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ABSTRACT

PREDICTING THE TRANSPORT PROPERTIES OF
SEDIMENTARY ROCKS FROM MICROSTRUCTURE

by
Erika Manriquez Schlueter

Doctor of Philosophy in Engineering Science-
Materials Science and Mineral Engineering
University of California at Berkeley
Professor Paul A. Witherspoon, Chair

Understanding transport properties of sedimentary rocks, including permeability,
relative permeability, and electrical conductivity, is of great importance for petroleum
engineering, waste isolation, environmental restoration, and other applications. These
transport properties are controlled to a great extent by the pore structure. How
pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-
fluid interactions affect the flow of fluids through consolidated /partially consolidated
porous media are investigated analytically and experimentally. This understanding
is important in characterizing porous media properties and heterogeneities before
simulating and monitoring the progress of complex flow processes at the field scale in

permeable media.

Hydraulic and electrical conductivity of sedimentary rocks are predicted from the
microscopic geometry of the pore space. Cross-sectional areas and perimeters of
individual pores are estimated from two-dimensional scanning electron microscope
(SEM) photomicrographs of rock sections. Hydraulic and electrical conductances of
the individual pores are determined from these geometrical parameters using Darcy’s
and Ohm’s laws. Account is taken of random orientation of cross sections with respect
to the channel axes, and for variation of cross-sectional area along pore length. The
effective medium theory of solid-state physics is then used to determine an effective
conductance of each pore. Finally, the pores are assuméd to be arranged on a cubic
lattice, which allows the calculation of overall macroscopic values for the permeability
and the electrical conductivity. Results, using Berea, Boise, Massilon, and Saint-Gilles

sandstones show close agreement between the predicted and measured permeabilities.
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Good to fair agreement is found in the case of electrical conductivity. In particular,
good agreement is found for a poorly cemented rock such as Saint-Gilles sandstone,
whereas the agreement is not very good for well-cemented rocks. The possible reasons

for this are investigated.

Experimentally the electrical conductivity of a partially saturated rock has been
studied. The tests were conducted on Berea sandstone samples that had a formation
factor of 15 and a porosity of 20%. The effective resistivities (formation factors) of
the specimens, with an electrolyte solution in the pores that are not occupied by a
wetting fluid (paraffin wax), were measured at different saturations, after solidifying
the wetting fluid in place. The experimental data is studied in light of the role of the
pore structure in the wetting fluid invasion process with the aid of fluid distributions
at each saturation regime, a complete rock pore cast, and its associated rock section.
The surface conductance contribution of clay minerals to the overall electrical con-
ductivity is assessed. The effect of partial hydrocarbon saturation on overall rock
conductivity, and on the Archie saturation exponent, is discussed. The electrical con-
ductivity of Berea sandstone changes substantially with a relatively small addition
of the insulating wetting fluid, suggesting that the electrolyte at the grain contacts
may play an important role in the electrical properties, e.g., act as bottlenecks, in the
electrical conduction process. The resistivity of the electrolyte at the grain contacts
has to be added to the resistivity of the intergranular pore space (i.e., in between the

grains) to accurately predict electrical conductivity of cemented rocks.

The region of validity of the well-known Kozeny-Carman permeability formulae for
consolidated porous media and their relationship to the microscopic spatial variations
of channel dimensions are established. It is found that the permeabilities predicted by
the Kozeny-Carman equations are valid within a factor of three of the observed values.
Even though the complete pore space system of most sandstones is strictly speaking
inhomogeneous, the hydraulic active or ‘principal’ network approaches homogene-
ity. For highly inhomogeneous rock-pore-space systems, the critical path analysis for
estimating the permeability of consolidated rocks is valid within limits.

Perimeter-area power-law relationships of pores in five sedimentary rocks are deter-
mined from SEM photomicrographs of thin sections. The perimeter-area power-law

relationship of pores of four sandstones was found to lie between 1.43 and 1.49, while



that of an Indiana limestone was found to be 1.67. The perimeter-area power-law
relationship of pores, along with a pore-size distribution and a classical model for

permeability, is used to estimate the permeability.

Analytical calculations of the capillary pressure-saturation function are conducted,
based on the distribution of pore hydraulic radii and the area-perimeter power-law re-
lationship for pores. The geometrical quantities are estimated from two-dimensional
SEM photomicrographs of rock sections. Experimental capillary pressure-saturation
curves are obtained using alloy Wood’s metal, which allows for direct examination of
occupied pore space after the experiment. Model predictions are compared to empiri-
cal capillary pressure curves to calculate average pore body and pore throat sizes and
aspect ratios, and these are compared to values estimated from photomicrographs.
The resistance offered by the pore structure to various transport phenomena, i.e.,

permeability, is controlled by the pore throats.

Experiments to measure relative permeabilities of a partially saturated rock have
been carried out in Berea sandstone using fluids that can be solidified in place. The
effective permeability of the spaces not occupied by the wetting fluid (paraffin wax)
or the nonwetting fluid (Wood’s metal), have been measured at various saturations
after solidifying each of the phases. .The tests were conducted on Berea sandstone
samples that had an absolute permeability of approximately 600 mD. The shape of
the laboratory-derived relative permeability vs. saturation curves measured with the
other phase solidified conforms well with typical curves obtained using conventional
methods. The corresponding wetting and nonwetting fluid distributions at different
saturations are presented and analyzed in light of the role of the pore structure in
the invasion process, and their impact on relative permeability and capillary pressure.
Irreducible wetting and nonwetting phase fluid distributions are studied. The effe§t

of clay minerals on permeability is also assessed.
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1 INTRODUCTION AND BACKGROUND

The properties of rocks are determined not only by the intrinsic properties of the
constituent minerals but also by the microstructure of the rock and the interaction
between the mineral phases and the pore fluids. Rocks are in general far more complex
than most engineering composites, being composed of grains of different minerals,
with various sizes and shapes, along with intergranular cementing material. Rocks
also contain pores that allow the flow of fluids. The viscous nature of these fluids,
along with chemical interactions between the fluid and the mineral phases, leads to
behavior that involves a greater range of phenomena than is exhibited by man-made

materials.

The flow of fluids through geological media is governed by a constitutive equation
relating the volumetric flux to its driving force, the total head gradient. Traditionally,
this relationship has also been assumed to be linear (i.e., Darcy’s law). The constant
of proportionality, the permeability coefficient, is determined by the sizes, shapes,
and interconnectivity of the pores. Just as the flow of fluid through a rock is greatly
dependent upon the geometry and the topology of the pore space, so is the conduction
of electric current. Since the conductivities of many fluids that fill the pore spaces of
rocks are many orders of magnitude greater than that of most rock-forming minerals,
electrical current in a rock is essentially confined to the pore space. Hence, the overall
electrical conductivity of a rock depends on the conductivity of the pore fluid and the

interconnectivity of the pore space.

Although some progress has been made in relating permeability and electrical con-
ductivity to pore structure, work has been hindered by a lack of knowledge of the
detailed microstructure and the ability to model its intricacy, and a lack of under-
standing of the nature of the interactions between the rock matrix and the pore fluids.
It has long been recognized that the important physical properties of rocks are related
to each other in some definite matter. Much effort in the petroleum and well-logging
industry, for instance, has been devoted to developing relationships between prop-
erties such as permeability and electrical conductivity or formation factor. Yet, the
equations devéloped have been typically empirically-fitted curves which are usually

valid for very narrow classes of rocks.
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Constitutive relationships developed in the pages that follow are based on mi-
crostructural considerations. They display the dependence of constitutive parameters
on pore and grain structure, and thereby reveal the nature of the interrelationship
between the various coupled processes and properties. The main research goal has
been to develop constitutive relations for various types of sedimentary rocks which
reflect their actual nonlinear behavior. Rather than incorporating empirically derived
phenomenological parameters, these constitutive equations contain parameters that

explicitly depend on the rock fabric, microstrure, degree of cementation, etc.
1.1 Motivation for the present work

The precise definition of reservoir characteristics and structure on the scale of
meters is key to the planning and control of successful complex flow processes in
waste isolation and environmental restoration. Although this subject has received

some attention in the past most major issues still remain unresolved.

Determination of subsurface hydrologic parameters that characterize fluid flow
through porous media (e.g., permeability, relative permeability, and capillary pres-
sure) is crucial to the understanding, monitoring, and simulation of complex flow prob-
lems in permeable media, including multiphase, multicomponent field scale processes
as well as waste remediation and/or isolation. Results of numerical simulations quan-
tifying the effects of the release and transport of noncondensible gas (Appendixes A
and B) and nonaqueous phase liquids (NAPL’s) in subsurface formations (Falta et
al., 1992) highlight the impact of macroscopic transport and physical properties on
multi-phase system behavior. For example, the parameters that were shown to have
by far the largest impact on the particular two-phase system under isothermal con-
ditions presented in Appendix B were relative and intrinsic permeability. Relative
permeability was found to affect strongly both the gas pressure and the gas front
displacement (Figs. B-16, B-17, and B-18). Intrinsic permeability was found to af-
fect the gas pressure values (Fig. B-19) more than the displacement front speed
(Fig. B-20). Indeed, these previous studies clearly show that simulation results de-
pend heavily on the physical properties as defined, and that they are only as accurate

as the underlying reservoir description.



The macroscopic transport properties of porous (and fractured) media depend
critically upon processes at the pore level, which are controlled by the geometry and
connectivity of the pore space. Consequently, there is a need for a first-principle un-
derstanding of how pore morphology and other related factors can be used to predict
porous media macroscopic physical properties such as intrinsic permeability, forma-
tion factor, relative permeability, and capillary pressure. The ultimate aim is to
distinguish physical properties of rocks with a resolution from the pore level to the
laboratory and to the field scales. This understanding will be important in deter-
mining reservoir properties and heterogeneities before prediction of complex reservoir
behavior. In this thesis, we tackle the first step: the relationship between rock mi-

crostructure and the laboratory measured transport properties and heterogeneities.
1.2 Transport properties

Our chief concern is the relationship between the transport properties such as

intrinsic permeability and electrical conductivity, and the rock geometry and topology.

In the case of hydraulic flux, consider, for example, low Reynolds number flow of
an incompressible viscous fluid through a porous medium. At the local scale of a fluid
particle moving in the pore space, the flow is governed by the linearized Navier-Stokes
equations and the continuity equation:

pvii=vp; v-5=0,
where 4 is the absolute viscosity of the fluid, p the fluid pressure, and ¥ the fluid
velocity at a given point in the fluid. The boundary conditions require that the
velocity vanishes at the pore-grain interface. At the macroscopic level, i.e., the scale
of a macroscopically homogeneous isotropic rock sample whose size is large compared
with the pore dimensions, the flow is governed by Darcy’s law. The empirical Darcy’s
law states that the average volumetric low rate per unit area ¢'is proportional to the

applied uniform average pressure gradient f}p:

é‘= —Vp,
1
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where k is the scalar intrinsic permeability that depends only upon the geometry of

the porous medium under consideration.

In the case of electrical flux, consider, for example, the steady state (d.c.) con-
duction of electricity through a porous rock whose pore space is fully saturated with
an electrolyte of conductivity k.. The grain phase is considered homogeneous with

conductivity k,. The electrostatics equations governing the flow of current are:
j=kE; E=-yV; v-j=0,

where f, E, and V are the current density, the electric field, and the potential at a
point in the material where the conductivity  is equal to &, or k4. At the macroscopic
level of description, Ohm’s law relates the average current density 7 to the applied

uniform average voltage gradient f}V:
; = ~’{'6V ’

where k is the d.c. electrical conductivity.

In principle, these properties may be calculated by solving the appropiate equation
of motion, provided that the boundary conditions are specified. The complexity of
these limiting conditions imposed at the very irregular pore surface, however, makes
this approach unmanageable. In practice, the problem is approached by relating
the transport properties to a small number of measurable parameters directly from

microgeometry characterizing the microstructure of rocks.

The analogy between permeability and electrical conductivity is not a simple one-
to-one relationship however, due to the lack of an electrostatic equivalent to the

no-slip hydraulic boundary condition which applies at the grain surfaces.



1.3 Other work on pore-level modeling of transport properties

Muskat as early as 1937 suggested the importance of knowing the pore geometry
of a reservoir rock before fluid movement through it could be rigorously analyzed.
However, due to the complexity of porous media structure, assumptions musf be
made and models created. Moreover, it is the physically-grounded mathematical
models, based on experimental observation of actual phenomena, that will ultimately
provide not only a satisfactory explanation for the concept of transport properties

but also for the dynamics of an entire reservoir.
1.3.1 Capillaric modeling

The early literature has been thoroughly reviewed by Scheidegger (1974). Much
of that work, continuing to the present day, is based on capillary-tube models such as
the Kozeny-Carman equivalent channel model. The cross section of this equivalent
tube has a constant shape and an area proportional to the porosity of the sample. The
permeability and the electrical conductivity are expressed by terms of the tortuosity
(L/L:)?, the porosity ¢, and the specific surface area s as:

L 2¢3
k=e() &

L 2
K,,-—-K,w(z;> ¢,

where c is a constant that depends on the cross-sectional shape of the channel
The parallel-tube models may yield, in some instances, a satisfactory explanation
of Darcy’s law. However, these models are not physically similar to actual pore struc-
tures especially since they neglect the phenomena of pore coordination or connectivity.
An improvement to the capillaric models are the branching models which take into

account the fluid flow path branching and reconnecting.

Rose and Witherspoon (1956) discussed flow branching and reconnecting in the
pore space. Various attempts to introduce the complexity of the pore space by mak-

ing progressively more complex tube structures introduced a series of new adjustable

5
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parameters into the basic tube relation. Many parameters were introduced to account
for distribution of pore sizes, for tube shape variations, misalignment of tubes, etc.
The generalized Kozeny-Carman equation obtained by Wyllie and Gardner (1958)
implicitly contained twelve adjustable parameters. These parameters attempt to ac-
count for two factors; connectivity or coordination and the pore size. These early
studies led to permeability expressions involving to some measure of the surface area
and the porosity raised to a higher power such as four or six. These empirical perme-
ability relations have been used until recently in log analysis (Dewan, 1983) although
their accuracy is limited to an order of magnitude and there is no physical motivation

for large powers of porosity.

Swanson (1981) made a conceptual advance recognizing that the fluid flow could
be dominated by flow on a path of large pores. He provided an estimation of per-
meability based on its relationship to the mercury-capillary pressure curves. He used

two adjustable parameters for taking into account different lithologies.

Wong et al. (1984) obtained an expression. for the permeability in terms of macro-
scopic geometric parameters such as the porosity and the specific surface area. Their

result is consistent with the Kozeny-Carman result.

Walsh and Brace (1984) modified the original Kozeny-Carman equivalent channel
formula to obtain an expression in terms of the measurable parameters, the specific
surface area, the porosity, and the formation factor. The permeability and the elec-
trical conductivity of an equivalent single channel can readily be expressed in terms
of the porosity, the specific surface area, and the tortuosity. By combining the perme-
ability and electrical conductivity expressions for a single channel, the tortuosity can
be eliminated, and the permeability expiession that is obtained is dependent only on
the surface area, the porosity, and the formation factor F. It is
&

k= cFs?’

Berryman and Blair (1986) used the modified form of the Kozeny-Carman equiv-
alent tube model by Walsh and Brace (1984) to make estimates of the permeabil-
ity from microgeometry of Berea sandstone. Digitized scanning electron microscope

(SEM) photomicrographs of rock thin sections were employed to estimate porosity

6



and specific surface area from measured two-point correlation functions. These pa-
rameters were then combined with known values of the electrical formation factor
to predict permeability from Kozeny-Carman formulas. The specific surface area is
directly proportional to the slope of the two-point correlation function evaluated at
the origin (Matheron, 1967). Berryman and Blair (1986) change the magnification of
the microscope to estimate the specific surface area of different samples, which makes

the accuracy of their permeability estimates somewhat difficult to assess.

Doyen (1987) used an homogenized form of the pore space to estimate the per-
meability and electrical conductiﬁty of Fontainebleau sandstone using the Kozeny-
Carman formula. Pore-throat distribution data obtained from image analysis of dig-
itized thin sections was introduced in the effective medium theory self-consistency
equation (Kirkpatrick, 1973) to obtain a characteristic throat size that serves as in-
put for the Kozeny-Carman formula. Doyen’s estimates of transport properties were

within a factor of three of the measured values.
1.3.2 Percolation modeling

We next briefly discuss the percolation approach to the transport properties. This
method does not rely on specific pore-size distributions or lattice topologies and can
be applied within limits for rocks that have pore sizes that are broadly distributed.

Ambegaokar, Halperin, and Langer (1971) showed in their work on electron hop-
ping in amorphous semiconductors that transport in a random system with a broad
distribution of conductances is dominated by those conductances with magnitudes
greater than some characteristic value C.. The characteristic conductance is the
largest conductance such that the conductances field forms an infinite connected clus-

ter. Transport in such a system reduces to a percolation problem with a threshold

value.

Kirkpatrick (1979) set conductances with C' < C. to zero and assigned all local
conductances C > C. the value C.. He arrived at an expression for the conductance

of the form

C = aClIF(C) — 11
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where f(C.) is the probability for a given conductance to be greater or equal to C,

a is a constant, and ¢ is approximately 1.9 for three-dimensional distributions.

Katz and Thompson (1986) applied this percolation scheme to the permeability
and electrical conductivity of porous rocks. For a very broad pore-size distributions

they found the following relationship

ko (&),
226 \ Ky
where [, is the characteristic length defined by the threshold conductance C.. The
magnitude of the constant is a direct reflection of the different weighting of the flow

paths for the hydraulic and electrical conductance problems; this observation reflects
the difference, for example, between the hydraulic conductance of a tube of diameter
and length [, which is proportional to /3, and the electrical conductance of the same

tube filled with an electrolyte solution, which is proportional to I.
1.3.3 Network modeling

A more accurate representation of the pore structure is a random network with
varying coordination numbers and composed of tubes of different shapes and sizes
which are distributed randomly along the connections. Using appropriate physical
laws, network models can then be made to replicate measurements at the microscopic
scale. It has been demonstrated by numerous researchers (Fatt, 1956a,b,c; Chatzis
and Dullien, 1977; Dullien, 1979; Mohanty and Salter, 1982; Chatzis and Dullien,
1985; Tourboul et al., 1987; Lenormand et al., 1988) that network models do exhibit

the observed properties of porous media.

Fatt (1956a,b,c) introduced the concept of modeling a porous medium by a pore
network. He used a two-dimensional regular network of randomly-distributed capil-
lary throats with nodes that had no volume. He employed both uncorrelated throat
lengths and capillary throat lengths that were inversely proportional to their radii.
Fatt utilized the Laplace and the Hagen-Poiseuille equations for the capillary pres-
sure and the relative permeability calculations. He used an analog computer of re-
sistors with the resistances determined from Ohm’s law. Fatt’s model qualitatively

represented observed behavior of relative permeability, relative resistivity, saturation
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exponent, and capillary pressure. He illustrated his model using square and single,
double, and triple hexagonal patterns and found that the results were less affected
by the pattern than they were by the throat radius distribution. Fatt demonstrated
his network using only up to about 400 pore throats, since his calculations were done

manually.

Chatzis and Dullien (1977) studied both two- and three-dimensional networks.
They used the coordination mimber, which is the total number of pore throats (bonds)
connected to one pore body (node), to characterize a network pattern. They obtained
cumulative probability values for different network lengths until the critical probabil-
ity was determined. The critical probabibity is that which would apply to a network
of infinite length. They found that a network of about forty pore segments deep was
sufficient to simulate an infinite-length network. Chatzis and Dullien concluded that
two-dimensional networks could not be used to simulate three-dimensional networks
because of their differing properties. One problem is that bicontinua cannot exist in
a two-dimentional network. They also found that the best three-dimensional results
were obtained when the volume fraction of pores of a certain size was proportional
to the diameter of those pores. They noted that porosities in the 20% to 40% range
could not be described if the pore throat lengths were made either directly or inversely

proportional to their diameters.

Mohanty and Salter (1982) used a network model to calculate relative permeability,
capillary pressure and dispersivity. They used a three-dimensional cubic arrangement
of pore throats with pore bodies at the nodes. They used a Weibull distribution to
determine pore throat and pore body radii. Pore body volumes were assumed to
be proportional to the cube of their radii. Pore throat volumes were neglected in
saturation calculations. Pore throat lengths were considered to be proportional to

some power of the throat radii.

Koplik and Lasseter (1984, 1985) show that Fatt’s analog resistor network pro-
cedures can be condensed into a two-step analog effective medium process. They
consider one pore throat where all of the random conductances in the rest of the
network have been changed to an effective conductance, Cess. They calculate the

pressure gradient across the one pore throat assuming its conductance is first Ceyy,
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and then is random. Requiring that the pressure gradient for C.ss be equal to the
average pressure gradient for C random gives (Kirkpatrick, 1973):

< C — Cefs >=0,
C+(2-1)Cey

where z is the average coordination number and the brackets indicate the average

over all possible values of C. They found that this approximation is good to £5%.
They derived an equation estimating the average velocity. Macroscopic permeability

was then calculated using this equation and Darcy’s law.

Koplik, Lin, and Vermette (1984) used the effective medium theory of Kirkpatrick
(1973) and similar techniques to calculate both permeability and conductivity. Using
rock SEM photomicrographs of thin sections to get pore sizes, their results were off
by a factor of 10 and 2, respectively. They attached this large difference principally
to the sample size studied with rock thin sections. Their analysis requires calculation
of a parameter ¢ which is a function of the average number of branches of the pore
space system intersecting a unit surface across the porous medium. The quantity
¢t requires a large sample volume to be calculated accurately. Also, a term cosf®
(with angle @ given with respect to the direction of fluid flow) is not considered in
their definition of . Our modelling approach avoids the problem of evaluating the
parameter ¢ altogether.
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2 OVERVIEW AND ORGANIZATION

The successful operation and monitoring of large scale complex transport processes
in permeable media necessitates a first principle understanding of how rock pore
morphology and minerology, physical and chemical properties, and fluid compositions
can be used to predict basic transport properties, including absolute and relative
permeability, electrical conductivity, capillarity and contact angles, etc. A significant
limitation to our understanding of the dynamics of multi-phase fluids in porous media
is the inability to connect the physics at the microscopic scale to the macroscopic
phenomena observed in the laboratory and in the field. Within individual pores, the
motion of the fluids and the meniscus can be discussed, at least approximately, in
terms of the microgeometry and the physical characteristic of the fluid present. On the
macroscopic scale, the multiphase Darcy equations are used. The connection between
these two levels of description has never been clearly elucidated despite years of effort
(Chapter 1.3). In consequence, it is difficult to predict the behavior of reservoirs in

advance, and considerable waste of money, efforts, and resources can ensue.
2.1 Approach

Here we wish to investigate the microstructure (geometry and topology) of sed-
imentary rocks and its relationship to the transport properties such as hydraulic
permeability and electrical conductivity which are important in understanding the
flow of fluids in reservoirs and their displacement by other fluids. Wood’s metal, an
alloy of bismuth, lead, tin, and cadmium that melts at around 70 °C, has been used as
the nonwetting phase in our experiments. As a wetting fluid, paraffin wax, a mixture
of solid hydrocarbons of high molecular weight that melts at approximately 50 °C,
has been employed. The advantage of using Wood’s metal and paraffin wax is that
after a particular flow test they can be solidified in place and the distribution of the
occupied and unoccupied pore spaces can be studied under either a scanning elec-
tron microscope (SEM) or an optical microscope. Experimental studies have been
accomplished aimed at studying permeability and electrical conductivity of a par-
tially saturated rock. For this purpose, the relative and effective permeabilities and

resistivities of the spaces not occupied by the wetting fluid (paraffin wax) have been

11
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measured at various saturations, solidifying the phase in Berea sandstone samples
having an absolute permeability of ~ 600 mD, and a formation factor of 15. Relative
and effective permeabilities of the pore spaces not occupied by the nonwetting fluid
(Wood’s metal) have also been measured. This technique allows post-experiment
examination of the occupied pore space and yields results for Berea sandstone that
agree with typical relative permeability and capillary pressure curves reported else-
where using conventional methods. The experimental work provides theoretical basis

for the macroscopic constitutive relationships that are developed herein.

