x0)4"(x0)	(x0)dx0 = data (b)

(2.6)
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The above equation can be solved provided all the boundary conditions are sat-

is�ed by both 	(x0) and g(x;x0) are given. And the �eld 	 here is actually the

combination of the local incident �eld 	inc and 	scat, i.e.

	 = 	inc +	scat (2.7)

2.1.3 Born Approximation

In practice the integral equations in (2.6) bring into a non-linear structure, be-

cause 	 in (2.6)(b) depends on 4" in (2.6)(a). It usually does not have close form

solution. Thus, some approximate solution should be considered, among which the

Born approximation [15] [16] has become the prevalent technique because of its easy

implementation and simple physical interpretation. It replaces 	(x) in (2.6)(b) with

	inc(x) which yields to:

	scat(x) =

Z
� 0

k2g(x;x0)4"(x0)	inc(x0)d� 0 (2.8)

The approximation has been proved to be good if 4"(x) is small. So the Born

approximation results in the form of a �rst-kind Fredholm integral equation, which

can be discretized furthermore to a �nite dimension matrix problem of the form [5]:

y = Af + n (2.9)

where each element of vector y is the scattered �eld observations obtained along the

receiver array; A is a matrix associated with the integral kernel; f corresponds to the

conductivity perturbation and n represents additive noise.

Therefore, the cross-well tomography problem has been translated into the form

of a typical linear inverse model. Further details of such model will be discussed in

the following section.
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2.2 Regularization of Linear Inverse Problems

In this section, we will investigate the ill-posed property of discretized linear in-

verse problems and the energy-based regularization method as a solution. Based

on these discussions, we will be able to address the edge-preserving regularization

techniques in Chapter 5.

2.2.1 Linear Inverse Problems

Generally, we can describe a linear inverse problem as a linear process with a

certain distortion model which has the following form:

y = Af + n; (2.10)

where A is a known degradation process; n is additive, Gaussion noise; y is the

degraded signal. Our problem is to obtain an estimate of the real object f , which is

usually mapping of some physical properties, from the data vector y.

2.2.2 Nature of Ill-posed Problems

A �rst and obvious solution to the equation (2.10) we established above would be

least squares solution:

fLSQ =
�
ATA

��1
ATy =

�
ATA

��1
AAT f +

�
ATA

��1
ATn (2.11)

but for practical problems, the above approach does not make sense, i.e. fLSQ tends

to be contaminated by large amplitude high-frequency artifacts, and this is much

di�erent from the true object. Those non-physical artifacts of the solution fLSQ

comes from the ill-conditioned nature of degradation kernel A, i.e. the condition
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number of A is always very large in practice which means the columns of A are nearly

linearly dependent. Though we can replace A by a well-conditioned matrix derived

from A, we still can not get a useful solution. In another word, we need to �lter out

the high-frequency artifacts to get useful solution. While in practice, generally A is

a degradation process which is a kind of lowpass process, thus
�
ATA

��1
is a highpass

�lter which would only amplify the high-frequency noise in the data.

2.2.3 SVD Analysis

To gain in-depth understanding, we will analyze the ill-posed problems and regu-

larization methods from the SVD (Singular Value Decomposition) point of view.

The Singular Value Decomposition of A is as the following:

A = U�V T =
nX
i=1

ui�iv
T
i (2.12)

where � = diag(�1; :::�n); �1 � �2 � ::: � �n � 0

Thus, the condition number of A is equal to �1=�n. For ill-posed problems, the

singular values �i typically decay gradually to zero, and ui and vi tend to have more

sign changes as �i decreases. This shows the nature of ill-posed problem in two as-

pects: 1. In ill-posed problems, A is highly ill-conditioned, i.e. A has large condition

number �1=�n. The vectors vi associated with the small (close to zero) �i are nu-

merical null-vectors of A and have many sign changes. 2. Af is a smooth process of

f and the inverse problem ampli�es the high-frequency oscillations in the right-hand

side y. It is diÆcult to get an acceptable solution, because small errors in data may

cause large errors in the solution. A simple 1D example is shown in Fig. 2.3.

We can also draw the same conclusion from the following mathematical analysis:
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Figure 2.3: A simple 1-d inverse problem, with a Gaussian function as the kernel.

Consider linear least-squares problems:

min
f
kAf � yk2 ; A 2 Rm�nm > n (2.13)

from the SVD of A in equation (2.12), the least-squares solution will be:

fLSQ =
nX
i=1

uTi y

�i
vi (2.14)

Apparently, since ui, vi has many sign changes with �i degrades to zero, the solu-

tion fLSQ has many large components of high-frequencies. Therefore, fLSQ appears

to be random and is not acceptable.

From the above analysis, the idea of regularization can be naturally induced.
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Speci�cally, the purpose of regularization would be to �lter out the contributions of

the small singular values to the solution. One well-known regularization method is

Tikhonov regularization [21]. The idea is to de�ne the regularized solution f� as the

minimizer of the following combination of the residual norm and the side constraint:

fT ik = argmin
f

kAf � yk22 + �2kL(f � f �)k22; (2.15)

where the regularization parameter � controls the weight of compromise of �delity of

solution to the residual norm and to the side constraint norm. Generally, if L = In

and f � = 0,

fT ik =
nX
i=1

gi
uTi y

�i
vi (2.16)

where, gi = �2i =(�
2
i + �2) . Hence the �lter factor gi counters the contributions of

small �i.

2.2.4 L-Curve

In 2.15, the regularization parameter � is critical and need to be wisely chosen.

L-curve is an convenient way to �nd proper � [23]. Given 2.15, we can draw out a

L-curve as shown in Fig. 2.4.

The vertical part of the L-curve corresponds to solutions where jjLfT ikjj2 is very

sensitive to changes in the regularization parameter �. The horizontal part of the

L-curve corresponds to solutions where it is the residual norm jjAfT ik � bjj2 that

is most sensitive to the regularization parameter �. Thus, we can �nd the optimal

regularization parameter by locating the corner of this L-curve. This is the general

procedure of solving the Tikhonov regularization problem. Using the previous 1D

example, some results corresponding to di�erent regularization parameters are shown

in Fig. 2.5.
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Figure 2.4: Illustration of L-curve

2.2.5 General Regularizations

In general, regularization method can be written as the following:

freg = argmin
f

kAf � yk22 + �
(f) (2.17)

In Tikhonov regularization, 
(f) is of the form of 2-norm or derivative of it. This

quadratic regularization function adds large constraint on large frequency components

of the solution, thus leads to a 'smooth' solution. Therefore, Tikhonov regularization

is not good for reconstruction of objects with sharp edges which are critical to describe

the shape and internal structures of the objects for our cross-well problem. Since in

practice sharp edges of an object usually have very large frequency components, it is

natural to think of applying non-quadratic regularization functions which can smooth

out relatively small perturbations while preserving larger ones, thus preserve edges.

In Chapter 5, we will discuss the edge-preserving regularization in details.
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Figure 2.5: Tikhonov regularization e�ects for the 1-d problem.

2.3 Introduction to B-Spline Functions

In this section, we will introduce some background material about B-Spline func-

tions. First, we will de�ne the B-Spline basis to represent a certain function or object.

Then we will talk about how the knot distribution a�ect the properties of the repre-

sentation, which is the motivation of using B-Splines in this problem. Also we will

expand it to 2D case by introducing tensor-product B-Splines to �t in our application.

Lastly, we will discuss the geometries of B-Splines, which are required in calculating

the di�erentials and curvatures.



25

2.3.1 B-Spline Basics

B-Splines are widely used in many aspects of numerical analysis (statistical data

interpolation, data smoothing, numerical solution of inverse problem with integral

model, computer aided geometric design, etc. [32] [33] [34]). There exists a set

of well-developed theories on B-Splines, their properties and applications, including

some eÆcient algorithms for computation using B-Splines [36] [37] [38] [39]. Also, B-

Splines are a strong candidate for use in our inverse problem, especially considering

their local support and smoothness property which we will discuss later.

De�nition 1 [32] A function s(x), de�ned on a �nite interval [a; b], is called a

spline function of degree k > 0 (order k + 1), having knots as the strictly increasing

sequence �j; j = 0; 1; :::; n(�0 = a; �n = b), if the following conditions are satis�ed:

1. s(x) 2 Pk; for x 2 [�j; �j+1]; j = 0; 1; :::; n:

2. s(x) 2 Ck�1[a; b]:

where Pk is the set of all polynomial functions of k orders, Ck�1 is the set of all k� 1

continuous functions.

De�nition 2 The B-Spline Ni;k+1 of degree k with knots �i; :::; �i+k+1 is de�ned

as :

Ni;k+1(x) = (�i+k+1 � �i)
k+1X
j=0

(�i+j � x)k+Qk+1

l=0;l 6=j
�i+j � �i+l

(2.18)

where

(�� x)k+ =

8><
>:
(�� x)k; if � > x;

0; otherwise.

(2.19)

Based on the above de�nition, B-Splines have the following important properties:

1. Positivity and Local Support :

Ni;k+1(x) � 0 for all x:

Ni;k+1(x) = 0 if x =2 [�i; �i+k+1]:
(2.20)
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2. Boundary values :

N
(l)
i;k+1(�i) = N

(l)
i;k+1(�i+k+1) = 0; l = 0; :::; k � 1: (2.21)

where (�)(l) stands for the l order derivative of the function.

3. Minimal support : If a piecewise polynomial with the same smoothness

property over the same knot vector has less support than Nk+1
i , it must be the zero

function.

4. Linear Independence :

n�1X
i=0

ciNi;k+1(x) = 0 implies ci = 0 for all i: (2.22)

Some simple examples of B-Splines are shown in Fig. 2.6

The B-Splines form a basis for the space consist of piecewise polynomial functions;

every piecewise polynomial function s(x) over [a; b] has a unique representation:

s(x) =
n�1X
i=�k

ciNi;k+1(x); (2.23)

where Ni;k+1(x) for i = �k; :::;�1 and i = n � k; :::n � 1 are generated as before by

introducing `arbitrary' additional knots ��k � ��k+1 � ::: � �0 = a; and b = �n �

�n+1 � ::: � �n+k. The reason of using these additional knots is that each B-Spline

has support on several adjacent knots (As shown in Fig. 2.6). Thus, the B-Splines

de�ned on these additional knots also have support on the knots at or near the ends.

Di�erent choices of these additional knots will bring di�erent ending e�ects on the

curves/surfaces[32].

As we shall see in the next chapter, these basic properties make B-Splines a good
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Figure 2.6: B-Splines Ni;k+1 with di�erent order (k + 1) and their �rst and second
derivatives. (i = 3, knots sequence � = [0123456])

candidate to be used in our inverse problem to obtain multiscale solutions. Further-

more, there are eÆcient algorithms [36] for evaluating the values and derivatives of

B-Splines.

To �t into our 2D problem, we need to de�ne Bivariate B-Splines. There are

di�erent ways in extending the univariate splines to 2D case. Tensor product B-

Splines are the most widely used due to their simplicity.

De�nition 3 Having strictly increasing sequences :

a = �0 < �1 < ::: < �m = b;

c = �0 < �1 < ::: < �n = d;
(2.24)
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The function s(x; y) on R = [a; b] � [c; d] , of degree k > 0 in x and l > 0 in

y, with knots �i; i = 0; 1; :::; m in the x-direction and knots �j; j = 0; 1; :::; n in the

y-direction, is called a Tensor Product Spline, if the following conditions are satis�ed:

1: s(�i; �j) 2 Pk 
 Pl; i = 0; 1; :::; m; j = 0; 1; :::; n:

2:
@i+js(x; y)

@xiyj
2 C(R); i = 0; 1; :::; k � 1; j = 0; 1; :::; l� 1:

(2.25)

Similarly, let the Ni;k+1 andMj;l+1 are the normalized univariate B-Splines de�ned

as before, on the knot sequences � and � respectively, we can uniquely represent every

spline s(x; y) 2 (�0; :::; �m;�0; :::; �n) as the following :

s(x; y) =
m�1X
i=�k

n�1X
j=�l

ci;jNi;k+1(x)Mj;l+1(y); (2.26)

Some examples of tensor product B-Splines are shown in Fig. 2.7.

Tensor product B-Splines retain all the good properties of univariate B-Splines.

Especially, since the basis corresponding to x -direction and y-direction are separable,

it can be easily handled and the eÆcient algorithms in 1D case can be directly em-

ployed. A certain drawback would be that only rectangular approximation patches

can be applied thus the re�nement procedure are tied to existing rectangular grid.

There are other approaches using triangular patches which bring more freedom and

adaptation [49] [50]. We will leave this e�ort to future work.

2.3.2 Knots Distribution and Smoothness

As stated before, given a certain knot sequence, we can uniquely de�ne a set of

B-Spline basis which are piecewise polynomials of degree k. We can combine the B-

Spline curves/surfaces to approximate a wanted curve/surface. It can be proved [35]
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Figure 2.7: Examples of tensor product B-Splines and corresponding knots distribu-
tion.

that if suÆciently many knots are inserted into the knot sequence, the resulted ap-

proximation will be arbitrarily close to the curve/surface. Thus instead of describing

the curve/surface directly, a set of knots would be suÆcient. This is the whole basis

of using B-Splines to approximate curves/surfaces. In practice, we are interested in

�nding the 'best' approximation which uses as few knots as possible within a certain

error tolerance. A simple example is given in Fig. 2.8.

The sample data are Titanium Heat data which gives a certain property of tita-

nium as a function of temperature. It has been used extensively as test data for Spline

�tting. As the number of knots increases, the resulted Spline curves are closer to real

data in the means of Mean Square Error(MSE). In 2.8(d), 12 non-equally-spaced and

well-selected knots are used which leads to a less MSE than that of Fig. 2.8(c) where
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Figure 2.8: Illustration of using cubic B-Splines to approximate Titanium Heat data.
(a)5 equally-spaced knots; (b)10 equally- spaced knots; (c)20 equally-spaced knots.
(d)12 selected knots.

20 equally-spaced knots were used. This is a very interesting and helpful property

of B-Splines approximation and is the motivation of using B-Splines in our adaptive

reconstruction approach to solve the inverse problems.

Another important property of B-Splines is their local support. It allows the

easy alteration of a complex curve/surface in one region without a�ecting the remote

portion of the curve. Since each B-Spline is de�ned over a certain knot sequence

�0; :::; �n, it is natural to see that if the knots are set apart, the B-Spline support will

be large, consequently we will get relatively 
at basis. On the contrary, if we set the

knots to be very near to each other, the B-Spline will have very narrow support which

lead to more local details (Fig. 2.9). Since the knots alteration will only locally a�ect

the approximated function and remote part of the curve will remain the same, it is

natural to assign a large density of knots to areas with signi�cant �ne scale variations.
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Only a 'sparse' distribution of knots are needed to well approximate the 
at part of

the curve.
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Figure 2.9: Distant knots leads to B-Spline of large support (
at) and vice versa;
Certain multiple knots leads to discontinuity.

In Fig. 2.9, we also note that to construct cubic B-Splines, additional knots have

been added at end points. At one end, we use multiple knots ([0 0 0]), which brings

high-order discontinuity there; at the other end, we extend knots out of the interested

region, i.e. add one knot at position 5, which makes the reconstruction at that end

point more smooth. But the shortcoming is that we will have leakage outside the

focused region.

As stated before, we are interested in eÆciently representing a surface, i.e. a

function of two variables. Our approach will be to use B-Splines with the fewest

possible knots to best approximate the surface within a certain error tolerance. In

this case, the approximation will essentially be adapted to the smoothness of the

surface. Thus, the problem can be stated as to �nd a suitable set of knots based on
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which the B-Splines can approximate the surface eÆciently.

To �nd an adaptive procedure of achieving this goal, we will need to reallocate

the knots to better re
ect the underlying smoothness of the curve/surface. Curvature

information will be a good hint to this further redistribution of knots. Speci�cally,

if the knots is equally spaced, then, given a certain error tolerance, we will need to

insert more knots to the regions of large curvatures and delete redundant knots at

regions of small curvatures. The computation of knot insertion and deletion have

been thoroughly discussed in many papers [37] [38] [39]. And in the following section

we will focus on the geometries needed to compute spline curvature.

2.4 Geometries of Splines

As stated before, we will need to measure the smoothness of a reconstructed B-

Spline curve/surface, then use it as a guide in further re�nement. Speci�cally, we

want to redistribute the knots in such a way that large density of knots are assigned

to regions of large curvatures, and fewer knots to relative 
at regions. In this section,

we will introduce the curvature computing of B-Spline curves/ surfaces.

2.4.1 Curvature of Space Curves

Before discussing surface curvature, we introduce the geometric properties of

curves.

In general, it is helpful to represent a space curve (in R3 ) by the following

parametric form:

x = x(t) =

2
6664
x(t)

y(t)

z(t)

3
7775 ; t 2 [a; b] � R (2.27)
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Furthermore, we can reparametrize the curve by:

s(t) =

tZ
t0

ds =

tZ
t0

( _x2 + _y2 + _z2)1=2dt =

tZ
t0

k _x(t)kdt (2.28)

where the dots denote derivatives with respect to t, and s is called arc length reparam-

eterization of the curve [44](an example is shown in Fig. 2.10). From 2.28, we have

_s(t) = k _x(t)k, which is called arc element of the curve. Furthermore, it indicates that

the variation rate of arc length with respect to curve parameter is the speed of the

curve parameterization. For B-spline curves, where the parameterization is regular,

i.e. k _x(t)k 6= 0 [44], we may write dt=ds = 1=k _x(t)k. Let �(s) = x(t(s)) be the arc

length parameterized curve, we have:

k
d�

ds
k = k

d

dt
(x(t(s)))

dt

ds
k = k _x(t(s))

1

k _x(t(s))k
k = 1 (2.29)

Hence, arc length reparameterization has unit speed for regular curves.

Now, we introduce a local orthonormal coordinate system, the Frenet Frame

t;m;b[44], which is very helpful to provide the local behavior of curves. By ob-

serving the changes of the Frenet Frame as a function of parameter t, we can get

the curvature information of space curves. The Frenet Frame is the frame formed by

tangent vector t, main normal vector m and binormal vector b, where :

t =
_x

k _xk
; b =

_x� �x

k _x� �xk
; m = b� t: (2.30)

Given the Frenet Frame, we can construct the osculating circle [45] which lies in

the osculation plane formed by t andm, and has the same �rst and second derivative

vectors as the curve. The inverse of the osculating circle radius � is called curvature

�.
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Figure 2.11: Franet Frame and Osculating Circle
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By applying the arc length reparametrization, we have the following results:

� = �(s) = kx00k (2.31)

where the prime denotes derivative with respect to arc length s. In terms of the

actual parameter t, we have:

� = �(t) =
1

�
=
k _x� �xk

k _xk3
(2.32)

The geometric interpretation of curvature is straightforward: consider the angle

4� between two tangent vectors t and t(s+4s), thus � = d�=ds.

2.4.2 Curvature of Surface Curves

The above discussion can be extended to surfaces. Assume a regular parametric

surface:

x = x(u) =

2
6664
x(u; v)

y(u; v)

z(u; v)

3
7775 ; u =

2
4u
v

3
5 2 [a;b] � R2 (2.33)

with

xu � xv 6= 0 for u 2 [a;b] (2.34)

Consider a regular curve x(u(t)) on the surface, the squared arc element (�rst

fundamental form) is de�ned as the following [44]:

ds2 = Edu2 + 2Fdudv +Gdv2 (2.35)

where

E = xu � xu; F = xu � xv; G = xv � vv (2.36)
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Analogous to the space curves, we can also de�ne a frame xu;xv;n for the surface.

The partial xu and xv at a point x span the tangent plane to the surface. The

normalized normal n [45] to the surface is:

n =
xu � xv

kxu � xvk
(2.37)

Let u(t) be a curve on the surface x(u) in the direction of t as de�ned in 2.30. In

2D case, consider xu = dx=du;xv = dx=dv, the direction of t can be represented by

� = dv=du) (Fig. 2.12), applying the above de�nition of space curve curvature to the

surface curve, the normal curvature at point x is given by:

�(�) =
L + 2M�+N�2

E + 2F�+G�2
(2.38)

where

L = n � xuu; M = n � xuv; N = n � xvv (2.39)

Generally, � always changes as � changes, thus for a given point x on the surface,

the normal curvatures corresponding to di�erent surface curves which pass the same

point x are di�erent. This result provides useful information on the smoothness of

surface along di�erent directions.

2.4.3 Gaussian and Absolute Curvature

The de�nition of normal curvature of a surface, �(�) is of rational quadratic form.

Thus the extreme values �1 and �2 of � = �(�), which are called principal curvatures

of the surface, are the roots of

det

2
4 �E � L �F �M

�F �M �G�N

3
5 = 0 (2.40)
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Figure 2.12: Frame for surface

And the corresponding quantities �1 and �2 de�ne the principal directions, which are

the surface curve directions in the tangent plane.

Having the principal curvatures, we have two important de�nitions of the surface

curvatures on point x. One is Gaussian Curvature, which is

KGaussian = �1�2 =
LN �M2

EG� F 2
(2.41)

The other is absolute curvature:

Kabs = j�1j+ j�2j (2.42)

In our approach to the 2D inverse problem, we want to add new knots at places

of large curvatures and remove knots at places of small curvatures. By using tensor-

product B-Splines, we can add or remove knots independently in two directions. To
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Figure 2.13: Example of only need to add knots in one direction

make the knot insertion/deletion procedure more eÆcient, we should decide whether

to add or remove knots on a speci�c direction. For example, if we have a surface

bending along u-direction and is relatively 
at along v-direction (Fig. 2.13), the

Gaussian or absolute curvature maybe large so that we would be tempted to add

new knots in both u and v-directions. Apparently, there will be a waste for all the

knots inserted on u-direction. To solve the problem, we think of using the principal

directions, which are two directions correspond to the largest and smallest curvature

respectively. If the principal direction of the largest curvature �1 is almost along the

u-direction (t1 in Fig. 2.13), we will only consider adding knots in the u-direction.

Because it can be induced from the principal direction information that the measured

surface is relatively 
at at v-direction, thus no knots need to be added there. Further

details will be discussed in Chapter 4.



Chapter 3

Edge-preserving Regularizer

In this chapter, we will continue the discussion on regularization methods in Chapter

2. A thorough discussion will show that the Tikhonov regularization tends to bring

smoothing e�ects to the reconstruction thus is not good at preserving the edges. Then

the idea of edge-preserving regularization will be introduced and analyzed. Some

examples and comparisons will be provided at the end of this chapter.

