SANDIA REPORT

SAND2001-8075
Unlimited Release
Printed November 2000

MPP Direct Numerical Simulation of
Diesel Autoignition

H. N. Najm, J. H. Chen, J. F. Grcar, R. C. Armstrong, C. A. Kennedy, J. Ray,
W. S. Koegler, A. E. Lutz, M. D. Allendorf, D. Klinke, A. H. McDaniel, N. Nystrom,
R. Subramanya, and R. Reddy

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: feports@adonis.osti.gov |
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: prders@ntis.fedworld.gov|

Online order: http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

Sandia Report SAND2001-8075
Unlimited Release
Printed November 2000

MPP Direct Numerical Simulation of Diesel Autoignition

H.N. Najm, J.H. Chen, J.F. Grcar, R.C. Armstrong, C.A. Kennedy, J. Ray, W.S. Koegler
A.E. Lutz, M.D. Allendorf, D. Klinke, and A.H. McDaniel

Sandia National Laboratories
Livermore, CA 94550

and
N. Nystrom, R. Subramanya, and R. Reddy

Pittsburgh Supercomputing Center
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We discuss developments of massively parallel simulation and post-processing tools for direct numerical
simulations of reacting flow, as well as results of flame studies pertaining to diesel conditions. A
3D massively parallel (MP) compressible fixed-mesh reacting flow direct numerical simulation (DNS)
code was developed. Machine-generated code for efficient reaction rate evalutions was implemented
and benchmarked. Additive implicit-explicit Runge-Kutta time integration methods, targeted at stiff
reacting flow problems, were developed and evaluated. Object-oriented code frameworks were utilized
and evaluated with regard to their use for adaptive mesh refinement (AMR) computations of reacting
flow with detailed kinetics. Common-Component-Architecture (CCA) based data mining tools were
developed and used to identify, track, and analyze arbitrary features, in computed AMR results of
ignition kernels in 2D reacting flow. The burnout of fuel-rich diffusion flame pockets, expected features
of autoignition in diesel engines, was studied using a 1D transient flame code using detailed kinetics.
We also modeled the catalytic oxidation of hydrogen over palladium as part of continuing efforts focused
on processes relevant in catalytic converters. Overall, this work fostered and advanced collaborations
with the Pittsburgh Supercomputer Center (PSC) on massively parallel reacting flow code development
and optimization, and with other groups in Sandia-CA on the development and utilization of Common
Component Architecture (CCA) object-oriented frameworks for maximizing code reuse.

Acknowledgments

This work was supported by the Laboratory Directed Research and Development (LDRD) program at
Sandia National Laboratories (SNL).

Contents

1.

Introduction

2. DNS Code Development

3. Auto-CHEMKIN Software Development

4. The Theory of N-Additive Runge-Kutta Methods
5. Object-Oriented Mesh-Management Frameworkds
6.
7
8
9

CCA Post-Processing Tools

. Transient Spherical Flame Model
. Materials and Surface Chemistry for Catalytic Conversion

. Closure

References

Distribution

19
27
38
48
54
56
57

59

1. Introduction

This project uses collaborations with academic partners and participating Sandia organizations to move
the state of the art of large scale Massively Parallel Programming (MPP) reacting flow simulations
forward. The effort involves various facets including efficient coding and optimization of existing
algorithms for massively parallel (MP) hardware, enhancements to code performance by using machine-
coding of cpu-intensive routines, development of efficient implicit-explicit high-order schemes for stiff
reacting flow systems, testing and evaluation of object-oriented frameworks for parallel Adaptive Mesh
Refinement (AMR) computations of reacting flow, development of Common Component Architecture
(CCA) based object-oriented postprocessing tools for AMR data sets, studies of post-ignition flame
burnout at diesel engine conditions, and catalytic studies relevant to processes in catalytic converters.

During the course of the project the following was accomplished:

1. A 3D massively parallel (MP) compressible fixed-mesh reacting flow direct numerical simulation
(DNS) code was constructed, demonstrated, and profiled on various computational platforms.
This code is now being used for large-scale 3D DNS of turbulent flow with detailed kinetics,

greatly enhancing prior capabilities.

2. A detailed study was conducted in collaboration with Pittsburgh Supercomputing Center (PSC)
to implement and evaluate/benchmark machine-coded (or auto-coded) reaction-rate evaluation
routines in CHEMKIN-III. The use of auto-coded rates routines was found to offer substantial

savings in cpu-time, leading to more efficient code.

3. A detailed study of N-Additive Runge-Kutta (ARKy) time integration methods was conducted.
The construction of these schemes was examined, along with their error and stability analyses.
ARKy schemes allow for operator-selective integration of governing equations, where an optimal
RK construction is used for each operator. This is a necessity for the integration of stiff reacting
flow equations where implicit time integration is utilized for stiff terms and explicit integration

is used for the non-stiff terms.

4. Two potential object oriented frameworks for adaptive mesh refinement (AMR) DNS of reacting
flow (OVERTURE[24] and GRACEJ7]) were evaluated and tested as regards overall efficiency,
overhead costs, and scalability. We have concluded that the GRACE framework is more effi-

cient, lightweight, scalable, and more readily available for distributed parallel computing. As a

result of this investigation, GRACE is now being used as the basis of new Common Component

Architecture (CCA) code development in Sandia.

5. A CCA-based set of tools for data mining/feature extraction targeted at general unstructured/structured
meshes have been developed. These tools have been demonstrated on specific test problems, and

are being targeted at large-scale AMR or fixed-mesh reacting flow data sets.

6. The burnout of fuel-rich diffusion flame pockets, expected features of autoignition in diesel en-
gines, was studied using a 1D transient flame code using detailed kinetics. Results are used to

study the transient evolution of flame radicals during such processes.

7. Given the relevance of post-combustion catalytic conversion of pollutant species to automotive
applications, we also targeted modeling efforts at catalysis. We present a study of the catalytic

oxidation of hydrogen over palladium.

The execution of this project has brought us significantly further along in the formulation and
development of advanced efficient and scalable next-generation MP codes for resolved reacting flow
computations with detailed kinetics and transport in large-scale flow. Such capabilities are crucial for
accurate computations of reacting flow at diesel engine conditions, or in geometries approaching diesel

engine scales.

2. DNS Code Development

We have collaborated with Ravi Subramanya and Reddy Raghurama, at the Pittsburgh Supercomputing
Center at Carnegie Mellon University on developing a massively parallel 2D/3D DNS code based on
the compressible formulation of the reacting flow equations using MPI message passing protocols. This
collaboration has led to an efficient, scalable code that is portable across multi-processor platforms that
support MPI, including Cray T3E, SGI Origin, and IBM SP3 machines. The code has been validated
against serial flame-vortex, and turbulent flame DNS runs. See Figure 2.1 for scalability data. Profiling
of the code indicted that a significant fraction of the CPU time in performing DNS is expended on
computing the reaction rate. Computation of the reaction rate was sped up by 60% for the test case,
and overall the code speedup was 13% by generating in-line code for the reaction rate subroutines. A
Chemkin API in the DNS code [34, 35] was also developed to facilitate inclusion of different chemical
mechanisms. Utilities to morph restart files to different partition sizes were developed and parallel

turbulence initialization routines were written.

Performance Scaling

600 T T T T T
500 |- —
a 400 |- —

-8 ./.
3 300 [u
& 200 |- . T3E .
100 B .&./]

0 g”“'. l l l l l

0 100 200 300 400 500 600

PEs

Figure 2.1 3D DNS code scaling curves for the T3E performed with a flame-vortex problem. The straight line
corresponds to linear speedup.

3. Auto-CHEMKIN Software Development

3.1 General Description

This project focuses on comparing the performance and design characteristics of the CHEMKIN-III
subroutine CKWYP and its descendents, responsible for returning molar production rates for the chemical
species given pressure, temperature(s), and mass fractions, versus that of automatically generated
(“autocode”) replacement routines [38, 21]. The latter subroutines, generated by auto-CHEMKIN
for each chemical system and collectively denoted herein as GETRATES, have different performance
characteristics from CKWYP and offer advantages for building a chemical kinetics/combustion problem

solving environment (PSE). For a complete description of the project and its findings, see [23].

3.2 Background on CHEMKIN and Auto-CHEMKIN

CHEMKIN-III is a suite of application codes, libraries, and databases. Robert J. Kee and others at
Sandia wrote the original software. The libraries are used in fluid dynamics codes to supply values
such as chemical source terms and transport properties. The fluid dynamics codes may either use
the CHEMKIN-III libraries directly, or may use them within ODE modules that propagate chemical
composition in time. The libraries compute reaction rates from “first principles” Arrhenius expressions

based on Arrhenius and other parameters that are devised in part using the application codes.

Thermodynamic Database Contents of Linking File

therm.dat
Thermodynamic Linking File
data data

Gas Phase
Reactions

Linking File Flow Code +

Gas Phase Library

Interpreter

chem.inp chem.bin

chem.asc

Output Listing
chem.out

Figure 3.1 High Level Data Flow Diagram for CHEMKIN-III. Ovals represent data transformations,
arrows represent data flows, and twin horizontal lines represent data stores.

The High Level Data Flow Diagram shown in Figure 3.1 illustrates the general usage of CHEMKIN-

III. The interpreter is a program that reads a symbolic description of a reaction and then extracts the
needed thermodynamic data for each species involved from the thermodynamic database. The output
from the interpreter is a binary/ASCII file called the linking file. This file contains all the required
information about the elements, species, and reactions in the user’s mechanism. Inside the flow code,
the user dimensions three arrays based on the output of the interpreter and then calls CKINIT to
read the linking file. The Gas Phase Library subroutines can then be called at any time to compute
thermodynamic properties, chemical production rates, etc.

Auto-CHEMKIN is an automatic code generator for a subset of the CHEMKIN-III functionality.
Peter Wyckoff and Habib Najm of Sandia developed and implemented this software. It consists of
getrates, an automatic code generator written using lexz and yacc to parse a chemical reaction “gram-
mar”. That grammar describes the contents of chem.inp files, which contain problem-specific reaction

and rate data. The result is source code specialized for a particular reaction mechanism.

Thermodynamic Database
therm.dat

Thermodynamic
data

Gas Phase
Reactions

Auto-Code Flow Code

Auto-Code

Parse and Generate
Auto-Code

chem.inp

Output Listing
chem.out

Figure 3.2 High Level Data Flow Diagram for auto-CHEMKIN. Ovals represent data transformations,
arrows represent data flows, and twin horizontal lines represent data stores.

The High Level Data Flow Diagram shown in Figure 3.2 illustrates the general usage of auto-
CHEMKIN. The user provides the same input as when using CHEMKIN-III, namely chem.inp and
therm.inp files. In the case of auto-CHEMKIN, however, the getrates code generator parses the
chem.inp file to produce Fortran-77 source. The main entry point in the source so generated is sub-
routine GETRATES, which can be called by applications to obtain the rates of generation of all species.

The source is available for compiling and linking against applications, thereby offering an automated

10

process for generating efficient, problem-dependent code.

3.3 Modifications to Auto-CHEMKIN

A modified version of the autocode generator, named cgetrates to denote the distinction, was created
to produce implementations of the GETRATES subroutine that conform to CKWYP calling conventions.
The Fortran source code produced by cgetrates can be compiled and linked into a program that
would otherwise use CKWYP, with the only change required in the application being to change calls from
CKWYP to GETRATES. The actual calling sequence is identical.

In addition to the changes necessary for generating CKWYP-compatible code, the cgetrates autocode

generator contains several extensions to parse more complex mechanisms:

e hyphens are accepted in species names, e.g. C3Hy-a

an optional “(+M)” is accepted in species names, e.g. CH3O(4+M)
e commas are accepted in species names, e.g. CoH4O1 2

e long species names supported (up to 20 characters)

Fortran output improved for readability and consistency

Validation of the modified autocode generator cgetrates was performed by automated comparison
of large numbers of rate results against those produced by CKWYP. Results were within acceptable
tolerances based on what one would expect from applying different sequences of large numbers of
floating-point operations to arrive at a given result. In addition, for the smaller two benchmarks,

autocode from getrates was also found to produce identical results to those from cgetrates.