The hydraulic permeability and electrical conductivity of sedimentary rocks are
predicted from the microgeometry and connectivity of the pore space. 2-D SEM
micrographs of rock cross sections are used to infer the hydraulic and electrical con-
ductances of individual pores. The hydraulic conductance of each tube is estimated
from its area and perimeter, using the hydraulic radius approximation, while the
electrical conductance is related only to the cross-sectional area of the tube. It is
assumed that the pores are cylindrical tubes of varying radius, and that they are
arranged on a cubic lattice, so that the coordination number of the network is 6. A
stereological correction is applied to account for the fact that the cross section slices
each pore at a random angle to its axis. Account is also taken for possible variation
of the cross-sectional area along the length of each tube. The effective medium the-
ory of Kirkpatrick (1973) is then used to replace each individual conductance with
an effective conductance. Finally, an extension of a unit cubic cell is used to relate
the effective tube conductances (hydraulic or electrical) to the continuum values of
the permeability and electrical conductivity. Results, using a Berea, Boise, Massilon,
and Saint-Gilles sandstone, show close agreement between predicted and measured

hydraulic permeabilities, with essentially no adjustable parameters in the model.

In particular, permeabilities of sandstones obtained with the cubic lattice-network
model are in very good agreement with experimental data. This outcome confirms
previous research by Chatzis and Dullien (1985), who found that the simple cubic
network of angular pores yields good agreement with the observed data when model-
ing the mercury porosimetry curve for a variety of sandstones. These results are not
surprising when one notes that the above properties are strong functions of the pore

structure of the samples, which is in every case multiply connected.
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The region of validity of the well-known Kozeny-Carman formulas based on a
parallel arrangement of the pores is studied, as it relates to the microscopic spatial
variation of channel dimensions. It is important to evaluate the extent to which
the widely-used parallel pore structure moves away from the regular cubic model
as the pore space becomes increasingly more inhomogeneous at the pore scale. A
conductance plot has been developed using the effective medium theory of solid-state
physics to allow the investigation of the accuracy of the Kozeny-Carman equations
for the prediction of permeability of consolidated porous media. It is found that the
permeabilities predicted by the Kozeny-Carman formulas are approximately valid
within a factor of three of the observed values. This finding is a direct result of
the various sandstones ‘principal’ network approaching microscopic homogeneity in
channels dimensions. For highly inhomogeneous rock-pore-space systems, the critical
path analysis of Ambegaokar et al. (1971), which focuses on the details of the critical
paths along which much of the flow must occur, can be applied within limits for

estimating the permeability of consolidated sandstones.

Perimeter-area relationships of a smooth representation of pores are estimated
from scanning electron micrographs of thin sections of typical reservoir-type sedi-
mentary rocks. Although some sandstones also exhibit roughness at scales much
smaller than the average pore diameter, it is known that such roughness has little
effect on hydraulic conductance (Berryman and Blair, 1987), and can therefore be
ignored. The basic method to estimate the area-perimeter statistics involves count-
ing size and perimeter grid (or pixel) units for every feature in a standard scanning
electron micrograph of some fixed magnification. This method is used to estimate
the area-perimeter statistics for group of pores in a rock-section. It is found that the
perimeter-area relationship of such a representation of the true void/solid interface
satisfies the perimeter-area power-law relationship: A = mP7, where logm is the in-
tercept on the log A axis, and v the slope of the log A —log P plot. The constants m
and v are found by performing a linear fegression on the log A—log P data. From this
analysis we find slopes ranging from 1.43 to 1.49 for the four sandstones examined,
while that of an Indiana limestone is found to be 1.67, with correlation coefficients
varying from 0.98 to 0.99. We show how the perimeter-area power-law relationship

of a smooth representation of the pore space of a rock can be used, in conjunction
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with the pore-size distribution function and a classical model for permeability, to
yield reasonable estimates of absolute permeability. In the two-dimensional sections
under consideration, however, the pore cross-sections are randomly oriented with re-
spect to the channel axes. The orientation effect is taken into account by means
of geometrical and stereological considerations. In addition, constrictions within the
individual branch channels, i.e., pore necks and bulges, are taken into account using
an analysis based on a sinusoidal variation of cross-section. The example is intended
to be a plausible demonstration of the use of perimeter-area power-law information

for making quantitative predictions of permeability.

We have employed a simple cubic lattice-network model of electrical conductivity
utilizing a smooth representation of the intergranular pore space (e.g., in between
the grains). With this model we have found that the same pore system is respon-
sible for both electrical and hydraulic properties of a lightly consolidated rock such
as Saint-Gilles sandstone. Moreover, for a heavily consolidated rock such as Berea
sandstone, we found that the pore space responsible for hydraulic properties is not
responsible alone for electrical properties. The results from the cubic lattice-effective
medium model suggest that it is mainly the electrolyte presence at the contacts that
is important and that the uniform coverage with electrolyte elsewhere on the grain
surfaces has no part in determining electrical properties. The fact that the electrical
properties of a consolidated rock such as Berea sandstone change substantially with
the addition of only 20% of an insulating wetting fluid suggests that the electrolyte at
the grain contacts may also play an important role in electrical properties e.g., act as
bottlenecks, in the electrical conduction process of consolidated rocks. In order to ac-
curately predict electrical conductivity or formation factor of sedimentary rocks from
microgeometry one must rigorously superimpose the resistivity of the electrolyte at

the grain contacts to the resistivity of the electrolyte in the intergranular pore space.

An analytical expression of the capillary pressure-saturation curve, based on pore
microgeometry, has been obtained using a perimeter-area power-law relationship and
a hydraulic radii distribution. Two-dimensional SEM photomicrographs of rock cross
sections are employed to estimate areas, perimeters, and hydraulic radii of individual
pores. The porous media is idealized as conmsisting of an assembly of capillaries of

arbitrary cross-sections randomly oriented with respect to the channel axes in the
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two-dimensional SEM photomicrographs; actual cross-sectional areas are calculated
using a stereological correction. Model predictions are compared to empirical capillary
pressure curves to calculate average pore body and pore throat sizes and aspect ratios,

and compare these with values estimated from SEM micrographs.

In summary, our approach is to study through analysis and experiment how pore
geometry, topology and the physics of mineral-fluid and fluid-fluid interactions affect
both the flow of fluids through rocks and the relationship between the fluid transport
properties and the electrical behavior and properties of the porous media under con-
sideration. The theoretical analysis has been useful in defining and ranking needed
experiments, and to successfully correlate measurements of important transport prop-
erties, such as permeability and electrical conductivity of consolidated/partially con-
solidated porous media, to the microgeometry of the pore space. On the other hand,
the experimental work has provided valuable insights into the pore level complexity
of the natural porous media. It is clear from this study that heterogeneity charac-
terization at the scale of pores, conventional macroscopic flow theory, and fluid flow
modeling will not only improve our understanding of the fluid dynamics in permeable
media but also will enable us to better monitor, simulate, and predict complex flow

processes at the field scale.
2.2 Objectives

The main purpose of the entire exercise is to investigate the missing link between
the pore microstructure and the fluid presence, and the macroscopic transport prop-

erties of reservoir rocks. This principal aim may be subdivided into several objectives

as follows:
1. to understand the microscopic geometry, topology and heterogeneity of the pore
space of rocks by direct observation of pore casts and associated rock sections;

2. to comprehend the relationships between pore space microscopic geometry, topol-

ogy, and heterogeneity and macroscopic transport properties for porous media;

3. to develop relations between pore microscopic geometry and topology to macro-

scopic transport properties of sedimentary rocks;
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4. to measure transport properties of rocks using multiple fluid phases that can be
solidified in place to allow direct visualization and analysis of the fluid distribu-

tions in the pore space;

5. to examine hydraulic and electrical conductivity data in terms of the role of
the pore structure and heterogeneities on the observed fluid distributions at
different saturations to provide theoretical basis for the macroscopic constitutive

relationships that we develop;

6. to compare measured transport properties to existing data on sedimentary rocks

obtained using conventional methods;

7. to evaluate hydraulic and electrical conductivity data in terms of the micro-
physics and microchemistry of the processes involved (i.e., effect of clay coatings

on the pore walls);

8. to study the experimental data and fluid distributions of rocks at low wetting-

phase and nonwetting-phase saturations, and near threshold saturation; and

9. to ultimately use true macroscopic transport properties to better understand,

simulate, and monitor large scale transport processes in permeable media.
2.3 Organization

This report is comprised of seven main Chapters and two appendices. Chapter
3 describes the development of analytical models (discrete and statistical) for pre-
dicting the hydraulic permeability of sedimentary rocks from microstructure. The
validity of the Kozeny-Carman formulas for the prediction of permeability of consol-
idated porous media is assessed. In Chapter 4, the analytical model for predicting
electrical conductivity (formation factor) of sedimentary rocks is presented. Exper-
imental results for the effective formation factors of Berea sandstone are introduced
and compared to the analytical results. Chapter 5 presents analytical and experimen-
tal results on capillary pressure of Berea sandstone. The study of the microscopic
distribution of wetting and nonwetting phases in the pore space of Berea sandstone
and their relationship to relative permeability is presented in Chapter 6. Chapter 7
includes a summary and conclusions of work completed together with implications

for future work.
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3 PREDICTING PERMEABILITY OF SEDIMENTARY ROCKS
FROM MICROSTRUCTURE

The concept of permeability allows a macroscopic description of the fluid flow
phenomena in porous media under a regime of sufficiently low fluid velocities (Schei-
degger, 1974). This property is linked to other properties of porous media such as
capillary pressure and relative permeability. In order to understand the relationships,
one has to understand how all those properties are conditioned by the connectivity and
geometrical properties of the pore space. The simplest model that can be constructed
is one representing a porous medium by a bundle of straight, parallel cylindrical cap-
illaries of uniform diameter that go from one face of the porous medium to the other.
Equations based on this type of 1-D model are called Kozeny-Carman equations. The
opposite extreme of this parallel case would be to assume a serial model in which all
the pores are connected in series. Obviously, for a natural porous medium, this model
is as idealized as the parallel model, and a realistic model lies somewhere between

these limits.

In this study, we look at a natural porous material which is defined as a two-phase
material in which the interconnected pore space constitutes one phase and the solid
matrix the other. A distinctive property of a natural porous medium is the irregular
pore-size and pore-shape distributions. We consider here the pore scale and its ex-
tention to the laboratory scale which is of the order of tens to thousands times larger.
The laboratory samples are considered homogeneous in the sense that the irregular
pore structure reproduces itself in the various portions of the sample. In a typical fluid
flow laboratory experiment, the rates of flow are measured over areas which intersect
many pores. Space-averaged or macroscopic quantities such as permeability are the
ones of interest in applications. The main aim of this Chapter is to develop equations
relating a macroscopic property such as permeability to rock microstructure. A few
methods have been used in the past in order to achieve this (See Chapter 1). Two
basic averaging approaches have been employed here. In the first one, the discrete
approach, a macroscopic variable such as effective conductance is determined as an
appropiate mean over a sufficiently large representative elementary volume (r.e.v.)
defined through the concept of porosity associated with it. The length scale of the
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r.e.v. is larger than the size of a single pore so that it includes a sufficient number of
pores to allow the meaningful statistical average required in the continuum concept.
It is assumed that results concerning the macroscopic quantities are independent of
the size of the r.e.v. In the second one, the statistical approach is related to the
uncertainty of the spatial distribution of microscopic quantities such as pore-sizes
and pore-shapes. The statistical averaging is carried out over one realization. The
actual sample is one of the possible realizations of media of some gross features. But
the inference of statistical information about the realization is based on the unique
sample. This is possible only under restrictive conditions of statistical homogeneity
(stationarity) which are similar in essence to those underlying the concept of r.e.v. As
long as we limit ourselves to deriving relationships between space averaged quantities
with no special concern as to their fluctuations, the results of the two approaches

should be essentially the same.
3.1 Discrete approach to individual conductances

Consider an inhomogeneous, disordered, composite system (conductive/non-con-
ductive) in which one can define locally a given property, e.g., conductance, which
can be calculated from the geometry of the conductive element (e.g., the coefficient
in Poiseuille’s law for cylindrical tubes). This is possible as long as the dimensions
of the local elements are large with respect to the scale of the conduction process
involved (i.e., as long as the individual pores are wide enough so that fluid low obeys
the macroscopic Navier-Stokes equations, and is not dominated by surface effects).
Such a medium can be approximated by a 3-D network with the same topology,
in which all the conductances have a single effective value. The effective medium
can be defined as one in which the macroscopic conductance is the same as for the
heterogeneous system, and therefore the effective conductance can be considered as
the mean value controlling the physical property of concern. Since we are concerned
with a random medium, it is assued that no spatial correlation exists between the
individual conductances. Details of the effective medium theory of solid state physics

are given in Section 3.1.1.

For this study, rock cross sections have been prepared for imaging with the scan-

ning electron microscope (SEM). The resulting 2-D SEM photomicrographs have been
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employed to infer the hydraulic conductance of the individual pores. We assume that
the pores are cylindrical tubes of varying radius, and that they are arranged on a
cubic lattice, so that the coordination number of the network is 6. The hydraulic
conductance of each tube is estimated from its area and perimeter, using the hy-
draulic radius approximation and the Hagen-Poiseuille equation. In the section under
consideration, the pore cross sections are assumed to be randomly oriented with re-
spect to the directions of the channel axes. The orientation effect has been corrected
by means of geometrical and stereological considerations. Account is also taken for
possible variation of the cross-sectional area along the length of each tube, e.g., pore
necks and bulges. The effective-medium theory of solid-state physics is then used to
replace each individual conductance with an effective average conductance. Finally, a
unit cubic cell is extended to relate the effective-hydraulic-tube conductances to the
continuum values of permeability. Preliminary results, using Berea, Boise, Massilon,
and Saint-Gilles sandstone, yield very close agreement between the predicted and

measured permeabilities, with essentially no arbitrary parameters in the model.
3.1.1 Effective medium theory

The objective of the effective medium theory (Kirkpatrick, 1973) is to infer an
average conductance parameter for heterogeneous disordered media from the statis-
tics of local conducting elements. Consider an inhomogeneous disordered continuous
system in which one can define locally the conductance. Such a medium can be
approximated by a 3-D network with a regular topology in which each bond is oc-
cuppied by a conductance C;. According to Kirkpatrick (1973) it is possible to build
a homogeneous network with the same topology but in which all conductances C;
have a single value C,;; which is an effective value controlling the physical property
involved. The effective medium is by definition the homogéneous equivalent network
for which the macroscopic conductance is the same as for the heterogeneous system.
The idea then, is to represent the average effects of the random conductors by a homo-
geneous effective medium in which the total field inside is equal to the external field.
As a criterion to fix Cy; it is required that the incremental voltages induced, where
individual conductances C; are replaced by Cess in this medium, should average to

Z€ro.
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The distribution of potentials in a random resistor network to which a voltage has
been applied along one axis may be regarded as due to both (1) an external field
which increases the voltage by a constant amount per row of nodes, and (2) a local

fluctuating field whose average over a sufficiently large region is zero.
3.1.1.1 Uniform field solution (external field)

By introducing a regular cubic mesh of points r; with spacing Ar (Figure 3.1),
and applying the principle of conservation of charge, one obtains a system of linear

equations for the voltages V; = V...

At point i,

> Cy(Vi-Vj) =0, (1)

where j is summed over all neighboring points.

Replacing the conductance C;; with a constant effective conductance Cyy, gives

at point A (refer to Figure 3.1)

Coss([V +2Vessld = [V +8Vess + V- Vegs + V + 2Veps + V + 2Vess]) =0, (2)
where all conductances C.ss have associated with them AV = V,5; per row.
3.1.1.2 Fluctuating field solution (local field)

To find a mathematical expression for the effective conductance, a classical self-
consistent method can be employed in which a single conductance C, is embedded
in the homogeneous medium of similar topology. The inclusion of C, in the effective
medium disturbs locally the uniform solution. for the field but the deviation is easily

calculated since the effective network is homogeneous.
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FIG. 3.1: Construction used in calculating the uniform field solution, in which the voltages increase
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FIG. 3.2: Construction used in calculating the voltage induced across one conductance, C,, sur-
rounded by a uniform medium (after Kirkpatrick, 1973).
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Consider one conductance having the value C, surrounded by an otherwise uniform
effective medium. The solution of the network Eq. (1) in the presence of C, can be
constructed by superposition (Figure 3.2). Far from C, the field is uniform. To the
uniform field solution given by Eq. (2), we add the effects of a fictitious current i,
introduced at A and extracted at B. Since the uniform solution fails to satisfy current

conservation at A and B, the magnitude of %, is chosen to correct for this.

At A,

Vesf(Cepsr — Co) = 1o - (3)

The extra voltage, V,, induced between A and B, is given by the conductance C;w
of the network between points A and B when the perturbation is absent, i.e., when

C’o - Ceff =0:

7
VL=———0,—- 4
Co+Cyup )

The current flowing through each of the z equivalent nodes at the point where
the current enters is i,/z so that a total current of 2i,/z flows through the path
AB. We then calculate the voltage developed across AB, the conductance across
AB, Cap = (2/2)C.ss, and Cyup = (2/2)Cess — Cess-

Thus we can write

Ver(Cess — Co)
V, = ,
Co + [2/2 - 1]Ceff (5)

valid both in 2-D and 3-D.

The requirement that the average of V, vanishes gives

Ces — G _ 5 Cets —Ci _
<[(z/2) - 1]Ceff + C,> - ; [(2/2) — 1]Ceff +C; =0, (6)

where the sum is taken over all NV individual conductors.
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Upper and lower bounds on the effective conductivity are found from the two

limiting cases z = 2 and z = co. For z = 2, Eq. (6) can be solved for

N
Copp= = )
1 G

whereas for z = co, Eq. (6) can be solved for

EiN=1 Ci
N ° . (8)

Cess =

When the coordination number is 2, the tubes are arranged in series, and the
effective conductance reaches its lowest possible value. On the other hand, when
the coordination number is oo, the tubes are arranged in parallel, and the effective
conductance reaches its maximum value. The limiting values of both the effective
conductance and the coordination number correspond to one-dimensional arrange-
ments of the tubes. For a coordination number other than z = 2 or z = oo, Eq. (6)
must be solved numerically to find the effective conductance, given the individual

conductances (See Code Listing 3.1).

The effective medium theory is expected to work best when spatial fluctuations
of hydraulic (or current) flux are small in a relative scale. Our laboratory imbibition
experiments in Berea sandstone, in combination with SEM analysis of the pore space,
indicate that the distribution of pores and throats controlling permeability is narrow.
Consequently, the effective medium theory is expected to, and does, give very good
results in Berea sandstone. The effective medium theory coupled with a network of
resistors has been used by Koplik et al. (1984) to predict permeability of Massilon
sandstone, although the predicted value was ten times higher than that measured.
Doyen (1988) calculated the transport properties of Fontainebleau sandstone, and
predicted permeability within a factor of three of the measured value. These models
do not account for the fact t_ha,t the 2-D section under consideration slices each pore
at a random angle to its axis or for the variation of the cross-sectional area along the
length of each tube, both of which are significant effects. These effects are discussed

below in sections 3.1.4 and 3.1.5, respectively.
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3.1.2 Method of analysis

Figures 3.3 and 3.4, stereo SEM photomicrographs of pore casts of Berea sandstone
and Saint-Gilles sandstone, respectively, reveal that the pore space is comprised of a
three-dimensional network of irregularly shaped pores. Although an exact description
of key pore space morphological characteristics is rather complex, it is possible to

isolate three main features:

1. Multiple connectivity of the pore segments;
2. Converging-diverging cross sections of pores;

3. Roughness and irregularity of pore walls.

Since the actual rock geometry is too complex for any quantitative study, we have
replaced it by a standard model geometry that preserves the main observed morpho-

logical features.

For the purposes of developing a network model for permeability, we need to know
the volumetric flow through each pore. According to the Hagen-Poiseuille equation,

the volumetric flux of fluid through a cylindrical pore of constant radius 7 is

_wrt 9)
q= 84 vp,
where p is the absolute viscosity, and \/p is the pressure gradient. We now use the
hydraulic radius concept to rewrite Eq. (9) in a form that is applicable to non-circular
pores (See Section 3.1.3 for details).

The hydraulic radius Ry of the tube is defined as

area "
Ry = . 10
H= wetted — perimeter (10)
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FIG. 3.4: Stereo SEM photomicrographs of a Saint-Gilles sandstone pore cast. The pore space is
partially impregnated with epoxy and the quartz grains removed by hydrofluoric acid.
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Using Eq. (10), we can rewrite Eq. (9) in terms of the hydraulic radius as

2A

Vo, ' (11)

where A is the area of the tube.

The conductance of a tube of area A and length [ is given by cA/l, where o is
the conductivity. The hydraulic conductance per unit length of each tube is therefore
(aside from a length factor which eventually cancels out of the calculations) given by

=4, (12)

The constant length of each tube assigned to all tubes in the model is assumed
to be of the order of the correlation length characterizing the fluctuations of the
channel cross-sectional dimensions. Measurements of two-point correlation functions
(Berryman and Blair, 1986) show that the correlation length is of the order of the
size of the grains in sandstone. Thus, the pore length can be assumed to be equal
to the grain diameter. However, as mentioned earlier, the length does not need to
appear explicitly in Eq. (6) where all conductances are proportional to L™t. The
local conductive elements have been obtained from 2-D SEM photomicrographs of
rock sections. Figures 3.5a, 3.6a, 3.8a, and 3.9a show 2-D SEM photomicrographs
of Berea sandstone (Sections B and T), Boise sandstone, and Saint-Gilles sandstone,
respectively. Typical pore-space contours obtained from 2-D SEM photomicrographs
of Berea, Massilon, Boise, and Saint-Gilles sandstones are shown in Figures 3.5b, 3.6b,
3.7, 3.8b, and 3.9b, respectively. The pore space contours are employed to estimate
the area, perimeter, and individual conductance of each tube of varying radius using

the hydraulic radius approximation and Poiseuille’s law.

The basic method to calculate individual pore areas, perimeters, and hydraulic
radii involves counting size and perimeter grid (or pixel) units for every feature in
a standard scanning electron micrograph of some fixed magnification. The field im-
aged by each micrograph must contain a large enough number of pores to assure a
statistically representative sample; we have found that 30-40 pores suffice for this

purpose. The analysis was carried out using both a manual and an automated im-
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age analysis procedure to verify the accuracy of the manual technique. The manual
technique involved overlaying a square grid, with grid size of 2.54 mm, and visually
counting the number of grid blocks occupied by the area of each pore, as well as the
number of grid blocks that the perimeter passes through. Digital images with typical
image sizes of 482 x 640 pixels, and 8 bits per pixel to quantify the darkness level,
were used for studying the accuracy of the manual technique. The image analysis
program sets a threshold level of darkness to distinguish between the pore contours
and mineral grains. The digitized thin sections of Berea, Massilon, Boise, and Saint-
Gilles sandstones (Figures 3.5b, 3.6b, 3.7, 3.8b, and 3.9b, respectively) then show
pore space in white, and mineral grains in black. This method was used to estimate
the area, perimeter, hydraulic radii, and hydraulic conductance of individual pores
for each rock. Results for Berea (Sections B and T), Massilon, Boise, and Saint-Gilles

sandstones are presented in Tables 3.1 to 3.5, respectively.

In the next section, the effect of pore shape on permeability will be studied:
(1) to compare the exact permeabilities of various polygonal-shaped pores with the
hydraulic-radius predictions, and (2) to calculate the error involved in using the hy-
draulic radius approximation and Poiseuille’s law to estimate the individual pore

conductances.
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FIG. 3.5a: Typical SEM photomicrograph of Berea sandstone (Section B). The rock is composed
mainly of quartz grains (dark gray), feldspar grains (medium gray), and products of grain dissolution
(light gray). The pore space is impregnated with Wood’s metal alloy (white), and epoxy (black).
Actual width of field is about 1 mm. ‘

FIG. 3.5b: Pore-space contours obtained from image analysis of the photomicrograph of Berea
sandstone (Section B) shown in Fig. 3.5a. The width of field is about 1 mm.
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TABLE 3.1: Conductance data - Berea sandstone SEM section B.