3.1 De�ciency of Tikhonov Regularization

As introduced in Chapter 2, the general regularization method can be written in

the following form:

freg = argmin
f

kAf � bk22 + �
(f) (3.1)

In Tikhonov regularization, 
(f) is of the 2-norm form : 
(f) = kLfk22, where L is

a derivative operator. Thus the regularization term is de�ned as a sum of derivatives

to the object f , which is a quadratic function (Fig. 3.1(a)) of Lf . In some cases, L is

the �rst order derivative operator to f [19]. The idea is to counter the high-frequency

artifacts by adding large constraint on them. The resulting reconstruction will be a

39
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rather smooth one. The problem is that in many applications, the objects always

have sharp edges which are very important for accurately determining the location

and precisely describing the shape of discrete structures in the overall scene. In this

case, the Tikhonov reconstruction will not be satisfying in that the smoothing e�ect

blurs the edges as well as �lters out the high-frequency artifacts. Note the di�erent

scales used in the four plots of Fig. 3.1, we can see the quadratic function brings

signi�cantly more constraints on large components of Lf , which usually correspond

to sharp edges of the object. Therefore, we need to �nd other methods preserving

edges better than Tikhonov regularization.
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3.2 Regularization Functions

A natural thought is to preserve larger 
uctuations which are more likely to be edges

of the object, and eliminate the smaller ones which are mostly to be high-frequency

artifacts. To achieve this goal, we may want to apply 1-norm (Fig. 3.1(b)) instead

of 2-norm to the regularization term, which will bring relatively smaller constrains

on large components of Lf . A even better approach would be using the function

as shown in Fig. 3.1(c) as the regularization term. In this case, only those regions

with 
uctuations exceeding a certain threshold will be considered to be edges and

relatively little constraint will be applied there. The edge-preserving regularization

can be written as:


ep(f) =
X
i;j

'[(Dxf)i;j] +
X
i;j

'[(Dyf)i;j] (3.2)

where Dx and Dy are �rst derivatives:

(Dxf)i;j = (fi;j+1 � fi;j)

(Dyf)i;j = (fi+1;j � fi;j):
(3.3)

It has been shown [24] that '(t) should have the following special properties in

order to preserve the edges:

i) '0(t)=2t continuous and strictly decreasing on[0;+1):

ii) lim
t!+1

'0(t)

2t
= 0

iii) lim
t!0+

'0(t)

2t
= M; 0 < M < +1:

(3.4)

And a group of candidates of function ' have been given in [24], in our application,

we use '(t) = t2=(1 + t2) (Fig. 3.1(c)).
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3.3 Edge-preserving Regularizer

Given the edge-preserving regularization function '(t) = t2

1+t2
, we can rewrite the

inverse problem in a new form with the following procedure.

First, for simplicity, we represent the 2D object in a 1D vector form by stacking

all the elements column by column, i.e.

f = [f11; :::; fm1; f12; :::; fm2; ::::::; f1n; :::; fmn]
T (3.5)

Then, in 3.2 let g = Dxf and �T (g)�(g) =
P

i;j '[gi;j], thus

[�(g)]i =
p
'(gi) (3.6)

We can rewrite the problem as:

fep = argmin
f

kAf � bk22 + �2xk�
T (Dxf)�(Dxf)k

2
2 + �2yk�

T (Df)�(Dyf)k
2
2: (3.7)

Then we can deem it as a non-linear least squares problem which has the following

form:

minkF (f)k22 = eT (f)e(f): (3.8)

Our edge-preserving regularizer can be �tted into this form by de�ning:

e(f) = [(y � Af); �x�(Dxf); �y�(Dyf)]
T : (3.9)

We can use the Tikhonov reconstruction as an initial guess then �nd the local mini-

mum of the non-linear least squares problem by Gauss-Newton method [28].

In the above approach, two regularization parameters �x and �y are used instead

of one. It is because in most applications, the degradation e�ects brought by kernel
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A can vary sharply in di�erent directions. And by speci�cally tune the regularization

on both x and y directions, we can reconstruct the object more precisely.

3.4 Example

In this section, a 2D example will be used to compare Tikhonov and edge-preserving

regularization methods. Further analysis about the complexity and the error of esti-

mate(Cram�er-Rao bound) will also be provided.

The examples are from the simulation of the cross-well tomography problem we set

up in Chapter 2. Two ideal objects, one `+' shaped and one rectangular shaped (Fig.

3.4(a),(b)), are given and white Gaussian noise (SNR=20) is assumed. The Tikhonov

reconstructions are shown in Fig. 3.4(c)(d), which have lots of small 
uctuations in

`
at' area and smoothing e�ects on edges.

Now we apply the edge-preserving regularization to the problem. Firstly, notice

that the Tikhonov reconstructions re
ect the di�erent properties of kernel A in x and

y directions. Speci�cally, edges in x direction tends to be more diÆcult to restore

than those in y direction because the transmitters and receivers are placed along y

direction. Therefore, di�erent regularization parameters �x and �y should be used in

the two dimensions respectively. And intuitively, �x should greater that �y to add

more regularization in the x direction. Secondly, by using Gauss-Newton method

to solve the non-linear least squares problem, a initial guess of the object should be

decided. Here, it is natural to apply the Tikhonov result as the initial value. The

remaining diÆculty would be to �nd the best regularization parameters.

For 1D problem, it has been shown in Chapter 2 that a L-curve can be used to

determine the best regularization parameter �. For the 2D problem here, though

we have 2 distinct regularization parameters �x and �y, analogously they can be

determined by �nding the corner of the L-surface. The process is shown in Fig. 3.4.
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The x and y dimension of a L-surface are the two regularization terms �x'(Dxf̂ep))

and �y'(Dy(f̂ep)) respectively. The z dimension is the residue ky�Af̂epk
2
2. The best

set of �x and �y would correspond to the corner of the L-surface, which has the largest

curvature. In Fig. 3.4(c)(d), the curvature of the L-surface are computed, thus the

optimum regularization parameters are determined by locating the largest curvature

[22]. As what we expected, �x is greater than �y.

Then we can get the edge-preserving regularization result (Fig. 3.4(e)(f)). Com-

pared with the Tikhonov result, it �lters out the small high-frequency artifacts and at

the same time preserves the edges well. As stated before, we have placed transmitters

and receivers along y direction, thus we can get better resolution along y dimension

which brings the asymmetry of the reconstructions between x and y directions.

However, the edge-preserving regularizer has one major backdrawing. By applying

non-quadratic regularization functions, it turns into a non-linear least squares problem

which signi�cantly increases the complexity of the problem. Since the algorithm is

pixel-based, and most applications have huge amount of pixels, in each iteration of

the Gauss-Newton method all the pixel values need to be evaluated, the whole process

will be very slow. Further discussions will be provided in Chapter 5 and a B-Spline

basis solution will be given there.

Another interesting analysis is the Cram�er-Rao Bound(CRB) evaluation. If the

reconstruction is considered to be an estimate of the object, the CRB analysis in

detection and estimation theory can be applied. Given the cost function as the esti-

mation function G(f), we can get the CRB for both Tikhonov and edge-preserving

regularizer. (Appendix A). For our example, the CRB of Tikhonov regularizer is

shown in Fig. 3.4(a)(b), the CRB of edge-preserving regularizer is shown in Fig.

3.4(c)(d). The CRB represents the upper bound on the variance of the estimation

error for di�erent cross-well regions(pixels). Comparing the results, Tikhonov regu-

larizer put relatively equal e�orts to the estimation of edges and other `
at' areas.
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Edge-preserving regularizer preserves the edges better, which means it locates the

edges more accurately; thus as a compensation, the variance of the estimation error

in such areas increases.
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Figure 3.2: Example: (a),(b) objects; (c),(d) Tikhonov reconstructions; (e),(f) Edge-
preserving reconstructions. Transmitters and receivers are placed along y dimension
(x = 0 and x = 15).
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Figure 3.3: Example: (a),(b) L-surfaces; (c),(d) Curvature of the L-surfaces.
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Figure 3.4: Example: (a),(b) CRB of Tikhonov regularizer; (c),(d) CRB of edge-
preserving regularizer.



Chapter 4

Adaptive B-Spline Reconstruction

In Chapter 3, the edge-preserving regularization method was discussed and one major

de�ciency brought by solving the corresponding non-linear least squares problem is

the signi�cant complexity in applications. To solve the problem, a B-Spline based

adaptive algorithm is developed. The cross-well 2D example will be revisited to show

the improvement at the end of this chapter.

4.1 Motivation

For reconstruction methods previous introduced, both Tikhonov and edge-preserving

regularization, are based on pixel-by-pixel estimate. In practical cases, especially in

2D or even 3D problems, the total number of pixels is always very large. Thus the

reconstruction problems will need signi�cant time and e�ort to obtain a solution.

The situation will be even worse for edge-preserving regularizer, because the Gauss-

Newton method used to solve the corresponding non-linear least squares problem

requires evaluation of estimations of all the pixels in each iteration.

To solve the problem, a natural thought is that if we know the shape of the

object, a proper shape-base template would be eÆcient to precisely describe the
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object and signi�cantly reduce complexities [29]. However, in practice, we don't have

prior knowledge of the object shape and size, so a compromised way would to �nd a

set of proper basis to represent the object. The basis should have the properties that


at regions can be represented by one or few coarse scale functions while more �ne

scale functions can be used to represent details of regions of interests , e.g. edges.

Based on the discussions in chapter 2, B-Spline basis would be a good candidate.

First, it is natural to represent an unknown object by a set of k-order piecewise

polynomial functions. Second, the multiscale property of B-Splines can be utilized to

eÆciently represent the object hence decrease the complexity of the problem. Third,

eÆcient algorithms of evaluating and manipulating B-Splines exist which will not

bring much extra e�orts in dealing with the basis itself. Fourth, the smoothness and

scale of B-Splines can be easily manipulated by knots distribution, which means an

adaptive algorithm may exist for choosing a suitable set of B-Splines.

4.2 Inverse Model using B-Splines Basis

Using B-Spline basis instead of pixels to represent object f , the inverse problem

can be remodeled as:

y = Af + n = ANa + n = Ba + n; (4.1)

where N is the B-Splines basis and a is a vector of expansion coeÆcients for the B-

Splines. Thus the problem can be replaced by a new inverse model whose degradation

kernel will be B = AN , and the new object to be reconstructed is a. If proper

B-Splines basis are chosen to represent f , i.e. the representation is eÆcient, the

dimension would be signi�cantly decreased compared with that of f . Furthermore,

the edge-preserving regularization method can be used to solve the new problem.
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In the 2D example, tensor-product B-Splines can be utilized because it is a simple

extension of 1D B-Splines, and knots in x and y direction can be manipulated sepa-

rately. The drawback is that the rectangular patches may lose some 
exibility. Two

examples of tensor-product B-Splines and corresponding knot distribution have been

shown in Fig. 2.7.

4.3 Optimum Knots Distribution

Many sets of B-Spline basis can be chosen to represent a certain object, the best

would be the one that yields the most eÆcient representation. In another word,

the B-Spline basis needs to be distributed in the way that 
at regions are covered

by few coarse B-splines while a larger density of B-Splines cluster at rough regions.

By utilizing such a set of B-Splines, the complexity of the inverse process can be

decreased.

From the discussions of B-Splines in Chapter 2, the number of knots corresponds

to the number of B-Splines being used, thus the number of unknowns in the revised

model (4.1). The knot locations directly a�ect the support(scale) and distribution

of B-Splines. Therefore, the problem is to �nd an optimum knots distribution of the

B-Splines. It has two aspects: 1. How many B-Splines are suÆcient to represent

the object? 2. Given a �xed number of knots (B-Splines), what is the optimum

distribution of those knots?

The second problem is straightforward that the knots distribution should re
ect

the shape/smoothness of the object. Speci�cally, large density of knots should cluster

at rough regions, i.e. regions with large curvature. And only few knots would be

enough to represent the remaining 
at regions.

The �rst problem can be interpreted as the following: Given a certain tolerance of

estimation error, what is the fewest number of knots/B-Splines can be used to make
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the reconstruction? Roughly the process involves inserting new knots where the

estimate is poor and deleting redundant knots where the estimate is over accurate

than needed which will unnecessarily increase the complexity of the problem.

Based on the above discussions, an ideal solution would be able to �nd the opti-

mum set of B-Splines, including the number of B-Splines and the placement of each

B-Spline. It is diÆcult to accomplish because the searching e�ort will be signi�cant,

and even if we can �nd such solutions, the computational cost may be not worth

the improvement gained compared with the pixel-based solutions. An alternate way

would be to eÆciently �nd a suitable set of B-Splines instead of an optimum one.

The desired algorithm will be able to end up with a highly suitable knot distribution

in the sense that the number of knots is much fewer than that of pixels, while the

reconstruction does not degrade much.

Our processing approach can be represented in a tree structure [46] [47]. As

shown in 4.1, for simplicity we use binary tree to show the cases of 1D problem,

each level of the tree corresponds to di�erent number of knots being used. Then,

we can think of using an adaptive algorithm to automatically �nd the suitable knot

distribution. First, the algorithm should be able to iterate between coarser and �ner

level of reconstruction to determine the most suitable number of knots to be used.

If one knot is not good enough to cover a certain region, the algorithm should be

able to split it into 2 knots on the next �ner level and vice versa. Second, at the

same time, the algorithm should be able to intelligently alter the locations of knots

to make better reconstruction in a certain resolution level. Therefore, the placement

of each knot is not �xed but varies during the iteration of the algorithm. The overall

algorithm is to �nd a set of knots with much fewer knots than pixels based on which

the estimate is within a certain error.
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Figure 4.1: Illustration of Tree Structure for Knots Searching (1-d case)

4.4 Knots Re�ning

Given a coarser level of reconstruction, one may want to add more details in some

interesting areas, e.g. edges. A simple way is to double the knots/B-Splines used in

reconstruction. The process is to insert new knots in between all existing knots, thus

the resolution of all areas are doubled. The drawback is that the total complexity

is at least doubled. For example, in the 1D problem showed in Fig. 2.8, notice

that many knots are inserted in uninteresting areas, e.g. 
at areas where existing

knots are suÆcient to have an acceptable estimation Fig. 2.8(c). Therefore, a more

adaptive way should be found to insert new knots. Speci�cally, knots should only be

inserted as necessary, i.e. the algorithm should automatically know where the areas
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of interests{ potential edges are and only inserts new knots in such areas.

In 2.8(a), notice that though the coarser level(with only 5 knots) reconstruction is

rough, we can still get some information of the object shape/smoothness. In another

word, the coarser level reconstruction gives a hint to the shape/smoothness of the �ner

level reconstruction. Since we are interested in edges which have large roughness or

discontinuity, we can use this hint as a guide of inserting new knots. The process is

called knot re�ning because it is not a simple knot insertion procedure[41][43]. It also

involves curvature computing (Chapter 3.3) based on current estimate. The knots

re�ning process is described as the following:

Algorithm 1: Knot Re�ning

Input: Knot sequence Pi; i = 1; 2; :::; m

Corresponding reconstruction f̂(P )

Threshold K0

Output: New knot sequence Qj; j = 1; 2; :::; n

Begin:

K = CurvatureComputing(P; f(P ));

for i = 1 to m,

if (Ki > K0) then

KnotInsertion(Ki);

(Ki is the curvature at knot Pi)

end if

end for;

End

Speci�cally, in the above algorithm, the knot insertion function splits one knots

into two equally space knots to cover the same region.



55

In the above algorithm, an important assumption is that coarser level reconstruc-

tions will provide correct guide to get �ner resolutions. But the reconstruction may

not be good enough to show the rough structure of the object if only too few B-Splines

are used. It can be avoided, in practice, by always starting from a relatively �ne level

guess, and the knot deletion algorithm proposed in next section will guarantee not

too many knots will be deleted.

Another important issue is to choose a proper thresholdK0 for inserting new knots.

If K0 is too large, i.e. only few knots will be inserted to the areas with very large

curvature, the resulted reconstruction will be only focusing on several large abruptly

changing regions. Another drawback is that the re�ning process may be misled by

some false edges in coarser level. On the other hand, if K0 is too small, too many

knots will be inserted while most of them will bring no good to the reconstruction

and have to be deleted later. How to automatically �nd the proper K0 will need

further investigation. In this thesis, the threshold K0 is determined by experimenting

di�erent values and comparing the results.

4.5 Knot Pruning

After inserting a set of new knots, a re�ned reconstruction can be obtained. The

new reconstruction should have di�erent shape/smoothness and di�erent curvature

structures than the previous coarser one. Since the knots inserted were based on the

coarser reconstruction and it was only a guess of the underlying re�ned details, some

of the knots may be misplaced, i.e. knots were actually inserted in a 
at region rather

than the expected rough region. On the other hand, the regions considered to be 
at

may appear to have large curvatures. The Knot Pruning algorithm is used to prune

the new set of knots, �nd and delete those improper and redundant ones.
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4.5.1 Weight of Knots

The most important problem here is how to prune the knot sequence and �nd

those redundant ones. Therefore, a measurement of each knot's importance should

be provided to determine which ones are less important to the reconstruction and can

be deleted.

The most important knot should be the one that contribute the most to the current

reconstruction, i.e. by deleting it, the reconstruction will have the greatest change.

The underlying thought is that only few knots are needed to well approximate a 
at

region, while a cluster of knots may needed in rough regions with lots of details to

make an equally good approximation. So those knots appear to be less important to

the reconstruction means there are too many of them than needed compared with the

information in these areas, i.e. redundant. A natural measurement of the change in

reconstruction is the underlying cost function for the problem. For edge-preserving

regularizer, the cost function is:

cost = ky � Bak22 + �2x'[Dx(Ba)] + �2y'[Dy(Ba)]: (4.2)

The edge-preserving regularization is to �nd the solution â minimizes the cost

function. And apparently, the more knots used(or the larger dimension the a has),

the better resolution the reconstruction should have. Thus the cost function increases

each time a knot is deleted from current knot sequence. And the knots that cause

the larger increase of the cost function are of the more importance, i.e. have larger

weight in the reconstruction.

An illustration is shown in Fig. 4.2. Here a simple B-Spline approximation prob-

lem is used to get better understanding. The cost of deleting each knot is measured by

Mean Squared Error(MSE). For the cross-well reconstruction problem, the situation

is quite analogous, except that the cost function is measured by the edge-preserving
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regularizer.
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Figure 4.2: Illustration of weight of knot. (a)10 equally-spaced knots to approximate
the data(dotted line); (b)Approximation of deleting the 7th knot; (c)Approximation
of deleting the 3rd knot; (d)Cost(Weight) of each knot.

4.5.2 Knots Deletion

After measuring the weight of each knot, we can start to delete those redundant ones.

First, sort the knots in the descendant order of weight. Then delete knots one by

one in the order of their weights until the resulting reconstruction is coarse enough

but not too much worse. The criteria is set to be that the cost function value after

deletion does not exceed the one at the beginning of each iteration(i.e. before the

knot insertion). The idea is that the whole knot insertion and deletion process is

actually to improve the knot distribution. Thus, for each iteration of such process,

the resulted cost should not exceed the initial one, otherwise, the knot distribution

is not improved but worsened. The speci�c mechanics of deleting a single knot has



58

been discussed in many papers [38] [39].

Consider a simple 1D example in Fig. 4.3, notice the knot distribution here is not

the same as of Fig. 4.2. More knots are assigned to the bump area to simulate the

result of inserting cluster of knots in large curvature regions. In this case, the weight

of each knot are shown in Fig. 4.3(b). If we delete knots in the order based on this

weight measurement, we may delete the 12th knot �rst then the 13th knot because

they have the smallest cost. However, as shown in Fig. 4.3(c), after deleting the 12th

knot, the actual weights of some knots change, speci�cally for those adjacent knots.

If we still try to delete the 13th knot obeying the deletion order given by the previous

weight measurement, the resulted approximation error may be too large so that the

deletion process will terminate. The result is far from satisfying, because actually we

can delete more knots than we did without violating the tolerance.
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Figure 4.3: Illustration of vicinity e�ects of weight measurement. (a)Initial knots
distribution and approximation curve; (b)Weight measurement; (c)Weight of each
knot after deleting the 12th knot; (d)Weight of each knot after deleting the 12th and
13th knot.
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The problem arises from the fact that B-Splines have supports leaking into adja-

cent knot intervals, thus we can not ignore their e�ects on vicinity regions. In another

word, deleting a knot does have e�ects on its vicinity regions, and change the actual

weight of adjacent knots. To solve the problem, one solution would be to recompute

the weight of each knot in each step after a knot has been deleted. This will signif-

icantly increase the complexity of the algorithm. Considering the local support of

B-Splines, deleting one knot will not bring much e�ect to remote regions. Thus, an

alternative and much eÆcient way to avoid the vicinity e�ects may be continue using

the weights we get before the deletion but simply not to delete adjacent knots to the

one who has been just deleted. Therefore, we will only need to measure the weight of

each knot once and choose and delete several knots at a time. Since we have avoided

deleting adjacent knots, the measured weight of each knot would be a good estimate

of the actual weight during the knot deletion procedure.

The knot pruning algorithm is described as the following:

Algorithm 2: Knot Pruning

Input: Knot sequence Qi; i = 1; 2; :::; m

Corresponding reconstruction f(Q)

Threshold C0

Output: New knot sequence P �j ; j = 1; 2; :::; n

Begin:

W = Weight(Q); *Compute weights(costs) *

[W; index] = Sort(W ); *Sort in ascending order*

i = 0; cost = 0;

P � = Q;

While cost � C0

f
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i = i + 1

if (Neighbour(Q(index(i)))) 2 P � then f

fP �g = fP �g �Q(index(i)) *Delete one knot at a time*

cost = Weight(P �);

g

g

End

4.6 Overall Algorithm

The knot re�ning and pruning algorithm can be integrated together to form the

overall algorithm to �nd a suitable knot distribution. The 
ow chart of the overall

algorithm is shown below in Fig. 4.4:

Curvature Computing Knot Insertion EstimationInit.

Exit Estimation Knot Deletion

Refining

Pruning

done?

Yes

No

Weight Computing

Figure 4.4: Flow chart of knot optimization algorithm.

The knot re�ning part is to eÆciently insert new knots according to the curva-

ture information of current coarse reconstruction. The knot pruning part is to �nd



61

and delete the redundant knots, either previously exist or newly inserted, based on a

�ner reconstruction. Therefore, the overall e�ect is to insert knots �rstly then make

correction to it by pruning. In each iteration, the resulted knot distribution is guar-

anteed to be better than the previous one in the sense of having less cost. As the

algorithm converges, a more suitable knot distribution can be found, i.e. with much

fewer number of knots than that of pixels and the estimation is within certain error.

The algorithm will terminate while no more improvement has been obtained, i.e. the

current cost function almost equals the last result.

Fig.4.5 shows the result of using our algorithm for the example in previous Chap-

ters using the Titanium data. The resulting knot distribution makes the approxi-

mation with MSE < 0:1. Compared with Fig. 2.8, our algorithm gets a smaller

approximation error while using fewer but well-distributed knots. In Fig. 2.8(d),

12 selected knots were used. Our algorithm only ends up with 10 knots and the

approximate error is less in the means of MSE.
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Figure 4.5: Using knots re�ning and pruning algorithm on the Titanium data �tting
problem.
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4.7 Examples

The 2D cross-well example used in Chapter 3 is revisited here. The previous

Tikhonv reconstruction and edge-preserving recontruction results are shown in Fig.

4.6 as comparisons. The resulting reconstructions and corresponding knot distribu-

tions are shown in Fig. 4.7. The algorithm converges fast (Fig. 4.8). The knot

distributions are what we expected, i.e. cluster around edges and only few on 
at

areas. The total number of B-Spline basis used are less than 50, compared with

the total pixel number 21 � 21 = 441, approximately a 8 times or more reduction

in complexity is achieved. Consider that the objects are large and have many de-

tails, especially for the `+' shaped one, compared with the total area, the results are

satisfying. For applications with larger dimensions and relatively small objects, the

decrease in complexity will be signi�cant. Although the MSE almost doubled , we

can still state by visionary obervations that the B-Spline based reconstructions do

not degrade much compared with the pixel based ones.

Another example is the 3-layer structure we may be of interest in practice, the

result is shown in Fig. 4.8. The algorithm works well, converges fast and only ends

up with about 30 knots.

The only problem is that the saw shaped parts of the object are not well recon-

structed. Only one knot is assigned in the vertical direction. The problem arises from

the using of tensor-product B-Splines, the approximation patches should always be

rectangular. For the object we have, in the vertical direction, the upper side of it has

one signi�cant edge, while the lower side of it has lots of details(saws). Since we were

using rectangular patches, a compromise should be made for the knots distribution

here. Using few knots will decrease the complexity but sacri�ce the details at lower

part. Using more knots are a waste for the upper side but are needed by the details at

lower part. It's a diÆculty for our approach. Better solutions may be using triangular
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patches instead of tensor-product B-Splines[49] [50]. It will be considered in future

work.