3.4 Performance of Auto-CHEMKIN

The application used to obtain performance data is the wmain driver written by Joseph Grcar at
Sandia. During its execution, wmain calls CKWYP and GETRATES in sequence, LOOPxVALUES each.
For the purpose of this testing, LOOP=100 and VALUES=100, and measurements are collected over 11
cycles. The wmain driver includes additional validation of results against those generated using CKWYP,
providing a reasonable level of assurance that the GETRATES implementation is generating correct
results.

Performance analysis of CHEMKIN-III and auto-CHEMKIN was carried out on skipper.psc.edu,
a 4-processor Silicon Graphics Power Challenge. Each 194-MHz processor contains a MIPS R10000

11

CPU and a MIPS R10010 FPU. Skipper has 1 GB of RAM, with 32-kB instruction and primary
data caches and a 2-MB secondary data cache. However, every effort has been made to ensure code
portability and to consider extensibility of the analyses to other systems.

The performance analysis presented here reflects one particular hardware/software environment.
While details will naturally differ between systems in terms of processor architecture, caches, compilers,
etc., the conclusions will focus on aspects applicable to a broad range of platforms representing the
portion of the market that is dominant today as well as for the foreseeable future. In particular,
that includes major offerings based on MIPS, Digital, SPARC, and Intel chipsets. Exceptions include
certain proprietary architectures that differ substantially from the superscalar RISC model, including
for example, the Cray T90, the Fujitsu VPP5000, the NEC SX-5, and the Tera MTA. Each of those
systems is sufficiently specialized to merit individual consideration; however, the represent a relatively
small number of installations and have less bearing on anticipated CHEMKIN usage.

For purposes of code development and subsequent performance analysis, four distinct systems of
chemical reactions of increasing complexity were considered. They are described in Table 3.1.

Numerous profiling runs were executed using each set of benchmarking data to understand the per-
formance of the auto-CHEMKIN approach relative to that of the CHEMKIN-III approach, to identify
execution bottlenecks, and to reveal opportunities for optimization. Measurements were made on a
nearly dedicated system (i.e. other processes were not disallowed, but no other users were active, and
each benchmarking job was the only significant active process during the course of its run), leading to
good reproducibility.

Calls to etime provide a best estimate of execution time in the absence of any overhead introduced by
performance tuning tools. These times are divided into user time, the CPU time used while executing
instructions in the user space of the calling process, and system time, the CPU time used by the
system on behalf of the calling process. Results on skipper are precise to 0.01s. Results for the four
benchmarks under consideration are shown in Table 3.2.

Execution times for getrates are lower than for CKWYP by significant margins. Based on execution
times measured using etime (i.e. with essentially no overhead), getrates proved to be 2.48, 2.84,
2.95, and 4.19 times faster than CKWYP for benchmarks A, B, C, and D, respectively. Performance of
getrates relative to CKWYP increases with problem size as illustrated in Figure 3. This recommends

GETRATES generally and especially for applications where large systems of reactions are important.

12

Execution time per call (ms)

0 I I | |
A B C D
Benchmark

Figure 3.3 Improved execution of GETRATES relative to CKWYP for four benchmark problems of increas-
ing complexity.

3.5 Analysis of Performance Differences

The factors underlying GETRATES’ superior performance were analyzed. The SpeedShop tool was used
to obtain detailed profiling information through access to the 32 hardware counters available on the
R10000 processor. A wide range of experiments was run, targeting performance-related quantities
including execution time, cache behavior, and instruction counts of individual subroutines. Experiments
other than those presented here were also performed. For example, floating-point exceptions were
instrumented and found to be absent. Repeat runs confirmed the high reproducibility of the profiles.
The data so gathered reveal much about the performance characteristics of CHEMKIN-IIT's CKWYP and
auto-CHEMKIN's GETRATES, the relation between them, and opportunities for optimization.

Figures 3.5 and 3.6 dissect the total execution time into that consumed by each subroutine and
intrinsic function, as measured by sampling the program counter once per millisecond. In both cases,
computing exponentials (exp) is the dominant operation, consuming up to 30% of the CPU time in
the context of CKWYP and up to 40% of the CPU time in the context of GETRATES. For GETRATES the
only subroutine with demands close to those of exp is GETRATES itself, simply because that is where
the body of the rate calculations now reside.

The profiles described by Figures 3.5 and 3.6 imply that realizing additional performance gains
through performance tuning would require significant improvements to many subroutines in the case

of CKWYP, but only to the top-level routine in the case of GETRATES. In addition, CKWYP spends up

13

to 3.5 times as long in exp as does GETRATES, reducing the potential gains realizable through tuning
CHEMKIN-III for CKWYP relative to GETRATES.

ep— 1
600 s,
——CKDOT
500 1+ —®—CKRATT
w —— CKRATX
(] | —®—powdi
£ 400 1. _ 2. -cramm
= [@ CKYTCP
S 300
=
3
= 200 1 . 5
100 4

o

0 500 1000 1500 2000 2500
reactions

Figure 3.4 Execution times of CKWYP, related subroutines, and intrinsic functions as determined by
program counter sampling once per millisecond.

150

L e G|
*SXP
——GETRATES
—— CKHML

| we@u—CKYTCP
—— CKSML
—— CKRHOY

| - - 3¢ - -CKGML
| —t— g

pary

o

o
T

execution time (s)
(8}
o

0 500 1000 1500 2000 2500
reactions

Figure 3.5 Execution times of GETRATES, related subroutines, and intrinsic functions as determined
by program counter sampling once per millisecond.

Table 3.3 shows the total numbers of instructions required for GETRATES and CKWYP (icgwyp, getrates)-
This provides a good first-order predictor for the observed execution rates (fckuve, tgetrates). Such a

first-order approximation is always high, however, indicating that other factors such as instruction type

14

and efficiency of instruction and data cache use act to narrow the performance margin.

The execution rate of floating-point instructions, obtained from accurate CPU times (etime) and
graduated floating point operation counts, is observed to be invariably higher for GETRATES than for
CKWYP (Table 3.4). In addition to the difference in floating point execution rates, GETRATES also performs
far fewer floating-point operations, amplifying the disparity in total execution times. For example,
considering the large n-heptane benchmark, CKWYP consumes 537 seconds performing floating-point
operations, whereas GETRATES consumes only 128 seconds.

The single operation, which consumes the most time for both CHEMKIN-III and auto-CHEMKIN
and for all four benchmarks, is computing exponentials, i.e. exp(). Heavy dependence on computing
exponentials is to be expected when calculating reaction rates, and profiling indicates that up to 57%
of the execution time goes to this task (Table 3.5). This strong dependence on exp () suggests possible

approaches to further performance improvement.

3.6 Software-Engineering Considerations

When faced with the choice of optimizing a legacy library versus committing to a new approach,
software-engineering considerations are at least as important as performance issues. Sound software
engineering facilitates rapid development, reliable code, ease of maintenance, and software reusability
and extensibility. Performance will improve with each generation of hardware, but inadequate atten-
tion to software design results in ongoing costs in maintenance, bug identification and removal, and
enhancement.

The static library approach embodied in CHEMKIN-III pervaded several decades of scientific and
engineering computing. That approach, however, has various drawbacks, especially when considered

in the context of building modern problem solving environments:

1. Flow codes depend on the availability of CHEMKIN-III libraries on each target platform rather

than being self-contained and portable.

2. Flow codes running on distributed systems, e.g. using MPI for interprocess communications,
would have to provide a separate mechanism for communicating common blocks initialized in

CKINIT.

3. In the current CHEMKIN-III structure, library routines add several layers to the calling tree,
resulting in a performance penalty. In addition, Fortran compilers on today’s computing systems

cannot inline (i.e. further optimize) library calls.

15

4. The Fortran-77 library code should be replaced by modern, extensible, Fortran-95 (the current
ANSI/ISO Fortran standard) to improve compatibility with current compilers, to ease mainte-

nance, and to facilitate integration and enhancement.

The autocode generator approach used for auto-CHEMKIN provides an elegant solution to the
problem of generating problem-specific code. In addition, it offers numerous benefits that would be

comparatively expensive to realize using the former approach:

1. Flow code portability would be enhanced because only the autocode generator (itself portable by

virtue of its design) need be running on each target platform.

2. Flow code performance would benefit from improved cache utilization, decreased communications

requirements, and compiler inlining of code that currently resides in library routines.
3. Integrability, reliability, maintainability, and extensibility would be significantly improved.
3.7 Recommedations for Future Work

Based on the performance and software design of the two approaches, the top-level recommendation is
to pursue development of auto-CHEMKIN. A prerequisite for the development effort would be item 1.

Items 2 and 3 outline desirable features of autocode generators. Item 4 is more platform specific.

1. The customer will compile a prioritized list of CHEMKIN-III features. Based on the prioritization

and available time, autocode generators for those features will be implemented and tested.

2. Automatically generated code, as well as the autocode generators themselves, should exhibit

modern software engineering practices.

(a) The cgetrates code generator should be rewritten to generate ANSI/ISO compliant C
and/or C++ source code with appropriate interfaces for Fortran applications.

(b) Alternatively, and at a minimum, Fortran-95 compliance is required due to the obsoles-
cence of Fortran-77. References to deleted and obsolescent features should be replaced, and
pending specification of user requirements, interfaces between applications and automati-
cally generated code should be thoroughly defined, preferably as Fortran MODULEs. The

revised cgetrates should be used as a model for other autocode generators.

3. Investigation into optimized (“vectorized”) implementations of exp() could further decrease ex-

ecution times.

16

3.8 Conclusion

The autocode approach of auto-CHEMKIN is found to be more efficient by a factor of 2.5 to 4.2 for
a range of benchmark problems containing up to 2498 reversible reactions. The increase in efficiency
is attributed primarily to a lower instruction count for the GETRATES subroutine and its dependents,
and to a lesser extent on better data cache reuse. Three main recommendations are advanced: to
modernize the autocode generators, to proceed with authoring autocode generators for other aspects

of CHEMKIN-III, and to provide “vectorized” exponentials for applicable computer platforms.

17

Table 3.1 Benchmark problems used for performance analysis of CKWYP and getrates.

Benchmark System Elements | Species | Reactions Source
A SiF4/NHj 4 17 33+0 chemkin/test/aurora/test001/chem. inp
B CH,4 Combustion 4 17 38+0 chemkin/test/premix/test002/chem.inp
C GRI-Mech 3.0 5 53 309+ 16 | http://euler.me.berkeley.edu/grimech/
D n-heptane 5 570 2498 + 0 Hong Im (hgim@heptane.ca.sandia.gov)

Table 3.2 CPU time for CKWYP and getrates as dtermined by etime.

Benchmark A | Benchmark B | Benchmark C | Benchmark D
CKWYP - ty5¢r(S) 6.92 x 10° 1.12x10% | 695x10 1 5.36 x 10~3
CKWYP - tsystem(S) 2.04 x 10~8 4.55 x 1078 6.25 x 10~8 1.05 x 10~
getrates - tyser(S) 2.78 x 107 3.94%x10°° 2.36 x 101 1.28 x 1073
getrates - toystem(s) | 2.09 x 1078 1.10 x 10~8 2.81 x 1078 373 x 107
speedup (user time) 2.48 2.84 2.95 4.19

Table 3.3 Inclusive instruction count ratios as an initial approximation to rate routine.

Benchmark A

Benchmark B

Benchmark C

Benchmark D

thwyp/tgetrates 2.48 2.90 2.81 4.19
iCKWYP/igetrates 2.67 3.08 3.18 5.34
relative error 7.6% 6.2% 13% 27%

Table 3.4 Floating-point performance of rate subroutines (MFLOPS).

Benchmark A

Benchmark B

Benchmark C

Benchmark D

CKWYP

411

41.1

47.7

48.6

GETRATES

71.1

82.6

85.2

63.0

Table 3.5 Percentage of execution time devoted to computing exponentials.