N; A; P A; F; Ry, C;
(units) | (units) | x107%(m?) | x10~° (m) | X10~%(m) | x10~%° (m*)
1 27 34 168.75 85.00 1.99 332.61
2 3 8 18.75 17.50 1.07 10.76
3 7 9 43.75 22.50 1.94 82.73
4 4 7 25.00 17.50 1.43 25.53
5 2 5 12.50 12.50 1.00 6.25
6 3 6 18.75 15.00 1.25 14.66
7 6 12 37.50 30.00 1.25 29.33
8 8 16 50.00 40.00 1.25 39.10
9 13 15 81.25 37.50 2.17 190.69
10 3 8 18.75 20.00 0.94 8.25
11 5 10 31.25 25.00 1.25 24.44
12 3 7 18.25 17.50 1.07 10.76
13 5 9 31.25 22.50 0.94 13.94
14 3 7 18.75 17.50 1.07 10.76
15 1 4 6.25 10.00 0.63 1.23
16 34 24 212.50 60.00 3.54 1332.80
17 4 8 25.00 20.00 1.25 19.55
18 24 24 150.00 60.00 2.50 468.75
19 7 12 43.75 30.00 1.46 46.55
20 7 14 43.75 35.00 1.25 34.21
21 2 5 12.50 12.50 1.00 6.25
22 2 5 12.50 12.50 1.00 6.25
23 18 21 112.50 52.50 2.14 258.30
24 4 9 25.00 22.50 1.11 15.45
25 10 14 62.50 35.00 1.79 99.69
26 10 13 62.50 32.50 1.92 115.56
27 2 6 12.50 15.00 0.83 4.34
28 9 16 56.20 40.00 1.41 55.58
29 1 4 6.25 10.00 0.63 1.23
30 12 10 75.00 25.00 3.00 337.50
31 2 5 12.50 12.50 1.00 6.25
32 8 13 50.00 32.50 1.54 59.20
33 2 4 12.50 10.00 1.25 9.78
34 1 3 6.25 7.50 0.83 2.14
35 2 3 12.50 7.50 1.67 17.36
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FIG. 3.6a: Typical SEM photomicrograph of Berea sandstone (Section T). The rock is composed of
quartz grains (dark gray). The pore space is impregnated with epoxy (black). Actual width of field

is about 1 mm.
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FIG. 3.6b: Pore-space contours obtained from computerized image analysis of the photomicrograph

of Berea sandstone (Section T) shown in Fig. 3.6a. The width of field is about 1 mm.
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TABLE 3.2: Conductance data - Berea sandstone SEM section T.

N; A; P; 4; P Ry, C;
(units) | (units) | x1071%(m?) | x10~% (m) | x10~5(m) | x10~*°(m*?)
1 3 7 18.75 17.50 1.07 10.76
2 1.5 6 9.38 15.00 0.63 1.83
3 45.5 56 284.38 140.00 2.03 586.67
4 3.5 9 21.88 22.50 0.97 10.34
5 9.5 15 59.38 37.50 1.58 74.42
6 5 12 31.25 30.00 1.04 16.96
7 9.5 18 . 59.38 45.00 1.32 51.68
8 2.5 10 15.63 25.00 0.63 3.05
9 3 9 18.75 22.50 0.83 6.51
10 3.5 11 21.88 27.50 0.80 6.92
11 5 11 31.25 27.50 1.14 20.18
12 11 17 68.75 42.50 1.62 89.95
13 4 11 25.00 27.50 0.91 10.33
14 2 8 12.50 20.00 0.63 2.44
15 3.5 9 21.88 22.50 0.97 10.34
16 4.5 10 28.13 25.00 1.13 17.80
17 6.5 15 40.63 37.50 1.08 23.84
18 2.8 11 17.19 27.50 0.63 3.36
19 12.5 24 78.73 60.00 1.30 66.23
20 3.8 10 23.44 25.00 0.94 10.30
21 4.5 12 28.13 30.00 0.94 12.36
22 5.5 16 34.38 40.00 0.86 12.69
23 13.5 19 84.38 47.50 1.78 133.11
24 2.5 7 15.63 17.50 0.89 6.23
25 13 3 81.25 75.00 1.08 47.68
26 2 7 12.50 17.50 0.71 3.19
27 10 18 62.50 45.00 1.39 60.28
28 20 35 125.00 87.50 1.43 127.57
29 7.5 14 46.88 35.00 1.34 42.04
30 2.5 11 15.63 27.50 0.57 2.53
31 36 47 225.00 117.50 1.92 412.52
32 13 18 81.25 45.00 1.81 132.44
33 6 14 37.50 35.00 1.07 21.53
34 1.5 7 9.38 17.50 0.54 1.35
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FIG. 3.7: Pore-space contours obtained from serial section of Massilon sandstone (after Koplik et
al., 1984).
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TABLE 3.3: Conductance data - Massilon sandstore SEM section.

N; A; P; A; F; Ry, C;
(units) | (units) | x10~%(m?) | x10™* (m) x10~5(m) | x107° (m*)

1 33 43 22.92 35.83 6.40 4687.54
2 54 62 37.50 51.67 7.26 9877.23
3 28 38 19.44 31.67 6.14 3665.33
4 14 36 9.72 30.00 3.24 510.50
5 8 15 5.56 12.50 4.45 548.83
6 10 14 6.94 11.67 5.95 1229.90
7 7 15 4.86 12.50 3.89 367.56
8 6 21 417 17.50 2.38 118.13
9 10 25 6.94 20.83 3.33 385.74
10 6 20 4.17 16.67 2.50 130.23
11 6 14 4.17 11.67 2.50 265.78
12 5 14 3.47 11.67 2.98 153.74
13 5 15- 3.47 12.50 2.78 133.93
14 5 10 3.47 8.33 4.17 301.37
15 5 10 347 8.33 4.17 301.37
16 4 10 2.78 8.33 4.53 154.37
17 4 9 2.78 7.50 3.70 190.57
18 4 9 2.78 7.50 3.70 190.57
19 4 9 2.78 7.50 3.70 190.57
20 3 7 2.08 5.83 3.57 132.82
21 3 8 2.08 6.67 3.12 101.67
22 2 7 1.39 5.83 2.38 39.38
23 2 -6 1.39 5.00 2.78 53.60
24 3 10 2.08 8.33 2.50 65.08
25| 1.5 6 1.04 5.00 2.08 22.63
26| 1.5 7 1.04 5.83 1.79 16.63
27 2 7 1.39 5.83 2.38 39.38
281 1.25 5 0.87 417 2.08 18.83
20| 1.5 6 1.04 5.00 2.08 22.63
30 2 -9 1.39 7.50 1.85 23.82
31| 15 7 1.04 5.83 1.79 16.63
32 1 5 0.69 417 1.67 9.63
33 2 7 1.39 5.83 2.38 39.38
34 2 5 1.39 4.17 3.33 77.17
35 1 4 0.69 3.33 2.08 15.05
36| 05 2 0.35 1.67 2.08 7.52
37| 05 3 0.35 2.50 1.39 3.34
38| 05 |-25 0.35 2.08 1.67 481
39| 0.75 4 0.52 3.33 1.56 6.37
40| 0.75 5 0.52 417 1.25 4.07
41 1 4 0.69 3.33 2.08 15.05
421 025 15 0.17 1.25 1.39 1.69
43| 0.75 3 0.52 2.50 2.08 11.31
44 | 0.50 1.5 0.35 1.25 2.78 13.37
45| 013 | 0.75 0.09 0.63 0.14 0.84
46 | 0.13 1 0.09 0.83 0.10 0.47
47| 0.13 1 0.09 0.83 0.10 0.47
48| 0.75 4 0.52 3.33 0.16 6.37

34




e e
Lo s 8D

FIG. 3.82: Typical SEM photomicrograph of Boise sandstone. The rock is composed mainly of
quartz grains (dark gray). The pore space is impregnated with epoxy (black). Actual width of field
is-about 1 mm.

FIG. 3.8b: Pore-space contours obtained from image analysis of the photomicrograph of Boise
sandstone shown in Fig. 3.8a. The width of field is about 1 mm.
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TABLE 3.4: Conductance data - Boise sandstone SEM section.

N; | A; P; A; P Ry, C;
~ | (units) | (units) | x10%(m?) | x10~* (m) | x10~¢(m) | x10~2° (m?)
1 5.5 12 34.38 3.00 11.46 22.57
2 5 11 31.25 2.75 11.36 20.18
3 125 21 78.13 5.25 14.88 86.50
4 40 47.5 250.00 11.88 21.04 554.02
5 18 31 112.50 7.75 14.52 118.53
6 12 19.5 75.00 4.88 15.37 88.76
7 16 27 100.00 6.75 14.82 109.74
8 7 11 43.75 2.75 15.91 55.37
9 4.5 9 28.13 2.25 12.50 21.97
10 11 18 68.75 4.50 15.28 80.24
11 22 30 137.50 7.50 18.33 231.08
12 8 145 50.00 3.63 13.77 47.56
13 16 21 100.00 5.25 19.05 181.41
14 17 -22.5 106.25 5.63 18.87 189.55
15 1 3.5 6.25 0.88, 7.10 1.59
16 6 12.5 37.50 3.13 11.98 27.00
17 1.5 6 9.38 1.50 6.25 1.83
i8 12 17 75.00 4.25 17.65 116.78
19 3 8 18.75 2.00 9.38 8.24
20 2 6 12.50 1.50 8.33 4.34
21 1 ) 4 6.25 1.00 6.25 1.22
22 6 10 37.50 2.50 15.00 42.19
23 13 22 81.25 5.50 14.77 88.66
24 2.5 6.5 15.63 1.63 9.59 7.22
25 15 23 93.75 5.75 ©16.30 124.61
26 1 3.5 6.25 0.88 7.10 1.59
27 18 21 112.50 5.25 21.43 258.29
28 2 6 12.50 1.50 8.33 4.34
29 175 - 22 109.38 5.50 19.88 216.27
30 3.5 7.5 21.88 1.88 11.64 14.89
31 1.5 5 9.38 1.25 7.50 2.64
32 35 47 218.75 11.75 18.62 379.09
33 5 10 31.25 2.50 12.50 24.41
34 6.5 | . 12 40.63 3.00 13.54 37.25
35 2 6.5 12.50 1.63 7.67 3.70
36 115 19.5 71.88 4.88 14.73 78.12
37 6.5 " 12 40.63 3.00 13.54 37.25
38 9.5 11 34.38 2.75 12.50 26.86
39 7 14.5 43.75 3.63 12.05 31.86
40 23.5 36.5 146.88 9.13 16.09 190.26
41 2.5 6 15.63 1.50 10.42 8.48
42 2.5 5 15.63 1:25 12.50 12.21
43 5.75 10 35.94 2.50 14.38 37.13
44 6 - 13 37.50 3.25 11.54 24.96
45 3.5 9 21.88 2.25 9.72 10.34
46 2 6.5 12.50 1.63 7.67 3.70
47 12.5 17 78.13 4.25 18.38 132.00
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FIG. 3.9a: Typical SEM photomicrograph of Saint-Gilles sandstone. The rock is composed mainly
of quartz grains (dark gray). The pore space is impregnated with epoxy (black). Actual width of
field is about 1 mm.

FIG. 3.9b: Pore-space contours obtained from image analysis of the photomicrograph of Saint-Gilles
sandstone shown in Fig. 3.9a. The width of field is about 1 mm.
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TABLE 3.5: Conductance data - Saint-Gilles sandstone SEM section.

N | A P A; P; Ry, C;
(units) | (units) | x107%m?) | x10~* (m) | 10~(m) | x10~2° (m*)

1 13.5 25 84.38 6.25 13.50 76.89

2 1 4 - 6.25 1.00 6.25 1.22

3 1.5 5 9.38 1.25 7.50 263.67

4 1 6 6.25 1.50 4.17 54.25

5 1 6 6.25 1.50 417 54.25

6 25 38 156.25 9.50 16.45 21134.06

7 1.5 7 9.38 1.75 5.36 134.53

8 9 19 56.25 4.75 11.84 3944.12
9 14 20 87.50 5.00 17.50 13398.44
10 1.5 6.5 9.38 1.63 5.76 156.02
11 19 40.5 118.75 10.13 11.72 8167.34
12 14 24 87.50 6.00 14.58 9304.47
13 5.5 11 34.38 2.75 12.50 2685.55
14 10 21.5 62.50 5.38 11.62 4225.26
15 2 6.5 12.50 1.63 7.67 369.82
16 3 8 18.75 2.00 9.38 823.98
17 5 13.5 31.25 3.38 9.25 1339.59
18 1 4.5 6.25 1.13 5.53 96.45
19 1 4 6.25 1.00 6.25 122.07
20 12.5 17 78.13 4.25 18.38 13199.65
21 1.5 4 9.38 1.00 9.38 411.99
22 39 47 243.75 11.75 20.75 52447.91
23 2.5 8 15.63 2.00 7.82 476.84
24 1.5 7 9.38 1.75 5.36 134.53
25 9 19 56.25 4.75 11.84 3944.12
26 6 12.5 37.50 3.13 11.98 2700.00
27 11 175 68.75 4.38 15.70 8488.52
28 9 135 56.25 3.38 16.64 7812.50
29 4 12 25.00 3.00 8.33 868.06
30 6 14 37.50 3.50 10.71 2152.42
31 22 36 137.50 9.00 15.28 16046.97
32 4 12.5 25.00 3.13 7.99 800.00
33 7.5 14 46.88 3.50 13.39 4203.95
34 1 4 6.25 1.00 6.25 122.07
35 11.5 22 71.88 5.50 13.07 6137.31
36 7.5 "15.5 46.88 3.88 12.08 3429.66
37 1 4 6.25 1.00 6.25 122.07
38 3.5 11 21.88 2.75 7.96 692.07
39 4.5 12 28.13 3.00 9.38 1235.96
40 6 15 37.50 3.75 10.00 1875.00
41 8.5 17 53.13 4.25 12.50 4150.39
42 5.5 14 34.38 3.50 9.82 1657.91
43 2.5 8 15.63 2.00 7.82 476.84
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3.1.3 Effect of cross-sectional pore shape on permeability

As part of our analysis of the relationships between pore structure and transport
properties, we have studied the effect of pore shape on permeability using the torsion
analogy concept borrowed from the theory of elasticity (exact solution) and compared

these results to those obtained using the hydraulic radius approximation.
3.1.3.1 FE=zact solution

There are many problems in mathematical physics which lead to the same equation
and the same boundary conditions. This is the case for the analogy between the
torsion of prismatic bars and the viscous flow through pipes. Thus, the general
solution of the torsion problem of prismatic bars of non-circular sections will be used.
The stresses are given by the relations (Sokolnikoff, 1956)

ov ov
Tez = Gw% y Tyz = _ngz{ ’ (13)

where ¥ = U(z,y) is the stress function, G the shear modulus of elasticity, and w

the angle of torsion per unit length.

If a stress function ¥(z,y) is assumed to exist such that the equations of static
equilibrium are satisfied, then the equation of compatibility in a region I in x-y plane
that the shear stresses satisfy becomes (Sokolnikoff, 1956):

2v 59U
%) + :9_1/—2— =-2. (14)
The torsional rigidity is by definition,
D=2G | ¥dA
Jwaa, (15)

where G is the shear modulus of elasticity on A, the area of interest.

The equation of conservation of momentum or equation of motion for viscous pipe

flow in a region I’ in x-y plane is (Purday, 1949)
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Pu O*u  1d
v u(z,y) = ol w i et 0 (18)

where z is the coordinate along the axis of the tube, u is the fluid velocity in the

z-direction, p the viscosity of the fluid, and p the fluid pressure.

From the comparison of Egs. (14) and (16) we can write

1 dp
=———=V. 17
“ 2udz‘II (17)

Then the continuity equation for hydraulic flux can be expressed by

_ _ldp __—de_—kA@
q_/PUdA_——2udz r A_4quz_ p odz’ (18)

Therefore, if the torsional rigidity D of the section is calculated, the exact perme-
ability &£ can be calculated.

3.1.3.2 Hydraulic radius approzimation

According to Hagen-Poiseuille equation, the volumetric flux of fluid through a
cylindrical tube of radius e is given exactly by

wat

L 19
9=5, VP (19)

Since the area A of a circle is ma®? and the perimeter P of a circle is 27wa, then
the radius a is 2A4/P. Therefore, the permeability can be expressed in terms of the
hydraulic radius as

a?  1/24\% 1/7A4\? 1_,
e=5=3(7) =2(5) =38 (20

This equation is exact for circular cross sections. The ‘hydraulic radius’ method

assumes that Eq. (20) can be used for all cross sections.
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Now we show examples to test the equivalence of the calculated permeabilities
for various pore shapes using the torsion analogy (exact solution) and the hydraulic

radius approximation, respectively.

3.1.3.3 Ezamples

1. Circular shape of radius a:

Since the area A of a circle is 7a® and the perimeter P of a circle is 2ma, then

the radius a is 24/P.
The permeability using the hydraulic approximation is

1724\ @
kede =3 (j) =5 (21)

The torsional rigidity D for a circular shape of radius a is (Sokolnikoff, 1956)

7Ga*

= . 2
p="12 (22)
Thus
— 4 el
_ —7Ga /2dp _ —ma’dp . (23)
4uG dz 8y dz
According to Darcy’s law
kAdp —kma®dp
= ———= — 24
u dz g dz’ (24)
where k is permeability.
Thus, the exact permeability is
4 2
Exdcr _ TG /8 _ a
kcircle - Ta2 - 8 . (25)
Hence, for a circular shape
ke = ke " - (26)
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As expected then for a circular tube, the calculated permeability using the torsion
analogy (exact solution) is equivalent to the permeability given by the hydraulic
radius approximation.

. Triangle of side a:

The area A of an equilateral triangle of side a is v/3a?/4, and the perimeter P
is equal to 3a. Thus, 24/P = /3a/6.

The permeability using the hydraulic radius approximation is

1 /724\% 1 (+/3a 2 g2
ktrzangle - g (?) - g (T) - 55 . (27)

The torsional rigidity is (Berker, 1963)

V3Ga*

D=3

(28)

The permeability using the exact solution is

ppxacr _ D _ GV3d'/80 @ (29)
trzangle 4GA 4G‘\/_a2/4 80

Thus, the error involved in the hydraulic radius approximation is

kgz%z le 80
BRROR = 15x AQCI,T = 5 X 100=—20%. (30)
riangle

. Square of side a:
The area A of a square of side a is a?, and the perimeter P is equal to 4a. Thus,
2A/P =a/2.
The permeability using the hydraulic radius approximation is

s -3 (%) -5 @)
The torsional rigidity is (Berker, 1963)

2.253Ga?

42



The permeability using the exact solution is

pmxacr _ D _ 2.253Ga*/16 _ o’

= = = 33
square 4GA 4Ga? 28 (33)
Thus, the error involved in the hydraulic radius approximation is
koguere _ 28
ERROR= 2% =—x100=-11%. (34)

LEXACT — 39

square

. Slit of length L and width & (kb < L):

The area A of a slit of length L and width h is Lh, and the perimeter P =~ 2L.
Thus, 2A/P = h.

The permeability using the hydraulic radius approximation is

1 /2A\% &2
HR _ > (22) _
kslit - 8 (P) 8 ° (35)

The torsional rigidity is (Berker, 1963)

5.333GLhA®

D=—"35

(36)

The permeability using the exact solution is

LEXACT _ D _ 5.333GLh%/16 _ B2
stit 4GA 4GLh 12°

Thus, the error involved in the hydraulic radius approximation is

(37)

RER 12
slit

. Ellipse with major axis 2a and minor axis 2b:

The area A of the ellipse is mab, and the perimeter P is equal to 4aFE(z) with i =
Va2 — b2 /a (see elliptic integrals, Ride and Westergren, 1992). Thus, 24/P =
wb/2E(1).

For an ellipse with @ : b = 4 : 1, the ratio 24/P = a/3.325. Thus, the perme-
ability using the hydraulic radius approximation is
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) - 1 (214_)2 = a'_2
ellipse — 8 P - 88 .

The torsional rigidity is (Berker, 1963)

Gmat
D=
68

The permeability using the exact solution is

gxacr . D Gna'/68  a?

Kellipse = 5G4 = AGma?/4 ~ 68

Thus, the error involved in the hydraulic radius approximation is

kefitese _ 68
ERROR = sy = 2o X 100 = —23%..
ellipse

For an ellipse with ¢ : & = 10 : 1, the ratio 24/P = a/6.366.

permeability using the hydraulic radius approximation is

LHR 1 % ’ = a_2
ellipse 8 P 324 .

The torsional rigidity is (Berker, 1963)

Gra*
D= .
321

The permeability using the exact solution is

sxact . D Gma*/321 o’

LEX = = = .
ellipse. ™ 4GA "~ 4Gma?/10 403

Thus, the error involved in the hydraulic radius approximation is

kR 403
ERROR = 3% e = 557 X 100 = +26% .

ellipse

(39)

(40)

(41)

(42)

Thus, the

(43)

(44)

(45)

(46)



TABLE 3.6: List of comparative values to show equivalence of the cal-
culated permeabilities using the torsion analogy and the hydraulic ra-

dius approximation, respectively.

[ Cross section [ FXA¢T T §¥FE | Error (%) |
Circle a®/8 a®/8 -
Equilateral triangle a?/80 a?/96 —20
Square a?/28 a?/32 -11
Slit h?/12 h?/8 +33

. a:b=4:1 a®/68 a’®/88 -23
Elhpse{ a:b=10:1 | a2/403 | a?/324 +26

A list of comparative values to show equivalence of calculated permeabilities using
the torsion analogy and the hydraulic radius approximation, respectively, is presented
in Table 3.6. The results of this study show that the error involved in the hydraulic
radius approximation lies within +30%. The approximation does not systematically
either underpredict or overpredict the pore conductances, so that the errors will can-
cel, at least partially, when applied to a network of pores of different cross sections.
One may reasonably conclude that the conductivity of a tubular pore is well approx-

imated by the hydraulic radius theory.

Boussinesq expressed the hydraulic flux ¢ in terms of a dimensionless coefficient &
defined by the relationship (Berker, 1963)

g=r-yss (47)

where s represents the area of the cross section under consideration. The values of

the coefficients x are (Berker, 1963)

for the circle 0.0398
for the square 0.0351
for the equilateral triangle 0.0289
Thus, we can write
Keircle = 0.0398 > Ksquare = 0.0351 > Kequilaterat triangte = 0.0289 . (48)
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Results of our analysis using the torsion analogy show that for cross sections of
equivalent areas after normalizing permeability with respect to the equivalent circular

radius a,,

kcircle = 0-130'3 > ksquare = 0110(2, > kequilateral triangle — 0.0903 ’ (49)

where k is permeability.

Therefore, the permeability results obtained using the torsion analogy are in close

agreement with the Boussinesq solution.
3.1.4 Effect of pore orientation

In the 2-D section under consideration, the pore cross sections are randomly ori-
ented with respect to the directions of the channel axes. The orientation effect has
been accounted for by means of the following geometrical and stereological consider-

ations for projected images.
3.1.4.1 Projected line

The fundamental relationship for projected lines (Underwood, 1970) relates the
mean projected length of a randomly oriented line segment to the true length.

Consider a line segment 6! with one end fixed which is free to rotate in any direction
described by ¢ and §. Figure 3.10 shows one octant of the spherical surface of area
S = wbl2/2 generated by rotating the line segment 6.

The average projected length is

— [P RERerds [ 72 6lsin 0612 sin 0d6ds
5 ds [EP2 (7 512 5in 0dodp

(%
-~

(50)

‘We then have

8T = =61 . (51)
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FIG. 3.10: Mean projected length of a randomly oriented linear segment (after Underwood, 1970).

e Amcasured > Asctual

P
- — —
5>~

~ Aactual

C

FIG. 3.11: Relationship between area of a circular tube (area actual) and its projection onto a plane
(area measured). '
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3.1.4.2 Projected area

Consider a cylindrical tube of circular cross section that has been sliced by a plane
oriented at an angle with respect to the channel axis (Figure 3.11). The projected
cross section into the 2-D section under consideration is an ellipse with major axis
2a, minor axis 2b, and an area measured Acosures €qual to wab, where a = b/ cosé.

The actual area of the circular section Ageyqr is equal to wb?.

Thus we can write

1

-1
Aa ual — <_> Ameasure ) 52
st = { ; ()

where

< 1 >= Jo Jom® oo50° sin 0dfde (53)
cosf JT fome= a2 sin 0dOd¢

with 0., = arctan(L/D), where L/D is the maximum ratio of pore length to di-
ameter. Using an average of L/D = 5, as estimated from the micrographs, we find

that

Aactual = 0-61Ameasured . (54)

—L5) is not

Evaluation of the integral appearing in Eq. (53) shows that the factor (
sensitive to the value chosen for L/D.