4.8 Monte-Carlo Simulation

To better understand the performance of the algorithm, we will analyze Monte-

Carlo simulations in this section. The process is to repeatedly simulate the test by

applying di�erent noises at the same SNR level. With large number of such tests, we

can get the statistics of how the algorithm performs under such SNR level.

In this section, we use a 3-layer example to simulation the actual situation of the

cross-well problem stated before. The result in Fig. 4.9(b) is obtained by applying the

B-Splines edge-preserving reconstruction method. The algorithm converges fast and

the overall time of achieving the estimate is about half of the time of the pixel-based

reconstruction.

In Fig. 4.9(a), the average pixel-based reconstruction of the 3-layer problem is

shown. The average B-Spline reconstruction is shown in Fig. 4.9(b). The B-Spline

result is quite good and does not degrade much than the pixel-based one, and at

the same time, by utilizing much fewer basis, the complexity has been signi�cant

reduced. To understand the knot distributions of the Monte-Carlo simulations, a 2D

histogram for all the knots ended in the 200 tests is shown in Fig. 4.9(c). It shows the

knot distributions have certain relationship with the object structure as we expected.

Speci�cally, there are higher possibilities for knots being place around edges of the

object, and the density of knots are also larger there. To make it clear, a scaled

version of knot distribution has been shown in Fig. 4.9(d). It only shows those knots

whose frequencies of being chosen are larger than 0.1 during all the 200 tests. In

another word, the knots shown here are essential and most eÆcient to represent the

object.
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To further determine the average knot distribution, since we used tensor-product

B-Splines, separate the 2D histogram into two 1D histograms will be helpful. The

results are shown in �g. Fig. 4.10.

In Fig.4.10(a)(b), the 1D histograms of knot distribution along x and y directions

are shown. Since we use tensor-product B-Splines, the separation of knots in di�erent

dimensions is applicable. By choosing certain threshold, we can determine which

knots are to be used. Here, a threshold of 0.13 has been applied to both x and

y dimensions, and the resulted reconstruction and knot distribution are shown in

4.10(c)(d). Since we use tensor-product B-Splines, the overall knot distribution is

abided by the rectangular grid. The variance of estimates over the 200 reconstructions

are shown in Fig. 4.11.

The Monte-Carlo simulation has shown that the B-Spline algorithm is eÆcient

that it ends up with much fewer knots than that of pixels and the reconstruction

does not degrade much. Generally, the algorithm can lead to a 8-10 times decreasing

in the complexity of the problem.



65

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(b)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(c)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(d)

Figure 4.6: Example: Reconstruction obtained by Tikhonov regularization and edge-
preserving regularization method. (a)'+' shaped object, Tikhonov regularization
(MSE = 5.7393) (b)rectangular object, Tikhonov regularization (MSE = 5.2943)
(c)'+' shaped object, edge-preserving regularization (MSE = 3.3930) (d)rectangular
object, edge-preserving regularization (MSE = 2.9372)
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Figure 4.7: Example: Reconstruction and knots distribution using B-Spline based
edge-preserving regularizer. (a),(b) '+' shaped object; (MSE = 7.8461) (c),(d) rect-
angular object. (MSE = 5.7867)
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Figure 4.8: Example: B-Spline reconstruction for 3-layer problem (a)Object;
(b)Reconstruction; (c)Knots distribution; (d)Convergence of cost (Each iteration con-
sists of knot inserting and knot pruning procedure.)
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Figure 4.9: Monte-Carlo simulation for the 3-layer problem. (SNR = 20dB)
(a)Average pixel-based reconstruction (MSE = 2.0874); (b)Average B-Spline recon-
struction (MSE = 5.8922); (c)Total knots distribution; (d)Scaled knots distribution.
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Figure 4.10: Knot selection by using separate 1D histograms. (a)Histogram of knot
distribution along x direction. (b)Histogram of knot distribution along y direction.
(c)Reconstruction based on histogram analysis. (d)Corresponding knot distribution.
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Figure 4.11: Variance of the Monte-Carlo simulation (2 di�erent viewpoints)



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis developed an adaptive B-Spline method for solving low order image

reconstruction problems. Also an edge-preserving regularizer was introduced and inte-

grated to make �ne reconstructions. The edge-preserving regularizer has been shown

to be very eÆcient in countering the smoothing e�ects of Tikhonov regularization and

preserving the edges. But for multi-dimensional problems, the edge-preserving regu-

larization leads to signi�cant large complexity. To overcome this de�ciency, B-Spline

basis was chosen to make simple but eÆcient representation of the objects which de-

creased the dimension of the problem. Furthermore, an adaptive knot re�ning and

knot pruning method was developed to automatically �nd a suitable knot distribution

which is critical in solving the problem. Some examples were shown to illustrate the

adaptive algorithm and the results were satisfying.

In Chapter 2, some background knowledge was introduced. First, the linear inverse

problem model was given. The diÆculty in solving the inverse problems lies in the

ill-posed nature of such problems. As a result, the least squares solution always

tends to have large high-frequency artifacts, and small observation errors would bring

71
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large errors in solutions. After analyzing the problem from the SVD(Singular Value

Decomposition) point of view, the regularization methods were introduced to �lter

out the abruptness brought by small singular values �i. The smoothing e�ects of

Tikhonov regularization were investigated and led to the thought of edge-preserving

regularization was introduced. Second, we introduced the basic knowledge of B-

Splines. After giving the de�nition, some interesting properties, such as local support,

minimal support and linear independent of B-Splines were introduced. A further

study in the e�ects of knot distribution to the smoothness of the approximation

showed that we can change the approximation curve/surface by simply manipulating

the knots. An example was shown that proper placement of knots can lead to eÆcient

representation of the object. Third, the geometries of B-Splines were introduced to

compute the B-Spline surface curvatures, which is the guide of our manipulation of

knots distribution. Tensor-product B-Splines was used in 2D case, and Gaussian and

absolute curvatures were introduced.

In Chapter 3, a thorough discussion of edge-preserving regularization was given.

The de�ciency of Tikhonov regularization is that it blurs the edges while �ltering

out high-frequency artifacts. A study on the regularization term showed that a non-

quadratic regularization functions can be used to preserve edges. Some common

properties of such regularization functions were given and a non-linear least squares

solution was proposed to solve the problem. Then a simple 1D example showed the

edge-preserving regularizer did work. While the CRB analysis showed an interesting

fact that with better preserving the edges, the error of estimate of edge-preserving

regularizer actually had larger variance. A major problem of edge-preserving regu-

larizer was its huge complexity, since the Gauss-Newton method need to evaluate all

pixels in each iteration.

In Chapter 4, a B-Spline based adaptive algorithm was developed to decrease

the large complexity of edge-preserving regularizer. The motivation was from that
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the object can be eÆciently represented using B-Splines. Thus after remodeling the

inverse problem we had, we found that the dimension of the problem can be signi�-

cantly decreased if we could �nd a suitable set of B-Splines. The process of �nding

such basis was actually to �nd a good knot distribution. Based on the discussions

in Chapter 3, a knot re�ning and pruning algorithm was developed to adaptively

�nding a suboptimal solution. The re�ning part was to eÆciently insert new knots

according to curvature information. The pruning part was to �nd and delete those

redundant knots. A measurement of the weight of each knot was given to assist the

pruning process. The whole algorithm works to �nd a suitable set of knots with the

reconstruction is within certain error. The 2D cross-well problem was revisited by

using the algorithm, and the result appeared to be satisfying. It was able to decrease

the dimension of the problem to 1/8 compared with the pixel-based approach, and

the iteration process converges in about 10 iterations .

5.2 Future Work

Overall, this thesis has shown that the adaptive B-Spline incorporated with edge-

preserving regularizer is useful and eÆcient in solving image reconstruction problems.

The algorithm can adaptive locate the edges of the object as well as signi�cantly

decrease the complexity. However, there are still many aspects need to be explored

and re�ned.

� The edge-preserving regularizer has been shown to be able to reconstruct the

edges well. However, the CRB analysis in Chapter 3 also showed that the esti-

mation variance at the edges increased compared with Tikhonov solutions. It is

an interesting phenomenon. It seems the edge-preserving regularizer can locate

the edges more accurately, but at the same time the estimation variance has

been sacri�ced. Further analysis in the framework of detection and estimation
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theory may lead to some in-depth understanding of the problem.

� The knot re�ning process used curvature information as a guide, thus it de-

pended much on the selection of threshold K0. We were just using heuristic

values in the examples. One could use a set of di�erent thresholds to provide

multiple results, each focusing on curvatures of di�erent ranges. It'd better if

there is a way to adaptively set the threshold.

� The knot pruning process is currently a greedy search process. An estimation

of the weight of each knot was made �rst, then we tried to delete them one

by one until the error of estimate exceeded a certain value. Though we have

considered the vicinity e�ects and will not delete adjacent knots in the same

iteration, the weight estimation may not be good enough to guide the deletion

process. Actually, we also tried to organize the knots in quad-tree structure

and use Branch-and-Bound method to search it [51]. Unfortunately, it was too

diÆcult to determine the bounding function and we did not get good results.

Further study of the pruning method may be helpful.

� In 2D case, we used tensor-product B-Splines. The advantage is that it is easily

to be manipulated and the knots on di�erent dimensions are separable. The

major disadvantage is that we are bound to use rectangular patches to make the

estimation thus lose some 
exibility in manipulating the knots. A triangular

patch [49] [50] may be interesting, though the computations are more diÆcult,

the 
exibility it brings will be worthy of trying.
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Appendix A

Derivation of CRB

In our cross-well tomography problem, we set up the following methods:

1. Tikhonov method:

G(f) =
1

�2
ky � Afk22 + �2xkDxfk

2
2 + �2ykDyfk

2
2 (A.1)

2. Edge preserving method:

G(f) =
1

�2
ky � Afk22 + �2x�

T
x (f)�x(f) + �2y�

T
y (f)�y(f) (A.2)

It will be helpful to learn the nature of the problem if we can �nd the Cramer-Rao

Bound(CRB) evaluated for the given object f, which represent the estimation variance

of data for di�erent cross-well regions.

For this problem we can �nd the CRB by the following way,

Write G(f) as:

G(f) = eT (f)e(f) (A.3)

and Let

J =
@e(f)

@f
(A.4)
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Note here f is a column vector, and the partial derivative is de�ned as:

[J ]i;j =
@ej
@fi

(A.5)

Thus the Fisher's Information is:

F = JT � J (A.6)

and CRB can be found by:

CRB = F�1 = (JT � J)�1 (A.7)

A.1 Tikhonov Method

In this case, it's easily to see that:

e(f) = [
1

�
(y � Af); �xDxf; �yDyf ]

T (A.8)

Where Dx and Dy are derivative matrix such that:

Dx(f) = Dx � f = fi+1;j � fi;j (A.9)

Dy(f) = Dy � f = fi;j+1 � fi;j (A.10)

Here, simply use the de�nition of derivative of matrices and vectors:

d

dx
Ax = AT (A.11)

d

dx
xTA = A (A.12)
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where, A is matrix and x is vector.

We can get:

J =
@e

@f
=

2
6664

1
�
A

�xDx

�yDy

3
7775 (A.13)

and,

CRB = (JT � J)�1 (A.14)

A.2 Edge Preserving Method

In this, we have,

e(f) = [
1

�
(y � Af); �x�(Dxf); �y�(Dyf)]

T (A.15)

where,

�T (g)�(g) =
g2

1 + g2
(A.16)

�(g) =
gp

1 + g2
(A.17)

Thus, we can compute the derivative of e(f) by using the following equation:

[
@�

@f
]i;j =

@�j

@fi
=
X
k

@�j

@gk

@gk
@fi

(A.18)

First, compute @�
@g
, where g = Dxf or g = Dyf :

@�j

@gk
=

@

@gk
(

gjq
1 + g2j

) = (1 + g2j )
� 3

2 Æ(j � k) (A.19)
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Second,
@Dxf

@f
= DT

x (A.20)

@Dyf

@f
= DT

y (A.21)

Therefore, we get,

[
@�

@f
]i;j =

@�j

@fi
=
X
k

1

(1 + g2j )
3

2

Æ(j � k)[Dx]k;i =
1

(1 + g2j )
3

2

[Dx]j;i (A.22)

Write it in matrix form, we get:

@�x

@f
= Gx �Dx;

@�y

@f
= Gy �Dy (A.23)

where

Gx = diag([1 + (Dxf)
2
i ]
� 3

2 ); Gy = diag([1 + (Dxf)
2
i ]
� 3

2 ) (A.24)

Finally, we get:

J =
@e

@f
=

2
6664

1
�
A;

�xGxDx;

�yGyDy

3
7775 (A.25)

and

CRB = (JT � J)�1 (A.26)
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Abstract

A two-step shape reconstruction method for electromagnetic (EM) tomog-

raphy is presented which uses adjoint �elds and level sets. The inhomogeneous

background permittivity distribution and the values of the permittivities in

some penetrable obstacles are assumed to be known, and the number, sizes,

shapes, and locations of these obstacles have to be reconstructed given noisy

limited-view EM data. The main application we address in the paper is the

imaging and monitoring of pollutant plumes in environmental cleanup sites

based on cross-borehole EM data. The �rst step of the reconstruction scheme

makes use of an inverse scattering solver which �rst recovers equivalent scat-

tering sources for a number of experiments, and then calculates from these an

approximation for the permittivity distribution in the medium. The second step

uses this result as an initial guess for solving the shape reconstruction problem.

A key point in this second step is the fusion of the 'level set technique' for

representing the shapes of the reconstructed obstacles, and an 'adjoint �eld

technique' for solving the nonlinear inverse problem. In each step, a forward

and an adjoint Helmholtz problem are solved based on the permittivity distri-

bution which corresponds to the latest best guess for the representing level set

function. A correction for this level set function is then calculated directly by

combining the results of these two runs. Numerical experiments are presented

which show that the derived method is able to recover one or more objects with

nontrivial shapes given noisy cross-borehole EM data.
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1 Introduction

In this paper, we investigate the retrieval of an unknown number of penetrable

objects (inclusions) imbedded in an inhomogeneous background medium based on

observations of electromagnetic (EM) �elds. The electromagnetic characteristics

(permittivity and conductivity) of the background medium as well as of the ma-

terial forming the inclusions are assumed to be known, but the main topological

information concerning the number, sizes, shapes, and locations of the inclusions is

missing and has to be reconstructed from the EM data.

One possible technique for using EM �elds in cross-borehole tomography is Elec-

troMagnetic Induction Tomography (EMIT) [3, 18, 44, 49, 50, 51] which typically

operates at frequencies between 1 to 20 kHz. In this frequency band, electromagnetic

�elds tend to di�use rather than propagate as waves through the Earth. Penetration

depths of 100 m or more are possible at these low frequencies, but the di�usional

behavior of the �elds makes the inverse problem severely ill-posed.

However, if the typical distances in the area of interest are not much larger than

10-20 m, we can use EM �elds in the higher frequency band of 5 to 30 MHz instead.

The wavelengths of these �elds are typically between 2-15 m in moist soil, where

the relative dielectric constant is typically around 20 [48]. Therefore, we can make

use of wave propagation phenomena in the inversion process. In the present paper,

we address this situation. The main application we have in mind is the imaging and

monitoring of pollutant plumes at environmental cleanup sites given cross-borehole

EM data, where the distances of the boreholes are not much larger than 10-20 m.

We assume that the known conductivity distribution is positive but small every-

where, and that the permittivity distribution in the medium has to be recovered.

Inside the pollutant plumes, the permittivity is assumed to be constant with a known

value, and the background permittivity is arbitrary but also known. Therefore, the

task is to �nd the number, shapes, sizes and locations of the pollutant plumes from

cross-borehole data gathered for a small number (less than 10) of frequencies. No

3



topological constraints are made on the shapes of these plumes. For example, they

are allowed to be multiply connected, and to enclose 'cavities' or 'holes' �lled with

background material.

The main di�culties which arise in this situation are 1.) We want to allow for

an (arbitrary) inhomogeneous background permittivity distribution in the inversion;

2.) The inverse problem is usually strongly nonlinear because of the high contrast

of the permittivity values inside the plumes to the background medium; 3.) The

data in our application are typically noisy and have only limited view; and 4.) The

number of the plumes is typically unknown, and their shapes can have a complicated

geometry.

In this paper, we propose a new shape reconstruction method which works in a

two-step fashion in order to overcome these di�culties.

The �rst step of this combined inversion scheme plays the role of an initializing

procedure for the second step, and employs a 'source-type' inversion method (which

is described in more details in section 5) to deal with the high nonlinearity in the

problem due to the presence of strong scatterers.

Then, the second step directly starts with the outcome of this initializing pro-

cedure, and continues by using a combination of the 'adjoint �eld technique' and a

level set representation of the shapes until the inversion task is completed. Using

a level set representation in this second step enables us to easily describe and keep

track of complicated geometries which arise during the inversion process.

Both steps use an 'adjoint �eld technique' for the inversion which has the very

useful property that the inverse problem can be solved approximately by making

two uses of the same forward modelling code. Using a somewhat oversimpli�ed de-

scription of our technique, the updates to the level set function are obtained by �rst

making one pass through the code using the permittivity distribution corresponding

to the latest best guess of the level set function, and then another pass with the

adjoint operator applied to the di�erences in computed and measured data. Then

the results of these two calculations are combined to determine updates to the level

set function. The resulting procedure is iterative, and can be applied successively

to parts of the data, e.g., data associated with one transmitter location and one

frequency can be used to update the model before other transmitter locations and

other frequencies are considered. This general procedure has several of the same ad-

vantages as wave equation migration in re
ection seismology [10] and is also related

to recent methods in EM migration introduced in Zhdanov et al. [51]. A similar

technique has been successfully applied recently as part of an iterative nonlinear

inversion scheme in [17, 18, 33].

The level set method was originally developed by Osher and Sethian for describ-
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ing the motion of curves and surfaces [35, 41]. Since then, it has found applications

in a variety of quite di�erent situations. Examples are image enhancement, com-

puter vision, interface problems, crystal growth, or etching and deposition in the

microchip fabrication. For an overview we refer to [42].

The idea of using a level set representation as part of a solution scheme for

inverse problems involving obstacles was �rst suggested by Santosa in [40]. More

recently, a similar method was applied to a nonlinear inverse scattering problem by

Litman et al. in [28]. In that work, an inverse transmission problem in free space is

solved by a controlled evolution of a level set function. This evolution is governed

by a Hamilton-Jacobi type equation, whose velocity function has to be determined

properly in order to minimize a given cost functional.

The approach developed here does not lead to a Hamilton-Jacobi type equation.

We follow an optimization approach, and employ a very speci�c inversion routine (an

adjoint �eld technique) for solving it. This has the advantage that we do not have to

propagate the level set function explicitly by computing a numerical Hamiltonian.

Instead, our inversion routine provides us in each step with an update that has to

be applied directly to the most recent level set function. Doing so, we automatically

'propagate' the level set function until the method converges.

This gain in simplicity, however, has its price. In order to arrive at an e�cient

scheme which is practically useful as well as easy to implement, we will apply some

suitable approximations when deriving the algorithm. We will point out and discuss

these approximations in those sections of the paper where they are applied.

For interesting approaches to solving shape recovery problems in various applica-

tions we refer to [23, 24, 26] and to the references therein. For alternative approaches

to the shape reconstruction method in geophysical applications see [30, 39, 43] and

the references therein. The treatment of more general inverse scattering problems

is for example addressed in [4, 8, 11, 12, 15, 22, 31, 33, 38].

The paper is organized as follows. In section 2 we will present the basic equations

of 2D EMs in a form convenient for development of the shape reconstruction tech-

nique. In section 3 we formulate the shape reconstruction problem and introduce

the level set formulation of this problem. In section 4, we derive the basic shape

reconstruction algorithm using level sets and adjoint �elds. Section 5 describes how

to calculate a suitable initialization for the shape reconstruction algorithm. In Sec-

tion 6 numerical experiments are presented which demonstrate the performance of

the algorithm in di�erent situations. The �nal section summarizes the results of this

paper and indicates some directions for future research.
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2 The physical experiment

2.1 The Helmholtz Equation

We consider the 2D Helmholtz Equation

�u+ k2(x)u = q(x) in IR2; (1)

with complex wavenumber

k2(x) = !2�0�0

�
�(x) + i

�(x)

!�0

�
: (2)

Here, i2 = �1, ! denotes the angular frequency ! = 2�f , �0 is the magnetic

permeability in free space �0 = 4� � 10�7 Henrys per meter, �0 is the dielectric

permittivity in free space �0 = 8:854 � 10�12 Farads per meter, � is the relative

dielectric permittivity (dimensionless), and � is the electric conductivity in Siemens

per meter. The form of (2) corresponds to time-harmonic line sources ~q(x; t) which

have a time-dependence ~q(x; t) = q(x)e�i!t. For these sources we require that there

exists a radius r0 > 0 such that supp(q) �� Br0
(0), where Br(x) = fy 2 IR; jx�yj <

rg denotes the open ball centered in x with radius r > 0. For simplicity we assume

throughout the paper that we can �nd a ball BR(0) with R > r such that the

complex wavenumber k2(x) is constant with value k20 in IR2nBR(0), and that for this

k0 the �eld u generated by (1) satis�es the Sommerfeld radiation condition

lim
r!1

p
r

�
@u

@r
� ik0u

�
= 0 (3)

with r = jxj where the limit is assumed to hold uniformly in all directions x=jxj.
With this assumption, the problem (1)-(3) possesses a uniquely determined solution

u in IR2 [12].

Furthermore we will consider in this paper only the case that the conductivity

is positive everywhere, � > 0 in IR2, and that it is small in some sense which will be

speci�ed later. Typical values in our geophysical examples will be � � 10�3 � 10�4

Siemens per meter or less [48].

We want to introduce some notation here which will be useful in the following.

We denote the wavenumber k2(x) in short form by

k2(x) = �(x) = a�(x) + ib�(x); a = !2�0�0; b = !�0: (4)

We only consider positive frequencies ! > 0 such that a; b > 0.
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2.2 Formulation of the inverse problem

We assume that we are given p di�erent source distributions qj, j = 1; : : : ; p. For

each of these sources, data are gathered at the detector positions xd, d = 1; : : : ;Dj ,

for various frequencies fk, k = 1; : : : ;K. The total number of receivers Dj , as well

as their positions xd, might vary with the source qj. We assume, for simplicity in the

notation, that these positions do not depend on the frequency fk. This restriction

is, however, not necessary for the derivation of the inversion method. We require

that there exists a radius r1 > 0 such that all receiver positions are inside the ball

of radius r1, i.e. xjd 2 Br1
(0) for all d = 1; : : : ;Dj , j = 1; : : : ; p.

For a given source qj and a given frequency fk we collect a set of data ~Gjk which

is described by

~Gjk =
�
~ujk(xj1); : : : ; ~ujk(xjd); : : : ; ~ujk(xjDj

)
�
T

2 Zj (5)

with Zj = CDj being the data space corresponding to a single experiment using one

source and one frequency only. In (5), the �elds ~ujk solve (1)-(3) with the correct

permittivity distribution ~�(x), i.e.

�~ujk + [ak~�(x) + ibk�(x)] ~ujk = qj(x) in IR2 (6)

with

ak = !2
k
�0�0; bk = !k�0; !k = 2�fk: (7)

In a slightly more formal way, we de�ne for a given source qj the measurement

operator Mj acting on solutions u of (1) by

Mju =

�Z
IR2

u(x)�(x � xjd)dx

�
T

d=1;:::;Dj

: (8)

With this notation, (5) is written as

~Gjk = Mj~ujk; j = 1; : : : ; p; k = 1; : : : ;K: (9)

We gather these data sets ~Gj;k for all sources qj, j = 1; : : : ; p, and all frequencies fk,

k = 1; : : : ;K, and the aim is to recover from this collection of data sets

~G = ( ~G1;1; : : : ; ~Gp;K)
T (10)

the unknown parameter distribution ~�(x) in the domain of interest.