Benchmark A

Benchmark B

Benchmark C

Benchmark D

CKWYP

21%

24%

22%

29%

GETRATES

38%

50%

57%

32%

18

4. The Theory of N-Additive Runge-Kutta Methods

4.1 Introduction

It is oftentimes useful to consider the compressible Navier-Stokes equations (NSE) as evolution equa-
tions with several driving forces, each having somewhat different characteristics. Typically, one distin-
guishes between terms such as convection, diffusion, reaction. As such, one often considers the more
tractable convection-diffusion-reaction (CDR) equations as a prologue to the full compressible NSE. In
the search for ever more efficient integrators, it is intuitively appealing to seek individual integration
methods which are ideally suited for specific parts of the governing equations. The individual meth-
ods are then rolled into a single composite method which, ideally, would be more efficient than any
individual method applied to the full computation. To accomplish this, one may consider partitioned
methods. Schemes constructed to take advantage of termwise partitioning of the CDR for integration
purposes may be called additive methods. Runge-Kutta methods, with their extensive theoretical foun-
dation, allow for the straightforward design and construction of stable, high-order, partitioned methods
composed of arbitrary numbers of elemental Runge-Kutta schemes. In addition, they also allow for
the direct control of partitioning (splitting or coupling) errors. Direct numerical simulation (DNS) and
large-eddy simulation (LES) of fluid phenomena, with their relatively strict error tolerances, are prime
candidates for such methods. The need for these strategies is by no means limited to the compressible
NSE and CDR equations.

The goal of this section is to give a general overview of the coupling of N different Runge-Kutta
methods for first-order ODEs whose right hand side is the summation of N terms; N-additive Runge-
Kutta methods (ARKy). We do not consider the topics of storage reduction, contractivity, dispersion

and dissipation, regularity, or boundary error.

4.2 N-Additive Runge-Kutta Methods
4.2.1 General

Following Aratjo, Murua, and Sanz-Serna[l], ARKyx methods are used to solve equations of the form

dU N
o - FU) = Y- P, (1)

where F'(U) has been additively composed of N terms. They are applied as

N s
u®d = ut 4 (AY) Z Z GE?}F[V](U(J')), (2)

v=1j=1

19

N s

v=14=1
N s

G~ g 4 (an Y S BIRMU), (4)
v=1i=1

where each of the N terms are integrated by their own s-stage Runge-Kutta method. Also, U =
um), uw = U (t(") +ciAt) is the value of the U— vector on the ith-stage, and U1 =
U(t™ +At). Both U™ and UMY are of order g. The U—vector associated with the embedded scheme,
[7("+1), is of order p. Each of the respective Butcher coeflicients agg}, bEU], IA)EU], and cgu], v=12,---,N

are constrained, at a minimum, by certain order of accuracy and stability considerations.

4.2.2 Order Conditions

Order-of-accuracy conditions for ARKy methods may be derived via N-trees.[1] These N-trees resemble
the traditional Butcher 1-trees[6, 14, 15] but each node may be any one of N varieties or colors.
Expressions for the equations of condition associated with the ¢*P-order N-trees are of the form
1o @ _ 1/lo@ 1 where 0@ — ib,q)(q) 5)
o Kl gl o \ kil 5)7 k[n] — k(]

(]

where qu[zl] and @Eqk)[n} are scalar sums of Butcher coefficient products and 1 < n < N? is used to
distinguish between the many possible color variations of the k' 1-tree of order q. Both « and o are
color dependent i.e., for a given 1-tree, the many corresponding N-trees may have different values of

a and o depending on the details of the node colorings. Tree density, -y, is color independent and

consequently so is the product of a and o; oo = ¢!/7. Order conditions, 7'2(3), 72(?4), Té?,g, given below

never exhibit color dependence.

71(1) = Yiibi— 1 7'1(2) i bici — g

71(3) = 32 bic — 5 7'2(3) = Xij=1biaijej — Gl
= ITiibed -4) = S biciage; =

Y = 5 28 i1 biagicl — 5) = 323 k= bidijaikck — 11
Tl(z) = % i1 bic? - % 7'2(? = % Zf,j:l bicfaijc]' N %
) = 3 28 i1 biaijcjaimcy — 3) = 3 Xijor biciaiic] — 5
i = I by - &) = X3k biciasagice — g
) = 3% ket biagicjazrcy — 3 Y = 3 2i k=1 bidijainck — g

(5) S 1
T9 Zz’,j,k,l:l bia;jajkagic; — 5

When an equation of condition, Tlgt[lr)l], is made to vanish, color dependence is immaterial because

(D,(Cq[zﬂ = 1/~v. For equations of condition that are not made to vanish, color dependence must be taken

20

into consideration to accurately assess the leading order error terms. Order conditions for partitioned

Runge-Kutta methods have also been derived by Jackiewicz et al.[17] following an approach of Albrecht.
4.2.3 Coupling Conditions

Aside from satisfying the order conditions specific to each of the elemental methods of the ARKxy, one

must also satisfy various coupling conditions. One may write the total number of order conditions for

a general ARKy associated with each particular root node coloring, aEN], using the expression[13, 14]
o0 . o0 _N [N]
Z@EN]m(z—l) _ H (1 _ :BZ) a; . (6)
=1 =1

[N]
2

At order %, a general ARKy method has N¢; - order conditions, where

ol = {1,1,2,4,9,20,--}, (7)
o = {1,2,7,26,107,458,- -}, (8)
ol = {1,3,15,82,495,3144, -}, (9)
ol = {1,4,26,188,1499,12628, -}, (10)
ol = {1,5,40,360, 3570, 37476, - - }. (11)

Some of these, N agl]

implies that N (aEN] of the order conditions are composed of portions of different elemental
methods. These are coupling conditions. As both order of accuracy and N increase, their numbers
grow explosively. Table 1 shows their numbers for orders up to five and for each 1-tree listed above
with which the coupling conditions are associated. Also contained in the table is the type of order
condition; quadrature(Q), subquadrature(SQ), extended subquadrature(ESQ), and nonlinear(NL).[37]
It should be noted that there are no more than N * s(s+ 1) independent Butcher coefficients to satisty
all of these order conditions.

Obviously, without some type of simplifying assumptions, even fourth-order methods appear rather

hopeless. The simplist remedy is to require all root or canopy nodes of the N-trees to be the same, or
v] _ plul (

%)

, are order conditions of the elemental methods which compose the ARKy. This

i1y

_az

effectively, colorless. In terms of Butcher coefficients, this is done by setting b

M = CEM } (canopy nodes), y,v =1,2,---, N. Tables 2 and 3 show the results of these simplifications.

(2
Since there is always only one root node for any N-tree yet there may be many canopy nodes, assuming
v (1]

¢; = ¢ generally reduces the number of coupling conditions further than bgu] = bz[-“ I, Table 4, where
all root and canopy nodes are made equal, shows that matters become much more tractable. It may

also be seen from this that as long as bgy] = bE" l'and CEV] = cz[-”], an arbitrary number of independent
third-order methods having the same number of stages may be coupled together with no associated
coupling error. Tables 2 and 3 show that selecting bgu] = bE-“ Vor cgy] = cl[“ I allows second-order error-free

coupling of an arbitrary number of schemes. Choosing neither of these assumptions reduces error-free
coupling, as seen from Table 1, to first-order.

root nodes) or

21

Table 1: General ARKy coupling conditions

Eqn. Type Gen. Gen. Gen. Gen. Gen.
of of
cond. Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees
1
[V] Q o [o [o | o] 0 |
[&] q 2 [e | 12 | 20 | N(N - 1) |
r?) Q 4 15 36 70 N2Z(N +1)/20 - N
8 sQ 6 24 60 120 N3 _ N
7=3 10 39 96 190 N(N — 1)(3N ¥ 4)/21
7<3 12 15 108 210 N(N — 1)(3N +6)/21
@ Q 6 27 76 345 N2(N + 1)(N +2)/31 — N
7%4) ESQ 14 78 252 620 N4_N
7%4) sQ 10 51 156 370 N3(N +1)/20 - N
%) sQ 14 78 252 620 Nt_N
=4 14 234 736 1780 N(N — 1)(16N2 + 22N + 24)/3!
g<4 56 279 884 1990 N(N — 1)(16N2 + 31N + 42)/3!
ris) Q 8 42 136 345 N2(N +1)(N +2)(N +3)/4 — N
T%“ ESQ 22 159 636 1870 N4(N +1)/20 - N
78 NL 18 132 540 1620 N3(NZ +1)/21 - N
%5) ESQ 22 159 636 1870 NY(N +1)/2! = N
T;) SQ 14 87 316 870 N3(N +1)(N +2)/3' = N
79 ESQ 30 240 1020 3120 NS _ N
735) ESQ 30 240 1020 3120 N® — N
r%s) sQ 22 159 636 1870 NYN +1)/20 - N
) sQ 30 240 1020 3120 N® - N
q = 196 1458 5960 17805 N(N — 1)(125N3 + 179NZ + 210N + 216)/4!
<5 252 1737 6804 19795 N(N — 1)(125N° 4 243NZ + 334N 4 384)/4!
[¢=6] 876 | 9372 | 50432 | 187280 | N(IN — 1)(1296N7* + 1936N° + 2296N2 + 2376N + 2400)/5! |
[a<6 | 1128 | 11109 | 57236 | 207075 | N(N — 1)(1296N? + 2561N3 + 3511N2 + 4046N + 4320)/5! |
. P . v
Table 2: ARKy coupling conditions with bg [bg“]
Ban. of | Type | o1 =l [pBT— It T gl — plel LT — i b1 — plH]
cond. Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees
1
D1 qQ 0 | 0 | 0 0 | 0
2
2 1 qQ 0 | 0 | 0 0 | 0
3 Q 1 3 6 10 N(N +1)/21— N
¥ sQ 2 6 12 20 NZ_N
7= 3 9 18 30 3N(N — 1)/2!
‘ri‘l) Q 2 7 16 30 N(N +1)(N +2)/31 - N
® ESQ 6 24 60 120 N3_N
r%(“) sQ 4 15 36 70 N2(N +1)/20 - N
4 sQ 6 24 60 120 N3 _ N
7= 18 70 172 340 N(N — 1)(16N F 22)/3!
<14 21 79 190 370 N(N — 1)(16N + 31)/3!
’I']Es) Q 3 12 31 65 N(N +1)(N +2)(N +3)/4! — N
(%) ESQ 10 51 156 370 N3(N +1)/20 - N
O NL 8 42 132 320 N2(N2 4 1)/21 = N
7?%5) ESQ 10 51 156 370 N3(N +1)/20 = N
7?5) sQ 6 27 76 170 N2(N +1)(N +2)/3! = N
8 ESQ 14 78 252 620 NY_N
735) ESQ 14 78 252 620 N%—N
7%5) sQ 10 51 156 370 N3(N +1)/2! - N
) sQ 14 78 252 620 Nt— N
g=5 89 468 1463 3525 N(N — 1)(125N2 + 179N + 210)/4!
9<5 110 547 1653 3895 N(N — 1)(125N2 + 243N + 334) /41
q=6 | 418 [3084 [12548 37376 | N(N — 1)(1296N> + 1936N> + 2296N + 2376)/5! |
¢4<6 | 528 | 3631 | 14201 41271 [N(N — 1)(1296N> + 2561N2 + 3511N + 4046)/5! |

22

V] (]

Table 3: ARKy coupling conditions with ¢; ' = ¢;
Type | o7 = W | oFT = il [T = T [T — Il oI = (A1
Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees
[¢ [o | o [o [o 0 |
| @ [o [o [o [o 0 |
Q 0 0 0 0 0
SQ 2 6 12 20 N(N —1)
2 6 12 20 N(N —1)
Q 0 0 0 0 0
ESQ 2 6 12 20 N(N —1)
sSQ 2 6 12 20 N(N —1)
sQ 6 24 60 120 N3 _ N
10 36 84 160 N(N — D)(N +3)
12 42 96 180 N(N —1)(N +4)
Q 0 0 0 0 0
ESQ 2 6 12 20 N(N —1)
NL 4 15 36 70 N2(N+41)/2! = N
ESQ 2 6 12 20 N(N —1)
sQ 2 6 12 20 N(N —1)
ESQ 6 24 60 120 N3 - N
ESQ 6 24 60 120 N3 _ N
SQ 6 24 60 120 N3 - N
sQ 14 78 252 620 NY_ N
42 183 504 1110 N(N —1)(2N% £ 9N +16)/2!
54 225 600 1290 N(N — 1)(2Nz + 11N + 24)/2!
[[164 [888 [2940 [7580 [N(N — 1)(6N® +39NZ + 87N +114)/3! |
| | 218 | 1113 [3540 | 8870 | N(N —1)(6N® +45NZ + 120N +186)/3! |

Table 4: ARKy coupling conditions with bgu] = bg“ I and cgu] = cz[“]
Type | [T =gl [oI — plel T gl plel Ty BT Tl b1 — plH]
of CE”] - CEI—‘] CE”] - CE”] CE"] - CEI—‘] CE"] - CEM CE"] - CE“]
Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees
Q | 0 0 0 | 0 0 |
Q | 0 0 0 | 0 0 |
Q 0 0 0 0 0
SQ 0 0 0 0 0
0 0 0 0 0
Q 0 0 0 0 0
ESQ 0 0 0 0 0
SQ 0 0 0 0 0
sQ 2 6 12 20 N(N —1)
2 6 12 20 N(N — 1)
Q 0 0 0 0 0
ESQ 0 0 0 0 0
NL 1 3 6 10 N(N —1)/2!
ESQ 0 0 0 0 0
SQ 0 0 0 0 0
ESQ 2 6 12 20 N(N - 1)
ESQ 2 6 12 20 N(N - 1)
SQ 2 6 12 20 N(N - 1)
sQ 6 24 60 120 N3 — N
13 45 102 190 N(N —1)(2N 4+ 9)/2!
15 51 114 210 N(N — D(2N +11)/2!