3.1.4.3 Hydraulic radius

The elliptical cross section in the 2-D section under consideration, with major axis

2a and minor axis 2b, has a measured area A eqsureq €qual to wab, and, to within 10%,

a measured perimeter Pregsured = T4/ 2(a? + b%) = may/2(1 + cos? §) (CRC Standard

Mathematical Tables, Beyer, W.H., 1988).

The measured hydraulic radius Ry of each tube is

casured
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RH — Amea.sured — “ab (55)

measured P

measured - 7ra\/2(1 + 0082 0) )

The actual hydraulic radius Ry,,,,, of each tube is

ctual

Aactua,l 7('b2
= =—. 56
RHactual Pactual 27rb ( )

Thus we can write

V2 1 -
Ry =Y2(__- _\ R , 57
Hactual 2 1 + cosz 0 Hmecaured ( )
where
T [ymes ——L_—q? sin 0d6d
< 1 > — fO fO +/14cos g. ¢ ) (58)
v/1+cos?d I Jome= a?sinfdfdo

Numerical evaluation of this integral, using 0., = arctan(L/D) = 78.7°, gives

Ry, =0.85Ry_ (59)

ctual easured °

3.1.4.4 Hydraulic conductance

The elliptical cross section in the 2-D section under consideration, with major axis

2¢ and minor axis 2b, has a measured area Aeqsured €qual to wab, and a measured
perimeter Ppeasured X T4/ 2(a? + b2) = wa4/2(1 + cos? ).

The actual hydraulic conductance C; of each tube is (aside from a length
factor, which eventually cancels out of the calculations)

2 1 (7?2 wb*
. — _H = — | —— 2 = —.
Cirrnat ( 5 A)actual 5 (27rb) b 3 (60)

of each tube from the 2-D section

actual

The measured hydraulic conductance C;___, ...

under consideration is (aside from a length factor, which eventually cancels out of the

calculations)
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2 4
R R ™ (61)
74/2(a? + b?) 2 cos 0(1 + cos? )

DN

R?
Tmeasured 2
measured

Thus we can write

-1
1 1
2 al — = 2 measure 62
(B A)actuer 2 <cos 6(1 + cos? 9)> (B A) ¢ (62)
where
1 _ f(;r fO ma® maz sin 0d9d¢ (63)
cosf(1+cos28)/ JT Jome= g2 sin dfd¢ .

Numerical evaluation of this integral, using 6,,,. = arctan(L/D) = 78.7°, gives

(R%IA)actual = O'4O(R_2HA)measured . (64)
3.1.4.5 Tortuosity and projection

We have derived the tortuosity factor, 7, for randomly oriented cylindrical tubes

in three dimensions.

According to the Hagen-Poiseuille equation, the volumetric flux of fluid through a
cylindrical tube is given by (Figure 3.12)

kopplp _ kmab op

T=23" Al ™ pcosbAy’ (65)
where @ is the polar angle in spherical polar coordinates.
Since b = acos 8 we get
A 2
LP e 2P (66)

A" T Aycostd
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Ameasured = wab

FIG. 3.12: Construction used in calculating the tortuosity factor, 7, for randomly oriented cylindrical
tubes in three dimensions.

FIG. 3.13: Sinusoidal variation of the radius along the length of a tube used to calculate the con-
striction hydraulic factor.
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We then have

Ap 2
=8 - 67

where

IS /2 cos? Ba? sin Odfde _ /3 1

cos? §) = ==. 68
(cos) J& 712 o2 sin 0dfdg T 3 (68)
Thus we can write
Lp_ 1 Lp _1lp , (69)
Ay (cos?@)-1 Al 3 Al
with the tortuosity factor defined as follows:
7= {cos’ )1 =3. (70)

3.1.5 Pore body to pore throat ratio dependence

Pore casts of sedimentary rocks, such as that of Berea sandstone and of Saint-Gilles
sandstone (Figures 3.3 and 3.4), show that the cross section of a pore typically varies
along its length. This factor must be accounted for when estimating the areas and

perimeters of the pores, or else the predicted conductances will be overestimated.

We have seen that the Hagen-Poiseuille equation for the volumetric flux of fluid

through a cylindrical tube is expressed as

4
T
= — ; 71
9=3, VP (71)
This form of the Hagen-Poiseuille equation is valid for considering flow of water
through a tube of uniform cross-sectional area. To account for the radius variation
consider that for a tube of non-uniform cross-sectional area, it is more convenient to

use an integral form of the Hagen-Poiseuille equation:
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T Ap
8u

z1 ()%

g= (72)

in which the z axis is oriented along the flow line.

Although r may vary with z, the volumetric flowrate ¢ must be constant across all

cross sections. If Eq. (72) is written in the standard form ¢ = Cy A p, we find that

CH = 8——1'(7°_4)—1 (73)

where the average is taken over the length of the tube.

If we estimate from the micrograph the radius of such a tube, we will be estimating
the mean value of the radius, (r), and thus will overestimate the conductance by an

amount

Cy

actual — (T_4) -1

CHmealurcd B (T>4

where f is the hydraulic constriction factor.

I (74)

The magnitude of this contriction factor will depend on the extent to which the
pore radius varies. If the radius is in fact constant, then (r~*) = (r)™*,and f =1. In
order to relate f to a parameter that may be relatively simple to estimate, consider
the case where the radius varies in a sinusoidal manner along the length of the tube

(See Figure 3.13), according to the expression

r(z) = (r)[1 + &sin(2mz/N)] , (75)
where ) is the wavelength of the radius variations. This type of variation is supported
by some pore casts, such as that of Berea sandstone shown in Figure 3.3.

For convenience, we can assume that an integral number of segments of length A
will fit into the total length I. The hydraulic constriction factor can then be expressed

as’
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1 _

fom

Using the change of variable w = 27z), the integral in Eq. (76) takes the form

§/0A[1 +¢sin(2mz)] "z . (76)

% - 2—17; / (1 + £ sinw)~4dw . (77)

With the aid of integral tables, the constriction factor f can be expressed as

25607/2

T @+ 045 +30*+30+5) (78)

f

where ¢ = (1 — €)/(1 + &) = Tmin/Tmaz- The factor f is plotted in Figure 3.14,
as a function of the parameter 7min/Tmaez- This factor may be as small as 0.26 for
a quite reasonable value of Tmin/Tmez = 0.33 estimated from a pore cast of Saint-
Gilles sandstone (See Figure 3.4). We have estimated a throat-to-pore radius ratio
of 0.50 from a pore cast of Berea sandstone, and have tentatively used this value
for a consolidated rock. The throat-to-pore radius aspect ratio of 0.50 for Berea
sandstone is further verified by analysis on the relationship of capillary pressure of

Berea sandstone to microgeometry in Chapter 5.

Although some sandstones also exhibit roughness at scales much smaller than
the average pore diameter, it is known that such roughness has little effect on the
hydraulic conductance (Berryman and Blair, 1987) and can therefore be ignored.

3.1.6 Permeability Calculation

Now we show how the continuum value of the hydraulic conductance is calculated.
Recall that the hydraulic conductance per unit length of each tube is given by Eq. (12)

as
1
Ci=SRyA.

According to the Hagen-Poiseuilie equation, the volumetric flux of fluid through

one tube is given by
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FIG. 3.14: Constriction factor for hydraulic lux as function of the ratio of the minimum pore radius
to the maximum pore radius of an individual pore. The calculated conductances of the pores must
be multiplied by this factor, which account for the converging-diverging nature of the pore tubes.
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FIG. 3.16: Cubic lattice representation of the pore structure employed to calculate the permeability
of sedimentary rocks with the effective medium theory.
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RZA
G=—AvVDp= vP- (79)

Study of stereo SEM photomicrographs of Berea sandstone has indicated the pres-
ence of a statistically isotropic three-dimensional pore structure represented by Fig-
ure 3.15. These observations have led to the idealization that the pores of varying
size are arranged on a cubic lattice (Figure 3.16), so that the coordination number,

which is the number of pores that meet at each node, is 6.

Finally, the individual conductors are imagined to be placed along the bonds of a
cubic lattice in the effective medium. Recall that for a general discrete distribution

of conductances, the effective medium expression (Eq. 6) takes the form

Cess — Ci
Z [(2/2 — 1]Ceff + C

i=1

By solving the above equation numerically for a cubic lattice (z = 6), we have then
calculated the value of the effective conductance given the individual pore conduc-
tances obtained from the SEM micrographs (See Code Listing 3.1).

In the cubic lattice, the total volumetric flux in the vertical direction is

NCff

1
q=jr‘ZQeff= Vo, (80)

where g,z is the volumetric flux of fluid through an effective conductor and 7 is the
tortuosity of a cubic lattice, which is exactly equal to 3 (since one-third of the pore
tubes are aligned in each of the three lattice directions).

According to the Darcy equation, the total volumetric flux through the porous

medium is given by

k
q= '; vatotal ’ (81)

where k is the permeability and Ao is the total area of the porous medium under

consideration.
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Equating Eq. (80) to Eq. (81) gives the continuum value of the hydraulic conduc-

tance that is related to the effective conductance of the individual tubes:

_ NCeys
TAtotal

k (82)

The tortuosity for randomly oriented cylindrical tubes, 7 = (cos?#)™! = 3 has
been derived independently (See Section 3.1.4).

3.1.7 Results and discussion

In this investigation, a network model has been developed for calculating perme-
ability from microgeometry; this analytical model is simple, reliable, and permits
accurate prediction of the laboratory measured permeability of sedimentary rocks.
Calculated permeabilities for different rocks and for different coordination numbers
are presented in Tables 3.7 to 3.11. A comparison between laboratory measured and
predicted permeabilities with the cubic lattice-network model is given in Table 3.12.
Good agreement was found between measured and predicted permeabilities for a va-
riety of sandstones when using the cubic lattice model, with essentially no arbitrary
adjustable parameters. The major conclusions that can be drawn from this study are

as follows:

1. The pore structure is the most important variable influencing the permeability

of sedimentary rocks.

2. The effects of the pore structure are interrelated in a complex manner with
the porosity, specific surface area, and pore shape factors in the permeability
analytical expression given by Eq. (82). As with the standard Kozeny-Carman
model, the predicted permeability is proportional to the number of pores.

3. All the parameters in our model have an unambiguous physical meaning and are

readily measured from SEM photomicrographs of rock thin sections.
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TABLE 3.7: Calculated permeability data - Berea sandstone SEM section B.

[2 ] Ceps @) | Fe [Tmin/Tmaz | Fe | N [Asra @) [7 | kE(m®) [k(D)]
2 [ 4.54%x107% | 0.40 0.50 0.55]35]9.63x10°7 [3*]|1.21x10~* | 0.12
6 | 18.2x10720 | 0.40 0.50 0551|351 9.63x10°7 |3 |4.84x10713 | 0.49
oo | 56.0x10~20 | 0.40 0.50 0.55 |35 9.63x10~7 | 3* | 14.9%x1071% | 1.51

* Assumed.

TABLE 3.8: Calculated permeability data - Berea sandstone SEM section T.

[2 ] Cezs @*) [ F. [rmin/Tmes | Fe | N [ Awta (@) [7 |- k(@?) [£(D)]
2 [7.49x10~2° | 0.40 0.50 0.55 [ 35 [ 9.84x10~7 | 3* [ 1.89x10~ % | 0.19
6 | 24.2x1072° | 0.40 0.50 0.55 | 35 | 9.84x10"7 | 3 | 6.12x1071% | 0.62
oo | 59.9%x10~20 | 0.40 0.50 0.55 | 35 | 9.84x10~7 | 3* | 15.2x10713 | 1.53

*Assumed.

TABLE 3.9: Calculated permeability data - Massilon sandstone SEM section.

l z l Cess (m*) ' F; I Tmin/ Tmaz | F. [N l Awta (@*) |7 | K (m?) | k (D) I
2 | 11.7x107*° | 0.40 0.50 0.55 | 48 | 8.74x107° | 3* | 0.47x107** | 0.47
6 | 90.7x101° | 0.40 0.50 0.55 | 48 | 8.74x107% | 3 | 3.65x1071% | 3.65
oo | 525x1071° | 0.40 0.50 0.55 | 48 | 8.74x107% | 3* | 21.1x1071%? | 21.1

*Assumed.

TABLE 3.10: Calculated permeability data - Boise sandstone SEM section.

[2 [ Cesr.@®) [ Fo [Tmin/Tmaz | Fe [N | Aot (@) [7 | k(m’) |E(D)]
2 | 8.06x10-2 | 0.40 | 0.50 |0.55 |47 | 9.84x107 | 3" | 3.14x10" = | 0.32
6 | 45.0x102° | 0.40 | 0.50 | 0.55 |47 | 9.84x10~7 |3 | 15.8x10713 | 1.59
oo | 80.1x10~2° | 0.40 | 050 | 0.55 | 47 | 9.84 x10~7 | 3* | 28.1x10%* | 2.83

* Assumed.

TABLE 3.11: Calculated permeability data - Saint-Gilles sandstone SEM section.

(2 [ O @ [ F [roiafrmm | Fe [N [ A & [+ | K@) [E(D)]
2 [3.37x10~%0 [ 0.40 0.33 0.27 [ 431 9.84x10°7 | 3* | 1.59x107%° | 0.16
6 | 21.2x1072° | 0.40 0.33 0.27 | 43 | 9.84x10~7 | 3 | 3.34x10°13 | 0.34
oo | 48.3%x10720 | 0.40 0.33 0.27 | 43 | 9.84 x10~7 | 3* | 7.59%10"13 | 0.77

* Assumed.
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10.

. When applying the method and evaluating our results one has to keep in mind

that the effective medium theory is expected to work best when spatial fluc-
tuations of hydraulic (or current) flux are small in a relative scale. In Berea
sandstone for instance, our laboratory imbibition experiments in combination
with SEM analysis of the pore space indicate that the distribution of pores and
throats controlling permeability is narrow. Consequently, the effective medium

theory is expected to and does give very good results in Berea sandstone.

. The results given in Tables 3.7 to 3.11 emphasize the importance of pore connec-

tivity in understanding the relationship of permeability to rock microstructure.
For example, if a Kozeny-type parallel tube model (z = oo) or a serial model
(z = 2) is applied instead, permeability is overpredicted or underpredicted, re-

spectively.

The investigation shows that the effective medium approximation with a parallel-
tube or Kozeny-Carman arrangement with a coordination number z = o0, over-
predicts the measured permeability of Berea sandstone by a factor of three, and

that of Massilon sandstone by a factor of six, respectively.

Thus, it is found that the permeability predicted with the effective medium
approximation assuming a cubic lattice arrangement of the pores is consistent
with the Kozeny-Carman formulas for a ‘principal’ pore network approaching

microscopic homogeneity such as Berea sandstone’s (Section 3.3.4).

. The analysis on the effects of pore constrictivity show that permeability is con-

trolled by connected intergranular pore throats (pore constrictions in between

the grains).

It is found that intergranular pore throats are smaller than pore bodies, with an

aspect Tatio Tyin/Tmee = 0.50 for the consolidated sandstones under study.

For a lightly consolidated rock such as Saint-Gilles sandstone, an aspect ratio
Of Trmin/Tmez = 0.33 is detected. This is a direct result of the lower degree of

consolidation and the more angular particle shape.
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TABLE 3.12: Measured vs. predicted intrinsic permeabilities of four sedimen-

tary rocks.
kmeasured kpredicted (za = 6)
Rock w*) | (d ’) ()
Berea sandstone 4.80x10-3 1 0.48° [ 5.55x107*° | 0.56
Boise sandstone 13.0x1073 | 1.30° || 15.8x1071% | 1.59
Massilon sandstone 25.0%10713 | 2.50° || 36.5x10713 | 3.65
Saint-Gilles sandstone || 1.70x1073 | 0.17¢ || 3.34x107% | 0.34

2Coordination number.

bDistilled water used as permeant.
¢Data from Koplik et al., 1984.
4Data from Leblanc, 1988.

11. The effect of pore shape on permeability was studied by comparing the hy-

draulic radius approximation predictions with the exact permeabilities of various

polygonal-shaped pores, and the error involved was calculated. The results of

this study show that the error involved in the hydraulic radius approximation lies

well within +30% (See Table 3.6). The approximation does not systematically

either underpredict or overpredict the pore conductances, so that the errors will

partially cancel when applied to a network of pores of different cross sections.

12. For equivalent pore areas, Eq. (49) shows that permeability of polygonal pore

shapes is not very sensitive to decreasing pore perimeter. This result is a direct

consequence of the fact that the fluid velocity vanishes at the pore-grain interface.

Therefore, small scale roughness is irrelevant to permeability.
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3.2 Statistical approach using the perimeter-area

power-law relationship of pores

Since the intrinsic permeability is a measure of the viscous resistance to fluid flow
through the rock pores and is controlled by the geometry and topology of the pore
space, it is expected to correlate with the amount of surface area of the pore system.
In this Section, a brief discussion is given of how the perimeter-area power-law re-
lationship of pores, along with a pore-size distribution, can be used to estimate the
permeability. Consider Figure 3.17. If the outer circle has radius R, and the inner cir-
cle (dashed line) has radius R;, then the permeability  of a single such rough-walled
cylindrical pore must satisfy (Berryman and Blair, 1984)

kiskskoa (83)

where k, = R2/8, and k; = R}/8. f R, = R; + R, then for small R we have

R? R? SR

kg2 — .

5 <k< <1+4R,-) (84)

In terms of hydraulic radius this can be written as

() <r<3(3) (- 45) *9

where A; and P; are the inner tube area and perimeter, respectively.

If the surface is very rough (e.g., fractal), the pore perimeter may become so large
that Eq. (85) is not satisfied. Nevertheless, it follows from Egs. (84) and (85) that
an effective hydraulic radius may be used such that

A; A A,
— 1< |=)1<[{=}.
(7)=F) =) (50
The parameter (4) has the significance of being the hydraulic radius of a smoothed

representation of the true void/solid interface. For a single straight tube (Eq. 84), if

we make an error of 1% in estimating the tube radius, the error in the estimate of k
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FIG. 3.17: Schematic drawing of a rough-walled tube (of radius R,). Surface roughness does not
have a strong effect on the overall fluid permeability of a tube, because a slightly smaller tube (of
radius R;) is known to have a comparable permeability (after Berryman and Blair, 1987).

FIG. 3.18: Typical serial section of Saint-Gilles sandstone at 100x magnification. The mineral
grains of different shades are quartz, carbonate, feldspar, and muscovite, whereas the darkest regions
represent pore space.
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TABLE 3.13. Perimeter-area power-law relationship y param-
eter and correlation coefficient 7 measured from perimeter-area

data of five sedimentary rocks.

I ROCk " ¢:neasured (%) I Y I T I
Berea sandstone 22 1.49 1 0.99
Boise sandstone 26 1.43 | 0.98
Massilon sandstone 290 1.43 | 0.98
Saint-Gilles sandstone 21 1.49 | 0.98
Indiana limestone 14 1.67 | 0.99

“Porosity.

*Data from Koplik et al., 1984.

is 4%, at worst. Indeed, since the fluid velocity vanishes at the pore-grain interface,

the permeability k should not be sensitive to surface roughness.
3.2.1 Perimeter-area power-law relationship of pores

Perimeter-area relationships of a smooth representation of pores are estimated from
scanning electron micrographs of thin sections of typical reservoir-type sedimentary
rocks (See Figure 3.18). The basic method involves counting size and perimeter
grid (or pixel) units for every feature in a standard scanning electron micrograph of
some fixed magnification. The analysis was carried out using both a manual and an
automated image analysis procedure to verify the accuracy of the manual technique
(See Section 3.1.2 for details). The digitized thin sections (Figures 3.19a and 3.20a)
then show pore space in white, and mineral grains in black. This method was used

to estimate the area-perimeter statistics for a group of pores in a thin section.

It is found that the perimeter-area relationship of such a representation of the true

void/solid interface satisfies the perimeter-area power-law relationship

A=mP7, (87)

where log m is the intercept on the log A axis, and <y the slope of the log A-log P
plot (Figures 3.19b and 3.20b). The constants m and v -appearing in Eq. (87) are
found by performing a linear regression on the log perimeter-log area data. From this
analysis we find slopes ranging from 1.43 to 1.49 for the four sandstones examined
and a slope of 1.67 for an Indiana limestone (Table 3.13).
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FIG. 3.19a: Pore-space contours obtained from serial section of Massilon sandstone (after Koplik et
al., 1984).

Area (pixel units)
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FIG. 3.19b: Perimeter-area power-law relationship for Massilon sandstone obtained from pore-space
contours shown in Fig. 3.19a.
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FIG. 3.20a: Pore-space contours obtained from image analysis of the photomicrograph of Berea
sandstone (Section B) shown in Fig. 3.5a. The width. of field is about 1 mm.
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FIG. 3.20b: Perimeter-area power-law relationship of pores for Berea sandstone obtained from pore-

space contours shown in Fig. 3.20a.
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3.2.2 Permeability implications

We now show how the area-perimeter power-law relationship of a smoothed rep-
resentation of the pore space of a rock can be used, in conjunction with a pore-size
distribution and a classical model for permeability, to yield reasonable estimates of
permeability. The Kozeny-Carman model for transport through a porous medium is
based on the idealization of the pore space as consisting of a bundle of parallel tubes,
the total conductance of which is merely the sum of the individual conductances. It
is traditional to then divide this result by a tortuosity factor, 7 = 3, to account for
the fact that, in a hydraulically isotropic rock, we would expect only one-third of the
total number of tubes to be oriented in each of the three orthogonal directions (See
Section 3.1.4.5 for specifics). If n(A) is the number distribution function for pores
of cross-sectional area A in an area of rock having total cross section of A and
C(A) is the conductance of each pore of area A, then the total conductance can be

expressed as

Crotal = /0 " n(4)C(A)dA . (88)

In practice, of course, the distribution function n(A) will vanish for all A greater
than some A.z, although it is often convenient to represent n(A) by a function that
drops off, say, exponentially as A — co.

If the pore tubes were all of circular cross section, their individual conductances
would be given by the exact Hagen-Poiseuille law. As explained in Section 3.1.3, the
Hagen-Poiseuille solution can be modified to account for irregular cross sections by
using the ‘hydraulic radius’ approximation, which predicts a conductance of A3/2p?
for a tube of cross-sectional area A and perimeter P. Invoking the perimeter-area
power-law relationship P = m~/7 A7, the hydraulic conductance can be expressed
as C(A) = A32/7/2m=2/7. Combining this with the general expression (88) for the
total conductance yields ’

1 [ n(A)AS2
Ctotal = ; /(; LdA . (89)

Zm—z/‘Y

We now define a normalized distribution function S(4) = n(A)A/PAsotar, Where
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the total porosity is defined as Apores/Atotar- This distribution function has the prop-
erty that [ B(A)dA = 1. The total conductance can then be expressed as

Ato ®  o(1-
Chotal = %ﬁ% /; A 7)ﬁ(A)dA . (90)

We have found that the area frequency distribution of the pores (Figures 3.21 and
3.22) can be well approximated by a lognormal distribution:

Bu) = (2m07) ™ exp[—(u — uo)*/207] , (91)

where u = log A, u, = log A,, where A, is the most probable area, and o, is the
variance of log A. The corresponding mean area A, is larger than the most probable

area and is given by

Ay, = A, exp|(o, 10 10)%/2] . (92)

The permeability coefficient & can then be estimated as

Ctotal ¢ bt 2(1—
E = = / A=Y AYdA
Atotal 27”'-‘2/77 0 ﬁ( )
_ _®  4aa-1? g20-1/7)e/-1)
= 2_:T77‘Am Ao . (93)

In terms of the variance of log 4, the perraeability can be expressed as

b= d A0 e NG Dl w07 (94)

As with the standard Kozeny-Carman model, if the pore sizes are held constant,
the predicted permeability scales with the porosity, which is to say it is proportional
to the number of pores. It is worth noting that if the perimeter-area relationship of
the pores follows the law derived by Mandelbrot (1982) for islands whose boundaries
are fractal, P = eP AP/2, where ¢ is some constant that depends on the length of the

measuring grid size and D is the fractal dimension of the pore perimeter, then the
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parameter € would quantify the perimeter of the pore cross sections when the pores are
projected back into three dimensions. The parameter € would in some sense represent
the pore actual surface area, k being a decreasing function of e. Therefore, if the rock
pore boundaries are very rough (e.g., fractal), not only would the physical bounds
for permeability be violated (Egs. 84 and 85), but also the predicted permeabilities
given by Eq. (94) would be artificially lowered by several orders of magnitude.