In the application of EM cross-borehole tomography, the sources and receivers

are typically situated in some boreholes, and the permittivity distribution � (and/or

the conductivity distribution �) between these boreholes has to be recovered from
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the gathered data. In the 2D geometry considered here, typical sources are time-

harmonic line sources which can be modelled in (1) by

qj(x) = Jj�(x� xj); j = 1; : : : ; p; (11)

where xj denotes the 2D coordinates of the j-th line source, j = 1; : : : ; p, and the

complex number Jj is the strength of the source. We will use these sources in our

numerical experiments in section 6.

3 The shape reconstruction problem

In this section we formulate the shape reconstruction problem which we want to

solve, and cast it in a form which makes use of the level set representation of the

domains.

3.1 Shape reconstruction and inverse scattering

To start with we introduce some terminology which we will use throughout the

paper.

De�nition 3.1 Let us assume that we are given a constant �̂ > 0, an open ball

Br(0) � IR2 with r > max(r0; r1) > 0, and a bounded function �b : IR
2 ! IR. We

call a pair (
; �), which consists of a compact domain 
 �� Br(0) and a bounded

function � : IR2 ! IR, admissible if we have

�j
 = �̂; �jIR2n
 = �bjIR2n
: (12)

In other words, a pair (
; �) is admissible if � is equal to a preassigned constant value

�̂ inside of 
, and equal to the preassigned background permittivity �b outside of 
.

The domain 
 is called the scattering domain.

Remark 3.1 For an admissible pair (
; �), and for given �̂, �b, the permittivity � is

uniquely determined by 
.

With this de�nition, we can now formulate the shape reconstruction problem.

Shape reconstruction problem. Let us assume that we are given a constant

�̂ > 0, a bounded function �b : IR
2 ! IR, and some data ~G as in (10). Find a domain

~
 such that the admissible pair (~
; ~�) reproduces the data, i.e. (9) holds with ~ujk

given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.
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Using the same notation and assumptions as in de�nition 3.1, we want to formu-

late another inverse problem which we will call the inverse scattering problem and

which will play an important part when solving the shape reconstruction problem.

Inverse Scattering Problem. Let us assume that we are given a bounded func-

tion �b : IR
2 ! IR, and some data ~G as in (10). Find a bounded function ~�s : IR

2 ! IR

with supp(�s) �� Br(0) such that ~� = �b + ~�s reproduces the data, i.e. (9) holds

with ~ujk given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.

The inverse scattering problem gives rise to the following decomposition of � in

IR2.

Decomposition of �(x) :

(i) � = �b + �s in IR2 (13)

(ii) supp(�s) �� Br(0): (14)

In other words, the permittivity distribution � is decomposed into the background

distribution �b and the perturbation �s which is assumed to have compact support

and which we will refer to as the scattering potential in the following.

Solving the shape reconstruction problem requires only to �nd the shape of

the domain ~
, since the function ~� is then uniquely determined by (12). Solving

the inverse scattering problem, on the other hand, amounts to �nding the entire

function ~�s from the given data, which is much harder to do. However, it will turn

out that �nding a good approximate solution of the inverse scattering problem is

much easier to achieve and will provide us with an excellent initial guess for starting

our shape reconstruction routine.

De�nition 3.1 allows us to formulate a �rst version of the strategy which we want

to use for solving the shape reconstruction problem.

Strategy for solving the shape reconstruction problem. Construct a series of

admissible pairs (
(n); �(n)), n = 0; 1; 2; : : :, such that the mis�t between the data

(10) and the calculated data corresponding to (
(n); �(n)) decreases with increasing

n, and ideally, i.e. in absence of noise, tends to zero in the limit n ! 1. Use the

approximate solution of the inverse scattering problem (i),(ii) to initialize this series

by determining a good starting element (
(0); �(0)).

3.2 The domains 
(n)

In our numerical examples, each of the domains 
(n) which we are looking for can

be given as a collection of a �nite number Ln of disjoint, compact subdomains 

(n)
l

,
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l = 1; : : : ; Ln, with


(n) =

Ln[
l=1



(n)
l
; 


(n)
l
\ 


(n)
l0

= ; for l 6= l0: (15)

The shapes of these subdomains 

(n)
l

can in principle be arbitrary. In particular,

they are allowed to be multiply connected, and to enclose some 'cavities' or 'holes'

�lled with background material. Moreover, the number Ln of these subdomains

might (and usually does) vary with the iteration number n. For the derivation of

the inversion method, we assume that the boundaries @

(n)
l

of these domains are

su�ciently smooth (e.g. C1).

It is essential for the success and the e�ciency of the reconstruction scheme to

have a good and 
exible way of keeping track of the shape evolution during the

reconstruction process. The method we have chosen in our reconstruction algorithm

is a level set representation of the shapes as it was suggested by Santosa [40]. This

representation has the advantage that the level set functions, which are in principle

only used for representing the shapes, can in a natural way be made part of the

reconstruction scheme itself. Doing so, it is not necessary anymore to refer to the

shapes of the domains until the reconstruction process is completed. The �nal shape

is then recovered from the representing level set function easily. In the following we

will discuss in a more formal way how this can be achieved.

3.3 Level set representation of the domains 
(n)

Assume that we are given a domain 
 �� Br(0). The characteristic function �
 :

IR2 ! f0; 1g is de�ned in the usual way as

�
(x) =

(
1 ; x 2 


0 ; x 2 IR2n
:
(16)

De�nition 3.2 We call a function � : IR2 ! IR a level set representation of 
 if

�
(x) = 	�(x) on IR2 (17)

where 	� : IR
2 ! f0; 1g is de�ned as

	�(x) =

(
1 ; �(x) � 0

0 ; �(x) > 0:
(18)

For each function � : IR2 ! IR there is a domain 
 associated with � by (17),(18)

which we call 
[�]. It is clear that di�erent functions �1; �2, �1 6= �2, can be asso-

ciated with the same domain 
[�1] = 
[�2], but that di�erent domains cannot have
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the same level set representation. Therefore, we can use the level set representa-

tion for unambiguously specifying a domain 
 by any one of its associated level set

functions.

The boundary � = @
[�] of a domain 
[�], represented by the level set function

�, is de�ned as

� = fx 2 IR2 : for all � > 0 we can �nd x1; x2 2 B�(x) (19)

with �(x1) > 0 and �(x2) < 0 g

De�nition 3.3 We call a triple (
; �; �), which consists of a domain 
 �� Br(0)

and bounded functions �; � : IR2 ! IR, admissible if the pair (
; �) is admissible in

the sense of de�nition 3.1, and � is a valid level set representation of 
.

Remark 3.2 For an admissible triple (
; �; �), and for given �̂, �b, the pair (
; �)

is uniquely determined by �.

We use these de�nitions to reformulate our shape reconstruction problem.

Level set formulation of the shape reconstruction problem. Given a constant

�̂ > 0, a background distribution �b, and some data ~G as in (10). Find a level

set function ~� such that the corresponding admissible triple (~
; ~�; ~�) reproduces the

data, i.e. (9) holds with ~ujk given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.

The strategy for solving this shape reconstruction problem has to be reformu-

lated, too. It reads now as follows.

Strategy for solving the reformulated shape reconstruction problem. Construct

a series of admissible triples (
(n); �(n); �(n)), n = 0; 1; 2; : : :, such that the mis�t

between the data (10) and the calculated data corresponding to (
(n); �(n); �(n))

decreases with increasing n, and ideally, i.e. in absence of noise, tends to zero in

the limit n ! 1. For �nding this series we only have to keep track of �(n) and

�(n), but not of 
(n)
. The function �(n) is needed in each step for solving a forward

problem (1), and a corresponding adjoint problem. The knowledge of �(n) is used in

each step to determine �(n). The �nal level set function �(N), which satis�es some

stopping criterion, is used to recover the �nal shape 
(N) via (17).

4 Step 2: Solving the shape reconstruction problem

In this section we derive the basic shape reconstruction method which uses adjoint

�elds and the level set representation introduced above. The initializing procedure

('Step 1') for this reconstruction routine will be discussed in section 5.
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4.1 Function spaces

We want to specify now the function spaces which we will be working with. The

main objective of this section is to introduce the inner products on these function

spaces, which will become important when de�ning the adjoint linearized operators

in sections 4.6 and 5.3.

The space of sources and scattering sources Y is de�ned as

Y =
n
q : IR2 ! C; q = 0 on IR2nBr(0);

Z
Br(0)

jqj2dx <1
o
; (20)

hq1 ; q2iY =

Z
Br(0)

q1(x)q2(x) dx; (21)

where the bar means 'complex conjugate'. The space F of scattering potentials is

de�ned as

F =
n
�s : IR

2 ! IR; �s = 0 on IR2nBr(0);

Z
Br(0)

j�sj2dx <1
o
; (22)

h�s;1 ; �s;2iF =

Z
Br(0)


 �s;1(x)�s;2(x) dx; (23)

with some positive weighting factor 
 > 0 which is introduced here for convenience.

Analogously, the space of level set functions � is de�ned as

� =
n
� : IR2 ! IR; � = 0 on IR2nBr(0);

Z
Br(0)

j�j2dx <1
o
; (24)

h�1 ; �2i� =

Z
Br(0)


 �1(x)�2(x) dx: (25)

This space for the level set functions is mainly chosen in order to have an inner

product available which is convenient for the derivation of the shape reconstruction

algorithm. We mention that the regularity of an arbitrary function in � is, strictly

speaking, not su�cient for our purposes, such that we will apply further regularity

constraints on those level set functions � 2 � which we choose for representing the

boundaries @
[�].

The data space Zj corresponding to source qj , j = 1; : : : ; p, was already intro-

duced earlier, and is given by Zj = CDj , where Dj is the total number of receivers

corresponding to source qj.

4.2 Operators

In the following, we will introduce some operators which will enable us to formu-

late the shape reconstruction problem in a way suitable for deriving the inversion

algorithm.
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Given a constant �̂ and a bounded function �b : IR2 ! IR. Then, with each level

set function � 2 � a uniquely determined scattering potential �(�) is associated by

putting

�(�)(x) =

(
�̂� �b(x) ; �(x) � 0

0 ; �(x) > 0:
(26)

With (18) we can write this also as

�(�)(x) = 	�(x)(�̂� �b(x)) ; x 2 IR2: (27)

Notice that the operator � is chosen such that the triple (
; �; �) with � = �b+�(�)

and domain 
[�] forms an admissible triple (
; �; �) in the sense of de�nition 3.3.

Moreover, for (
; �; �) an admissible triple, we see that �(�) is just the scattering

potential �s as de�ned in (13),(14)

�(�)(x) = �s(x) = �
(x)(�̂� �b(x)) ; x 2 IR2: (28)

Let us assume now that we are given a background permittivity �b and that we have

collected some data ~Gjk which correspond to the 'true' permittivity distribution

~� = �b + ~�s; (29)

where ~�s is the 'true' scattering potential. The residual operators Rjk map for a

source position qj and a frequency fk a given scattering potential �s to the corre-

sponding mismatch in the data

Rjk : F �! Zj ; Rjk(�s) = Mjujk � ~Gjk (30)

where ujk solves

�ujk + [ak(�b + �s)(x) + ib�(x)] ujk = qj (31)

and Mj is the measurement operator de�ned in (8). From (9) we see that for the

'true' scattering potential the residuals vanish,

Rjk(~�s) = 0 for j = 1; : : : ; p; k = 1; : : : ;K; (32)

if the data are noise-free.

The forward operators Tjk which map a given level set function � 2 � into the

corresponding mismatch in the data are de�ned by

Tjk : � �! Zj ; Tjk(�) = Rjk(�(�)) (33)

for j = 1; : : : ; p, k = 1; : : : ;K. The goal is to �nd a level set function ~� 2 � such

that

Tjk(~�) = 0 for j = 1; : : : ; p; k = 1; : : : ;K: (34)

We mention that all three operators �, Rjk and Tjk are nonlinear.
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4.3 Linearized operators

For the derivation of the shape reconstruction algorithm, we will need expressions for

the linearized operators corresponding to the nonlinear operators introduced above,

and for their adjoints with respect to the given inner products. In this section,

we de�ne the linearized operators, and expressions for their adjoints are derived in

section 4.6.

In Santosa [40] it is shown that, for a homogeneous background �b, the in�nitesi-

mal response ��s(x) in the scattering potential �s(x) to an in�nitesimal change ��(x)

of the level set function �(x) has the form

��s(x) = � [�̂� �b]
��(x)

jr�(x)j

����
x2@
[�]

: (35)

The function ��s in (35) can be interpreted as a 'surface measure' on the boundary

� = @
[�]. Similar to (35), we would like to de�ne the linearized operator ~�0[�] by

�
~�0[�]��

�
(x) = � [�̂� �b(x)]

��(x)

jr�(x)j
�̂�(x) (36)

where �̂�(x) denotes the Dirac delta distribution concentrated on � = @
[�]. In

this interpretation, (36) describes an in�nitesimal 'surface load' of permittivity on

� which has to be recovered from the mismatch in the data.

However, the expression on the right hand side of (36) is not an element of F

which causes problems when we want to calculate the inner products de�ned in

section 4.1. Therefore, we will introduce an approximation to the operator (36)

which maps from � into F and which will be more convenient for the derivation of

the reconstruction method.

For a given level set function � 2 �, let � = @
[�] and B�(�) = [y2�B�(y) a

small neighborhood of � with some given constant 0 < �� 1. The (approximated)

linearized operator �0[�] is de�ned as

�0[�] : � �! F;
�
�0[�]��

�
(x) = � [�̂� �b(x)]

��(x)

jr�(x)j
C�(�)�B�(�)(x): (37)

Here, C�(�) = L(�)=Vol(B�(�)) where L(�) =
R
Br(0)

�̂�(x)dx is the length of the

boundary �, and Vol(B�(�)) =
R
Br(0)

�B�(�)(x)dx is the volume of B�(�). For a very

small � we will get a very large weight C�(�), whereas for increasing � this weight

C�(�) decreases accordingly. The operator de�ned in (37) maps now from � into F

such that we can make use of the inner products de�ned on these spaces.

We mention that the term jr�(x)j in (35), (36), as well as the derivation of

these expressions, implies some regularity constraint on �. For example, � 2 C1

would be possible. Another possibility would be to use a 'signed distance function'
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as a standard representation of the boundary [42]. We do not want to specify the

regularity of � at this point, but assume instead that it is 'su�ciently smooth' for

our purposes.

The linearized residual operator R0

jk
[�s] is de�ned by

R0

jk
[�s] : F �! Zj ; R0

jk
[�s]��s = Mjvjk (38)

where vjk solves the linearized equation

�vjk + [ak(�b + �s)(x) + ib�(x)] vjk = � ak��s(x)ujk(x) (39)

with ujk a solution of (31). This representation can be derived by perturbing

�s ! �s + ��s ; ujk ! ujk + vjk; (40)

plugging this into (31) and neglecting terms which are of higher than linear order in

the perturbations ��s, vjk.

Notice that the right hand side of (39) can be interpreted as a 'scattering source'.

We will use this concept later for solving our inverse scattering problem approxi-

mately in order to �nd a starting guess for the shape reconstruction scheme. But

we want to mention here already that the linearization assumption built into (38),

(39), namely that vjk is small compared to ujk, will not be necessary when solving

the inverse scattering problem. That will allow us to circumvent some di�culties

which often arise in high contrast inverse problems due to the occurence of strong

nonlinearities.

As our third linearized operator, we introduce the linearized forward operator

T 0
jk
[�] by putting

T 0
jk
[�] : � �! Zj ; T 0

jk
[�]�� = R0

jk
[�(�)] �0[�]��: (41)

All three operators �0[�], R0

jk
[�s], and T 0

jk
[�] are linear.

4.4 A nonlinear Kaczmarz-type approach

The algorithm works in a 'single-step fashion' as follows. Instead of using the data

(10) for all sources and all frequencies simultaneously, we only use the data for one

source and frequency at a time while updating the linearized residual operator after

each determination of the corresponding incremental correction ��. So, in each step

we will look for a solution of the equation

T 0jk[�]��jk = �Tjk(�) (42)
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for a given source index j = 1; : : : ; p and a given frequency index k = 1; : : : ;K.

After correcting � by

� �! �+ ��jk; (43)

we use the updated residual equation (42) to compute the next correction ��j0k0 .

Doing this for one equation after the other, until each of the sources qj and each of

the frequencies fk has been considered exactly once, will yield one complete sweep of

the algorithm. This procedure is similar to the Kaczmarz method for solving linear

systems, or the algebraic reconstruction technique (ART) in x-ray tomography [32]

and the simultaneous iterative reconstruction technique (SIRT) as presented in [16].

Related approaches have also been employed in ultrasound tomography by Natterer

and W�ubbeling [33], in more general bilinear inverse problems by Natterer [34], in

optical tomography by Dorn [17], and in 3D-electromagnetic induction tomography

(EMIT) by Dorn et alii [18].

4.5 The minimization problem

Let us assume now that we are given a level set function �(n)(x) and a scattering

potential �(n)
s

(x) such that (
(n); �b+�
(n)
s
; �(n)) forms an admissible triple in the sense

of de�nition 3.3. Using a data set ~Gjk corresponding to the �xed source position

qj and the frequency fk, we want to �nd an update ��(n) to �(n) such that for the

admissible triple �

(n+1); �b + �(n+1)

s
; �(n+1)

�
:= (44)�


[�(n) + ��(n)]; �b +�(�(n) + ��(n)); �(n) + ��(n)
�

the residuals in the data corresponding to this source and this frequency vanish

Tjk(�
(n+1)) = Tjk(�

(n) + ��(n)) = 0: (45)

Applying a Newton-type approach, we get from (45) a correction ��(n) for �(n) by

solving

T 0
jk
[�(n)]��(n) = �Tjk(�

(n)) = �
�
Mjujk � ~Gjk

�
(46)

where ujk satis�es (31) with �s = �(�(n))

�ujk +
h
ak(�b +�(�(n)))(x) + ib�(x)

i
ujk = qj(x) (47)

and

�b(x) + �(�(n))(x) =

(
�̂ ; x 2 
[�(n)]

�b(x) ; x 2 IR2 n
[�(n)]:
(48)

Since we have only few data given for one source and one frequency, equation (46)

usually will have many solutions (in the absence of noise), such that we have to pick
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one according to some criterion. We choose to take that solution which minimizes

the energy norm of ��(n)

Min k��(n)k2 subject to T 0
jk
(�(n))��(n) = �

�
Mjujk � ~Gjk

�
: (49)

This solution can be formulated explicitly. It is

��
(n)
MN = �T 0

jk
[�(n)]�

�
T 0
jk
[�(n)]T 0

jk
[�(n)]�

��1 �
Mjujk � ~Gjk

�
; (50)

where T 0
jk
[�(n)]� denotes the adjoint operator to T 0

jk
[�(n)].

4.6 The adjoint linearized operators

In order to calculate the minimal norm solution (50), we will need practically useful

expressions for the adjoints of the linearized operators of section (4.3). We will

present such expressions in this section. The calculation of the actions of these

operators will typically require to solve an adjoint Helmholtz problem. This explains

the name 'adjoint �eld method' of the inversion method employed here.

To start with, a simple calculation gives us the following theorem.

Theorem 4.1 The adjoint operator �0[�]� which corresponds to the linearized op-

erator �0[�] is given by

�0[�]� : F �! � ;
�
�0[�]���s

�
(x) = � [�̂� �b(x)]

��s(x)

jr�(x)j
C�(�)�B�(�)(x): (51)

The next theorem describes the adjoint operator R0
jk
[�s]

� which corresponds to

R0
jk
[�s]. Its proof is analogous to the proof of Theorem 4.1 in the appendix, or to

the proof given in a similar situation in Dorn et al. [18], and is therefore omitted

here.

Theorem 4.2 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to qj. Then the action of the adjoint operator R0
jk
[�s]

� on �

is given by

R0

jk[�s]
�� = �

1

ak
Re (ujkzjk) �Br(0) (52)

where ujk solves

�ujk + �k(x)ujk = qj(x); (53)

and zjk solves the 'adjoint equation'

�zjk + �k(x)zjk =

DjX
d=1

��d�(x� xjd) (54)

with

�k(x) = ak[�b(x) + �s(x)] + ibk�(x) (55)

and ak, bk de�ned as in (7).
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Finally, by combining theorems 4.1 and 4.2, we get an expression for the adjoint

operator T 0
jk
[�]� which corresponds to the linearized forward operator T 0

jk
[�]. It is

described in the following theorem.

Theorem 4.3 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to qj. Then the adjoint operator T 0
jk
[�s]

� acts on � in the

following way

T 0jk[�]
�� = �0[�]�R0

jk[�(�)]
�� (56)

=
[�̂� �b(x)]

akjr�(x)j
Re (ujkzjk) C�(�)�B�(�)(x);

where ujk solves (53) and zjk solves (54) with �s replaced by �(�).

4.7 The operators T 0

jk
T
0 �

jk

Let us consider the operator

C
(n)
jk

:= T 0jk[�
(n)]T 0jk[�

(n)]� (57)

in (50) more closely. Using (41) it gets the form

C
(n)
jk

= R0

jk
[�(�(n))] �0[�(n)] �0[�(n)]�R0

jk
[�(�(n))]�: (58)

With (37), (51) we see that, due to the operator �0[�(n)] �0[�(n)]� in (58), C
(n)
jk

maps

�rst from the data space to functions in F or � which are supported on B�(�), and

then back to the data space. In a discretized setting, it might happen that for a

coarse mesh (and a small �) the number of pixels representing B�(�) becomes close

to (or even smaller than) the number of data points. This observation lets us expect

that the inversion of C
(n)
jk

in (50) will be highly ill-conditioned and unstable. This

is con�rmed by our numerical experiments so far.

Therefore, we will regularize the inversion of C
(n)
jk

and the action of its inverse

on the right hand side of (46).

4.8 Regularization of T 0

jk
T
0 �

jk

A standard way of regularization is the Tychonov-Phillips regularization scheme

which amounts to replacing the operator T 0
jk
[�(n)]T 0

jk
[�(n)]� in (50) by the operator

T 0jk[�
(n)]T 0jk[�

(n)]� + �I (59)

with some suitably chosen regularization parameter � > 0. A small � means little

regularization, whereas in the case of very noisy data we might wish to use a very

18



large � such that (59) is dominated by the term �I and we can approximate it

further by a simple multiplication with the regularization parameter �.

However, motivated by the above mentioned observations, we choose a di�erent

form of regularization. First, we add a Tychonov-Phillips term to �0[�(n)] �0[�(n)]�

such that the right hand side of (58) becomes

C
(n)
jk

� R0

jk
[�(�(n))]

�
�0[�(n)] �0[�(n)]� + �I

�
R0

jk
[�(�(n))]�: (60)

Now, using a very large regularization parameter �, we approximate (60) further by

C
(n)
jk

� �R0
jk
[�(�(n))]R0

jk
[�(�(n))]�: (61)

Since calculating the operator (61) in each step of the inversion routine is still

very time-consuming, we approximate this operator further by replacing the argu-

ment �(�(n)) by the background scattering potential which is zero. Therefore, we

end up with the following approximation for C
(n)
jk

C
(n)
jk

� Ĉjk := R0

jk[0]R
0

jk[0]
� for all n = 1; 2; : : : (62)

The multiplicator � is neglected in (62) since it becomes part of the relaxation

parameter in our inversion scheme. We see that we have replaced in (62) the highly

ill-conditioned and di�cult to calculate operator C
(n)
jk

by a much better conditioned

operator Ĉjk which has to be computed only once and which can be precalculated

before starting the inversion routine.