[63 [258 [678 [1440 N(N —1)(6NZ + 39N +87)/3! |
<6 | 78 | 309 | 792 | 1650 N(N — 1)(6N2 + 45N + 120)/3! |
=7 [272 [1354 [4216 [10380 N(N — 1)(24N3 + 216N> + 616N + 976)/4! |
<7 | 350 | 1663 | 5008 [12030 N(N —1)(24N3 + 240NZ2 4 796N + 1456)/4! |

23

4.2.4 Error

Error in an elemental ¢*"-order Runge-Kutta scheme contained within an ARKy method may be
quantified in a general way by taking the Ly principal error norm,[18]

(1]

Fa+) N2
A@H) = || (et = Z <T’£q+)) ’ (12)
k=1
where T](q_H) are the a([;j_l error coefficients associated with order of accuracy ¢ + 1. For embedded
schemes, additional definitions are useful such as
R 1 & a L
W= bl AT =1 (13)
- !
A(p+2 ~(p+2 2 2
B+2) _ {1(p+) o+2) _ [Eatas)A_T(H [) _ f}(p+) (14)
Ap+1)’ Alp+1) ’ A+’

where the superscript circumflex denotes the values with respect to the embedded method and the
expressions in equation (14) apply for the case p = ¢ — 1. In the case of ARKy methods, we generalize
the traditional expression for A(¢TY to

ol
(a+1) ™ N,k,(g+1)

A@D el = | ST (s 15)
k=1 n=1

where we have used ny ; 441) to denote the total number of ARKN order conditions arising from all
variations of the k" 1-tree at order (¢ + 1). For example, for general N-trees with N = 5, ¢ = 5, and
k =15, Table 1 gives ns 156 = 4370 + 5 = 4375. If root and/or canopy nodes have been set equal then
TN,k (¢+1) 18 given in Tables 2.3, or 4, whichever is appropriate. Since there is generally no reason to
assume any particular order condition is more important than another, it is prudent to consider all of
them. In certain special cases, one may be able to rule out extended subquadrature, or nonlinear order
conditions based on the structure of the ODE at hand. To evaluate the quality of the error controller,

one may evaluate B2 C®+2) and E®+2) ysing each of the T,Eq+1)’s from each elemental method or

using all T,gqg'l)’s.

All embedded schemes considered here are applied in local extrapolation mode. For a given order
of accuracy, one strives to minimize A(?+1). Following experience with ERK methods having ¢ = p+ 1,
B@+2) ¢ +2) and E®+2) are ideally kept of order unity. Another term,

D = Max{|a], o], 5], 1M, (16)

is usually kept less than 20.

Because of the large number of order conditions associated with the embedded scheme of an ARKxy
relative to any one of its elemental methods, we allow for the possibility that the order of the main and
embedded methods differ by more than one, as is customary.[36] A priori quality criteria for ¢ = p + 2
pairs does not appear to have been derived in the context of first-order ODEs.

4.2.5 Simplifying Assumptions

Butcher[6, 15] row and column simplifying assumptions will be helpful in designing methods because
they can reduce and simplify the order conditions. By comparing Tables 1 - 4, one quickly surmises that

24

higher-order methods effectively require the use of the assumptions bgy] = bE“ - b; and CEU] = C,EM - Ci-
Also, without identical root or canopy nodes, application of Butcher simplifying assumptions would
become very awkward. Therefore simplifying assumptions are considered in the form

c¥(n,) : Zam I = i=1,.,8 gq=1,..n, (17)

q
_z
q’

D, j) : Ebicg—lagg] _ b
=1

53(1 —c), j=1s g=1,...((18)

4.2.6 Stability

The linear stability function for N-additive methods is considered using the equation

N
S Ay, (19)
v=1

from which it is determined that the stability function is[9]

P z[l],z[ﬂ, aZ[N]
R(z[l]’ 2[2]5 ,Z[N]) ng[l], 2[21, 7Z[N]; (20)
Det [I -3 tX- feob?
_ pefrom (Hak) ok (Heou)]

Det [T o0, (s1AM)]

where AP = o), b = 5], T = §;;, 201 = APIAL, and e = {1,1,---,1}. Stability for the embedded

method is considered using

B) Det [1- 50, (sMAM) + £, (se @ bl)] o)

Det [1- S, (1 AM)]

where bl = BEU].
For nonlinear stability, which we do not pursue, one may consider

N
S M@ (23)
v=1
Defining ZV = {zgy], zgj], ce ,ZLV] }, the Runge-Kutta K-function is given by

K@z . g Det [1- 5, {ZMAV} + 51, {ZVeqbl" }] on

et [I—Zu:r{Z"A”}]

4.2.7 Conservation
Conservation of certain integrals or invariants may also be of interest in additive Runge-Kutta methods.[1,
16] Similar to the algebraic stability matrix, one may define

gl (25)

ol gl (M ple] V]

%)

25

ARKy methods conserve linear first integrals, in general, only if
o ol = o, (26)
and conserve certain quadratic first integrals, in general, only if

g — o MM = O, (27)

% i J

where 4,7 =1,2,--+,s, v,u=1,2,---,N,v # pu. Conservation of cubic invariants with Runge-Kutta
methods is not possible.[8, 16]

4.2.8 Dense Output

The purpose of dense output[14, 26] has traditionally been to allow high-order interpolation of the
integration variables at any point, §At, inside the current integration step where 0 < 8 < 1. It may
also be used, albeit more cautiously, for extrapolating integration variable values to enable better stage
value guesses when one or more of the elemental methods is implicit.[22, 33] For an ARKy method, it
is accomplished as

p*
U@t" +0At) = U™ + (At) ZZb Aoy, o Z nel, e =1) =" (28)

v=11¢=1

where p* is the lowest order of the interpolant on the interval 0 < # < 1. By construction, bf[u](ﬁ =
0) = 0. Order conditions, at order m, for the dense output method are given by
. (m a9m
Zb P, — (29)
As with the main and embedded formulae, one may write terms like A*®*+1) = A*®"+1)(9) to access
the accuracy of the dense output method. When used as an extrapolation device (8 > 1), the stability
function, R*(z!Y, 212, ... 2[N] @) must be considered,[4]

— N v *[V]
RO, g = 20 : ZVZID(et 1)+E(z[u]§u])]e®b (0))]’ (30)
- v=1

where b} = b}. We also assume b;-;[u] = sz[“ I = b;-

26

5. Object-Oriented Mesh-Management Frameworks

5.1 Introduction

Multi-physics simulations are often characterised by large extremes of characteristic time and length
scales. Such simulation can only be rendered tractable by adopting sophisticated techniques which
resolve scales locally. This is true of both time and length scales.

Most fluid dynamical problems are solved in an Fulerian formulation. Such formulations usually
resolve disparity of time-scales by adopting an implicit integration scheme and a disparity of length
scales by locally refining the grid in regions of high spatial gradients. This can be done by clustering
mesh points or by adding “new” mesh points, leading to variable resolution meshes.

In the absence of complex geometrical shapes (i.e. if the domain is rectangular or cuboidal), the
method of hierarchial mesh refinement [5] provides a conceptually elegant solution. Mesh cells requiring
refinement (determined by some metric) are corralled into rectangular/ cuboidal patches. The sub-
domain defined by the bounding box of the patch is regridded with another mesh with a finer resolution
(usually a factor of 2). The patches can also be further refined if needed. This recursive refinement
strategy establishes a hierarchy of grids whose resolutions differ by some exponent of K, K being the
refinement factor. Care is taken that each Gé-“ is completely surrounded by G, where G is a grid on a
“patch”, the subscript denotes the patch number and the superscript the grid level. Thus, a boundary
cell of a grid can have a neighbor which difers from it by at most 1 level of refinement. Usually a
halo of cells (with their properties prolongated from neighboring coarse cells) is kept around a refined
patch to simplify the evaluation of derivatives/differences. As the solution field evolves, meshes are
refined /coarsened, leading to adaptive mesh refinement.

Implementing such a mesh refinement infrastructure in a large simulation code is a non-trivial task.
Apart from introducing complexity, a badly designed mesh-management infrastructure can dramatically
slow down a code. These issues are further complicated in a parallel computing environment, since
the distributed subdomains frequently undergo very different degrees of refinement, leading to load
imbalance. Dynamic load balancing in an adapative mesh environment is a difficult problem and
very prone to errors. The implementation of such an infrastructure presents few aspects of interest
to computational mathematicans or scientists and can, in most cases, be separated from the actual
implementation of numerical schemes or physical model. A number of attempts have been made to
provide mesh-management softwares/libraries. In this chapter, we will compare two of the more recent

infrastructures, Overture[24] and GrACE[7].

27

5.2 Characteristics of mesh-management packages

GrACE and Overture represent opposite ends of the spectrum of mesh-management packages. GrACE
provides nothing more than mesh-management and load-balancing. The distribution is supplied with
some simple (default) bilinear interpolation methods for prolongation and restriction operations and a
simple algorithm for corralling “dirty” points (mesh cells needing refinement) into patches. Overture, on
the other hand, provides a complete (numerical) environment for developing fluid dynamical simulation

software and has a very intuitive syntax.

5.2.1 GrACE

GrACE is a lightweight mesh-management framework. It provides a means of defining a rectangu-
lar/cuboidal domain and a callback function to calculate the refinement metric. The domain is first
divided equally into P equal parts (P being the number of processors), while minimizing the sub-
domain perimeters. These sub-domains are then further refined, as per the metric, leading to a 2D/3D
distribution of mini-domains, each defined by its bounding box. These boxes are then numbered in
Peano-Hilbert or Morton order, thus achieving a N3 — N'! mapping while preserving spatial locality.
The boxes are then distributed amongst the P processors. The boxes (component meshes) are stored
as a Directed Acyclic Graph, where levels in the graph correspond to levels of refienement. Data is
defined on these meshes as dynamic, distributed arrays. These arrays are stored in a Directed Acyclic

[

Grid Hierarchy. Load-balancing is determined based on a “weight” function, which, by default, is the
number of mesh cells in a component grid. Details of the design and implementation of GrACE can

be found in [28, 27, 29, 30, 31]
5.2.2 Overture

Overture is a numerical environment for prototyping fluid dynamical solvers. It is built on the A4+
array class library[25] which provides Fortran90-like array operations. Overture comes with sophis-
ticated prolongation/restriction routines, higher-order discretization templates, boundary conditions
and the facility to deal with overset grids i.e refined grid which can be at an angle to the underlying
coarser or overlying finer grid. It can also handle complicated geometries. It is being parallelized,
with the parallel-array functionality supplied by P++[25], another array class library. Overture also
provides methods, defined on A++ array classes to construct Jacobians in implicit numerical solutions

of the Navier-Stokes equations.

28

5.3 Performance characteristics

In this section, we analyse the performance characteristics of both GrACE and Overture. Two physical
problems, Marshak and RDiff (described later) will be solved with both GrACE and Overture and

compared. Performance will be characterised under the following heads:

1. Overhead added by the library itself: This is essentially the single-processor performance of the
package with load-balancing and adaptiveness turned off. The Marshak problem will be solved

using GrACE, Overture and a plain C-code and their performance compared.