3.2.3 Effects of pore orientation and constrictivity

In the two-dimensional sections under consideration, the pore cross sections are
randomly oriented with respect to the channel axes. The orientation effect has been
taken into account by means of geometrical and stereological considerations, which
indicate a stereological factor of 0.40 (See Section 3.1.4). In addition, constrictions
within the individual branch channels, i.e., pore throats and bodies, have been taken
into account using an analysis based on a sinusoidal variation of cross section which

gives a hydraulic constriction factor of 0.55 (See Section 3.1.5).
3.2.4 Results and discussion

In this investigation, we have constructed a model that allows reasonable predic-
tions of the permeability of sedimentary rocks, based on the perimeter-area power-law
relationship of pores and the pore-size distribution. Since the permeability of rocks
can range over many orders of magnitude, this prediction is not trivial. Calculated
permeabilities for two different rocks are presented in Table 3.14. Image analysis of
the pore system of Massilon sandstone yields values A, = 13.5 x10% ym?, o, = 0.43,
v = 1.43, and m = 1.17 pm?~". Similarly, for Berea sandstone, A, = 77.9 x 10% ym?,
0x = 0.42, v = 1.49, and m = 0.66 pm?~7. Equation (94) then predicts a permeability
of 10.9 D for Massilon sandstone, and of 1.5 D for Berea sandstone, respectively (after
applying the hydraulic stereological and constriction corrections) (See Table 3.14). A
comparison between these results, the laboratory-measured and the predicted perme-
abilities with the cubic lattice-network model, is given in Table 3.15. As would be
expected for an essentially parallel arrangement of conductors, as is assumed in the
model, the predicted values are higher but of the same order of magnitude as the
experimentally measured values of 2.5 D for Massilon sandstone (Koplik, 1984), and
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TABLE 3.14: Calculated permeability data - Massilon and Berea sandstones SEM photomicro-
graphs.

[Rock [ Am (@D [ 0y | 7 [m >N [ F [ F [ [k @) [ED)]
Massilon || 13.5x10% [ 0.43 | 1.43 1.17 0.40 | 0.55 | 3* 10.8 10.9
Berea 77.9%10% | 0.42 | 1.49 0.66 0.40 | 0.55 | 3* 1.50 1.52

*Assumed.

TABLE 3.15: Measured vs. predicted intrinsic permeabilities - Massilon and Berea
sandstones.

kmeasured kpredicted kpredicted (za. = 6)
Rock (m*) | (D) (m®) | (D) (m®) | (D)
Massilon || 25.0x10~% | 2.50° || 108x10~*° [ 10.9 || 36.5%x10~*° | 3.65
Berea 4.80x10713 | 0.48° || 15.0x10713 | 1.52 || 5.55%x 10713 | 0.56

¢Coordination number.
*Data from Koplik et al., 1984.

“Distilled water used as permeant.

of 0.48 D for Berea sandstone (using distilled water as permeant) (See Table 3.15).

The major conclusions that can be extracted from this study are as follows:

1. The pore structure is the most important variable influencing the permeability

of sedimentary rocks.

2. Equation (94) shows that & is an increasing function of both the mean pore size
and the variance of the pore size, as would be expected for an essentially. parallel

arrangement of conductors.

3. All the parameters in our model have an unambiguous physical meaning and are

readily measured from SEM photomicrographs of rock thin sections.

4. As with the standard Kozeny-Carman model, if the pore sizes are held con-
stant, the predicted permeability scales with the porosity, which is to say it is

proportional to the number of pores.

5. Since the parameter m in Eq. (94) quantifies the perimeter of the pore cross sec-
tions, when the pores are projected back into three dimensions, m will represent

the pore surface area; hence & is a decreasing function of m.
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10.

Our expression for k includes some length scale raised to the 2 —2 /7y power. It
has a resemblance to that derived by Hansen and Skjeltorp (1988). Our result
is more explicit in that our length scale is clearly identified in terms of the pore

size distributions.

. The analysis on the effects of pore constrictivity show that permeability is con-

trolled by connected intergranular pore throats (pore constrictions in between
the grains). It is found that intergranular pore throats are smaller than pore
bodies, with an aspect ratio T'min/Tmes = 0.50 for the consolidated sandstones

under study.

Results in Table 3.15 show that the parallel-tubes statistical model overpredicts
the measured permeability of Berea sandstone by a factor of three, and that of

Massilon sandstone by a factor of four.

. The parallel-tubes statistical model is consistent with the effective medium ap-

proximation and Kozeny-Carman formulas for a ‘principal’ pore network ap-

proaching microscopic homogeneity such as Berea sandstone’s (Chapter 3.3).

Of course, more accurate estimates of the permeability require more sophisticated
models than the parallel-tubes model, which will somehow account for factors
such as the interconnectedness of the pore-tube network (See Section 3.1 and
Table 3.15); the above examples were intended to be plausible demonstrations of
how direct pore microgeometry measurements such as the area-perimeter power-
law information, along with a pore-size distribution, can be used for making

quantitative predictions of the permeability.
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3.3 Note on the validity of the Kozeny-Carman formulas

for consolidated porous media

The simplest and oldest capillaric model is one representing the porous medium
by a bundle of parallel capillaries of uniform radius. In deriving this Kozeny-Carman
model, the multiple connectivity of the pore space is completely neglected. Applying
the well-known law of Hagen-Poiseuille for N circular tubes of radius 7, and relating
the result to the macroscopic Darcy’s law, it follows that the permeability k¥ of the
bundle of capillaries is given by (Scheidegger, 1974)

_N7ri"4 __45_7"2

k
8 8’

(95)

where 7 represents an ‘average’ pore radius, and ‘porosity’ ¢ = N«72. This model
gives permeability in one direction only. All capillaries being parallel, there can be
no flow orthogonal to the capillaries. A simple modification to Eq. (95) consists of
putting one-third of the capillaries in each of the three spatial dimensions. To account
for this, the tortuosity factor, 7 = 3, is introduced, and Eq. (95) takes the form

Nnrt ¢

The above expression for permeability can be compared with Eq. (82) which de-
termines observed permeability of sedimentary rocks from microgeometry with rea-
sonable accuracy (section 3.1), based on the assumption of a regular cubic lattice,

consisting of pores of different shapes and varying cross sections:

_ N Cess
T Atotal |

k

If there are no marked spatial variations of the channel dimensions, the rock is
microscopically homogeneous with individual conductances C; = C; = ..... = C; =
Cess = C, and the effective conductance becomes independent of the average lattice
coordination number 2. Therefore, under conditions of microscopic homogeneity we

can write
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_ NCeff _ N%R%A _ ¢T2
B T Atotal B TAsotal -8’

k (97)

and Eq. (82) and Eq. (96) become equivalent. Indeed, the hypothesis of microscopic
homogeneity of the pore space is implicit in the derivation of the Kozeny-Carman
equations. This would be the case of a rock pore space characterized by a very
narrow distribution of channel dimensions, e.g., a single-spike pore-size distribution
or a distribution characterized by a single size. However, the pore space of a rock
is generally characterized by a wide distribution of channel dimensions, and so the
permeabilities predicted by the Kozeny-Carman equations deviate from the measured
values. In this case, it will be shown that the Kozeny-Carman formulas based on a

parallel arrangement of the pores give an upper bound on the rock permeability.

In section 3.1, a regular cubic lattice, consisting of pores of varying cross sections
and different shapes, was introduced as a pore structure model. Permeabilities of
sandstones obtained with this model are in good agreement with experimental data.
This outcome confirms previous research by Chatzis and Dullien (1985), who found
that the simple cubic (or tetrahedral) network of angular pores yields good agree-
ment with the observed data when modeling the mercury porosimetry curve for a
variety of sandstones. These results are not surprising when one notes that the above
properties are strong functions of the pore structure of the sample, which is multiply
connected (Figures 3.3 and 3.4). On the other hand, consider Berryman and Blair’s
(1986) estimates of Berea sandstone permeability using digitized SEM images of rock
sections. Parameters such as porosity, specific surface area, and formation factor were
employed to successfully predict permeability from Kozeny-Carman relations, and so
there seems to be a discrepancy. Hence, there is a need to assess the region of validity
of the Kozeny-Carman formulas to predict permeability of consolidated porous me-
dia from microgeometry, as it relates to the microscopic spatial variation of channel
dimensions. It is also important to evaluate the extent to which the parallel pore
structure model moves away from the regular cubic model as the pore space becomes
more and more inhomogeneous at the pore scale. We undertook this research with
five main objectives in mind: (1) to re-examine the effective medium theory to treat
conductor networks based on the distribution of individual conductances, (2) to study

the region of validity of the effective medium theory by comparing its results with con-
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ductances evaluated numerically using large 3-D simple cubic networks in which the
values of the conductances are chosen by a Monte Carlo procedure from one of several
distributions (Kirkpatrick, 1971), (3) to compare results with the critical-path analy-
sis (Ambegaokar et al., 1971) which focuses on the details of the critical paths along
which much of the flow must occur (the total conductance obtained by this method
gives an upper bound for conductivity valid for the case of a very broad distribution
of channel dimensions, e.g., a microscopically heterogeneous porous medium), (4) to
study the validity of the Kozeny-Carman formulas for consolidated porous media as
they relate to the microscopic spatial variations of channel dimensions using the ef-
fective medium theory, network theory, and the critical pat_h analysis, and ultimately
(5) to compare the analytical results thus obtained with experimental results for a

variety of consolidated porous materials.
3.3.1 Region of validity of the effective medium theory

Recall section 3.1.1 where it was shown that the average effect of a random dis-
tribution of conductances in the effective medium can be expressed by giving all
conductances a single value Cess, and choosing C.sy such that the effects of changing
any conductance back to its true value will, on the average, cancel. Changing the
value of a conductance located along the electric field from C.zs to C, causes an

additional voltage V, to be induced across C, given by Eq. (5),

v = YVers(Cess = Co)
Co+ (5 = 1)Cess

where V, is the voltage drop between adjacent rows far from C,, and 2, the number of
bonds at each node of the network, is 6 for the simple cubic lattice employed in our
model. If the conductances are distributed according to some distribution function

f(C), the self-consistency condition for C.ss is

0= (Vo) = Cugs [ £(C) [C f}: f__lfceﬁ] ac . (98)

Assume a binary distribution of conductances Cj;, in which two values C; and C;
occur with probabilities f and 1 — f, respectively. Applying Eq. (98), we can write
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Cess — C C. C:
fo e+ - N

=0.
Ci+ (5 — 1)Ceyy Cy + (3 — 1)Cly5

The following quadratic equation on C.yy is thus obtained:

(g — 1) Cli + Cegs (02 [g(f— 1)+1] +Cy [1— gf]) - CC,=0.

Solving, we get

—C, [g(f—1)+1] Ci [1-%f]
z—2

Cess =

\/((J2 [z2f-D+1]+a [1—-f]) 1(z-1)CiC |

z2—2

Now let C, — 0, in which case C.zy becomes

~C [1--f] +C1 [1- 4]

Cess =

z—2 ’
with solutions
Cess, =0,
and
—2C; [1 - £f]
Oeff2 = z2—2 .

For a simple cubic lattice, z = 6, and the non-zero root for C,s; becomes

Ceps = —[3f —-1].

Thus
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=GPy (106)

This result is plotted in Fig. 3.23. Therefore, for C; <« Ci, Eq. (106) predicts a
linear decrease in C,;; with decreasing f, with Cess — 0 when f — 1/3.

3.3.2 Numerical evaluation of the conductances of large regular 3-D networks

To study the region of validity of the effective medium theory, Kirkpatrick (1971)
evaluated numerically the conductances of large regular 3-D networks, in which the
simple cubic values of the conductances (the bonds of the arrays) are chosen by a
Monte Carlo procedure from a distribution. The voltages V; at the nodes of each
network, and from the total current flow for a fixed external applied voltage, were
calculated by a relaxation procedure based upon the Kirchhoff current law, allowing
C.ss to be determined. If Cj; is the conductance of the link between adjacent nodes
i and 7, the condition that all currents into node % cancel is given by Eq. (1)

2 Cy(Vi-V;) =0.
7

Resistor networks give a discrete model of a continuous medium in which conduc-
tance varies with position. Kirkpatrick (1971) studied the behavior of a simple cubic
network of conductances with binary disorder. The values of the conductances are 1
with probability f, and C; <« 1 with probability (1 — f), assigned at random. Cal-
culations for networks with 15% nodes (data points) and predictions of the effective
medium theory are given for three values of C, in Fig. (3.23). For C; < C; the data
shows a linear dependence except in the critical regions where Ces;/C; < 0.1 for
the binary distribution. Hence, the effective medium theory is expected to work best
when the spatial fluctuations in the current (or the channel dimensions) are relatively
small. This limit leads to Cess/C7 — 1.0. The opposite limit occurs when most of
the current is channeled along the paths of least resistance or critical paths along
which much of the current will low. This limit leads to C.s5/C1 — C., where C. is
the critical conductance (section 3.3.3). Indeed, the effective medium theory works

as long as we are not too close to f., the percolatifm limit.
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FIG. 3.23: Total conductance of a simple cubic network of conductances C:; with binary disorder.
Values of the conductances are 1 (with probability f) and C2 <1 (probability 1 — f), assigned at
random. Calculations for networks with 15% nodes (data points) and predictions of the effective

medium theory (solid line) are displayed. f. indicates the critical concentration for bond percolation
on this lattice (after Kirkpatrick, 1971).

50—

c/co

FIG. 3.24: Symbols show total conductance of a simple cubic network of 153 nodes, with values of
the conductances chosen at random from the distribution f(C) = (2C log A)~! with conductances

C:;’s range from A~! to A. The critical path C. and the effective conductance Cess have also been
plotted (after Kirkpatrick, 1971).
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Kirkpatrick (1971) also calculated conductances of 3-D cubic networks of 15° nodes,
with values of the conductances chosen at random, distributed uniformily with a
distribution f(C) = (2CInA)~! and the conductances range from A~! to A, and
compared this result with the effective medium theory (Fig. 3.24).

3.3.3 Region of validity of the critical path analysis

Ambegaokar et al. (1971) have suggested that most of the current is channeled
through the paths of least resistance at low temperatures, in inelastic hopping con-
duction among localized states. The localized states may be viewed as the nodes 7 of 2
random network of conductances C;; with the conductance connecting any two states
depending exponentially on the distance between them as well as on their energies.
Ambegaokar et al. (1971) suggested that at low temperatures the conductances of
such networks, and its temperature dependence, can be estimated by looking at the
critical paths, and characterizing them by a critical conductance C,. The critical con-
ductance can be defined by a simple construction as follows. The resistance network
can be considered as composed of three parts (Ambegaokar et al., 1971):

1. A set of isolated ‘zones’ of high conductance, each region consisting of a group

of sites linked together by conductances C;; > C..

2. A relatively small number of conductors with C;; of order C., which connect
together a subset of the high conductance clusters to form an infinite network
that spans the sytem. Conductors in categories (1) and (2) are said to form the

‘critical subnetwork’.

3. The remaining conductors with C;; < C..

It is worth noting that in the critical path analysis, the conductances of order C,
determine the conductance of the network. The conductances in category (1) could
all be set equal to infinity without greatly affecting the total conductance because the
current has to pass through conductances of order C, to get from one end of the system
to the other. The conductances with C;; < C. make a negligible contribution to total
conductance because they are effectively shorted out by the critical subnetwork of

conductors with Cj; 3> C.. Thus the conductances are all removed from the network
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and then replaced one by one, the largest first. The values of Cj; at which extended
paths open up is C..

Ambegaokar et al. (1971) argue that for a very broad distribution of conductances,

as is the case for low temperatures, the conductance may be expressed as

C~L'C., (107)

where L™! is less sensitive to the characteristics of the distribution of conductances
than is C, itself. Hence the temperature dependence of C is taken to be of that of
C. alone, the factor L~' adding corrections of order of In C. or less. This analysis
yields a very simple and elegant derivation of the 7-Y/* Mott law for conduction at

low temperatures.

The percolation threshold, f. = 0.25, of the numerical bond problem in the 3-D lat-
tice is shown in Fig. 3.23. This value has also been reported elsewhere (Efros, 1986).
If f denotes the ratio of conducting bonds to the total number of bonds, the conduc-
tance vanishing at a certain value of f is the threshold (critical) value or percolation
threshold. Since f. = 0.25, if the conductances are distributed uniformily over the
interval (A~ to A) with the weight factor f(C) = (2CIn A)™!, then the critical

conductance C, is easily obtained as follows:

A 1 A dC
dC) 3254 %
fe= gCA fﬁf(%)(dcz — 2hd {Cc C -02 = ln§ =In A%, (108)
A1 ¢
and
C. = AY? . (109)

The critical conductance for such a distribution is plotted in Fig. 3.24. For the dis-
tribution used in the calculation and for the conductances increasing up to A ~ 1000,
this plot shows that: (1) The effective medium theory and C.;; for the simple cubic
case only slightly underestimates the observed conductances, and (2) the conduction
process is not dominated by the paths of least resistance, and the critical path analysis

is immaterial.
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3.3.4 Region of validity of the Kozeny-Carman formulas for consolidated porous

media and the microscopic spatial variations of channel dimensions

In order to establish the validity of the Kozeny-Carman formulas for consolidated
porous media, we will use the effective medium theory and assume that the con-
ductances are distributed according to f(C) = (2CIln A)™! for A= < C < A. The
parallel (z = co) and the series (z = 2) arrangements will be compared to the simple
cubic arrangement of the conductors (z = 6). In particular, the parallel arrange-
ment (on which Kozeny-Carman formulas are based) will be compared to the simple
cubic arrangement of conductors, since it was the latter that was tested with rea-
sonable accuracy against experimental data to calculate permeability of consolidated
porous media from microgeometry (Section 3.1). Also, Chatzis and Dullien (1985)
have found that the simple cubic network yields results in very good agreement with
the experimental data when modeling the mercury porosimetry curve for a variety
of sandstones. For comparison purposes, in addition to the effective medium theory
results, we plot the observed conductances obtained for a simple cubic arrangement of

conductors by Kirkpatrick (1971), and the critical path analysis results in Fig. 3.25.
3.8.4.1 Parallel arrangement of the conductors

For any z we can rewrite Eq. (98) as follows

_ [ _dc C.ss—C B

For a parallel arrangement of the conductors, 2 — 0o, and we can write

4 dC 1

A
T " Gy Ja, BO=0- (111)

The two integrals can be evaluated to yield

4 dC
L_I-E—ZMA, (112)

and
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FIG. 3.25: Conductance envelope. The plot shows effective conductances of a parallel, simple
cubic, and series networks of conductors, with values of the conductances chosen at random from
the distribution f(C) indicated. The critical path conductance and the total conductance of a
simple cubic network from previous figure (data points) have also been plotted. Zones LI and IO
correspond to zones within which the Kozeny-Carman formulas are valid, approximately valid, and

not valid, respectively.
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A A2 -1
A_ldC'— A

: (113)

Thus, for a parallel arrangement of the conductores, C.ss is determined by

A2 -1

20 A==

(114)

Results are plotted in Fig. 3.25. Clearly, when A™' = A = 1, C.;; becomes

independent of coordination number z.
8.8.4.2 Series arrangement of the conductors

For a series arrangement of the conductors, z = 2, Eq. (98) gives

4 dC Cess —C
I= =0. 115
/A-l 2Cln A [c +(z-1) Cgﬁ] (115)
Thus
4 dC A dC
I = Cgy5 A—lﬁ—/{i—l—a—_o. (116)
Solving the two integrals yields
4 dC A%2-1
a1C2 A (117)
and
4 dC
[4_1?—21nA. (118)

Thus, for a series arrangement of the conductors, C.s5 is determined by

2 _
Cets [A ) 1] =2lnA4. (119)
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Results are plotted in Fig. 3.25. Clearly, as A1 = A — 1, C4y approaches

independency of coordination number 2.

3.8.4.8 Simple cubic arrangement of the conductors
For a simple cubic lattice, z = 6, Eq. (110) gives

_ (4 dC C.is—C
I_/A—12C’1nA

C+ (§—1) Cess

Thus
7= A CessdC _ A dC —0
T Jar C(C + ZC’eff) a1 C+ ZC'eff I
Solving the partial integrals
A CessdC 1 2C5 5+ A
— = - = |lp———-2InA]| ,
41 C(C + ZCeff) 2 [ 2Ce55 + A1
and
A dC A+ 2Cs5

A1 C+ ZCeff - A1+ 2Ceff )

Thus Ceyy for a simple cubic lattice is determined by

2045+ A

20+ AL 24

3ln

(120)

(121)

(122)

(123)

(124)

Results are plotted in Fig. 3.25. Comparing the three plots (parallel, series, and

The solution to Eq. (123) for A — oo is readily obtained:

205+ A

3In
2C€ff

=3InA—3n2C,; =24,

and

cubic), as A™! = A — 1, C.s; approaches 1, irregardless of coordination number.

(125)



Cefs ™ %Alf"‘ : (126)
For very large A, the data falls approximately on a straight line of slope ~ 1/3.

3.8.4.4 Results and discussion

Figure 3.25 shows a log-log plot of C.ss for the parallel, series, and the cubic
arrangements, respectively. For comparison purposes, in addition to the effective
medium theory results, we have plotted the critical path analysis results and the re-
sults obtained by Kirkpatrick (1971) for a simple cubic arrangement of conductors.
In particular, the parallel arrangement will be compared to the simple cubic arrange-
ment of conductors, since the latter was tested with reasonable accuracy against
experimental data to calculate permeability of consolidated porous media from mi-
crogeometry (section 3.1). This result simply confirmed previous findings by Chatzis
and Dullien (1985) when modeling the mercury porosimetry curve for sandstones. For
the distribution used in the calculation and for the range of conductances increasing
up to A ~ 1000, this plot shows that: (1) Cess for the simple cubic case only slightly
underestimates the observed conductances, (2) Ces; for the series case provides a
lower bound for the observed conductances, (3) C. is the uppermost bound for the
observed conductancés up to A = 70, whereas C,gs for the parallel case is the upper
most bound thereafter, and (4) the conduction process is not dominated by the paths

of least resistance, making the critical path analysis irrelevant.

To explore the region of validity of the Kozeny-Carman formulas, we have uti-
lized the conductance envelope for the given distribution of conductances (Fig. 3.25),
and divided it into three zones: zome I (1 < A < 10), a zone within which the
Kozeny-Carman formulas are valid; zone II (10 < A < 100), a zone within which
the Kozeny-Carman formulas are approximately valid within limits; and zone III
(A > 100), a zone within which the Kozeny-Carman formulas are not valid. Zone
I, in which conductance span A varies between limits 1 (point D) and 10 (point E),
is characterized by conductances C.yss for the parallel case being less than two times
higher than the cubic case over much of the conductance span. In this zone, the

Kozeny-Carman relations are valid within experimental error. Consider, for exam-

85




ple, that in the analytical expression for permeability given by Eq. (82), the error
incurred in the hydraulic radius approximation lies within +30%. Notice that point
D corresponding to the limit A = 1 = A~! is associated with the point at which
C.js = 1. Therefore, at point D, the porous medium is microscopically homogeneous,
and the Kozeny-Carman formulas are strictly valid. In zone I, the spatial fluctuations
in channel dimensions are small and the Kozeny-Carman formulas are very accurate.
Notice also, that in this zone the critical path conductance C. provides an upper
most bound, and C,s; for the series case (z = 2) provides a lower bound conduc-
tance. Zone II, in which conductance span A varies between limits 10 (point E) and
100 (point F), is characterized by conductances Ceyy for the parallel case being less
than an order of magnitude higher than the simple cubic case. Since the permeabil-
ity of rocks can range over many orders of magnitude, from about 10~ m? down to
about 1072° m?2, an estimation of permeability within less than an order of magnitude
of the observed value may be sufficient for many practical applications. However, in
this zone the pore system is, strictly speaking, microscopically inhomogeneous. Zone
II is a transition zone regarding the upper bound conductance because when A = 80,
C.ss for the parallel case becomes the upper bound conductance. C.ys for the series
case provides of a lower bound conductance during the whole span. Zone III, in which
conductance span A varies between limits 100 (point F') and higher is characterized
by conductances C,;; for the parallel case being more than order of magnitude higher
than the simple cubic case. At this stage, the pore system is considered highly inho-
mogeneous. Notice that C,ss for the parallel case is here the uppermost bound. The

critical path conductance, C., is accurate only to within an order of magnitude.
3.4 Comparison of analytical and experimental results

The analytical results for permeability calculated in the manner described above
will now be (1) compared against analytical and experimental results for sandstones
obtained by Chatzis and Dullien (1985), (2) compared with analytical and experimen-
tal results for sandstones obtained previously (sections 3.1 and 3.2), and (3) analyzed
in light of the mercury porosimetry experimental data for a variety of sandstones
obtained by Batra (1973).