The next theorem tells us how to practically compute the operator Ĉjk for a

given background permittivity �b.

Theorem 4.4 Let us assume that we are given a background permittivity distribu-

tion �b, a �nite set of sources qj, j = 1; : : : ; p, and for each of these sources a �nite

set of receiver positions xjd, d = 1; : : : ;Dj. We apply each of the sources with K dif-

ferent frequencies fk, k = 1; : : : ;K. The operators Ĉjk, j = 1; : : : ; p, k = 1; : : : ;K,

are then described by Dj �Dj matrices of the form

Ĉjk =

(Z
Br(0)

ujk(x)'dk(x)ujk(x)'lk(x)

)
l = 1; : : : ; Dj

d = 1; : : : ; Dj

; (63)

where '�k solves

�'�k + (ak�b + ibk�)'�k = �(x� xj�) (64)

and ujk solves

�ujk + (ak�b + ibk�)ujk = qj: (65)

The index � in (64) can stand for a receiver index d or l. In (63), the receiver index

l is the row index, and the receiver index d is the column index of Ĉjk.
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The proof of this theorem is similar to the proof of Theorem 5.2 given in the

appendix such that we omit it here.

4.9 Updating the level set function

In order to calculate a correction ��
(n)
MN by (50) we have to apply the operator

T 0
jk
[�(n)]� to the vector

� := Ĉ�1
jk

�
Mjujk � ~Gjk

�
: (66)

An explicit formula for T 0
jk
[�(n)] was already given in (56)

T 0
jk
[�(n)]�� =

[�̂� �b(x)]

akjr�(n)(x)j
Re

�
ujk(x)zjk(x)

�
C�(�)�B�(�)(x); (67)

where ujk and zjk solve (53)- (55) with �s replaced by �(�(n)).

To stabilize the reconstruction scheme, we replace the term jr�(x)j in (67) by

some constant c1. Doing so we avoid dividing by numerical derivatives which might

cause instabilities due to numerical noise and roundo� errors. This is justi�ed as

long as jr�(x)j does not vary too much along the boundary. It turns out that the

updates we apply in our numerical examples to the level set functions usually justify

this assumption. In cases with limited view and very noisy data, however, we will

apply an additional 'smoothing procedure' (which is described in section 4.10) to

the level set functions near the boundary after each update in order to guarantee

the necessary regularity for the succeeding steps.

With these modi�cations, (50) yields the following update formula for the level

set function

��̂(n)(x) = �
�̂� �b(x)

c1ak
Re

�
ujk(x)zjk(x)

�
C�(�)�B�(�)(x) (68)

where ujk and zjk solve (53)- (55) with � given by (66) and �s replaced by �(�(n)).

Notice that, although we did not explicitly impose any regularity constraints on

the updates (68), they are in the range of R0
jk
[�(�(n))]� (up to the factor �̂� �b(x))

which implicitly gives us some information about the regularity we can expect. Our

numerical experiments so far indicate that the degree of regularity which is achieved

by applying (68) is typically su�cient 'for practical purposes' in those situations

where the data are not too noisy and where we have suitably arranged receiver

positions all around the obstacles. (This is the 'full view' situation.)

However, in cases of noisy and limited-view data, the resulting boundaries look

rough and fuzzy, in particular when high-frequency data are used for the reconstruc-

tion. In these situations, we can improve the results by applying some additional

regularization on �. A possible way of doing so is to �lter the level set function after
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each update in order to smooth it locally. An example for such a procedure is 'curve

shortening by di�usion', which is brie
y described at the end of section 4.10.

We mention that an interesting (and from a mathematical point of view more

satisfactory) alternative to this procedure would be to apply some additional reg-

ularity constraints already in the derivation of (68), such that we would not have

to worry at all about the smoothness of the resulting level set functions. We will

investigate possible ways of doing so in our future research.
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4.10 Implementation: The levelART algorithm

In brief algorithmic form, the nonlinear Kaczmarz-type method for shape recon-

struction using level sets (which we call for short 'levelART' because of its above

mentioned similarity to the 'ART' algorithm in x-ray tomography) can be written

in the following way.

Preparation step.

� Calculate Ĉjk and

Djk = Ĉ�1
jk

(69)

according to (63) for each source qj, j = 1; : : : ; p, and each frequency fk,

k = 1; : : : ;K, and store in memory for later use.

� Build groups of frequencies Gm = ff1; : : : ; fKmg, m = 1; : : : ;M .

Initialization.

n = 0;

(
(0); �(0); �(0)) given from STAF.

Reconstruction loop.

FOR m = 1 : M march over frequency groups Gm

FOR i = 1 : Im perform Im sweeps for frequency group Gm

FOR k = 1 : Km march over frequencies in Gm

FOR j = 1 : p march over sources qj for each frequency

�jk = Djk(Mjujk � ~Gjk); ujk solves (53) with �(n)

��jk = � �̂��b(x)
ak

Re(ujkzjk)�B�(�); zjk solves (54) with �(n) and �jk

END

��(n)(x) =
Pp

j=1 ��jk(x);

�(n+1) = C
(n)
LS (�

(n) + �
C�(�)
c1

��(n)); update level set function

Optional step: 'curve shortening' by di�usion. See separate chart.

�(n+1) = �b +�(�(n+1)); n = n+ 1; Reinitialization n! n+ 1

END

END alternatively, some stopping criteria can be used here

END

(
(N); �(N); �(N)) = (
[�(n)]; �b +�(�(n)); �(n)); Final reconstruction.
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Here, � is a relaxation parameter for the update of the level set function which

is determined empirically. The constant C�(�) could be calculated explicitly for

the actual curve �(n), or it could be approximated by some value corresponding

to a simple geometrical object (to give an example, in case of a single circle it

would be C�(�) = (2�)�1). In our numerical experiments so far, however, it is

simply considered as part of �. The same holds true for c1. The constant � is in

our numerical experiments chosen between 30-40 cm, which corresponds to 2-3 grid

cells. The scaling factor C
(n)
LS is determined after each update to keep the global

minimum (or maximum) of the level set function at a constant value.

The following smoothing �lter on the level set function is optional. We usually

apply it when we use noisy high-frequency data for the reconstruction. Especially in

the limited-view examples presented in sections 6.3 and 6.4, the application of this

�lter improves the reconstructions signi�cantly. Smoothing the level set function

with this �lter has the e�ect of local curve shortening. Roughness and small scale

oscillations in the reconstructed boundaries are smoothed out such that the 'energy'

of the reconstructed boundaries is reduced. The �ltering step can be described as

follows.

Optional step: 'Curve shortening' by di�usion.

Introduce arti�cial time � 2 IR. @

@�
= time derivative, � = Laplace operator.

Solve initial value problem (with absorbing boundary conditions) on Br(0):

~�(x; 0) = �(n+1)(x);

@

@�

~�(x; �) = �~�(x; �); � 2 [0; T�]; x 2 Br(0).

�(n+1)(x) = ~�(x; T�),

with regularization parameter T�.

5 Step 1: A Source-Type Adjoint Field method

For starting our shape reconstruction method using level sets we will need an initial

guess (
(0); �(0); �(0)).

Although it is possible just to create an arbitrary initial guess without using any

data at all, we believe that it is important for the e�ciency and the robustness of

such a method to start it with a good initial guess. There are several reasons for

this. First, when deriving the shape reconstruction method (which we will call for

short 'levelART' in the following) we used a perturbation approach which is strictly
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justi�ed only when we already have a good �rst guess available. Moreover, we see

in our numerical experiments that starting with a good initial guess stabilizes the

shape reconstruction routine, in particular in cases where the data are incomplete

and noisy. In addition, �nding a good �rst guess reduces the amount of work which

has to be done by the levelART routine itself, such that in the end the combined

code will converge much more rapidly than levelART alone would do without a good

initialization.

In this section, we will present the second key point of our combined inversion

scheme, namely a fast, inexpensive and stable method for �nding a very good �rst

guess (
(0); �(0); �(0)) for levelART. This method is designed to share basic features

with the levelART algorithm, such that it can be implemented in addition to leve-

lART with almost no extra cost.

5.1 Source-type methods

In the framework of inverse scattering problems, the method we propose here can

be considered as a 'source-type inversion method'. Roughly speaking, the general

idea of source-type reconstruction methods in inverse scattering is to split a given

nonlinear inverse scattering problem into two subproblems. The �rst one is linear,

and tries to recover a virtual 'equivalent source' in the medium which would be able

to �t the data if applied with the known background distribution. This equivalent

source is related to the unknown scattering potential by a nonlinear 'constitutive'

relation. Therefore, in the second part of the algorithm, a nonlinear inverse problem

has to be solved to derive the scattering potential from the recovered equivalent

source distribution.

This idea is not at all new. It has been applied for example in the Source-Type

Integral Equation (STIE) method of Habashy et al [21], or in the method presented

by Chew et al. in [9]. More recently, similar ideas have been applied by Abdullah

et al. [1], Caorsi et al. [6], and van den Berg et al. [46, 47].

All of these approaches have in common that they use the source-type method as

a stand-alone inversion scheme. Such a method has the advantage that it is not as

sensitive to strong nonlinearities in the inverse problem as for example perturbation

methods or the Born or Rytov approximation are [15, 20, 27].

On the other hand, interpreting the inverse scattering problem as an inverse

source problem is not without drawbacks. For example, the existence of so-called

'non-radiating sources' or 'invisible sources' gives rise to a nonuniqueness in the in-

verse source problem, which is di�cult to deal with when solving the nonlinear part

[1, 14, 21]. Moreover, it is not clear at all how to combine properly the information

corresponding to di�erent experiments, since each experiment creates its own 'equiv-
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alent sources' and its own 'invisible sources'. For more information about possible

applications, advantages and drawbacks of the source-type scheme as a stand-alone

inversion tool we refer to [1, 5, 6, 9, 14, 21, 46, 47].

Our approach is di�erent from those mentioned above. We only want to �nd

a good approximation to the scattering potential, and a corresponding initial level

set function suitable to start the shape reconstruction routine. Moreover, we can

make use of our prior information about the permittivity distribution. This will

allow us to circumvent most of the problems of source-type schemes which have

been mentioned above.

We will now describe this method, which we will call the Source-Type Adjoint

Field (STAF) method, in more details.

5.2 Solving the inverse scattering problem

Consider the inverse scattering problem formulated in section 3.1. The decomposi-

tion (13), (14) reads

~�(x) = �b(x) + ~�s(x) (70)

with some (known) background distribution �b and the (unknown) scattering poten-

tial ~�s having compact support, supp(~�s) �� Br(0). The goal is to �nd ~�s(x) from

the data (9).

We already mentioned above that we actually will not recover the entire function

~�s(x) from the data ~Gjk in this preprocessing step. All we will �nd is 1.) A very

good �rst guess for the scattering potential �(0)
s

which will be part of the initializing

triple (
(0); �b + �(0)
s
; �(0)), and 2.) A corresponding level set function �(0). We will

freely make use of the prior information resulting from the knowledge of �̂ inside

the estimated scatterer 
(0). However, our numerical results so far indicate that the

method proposed here -if suitably adapted- can actually be used to �nd, in addition

to 
(0) and �(0), also a good �rst estimate �̂(0) for the contrast �̂. This will be used

in our future work to start a reconstruction method which tries to recover ~
 and �̂

simultaneously from the given data.

For a �xed frequency fk and a source qj, let ~ujk be the solution of

�~ujk + (ak(�b + ~�s)(x) + ib�(x)) ~ujk = qj(x); (71)

and let ujk be the solution of the 'unperturbed' equation

�ujk + (ak�b(x) + ib�(x)) ujk = qj(x): (72)

De�ne

~vjk := ujk � ~ujk: (73)
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Subtraction of (72) from (71) shows that ~vjk solves

�~vjk + (ak�b(x) + ib�(x)) ~vjk = ~Qs

jk
(x); (74)

where the 'scattering source' ~Qs

jk
(x) is de�ned as

~Qs

jk
(x) = ak~�s(x)~ujk(x): (75)

We introduce a 'source type' forward operator Ajk by putting

Ajk : Y �! Zj ; AjkQ
s

jk
= Mjvjk (76)

where Mj is the measurement operator de�ned in (8), and vjk solves

�vjk + (ak�b(x) + ib�(x)) vjk = Qs

jk(x): (77)

The operator Ajk is linear.

Let us assume now that we apply the 'correct' scattering source ~Qs

jk
(x) de�ned

by (75) as argument of Ajk. Then we know from (9), (29), (30) that

Ajk
~Qjk = Mj~vjk = Mj(ujk � ~ujk) = Mjujk � ~Gjk = Rjk(0): (78)

The vectors Rjk(0) are easily computed by solving a forward problem on the back-

ground distribution (72). Therefore, all we have to do to get back the scattering

source ~Qs

jk
from the data ~Gjk is to solve (78) for ~Qs

jk
. Doing so amounts to solving

an ill-posed but linear inverse problem.

Once we have recovered ~Qs

jk
(x), we want to get back ~�s(x) out of it by using

the constitutive relation (75). This second part of the inversion scheme can be

interpreted as solving a nonlinear inverse problem since ~ujk(x) depends on ~�s(x).

Notice that ~Qs

jk
(x) varies with di�erent sources and frequencies, but that ~�s(x)

is the same for all sources and all frequencies (if we neglect dispersion). We will

make use of this observation when we try to solve the nonlinear part (75). In the

following, we describe the method which we will use to recover the scattering source

~Qs

jk
(x) from a given data set ~Gjk for a �xed source qj and a �xed frequency fk.

5.3 Looking for a scattering source

Since for a �xed (primary) source position and a �xed frequency we have only few

data given to recover ~Qs

jk
, and since we have to take into account that also 'non-

radiating' and 'invisible' sources have been generated in the experiment, we assume

that there will be many solutions (in absence of noise) of (78). To pick one we are

looking for the solution with minimal norm

Min kQs

jk
kY subject to AjkQ

s

jk
= Rjk(0): (79)
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It is given by

Qs

jk;MN
= A�

jk

�
AjkA

�

jk

��1
Rjk(0); (80)

where A�
jk

denotes the adjoint operator to Ajk.

The following theorem, which is proven in the appendix, tells us how to calculate

the action of A�

jk
on a vector � 2 Zj in an e�cient way.

Theorem 5.1 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to the source qj. Then, A�

jk
� is given by

A�

jk
� = zjk�Br(0); (81)

where zjk solves

�zjk + (ak�b + ibk�) zjk =

DjX
d=1

�d�(x � xjd): (82)

Corollary 5.1 Let '�k solve

�'�k + (ak�b + ibk�)'�k = �(x� xj�): (83)

Then, we can write (81) in the alternative form

�
A�
jk�

�
(x) =

DjX
d=1

�d'dk(x)�Br(0)(x) =

DjX
d=1

�d'dk(x)�Br(0)(x): (84)

The next theorem, which is proven in the appendix, gives an explicit expression

for the operators AjkA
�

jk
.

Theorem 5.2 Let us assume that we are given a background permittivity distri-

bution �b and a �nite set of receiver positions xjd, d = 1; : : : ;Dj. The operators

AjkA
�
jk
, j = 1; : : : ; p, k = 1; : : : ;K, are then described by Dj �Dj matrices of the

form

AjkA
�

jk =

(Z
Br(0)

'dk(x)'lk(x)

)
l = 1; : : : ; Dj

d = 1; : : : ; Dj

; (85)

where '�k solves (83) and the index � can stand for a receiver index d or l. In (85),

the receiver index l is the row index, and the receiver index d is the column index of

Ĉjk.

Remark. Notice that (85) does not depend on the sources qj, but only on the

arrangement of the detectors and on the background permittivity distribution �b.

The operators AjkA
�

jk
can be precomputed before starting the inversion routine,
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and this has to be done only once for each frequency as long as we use the same

arrangement of detectors for all sources qj, j = 1; : : : ; p.

In the case of noisy data we will invert AjkA
�

jk
+ �I instead of AjkA

�

jk
in (80)

with a suitably chosen regularization parameter � > 0. This amounts to applying

Tychonov-Phillips regularization.

5.4 Recovery of the scattering potential

After we have found a scattering source Qs

jk
which satis�es (79), we want to use the

constitutive relation

Qs

jk
(x) = ak~�s(x)~ujk(x); (86)

which holds for the 'correct' scattering source ~Qs

jk
according to (75), to �nd an

approximation for ~�s(x).

Let ~ujk be a solution of (71) and ujk a solution of (72). We decompose Qs

jk
, ~ujk,

ujk and ~�s into amplitude and phase

Qs

jk(x) = jQs

jk(x)j e
ir(x); ~ujk = j~ujkj ei~s(x); (87)

ujk = jujkj eis(x); �s(x) = j�s(x)j eit(x); (88)

where we have omitted the subscripts jk in the argument functions r, ~s, s, and t for

simplicity in the notation. Making use of the fact that ~�s(x) 2 IR we see that

t(x) 2 f0; �g for all x 2 IR2: (89)

With (87),(88) equation (79) decomposes into two equations, one for the amplitude

and one for the phase. They are

jQs

jk
(x)j = ak j~�s(x)j j~ujkj; (90)

r(x) = ~s(x) + t(x): (91)

The observation in our numerical experiments is that, although s(x) and ~s(x) might

be quite di�erent from each other for large perturbations ~�s(x), the amplitudes

jujk(x)j and j~ujk(x)j most often do not di�er too much from each other in the

scattering region. Therefore, in our applications it is a reasonable approximation to

assume that

j~ujk(x)j � jujk(x)j in Br(0): (92)

With this approximation, (90) yields the following estimate for j~�s(x)j

j~�(jk)
s

(x)j �
jQs

jk
(x)j

akjujk(x)j
in Br(0): (93)
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We have added the indices j and k on the left hand side of (93) to indicate that

we have used only the data ~Gjk corresponding to source qj and frequency fk for its

determination.

Notice that the step (92), (93) is nonlinear since taking the amplitude of a

complex number is a nonlinear operation. Therefore, the approach presented here is

quite di�erent from the usual Born approximation which approximates ~ujk by ujk.

For the purposes of the present paper, the determination of j~�s(x)j is already
su�cient in order to get a good �rst guess for the scattering potential �(0)

s
(x) and for

the level set function �(0)(x), since we can now make use of our prior information

about the correct value of �̂ in (12).

We mention, however, that the recovery of the phase t(x) is also possible from

(86). (This will be necessary for example when we try to recover ~
 and �̂ simul-

taneously from the given set of data ~Gjk.) We can do this by using equation (91).

We already mentioned that the assumption ~s(x) � s(x) might be quite wrong for

situations with large scattering potentials ~�s(x). However, in our situation we only

have to decide whether t(x) is zero or �, which means that we have to determine

whether in (91) r(x) = ~s(x) or r(x) = ~s(x)� � is satis�ed. Therefore, a reasonable

estimate for t(x) is to put

t(jk)(x) =

(
0 ; js(x)� r(x)j < �=2;

� ; elsewhere:
(94)

Our numerical experiments so far show that a suitable combination of these estimates

resulting from many source positions gives a very good reconstruction of the phase

t(x) in Br(0) even in the situation of limited view and noisy data. We will not need

this estimate in the present paper.

5.5 Combining the results from single experiments

We can combine now the estimates j~�(jk)
s

(x)j from many source positions qj, j =

1; : : : ; p, by putting

j~�(k)
s
(x)j =

1

p

pX
j=1

j~�(jk)
s

(x)j: (95)

If we want to take into account also the information corresponding to many

frequencies we can do so by putting

j~�s(x)j �
1

pK

KX
k=1

pX
j=1

j~�(jk)
s

(x)j (96)

where the sum is over all frequencies fk, k = 1; : : : ;K, and all source positions qj ,

j = 1; : : : ; p. In (96) we have neglected dispersion.
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A similar strategy can be employed to improve the estimates for the phase

t(jk)(x).

5.6 The initial level set function

We are now ready to de�ne the initial triple (
(0); �(0); �(0)).

We assume that we are working in a high contrast situation, such that exactly

one of the following conditions is satis�ed

�̂� �b(x) � 0 for all x 2 ~
 (97)

�̂� �b(x) � 0 for all x 2 ~
: (98)

Since we know �̂ and �b(x), we know the constant

sign(~
) :=

(
1 ; if (97) holds

�1 ; if (98) holds.
(99)

Let us assume that we want to use j~�(k)
s
(x)j as de�ned in (95) for a �xed frequency

fk to specify the level set function �(0). Choose a threshold value 0 < 
LS < 1 (in

our numerical examples presented in section 6 we use 
LS = 0:7) and de�ne

�LS := 
LS max
x2Br(0)

j~�(k)
s
(x)j: (100)

For the level set zero L
(0)
0 of �(0) we require that

L
(0)
0 =

n
x 2 Br(0) : j~�(k)

s
(x)j = �LS

o
: (101)

This means that we want all points of Br(0) where the reconstruction j~�(k)s
(x)j has

exactly the value �LS to be mapped to zero by the level set function �(0)

�(0)(x) = 0 for all x 2 L
(0)
0 : (102)

The level set function is now de�ned as

�(0)(x) = C
(0)
LS sign(~
)

�
�LS � j~�(k)s

(x)j
�
; (103)

where C
(0)
LS is some suitably chosen scaling factor. Notice that (102) and (103) are

consistent.

The initial scattering domain 
(0) and the permittivity �(0) are de�ned as


(0) = 
[�(0)]; �(0) = �b +�(�(0)): (104)

Together with �(0) they form an admissible triple (
(0); �(0); �(0)).
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5.7 Implementation: The STAF algorithm

In brief algorithmic form, the Source Type Adjoint Field (STAF) scheme can be

written in the following way.

Preparation step.

� Select a group of frequencies Gs = ff1; : : : ; fKsg which are used for the STAF

reconstruction. Typically, this is just one frequency.

� Calculate AjkA
�

jk
according to (85) for each frequency f 2 Gs. The operator

AjkA
�
jk

does not depend on the index j if we use the same detector positions

for all sources.

� Calculate

Bjk =
�
AjkA

�

jk

��1
or Bjk =

�
AjkA

�

jk
+ �I

��1
(105)

for all f 2 Gs and store in memory for later use.

Reconstruction step.

FOR k = 1 : Ks

FOR j = 1 : p

Rjk(0) =Mjujk � ~Gjk, ujk solves (72)

�jk = BjkRjk(0), Bjk from (105)

Qs

jk
= A�

jk
�jk = zjk�Br(0), zjk solves (82)

j~�(jk)
s

(x)j =
jQs

jk
(x)j

akjujk(x)j

END

END

j~�s(x)j = 1
pKs

P
Ks

k=1

Pp

j=1 j~�
(jk)
s

(x)j, x 2 Br(0)

�(0)(x) = C
(0)
LS sign(~
)(�LS � j~�s(x)j) as in (103)

(
(0); �(0); �(0)) = (
[�(0)]; �b +�(�(0)); �(0)).

6 Numerical Experiments

6.1 Discretization of the computational domain.

In our numerical experiments, we use a Finite-Di�erences Frequency Domain (FDFD)

code written in MATLAB for solving (1)-(3). The code uses appropriately designed
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perfectly matched layers (PML) to avoid re
ections at the arti�cial computational

boundaries [36, 37].

The system which results after discretization is solved by a simple Gauss elimina-

tion scheme, which is re
ected in the implementation shown in sections 4.10 and 5.7.

The LR-factorization corresponding to the most recent best guess is used there to

calculate the �elds for all transmitters and all receivers simultaneously. Therefore,

the computational cost for solving all necessary forward and adjoint problems is just

one LR-factorization for STAF, and one LR-factorization per update for levelART.

If a di�erent solver is used (e.g. GMRES or QMR), then we might �nd more e�cient

strategies than those presented in sections 4.10 and 5.7. We mention also that an

iterative solver has been developed recently in [25] which is optimized to work on

several source distributions simultaneously.