2. Parallel scalability of the library. This will be tested using the Marshak problem. P++4 will be

used instead of Overture.

3. Performance with mesh adaptation turned on. Adaptive mesh refinement is expected to add
significant overhead since it exercises the entire mesh-management algorithm. This will be done

only for GrACE, since Overture does not suport adaptive mesh refinement yet.

4. Performance with both adaptation and load-balancing turned on. This is the strictest test of the

package and will be done using RDiff and GrACE.

5.3.1 Marshak

The Marshak problem solves a 2D scalar diffusion problem
¢ =V - (DVe) (31)

where D = ¢*/Z3, Z being a material constant. Z = 100 in the entire domain except in the Q shaped
pipe as shown in Fig. 5.1, where it is Z = 10. This creates a large difference in D and a diffusion front is
seen to move along the pipe. The right hand side of the equation is approximated by central differences.
The time integration is done explicitly using a seond-order Runge-Kutta scheme. d¢/0n = 0 is imposed
on the right, top and bottom boundaries and ¢ = 10 on the left boundary. At time £ =0, ¢ = 1 over

the entire domain.

5.3.2 RDiff

The RDiff problem is a reaction-diffusion problem and was conceived so as to provide a heavy compu-

tational load for the parallel (load-balanced) scaling test.

29

Figure 5.1 A picture of the 2D domain, showing the €2 shaped region of high thermal conductivity.

5.3.2.1 Governing Equations

The physical system can be thought of as a bi-material plate surrounded by a homogeneous mixture
of two gases A and B. The plate consists mainly of a material with very low conductivity, with a
“channel” of another material of larger conductivity. Furthermore, the heat conductivity is a function
of temperature. Three “dollops” of heat (implemented as Gaussian temperature distributions at ¢ = 0)
are deposited on the plate, two at the interface between the two materials and one completely within
the high-conductivity material. As the heat diffuses through the plate, the (A 4+ B) gas mixture starts
reacting to form AB. In doing so, heat is liberated and the temperature increases further. Physically,
we expect to see a heat front move along the channel, triggering off the A + B reactions. Additionally,
this front should be accompanied by a visible change in the concentration of AB.

The physical system will be characterized by a temperature evolution equation and three equations
for the evolution of the A, B and AB concentrations. A number of simplifications have been made -
e.g. equal molecular masses for the three gases, equal diffusivities, etc. Convective terms have been
ignored. The equations are :

or

5 = V- (DVT)+ 5y (32)
6(;‘—tA = V2xa+8a (33)
ag—tB = V’xp+SB (34)
3)2,:13 = V’xap+ Sas (35)

where D = T*/Z3, Z being a material constant. Z = 10 in the surrounding material and 100.0 in the

30

channel. x; is the mole fraction of species i, where i = {A, B, AB}. The terms S, S4, S, Sap are
source terms due to reaction and are described below.
The system is modeled to have two chemical reactions, each governed by a Arrhenius reaction rate.

The system is

A+B ™ AB, H, =100, E =10

AB+B 2 A42B, Hy=-100, E, =170

Here, k; = 1.0exp(—E;/T'), where E; is a surrogate for the activation energy and H; for the heat of

reaction. Under these conditions, the source terms become

St = Hixaxski + Hoxsxasks

Sa = —xaxki+ xaBxBk2
Sp = —xaxBki + 2xaBxBko
SaB = Xxaxski — xaBxBk2 (36)

5.3.2.2 Initial and Boundary Conditions

The plate is adiabatic i.e. VT = 0 on dD, where D is the domain of integration. Vy; = 0 is imposed
for i = A, B and AB on 0D for simplicity.
At time t =0, x4 = xB = 0.5, xap = 0, and a temperature field with three Gaussian hot-spots is

initialized as

T(F)

10> exp(—n(7)?)
1=0

n(M) = |7—7j
(37)
where 7 = (0.25,0.1), ¥; = (0.5,0.85) and 7> = (0.75,0.1).
5.3.2.3 Numerical Method
The set of equations Eq. 35 can be cast in the following form
%—f “R+S (38)

where R represents the diffusive terms and S the reactive terms. The diffusive terms are approximated

by 2"¢-order finite differences. Thus in 1D,
V(DY) = i
~ (Az)?

0p = dit12— Pic1)2

31

The system is integrated following an operator-split RK2 scheme [21, 20]. The predictor-phase of

the integration scheme goes as such :

At
Y! = Y™+ S R(Y")

YT = v+ AS(YY

- At
Y = YH—I—?R(YH) (39)

The corrector phase consists of:
i = yoq A (R(Y™) + R(Y))
YT = v+ (S(YD)+S(Y))
Yot = yR 4 T2 (s(YT) +8(Y)) (40)
5.3.3 Machines and compilation details
The performance tests were conducted on three different machines

1. Pentium/Pentium cluster : Most of the runs were done on an Intel Pentium cluster. The indi-
vidual CPUs were Pentium II at 450 MHz, 512 kB combined full-speed cache, running Red Hat
6.0 (Linux kernel 2.2.14). Each machine was equipped with 256 MB of RAM. The cluster of 16
CPUs were connected by a 100 Mbps Fast Ethernet switch. The compilations were done using

gee, with -O2 optimzation. Message passing was done by MPICH, version 1.1.12.

2. Sun UltraSparc : This is a 1GB RAM UltraSparc II running at 300 MHz. This was used for
serial Overture runs (and the C-code runs for comparison). The Overture and raw C-code were
compiled with the native Sun C++ compiler with -fast -cg92 -PIC as options. The Overture
library was compiled with the debugging -g option.

3. LLNL Compass Cluster : These are Compaq AlphaServer 8400 Model 5/440 SMPs using 440 MHz
EV6 processors. P++ scaling runs were done using MPICH where message-passing was done
using MPICH’s shared communicator. The code was compiled using Compaq’s own compilers

with -fast -tune host options. The P++ library was compiled with the debugging option on.

5.4 Results
5.4.1 Test 1

In this test we will attempt to quantify the serial performance of Overture and GrACE.

32

400 -

300 -

time

200 -

100

Figure 5.2 Non-adaptive single processor performance for GrACE versus the raw C-code. The “N”
on the horizontal axis shows the grid size (N x N) while the vertical axis is the time. Inset: we plot
the execution time for a N x N problem divided by the time for Ny timesNy grid . Ideally, the line
should scale as (N/Ny)?, where Ny = 50.

We ran the Marshak problem on 50 x 50, 100 x 100, 200 x 200 and 400 x 400 grids using GrACE,
Overture and the plain C-code. The time integration was done for 300 timesteps with At set with
Fourier number of 0.2. GrACE was run on the Pentium cluster (see above) and Overture on the Sun.
In Fig. 5.2 we compare GrACE’s single-processor performance versus the C-code. The time integration
was done for 300 timesteps with Af set with Fourier number of 0.2. It is clear that the GrACE
overhead is small. In the figure inset, 7 = tnxN/tNyxN, 1S around 69 as opposed to the ideal 64 (
(400 x 400)/(50 x 50)).

In Fig. 5.3 the same test (though done on a Sun UltraSparc) shows that Overture takes significantly

more time than the optimised C-code. In fact, for a 400 x 400 grid, the difference is around a factor of

2.

5.4.2 Test 2

In this test we measure the scalability of GrACE, without any adaptiveness of the grid. The test was
conducted on the Pentium cluster.

We ran the Marshak problem for 300 timesteps, as above, but on 400 x 400, 800 x 800 and 1200 x 1200
grids on a number of processors. The single processor performance for GrACE, as seen in Fig. 5.2,
is very close to a C-code. In Fig. 5.4 we summarise the scalability test results. As the number of
processors increases, the computational time becomes comparable to the communications time and we

see a divergence from the ideal scaling curve. This occurs at larger numbers of processors for the bigger

33

1200 —

I ——+H&—— Overture
—A—— C-code

Figure 5.3 Non-adaptive single processor performance for Overture versus the raw C-code. The “N”
on the horizontal axis shows the grid size (N x N) while the vertical axis is the time. Overture is seen
to take significantly more time.

16

——E—— 400x400
— A 800x800
—&—— 1200x1200

—&— ideal
12

o

P

Figure 5.4 Scalability test for GrACE on 400 x 400, 800 x 800 and 1200 x 1200 meshes. P is the
number of processors. We see that even for the largest meshes, there is a divergence from ideal scaling
as P increases.

34

meshes. For the smallest mesh, we see a downturn i.e. the communication costs start dominating the
computational cost. It is also evident that for larger meshes (or more compute), GrACE could achieve

near-ideal scaling.
5.4.3 Test 3

In this test, we compare the costs due to adaptation on a single processor for GrACE. The test was
conducted on the Pentium cluster.

We ran the marshak problem on a 100 x 100 grid for 4000 timesteps, with 0, 1 and 2 levels of
refinement. As the simulation proceeds, the number of points on different meshes changes. Further,
finer meshes are integrated at a small At. Consequently, we calculate a load for the entire simulation
where 1 unit of load is 1 time-integration of a cell. Thus finer mesh cells contribute more to the load
than the coarser meshes. The results are summarised in Fig. 5.5.

The graph shows that the adaptive run takes substantially (=~ 20%) more than the ideal case. This

can the directly attributed to the adaptive mesh-management machinery in GrACE.
5.4.4 Test 4

In this test, we exercise GrACE entirely. We solve RDiff on a 400 x 400 mesh with 2 levels of refinement
for 250 timesteps, At corresponding to Fourier Number of 0.2. The test was done on the Pentium
cluster.

In Fig 5.6 we plot speed-up (scaling) of the problem as the number of processors are increased. We
also plot the efficiency of the speed-up. It was clear from Fig. 5.4 that when using a larger number
(> 6) of processors, the CPUs were starved for computational work, and parallel speedup dropped off.
The scenario seems to be same for the present problem. Poor scaling and efficiency were obtained for

P > 4.
5.4.5 Test 5

In this test, conducted on LLNL’s Compass cluster[11], we tested the scalability and single-processor
performance of P++, the parallel array library on which a future parallel version of Overture will be
based. The Marshak problem was solved on 200 x 200, 400 x 400, 800 x 800 and 1200 x 1200 meshes
for 100 timesteps on multiple processors. Single processor performance was compared to that of the
plain C-code.

The results are in Fig. 5.7. A gradual departure from ideal speed-up as the number of processors

increases was seen, as was observed with GrACE. However, the single-processor performance of P++,

35

o

—FH—— Actual
—A—— Ideal

(4]

IS

N
orrrrrrrrr

T
w

[

JRRTIN NSRRI NAEN SRR BT R R
1 2 3 4 5
Q

o

Figure 5.5 Estimation of overhead with GrACE running serially, with adaptation turned on. The
results are for 0, 1 and 2 levels of refinement. The load is calculated as 1 time-update of any given
mesh cell. The load €2 has been normalised by the load for no adaptation. Thus finer mesh cells
contribute proportionately more to the load than coarse meshe cells.

15 -
- —0.8
10 1
s+ o6
S | i
>] w
£ F]
= i
8 H _, 0.4
5K i
= —0.2
| —8—— scaling
—A—— ideal T
L —E— ¢]
L 1 L
0O 5 10 15 0

2]

Figure 5.6 Speed-up of the RDiff problem on a 400 x 400 grid with 2 levels of refinement. We see that
the speed-up is much less than ideal and hovers around 40 % when 15 processors are used. We deduce
that the bad performance is due to lack of computational work.

36

——=—— 200x20
——=—— 400x400
——=—— 800x800
———6—— 1200x1200
—o—— ideal

Speed-up
w
o
T T

1
2 3 4 5 6
P

Figure 5.7 Speed-up of the Marshak problem (implemented via P++) on a variety of meshes. We see
divergence of the speedup from ideal as the per-processor computational load falls off. Inset: We plot
the single processor times for the P4+ implementation versus the plain C-code. The C-code is seen to
be an order of magnitude faster (the time axis is logarithmic).

shown in the figure insert, was very poor.
5.5 Conclusions

The two adaptive-mesh frameworks, representing the opposite ends of the spectrum provide us with
some valuable insights. Light-weight mesh-management frameworks can be used to provide good
performance and scalability. However, they suffer from the drawback of providing very little in the way
of advanced numerical facilities. A lot of numerical grunge-work (interpolations, boundary conditions
etc) will be required when implementing a simulation code within GrACE.