As shown in section 3.1, our permeability model was able to predict the property
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for a variety of sandstones while using, in every case, the same cubic lattice as the
pore-structure. Chatzis and Dullien (1985) also introduced a regular cubic lattice,
consisting of capillary tubes of uniform, but angular cross section, at the intersec-
tions of which are angular bulges. Drainage-type penetration numerical experiments
were performed in a number of regular networks representing the pore space, using a
modified site-percolation approach. All of their networks are composed of two topo-
logical entities: capillaries and nodes. The correlation between the probability of a
capillary being open and that of a node being open is considered in the calculation.
From these results the porosimetry curve of mercury in sandstones, the relative per-
meability curve of mercury in sandstones, and the relative permeability curve of oil
in a sandpack were calculated. The physical basis of the calculations is a one-to-one
correspondence between the probability of a capillary being open, and the cumulative
distribution function of capillary diameters. Capillaries and bulges are characterized
by size distribution functions, and the bulges of different sizes are distributed ran-
domly over the nodal points (sites) of the network. The choice of the size of a capillary
is limited by the condition that it may not exceed the size of either of the two bulges
located at the two ends of the capillary. In the calculations, realistic capillary and
node diameter distribution functions, pore shapes and relationships between the vol-
ume and the diameter of a pore were assumed. In their model, however, the aspect
of the pore structure called ‘geometry’, such as the dimensions and the orientation
of the pores, are not modeled. The cubic (or tetrahedral) network was found to give

results in good agreement with the experimental data (Fig. 3.26).

The angular bonds (pore throats) correspond to pores of diameter Dj. Consistency
with the customary definition of pore size used in mercury porosimetry, with the aid of
the well-known relationship of Laplace, enables Chatzis and Dullien (1985) to define
the capillary diameters as follows

Dy, = 2Ry, cosb , (127)

where R, is the radius of curvature of the meniscus of the nonwetting phase at
the prevailing capillary pressure, 8 is the contact angle, and D;, is the diameter of
capillary k.
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FIG. 3.26: Dimensionless experimental mercury-porosimetry data and analytical curve of sandstone
samples. A regular cubic lattice consisting of capillary tubes of angular cross section, at the inter-
section of which there are angular bulges, is introduced as a pore structure model. The experimental
data for all of the sandstone samples (except Belt Series) are well fitted by a single curve (solid line).
The capillary pressure is normalized to the breakthrough capillary pressure P? (after Chatzis and

Dullien, 1985).
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TABLE 3.16: Calculation of the mercury porosimetry curve
of the Berea (BE-1) sandstone sample (after Chatzis and
Dullien, 1985).

| P:k I Dbk | 'ngfb | 'Dsk I kafs I S:;.mk ' S;mILI
1.00 [ 29.5 | 102.3 | 44.5 | 848.0 | 0.113 | 0.170
1.02 | 28.8 | 104.9 | 44.0 | 843.8 | 0.164 | 0.252
1.09 | 27.0 | 109.5 | 42.5 | 826.3 | 0.286 | 0.415
1.15 | 25.5 | 110.6 | 41.0 | 802.1 | 0.365 | 0.519
1.23 | 24.0 | 109.4 | 39.5 | 771.8 | 0.443 | 0.599
1.32 | 22.4 | 105.6 | 38.0 | 735.9 | 0.496 | 0.667
1.43120.7 | 99.1 | 37.0 | 709.2 | 0.552 | 0.724
1.54 | 19.2 | 91.4 | 35.5 | 665.3 | 0.605 | 0.776
1.68 | 17.6 | 81.6 | 34.0 | 617.0 | 0.659 | 0.824
1.84 | 16.0 | 70.6 | 33.0 | 582.6 | 0.708 | 0.862
2.06|14.3 | 58.1 | 31.5| 527.6 | 0.764 | 0.902
2.36 | 12.5 | 44.7 | 30.0 | 468.3 | 0.818 | 0.937
2.78 {10.6 | 31.1 | 28.5 | 403.1 { 0.869 | 0.965
347 85 | 17.8 | 27.0 | 327.5 | 0.918 | 0.987
590 | 5.0 0 25.0 0 0.972 | 1.000

Analogously, for angular nodes (pore bodies) of diameter D;,:

D,, =2R,, cos@, (128)

where R, is the radius of curvature of the meniscus of the nonwetting phase at the
prevailing capillary pressure, 6 is the contact angle, and D, is the diameter of pore
body k.

Table 3.16 (Chatzis and Dullien, 1985) gives the calculated values of the mer-
cury porosimetry curve of the Berea (BE-1) sandstone sample using a cubic lattice
of noncircular (and circular) pores. Berea (BE-1) sandstone has almost the same
macroscopic transport properties as the Berea sandstone used in our experiments
(i.e., porosity of 22%, permeability to N of 400 mD, and a formation factor of 15.5).
The capillary pressure Pj is given relative to the breakthrough pressure P?. The
diameters of the pores Dy, , and D;, were calculated for the prevailing capillary pres-
sure and its corresponding saturation. The density functions f;(Ds) and f(D;) were
assumed to be given by the beta function. The saturations S, and S;, are the

saturations of the angular and circular pore networks, respectively.
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To compare our analytical calculations for permeability obtained above with the
results obtained by Chatzis and Dullien (1985) for Berea (BE-1), we need first to
relate the diameter D, of each angular pore to its individual hydraulic conductance
C: (Equation 12). Schultze (1925a,b) has shown that the capillary pressures for

noncircular capillaries under the assumption of zero contact angle are given by

e . 1 i_l_l, (129)

Pc = r
RH RH ™ T2

where ¢ is the surface tension, r; and 7, the principal radius of curvature, and Ry
the hydraulic radius as defined previously. For an equilateral triangle of side a, the
equivalence of the reciprocal of the hydraulic radius and the reciprocal mean radius

of curvature is (Carman, 1941)

1 1 1 2 4
=== — 130
RH 7‘1+’I‘2 Rk Dk ( )

Thus, at zero contact angle, D, and Ry are related. The area A and the perimeter
P of the equilateral triangular pore are V3a? /4 and 3a, respectively. The hydraulic
radius is Ry = A/P = v/3a/12, and the pore diameter is D; = v/3a/3. Therefore,

the angular pore area in terms of the diameter Dy is A = 3v3D} /4.

Recall Eq. (12) used earlier for calculating the individual pore conductances
Ci= SRYA.

In terms of pore diameter Dy, and under the assumption of zero contact angle, the

pore conductance becomes

3v3 _,
Cr="-Di - (131)

Table 3.16 (Chatzis and Dullien, 1985), gives the calculated pore diameters Dy, for
Berea sandstone (BE-1) for the full range of capillary pressures and saturation. At this
stage, we need to calculate the pore conductances of the ‘primary’ pore network which
is the one accountable for hydraulic transport. Our experimental results have con-

sistently shown that the hydraulically active or ‘primary’ pore network in sandstones
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consists of intergranular pores (bodies and throats), situated in between the grains
(Chapters 4, 5, and 6). The hydraulically active or ‘primary’ network of intergranular
pores in Berea sandstone comprises about 80% of the total rock porosity. About 20%
of the total rock porosity consists of grain-contact pores; both inside the cementing
material, and a few between grains when the pore has been narrowed down by de-
posits to a very narrow gap. Since the contribution of the grain-contact or ‘secondary’
network to hydraulic transport is small, it can therefore be considered hydraulically
inactive (see Chapter 6). The pore (pore throat) diameters of the ‘principal’ network
of Berea sandstone range from the critical diameter D, = 29.5 pm corresponding to
the breakthrough pressure P? (and corresponding saturation S, = 0.113) to the
value Dy, = 12.5 pm (and corresponding saturation Sy, = 0.80). The breakthrough
diameter D, = 29.5 um is the largest diameter of the first connected cluster that
spans the whole sample. On the other hand, the pore diameter D,, = 12.5 pm is
the minimun diameter of the ‘principal’ network, consisting of intergranular pores,
i.e., in between grains. From the ‘principal’ network of Berea sandstone (BE-1), the
maximum and minimum pore diameters are thus obtained, and the ratio of critical
to minimum pore conductances calculated with the aid of Eq. (129) is

C. D 29.5%

c

Coimn DL~ 125%

31. (132)

Using the C./Cpy, Tatio for Berea sandstone, it is then possible to go to the
general conductance plot (Fig. 3.25) and obtain the ratio of effective conductance for

the parallel case (z = o) to the effective conductance for the cubic case (z = 6)

Ce
ffparallcl ~ 3 . (133)

Cef f cubic

The above result is consistent with previous calculations on permeability of Berea
sandstone presented in sections 3.1 and 3.2. For example, conductance calculations
for Berea sandstone section B presented in section 3.1 (Table 3.17), using the effec-
tive medium theory in conjunction with the ‘principal’ pore network, gave effective
conductances for the parallel case (z = co) and for the cubic case (2 = 6) such that

their ratio is given by
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TABLE 3.17: Calculated effective conductance data of various sandstones obtained from SEM

2-D sections (Chapter 3.1).

Rock Cess (2" = 00) (m?*) | Ceps (2* = 6) (m?) %%((z—:?)l
Berea sandstone B 56.0x10~2° 18.2x10~%0 3.1
Berea sandstone T 59.9x10~20 24.2x10~20 2.5
Boise sandstone 80.1 x10~20 45.0x10720 1.8
Massilon sandstone 525x 10719 90.7x10™° 5.8
Saint-Gilles sandstone 48.3x10~20 21.2x10~20 2.3

*Coordinatiom number.

TABLE 3.18: Calculated permeability data of two sandstones from rock micro-
geometry assuming a parallel pore model (Chapter 3.2).

Rock k (z* = ) (m2?) | Fmeasurea (m?) | oz
Berea sandstone B 15.0x10713 4.8%10~ 1% 3.1
Massilon sandstone 10.8x10™12 2.5%x10712 4.3

%Distilled water used as permeant.
*Data from Koplik et al., 1984.

Ce-ffpcrallel _ 56.0 x 10—20 m4 _
Ce-ffculn'c T 18.2 x 1020 m4 ~

(134)

Analogously, for Berea sandstone section T shown in section 3.1 (Table 3.17), the

effective medium theory in conjunction with the ‘principal’ network gave effective

a

conductances such that their ratio is

Ceffparallel — 59’9 X 10—20 m4

- Ro. 135
Ceffcubic 24'2 X 10_20 m4 ( )

Similarly, in section 3.2 (Table 3.18), it was shown that a model based on the
‘principal’ pore network, a parallel arrangement, and a pore size distribution, gave
the permeability for Berea sandstone section B such that its ratio to the observed
value is

kpamuez _ 15.0 x 1071 m? -

kmeasured - 4.8 x 10-13 m? ~ (136)

It is then concluded that Berea sandstone hydraulically active conductances fall
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into zone II of Fig. 3.25, and that the Kozeny-Carman relations are valid within a
factor of three of the measured permeability values. But, how general is this result
for most sandstones, especially considering that the range of pore diameters may vary
widely from one rock to another? This issue becomes quite clear when one examines
the normalized experimental capillary pressure curves shown in Fig. 3.26 for a variety
of sandstones. They almost without exception can be represented by a single function
(solid line). This is a direct consequence of the ‘similarity’ in the geometrical sense of
the pore structure and of the ‘principal’ pore network of ten of the eleven sandstone
samples under study. The absolute magnitudes of the pore sizes alone do not deter-
mine the results of these calculations. It is the pore diameters and pore conductances
of the hydraulically active pore network, relative to the breakthrough pore diame-
ter and corresponding conductance, rather than the absolute magnitudes of the pore
diameters and corresponding conductances of the complete network, that determine
the permeability and capillary pressure results. The successful prediction of perme-
ability from microgeometry (section 3.1), and of the mercury porosimetry curve by
Chatzis and Dullien (1985) of several sandstone samples, using the same cubic lattice
network model as pore structure, which may appear surprising at first considering
that the range of pore diameters sizes vary widely from one rock to another, becomes

apparent.

Finally, it is established that the permeabilities of most sandstones fall in zone II
of the conductance envelope (Fig. 3.25), and that the permeabilities predicted by
the Kozeny-Carman formulas are valid within more or less a factor of three of the
observed values. Consequently, even though the complete pore space system of most
sandstones is strictly speaking inhomogeneous, the hydraulically active or ‘principal’
network approaches homogeneity. As the rock ‘principal’ pore network becomes more
and more inhomogeneous, the conductance plot shows that the Kozeny-Carman for-
mulas become less and less applicable. For a very inhomogeneous ‘principal’ network,

Fig. 3.25 shows that the critical path analysis can be applied within limits.
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CODE LISTING 3.1: FORTRAN source code for calculating the effective conductance
given the individual conductances using the effective medium theory.

C***********************************************************************

c
c Program Per: This program calculates the effective conductance in a
c porous medium using the effective medium approximation
c
c created: 7/4/90 E. Schlueter
c .
c modified: ot/xx/xx
c
c****t**************************************************t***************
c
c DECLARATIONS
c
dimension hydr{5000), area(5000), peri(5000), c(5000), n(5000)
c
c***********************************************************************
c
[o} INPUT DATA AND INITIALIZE
c
open (unit=l, file=’per_in.dat’, status=‘old’)
open (unit=2, file=’per_out.dat’, status='0ld’)
c
1 format (¢ input coon,imax’)}
cece write(5,1)
ccce read (S,*) coon,imax
read (1,*) coon,shfa,imax
fact=(coon/2.)-1.
c
do 5 i=1l,imax
2 format (* input c(’,i2,’)*)
ccc write(5,2)1
cce read (5,*) c(i)
read (1,*) j, n{(i), c{i) ! j,area(i),peri(i)
c
c*t*********************************************************************
c
C CALCULATIONS
c
C************************************************t*t**************t*****
c
[o) CALCULATION OF CONDUCTANCES
c
cce hydr (i)=area(i)/peri(i)
cce c(i)=hydr(i) *hydr (i) /shfa
5 continue
c
c*t******t**************************************************************
c
[o] CALCULATION OF MAXIMA AND MINIMA CONDUCTANCES
c
cmax=0
cmin=1.e6
c
do 10 i=1,imax
cmax=amaxl (cmax,c (1))
cmin=aminl (cmin, c(i))
10 continue
c
Ct!t***t**********t**********’R*‘k****t*****k****t***************t********
c
del_ceff=cmax~cmin
jmax=11
fuad=0

ceff=cmin
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do 20 k=1,4
del_ceff=del_cef£f/10.
do 30 ij=1,djmax

c .
c***********************************************************************
c
c’ BISECTION LOOP
c

ceff_old=ceff

ceffzceff+del_ceff

fuad=sum(ceff,c,fact, imax,n)
c

if(fuad .gt. 0.) then

ceff=ceff_old
go to 20

endif
c
30 continue
20 continue
c
c***********************************************************************
C
[o] FORMAT STATEMENTS
c
101 format (/ EFFECTIVE INTRINSIC PERMEABILITY CALCS.’//,

& rcoon = ‘’, 9.3, ' shfa = *, £9.3, ' ceff = *, £10.3,
& ‘m*m]”’, /)

clo2 format (0%, .. -
c
c***********************************************************************
c
c WRITE OUTPUT DATA
c

write(5,6) ceff
6 format (¢ ceff = ¢,£10.3)
write(2,101) coon,shfa,ceff

c
close (unit=1, status=‘keep’)
close (unit=2, status='keep’)
end
c
c***********************************************************************
c
C CALCULATION OF EFFECTIVE CONDUCTANCES
c
function sum(ceff,c,fact,imax,n)
dimension c(5000), n(5000)
sum=0 -
c
do 50 i=1,imax
do 45 k=1,n(i)
func=(ceff-c(i))/ (fact*ceff+c(i))
sum=sum+func
45 continue
50 continue
c
return
end
c

C***********************************************************************
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4 PREDICTING ELECTRICAL CONDUCTIVITY OF
SEDIMENTARY ROCKS FROM MICROSTRUCTURE

4.1 Analytical approach using individual conductances

In the study summarized here, the electrical conductivity of sedimentary rocks
is predicted from the microscopic geometry and connectivity of the pore space. We
have preserved the same intergranular pore model structure used to predict hydraulic
permeability (Chapter 3). The cross-sectional areas of the individual pores are esti-
mated from 2-D scanning electron micrographs of rock cross sections (Figures 3.5 to
3.9). The electrical conductivity of the individual pores is determined from the geo-
metrical parameters, using Ohm’s law. In the section under consideration, the pore
cross sections are assumed to be randomly oriented with respect to the directions of
the channel axes. The orientation effect has been corrected by means of geometrical
and stereological considerations. Account is also taken for possible variation of the
cross-sectional area along the length of each tube, e.g., pore necks and bulges. The
effective-medium theory of solid-state physics is then used to replace each individual
conductance with an effective average conductance of each pore. Finally, the pores
are assumed to be arranged on a cubic lattice, which allows the calculation of overall
macroscopic values for the electrical conductivity. Preliminary results, using Berea,
Boise, Massilon, and Saint-Gilles sandstones, show fair to good agreement between
the predicted and measured electrical conductivities, with essentially no arbitrary
parameters in the model. In particular, good agreement was found in the case of a
poorly cemented rock such as Saint-Gilles sandstone, whereas the agreement was not
very good for two well-cemented rocks, Boise and Berea. The possible reason(s) for

this effect are under investigation.
4.1.1 Effect of cross-sectional shape

The electric conductance per unit length of each cylindrical tube of area A is
Ce, = —, (137)
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where p,, is the resistivity of the fluid; this expression is exact regardless of the pore

shape.
4.1.2 Effect of pore orientation

In the two-dimensional sections under consideration, however, the pore cross- sec-
tions are randomly oriented with respect to the directions of the channel axes. The
orientation effect has been corrected by means of geometrical and stereological con-

siderations (Chapter 3.1.4.2):

1
cosd

-1
Aactual = < > Ameasured = 0-61Ameasured y

where the brackets denote a spherical average for pores of random orientation.
4.1.3 Effect of pore constrictivity

Constrictions within the individual branch channels, i.e., pore necks and bulges,
have been taken into account using an analysis based on a sinusoidal variation of
cross section. In the electric conductance analysis, for example, the factor accounts
for the ratio of (R~2)~!, which governs the conductance of a tube of varying radius,
to (R)?, which is the value estimated from the micrographs (Chapter 3.1.5). We have
estimated a throat-to-pore radius ratio of 0.5 from a pore cast of Berea sandstone,
and tentatively use this value for each rock. This ratio then indicates an electric

constriction factor of 0.86 (Figure 4.1).
4.1.4 Effective medium theory

Study of scanning electron micrographs of Berea sandstone has indicated the pres-
ence of a statistically isotropic 3-D pore structure. These observations have led to the
assumption that the pores of varying size are arranged on a cubic lattice, so that the
coordination number of the network is 6. The effective-medium theory from solid-
state physics (Kirkpatrick, 1973) is then used to replace each individual conductance

with an effective average conductance, as follows.
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Constriction Factor
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FIG. 4.1: Constriction factor for electric flux as function of the ratio of the minimum pore radius to
the maximum pore radius of an individual pore. The calculated conductances of the pores must be
multiplied by this factor, which account for the converging-diverging nature of the pore tubes.
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For a general discrete distribution of conductances, the resulting equation defining
the effective conductance is given by Eq. (6)

‘i\'; Ceff - C’i _
2 G2 - 1Ces +Ci

=1

0,

where the sum is over all N conductive elements and z is the average coordination
number of the lattice. For a coordination number of z = 6, the above equation has
been solved numerically to allow for the calculation of the effective-medium conduc-

tance, given the individual conductances (Code Listing 3.1).

The electrical conductivity is often quantified by the ‘formation factor’, which is
the ratio of the resistance of the electrolyte-saturated rock sample to the resistance
of an equal volume of electrolyte solution. The electric conductance per unit length

of an equal volume of electrolyte solution is

C, = ’tf““ : (138)

where A;oiar is the total area of the rock sample.

The electric conductance per unit length of the electrolyte-saturated rock sample
is (a unit cubic cell is used to relate the effective electric tube conductance to the

continuum)

O = NAess 1

= (139)

where Ay is the effective pore area of the individual tubes, IV is the number of pore
tubes in the scanning electron photomicrograph, and 7 is the tortuosity of a cubic

lattice, which is 3.

Thus, the formation factor is given by

(140)
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TABLE 4.1: Measured vs. predicted formation factors of four sedi-

mentary rocks.

, Rock ” Fmeasured “ Fpredicted (za = 6) |
Berea sandstone 15.9° 44.1
Boise sandstone 11.0° 27.2
Massilon sandstone 11.8¢ 52.2
Saint-Gilles sandstone 13.5° 13.1

¢Coordination number.
5Zinc nitrate solution used as electrolyte.
“Data from Koplik et al., 1984.

4.1.5 Results and discussion

Preliminary results are presented in Table 4.1. Fair to good agreement was found
between measured and predicted electrical conductivities for a variety of sandstones
when using the cubic lattice model with essentially no arbitrary adjustable parame-
ters. In particular, good agreement was found in case of a poorly cemented rock such
as Saint-Gilles sandstone, whereas the agreement was not very good for two well-
cemented rocks, Berea and Boise. The possible reasons(s) for this effect are being
investigated experimentally (See Chapter 4.2). Caruso et al. (1985) have shown that
the total porosity of a cemented rock such as Berea sandstone consists of 72% inter-
granular porosity (Figures 3.5b and 3.6b), 13% connective porosity (grain contacts),
and 15% microporosity. Even though most of the rock’s porosity is intergranular,
there are significant amounts of the other types. Since electrical conductivity is pro-
portional to the sum of the areas of the tubes, whereas permeability is proportional
to the sum of squares of areas, tubes of relatively smaller dia.met:,er, if numerous, can
have a significant effect on conductivity, yet a negligible effect on permeability. In
addition, the presence of connected thin sheets and small throats associated with
micropores provide additional paths for the current to flow, the net effect being an
increase in effective coordination number of the lattice for electrical conductivity. In
this study, we have preserved the intergranular pore model structure used to predict
intrinsic permeability from microgeometry. However, it is likely that in some cases
this basic pore model structure needs to be modified to incorporate relevant rock

geometrical and topological characteristics important for electrical conductivity.

101

b Bl S e i i i o anne S SOR-S s i oryien 4 RIS A DM T e, s r ageiy Loy v 2ogn-vr Aretc e B S i o uanselh, My oouy ot utets Srp e ol aevwitentes s SRt G s wullinbeiai St diing L e



4.2 Experimental approach using microscopic distribution of

solid hydrocarbon (paraffin wax) in the pore space

In our experimental electrical conductivity studies, we have employed a wetting
fluid that can be frozen in place: (1) to allow measurement of effective properties
with an electrolyte solution in the rock pore spaces not occupied by a wetting fluid,
(2) to allow direct observation and analysis of the wetting-fluid distribution at each
fluid-saturation regime, and (3) to understand how the wetting-fluid invasion process
is controlled by rock pore structure and topology with the aid of a complete pore
cast. In addition, disseminated clay, often in the form of aggregates, may line the
rock pores or be distributed between the grains of the matrix. The clay minerals act
as a separate conducting path additional to that contributed by the saline solution in
the rock pores. The conductivity of the rock containing disseminated clay therefore
has two components: one is the conductivity of the fluid-filled pores of the rock; the
other one is the conductivity of the disseminated clays which are the solid phases
that primarily exhibit surface reactivity in rocks and soils (Sposito, 1984). This is a
direct consequence of the fact that clay particles have large surface areas. In order
to measure surface conductance, the geometry of the system must be known. In the
case of rocks, the exact pore geometry that affects the total conductance is unknown.
Furthermore, it can change due to dispersion and flocculation of the clay minerals in
the pores. Thus it is forseen that the presence of clay may greatly complicate the
quantitative evaluation and interpretation of experimental data. In our experimental
studies, we have isolated the effect of clay minerals on formation factor and assessed

the surface conductance contribution due to the presence of clays.