The physical domain is partitioned into 100�100 elementary cells (pixels) in the

�rst numerical example, and into 180� 110 elementary cells in the second and third

example. Each of these grid cells has a physical size of about 0:14 � 0:14 m2, such

that the total computational domain in the �rst example covers an area of 14� 14

m2, and in the other two examples of 15� 25 m2. The eight layers which are closest

to the boundaries of the computational domain are used as a PML.

We will refer to the �rst numerical example as the 'full-view' situation, and to the

other two numerical examples as the 'limited-view', 'cross-borehole' or 'geophysical'

situations. This terminology is motivated by the source and receiver geometries

used, which are as follows.

In the full-view example, we have 64 sources and receivers given which surround

the domain of interest. Each source position is at the same time a receiver position

and vice versa. The distance of two adjacent sources or receivers from each other is

four pixels or about 55 cm. The area enclosed by these sources and receivers has a

size of 10 � 10 m2.

In the two limited-view examples, 74 sources and receivers are positioned equally

spaced in two boreholes. The distance of two adjacent sources or receivers from each

other is again 4 pixels or 55 cm, and the distance of the two boreholes from each

other is about 10 m.

We mention that, in all of our numerical examples, the regions beyond the source

and receiver positions are part of the inversion problem, too. This means, the area

which has to be recovered from the data is the whole area situated between the

PML boundaries. In some of our numerical experiments, artifacts can be observed

developping in the outer areas during the early stages of the reconstruction process.

We apply time-harmonic dipole sources of the form (11) with frequencies of

f = 5, 10, 15, 20, 25, or 30 MHz. In our examples, this corresponds to wavelengths
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in the background medium between 2 meters for f = 30 MHz and 13 meters for

f = 5 MHz. The size of an individual grid cell is chosen such that each of these

wavelengths is sampled by at least 16 pixels in order to avoid numerical artifacts

due to undersampling.

The data in our numerical examples are generated by running the FDFD forward

modelling code on the correct permittivity and conductivity distributions. Using the

same forward code for creating the data and for doing the reconstruction is usually

called 'inverse crime'. Therefore, to make sure that the situations we model in our

experiments are as realistic as possible, we have tested the forward modelling code

thoroughly, and add Gaussian noise with signal-to-noise ratios between 10 and 5 dB

to the real and imaginary parts of the generated data.

6.2 A full-view example

Our �rst numerical example tests whether the derived algorithm is able to recon-

struct a relatively complicated shape in the ideal situation where sources and re-

ceivers completely surround the area of interest. The geometry of this example is

shown in Figure 1. The positions of the sources and receivers are indicated by dots

in the Figure. The background medium in this example consists of a homogeneous

conductivity distribution �b = 3:0 � 10�4 Siemens/m, and a homogeneous permit-

tivity distribution �b = 20. Inside the object, the permittivity is �̂ = 15, having a

moderate contrast to the background distribution.

Notice that an interesting feature of this geometry is the 'hole' in the body of

the object which is di�cult to reconstruct. We will see that, during the evolution of

the permittivity in levelART, the boundaries of the reconstructed domain will split

and merge in the attempt to recover this geometry correctly.

First, we test the STAF algorithm in Figure 2 by reconstructing the permittivity

�(0) using only the data Gs = f30 MHzg. These data are noisy with a signal-to-noise
ratio (SNR) of 10 dB in the real and the imaginary parts. Compare the result with

the upper left image of Figure 3 where we used (noise-free) data with frequency

Gs = f5 MHzg.
A comparison of reconstructed permittivities for di�erent frequencies between 5

and 30 MHz shows that -in the ideal situation of sources and receivers completely

surrounding the area of interest- the STAF algorithm usually yields already a decent

approximation to the shape of the inclusion when applied to the data with the

highest frequencies, whereas it yields a reconstruction with decreasing resolution

when applied to data corresponding to lower frequencies.

Therefore, it seems to be most e�cient to apply the STAF algorithm directly

to the highest frequency data, such that we do not need at all any low-frequency
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information for the reconstruction. We will see in the following two geophysical

examples that this is certainly not true in applications where we have only data

with limited view available. In these cases, the use of lower frequency data stabilizes

the reconstruction process, and is necessary for preparing the �nal reconstruction

step using the higher frequency data.

We also want to demonstrate the performance of the levelART reconstruction

scheme when applied to this geometry. We start the algorithm by using as initial

permittivity �(0) the low resolution STAF reconstruction which is shown in the upper

left image of Figure 3, and the corresponding initial level set function �(0). No noise

is added to the data. Figure 3 shows di�erent stages in the reconstruction process.

We �rst apply levelART with a frequency of 10 MHz to this initial guess and run it

for 30 sweeps. Then, we run levelART with 20 MHz for 30 more sweeps, and �nally

for another 30 sweeps with 30 MHz. The �nal reconstruction �(N) is shown in the

lower right image of Figure 3. The �nal level set function �(N) corresponding to this

reconstruction is displayed in Figure 14.

We see from this example that the shape reconstruction algorithm using level

sets is able to split and merge boundaries easily in order to build up relatively com-

plicated geometries. In the present situation, splitting and merging of boundaries

was necessary for building the 'hole' in the reconstructed domain.

6.3 A cross-borehole situation with multiple objects

In our second numerical example, we consider a situation which is typical for geo-

physical applications. Comparable situations occur for example when we wish to

monitor pollutant plumes at environmental cleanup sites from cross-borehole EM

data.

We assume that we have 74 sources and receivers equidistantly distributed over

two boreholes. The distance of the boreholes from each other is 10 meters, and the

distance of two adjacent sources or receivers is 55 cm. The area between the two

boreholes has to be monitored given the gathered data. The geometry is shown in

Figure 4.

The background permittivity distribution in this example consists of four tilted

layers with values of �b = 21 in the top layer, and then continuing downwards with

20 , 19, and again 21 for the deepest layer. The conductivity distribution �b is

homogeneous with a value of �b = 3:0� 10�4 S/m everywhere.

Embedded in this background are three compact inclusions as shown in Figure

4. The permittivity inside these inclusions is �̂ = 5, having a high contrast to

the background values. The three inclusions are oriented such that there are two

'channels' of background material between them, one of them in the vertical and
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one in the horizontal direction. The di�culty in this example is to separate the

three inclusions from each other from the limited-view data. In particular, the

reconstruction of the vertical channel is critical since we expect that the resolution

in the horizontal direction will su�er from the missing data.

Again, we �rst apply the STAF reconstruction scheme to the data to get a �rst

guess of the permittivity distribution �(0). Figure 5 shows the result for Gs = f30
MHzg. Comparing this result with the reconstruction for the same frequency in

our �rst numerical example, we conclude that the performance of STAF for high-

frequency data is in the limited-view case not as good as in the case where we can use

data with full view. We observe that the vertical resolution of the reconstruction

is still good, whereas in the horizontal direction severe artifacts build up which

reduce the quality of the high-frequency STAF reconstructions as an initial guess

for levelART.

Figure 6 shows the corresponding STAF reconstruction using Gs = f5 MHzg.
We do not observe any artifacts in this reconstruction which might be caused by

the limited view in the data. Therefore, we see that the decreased resolution of

STAF using low-frequency data is in this situation compensated by a much higher

robustness with respect to missing data. Keeping this in mind, we will typically

start our reconstructions in the limited-view geometry by using the STAF result

which correspond to (one or more of) the lowest available frequencies.

Starting out from the permittivity �(0) as shown in Figure 6, and the corre-

sponding level set function �(0), we want to use the levelART algorithm in order

to calculate a series of shape deformations which transforms the initial shape into

the correct permittivity distribution. Figure 6 shows a reconstruction which uses

data where the real part and the imaginary part have been contaminated by addi-

tive Gaussian noise with a signal-to-noise ratio (SNR) of 10 dB before starting the

reconstruction process. Figure 7 shows the same reconstruction scheme, but with

an even lower SNR of now 5 dB in the data.

Di�erent strategies are possible for levelART. Which one works best, depends

on the speci�c situation, for example the number and arrangement of sources and

detectors, and on the noise level of the data. The strategy we use here (for both

SNR values) is the following: First, we apply 20 steps of levelART with a frequency

of 15 MHz to the initial guess. The result is shown in the lower left images of Figures

6 and 7. At this stage, the task of splitting the initial object into three subsets is

almost completed.

Then, we apply levelART with a combination of three frequencies, namely 20, 25,

and 30 MHz. This means that in a given sweep each of these three frequencies is used

exactly once in the prescribed order, before starting again with the lowest frequency
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(20 MHz) for the new sweep. This �nal step completes the reconstruction in just a

few (about 10) sweeps. The succeeding sweeps do not improve the reconstruction

signi�cantly. Moreover, the norms of the residuals approach a constant value as the

Figures 8 to 11 show.

Figures 8 to 11 show the evolution of the norms of the residuals during the

reconstruction process for di�erent signal-to-noise ratios in the data. The graphs

with the symbol '�' correspond to noiseless data, the graphs for a SNR of 10 dB are

indicated by '�', and those for a SNR of 5 dB by '+'.

Figure 8 shows the norms of the residuals for f = 15 MHz during the 20 steps

using the data with this frequency. The norms of the residuals decrease in all cases

continually during the reconstruction process. Figures 9 to 11 show the evolution of

the norms during the �nal 30 sweeps with the frequencies 20, 25 and 30 MHz. We see

that after 10 sweeps the residuals approach some constant value which depends on

the noise level of the data. In the lower right image of Figure 6, the reconstruction

for a signal-to-noise ratio of 10 dB after completion of these 10 sweeps is shown.

The corresponding level set function is shown in Figure 15.

Our experience is that marching over the higher frequencies in the described

fashion stabilizes the inversion procedure especially in the limited-view situation

considered here. However, so far we do not have any theoretical analysis which

supports this observation.

Notice the artifacts which appear in the case of an extremely low SNR of 5 dB in

Figure 7. These artifacts remain more or less stable when applying levelART with

a constant frequency of 15 MHz, and disappear when marching to the higher fre-

quencies in the succeeding reconstruction step. Notice that we also apply a di�usion

('curve shortening') �lter for these higher frequencies, see section 4.10.

We observe again that levelART has no problems in propagating and track-

ing these multiple artifacts, even when they �nally shrink and disappear. Notice

also that, similar to the �rst numerical example, the algorithm splits the original

boundary in order to arrive at the three separated inclusions forming the �nal re-

construction.

6.4 A cross-borehole situation with a single inclusion and variable

conductivity

In our third numerical example, we want to test a situation where the conductivity

inside the inclusions is di�erent from the given background values. Since we did not

take these conductivity changes into account when deriving the reconstruction algo-

rithm, the question arises how much the performance of the reconstruction method

will be e�ected by such changes in the conductivity distribution.
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We assume therefore that we know the two values �̂ and �̂ of the permittivity

and the conductivity inside the inclusions, but both of them are di�erent from the

background values. We run the STAF routine as usual, which amounts to treating

the conductivity changes simply as an additional form of noise. When applying

levelART, we calculate the updates ��(n) for the level set function �(n) in the same

way as derived above, but when determining the corresponding updated permittivity

distribution �(n), we update at the same time the conductivity distribution �(n) such

that �(x) = �̂ where the level set function �(n) has negative values. Strictly speaking,

we still invert only for the permittivity �, but we make use of the fact that inside

the obstacles the conductivity and the permittivity are closely related to each other.

Figure 12 shows the geometry of this example, and Figure 13 shows the results

for two di�erent conductivity values �̂ = 1:0 � 10�6 S/m and �̂ = 1:0 � 10�2 S/m.

Notice that these two values di�er from each other and from the background value

�b = 3:0 � 10�4 S/m by orders of magnitude! In both cases, Gaussian noise has

been added to the real and imaginary parts of the data with a signal-to-noise ratio

of 10 dB before starting the reconstruction routine.

As before, we start the reconstruction with the STAF guess corresponding to a

frequency of 5 MHz. After only six sweeps of levelART, using the frequencies 15,

20, 25, and 30 MHz one after the other in each sweep, we arrive in both cases at

a very good reconstruction of the permittivity distribution and of the conductiv-

ity distribution. We conclude that the performance of the reconstruction method

(STAF and levelART) is not signi�cantly e�ected by the changes in the conductivity

distribution.

This robustness with respect to changes in the conductivity certainly has its

limits. However, the example presented here makes us con�dent that in practi-

cal situations, when the conductivity value �̂ inside the obstacles is approximately

known and not too large (< 1:0� 10�2 S/m), the shape reconstruction method will

perform stably and reliably and will give us a good reconstruction of the actual

permittivity distribution.

7 Summary and future directions

We have presented a stable and e�cient two-step shape reconstruction algorithm

for EM cross-borehole tomography which uses adjoint �elds and level sets. We have

shown that this method is able to recover one ore more objects with nontrivial shapes

given noisy cross-borehole EM data.

The �rst step of this combined inversion scheme plays the role of an initializing

procedure for the second step, and employs a 'source-type' inversion scheme to deal
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with the high nonlinearity in the problem due to the presence of strong scatterers.

Although we believe that the preprocessing routine we propose here will work

well in most situations, it can be replaced by any other preprocessing tool which

shares the main features of the derived algorithm.

The second step of the inversion routine starts directly with the outcome of

this initializing procedure, and continues by using a combination of an 'adjoint �eld

technique' and a level set representation of the shapes until the inversion task is

completed. We have shown that using a level set representation in this second step

enables us to easily describe and keep track of complicated geometries which arise

during the inversion process.

We mention that the FDFD routine, which has been employed in both steps to

solve the forward and the adjoint Helmholtz problems, can be replaced by any other

more e�cient Helmholtz solver which has been tested to work reliably in the given

situation.

We have shown in our numerical experiments that the proposed reconstruction

scheme performs stably with respect to changes in the conductivity distribution, al-

though these conductivity changes have not been taken into account for the deriva-

tion of the scheme. It would be desirable, however, to extend the reconstruction

scheme to work simultaneously on the permittivity and the conductivity distribu-

tion. This seems to be possible, and we will address this problem in our future

work.

We also assume that we know the permittivity values inside the obstacles, and

that we only have to recover their shapes and their locations. In our future research,

we will investigate the situation where both, the shapes and the permittivity values

inside the obstacles, have to be recovered from the given data.

Throughout the paper, we have not clearly speci�ed the degree of regularity

which we require for the level set functions � representing the domains 
. A pos-

sible choice would be � 2 C1
0 (Br(0)) (i.e. continuously di�erentiable on Br(0) and

zero on @Br(0)), which would require some additional regularization in our numerical

experiments. We also have introduced in (72) an approximated linearized operator

�0[�] motivated by our wish to use convenient inner products. Are there any function

spaces which are more useful for our purposes? Will a practically useful reconstruc-

tion scheme result if we use di�erent inner products instead of introducing �0[�]? To

answer both questions, a thorough theoretical analysis has to be done to investigate

the implications of using di�erent function spaces for the level set representation.

The main ideas of the reconstruction method presented here are not restricted

to a 2D geometry. Therefore, we believe that it is possible to extend the method

to a more realistic 3D situation. All what is needed for this is an e�cient forward
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solver for the 3D system of Maxwell's equations. A forward solver which has been

tested for such situations has been presented in [7, 18]. Moreover, applications to

situations in medical imaging [2, 11], or in the nondestructive testing of materials

[45], seem interesting and possible.
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9 Appendix

9.1 Proof of theorem 5.1

Green's formula for an in�nite domain (without boundary terms since � > 0) reads

for general v; z

Z
IR2

[�v + �kv] z dx +

Z
IR2

v(x)(

DjX
d=1

�d�(x � xjd)) dx (106)

=

Z
IR2

v [�z + �kz] dx +

DjX
d=1

(

Z
IR2

v(x)�(x � xjd)dx)�d

where we have used the notation �k = ak�b + ibk�. Let now vjk be a solution of

(77), and zjk a solution of (82). Then the �rst term on the left hand side of (106)

reads Z
IR2

Qs

jk
(x)zjk(x) dx =

D
Qs

jk
; zjk�Br(0)

E
Y

; (107)

whereas the second term on the right hand side is

hMjvjk ; �iZj =
D
AjkQ

s

jk ; �
E
Zj

: (108)

The remaining two terms cancel each other because of (82). Therefore, (106) gets

the form D
Qs

jk ; zjk�Br(0)

E
Y

=
D
AjkQ

s

jk ; �
E
Zj

; (109)

which proves the theorem.
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9.2 Proof of theorem 5.2

SinceAjkA
�
jk
is a linear operator acting on the �nite-dimensional data space, it is suf-

�cient to �nd the action ofAjkA
�
jk
on each of the basis vectors ed = (0; : : : ; 0; 1; 0; : : : ; 0)T ,

d = 1; : : : ;Dj , where the '1' is at the d-th position. From (83) we see that�
A�
jked

�
(x) = 'dk(x)�Br(0)(x): (110)

Application of Ajk yields for the l-th component (l = 1; : : : ; Dj)�
AjkA

�

jk
ed

�
l

= vjk(xjl); (111)

where vjk is given by

vjk(y) =

Z
Br(0)

Gk(y; x)'dk(x) dx (112)

and Gk(y; x) is Green's function satisfying

�Gk(y; x) + (ak�b + ibk�)Gk(y; x) = �(y � x): (113)

Reciprocity yields Gk(xjl; x) = 'lk(x). Therefore, we get from (111), (112)

�
AjkA

�

jked

�
l

=

Z
Br(0)

'lk(x)'dk(x) dx; (114)

which proves the theorem.
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Figure 1: Original object for the example with full view. The dots in the �gure

indicate the source and receiver positions. The permittivity in the background is

�b = 20, and in the object �̂ = 15.
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Figure 2: STAF reconstruction of permittivity distribution for the example with full

view using f = 30 MHz and noisy data with 10 dB SNR.
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Figure 3: Evolution of permittivity �(n). Left column from top to bottom: STAF

reconstructions of �(0) for 5 MHz (top left); This is the starting guess for the following

reconstruction using levelART. After 10 steps of levelART with 10 MHz; After 30

steps with 10 MHz; Right column from top to bottom: After 10 steps with 20 MHz;

After 30 steps with 20 MHz; Final reconstruction after 30 steps of levelART with

30 MHz (bottom right). The algorithm used noise-free data.
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Figure 4: True permittivity distribution in the cross-borehole example. The dots

in the �gure indicate the source and receiver positions. The permittivity in the

background layers is (from top to bottom) �b = 21, 20, 19, and 21. Inside the object

it is �̂ = 5.
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Figure 5: STAF reconstruction of permittivity distribution for cross-borehole exam-

ple using noisy data with 30 MHz and 10 dB SNR.
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Figure 6: Evolution of the permittivity distribution �(n) in the cross-borehole exam-

ple using noisy data with 10 dB SNR and limited view. Top left: STAF reconstruc-

tion of �(0) for 5 MHz. This is the starting guess for the following reconstruction

using the levelART algorithm. Bottom left: After 20 steps of levelART with 15

MHz; Top right: After 2 sweeps with 20, 25, and 30 MHz; Bottom right: After 10

sweeps of levelART with 20, 25, and 30 MHz.
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Figure 7: Evolution of the permittivity distribution �(n) in the cross-borehole exam-

ple using noisy data with 5 dB SNR and limited view. Top left: STAF reconstruction

of �(0) for 5 MHz. This is the starting guess for the following reconstruction using

the levelART algorithm. Bottom left: After 20 steps of levelART with 15 MHz; Top

right: After 2 sweeps with 20, 25, and 30 MHz; Bottom right: After 10 sweeps of

levelART with 20, 25, and 30 MHz.
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Figure 8: Norm of residuals for 15 MHz in cross-borehole example.
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Figure 9: Norm of residuals for 20 MHz in cross-borehole example.
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Figure 10: Norm of residuals for 25 MHz in cross-borehole example.
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Figure 11: Norm of residuals for 30 MHz in cross-borehole example.
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Figure 12: Original permittivity distribution �(n) in the cross-borehole example using

noisy data with 10 dB SNR and limited view. The permittivity �b in the background

is the same as in �gure 4, and in the inclusion it is �̂ = 5. The conductivity in the

background is �b = 3:0� 10�4 S/m, and in the inclusion it is either �̂ = 1:0 � 10�6

S/m (�rst example), or �̂ = 1:0 � 10�2 S/m (second example). The dots in the

�gure indicate the source and receiver positions.
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Figure 13: Reconstruction of permittivity and conductivity distributions after ap-

plying STAF with 5 MHz, and 6 sweeps of levelART with 15, 20, 25, and 30 MHz.

Left column: Example with �̂ = 1:0 � 10�6 S/m inside the obstacle. Shown is the

reconstructed permittivity (top) and reconstructed conductivity (bottom). Right

column: Example with �̂ = 1:0 � 10�2 S/m inside the obstacle. Reconstructed

permittivity (top) and reconstructed conductivity (bottom). The conductivity was

treated as noise in STAF, and was considered linked to the current reconstruction

of the permittivity distribution in levelART. All data were contaminated with white

Gaussian noise of 10 dB SNR before starting the reconstruction process.
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the corresponding permittivity distribution �(N).
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Shape reconstruction in 2D from limited-view

multifrequency electromagnetic data

Oliver Dorn, Eric L. Miller, and Carey M. Rappaport

Abstract. In geophysical applications it is often the case that electromag-
netic data are available for a number of frequencies but only in a strongly
limited-view geometry. In these applications, it might be expected that the
highest frequency data alone already give the reconstructions with the high-
est possible resolution, and the question arises how the additional information
given by the lower frequency data should be incorporated into the reconstruc-
tion process. In the present paper we consider a shape reconstruction problem
in electromagnetic cross-borehole tomography and demonstrate a possible way
of using the lower frequency data as a stabilizing and regularizing component
in the reconstructions. We employ an iterative shape reconstruction routine
which was introduced earlier by the authors and which makes use of an adjoint
�eld inversion technique as well as a level set representation of the shapes. We
present numerical experiments which show that stable reconstructions of non-
trivial shapes can be achieved from noisy limited-view electromagnetic data
by properly incorporating the available lower frequency information.

1. Introduction

In a recent paper [12] the authors have introduced a two-step shape reconstruc-
tion method for electromagnetic tomography which uses adjoint �elds and level
sets. The �rst step of the method employes a source-type reconstruction scheme
and yields a good �rst guess for the shapes. This preprocessing step is designed to
be fast and stable and, in particular, to be able to handle the strong nonlinearity in
the inverse problem which is due to the high contrasts of the parameter perturba-
tions. The second step is iterative and uses the outcome of the preprocessing step
as an initialization. In this second step a level set representation for the shapes
is employed in order to be able to keep track of topological changes of the shapes
which often occur during the iteration process.

The aim is to retrieve an unknown number of penetrable objects (inclusions)
imbedded in an inhomogeneous background medium from observations of electro-
magnetic (EM) �elds. The EM �elds in our application are in the frequency band
of 5 to 30 MHz. The wavelengths of these �elds are typically between 2-15 m in
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moist soil, where the relative dielectric constant is typically around 20 [32]. We
are in particular interested in the imaging and monitoring of pollutant plumes at
environmental cleanup sites given cross-borehole EM data, where the distances of
the boreholes are not much larger than 10-20 m.

We assume that the known conductivity distribution is positive but small ev-
erywhere. The electromagnetic characteristics (permittivity and conductivity) of
the background medium as well as of the material forming the inclusions are as-
sumed to be known, but the main topological information concerning the number,

sizes, shapes, and locations of the inclusions is missing and has to be reconstructed
from the EM data. Inside the pollutant plumes, the permittivity is assumed to be
constant with a known value which is typically much smaller (or larger) than the
background permittivity, and the background permittivity itself is arbitrary but
also known. No topological constraints are made on the shapes of the plumes. For
example, they are allowed to be multiply connected, and to enclose 'cavities' or
'holes' �lled with background material.