Overture can be best described as a rapid prototying tool for developing simulation codes. Over-
ture’s syntax is simple, provides interfaces to many linear solvers and eliminates much of the routine
numerical coding involved in writing simulation programs. However, its ease of use and elegant syntax
exacts a heavy price on single processor performance. Ongoing efforts to improve the aforesaid include

the ROSE preprocessor, which is essentially a source-level loop transformation tool.

37

6. CCA Post-Processing Tools

6.1 Introduction

The results presented here are the initial steps in the design of a set of codes for post-processing
of large data sets. These codes are being developed within the Common Component Architecture
(CCA) specification, a standard for component programming currently being developed by the CCA
Forum[2, 10]. Component based programming can help reduce complexity, accelerate development
of applications, and promote the reuse of code. Other examples of component architectures include
CORBA, COM, and JavaBeans. However, the CCA specification is being specifically developed for
high performance computing applications. Within CCA there are two types of entities, components
and frameworks. Components are independent units of software and the component architecture is
a specification of interfaces and rules for combining those components. A framework is a specific
implementation of an architecture. CCA specifies a standard way that components and frameworks
are built so that components and frameworks from different sources will be compatible.

The primary purpose of the post-processing codes to be assembled in a CCA component will be the
identification and analysis of regions of interest, or features, of a data set. In large scale simulations,
very often the interesting regions of the data are small subset of that data. These regions may be
sparse and difficult to find by casual inspection, especially in 3D data sets. In other cases, there
may be numerous regions of interest and their identification and analysis can be very time consuming.
Reduction of the amount of the raw data subjected to further analysis is an very important step in
post-processing and is the major focus of codes in this component. Additional analysis techniques can
be added later by extending this component and/or coupling it with other CCA components.

The starting point for the design was to consider the post-processing CCA component to be a CCA
framework populated with CCA components which will each perform the different post-processing
tasks of detection, tracking, representation, and simple analysis/statistics of features. The framework
would also provide supports, such as interfaces for visualization and other post-processing codes. This
structuring allows for a great amount of reuse; the framework will provide support for combining the
individual components to perform complicated post-processing tasks, but these components can also be
used as simple post-processing tools independent of the framework. And also, because the framework
is itself a CCA component, it can be combined with other CCA components.

As a first step in the design of the post-processing framework, a few task components were written

in C++ and connected using the the CCA Working Group’s test CCA framework, CCAFFEINE|[32],

38

with the goal of exploring how the components should interface and what support the framework will
need to provide. Because this was a prototype to focus on component design and interaction, simpler
algorithms were implemented for data types existing on a single processor. Once the design is more

developed, the algorithms will be rewritten for parallel data structures.

6.2 Results

Two groups of CCA components were created. The first group was a simple test case on a uniform
mesh and performed real-time feature detection and tracking of a running simulation based on “The
Game of Life”. Only two components were used: the simulation and a feature detector/tracker. A
second group of components was then developed as a more rigorous test case. These components were
used to find and track regions of high heat release rate in a subset of data from a completed combustion
simulation which used adaptive mesh refinement (AMR). For this case, the post-processing consisted
of three components: a feature manager/track, a feature detector, and a visualization component. An
analysis task (a C++ class) was also added but has not yet been made into a CCA component. After
completion of these test cases, a preliminary design of the post-processing component framework was

developed.

6.3 Game of Life Simulation/Feature Detection

Two CCA components, shown in Figure 6.1, were implemented to develop a few simple post-processing
algorithms. The component LaVie is a simulation providing data to the FeatureDetection component.
LaVie was developed based on John Conway’s game “Life” and Bays’ three dimesional adaptation [12,
3]. LaVie generates data on a uniform mesh where each cell is either alive (1) or dead (0) and updates
the cells based on the state of their neighbors. The features of interest in the data are ‘lifeforms’
which are distinct groups of 1’s. This simulation provided an easy test bed for implementing simple
feature detection and tracking routines. The simulation could be initialized with random cells states
or a file containing lifeforms with known behaviors. Visualization of the data was performed simply by
outputting 1’s and 0’s in tables of text.

The feature detection component performed two post-processing tasks, feature detection and feature
tracking, which were provided by two separate C++ classes (see Figure 1). The class FeatureManager
manages a list of all features seen during it’s lifetime and a list of the features that existed during
the last time step examined. Feature is a data object that maintains a list of a feature’s space-time

locations in the data (stored as FeatureLocation data objects), as well as it’s current existence state,

39

parents, and children. To obtain features, FeatureManager passes a pointer to a time step of the
simulation data to the feature detector, FD_Threshold, which performs a threshold algorithm on the
data and returns a list of FeatureLocations. FeatureManager performs tracking of the features by
comparing this list to the list of locations of existing features, and then updates the Features and the
existing feature list.

FD_Threshold steps over every cell checking if its values are between the two limits lower_threshold
and upper_threshold. If a cell passes this test, a feature has been detected and it’s extent is found by
first testing it’s neighbors, and if they pass the test, their neighbors, and so on. FD_Threshold keeps
track of cells that have been visited during this testing, so that they will not be tested again. This
ensures that every cell is tested only once and that all features found are unique and distinct.

The tracking method implemented by FeatureManager considers the following cases when compar-
ing new locations provided by the feature detector: the location may be a continuation of an existing
feature, an entirely new feature, a single feature resulting from the merging of multiple features, or
one of multiple children splitting from a single feature. Decisions are made based on the overlap in
space of the previous and the new locations; overlap in space is assumed to indicate contingency. If
a new location does not overlap a previous location, it is a new feature. If a previous and a new
location overlap with only each other, the location is a continuing feature, and that feature’s location
list will be updated. If a new location overlaps with multiple previous locations, it is a child of merging
features, and if multiple new locations overlap with a single previous location, they are children of a
splitting feature. Children of splits or merges are created as new features and their parent Features
are appropriately updated and terminated. Finally, if any previously existing features do not overlap
a new feature, they are terminated.

The detection and tracking algorithms behaved as expected on both two and three dimensional data
sets, as evaluated by visual inspection of output lists of the features compared to text visualization of

the life meshes.

6.4 Feature Detection in AMR Combustion Simulation Data

A more developed set of post-processing components was assembled to find and track regions of high
heat release rate in a subset of data from a completed combustion simulation which used adaptive mesh
refinement (AMR). The two tasks, feature managing and feature detection, were split into separate
components, and the algorithms used in the previous case were adapted to work on the refined meshes.

The post-processing tasks of visualization and analysis were also added, but only the viz task has been

40

made into a CCA component.

A diagram of this system of components is shown in Figure 6.2. A driver component read in the data
from files and sent this data to the FeatureManager. Using the same algorithms as in the previous test
case, but adapted for an AMR mesh, FeatureManger sends the data to the FD_Threshold component
which thresholds the data, and returns a list of new FeatureLocations. FeatureManager tracks the
features by matching up these locations with the previous set of existing features. The driver then
sends a request to FeatureManager to visualize the features, which delegates this task by sending the
Features to the MatViz component which uses Matlab to visualize the features overlayed on the data.
After all of the time-steps have been processed, the Analysis class is called to generate the feature
statistics of feature size and velocity, and plot them.

The data consisted of the temperature and heat release rates of 16 time-steps of a combustion
simulation. Mesh sizes ranged from 3000 nodes and 5 mesh levels to 18,000 nodes and 6 mesh levels
stored in 2M files. When thresholded at 30% of the maximum heat release rate for each time step,
the system detected a single feature that split into two features at the 10th time step, and these two
features existed through the last time-step. Visualization of the features for time-steps 1, 7, 8, 9 10,
and 16 are shown in Figures 6.3 through 6.8. Feature area vs. time and velocity magnitude vs. time
is shown in Figure 6.9. Velocity magnitude was calculated for each pair of time points by dividing the
distance the center of the feature had moved by the different in time. Velocity magnitude was plotted

midway between the time steps.

6.5 Preliminary Design of Post-Processing Framework Component

Based on the completed work, a proposed design for the post-processing framework is shown in Fig-
ure 6.10. The framework’s structure can be divided into four elements: (1) interfaces, (2) the Director,
(3) the FeatureManager, and (4) the post-processing tasks. The Director, FeatureManger, and the
post-processing tasks will be implemented as CCA components. The FeatureManager will still manage
a list of the Features and a list of existing features, but will no longer contain tracking algorithms.
The post-processing tasks will be divided up into four areas: (1) feature detection, (2) feature tracking,
(3) feature representation, and (4) feature statistics & analysis. Because a variety of algorithms will be
available for each task area, factory components will serve as an interface between the framework and
the different algorithms, each implemented as CCA components. This will also allow extension of the
set of algorithms implemented without having to rewrite the entire framework. The director will co-

ordinate the different post-processing tasks with each other and the FeatureManager, and will receive

41

commands via an user interface. The Director will also communicate with components outside of the
post-processing framework through the data, visualization, and analysis interfaces. The visualization
interface will allow visualization of the results of the framework’s post-processing tasks. The analysis
interface will allow export of features to other post-processing tools.

A large variety of algorithms can be implemented within this framework. FD_Threshold was just
one example of a possible detection algorithm; other algorithms might include finding local minimums
or maximums in the data, or regions of high gradients. The tracking algorithms needed to be separate
from the FeatureManager so that different ones are available to deal with different types of data. For
instance, the overlap method used in the implemented FeatureDectection Component depends on the
contingency of the feature in space between time-steps. If features are moving fast relative to the time-
steps, another method will need to be used. For instance, velocity of the feature can be estimated from
the previous two time-steps and the expected location of the feature can be estimated and then used in
the overlap method. The FeatureRepresenter will return a simplified model of the Feature useful for
performing further analysis and statistics. In the example systems discussed above, the features were
represented as bounding boxes. Other useful representations can be obtained by fitting line segments
or a Gaussian model to the data. Statistical algorithms can either operate on the representation of the
feature, such as plotting the area of the bounding box with time, or can operate on the data in the

feature, such as plotting the maximum temperature of each feature at each time step.

6.6 Conclusion

The algorithms shown in Figure 6.12 are just a small sample of the possible post-processing tasks that
can be incorporated into the proposed framework. And the power of the entire framework rests not just
on the individual tasks it can perform, but on being able to combine these tasks into more complicated
post-processing routines. And also, because framework is itself a CCA component, it can be enhanced

further by combining it with other CCA components.

42

CCA Component: LaVie i CCA Component: FeatureDetector
RegularGrid

(Datat RegularGrids[D P> C++ Class FeatureM anager

(Data: Featureq])
Existing_Featureq[]

Locationd]]

RegularGrid

C++ Class. FD_Threshold
Data: lower_threshold
upper_threshold

Figure 6.1. Game of Life simulation and feature detection CCA components. Brackets ([]) indicate an array of
data objects.

CCA Component: : CCA Component: _»Featur&s[] CCA Component:

MPJET Driver g?iféned FeatureManager MatViz '

(Data: RefinedGrids[D Data: Featureq]] Featured[] _
Existing_Features]) =————p» g;;%asss

. : Locationg]
RefinedGrid

CCA Component:
FD_Threshold

Data: lower_threshold
upper_threshold

Figure 6.2. Feature detection system for AMR data from a combustion simulation. Brackets ([]) indicate an
array of data objects. The componets that are candidates for inclusion in the post-processing framework are
located within the dashed box.

43

Heat Release Rate
25 47

24

23

135
22

21

2 Feature#0

1.9
h\
1.7)

16

11

15 time = 0.010240

1.4286
2.8571 3 3.2 3.4 3.6 3.8 4 41071

0

Figure 6.3. Time frame #1 of the combustion simulation. The bounding box of a single feature found by the
feature detector by thresholding at 30% of the heat release rate is shown superimposed upon a plot of the heat
release rate. The detected feature is a premixed propagating flame front resulting from an ignition at earlier
time. The front is propagating down an equivalence ratio gradient, normal to a mixing layer, from a region where
the mixture is rich in fuel towards stoichiometric and lean regions.