The conductivity of a rock (consisting of electrically nonconductive particles) sat-
urated with a conducting electrolyte has been shown by Archie (1942) to depend
upon the conductivity of the electrolyte and a geometrical (e.g., formation) factor. In
such a system, the electrical conductance of the saturated rock is proportional to the
conductance of the electrolyte solution; the constant of proportionality (always > 1)
is a geometrical factor called the formation factor. The formation factor of a fully
saturated rock is defined as the ratio of the resistance of the brine-saturated rock to

the resistance of an equal volume of brine
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e p(electrolyte — saturated sample)
plelectrolyte solution)

b

where F is the formation factor, and p the resistivity.

The assumptions implicit in the formation factor concept are: (1) The conduction
process is electrolytic and it occurs only through the network of saline solution filling
the pores, (2) the properties of the saline solution filling the pores are uniform, and (3)
there are no surface conductivity effects. In such a system, the plot of the electrical
conductance of the saturating solution versus the electrical conductance of the rock

saturated with the solution is & straight line passing through the origin.

When more than one fluid is present, e.g., oil/water, the empirically determined

Archie saturation is often found to vary according to

F=¢™S;", (141)

where F is the effective formation factor, ¢ is the porosity, S, the electrolyte satu-
ration, and m and n are dimensionless empirically determined constants. The value
of m varies with the extent to which a rock is cemented, from about 1.3 for uncon-
solidated sands to 2.3 for comsolidated sandstones (Wyllie, 1963). The value of n
depends to a large extent on the wettability of a reservoir rock (Anderson, 1986).
In rocks that are wholly oil-wet, i.e., rocks in which water is the nonwetting phase,
3.0 < n < 4.0, whereas if the rock surface is entirely water-wet, 1.8 < n < 2.0 (Ander-
son, 1986). The Archie saturation equation assumes that the saturation/resistivity
relation is unique (i.e., only one resistivity is measured at a given saturation), n is
constant for a given porous medium, and all the saline solution contributes to the flow
of electric current. To verify these assumptions, we have analyzed the experimental
electrical conductivity data in light of the role of the pore structure and topology in
the wetting-fluid invasion process with the aid of fluid distributions at each saturation

regime, a complete pore cast, and its associated rock section.

Laboratory electrical conductivity data for fully and partially-saturated samples

of Berea sandstone with a wetting fluid is presented. In our study, we employ a
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wetting fluid (paraffin wax) that can be frozen in place at controlled saturations to
allow us to examine the occupied pore space after the experiment. The effective for-
mation factors for an electrolyte in the pore spaces not occupied by the paraffin are
measured at various saturations after solidifying the paraffin in place. The effect of
clay and other surface reactive minerals on Berea sandstone formation factor is first
isolated, and their surface conductance contribution to overall conductivity assessed.
The electrical conductivity experimental data is analyzed in light of the role of the
pore structure on the wetting fluid invasion process with the aid of direct observation
of fluid distributions at each saturation regime, a complete pore cast, and its corre-
sponding rock section. Finally, the effect of partial hydrocarbon saturation on overall

Berea sandstone conductivity, and on the Archie saturation exponent n, is studied.
4.2.1 Apparatus and procedure

The apparatus that was used in this study was designed to measure simultaneously
both hydraulic and electrical conductivity (Figure 4.2). The rock core (5 cm in
diameter and 5 cm in length) is encased in its rubber jacket and placed in the test
cell. The test cell base is connected directly to the bottom of the sample, and a
centrally located orifice is attached to allow fluids to flow through the mounted core.
The electrodes are connected to the top and bottom of the core sample so that any
current flow between them will necessarily pass through the core. A confining pressure
of 50 psi (3.4 atm) is applied using nitrogen gas. Fluid flow through the core is
controlled by a syringe pump providing a constant flow rate of 200 ml/hr. The basic
procedure used for measuring the formation factor in a 100% electrolyte-saturated
sample is first to vacuum saturate each core completely with distilled water. An
aqueous zinc nitrate solution of known resistivity is then pumped through the core,
and flow is continued for a sufficient time to establish constant pressure and resistance
readings. It was found that about four pore volumes of electrolyte is required to
achieve steady state. In our experiments, we used samples of Berea sandstone, which
is a homogeneous sedimentary rock used as a reference rock in the petroleum industry.
The intrinsic permeability and porosity of a Berea sandstone core are about 600 mD
(600 x 107 m?) and 22%, respectively. It is estimated to be of Mississippian age

and is found in Berea, Ohio.
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FIG. 4.2: Schematic representation of the laboratory apparatus designed to simultaneously measure
both electrical and hydraulic conductivity.
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TABLE 4.2: Formation factor data for Berea sandstone
with a 0.5 M zinc nitrate solution used as electrolyte.

I Berea' Sa'nd'Stone II ¢$neasured (%) | Frl;zeasuredJ

KS4 21.9 15.0

KS6 22.6 14.3

KS7 22.0 17.7

KS9 22.2 15.9
“Porosity.

5Formation factor.

4.2.2 Effect of hydrocarbon saturation

The conductivity of the pore system can be varied either by altering the salinity of
the water in the pores or by changing the quantity of water of a particular salinity by
introducing another solid/fluid phase into the pore space. To determine the effect of
partial fluid saturation on formation factor, we utilized Berea sandstone samples that
had been permeated with a sequence of triple-distilled water (to measure the hydraulic
conductivity), followed by a 0.5-M zinc nitrate solution and again flushed with distilled
water. This procedure was applied to every sample to find the formation factor
before the paraffin application (Table 4.2). The samples were then oven dried. After
measuring the formation factor, the samples were partially filled with paraffin wax
at controlled saturations of 20%, 30%, 40%, 50%, 60%, and 70%. The hydrocarbon
paraffin is a wetting phase with a density of 0.76 g/cm3, and a melting point of 56°C.
It is applied at temperatures higher than its melting point in the core axial direction,
until uniform saturation is achieved throughout the sample (Figure 4.3). The paraffin
is then solidified in place at ambient temperature. After the hydrocarbon paraffin
application, the rock grain surfaces became hydrophobic. To measure the effective
formation factor, the rock samples that were partially saturated with paraffin were
permeated with a 0.5-M zinc nitrate solution at pH ~ 4. The effective formation
factor vs. paraffin saturation is presented in Figure 4.4 (case A). Experiments in
which the formation factor had not been measured prior to paraffin impregnation
were repeated on a new and clean set of samples. The result is shown in Figure 4.4
(case B). In summary, good agreement within experimental error was found between

the two sets of experiments A and B.
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FIG. 4.3: Experimental setup for one-dimensional paraffin impregnation.
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FIG. 4.4: Effective formation factor vs. paraffin saturation for Berea sandstone. The pore space was
partially saturated with hydrocarbon paraffin. The remaining portion of the pore space was filled
with a 0.5-M zinc nitrate solution: Cases A and B correspond to experimental data on samples sub-
jected or not subjected to a formation-factor measurement before paraffin application, respectively.
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4.2.3 Effect of clay

X-ray diffraction studies by Khilar and Fogler (1984), in conjunction with scanning
electron microscopy (Figure 4.5) and energy-dispersive x-ray analysis (Figure 4.6),
indicate that Berea sandstone contains ~ 8% by weight of dispersable and swelling
clays (mainly kaolinite with some illite and smectite), 80% quartz, and 12% feldspar.
To reduce the tendency for the clays to disperse, zinc, a bivalent cation, was used. For
solutions with cations of valence > 1, at pH = 7, no critical salt concentration has been
found below which clay is released from Berea sandstone pore walls (Khilar and Fogler,
1984). It is important to recognize that the clay minerals present in the rock have been
immobilized by coating the pores with hydrocarbon paraffin. Therefore, the formation
factor extrapolated to an electrolyte saturation of unity (i.e., no hydrocarbon paraffin)
corresponds to the formation factor of the clean rock without clays and without
any surface conduction effects caused by the presence of surface reactive minerals.
Formation factor at a paraffin saturation of zero, F = 18 (Figure 4.4), has been
extrapolated from a plot of the multiplicative inverse of the residual formation factor
vs. paraffin saturation. This hypothesis was verified by partially removing clays in
a Berea sandstone core by acid treatment with a mixture of 6% hydrochloric and
1.5% hydrofluoric acids (R. Suarez-Rivera, personal communication, 1991). After the
core was treated and clays flushed out, the formation factor was found to be 16.4,
larger than the average formation factor of 15.7, measured for samples containing clay

(Table 4.2).
4.2.4 Effect of surface conductance

To investigate the magnitude of surface conductance contribution due to clays and
other surface reactive minerals on formation factor, we investigated the influence of
solution concentration on rock electrical conductivity. For that purpose, resistivity
experiments were performed on two Berea sandstone cores. The first core was per-
meated with solutions of zinc nitrate at increasing concentrations of 0.05 M, 0.1 M,
and 0.5 M while measurements of resistivity were taken. After equilibrium had been
reached with one solution, another zinc nitrate solution of lower resistivity was flowed

through the core, and a constant resistance reading was again obtained. To obtain
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FIG. 4.6: X-ray spectrum of clay minerals coating Berea sandstone sample pores shown in figure 6.4.
EDX analysis yielding nearly equal peak heights of Si and Al confirms the identification as kaolinite.
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TABLE 4.3: Resistivity data for Berea sandstone with zinc
nitrate solution saturating the sample.

[ M® ] pH (effluent) | p}, (ohm-m) | p¢ (ohm-m) |

0.5 — 0.19 3.35
0.1 — 0.68 104
0.05 — 1.24 20.1
0.01 4.0 5.08 73.9
0.005 4.5 9.01 101

“Solution molarity.

bSolution resistivity.

“Rock resistivity.

a more complete set of electrical conductivities measurements at low electrolyte con-
centrations, the procedure was repeated on a new core with solutions that included
salinities 0.005 M and 0.01 M zinc nitrate (pH of the effiluent was found to vary from
about 4.5 to about 4.0, respectively). The data thus obtained enabled the formation
factor of the rock to be computed and also confirmed the ability of an invading fluid
to displace interstitial water from a rock core. The results are given in Table 4.3.
The conductivity of the fluid (k,) vs. the conductivity of the fully saturated rock
(k,) data are plotted in Figure 4.7. As observed, minor deviations from the Archie
formation factor concept are present at low electrolyte concentration. There is a
rapid initial increase in rock conductivity as the solution concentration increased up
to about 0.005 M. When the solution in equilibrium was more concentrated than
0.005 M, there was a decrease in rock conductivity with an increase in solution con-
ductivity until a solution concentration of about 0.05 M. Thereafter, the formation

factor is constant at least over the range of concentrations studied.

The shape of the (k,-%,) curve at low electrolyte concentrations may be interpreted
in light of the mechanisms and factors controlling clay-fluid interactions as they relate
to clay-water electrolytic conduction. Berea sandstone contains mainly kaolinite clay.

At 4.0 < pH < 4.5, and electrolyte concentrations lower than 0.01 M, experiments
in kaolinite clay by Williams and Williams (1978) using sodium cloride as electrolyte
(Figure 4.8), show that an increase in solution concentration produces a decrease in
ion mobility, and thus a reduction in electrical conductivity. In addition, for clay-
water systems, an increase in salt concentration is expected to compress the diffuse

double layer, to decrease the electrical interaction between the cations and the clay
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FIG. 4.7: Conductivity data of Berea sandstone at different electrolyte concentrations. Zinc nitrate
electrolyte solutions with concentrations 0.005-0.5 M were used.
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FIG. 4.8: Mobility for kaolinite as a function of salt concentration and pH (after Williams and
Williams, 1978).
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surface, and to reduce the electrical conductivity. At higher electrolyte concentrations
the double layer compresses further, there is a more energetic conductive path through

the solution, and the (k,-«,) plot becomes linear.

The trend of change in rock electrical conductivity at low electrolyte concentrations
does reflect the contribution to surface conduction of clays and other surface reactive
minerals. However, our experimental results show that for Berea sandstone, the
surface conduction component due to clay minerals (mainly kaolinite) represents a
minor contribution to overall electrical conductivity, and therefore can be ignored for

most applications.
4.2.5 Effect of pore structure and topology

To understand how pore structure and topology control the tramsport property
under consideration, the electrical conductivity data (Figure 4.4) have been stud-
ied in light of the wetting-fluid distributions at each saturation regime (Figures 4.9
to 4.11) with the aid of a complete rock pore cast (Figure 4.12) and its associated
rock section (Figure 4.13). The rock pore cast was obtained from a rock specimen
that had been fully impregnated with Wood’s metal alloy and the quartz grains re-
moved by hydrofluoric acid. The rock pore cast and its associated rock section clearly
reveal that the pore space is composed of grain-contact porosity (e.g., thin sheets and
micropores) and intergranular porosity. Figure 4.9 shows a scanning electron micro-
scope (SEM) photomicrograph collage of a Berea sandstone specimen that has been
partially saturated with approximately 20-30% paraffin. The gray phase corresponds
to quartz grains, the white phase corresponds to pores that have been impregnated
with paraffin, and the black phase corresponds to the remaining pore space, which
was filled with blue epoxy for imaging purposes. Paraffin has invaded mainly grain-
contact pore space (i.e., thin sheets and micropores) and intergranular pore space
connected by smaller throats but has only coated the available intergranular chan-
nels connected by larger throats. A substantial effect on effective formation factor
is observed. Therefore, the fraction of the pore structure connected by smaller con-
strictions (e.g., grain-contact pore space) provides important alternative routes to

intergranular conduits connected by larger throats for the ions to travel.
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FIG. 4.9: SEM photomicrograph collage of a Berea sandstone specimen impregnated with approxi-
mately 20-30% paraffin. The actual width of field is about 6 mm. The gray phase is quartz grains,
the white phase is pores saturated with paraffin, and the black phase is remaining pores filled with
blue epoxy for imaging purposes.
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FIG. 4.10: SEM photomicrograph collage of 2 Berea sandstone specimen impregnated with approx-
imately 40-50% paraffin. The actual width of field is about 6 mm. The gray phase is quartz grains,
the white phase is pores saturated with paraffin, and the black phase is remaining pores filled with
blue epoxy for imaging purposes.
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FIG. 4.12: SEM photomicrograph collage of a Berea sandstone pore cast. Actual width of field is
about 6 mm. The rock pore space was completely filled with Wood’s metal alloy and the quartz
grains removed by hydrofluoric acid to allow direct observation of the pore structure.
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FIG. 4.13: SEM photomicrograph collage of a Berea sandstone sample fully impregnated with
Wood’s metal alloy. Actual width of field is about 3 mm. The gray phase is quartz grains, and the
white phase is pores saturated with the alloy. The section reveals that the pore space is composed
of grain-contact porosity (i.e., thin sheets and micropores) and intergranular porosity.
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Figure 4.10 shows an SEM photomicrograph collage of a rock specimen partially sat-
urated with approximately 40-50% paraffin. At this stage, we are filling intergranular
conduits connected by the larger throats, and a portion of the electrolyte has appaxr-
ently lost continuity as the paraffin saturation is increased over ~ 30%, so that the
resistivity increases at a faster rate. A still larger effect on effective formation factor
is observed. Figure 4.11 shows an SEM phofomicrograph collage of a rock specimen
partially saturated with approximately 60-70% paraffin. We have filled almost all
intergranular conduits connected by larger throats. A few intergranular pores not
well connected still remain unfilled. When paraffin saturation is ~ 70%, the whole

pore structure behaves as though it was disconnected.
4.2.6 The saturation exponent in Archie’s law

Electrical conductivity data presented in Figure 4.4 (case B) have been replotted
on a logarithmic scale for the effective formation factor vs. electrolyte saturation
(Figure 4.14). To understand their physical significance, we have divided the plot into
three zones: zone I, a linear zone of electrolyte saturations between about 0.7 (Serit)
and 1, with an Archie exponent of n ~ 3; zone II, a linear zone between electrolyte
saturations of about 0.5 and 0.7, with an Archie exponent of n ~ 5; and zone III,
a zone of electrolyte saturations less than 0.5. Zone I, with an Archie saturation
exponent of ~ 3, reflects the fact that grain-contact pore space (i.e., thin sheets and
micropores) and intergranular pore space connected by the smaller throats provide
important alternate paths to intergranular conduits connected by larger throats for
the ions to travel. Zone II, with an Archie saturation exponent of ~ 5, reflects the
fact that as the electrolyte saturation is lowered below S, part of the rock structure
composed of pores connected by the smaller throats becomes inactive. In addition,
intergranular conduits connected by larger throats start being filled and partially
filled with paraffin wax. Thus part of the electrolyte available for the transport of

ions loses continuity and the resistivity is increased at a faster rate.
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FIG. 4.14: Effective formation factor vs. electrolyte saturation for Berea sandstone (case B). The
pore space was partially saturated with hydrocarbon paraffin, with the remainder of the pore space

filled with a 0.5-M zinc nitrate solution.
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4.2.7 Results and discussion

Formation factor of a partially saturated rock with a wetting phase is controlled
by the rock structure and topology as well as the physics and chemistry of mineral-
fluid interactions. To understand the relationships, we have measured the effective
formation factor with an electrolyte in the pore spaces not occupied by a wetting
fluid (paraffin wax) after solidifying the fluid in place. It is important to recognize
that when the rock is partially saturated with the hydrocarbon paraffin, the clay
minerals present in the rock pore space are immobilized. Thus formation factor
extrapolated to an electrolyte saturation of unity (and paraffin saturation of zero),
F = 18, corresponds to the formation factor of the ‘clean’ rock (e.g., without clay).
Even though the change in the trend of rock electrical conductivity at low electrolyte
concentrations does represent the contribution of surface conduction due to clays, this

contribution is negligible.

Effective formation factor data have been studied in light of the wetting-phase
distribution observed at different saturations with the aid of a complete pore cast
and its associated rock section. Our analysis shows that (1) ~ 30% of the pore space
consists of grain-contact pores (i.e., thin sheets and micropores) and intergranular
pores connected by smaller throats, (2) ~ 40% of the pore space comprises intergran-
ular conduits composed of pores connected by larger throats, and (3) ~ 30% of the
intergranular pore space remains disconnected. The grain-contact pore space of large
surface areas (thin sheets), micropores, and intergranular pores connected by smaller
throats provide important alternate paths to the intergranular conduits connected
by larger throats for the ions to travel. Therefore, for a consolidated rock such as
Berea sandstone, we find no unique relationship between effective formation factor
and electrolyte saturation, nor do we find a unique definition of the Archie satura-
tion exponent, n, for the full range of saturation (Figures 4.4 and 4.14). Finally,
the Archie saturation exponent 7 is found to vary from approximately 3 when con-
nected grain-contact pore space (i.e., thin sheets and micropores) and intergranular
pores connected by smaller throats are filled with hydrocarbon paraffin to approxi-
mately 5 when intergranular conduits connected by the larger throats are filled with
hydrocarbon paraffin, with a critical electrolyte saturation (Ser:) of 0.7.
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4.3 Comparison of analytical and experimental results

We have employed a simple cubic lattice-network model of electrical conductivity
utilizing a smooth representation of the intergranular pore space (e.g., in between
the grains). With this model we have found that the same pore system is respon-
sible for both electrical and hydraulic properties of a lightly consolidated rock such
as Saint-Gilles sandstone. Moreover, for a heavily consolidated rock such as Berea
sandstone, we found that the pore space responsible for hydraulic properties is not
responsible alone for electrical properties. The results from the cubic lattice-effective
medium model suggest that it is mainly the electrolyte presence at the contacts that
is important, and that the uniform coverage with electrolyte elsewhere on the grain

surfaces has no part in determining electrical properties.

The importance of grain contacts on electrical properties led us to investigate the
role of grain contacts in the electrical resistivity of a consolidated rock such as Berea
sandstone. Experimentally it was found that an addition of 20% of an insulating wet-
ting fluid (paraffin wax) to these contacts causes a dramatic increase in resistance,
suggesting that grain contacts are a dominant factor in the electrical behavior of
consolidated sandstones. It was also found a distinct change in the resistivity vari-
ation at the transition from surface to bulk electrolyte behavior in Berea sandstone.
(Fig. 4.14), implying that the grain-contact conductivity component can be added to

the intergranular one.

The fact that the electrical properties change substantially with the addition of
only 20% of an insulating wetting fluid suggests that the electrolyte at the grain con-
tacts may also play an important role in electrical properties, i.e., act as bottlenecks,
in the electrical conduction process of consolidated rocks. In order to accurately
predict electrical conductivity or formation factor of sedimentary rocks from microge-
ometry one must rigorously superimpose the resistivity of the electrolyte at the grain

contacts to the resistivity of the electrolyte in the intergranular pore space.
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5 PREDICTING THE CAPILLARY PRESSURE OF
BEREA SANDSTONE FROM MICROSTRUCTURE

In this study, an attempt has been made to understand, through analysis and ex-
periment, how the capillary pressure saturation relationship is controlled by the rock
pore structure and the distribution of wetting and nonwetting phases in the pore
space. For this purpose, we have made analytical calculations of capillary pressure on
the basis of pore microgeometry. As a zero-order approximation, we have idealized the
porous medium as consisting of an assembly of parallel capillaries of arbitrary cross
sections. Recall, for example, that the ‘principal’ pore network of Berea sandstone
approaches microscopic homogeneity, and that in this case the parallel-tube model
is approximately valid for the prediction of permeability (Chapter 3.3). The mathe-
matical expression for capillary pressure as a function of saturation depends on the
distribution of pore hydraulic radii and the area-perimeter power-law relationship of
pores (Chapter 3). Two-dimensional scanning electron microscope photomicrographs
of rock cross sections have been employed to measure directly the areas, perimeters,
and hydraulic radii of the individual pores. These quantities have been measured
directly from two-dimensional SEM photomicrographs of rock sections. Account is
taken of the fact that the cross sections are randomly oriented with respect to the
channel axes. The predictions of our model are compared with laboratory capillary
pressure curves obtained with a technique using Wood’s metal alloy as the nonwetting
phase instead of conventional mercury porosimetry. This technique allows for direct

examination and analysis of the fluid distributions in the rock pore space.
5.1 Description of analytical model

In two-phase conditions, the capillary pressure between wetting and nonwetting
phases in a circular tube of radius 7 is given by Laplace’s equation (Scheidegger, 1974)

Pc=2gcosa , (142)
T

where ¢ is the surface tension between wetting and nonwetting phases and « the

contact angle between the wetting phase meniscus and the tube wall.
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TABLE 5.1: List of comparative values to show equivalence of

the reciprocal hydraulic radius (1/Rg) and the reciprocal mean
radius of curvature [(1/r1) + (1/72)] in a capillary (r; is the ra-
dius of the inscribed circle) (after Carman, 1941).

| Cross-section 1Q/r)+(1/r) | 1/Ruy |
Circle 2/r 2/r
Parallel plates 1/ 1/
Rectangle 1/a+1/b 1/a+1/b
Equilateral triangle 2/r; 2/r;
Square 2/r; 2/7;
a:b=2:1 1.50/b 1.54/b
Ellipses a:b=5:1 1.20/b 1.34/b
a:5=10:1 1.10/b 1.30/b

If the capillaries are not circular, the equation for the capillary pressure has to be

generalized by replacing 2/r by (1/r1) + (1/r2) (Scheidegger, 1974):

1 1
P =¢(=+2), 43
s(-+ ) (143)

where r; and 7, are the principal radii of curvature of the meniscus.