For alternative approaches to solving shape recovery problems in various ap-
plications we refer to [16, 19, 25, 29] and the references therein.

The paper is organized as follows. In section 2, we will formulate the shape
reconstruction problem which we want to solve. Section 3 gives a short overview
of the iterative shape reconstruction routine which uses a level set representation
of the shapes and adjoint �elds for the inversion task. The source-type preprocess-
ing routine is outlined in section 4, and numerical experiments are presented and
discussed in section 5. Finally, section 6 summarizes the results of the paper and
indicates some interesting directions for future research.

2. The inverse problem

2.1. The Helmholtz Equation. We consider the 2D Helmholtz Equation

�u+ k2(x)u = q(x) in IR2;(2.1)

with complex wavenumber

k2(x) = !2�0�0

�
�(x) + i

�(x)

!�0

�
:(2.2)

Here, i2 = �1, ! denotes the angular frequency ! = 2�f , �0 is the magnetic
permeability in free space �0 = 4� � 10�7 Henrys per meter, �0 is the dielectric
permittivity in free space �0 = 8:854 � 10�12 Farads per meter, � is the relative
dielectric permittivity (dimensionless), and � is the electric conductivity in Siemens
per meter. The form of (2.2) corresponds to time-harmonic line sources ~q(x; t)
which have a time-dependence ~q(x; t) = q(x)e�i!t. For these sources we require
that there exists a radius r0 > 0 such that supp(q) �� Br0 (0), where Br(x) = fy 2
IR; jx�yj < rg denotes the open ball centered in x with radius r > 0. For simplicity
we assume throughout the paper that we can �nd a ball BR(0) with R > r such
that the complex wavenumber k2(x) is constant with value k20 in IR2nBR(0), and
that for this k0 the �eld u generated by (2.1) satis�es the Sommerfeld radiation
condition

lim
r!1

p
r

�
@u

@r
� ik0u

�
= 0(2.3)
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with r = jxj where the limit is assumed to hold uniformly in all directions x=jxj.
With this assumption, the problem (2.1)-(2.3) possesses a uniquely determined
solution u in IR2 [6].

Furthermore we will consider in this paper only the case that the conductivity
is positive everywhere, � > 0 in IR2, and that it is small. Typical values in our
geophysical examples will be � � 10�3 � 10�4 Siemens per meter or less [32].

We want to introduce some notation here which will be useful in the following.
We denote the wavenumber k2(x) in short form by

k2(x) = �(x) = a�(x) + ib�(x); a = !2�0�0; b = !�0:(2.4)

The frequencies are assumed to be positive, ! > 0, such that a; b > 0.

2.2. Formulation of the shape reconstruction problem. We assume that
we are given p di�erent source distributions qj, j = 1; : : : ; p. For each of these
sources, data are gathered at the detector positions xd, d = 1; : : : ; Dj, for various
frequencies fk, k = 1; : : : ;K. The total number of receivers Dj , as well as their
positions xd, might vary with the source qj. We assume, for simplicity in the
notation, that these positions do not depend on the frequency fk. This restriction
is, however, not necessary for the derivation of the inversion method. We require
that there exists a radius r1 > 0 such that all receiver positions are inside the ball
of radius r1, i.e. xjd 2 Br1 (0) for all d = 1; : : : ; Dj, j = 1; : : : ; p.

In the application of EM cross-borehole tomography, the sources and receivers
are typically situated in some boreholes, and the permittivity distribution � (and/or
the conductivity distribution �) between these boreholes has to be recovered from
the gathered data. In the 2D geometry considered here, typical sources are time-
harmonic line sources which can be modelled in (2.1) by

qj(x) = Jj�(x� xj); j = 1; : : : ; p;(2.5)

where xj denotes the 2D coordinates of the j-th line source, j = 1; : : : ; p, and the
complex number Jj is the strength of the source. We will use these sources in our
numerical experiments in section 5.

For a given source qj and a given frequency fk we collect a set of data ~Gjk

which is described by

~Gjk =
�
~ujk(xj1); : : : ; ~ujk(xjd); : : : ; ~ujk(xjDj

)
�T 2 Zj(2.6)

with Zj = CDj being the data space corresponding to a single experiment using
one source and one frequency only. In (2.6), the �elds ~ujk solve (2.1)-(2.3) with the
correct permittivity distribution ~�(x), i.e.

�~ujk + [ak~�(x) + ibk�(x)] ~ujk = qj(x) in IR2(2.7)

with

ak = !2k�0�0; bk = !k�0; !k = 2�fk:(2.8)

More generally, we de�ne for a given source qj the measurement operator Mj acting
on solutions ujk of (2.1) by

Mjujk =
�
ujk(xj1); : : : ; ujk(xjd); : : : ; ujk(xjDj

)
�T 2 Zj :(2.9)

With this notation, (2.6) is written as

~Gjk = Mj~ujk; j = 1; : : : ; p; k = 1; : : : ;K:(2.10)
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We gather these data sets ~Gj;k for all sources qj, j = 1; : : : ; p, and all frequencies
fk, k = 1; : : : ;K, and the aim is to recover from this collection of data sets

~G = ( ~G1;1; : : : ; ~Gp;K)
T(2.11)

the unknown parameter distribution ~�(x) in the domain of interest.

Definition 2.1. Let us assume that we are given a constant �̂ > 0, an open
ball Br(0) � IR2 with r > max(r0; r1) > 0, and a bounded function �b : IR

2 ! IR.
We call a pair (
; �), which consists of a compact domain 
 �� Br(0) and a
bounded function � : IR2 ! IR, admissible if we have

�j
 = �̂; �jIR2n
 = �bjIR2n
:(2.12)

In other words, a pair (
; �) is admissible if � is equal to a preassigned constant
value �̂ inside of 
, and equal to the preassigned background permittivity �b outside
of 
. The domain 
 is called the scattering domain.

Remark 2.2. For an admissible pair (
; �), and for given �̂, �b, the permittivity
� is uniquely determined by 
.

Formulation of the shape reconstruction problem. Given a constant �̂ > 0, a
background distribution �b, and some data ~G as in (2.11). Find a shape ~
 such

that the corresponding admissible pair (~
; ~�) reproduces the data, i.e. (2.10) holds
with ~ujk given by (2.7) for j = 1; : : : ; p, k = 1; : : : ;K.

3. A level set method for shape reconstruction

The level set method was originally developed by Osher and Sethian for describ-
ing the motion of curves and surfaces [23, 27]. Since then, it has found applications
in a variety of quite di�erent situations. Examples are image enhancement, com-
puter vision, interface problems, crystal growth, or etching and deposition in the
microchip fabrication. For an overview we refer to [28].

The idea of using a level set representation as part of a solution scheme for
inverse problems involving obstacles was �rst suggested by Santosa in [26]. In
that paper, two linear inverse problems, a deconvolution problem and the problem
of reconstructing a di�raction screen, are solved by employing an optimization
approach as well as a time evolution approach using the level set technique for
describing the shapes. Santosa also outlines in that paper how the two presented
methods can be generalized to nonlinear shape recovery problems.

More recently, a related method was applied to a nonlinear shape recovery
problem by Litman et al. in [18]. In that work, an inverse transmission problem in
free space is solved by a controled evolution of a level set function. This evolution
is governed by a Hamilton-Jacobi type equation, whose velocity function has to be
determined properly in order to minimize a given cost functional.

The approach developed here is not based on a Hamilton-Jacobi type equation.
We follow an optimization approach, and employ a very speci�c inversion routine
(an adjoint �eld technique) for solving it. This has the advantage that we do
not have to propagate the level set function explicitly by computing a numerical
Hamiltonian. Instead, our inversion routine provides us in each step with an update
that has to be applied directly to the most recent level set function. Doing so, we
automatically 'propagate' the level set function until the method converges.
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3.1. Level set representation of the domains 
. Assume that we are
given a domain 
 �� Br(0). The characteristic function �
 : IR2 ! f0; 1g is
de�ned in the usual way as

�
(x) =

�
1 ; x 2 

0 ; x 2 IR2n
:(3.1)

Definition 3.1. We call a function � : IR2 ! IR a level set representation of


 if

�
(x) = 	�(x) on IR2(3.2)

where 	� : IR2 ! f0; 1g is de�ned as

	�(x) =

�
1 ; �(x) � 0
0 ; �(x) > 0:

(3.3)

For each function � : IR2 ! IR there is a domain 
 associated with � by
(3.2),(3.3) which we call 
[�]. It is clear that di�erent functions �1; �2, �1 6= �2,
can be associated with the same domain 
[�1] = 
[�2], but that di�erent domains
cannot have the same level set representation. Therefore, we can use the level set
representation for unambiguously specifying a domain 
 by any one of its associated
level set functions.

Definition 3.2. We call a triple (
; �; �), which consists of a domain 
 ��
Br(0) and bounded functions �; � : IR2 ! IR, admissible if the pair (
; �) is ad-
missible in the sense of de�nition 2.1, and � is a valid level set representation of

.

Remark 3.3. For an admissible triple (
; �; �), and for given �̂, �b, the pair
(
; �) is uniquely determined by �.

We use this de�nition to reformulate our shape reconstruction problem.

Level set formulation of the shape reconstruction problem. Given a constant
�̂ > 0, a background distribution �b, and some data ~G as in (2.11). Find a level set

function ~� such that the corresponding admissible triple (~
; ~�; ~�) reproduces the
data, i.e. (2.10) holds with ~ujk given by (2.7) for j = 1; : : : ; p, k = 1; : : : ;K.

3.2. Operators. Throughout this paper we will denote the space of param-
eters �s by F , and the space of level set functions � describing the shapes 
 by
�. For simplicity, both spaces are assumed to be L2-Hilbert spaces equipped with
suitable inner products. The space of data ~Gjk corresponding to the source position

qj and frequency fk is given by Zj = CDj , where Dj is the number of receivers
correponding to the source qj.

We consider the following decomposition of � in IR2

(i) � = �b + �s in IR2(3.4)

(ii) supp(�s) �� Br(0):(3.5)

It says that the permittivity distribution � is decomposed into the background
distribution �b and the perturbation �s which is assumed to have compact support
and which we will refer to as the scattering permittivity in the following.
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Given a constant �̂ and a bounded function �b : IR2 ! IR, there is with each level
set function � 2 � a uniquely determined scattering permittivity �(�) associated
by putting

�(�)(x) =

�
�̂� �b(x) ; �(x) � 0

0 ; �(x) > 0:
(3.6)

With (3.3) we can write this also as

�(�)(x) = 	�(x)(�̂� �b(x)) ; x 2 IR2:(3.7)

Notice that the operator � is chosen such that the triple (
; �; �) with � = �b+�(�)
and domain 
[�] forms an admissible triple (
; �; �) in the sense of de�nition 3.2.

We see that, for (
; �; �) an admissible triple, �(�) is just the scattering per-
mittivity �s as de�ned in (3.4),(3.5)

�(�)(x) = �s(x) = �
(x)(�̂� �b(x)) ; x 2 IR2:(3.8)

Let us assume now that we are given a background permittivity �b and that we have
collected some data ~Gjk which correspond to the 'true' permittivity distribution

~� = �b + ~�s;(3.9)

where ~�s is the 'true' scattering permittivity. The residual operators Rjk map for
a source position qj and a frequency fk a given scattering permittivity �s to the
corresponding mismatch in the data

Rjk : F �! Zj ; Rjk(�s) = Mjujk � ~Gjk(3.10)

where ujk solves

�ujk +
�
ak(�b + �s)(x) + ibk�(x)

�
ujk = qj(3.11)

and Mj is the measurement operator de�ned in (2.9). From (2.10) we see that for
the 'true' scattering permittivity the residuals vanish,

Rjk(~�s) = 0 for j = 1; : : : ; p; k = 1; : : : ;K;(3.12)

if the data are noise-free.
The forward operators Tjk which map a given level set function � 2 � into the

corresponding mismatch in the data are de�ned by

Tjk : � �! Zj ; Tjk(�) = Rjk(�(�))(3.13)

for j = 1; : : : ; p, k = 1; : : : ;K. The goal is to �nd a level set function ~� 2 � such
that

Tjk(~�) = 0 for j = 1; : : : ; p; k = 1; : : : ;K:(3.14)

We mention that all three operators �, Rjk and Tjk are nonlinear.
We will also need an expression for the linearized operators T 0jk[�]. As it is

described in [12], it is convenient to use an approximation to these operators which
is easier to handle in the formal derivation of the adjoint scheme employed here.
The approximated linearized operator is given by

T 0jk[�] : � �! Zj ; T 0jk[�]�� = Mjvjk(3.15)

where vjk solves the linearized equation

�vjk +
�
ak(�b + �s)(x) + ibk�(x)

�
vjk = � ak��s(x)ujk(x);(3.16)
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with ujk a solution of (3.11) and

��s(x) = � [�̂� �b(x)]
��(x)

jr�(x)jC�(�)�B�(�)(x):(3.17)

Here, �B�(�)(x) is the characteristic function supported on the �nite width neigh-
borhood B�(�) = [y2�B�(y), which is introduced in [12] as an approximation
to the surface Dirac delta function concentrated on � = @
[�]. We have C�(�) =

L(�)=Vol(B�(�)) where L(�) =
R
Br(0)

�̂�(x)dx is the length of �, and Vol(B�(�)) =R
Br(0)

�B�(�)(x)dx is the volume of B�(�). For a very small � we will get a very large

weight C�(�), whereas for increasing � this weight C�(�) decreases accordingly.

3.3. A nonlinear Kaczmarz-type approach. The algorithm works in a
'single-step fashion' as follows. Instead of using the data (2.11) for all sources and
all frequencies simultaneously, we only use the data for one source and one frequency
at a time while updating the linearized residual operator after each determination
of the corresponding incremental correction ��.

To be more speci�c, let us assume that we are given a level set function �(n)(x)
and a scattering permittivity �(n)

s
(x) such that (
(n); �b + �(n)

s
; �(n)) forms an ad-

missible triple in the sense of de�nition 3.2. Using a data set ~Gjk corresponding to
the �xed source position qj and the frequency fk, we want to �nd an update ��(n)

to �(n) such that for the admissible triple�

(n+1); �b + �(n+1)

s
; �(n+1)

�
:=(3.18)

�

[�(n) + ��(n)]; �b +�(�(n) + ��(n)); �(n) + ��(n)

�

the residuals in the data corresponding to this source and this frequency vanish

Tjk(�
(n+1)) = Tjk(�

(n) + ��(n)) = 0:(3.19)

Applying a Newton-type approach, we get from (3.19) a correction ��(n) for �(n)

by solving

T 0jk[�
(n)]��(n) = �Tjk(�

(n)) = �
�
Mjujk � ~Gjk

�
(3.20)

where ujk satis�es (3.11) with �s = �(�(n))

�ujk +
h
ak(�b +�(�(n)))(x) + ibk�(x)

i
ujk = qj(x)(3.21)

and

�b(x) + �(�(n))(x) =

�
�̂ ; x 2 
[�(n)]

�b(x) ; x 2 IR2 n
[�(n)]:(3.22)

Since we have only few data given for one source and one frequency, equation (3.20)
usually will have many solutions (in the absence of noise), such that we have to pick
one according to some criterion. We choose to take that solution which minimizes
the energy norm of ��(n)

Min k��(n)k2 subject to T 0jk(�
(n))��(n) = �

�
Mjujk � ~Gjk

�
:(3.23)

This solution can be formulated explicitly. It is

��
(n)
MN

= �T 0jk[�
(n)]�

�
T 0jk[�

(n)]T 0jk[�
(n)]�

��1 �
Mjujk � ~Gjk

�
;(3.24)
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where T 0jk[�
(n)]� denotes the adjoint operator to T 0jk[�

(n)].
After correcting � by � ! � + ��jk, where ��jk is given by (3.24), we use

the updated residual equation (3.20) to compute the next correction ��j0k0. Doing
this for one equation after the other, until each of the sources qj and each of the
frequencies fk has been considered exactly once, will yield one complete sweep of
the algorithm. This procedure is similar to the Kaczmarz method for solving linear
systems, or the algebraic reconstruction technique (ART) in x-ray tomography [20]
and the simultaneous iterative reconstruction technique (SIRT) as presented in [9].
Related approaches have also been employed in ultrasound tomography by Natterer
and W�ubbeling [21], in more general bilinear inverse problems by Natterer [22], in
optical tomography by Dorn [10], and in 3D-electromagnetic induction tomography
(EMIT) by Dorn et alii [11]. Because of the similarity of the derived method to
the ART scheme in CT, we will often refer to it in short as 'levelART'.

3.4. The adjoint linearized operator T 0jk[�
(n)]�. In order to calculate the

minimal norm solution (3.24), we will need a practically useful expression for the
adjoint of the linearized operator T 0jk[�]. We will present such an expression in this
section. The calculation of the action of this operator will typically require to solve
an adjoint Helmholtz problem. This explains the name 'adjoint �eld method' which
is often used for the general inversion method employed here.

Let Ĉjk be de�ned as Ĉjk = T 0jk[�
(n)]T 0jk[�

(n)]�, or some approximation to it

as it was derived in [12]. In order to calculate a correction ��
(n)
MN

by (3.24) we have
to apply the operator T 0jk[�

(n)]� to the vector

� := Ĉ�1
jk

�
Mjujk � ~Gjk

�
:(3.25)

An explicit formula for T 0jk[�
(n)]�� is given next.

T 0jk[�
(n)]�� =

[�̂� �b(x)]

akjr�(n)(x)j Re
�
ujk(x)zjk(x)

�
C�(�)�B�(�)(x);(3.26)

where ujk solves

�ujk + �k(x)ujk = qj(x);(3.27)

and zjk solves the 'adjoint equation'

�zjk + �k(x)zjk =

DjX
d=1

��d�(x� xjd)(3.28)

with

�k(x) = ak
�
�b(x) + �(�(n))(x)

�
+ ibk�(x)(3.29)

and ak, bk de�ned as in (2.8).

3.5. Implementation: The levelART algorithm. In the levelART algo-
rithm described in Table 1, � is a relaxation parameter for the update of the level
set function which is determined empirically. The constant C�(�) could be cal-

culated explicitly for the actual curve �(n), or it could be approximated by some
value corresponding to a simple geometrical object (to give an example, in case of
a single circle it would be C�(�) = (2�)�1). In our numerical experiments so far,
however, it is simply considered as part of �. The same holds true for the constant
c1 which has been introduced in [12] as an approximation to jr�j. The constant
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Table 1: The 'levelART' algorithm.

Preparation step.

� Calculate Ĉjk and Djk = Ĉ�1
jk for each source qj, j = 1; : : : ; p, and each

frequency fk, k = 1; : : : ;K, and store in memory for later use.
� Build groups of frequencies Gm = ff1; : : : ; fKm

g, m = 1; : : : ;M .

Initialization.

n = 0;

(
(0); �(0); �(0)) given from low-frequency STAF.

Reconstruction loop.

FOR m = 1 :M march over frequency groups Gm

FOR i = 1 : Im perform Im sweeps for frequency group Gm

FOR k = 1 : Km march over frequencies in Gm

FOR j = 1 : p This loop needs only one LR-factorization

�jk = Djk(Mjujk � ~Gjk); ujk solves (3.27) with �(n), qj, fk

��jk = � �̂��b(x)
ak

Re(ujkzjk)�B�(�); zjk solves (3.28) with �(n) and �jk

END

��(n)(x) =
Pp

j=1 ��jk(x);

�(n+1) = C
(n)
LS

(�(n) + �
C�(�)
c1

��(n)); update level set function

Optional step: 'curve shortening by di�usion'. See [12].

�(n+1) = �b +�(�(n+1)); n = n+ 1; Reinitialization n! n+ 1

END

END alternatively, some stopping criteria can be used here

END

(
(N); �(N); �(N)) = (
[�(n)]; �b + �(�(n)); �(n)); Final reconstruction.

� is in our numerical experiments chosen between 30-40 cm, which corresponds to

2-3 grid cells. The scaling factor C
(n)
LS

is determined after each update to keep the
global minimum (or maximum) of the level set function at a constant value. For
more details see [12].

4. A simple source-type method (STAF)

In the framework of inverse scattering problems, the method we propose here
can be considered as a 'source-type inversion method'. Roughly speaking, the
general idea of source-type reconstruction methods in inverse scattering is to split
a given nonlinear inverse scattering problem into two subproblems. The �rst one is
linear, and tries to recover a virtual 'equivalent source' in the medium which would
be able to �t the data if applied with the known background distribution. This
equivalent source is related to the unknown scattering permittivity by a nonlinear
'constitutive' relation. Therefore, in the second part of the algorithm, a nonlinear
inverse problem has to be solved to derive the scattering permittivity from the
recovered equivalent source distribution.
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This idea is not at all new. It has been applied for example in the Source-
Type Integral Equation (STIE) method of Habashy et al. [14], or in the method
presented by Chew et al. in [5]. More recently, similar ideas have been applied by
Abdullah et al. [1], Caorsi et al. [3], and van den Berg et al. [30, 31].

All of these approaches have in common that they use the source-type method
as a stand-alone inversion scheme. Such a method has the advantage that it is not as
sensitive to strong nonlinearities in the inverse problem as for example perturbation
methods or the Born or Rytov approximation are [8, 13, 17].

On the other hand, interpreting the inverse scattering problem as an inverse
source problem is not without drawbacks. For example, the existence of so-called
'non-radiating sources' or 'invisible sources' gives rise to a nonuniqueness in the
inverse source problem, which is di�cult to deal with when solving the nonlinear
part [1, 7, 14]. Moreover, it is not clear at all how to combine properly the
information corresponding to di�erent experiments, since each experiment creates
its own 'equivalent sources' and its own 'invisible sources'. For more information
about possible applications, advantages and drawbacks of the source-type scheme
as a stand-alone inversion tool we refer to [1, 2, 3, 5, 7, 14, 30, 31].

Our approach is di�erent from those mentioned above. We only want to �nd a
good approximation to the shapes of the objects, and a corresponding initial level
set function which can be used to start the levelART algorithm. In particular, we
can make use of our prior information about the permittivity distribution. This
will allow us to circumvent most of the problems of source-type schemes which have
been mentioned above.

We will now describe this method, which we will call the Source-Type Adjoint
Field (STAF) method, in more details.

4.1. Formulation as an inverse scattering problem. To start with we
formulate the following inverse scattering problem.

Inverse Scattering Problem. Let us assume that we are given a bounded
function �b : IR2 ! IR, and some data ~G as in (2.11). Find a bounded function
~�s : IR

2 ! IR with supp(�s) �� Br(0) such that ~� = �b + ~�s reproduces the data,
i.e. (2.10) holds with ~ujk given by (2.7) for j = 1; : : : ; p, k = 1; : : : ;K.

For a �xed frequency fk and a source qj, let ~ujk be the solution of

�~ujk +
�
ak
�
�b + ~�s

�
(x) + ibk�(x)

�
~ujk = qj(x);(4.1)

and let ujk be the solution of the 'unperturbed' equation

�ujk + (ak�b(x) + ibk�(x))ujk = qj(x):(4.2)

De�ne

~vjk := ujk � ~ujk:(4.3)

Subtraction of (4.2) from (4.1) shows that ~vjk solves

�~vjk + (ak�b(x) + ibk�(x)) ~vjk = ~Qs
jk(x);(4.4)

where the 'scattering source' ~Qs
jk(x) is de�ned as

~Qs
jk(x) = ak~�s(x)~ujk(x):(4.5)
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Denoting by Y the Hilbert space of sources, we introduce a 'source type' forward
operator Ajk by putting

Ajk : Y �! Zj ; AjkQ
s
jk = Mjvjk(4.6)

where Mj is the measurement operator de�ned in (2.9), and vjk solves

�vjk + (ak�b(x) + ibk�(x)) vjk = Qs
jk(x):(4.7)

The operator Ajk is linear.