Heat Release Rate 992

25

24

23
744

22
21

2
1.9

@ Feature#0

17

247

16

15 time = 0.011008

1.4286
2.8571 3 3.2 3.4 3.6 3.8 4 41071

0

Figure 6.4. Time frame #7 of the combustion simulation. The feature tracker classifies the single feature found
by the feature detector to be the same feature as in the first 6 time frames. Note the great increase in peak
heat release rate relative to Fig. 6.3. The flame kernel is now in close proximity to the stoichiometric mixture
region, and burning and heat release rates are greatly enhanced. The reduction in feature size relative to Fig.
6.3 reflects the higher gradients of heat release rate at the present time.

44

Heat Release Rate

25

2744
‘ 12057

r 11371

1.9 Feature#0

18

17
685
16
15 time = 0.011136
1.4286
2.8571 3 3.2 3.4 3.6 3.8 4 41071 0

Figure 6.5. Time frame #8 of the combustion simulation. The freature tracker continues to classify the single
feature found by the feature detector to be the same feature as is the previous time frame. The front is now

expanding rapidly, crossing through the stochiometric mixture region.
2552
‘ 41913

r 11275

Heat Release Rate
25

Feature#0

19

18

17
636
16
15 time = 0.011264
1.4286
2.8571 3 3.2 3.4 3.6 3.8 4 41071 -1

Figure 6.6. Time frame #9 of the combustion simulation. The freature tracker continues to classify the single
feature found by the feature detector to be the same feature as is the previous time frame. As the front burns
through the stoichiometric mixture, its central region reaches the lean mixture region and exhibits lower burning
and heat release rates, while the two edges of the front move sideways along the stoichiometric mixture fraction
line in the mixing layer.

45

Heat Release Rate 2408
25
24
2.3
<1806
22

21

Feature#2
2
r 41203

19

18

1.7
600
Feature#1
15 time = 0.011392
1.4286
2.8571 3 3.2 34 3.6 3.8 4 41071 2

Figure 6.7. Time frame #10 of the combustion simulation. At this point the feature detector finds two separate
features and the feature tracker classifies each as a child of Feature #0. At this point, the central region of the
front is almost extinguished, such that the identification of each edge of the original front as a separate feature
is physically meaningful.

Heat Release Rate 2021
25
24 V’ = Feature#2
41515
22

21

2
r 11008

19

18

17
501
16
15 time = 0.012160 gFeaturet1
1.4286
2.8571 3 3.2 3.4 3.6 3.8 4 41071 4

Figure 6.8. Time frame #16 of the combustion simulation. The freature tracker continues to classify the
features found by the feature detector to be the same features as is the previous time frame. The two flame
fronts are clearly separate entities now, each exhibiting characteristic edge-flame structure, propagating up and
down the mixing layer.

46

o
[N
N

o O Feature0
0.1 x Featurel
Feature2
©0.08 b
[
= o
L o i
£o0s o
54 o o
& 0.04f o E
O
0.02- o . b
0 I I I I I I o Xy X x X
0.0102 0.0104 0.0106 0.0108 0.011 0.0112 0.0114 0.0116 0.0118 0.012 0.0122
time
6000 o) T
O Feature0
5000 X Featurel |H
8 Feature2
=1 o
£ 4000 bl
c
j=J
4
= 3000 b
2
£ | o |
§ 2000 o
O O
1000 - © Xy -
o X X « «

0 I I I I I I I I I
0.0102 0.0104 0.0106 0.0108 0.011 0.0112 0.0114 0.0116 0.0118 0.012 0.0122
time

Figure 6.9. Feature statistics. Bounding box area and velocity magintude of the features are plotted vs. time.
Velocity magnitude was calculated for successive pairs of timeframes by dividing the distance the center of the
feature bounding box moved by the difference in time. Velocity values are plotted at the midpoints of the time
frames.

Data Interface Visudlization Interface Analysis Interface

CCA Component:

Director
h |

CCA Component:

FeatureManager
CCA Component: CCA Component: CCA Component: CCA Component:
TrackerFactory DetectorFactory RepresenterFactory StatisticsFactory
\LManages ¢Manages ¢Manag$ ¢Manag&s
CCA Components: CCA Components: CCA Components: CCA Components:
FT_Overlap FD_Threshold FR_Point FS NumberVsTime
FT_Velocity FD_LocaMinMax FR_BoundingBox FS_SizeVsTime

FD_HighGradient FR_LineSegments FS_VelocityVsTime

FR_Gaussian

Post-Processing Framework

Figure 6.10. Proposed design for a CCA framework to perform post-processing of large scale data.

47

7. Transient Spherical Flame Model

Pollutant survival in diesel engines depends on the burnout of diffusion flames that are created by
the autoignition of fuel-rich parcels of the mixture. Following the suggestion of John Dec (8362), we
modified a one-dimensional, transient flame code to compute the burnout of a spherical diffusion flame.
The purpose of the simulations is to understand the time evolution of a flame kernel as the heat release

rate becomes negligible.

7.1 Model Description

The code solves conservation equations for species and energy of a reacting mixture,

oY, 0

; wi Wi
Bt~ oy Y —1,.. K
ot oy (rrivivie) + P (k=1,...,K)
_— = — — - _ - r - Y oL
ot Cp 81/) (T)‘aw pCp ot Cp - pr ka‘Cpk 6,¢ pCp ;thkwk

where T is temperature, C), is mean specific heat at constant pressure, p is mass density, k is the species
index, Y}, are mass fractions, Wy are molecular weights, wy, are the chemical production rates, Vi are the
diffusion velocities, and hj are the enthalpies. Mass conservation defines the relation between physical

space r and the Lagrangian (mass) coordinate 1,

or 1

oy prl
with the index [= 0, 1,2 for planar, cylindrical, or spherical geometry. The thermodynamic pressure, p,
is uniform in space, dp/9vy = 0, and the system is closed by the equation-of-state. After discretizing the
spatial differences, the system of equations for the dependent variables S = {r,p,T,Y}} is integrated
in time following the method-of-lines approach. The boundary conditions are 8S/0r = 0 for {p, Yy, T}
at both boundaries. The inner boundary is fixed in space at 7(0,¢) = 0, which is the only condition
required for the first-order equation for continuity. The physical location of the outer boundary floats
to follow the fixed mass of the system as it expands or contracts. The initial outer boundary sets
the total system mass. The Lagrangian mass coordinate at any location is established at the initial

condition by the integral,
T
P(r,0) = / prtdr.
0

The pressure can be a specified function of time; however, the simulations presented here held the

pressure constant in time.

48

The initial conditions for the flame kernel are specified using a hyperbolic tangent to establish a

jump in the species composition and temperature.

T(r,0) = Ty + (@) (1 + tanh [%D

Yia - Y; .
Yi(r,0) = Yip + ('“‘f”) (1 + tanh [%D

The constants r. and s control the location and width of the transition between the fuel (Y}) and
surrounding air (Y} ,). The initial size of the ignition kernel is estimated from images of OH in engine
experiments. The initial composition in the kernel is fuel and air premixed to an equivalence ratio of
four, which after ignition, creates a fuel-rich product mixture that establishes a diffusion flame with
the surrounding air mixture.

The solution procedure uses a regrid scheme to dynamically adapt the mesh to the solution using
a weighted coordinate transformation,

dz

where the constant is defined by the integral over the domain,

1 L

using a weighting function that considers the first and second gradients of the solution,
d%S;

b 3|25
R

The mesh is controlled by parameters for the fraction P of points used for adaption (0 < P < 1), and

~ ds;
W (x, S) _1+b1;‘%

the ratio R of gradient to curvature, R = R;/R2, where the fraction of points dedicated to resolving

gradient and curvature are defined by,

b XS |da o b [X\ G | de
Y I W@, Sde N T W, S)dr

The identity P = Ri + R and the definition of R combine to specify Ry and Ry, from which b
and by are computed. The mesh solution uses one loop to compute partial sums in the integrals, and
another to interpolate into constant intervals in the generalized coordinate space 1. After the new mesh
points are defined, the solution values are interpolated onto the new mesh. Note that this interpolation
introduces some error, so the regrid is performed only when a criteria for the variation in the solution
(measured by the weighting function) becomes significantly larger than an equally spaced distribution

in n would produce.

49

7.2 Results

Computations have been performed using a hydrogen-air reaction mechanism for a spherical flame.
The example presented in Figures 7.1-4 demonstrates the flame behavior. The initial He-air mixture
in the 1 cm diameter kernel is an equivalence ratio of 4. The pressure is 50 atm, constant in space and
time. The initial temperature is 1000 K in both the kernel and surroundings.

After the kernel ignites, the diffusion flame forms between the remaining Hy in the kernel and the
surrounding air. Figure 7.1 shows the evolution of the temperature profiles as the flame burns out.
The first profile in the sequence is the one with the highest peak temperature and the lowest centerline
value. The initial profile is characteristic of a diffusion flame, with the peak temperature at the position
where the fuel and oxygen are mixed in stoichiometric proportions. The initially thin diffusion flame
thickens as the fuel is consumed from the interior of the flame kernel. By the end of the simulation,
the temperature profile is essentially that of a boundary layer solution: the largest temperature is at
the centerline, with a smooth decay to the cooler surroundings. Diffusion dominates over what little
heat release remains.

Figure 7.2 shows the Hs mole fraction for the same sequence of solutions. The centerline concen-
tration decreases as more of the Hy diffuses into the flame. Comparing these curves to the evolution of
heat release in Fig. 7.3, there is some 5-10 % hydrogen (by mole) in the kernel when the heat release is
essentially complete. The heat release diminishes as the fuel fraction drops to the point where diffusion
through the mild species gradients cannot support the flame.

Figure 7.4 shows the OH mole fraction as the kernel burns out. Chemical reaction has not completely
shut down at the final time in the simulation, because there remains a local maximum in the OH
concentration. While the gradients on either side of this maximum are extremely weak, the existence
of this intermediate species suggests that fuel oxidation still proceeds at some slow rate.

The total elapsed time of this simulation is about 2 seconds, which obviously is much longer than
exists in an engine. The timescale for this kernel burnout is orders of magnitude off because the
simulation neglects two very important phenomena: turbulence and expansion cooling. While the
simulation suggests that fuel can survive the burnout process as the kernel collapses on itself, several
questions remain. How complete is the fuel consumption in the real environment? Does expansion
quench the kernel before it burns out naturally? What effect does local turbulence have on the diffusion
flame kernel?

Future extensions of this laminar model to include the enhanced mixing due to turbulent flow will

50

have to be considered to address these questions. In addition, future computations will need to examine
burnout of propane flames, where the fuel behavior is more like the larger hydrocarbons characteristic

of diesel fuel.

ol

3000

2500 = s

2000

T (K)

1500

1000

500
0 0.5 1 1.5 2 2.5 3

r(cm)

Figure 7.1. Temperature profiles during burnout of hydrogen flame kernel. Time increment between curves is
0.1875 s. First profile has the lowest centerline temperature, corresponding to a point in time after ignition of
the kernel, when the diffusion flame has been established.

0.6

0.5 [

0.4

0.3

0.2

0.1 .
=\

0

0 05 1 15 2 25 3

r (cm)

Figure 7.2. Profiles of hydrogen mole fraction during burnout of hydrogen flame kernel. Time increment
between curves is 0.075 s. First profile is the right-most curve and has the highest centerline concentration.

H2 mole fraction

52

5108
w
(ep]
e 0 e
o
=
2 5108
()]
)
@© 9
o -110
(D)
(e
= 9
& -1.5 10
T

-210°

0 0.5 1 1.5 2 2.5 3
r (cm)

Figure 7.3. Profiles of heat release during burnout of hydrogen flame kernel. Negative values mean exothermic
energy release resulting from the chemical reactions. First profile has the maximum peak heat release.

0.02
_g 0.015
3]
©
© 001
5
: A
5 0.005
0

0 0.5 1 1.5 2 2.5 3
r(cm)

Figure 7.4. Profiles of OH mole fraction during burnout of hydrogen flame kernel. First profile has the largest
peak concentration in the the diffusion flame.