Let us assume now that we apply the 'correct' scattering source ~Qs
jk(x) de�ned

by (4.5) as argument of Ajk. Then we know from (2.10), (3.9), (3.10) that

Ajk
~Qs
jk = Mj~vjk = Mj(ujk � ~ujk) = Mjujk � ~Gjk = Rjk(0):(4.8)

The vectors Rjk(0) are easily computed by solving a forward problem on the back-
ground distribution (4.2). Therefore, all we have to do to get back the scattering

source ~Qs
jk from the data ~Gjk is to solve (4.8) for ~Qs

jk. Doing so amounts to solving
an ill-posed but linear inverse problem.

Once we have recovered ~Qs
jk(x), we want to get back ~�s(x) by using the consti-

tutive relation (4.5). This second part of the inversion scheme can be interpreted
as solving a nonlinear inverse problem since ~ujk(x) depends on ~�s(x).

Notice that ~Qs
jk(x) varies with di�erent sources and frequencies, but that ~�s(x)

is the same for all sources and all frequencies (if we neglect dispersion). We will
make use of this observation when we try to solve the nonlinear part (4.5). In the
following, we describe the method which we will use to recover the scattering source
~Qs
jk(x) from a given data set ~Gjk for a �xed source qj and a �xed frequency fk.

4.2. Looking for a scattering source. Since for a �xed (primary) source
position and a �xed frequency we have only few data given to recover ~Qs

jk, and since
we have to take into account that also 'non-radiating' and 'invisible' sources have
been generated in the experiment, we assume that there will be many solutions (in
absence of noise) of (4.8). To pick one, we are looking for the solution with minimal
norm

Min kQs
jkkY subject to AjkQ

s
jk = Rjk(0):(4.9)

It is given by

Qs
jk;MN = A�jk

�
AjkA

�
jk

��1
Rjk(0);(4.10)

where A�jk denotes the adjoint operator to Ajk. In our numerical experiments
presented in this paper, we will simply replace the operator AjkA

�
jk by (a constant

times) the identity which amounts to applying strong regularization.
The following theorem, which is proven in [12], tells us how to calculate the

action of A�jk on a vector � 2 Zj in an e�cient way.

Theorem 4.1. Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ; Dj be the

detector positions corresponding to the source qj. Then, A�jk� is given by

A�jk� = zjk �Br(0);(4.11)

where zjk solves

�zjk + (ak�b + ibk�) zjk =

DjX
d=1

�d�(x � xjd):(4.12)
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4.3. Recovery of the scattering permittivity. After we have found a scat-
tering source Qs

jk which satis�es (4.9), we want to use the constitutive relation

Qs
jk(x) = ak~�s(x)~ujk(x);(4.13)

which holds for the 'correct' scattering source ~Qs
jk according to (4.5), to �nd an

approximation for ~�s(x).
Let ~ujk be a solution of (4.1) and ujk a solution of (4.2). We decompose Qs

jk,
~ujk, ujk and ~�s into amplitude and phase

Qs
jk(x) = jQs

jk(x)j eir(x); ~ujk = j~ujkj ei~s(x);(4.14)

ujk = jujkj eis(x); �s(x) = j�s(x)j eit(x);(4.15)

where we have omitted the subscripts jk in the argument functions r, ~s, s, and t
for simplicity in the notation. Making use of the fact that ~�s(x) 2 IR we see that

t(x) 2 f0; �g for all x 2 IR2:(4.16)

With (4.14),(4.15) equation (4.9) decomposes into two equations, one for the am-
plitude and one for the phase. They are

jQs
jk(x)j = ak j~�s(x)j j~ujkj;(4.17)

r(x) = ~s(x) + t(x):(4.18)

The observation in our numerical experiments is that, although s(x) and ~s(x) might
be quite di�erent from each other for large perturbations ~�s(x), the amplitudes
jujk(x)j and j~ujk(x)j do not di�er too much from each other in the scattering
region. Therefore, in our applications it is a reasonable approximation to assume
that

j~ujk(x)j � jujk(x)j in Br(0):(4.19)

With this approximation, (4.17) yields the following estimate for j~�s(x)j

j~�(jk)
s

(x)j � jQs
jk(x)j

akjujk(x)j in Br(0):(4.20)

We have added the indices j and k on the left hand side of (4.20) to indicate that

we have used only the data ~Gjk corresponding to source qj and frequency fk for its
determination.

Notice that the step (4.19), (4.20) is nonlinear since taking the amplitude of a
complex number is a nonlinear operation. Therefore, the approach presented here
is quite di�erent from the usual Born approximation which approximates ~ujk by
ujk.

For the purposes of the present paper, the determination of j~�s(x)j is already
su�cient in order to get a good �rst guess for the shapes of the unknown inclusions,
since we can now make use of our prior information about the correct value of �̂ in
(2.12).

In source-type reconstruction schemes it is generally not clear what the best
way is to combine information corresponding to di�erent source positions qj, j =
1; : : : ; p, in the reconstruction process. We have chosen to use the following formula
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Table 2: The STAF algorithm.

Select a frequency fk.

FOR j = 1 : p This loop needs only one LR-factorization

Rjk(0) = Mjujk � ~Gjk, ujk solves (4.2)

Qs
jk = A�jkRjk(0) = zjk �Br(0), zjk solves (4.12) with �jk = Rjk(0)

j~�(jk)
s

(x)j = jQs
jk(x)j

ak jujk(x)j

END

j~�s(x)j = 1
p

Pp

j=1 j~�(jk)s
(x)j, x 2 Br(0)

Fix a constant Cl > 0. The reconstructed shape is fx 2 Br(0) : j~�s(x)j � Clg.

for this purpose:

j~�(k)
s
(x)j = 1

p

pX
j=1

j~�(jk)
s

(x)j:(4.21)

We mention that the reconstruction formula (4.21) was chosen here mainly be-
cause of its apparent similarity to the backprojection technique without �ltering
in Computerized Tomography (CT), with the lines replaced by more complicated
patterns given by j~�(jk)

s
(x)j. It should be emphasized, however, that the mathe-

matical derivation of the reconstruction scheme applied here is completely di�erent
from the derivation of the backprojection scheme in CT. Whereas the latter one ad-
mits the interpretation as an adjoint scheme for approximately inverting the linear
Radon transform [15], the derivation of (4.21) involves a nonlinear step (taking the
absolute values of the �elds), and tries to approximately invert a nonlinear forward
operator.

4.4. Implementation: The STAF algorithm. The Source Type Adjoint
Field (STAF) scheme, which we have employed in our numerical experiments pre-
sented in section 5, is in brief algorithmic form described in Table 2.

5. Numerical Experiments

5.1. Discretization of the computational domain. In our numerical ex-
periments, we use a Finite-Di�erences Frequency Domain (FDFD) code written in
MATLAB for solving (2.1)-(2.3). The code uses appropriately designed perfectly
matched layers (PML) to avoid re
ections at the arti�cial computational boundaries
[24].

The physical domain is partitioned into 100 � 100 elementary cells (pixels)
in the �rst numerical example, and into 180� 110 elementary cells in the second
example. Each of these grid cells has a physical size of approximately 0:14� 0:14
m2, such that the total computational domain in the �rst example covers an area
of 14 � 14 m2, and in the second example of 15 � 25 m2. The eight layers which
are closest to the boundaries of the computational domain are used as a PML.

We will refer to the �rst numerical example as the 'full-view' situation, and to
the second numerical example as the 'limited-view', 'cross-borehole' or 'geophysical'
situation. This terminology is motivated by the source and receiver geometries used,
which are as follows.
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In the full-view example, we have 64 sources and 64 receivers given which
surround the domain of interest. Each source position is at the same time a receiver
position and vice versa. The distance of two adjacent sources or receivers from each
other is four pixels or 55 cm. The area enclosed by these sources and receivers has
a size of 10� 10 m2.

In the two limited-view examples, 74 sources and receivers are positioned
equally spaced in two boreholes. The distance of two adjacent sources or receivers
from each other is again 4 pixels or 55 cm, and the distance of the two boreholes
from each other is about 10 m.

We mention that, in all of our numerical examples, the regions beyond the
source and receiver positions are part of the inversion problem, too. This means, the
area which has to be recovered from the data is the whole area situated between the
PML boundaries. In some of our numerical experiments, artifacts can be observed
developping in the outer areas during the early stages of the reconstruction process.

We apply time-harmonic dipole sources of the form (2.5) with frequencies of
f = 5, 10, 15, 20, 25, or 30 MHz. In our examples, this corresponds to wavelengths
in the background medium between 2 meters for f = 30 MHz and 13 meters for
f = 5 MHz. The size of an individual grid cell is chosen such that each of these
wavelengths is sampled by at least 16 pixels in order to avoid numerical artifacts
due to undersampling.

The data in our numerical examples are generated by running the FDFD for-
ward modelling code on the correct permittivity and conductivity distributions.
Using the same forward code for creating the data and for doing the reconstruction
is usually called 'inverse crime'. Therefore, to make sure that the situations we
model in our experiments are as realistic as possible, we have tested the forward
modelling code thoroughly, and add Gaussian noise with signal-to-noise ratios of
up to 10 dB to the real and imaginary parts of the generated data.

5.2. A full-view example. Our �rst numerical example demonstrates the
performance of the STAF algorithm as well as the levelART algorithm in a situ-
ation where a relatively complicated shape has to be recovered from data which
correspond to receiver positions completely surrounding the domain of interest. All
data are noise-free in this idealized example. The geometry is shown in Figure 1.
The positions of the sources and receivers are indicated by dots in the Figure. The
background medium in this example consists of a homogeneous conductivity distri-
bution �b = 3:0 � 10�4 Siemens/m, and a homogeneous permittivity distribution
�b = 20. Inside the object, the permittivity is �̂ = 15, having a moderate contrast
to the background distribution. Notice that an interesting feature of this geometry
is the 'hole' in the body of the object which is di�cult to reconstruct.

First we apply the STAF reconstruction scheme by using the data corresponding
to one �xed frequency only. We do this for six di�erent frequencies, namely 5, 10,
15, 20, 25 and 30 MHz. The constant Cl in the reconstruction scheme (see Table
2) which determines the shapes is chosen to be 0:7 times the maximal value of the
reconstructed function j~�s(x)j. Figure 2 shows the di�erent reconstructions. As
it was expected the resolution of the reconstructions increases if we go to higher
frequencies. The lowest frequency (5 MHz) only gives us a large blop at the correct
position of the sought object. At f = 15 MHz the triangular shape of the roof
of the house becomes visible, and the hole in the bottom of the house is correctly
recovered at a frequency of f = 25 MHz. The highest frequencies (f = 25 MHz
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Figure 1. Original object for the example with full view. The
dots in the �gure indicate the source and receiver positions. The
permittivity in the background is �b = 20, and in the object �̂ = 15.

and f = 30 MHz) give us a quite decent reconstruction of the correct shape of the
unknown object.

Figure 3 demonstrates how the levelART algorithm performs in this situation
when we use the lowest frequency (5 MHz) STAF reconstruction as an initial guess.
We use three groups of frequencies for this reconstruction (see Table 1), each of them
containing only one single frequency, namelyG1 = f10 MHzg, G2 = f20 MHzg, and
G3 = f30 MHzg. We start the reconstruction with the lowest frequency f = 10
MHz and perform I1 = 30 sweeps as described in Table 1. Continuing from that
result, we perform I2 = 30 sweeps with f = 20 MHz, and �nally I3 = 30 sweeps with
f = 30 MHz. We believe that marching in this way over the frequencies, starting
with the lower frequencies and continuing with the higher frequencies, is helpful in
dealing with the strong nonlinearity (high contrast) of the problem, since the lower
frequencies seem to be less sensitive to the high contrast in the parameters than
the higher frequencies are. This is in agreement with related observations reported
earlier by Chen [4].

Comparing the �nal result of the levelART algorithm with the STAF recon-
structions in Figure 2, we conclude that the iterative levelART scheme can be used
to improve each of the STAF reconstructions.

5.3. A cross-borehole situation with multiple objects. In our second
numerical example, we consider a more realistic situation which is typical for geo-
physical applications. Comparable situations occur for example when we wish to
monitor pollutant plumes at environmental cleanup sites from cross-borehole EM
data. The geometry of this second example is shown in Figure 4.
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Figure 2. Di�erent STAF reconstructions for the full-view ex-
ample using data with a �xed frequency. Left column from top to
bottom: f = 5 MHz, f = 10 MHz, f = 15 MHz; Right column
from top to bottom: f = 20 MHz, f = 25 MHz, f = 30 MHz. The
data are noise-free.

The background permittivity distribution in this example consists of four tilted
layers with values of �b = 21 in the top layer, and then continuing downwards with
20 , 19, and again 21 for the deepest layer. The conductivity distribution �b is
homogeneous with a value of �b = 3:0� 10�4 S/m everywhere.

Embedded in this background are three compact inclusions as it can be seen in
Figure 4. The permittivity inside these inclusions is �̂ = 5, having a high contrast
to the background values. The three inclusions are oriented such that there are
two 'channels' of background material between them, one of them in the vertical
and one in the horizontal direction. The di�culty in this example is to separate
the three inclusions from each other from the limited-view data. In particular, the
reconstruction of the vertical channel is critical since we expect that the resolution
in the horizontal direction will su�er from the missing data.

As in the full-view example, we �rst apply the STAF resonstruction scheme by
using only the data corresponding to one �xed frequency. We do this for each of
the six frequencies 5, 10, 15, 20, 25, and 30 MHz. Again, the constant Cl in the
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Figure 3. The levelART process: Evolution of permittivity �(n).
Left column from top to bottom: STAF reconstruction of �(0) for
5 MHz (top left); This is the starting guess for the following recon-
struction using levelART. After 10 steps of levelART with 10 MHz;
After 30 steps with 10 MHz; Right column from top to bottom:
After 10 more steps with 20 MHz; After 30 steps with 20 MHz; Fi-
nal reconstruction after 30 steps of levelART with 30 MHz (bottom
right). The algorithm used noise-free data.

reconstruction scheme is chosen to be 0:7 times the maximal value of the recon-
structed function j~�s(x)j. Figure 5 shows the di�erent reconstructions in the case
where the data are noise-free, and Figure 6 shows the corresponding reconstruc-
tions in the case where the data are contaminated by additive Gaussian noise with
a signal-to-noise ratio (SNR) of 10 dB.

We observe in the Figures 5 and 6 that, in contrast to our �rst example, the
STAF reconstructions do not improve with increasing frequency in this limited-
view situation. The reconstruction corresponding to the lowest frequency (5 MHz)
is similar to the reconstruction which we get in the full-view situation, which means
that the lower frequencies are less sensitive to the large amount of missing data.
When we increase the frequency, the reconstructions look like deteriorated images
which are oscillatory in the horizontal direction, due to the missing data on the
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Figure 4. True permittivity distribution in the cross-borehole
example. The dots in the �gure indicate the source and receiver
positions. The permittivity in the background layers is (from top
to bottom) �b = 21, 20, 19, and 21. Inside the object it is �̂ = 5.

top and on the bottom of the reconstruction domain. In the case of noisy data in
Figure 6, the higher frequency reconstructions look even worse due to additional
blurring which is caused by the noise in the data. In short, the �gures show that
the sensitivity of the STAF reconstructions to limited view and noise in the data
increases with increasing frequency.

Combining the observations so far we conclude that low frequency data are
fairly insensitive to noise in the data and to limited view, but the corresponding
reconstructions have low resolution. On the other hand, the high frequency data
yield in the ideal situation of complete data sets high resolution reconstructions,
but these reconstructions deteriorate dramatically when only noisy limited-view
data are available.

In the levelART approach we try to make use of the favourable features of the
low frequency data as well as of the high frequency data, but in a way such that the
unwanted features of each of them are compensated for by the other one. In order
to achieve this goal, we de�ne two (or in general even more) groups of frequencies
(see Table 1), namely G1 = f15 MHzg, and G2 = f20; 25; and 30 MHzg. As initial
guess we use the STAF reconstruction of f = 5 MHz. We make this choice because
of our observation that the lower frequency reconstructions are less sensitive to
the limited-view geometry and to the noise in the data. Now we perform I1 = 20
sweeps of the levelART algorithm with the frequency 15 MHz, corresponding to
the �rst frequency group. Since we have already a good initial guess available, the
nonlinearity in the problem has been reduced and it causes no problems to use that
frequency in this stage of the reconstruction process.
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Figure 5. Di�erent STAF reconstructions for the cross-borehole
example using limited-view data with a �xed frequency. Left col-
umn from top to bottom: f = 5 MHz, f = 10 MHz, f = 15 MHz;
Right column from top to bottom: f = 20 MHz, f = 25 MHz,
f = 30 MHz. The data are noise-free.

We see in Figure 7 that after 20 sweeps with 15 MHz we almost have the three
reconstructed objects separated from each other. However, it can be observed that
it becomes more and more di�cult for the algorithm to improve the reconstruction
with only the data corresponding to this frequency. Therefore, we continue with
the second frequency group, and perform I2 = 30 sweeps with the three frequencies
20, 25, and 30 MHz. Each of these sweeps uses �rst the lowest frequency (20 MHz)
data for calculating one update for the shape, then uses the next higher frequency
(25 MHz) data for the next update, and �nally the highest frequency (30 MHz)
data for the �nal update of the given sweep. The succeeding sweep starts again
with the lowest frequency (20 MHz) data of that group G2.

We believe that, in this combination, the updates from the lower frequency data
in the given group act as regularizing and stabilizing elements in the combined
reconstruction process, and compensate for the deteriorating e�ects due to the
missing data and the noise in the highest frequencies. The resolution of the �nal
reconstruction nevertheless seems to be mainly determined by the highest frequency
data in the group, as it can be seen in Figure 7.



20 OLIVER DORN, ERIC L. MILLER, AND CAREY M. RAPPAPORT

−40 −20 0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180
−40 −20 0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

−40 −20 0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180
−40 −20 0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

−40 −20 0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180
−40 −20 0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

Figure 6. Di�erent STAF reconstructions for the cross-borehole
example using limited-view data with a �xed frequency. Left col-
umn from top to bottom: f = 5 MHz, f = 10 MHz, f = 15 MHz;
Right column from top to bottom: f = 20 MHz, f = 25 MHz,
f = 30 MHz. The data are noisy with a signal-to-noise ratio of 10
dB.

The regularizing e�ect of lower frequency data becomes even more visible in
the following experiment. Here, we want to �nd out whether it would be su�cient
just to run the levelART algorithm with data corresponding to only one of the
higher frequencies and using the STAF reconstruction with 5 MHz as an initial
guess. We use the same geometry as in the above cross-borehole experiment, but
do not add any noise to the data. Starting with the STAF result for 5 MHz as
displayed in Figure 8, we perform for each of the frequencies 15 MHz, 20 MHz, 25
MHz, and 30 MHz 110 sweeps with levelART using only that single frequency. No
additional regularization (as for example 'curve shortening by di�usion') is applied.
The results we get are displayed in Figure 8. Then, to compare with, we do an
experiment where we �rst run levelART using the data with frequency 15 MHz 40
times, and then run 25 additional sweeps using the data with frequencies 20 MHz,
25 MHz, and 30 MHz repeatedly in a cyclic order. In this way, all experiments are
comparable with each other in terms of total computational cost. The result of this
last experiment is also displayed in Figure 8.
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Figure 7. The levelART process: Evolution of permittivity �(n).
Left column from top to bottom: STAF reconstruction �(0) for 5
MHz (top left); This is the starting guess for the following recon-
struction using levelART. After 10 steps of levelART with 15 MHz;
After 20 steps with 15 MHz; Right column from top to bottom:
After 10 more sweeps with 20+25+30 MHz; After 20 sweeps with
20+25+30 MHz; Final reconstruction after 30 sweeps of levelART
with 20 + 25 + 30 MHz (bottom right). The algorithm used noisy
data with a SNR of 10 dB and curve shortening by di�usion.

These results show that the reconstructions using only the data corresponding
to one single frequency are quite useful as long as this frequency is not too high.
The reconstructions for 15 MHz and 20 MHz data clearly approximate the correct
geometry of the three objects, but these objects are not yet completely separated
from each other. In addition, the resolution in these reconstructions is still not
very good. Increasing the frequency should improve the resolution, but the �gures
corresponding to 25 MHz and 30 MHz show that instead the algorithms break
down in the sense that the reconstructions get trapped far away from the correct
ones. The combined reconstruction in the bottom right image of Figure 8, on the
other hand, behaves perfectly stable and shows an improved resolution due to the
incorporated higher frequency data.
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Figure 8. The levelART algorithm: Final reconstructions of per-
mittivity �. Left column from top to bottom: STAF reconstruction
�(0) for 5 MHz (top left), which is the starting guess for each of the
following reconstructions: �nal reconstruction after 110 iteration
steps using only 15 MHz data; using only 20 MHz data. Right
column from top to bottom: �nal reconstruction after 110 steps
using only 25 MHz data; using only 30 MHz data; bottom right:
�nal reconstruction after �rst using 40 steps with 15 MHz data,
and then 25 more sweeps using 20, 25 and 30 MHz data in a cyclic
order. The data are noise-free and no additional regularization is
applied.
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Figure 9. Top: norms of residuals in the reconstructions which
use only one single frequency (110 iterations). Bottom: norms of
the residuals in the reconstruction which starts with the frequency
15 MHz (40 iterations, not shown in the �gure), and then continues
in a cyclic order with 20, 25 and 30 MHz data, using each of these
exactly 25 times.
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In Figure 9 we display the evolution of the norms of the residuals during the
reconstruction process. When using only data corresponding to one low frequency
(15 MHz and 20 MHz), the residuals decrease continuously and the reconstruction is
performed stably. However, when higher frequency data (25 MHz and 30 MHz) are
used instead, the residuals get 'trapped' on their way and start oscillating around
some intermediate value. On the other hand, when using a combination of lower
and higher frequency data, all residuals (including those corresponding to higher
frequencies) decrease continuously until the reconstruction task is completed.

We want to mention that other choices for building frequency groups are cer-
tainly possible, and might even yield better results than those presented here. So
far it is not clear whether there is an 'optimal' way of selecting these groups.

6. Summary and future directions

We have investigated the use of multifrequency electromagnetic data for shape
reconstruction in a limited-view source-receiver geometry. We have compared the
results of two recently introduced shape reconstruction methods, namely a very
simple one-step source type method (STAF) on the one hand, and an iterative
method (levelART) on the other hand which uses adjoint �elds and level sets for
the inversion. It was shown that, in the full view situation, the STAF algorithm
yields low resolution reconstructions if applied to the data corresponding to the
lower frequencies, and decent higher resolution reconstructions if applied to the
higher frequency data. The reconstructions from the lower frequency data are
fairly insensitive to noise and missing data in a limited-view geometry, whereas the
higher frequency reconstructions deteriorate dramatically in that situation.

The levelART algorithm, if applied with a STAF reconstruction as initial guess,
is able to yield improved reconstructions in all cases. It uses the lower frequency
data for stabilizing and regularizing the reconstruction process, and for overcoming
the problems caused by the noisy data and the high contrasts in the perturbations.
Furthermore, in all examples which we have considered so far, the resolution of the
�nal reconstructions is determined by the highest frequency data which are used
for the inversion. Some additional regularization (for example 'curve shortening by
di�usion') might be useful in order to increase the smoothness of the reconstructed
boundaries. This feature of the levelART algorithm is discussed elsewhere [12].

So far we have only considered a somehow idealized 2D situation. However,
we believe that the generalization of the method to a more realistic 3D situation is
possible and doable. This is an interesting problem for future research.
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