53

8. Materials and Surface Chemistry for Catalytic Conversion

Developing a reliable device-scale model of a catalytic converter for exhaust remediation is fraught with
complexities due to a large gap in the knowledge of surface mediated chemical reactions. Even the
simple oxidation of CO by O3 over platinum metal exhibits complex ignition-extinction behavior due to
the microkinetic influences of the heterogeneous chemistry. In devising a detailed reaction mechanism
for incorporation into fluid solvers, it is imperative to consider the nature of the catalytic surface that
participates in the oxidation event. Adsorbed molecules, like CO and Os, have a number of accessible
configurations and energy states which not only alter the reactivity of the adsorbate, but can modify
or forcibly reconstruct the surfaces to which they are bonded. For CO in particular, both the reaction
order and activation energy for oxidation above and below the ignition temperature are strong functions
of CO surface coverage due to, among other things, repulsive adsorbate interactions. These effects are
dynamic, and when coupled to the influences of heat and mass transport, produce a reactive system
that displays complex-transient and sometimes chaotic behavior.

During the course of the LDRD work we identified potential areas for improvement in our numerical
capabilities that, if implemented, would better position Sandia to successfully compete for SSI funding
in the Materials and Surface Chemistry Regime. These areas are: (1) the need to develop or acquire
CHEMKIN-compatible transient 0-, 1-, and 2-D channel-flow codes; (2) the need to develop or acquire
CHEMKIN compatible software tools for parameter optimization and reaction path analysis; and (3)
the possibility of modifying or extending the SURFACE CHEMKIN formalisms to include reactions
between interfaces or phases possessing non-uniform site densities.

Besides amassing a large body of literature relevant to CO oxidation over platinum-crystal and
supported metal surfaces, we numerically investigated the oxidation of hydrogen over palladium. This
system was chosen for its mechanistic simplicity, exothermicity, importance in three-way catalytic con-
verter (TWCC) chemistry, and existing experimental data. In the process of our investigation, we
identified a potential limitation to the SURFACE CHEMKIN formalism that stems from the fact that
SURFACE CHEMKIN was developed primarily for CVD processes and has not been rigorously tested
for heterogeneously catalyzed reaction systems such as those observed in TWCCs. In essence, the
specification of bimolecular reaction rates in terms of concentration units instead of a site turnover fre-
quency causes the program to calculate an incorrect pre-exponential factor when reaction relationships
incorporate different site densities. Program modification is not a trivial exercise and may require a

special version of SURFACE CHEMKIN to be created in order to effectively model multi-site interfacial

o4

reactions.

Activities in FY99 also included an evaluation of parameter optimization software. The objec-
tive was to develop a capability which could perform a global optimization based on a random initial
sampling of parameter space followed by local optimization at the best 10goodness-of-fit criteria. In
addition, the parameter optimization routine should provide sensitivity analysis of the best solutions
through interfacing with the differential algebraic system solver, DASAC. To evaluate the optimiza-
tion methodology, we again examined the hydrogen oxidation over palladium mechanism with special
attention to the vast amount of experimental data obtained by Sandia for hydrogen adsorption on
palladium. We determined that the mechanistic model for hydrogen interaction with palladium was
unable to describe the experimental data due to simplifications in model construction.

Finally, we addressed the development of transient numerical codes for simulating plug-flow and
well-mixed reactors. Initially, the design equations for PLUG and SENKIN were modified to accom-
modate time-dependent integration, however, validation of these reactor models is contingent upon

modifications to SURFACE CHEMKIN.

55

9. Closure

The wide range of the work described above is a reflection of the difficulties associated with detailed
modeling and understanding of processes occuring in diesel engines and other complex combustion
devices, and of the multidisciplinary approaches necessary for tackling them. Massively parallel codes
are necessary, along with optimized processor-level coding of cpu-intensive routines. These tools must
use specialized /optimized time integration approaches to allow for maximum efficiency in computations
of time evolving reacting flow. They also require specialized adaptive mesh refinement techniques to
further reduce cpu-time and memory requirements. Such tools are best developed in a modular reusable
object-oriented environment that allows for efficient collaborative work by groups of researchers and for
code portability. Moreover, ancillary efforts are necessary for development of requisite post-processing
tools, and for targeted studies at system components for improvement of submodel constructions and
improved understanding of localized phenomena (e.g. flame kernel burnout, catalysis).

The efficient combination of such multidisciplinary approaches, bringing together skills in numerical
methods, computer science, combustion, and chemical sciences, is a prerequisite for desired advances
in the state of the art of understanding and predictive modeling of diesel engines and other complex

systems.

56

References

[1]
[2]

[10]
[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

A L. Aradjo, A. Murua, and J.M. Sanz-Serna, Symplectic methods based on decompositions, STAM J. Num.
Anal., 34, 5, (1997) 1926-1947.

Armstrong, Rob, Dennis Gannon, Al Geist, Katarzyna Keahhey, Scott Kohn, Lois McInnes, Steve Parker,
and Brent Smolinski, Toward a Common Component Architecture for High-Performance Scientific Comput-
ing, Proceedings of the 1999 Conference on High Performance Distributed Computing (HPDC ’99), Rendo
Beach, CA, 4-6 Aug 1999.

C. Bays, Candidates for the Game of Life in Three Dimensions, Complex Systems, 1, 373-400, (1987).

A. Bellen and M. Zennaro, Stability properties of interpolants for Runge-Kutta methods, SIAM J. Num.
Anal.; 25, 2, (1988) 411-432.

M. J. Berger and P. Collela Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys.,
82:64-84, 1989.

J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear
Methods, John Wiley & Sons, Chichester (1987).

http://www.caip.rutgers.edu/~parashar/ TASSL /research.htm

M.P. Calvo, A. Iserles, and A. Zanna, Numerical solution of isospectral flows, Math. Comp., 66(220), (1997)
1461-1486.

M.P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-
diffusion equations, Report 1999/3, Department of Appl. Math. & Comp., University of Valladolid, Spain
(1999).

Common Component Architecture Forum Web Page: http://www.acl.lanl.gov/cca.
http://www.llnl.gov/sccd /lc/FAST.resources.html

M. Gardner, On Cellular Automata, Self-reproduction, the Garden of Eden, and the Game of ’Life’, Scientific
American, 224, 2, 112-117, (1971).

E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations, Numer.
Math., 36, 4, (1981) 431-445.

E. Hairer, S.P. Ngrsett, and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, 2ed.,
Springer-Verlag, Berlin (1993).

E. Hairer and G. Wanner, Solving Ordinary Differential Equations I1, Stiff and Differential-Algebraic Prob-
lems, 2ed., Springer-Verlag, Berlin (1996).

E. Hairer, Numerical Geometric Integration, Unpublished Notes, Section de Mathématiques, Université de
Geneéve, Geneve (1999).

Z. Jackiewicz and R. Vermiglio, Order conditions for partitioned Runge-Kutta methods, Applic. Math., 45,
4 (2000) 301-316.

C.A. Kennedy, M.H. Carpenter, and R.H. Lewis, Low-storage, explicit Runge-Kutta schemes for the com-
pressible Navier-Stokes equations, Appl. Num. Math., 35, 3 (2000) 177-219.

H.N. Najm, R.W. Schefer, R.B. Milne, C.J. Mueller, K.D. Devine, and S.N. Kempka Numerical and
Experimental Investigation of Vortical Flow-Flame Interaction Technical Report SAND98-8232, Sandia
National Laboratories (1998).

J.Ray, H.N. Najm, R.B. Milne, K.D. Devine, and S.N. Kempka, Triple Flame Structure and Dynamics at
the Stabilization Point of an Unsteady Lifted Jet Diffusion Flame, Proc. Comb. Inst, 28, in press, 2000.

H.N. Najm, P.S. Wyckoff, and O.M. Knio, A Semi-implicit Numerical Scheme for Reacting Flow, J. Comp.
Phys., 143, 381-402 (1998).

o7

[22]
[23]

[24]
[25]
[26]

[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]
[37]

[38]

S.P. Ngrsett and P.G. Thomsen, Local error control in SDIRK-methods, BIT, 26, 1, (1986) 100-113.

N. Nystrom and R. Subramanya, Sandia CHEMKIN-III Auto-CHEMKIN Performance Analysis, Report
PSC-CHEMKIN-PA-2.0, Pittsburgh Supercomputing Center, Carnegie Mellon University, (1999).

http://www.llnl.gov/CASC/Overture/
http://www.llnl.gov/CASC/Overture/henshaw/overtureDocumentation /overtureDocumentation.html

B. Owren and M. Zennaro, Order barriers for continuous explicit Runge-Kutta methods, Math. Comp.,
56(194), (1991) 645-661.

M. Parashar A programming environment for adaptive multi-resolution, multi-physics applications in
preparation, IEEE Computational Science, April 2000.

M. Parashar and J. C. Browne Distributed dynamic data-structures for parallel-adaptive mesh-refinement.
Proceedings of the International Conference for High Performance Computing. pp 22-27, December 1995.

M. Parashar and J.C. Browne A computational infrastructure for parallel adaptive algorithms IEEE
Computational Science, August 1999

M. Parashar, J.C. Browne et al A common data management infrastructure for parallel adaptive algorithms
for PDE solutions. Proceedings of Supercomputing 97, November 1997.

M. Parashar and J. C. Browne Object-oriented programming abstractions for parallel adaptive mesh re-
finement. Parallel Object-Oriented Methods and Applications (POOMA), February 1996.

Remote UI wire protocols, pre-XML, for the CCA component framework CCAFFEINE,
http://z.ca.sandia.gov/ baallan/drafts/doc/designUI.html.

J. Sand, RK-predictors: Extrapolation methods for implicit Runge-Kutta formulae, DIKU Report Nr. 88/18,
Datalogisk Institut, Kgbenhavns Universitet, Copenhagen (1988)

R. Subramanya and R. Raghurama, SANDIA R3 - DNS Code Requirements, Analysis and Design, Pitts-
burgh Supercomputing Center, (1999), Report, PSC-CRF-R3-RAD-1.0, Carnegie Mellon Univ, Pittsburgh,
PA.

R. Subramanya and R. Raghurama, SANDIA (2D/3D) - DNS Codes Final Report, Pittsburgh Supercom-
puting Center, (1999) Report, PSC-Sandia-FR-3.0, Carnegie Mellon Univ, Pittsburgh, PA.

Ch. Tsitouras and S.N. Papakostas, Cheap error estimation for Runge-Kutta methods, STAM J. Sci. Comp.,
20, 6 (1999) 2067-2088.

J.H. Verner, High-order explicit Runge-Kutta pairs with low stage order, Appl. Num. Math., 22, 1-3 (1996)
345-357.

P.S. Wyckoff and H.N. Najm, Private Communication, Sandia National Laboratories, (1998).

58

Unlimited Disribution

External Distribution:

N. Nystrom

Pittsburgh Supercomputing Center
Carnegie Mellon Universtiy

Mellon Institute Bldg.

4400 Fifth Ave.

Pittsburgh, PA 15213

R. Subramanya

Pittsburgh Supercomputing Center
Carnegie Mellon Universtiy

Mellon Institute Bldg.

4400 Fifth Ave.

Pittsburgh, PA 15213

R. Reddy

Pittsburgh Supercomputing Center
Carnegie Mellon Universtiy

Mellon Institute Bldg.

4400 Fifth Ave.

Pittsburgh, PA 15213

Internal Distribution:

= ot ot Ot

MS-9051 H. Najm
MS-9051 J. Chen
MS-9051 J. Grear
MS-9217 R. Armstrong
MS-9051 J. Ray
MS-9051 W. Koegler
MS-9051 C. Kennedy
MS-9053 A. Lutz
MS-9052 T. McDaniel

99

MS-9052 M. Allendorf

MS-1140 N. Varnado

MS-9054 B. McLean

MS-9054 F. Tully

MS-9012 P. Nielan

MS-9018 Central Technical Files, 8940-2

MS-0899 Technical Library, 4916

MS-9021 Classification Office, 8511/ Technical Library, MS-0899, 4916
MS-9021 Classification Office, 8511 For DOE/OSTI

MS-0188 D. Chavez, LDRD Office, 4001

60

	Abstract
	Acknowledgments
	Contents
	1. Introduction
	2. DNS Code Development
	3. Auto-CHEMKIN Software Development
	4. The Theory of N-Additive Runge-Kutta Methods
	5. Object-Oriented Mesh-Management Frameworks
	6. CCA Post-Processing Tools
	7. Transient Spherical Flame Model
	8. Materials and Surface Chemistry for Catalytic Conversion
	9. Closure
	References
	Distribution