If the pore openings are not of a simple geometric form, Eq. (143) is still a valid
expression for the capillary pressure. To obtain a theoretical relationship between the
saturation and capillary pressure for a porous medium, an analytical expression for
the average interfacial curvature as a function of saturation has to be found. This is

a very difficult task.
5.1.1 Effect of cross-sectional pore shape

Schultze (1925 a,b) has shown experimentally that the capillary pressures for such
capillaries under the assumption of zero contact angle are given approximately by the

equation

S

Pc=__)
Ry

(144)

where Ry is the ratio of area to perimeter of the capillary. A list of comparative
values for testing Eq. (144) is given in Table 5.1 (Carman, 1941). Since Eq. (144)
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gives a reasonably accurate prediction of capillary pressure in non-circular capillaries,
it can be assumed to be applicable to the capillary channels in a porous medium

(Scheidegger, 1974).
5.1.2 Capillary pressure analysis

In our model, it is assumed that there is no accessibility problem; i.e., regardless
of the spatial arrangement of pores, the pores are occupied by the nonwetting phase
in the order of largest pores first. Similarly, for the wetting phase, the pores are
occupied by the wetting phase in the order of smallest pores first. Therefore, given a
hydraulic radius distribution of intergranular pore space S(Ry), and assuming that
the pores are filled by the wetting phase in ascending order up to a cut-off radius Ry,
we may write the saturation of the wetting phase S, (Ry) as (Appendix B)

[ A(Ry)B(Ru)dRn
I5° A(Rey)B(Ry)dRy -’

where the pore hydraulic radius is defined as the ratio of the pore area A to the pore

Su(Riy) = (145)

perimeter P.

Measurements of hydraulic radius of intergranular pore space obtained from 2-D
SEM photomicrographs of Berea sandstone rock sections have been found to follow
a skewed distribution that is well approximated by a log-normal distribution. The
log-normal distribution is given by the following expression (hydraulic radius Ry > 0)
(Appendix B):

1 1 —[log Ry — log Ry, )?
Ry = ol 146

A(Ra) \/é?alnloRHexp( 207 (146)
where Ry, is the most probable hydraulic radius, and & the variance of log Rgy. The
corresponding mean hydraulic radius Ry,, is larger than the most probable hydraulic

radius; it is

(147)

Ry, = Ry, exp (
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Invoking the perimeter-area power-law relationship (Eq. 87) gives
A=mP",

where logm is the intercept on the log A axis, and -y the non-integer slope of the
log A-log P plot. The area can be expressed in terms of the hydraulic radius as

follows:

A(Ry) = mERET . (148)

Expressed in terms of the cutoff hydraulic radius, Eq. (145) becomes

I = ’"lﬁ(RH)dRH

Su(Ry) = (149)
o RE 1.3(1'73}1)611‘?«1%
Integrating Eq. (149) yields
Su(Ry) = (1 +erf [—(logRH — 6)]) , (150)
202
where the cut-off hydraulic radius is given by
R‘IH — 106—x/27¢3erfi(1—25w) , (151)

where § = o%1n 10(5L7) +log Ry, o is the variance of log Ry, and erf and erfi are
the error and the inverse error function, respectively. The capillary pressure is then

given by

P.= RC—H = G1QVEerfi1-25u(Ba))=¢ (152)

Capillary pressure is specific to the nature of the two fluids involved. If no speci-

fication is made, it is understood that the displaced fluid is vacuum. If the displaced

fluid is a vacuum, and the external pressure P, is applied in a nonwetting fluid, then
all capillaries with with a radius larger than R}, will be totally filled.
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5.1.3 Effect of pore orientation

In the two-dimensional sections under consideration, however, the measured ar-
eas and perimeters will not be identical to the actual areas and perimeters of the
pore cross sections cut perpendicular to the channel axes. The orientation effect has
been corrected by means of the following geometrical and stereological considerations,

which are exact for the case of circular cross sections (Chapter 3.1.4).

For the hydraulic radius,

V2 1

-1
R actual — ~T\ TTT/Y/———— R measured — 0.85(R measured > 153
( H) tual 9 <\/ﬁ-—C_OSTe> ( H) d ( H) d ( )

where the brackets denote a spherical average for pores of random orientation.
5.2 Experimental imbibition with Wood’s metal

In this experimental investigation, we have sought to examine the relationship
between the microscopic pore occupancy by the nonwetting fluid and its effect on
capillary pressure. We have used three-dimensional imbibition of a nonwetting Wood’s
metal alloy instead of the conventional mercury porosimetry. This technique offers
the advantage of allowing analysis of the occupied pore space after the experiment.
Wood’s metal is an alloy of approximately 43% Bi, 38% Pb, 11% Sn, and 9% Cd, with
a specific gravity of 9.6, a viscosity of about 1.3 X103 Pa-s at 75°C, and a surface
tension of about 400 mN/m (Yadav et al., 1987). The setup for the three-dimensional
imbibition experiments is shown in Figure 5.1. It consists of a metallic container of
Wood’s metal placed in a metal vacaum chamber provided with a lucite window and
surrounded by a heating element to keep the metal molten. The melting point varies
from about 50°C to 70°C, depending on its composition. A micrometer is attached
to the metallic container to determine the pressure at which the Wood’s metal first
enters the specimen. The 50 mm-long and 50 mm-diameter sandstone sample is first
oven-dried, and then immersed in the molten Wood’s metal in the metallic container
and placed in the metal vacuum chamber. Then the sample is de-aired by applying a

full vacuum for about 60 minutes, until no air bubbles are observed through the lucite
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FIG. 5.1: Experimental setup for three-dimensional Wood’s metal imbibition.
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window. A sub-atmospheric pressure is applied by drawing a partial vacuum, which
is maintained at the desired value by a regulating valve until capillary equilibrium
is achieved. Each sample was allowed to imbibe for approximately 90 minutes at
a fixed pressure, and until no movement of Wood’s metal was noticed through the
lucite window. At a pressure of about 5-6 psia, the micrometer signaled the first
indication of Wood’s metal entering the pore space (probably an edge effect on the
sample sides). The capillary pressure experiment was repeat;ed on several samples by
applying pressure in the range of approximately 6 to 14 psia. The imbibed samples
were cut into four axial quarters, each of which had a different saturation. To minimize
the effect of gravity, we took the top quarter of each imbibed specimen at a particular

equilibrium pressure and measured its saturation.

Figure 5.2 shows the experimental capillary pressure curve obtained when par-
tially saturating the rock with the nonwetting fluid. Fluid saturation increases rather
sharply with a corresponding small increase in capillary pressure in the saturation
range from about 10 to 50%. Our result is consistent with typical capillary pres-
sure curves based on conventional mercury porosimetry saturatibn for Berea (BE-1)
sandstone (Figure 5.3). Berea (BE-1) sandstone has almost the same macroscopic
properties as the Berea sandstone we used in our experiments (e.g., porosity of 22%,

permeability to Ny of 400 mD, and a formation factor of 15.5).
5.2.1 Examination of Wood’s metal distribution in the pore space

To understand how pore structure and topology control the physical property
under consideration, we have studied the capillary pressure data in light of the non-
wetting fluid distributions observed at each equilibrium pressure. For this purpose,
optical and scanning electron microscopic examinations of the tops of samples (af-
ter cutting off 3 mm) have provided valuable insights into the pore-level complexity
of the natural porous media. Figure 5.4 shows an optical photograph of the fluid
distributions obtained in top axial quarters (top and bottom) in the pressure range
6.8 to 7.7 psia. It is observed that the nonwetting fluid flow network is composed of
a set of imbibing clusters correlated in space. At every pressure step, the nonwet-
ting fluid resides in the pores accessible through throats with a radius larger than

that corresponding to the current equilibrium capillary pressure. As the pressure
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FIG. 5.2: Experimental capillary pressure function of Berea sandstone. The rock has been impreg-
nated with a nonwetting fluid (Wood’s metal) at different equilibrium pressures and solidified in
place. The procedure allows for direct observation and analysis of the fluid distribution at a fixed
pore pressure and saturation level.
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FIG. 5.3: Experimental mercury porosimetry saturation curve of Berea sandstone (after Chatzis
and Dullien, 1977).
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increases, the nonwetting phase saturation increases and the nonwetting fluid invades
successively smaller pores and becomes connected to regions which were separated
from this phase by small throats. Optical photograghs of enlarged fluid distributions
in top axial quarters obtained by partially saturating the rock with Wood’s metal at
equilibrium pressures of 6.8, 6.9, and 7.2 psia are presented in Figures 5.5, 5.6, and
5.7, respectively. At 6.8 psia (Figure 5.5), the fluid has preferentially penetrated the
sample sides. The saturation is greatest near the perimeter of the sample and least
at the center. This observation suggests that pores near the cylindrical surface of
the sample are better connected than those towards the center. This interconnection
could arise from exposure of pores where they intersect the surface, or from damage
adjacent to this surface. At 6.9 psia (Figure 5.6), a saturation gradation is observed
in the direction of flow at this pressure (preferentially horizontal). The longer flow
paths are connected by smaller constrictions, so fewer flow channels lead to the sam-
ple center starting from all available channels at the sample surface. At pressures of
7.2 psia (Figure 5.7) and greater, the nonwetting fluid invades more and more smaller
pores, becoming connected to regions that were separated to this phase by smaller
pores, and the clusters of nonwetting phase become larger and larger. Figure 5.8
shows an SEM photomicrograph collage of a 1 in x 1 in rock specimen saturated
with approximately 50% of Wood’s metal at 8.5 psia equilibrium pressure. An SEM
photomicrograph collage of an enlarged partial section from the last figure and its
associated pore contours areas (Figure 5.9), show that there are many large (inter-
granular) pore segments connected by small throats that do not contribute to the
flow of the nonwetting phase in the rock. In addition, the grain-contact pore space
(i.e., thin sheets and micropores) does not contribute, either. Furthermore, simple
statistical analysis of pore contour areas obtained from Figure 5.9 has shown that
relatively few conduits connected by large intergranular throats carry up to about
50% of the nonwetting fluid in the porous media under consideration, producing a

clustered structure.
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FIG. 5.7: Top section of Berea sandstone core partially saturated with a nonwetting fluid (Wood’s
metal) at an equilibrium pressure of 7.2 psia and solidified in place. The procedure allows for direct
observation and analysis of the fluid distribution at this pressure and correspondent saturation level.
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FIG. 5.9: SEM photomicrograph collage of an enlarged partial section obtained from a Berea sand-

stone sample partially saturated with approximately 50% Wood’s metal (white phase) at 8.5 psia
pressure shown in Fig. 5.8. Actual width of field is about 6 mm.
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5.3 Comparison of analytical and experimental results

In this section, we calculate the predicted capillary pressure function for Berea
sandstone for comparison with our experimental data. A typical scanning electron
microscope photomicrograph of Berea sandstone is presented in Figure 3.5a. Com-
puterized analysis of Berea sandstone image shows contours of intergranular pore
space (Figure 3.10a) from which the perimeter-area power-law relationship of pores
(Figure 3.20b) and the distribution of pore hydraulic radii have been obtained (Fig-
ure 5.10b). It is worth noting that the contours of intergranular pore space shown in
Figure 3.5b are the same contours from which the transport properties (hydraulic and
electric) have been previously calculated (Chapters 3 and 4). The analytical capillary
pressure function for Berea sandstone has been computed using ¢ = 0.40 N/m (sur-
face tension), v = 1.49 (perimeter-area power-law noninteger slope), Ry,, = 12.8 ym
(mean hydraulic radius), o = 0.41 (standard deviation), and (REr)actuat/ (RE ) measured
= 0.85 (stereological correction). Preliminary results are presented in Figure 5.11.
As expected, the predicted capillary pressure function from such a hydraulic radius
distribution does not fit the experimental capillary pressure. The photomicrographic
pore-size distribution gives a good measure of the larger pore bodies, but the smaller
pore throats usually remain undetected. In addition, it is generally understood that
mercury (or Wood’s metal) intrusion pore-size distribution does not reveal the pres-
ence of larger pore bodies and assigns their volume to pore throats. To fit the analyti-
cal to the experimental function at approximately 50% fluid saturation, a distribution
representéd by Ry, = 6.6 pm and o = 0.14 is needed. The mean hydraulic radius,
Ry, = 6.6 um, corresponds to the mean hydraulic radius of the intergranular throats
of the medium, possibly the same throats that largely control hydraulic conductivity
(Chapter 3). Thus, our preliminary analyses show that the experimental capillary vs.
saturation function (in the saturation range up to about 50%) is controlled primarily
by large intergranular pore throats of narrow size distribution, represented by a mean
hydraulic radius of about 6.6 ym and a standard deviation of 0.14. This information
is important because the resistance offered by the pore structure to various transport

phenomena, i.e., permeability, is controlled by the pore throats.
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FIG. 5.10a: Computerized analysis of Berea sandstone image shown in Fig. 3.5a display intergranular
pore space contours from which hydraulic radius distribution and transport properties (hydraulic

FIG. 5.10b: Pore hydraulic radii frequency distribution of Berea sandstone obtained from pore space
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FIG. 5.11: Experimental vs. predicted capillary pressure function of Berea sandstone. The rock
has been impregnated with a nonwetting fluid (Wood’s metal) at different equilibrium pressures and
solidified in place. The procedure allows for direct observation and analysis of the fluid distribution
at a fixed pore pressure and saturation level.
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Pore-size distributions and pore sizes of rocks have been measured by many re-
searchers using a variety of methods (Dullien and Dhawan, 1974, 1975; Chatzis and
Dullien, 1982; Chatzis et al., 1983; Yanuka et al., 1986; Jerauld and Salter, 1990).
Most methods require a model of the pore space and simplifying assumptions. Be-
cause of these difficulties and the simplified model we use, we have not attempted
to determine pore-size distribution precisely but use a simple functional form to de-
termine average pore and throat sizes controlling capillary pressure. We have found
that pore throats are smaller than pore bodies; Ry, = 6.6 pm and Ry, = 12.8 pm
with an aspect ratio Ry, /Ry, = 0.5. Our result, assuming a lognormal distribu-
tion of pore sizes, is consistent with the one obtained by Jerauld and Salter (1990),
which uses an exponential pore-size distribution for Berea sandstone, and is similar
to that used by Chatzis and Dullien (1982). For example, Jerauld and Salter (1990)
found that pore throats are smaller than pore bodies; 7;, = 11 pm and 75, = 38
pm (Figure 5.12). It should be noted that the simple concept leading to Eq. (151)
has several limitations, so the result is only a first approximation. For instance, we
have ignored possible effects from the wetting phase being held by small-scale rough-
ness and adsorptive forces in the pore walls, and we have neglected the effect of clay
minerals, which complicates phase occupancy and mobility. Finally, the model does
not account for hysteresis effects originated from different pore accessibilities during

drying and wetting cycles.

On the basis of our experimental observations of the relationship between micro-
scopic nonwetting fluid occupancy and the fluid distributions and of their effect on
capillary pressure of Berea sandstone, we have found that relatively small number of
channels connected by large intergranular throats of narrow size distribution are re-
sponsible for conducting a relatively large amount of the nonwetting fluid through the
medium (at least in the saturation range up to approximately 50%). In fact, we have
also found that a large percentage of the permeability of the medium is contributed
by a relatively small number of conduits connected by large intergranular throats of

narrow size distribution and high hydraulic conductance (Chapter 6).

143

Ny e 5, e e e e g v X AT TT T ——p——— g AR =y e N A STt ) At b . ey e, o = P [ o A = % = - g i e e



0.07 -

o0s | Pore-throat radius r;
0.05 -
L
£
3
~~
— 0.04 4
g
o .
2 Pore-body radius r;
<]
Y 003
o
(]
L=
w
0.02 -
0.00

0.00 -+ v v Y v

00 250 S00 758 1000 1250 1500 1750

FIG. 5.12: Pore size distribution representative of a consolidated porous medium (Berea sandstone).
Pore throats are smaller than pore bodies; r,,, = 11 um, 75, = 38 pum (after Jerauld and Salter,
1990).

144



6 RELATIVE PERMEABILITY AND THE MICROSCOPIC
DISTRIBUTION OF WETTING AND NONWETTING
PHASES IN THE PORE SPACE OF BEREA SANDSTONE

Relative permeability and its associated capillary pressure effects are relevant
to problems such as enhanced oil recovery and waste remediation and/or isolation.
About 50% or more of the original oil-in place is left in a typical U.S. oil reservoir
by traditional primary and secondary (i.e., water-flooding) techniques. This unre-
covered oil is a large target for enhanced or tertiary oil recovery methods that are
being developed. The concept of relative permeability is introduced when extending
Darcy’s law for single phase flow to the multiphase realm (Scheidegger, 1974). It is
generally assumed that relative permeabilities to immiscible fluids are only functions
of saturation. A great number of experimental investigations (Hassler et al., 1936;
Wyckoff and Botset, 1936; Botset, 1940) substantiate this assumption, within limits.
For example, Calhoun (1953) found that the chemical composition of the fluids do
not matter much, and that the relative permeability functions are approximately the
same for any ‘wetting-nonwetting’ fluid system. This is a direct consequence of the
fact that the microstructure of reservoir rocks strongly influences the mobilization
and distribution of fluids in the pore space. Moreover, such factors as (1) fluid/fluid
properties-interfacial tension (IFT), viscosity ratio, density difference, phase behav-
ior, and interfacial mass transfer; (2) fluid/solid properties-wettability, ion exchange,
adsorption, and interaction; and (3) magnitude of applied pressure gradient, gravity,
and aging have been found to play roles in interpreting the motion and distribution

of oil in petroleum reservoirs (Dullien, 1979; Stegemeir, 1977).

The relative permeabilities are empirical coefficients which appear in the contin-

num form of Darcy’s law for two-phase flow through porous media:

Quw . _krwkd?i
i (154)
Gnw _ —krnwk dpnw (155)

where ¢, and ¢,,, are the volumetric flowrates of the wetting and nonwetting phases,
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w and fi,,, are the viscosities of those phases, dp,, /dz and dp,..,/dz are the macroscale
pressure gradients in those phases, and A is the cross-sectional area, perpendicular to
the flow, of the porous medium. k,,k and k.., k are the permeabilities to the wetting
and nonwetting phases. k is the permeability of the porous medium when only one
phase is present, and k,, and k..., are the wetting and nonwetting phase relative
permeabilities. The relative permeabilities depend upon wetting-phase saturation,
S, - the fraction of pore volume occupied by the wetting phase. Sy,,, the nonwetting

phase saturation, is always given by Spy = 1 — Sy.

As Egs. (154) and (155) show, the relative permeability factor is an empirical repre-
sentation of a we]l-déﬁned transport process in a highly complex pore space geometry
and topology. In spite of this complexity, symplified models of the pore structure
have been proposed (Fatt and Dykstra, 1951; Rose and Witherspoon, 1956; Chatzis
and Dullien, 1977). However, such parameters as pore body and pore throat distribu-
tions, pore coordination numbers and individual fluid-phase coordination numbers as
a function of saturation which are implemented in the mathematical models have not
been determined experimentally. This is due in part to the lack of good experimental
techniques required for visualizing three-dimensional (3-D) microstructures in natural
porous media while maintaining the original pore and phase geometry. Therefore, we
decided to work on this problem with several main objectives in mind: (1) to further
develop an experimental technique initiated by Yadav et al. (1987) that would allow
measurement of relative permeability for the full range of saturation, (2) to visualize
directly 2-D pore structure and wettabilities for the full range of saturation, (3) to
interpret experimental data and fluid distributions qualitatively and quantitatively
with respect to pore geometry and topology, (4) to evaluate relative permeability data
in terms of microphysics and microchemistry of the processes involved (i.e., effect of
clay n;_inera,ls coating pores), and (5) to compare relative permeability and associated

capillary pressure experimental data obtained using conventional methods.
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6.1 Apparatus and procedure

The apparatus that was used in this study was designed to measure simultaneously
both hydraulic and electrical conductivity (Figure 4.2). The rock core (5 cm in
diameter and 5 cm in length) is encased in its rubber jacket and placed in the test
cell. The test cell base is connected directly to the bottom of the sample, and a
centrally-located orifice is attached to allow fluids to flow through the mounted core.
A confining pressure of 50 psi (3.4 atm) is applied using nitrogen gas. Fluid flow
through the core is controlled by a syringe pump that provides constant flow rates.
The basic procedure used for measuring permeability is first to vacuum saturate each
core completely with triple-distilled water. Distilled water is then pumped through
the core, and flow is continued for a sufficient time to establish constant pressure
readings. It was found that about four pore volumes of water are required to achieve
steady state. In our experiments, we used samples of Berea sandstone, which is a
homogeneous sedimentary rock used as a reference rock in the petroleum industry.
The intrinsic permeability and porosity of a Berea sandstone core are about 600 mD

(600 x 10~¥° m?) and 22%, respectively.
6.2 Effect of wetting phase saturation

To determine the effect of partial fluid saturation on permeability, we utilized
Berea sandstone samples that had been permeated with triple-distilled water to mea-
sure the single phase hydraulic conductivity. This procedure was applied to every
sample to find the permeability before paraffin application. The samples were then
oven dried. After measuring the permeability, the samples were partially filled with
paraffin wax at controlled saturations of 20%, 30%, 40%, 50%, 60%, and 70%. Paraffin
wax is a wetting phase composed of a mixture of solid hydrocarbons of high molecular
weight with a density of 0.76 g/cm3, a dynamic viscosity of about 3 x 1073 Pa-s at
150°C, and a melting point of 56°C. The paraffin is applied at temperatures higher
than its melting point in the core axial direction, and until uniform saturation is
achieved throughout the sample (Figure 4.3). The paraffin is then solidified in place
at ambient temperature conditions. After paraffin application, the rock grain surfaces
became hydrophobic. To measure the effective permea,l()ility, the rock samples that
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TABLE 6.1: Effective (and absolute) permeability
data (Case B) - Berea sandstone partially saturated
with paraffin wax, with triple-distilled water used as

permeant.

[ Sample || Sz (%) [ kaf; (D) | kg, (mD) |
1EB4 16 513 282
1EB2 24 553 329
S-1R 24 501 333
1EB3 32 489 376
1EB5 32 473 296
1EB6 41 206 463
1EB1 44 121 288
S-3R 50 54 391
KS15 69 15 —

¢ Paraffin wax saturation.
b Effective permeability.
¢ Absolute permeability.

were partially saturated with paraffin were permeated with distilled water. The ef-
fective permeability data of the spaces not occupied by the wetting fluid is presented
in Figure 6.1 (Case A). Experiments in which electrical conductivity had not been
measured previous to paraffin impregnation were repeated on a new and clean set of
samples. The result is shown in Figure 6.1 (Case B). In summary, good agreement,
within experimental error, was found between the two sets of experiments A and B.
Note that the extrapolated value of permeability at zero paraffin saturation from
Figure 6.2 - Case B (~ 600 mD) is higher than the measured value of permeability
obtained at the same saturation when using triple-distilled water (~ 300 to 400 mD)
(Table 6.1). A possible explanation of this phenomenon is given in section 6.3.

6.2.1 Effect of pore structure and topology

To understand how pore structure and topology control permeability, the hydraulic
conductivity data (Figure 6.4) have been studied in light of the wetting-fluid distri-
butions at each saturation regime (Figures 6.3 to 6.5) with the aid of a complete rock
pore cast (Figure 6.6). The rock pore cast was obtained from a rock specimen that
had been fully impregnated with Wood’s metal alloy and the quartz grains removed
by hydrofiuoric acid. The rock pore cast clearly reveals that the pore space is com-

posed of grain-contact porosity and intergranular porosity. Paraffin imbibition occurs
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FIG. 6.1: Effective permeability vs. paraffin saturation for Berea sandstone. The pore space was
partially saturated with hydrocarbon paraffin. The remaining portion of the pore space was filled
with triple-distilled water. Cases A and B cbrrespond to experimental data on samples subjected or
not subjected to electrical conductivity measurement before paraffin application, respectively.
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FIG. 6.2: Effective permeability vs. paraffin wax saturation for Berea sandstone (case B). The pore
space was partially saturated with hydrocarbon paraffin, with the remainder of the pore space filled
with triple-distilled water.
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because surface tension effects encourage the displacing fluid to advance. The overall
dynamics of the wetting phase imbibition process is as follows: In the grain-contact
pore space, in the smaller throats, and in the surface capillary grooves, capillary
pressure is high, and the paraffin will advance quickly to the next pore. The pores
exert much less capillary pressure, and for a given pressure difference between the
phases only the smaller pores will fill. Once a pore is filled, the paraffin will next
fill all throats leading from it, again rapidly. A new set of pores will be reached and
the process continues. Therefore, during paraffin imbibition the flow dynamics are

pore-dominated.

Figure 6.3 shows a scanning electron microscope (SEM) photomicrograph collage
of a Berea sandstone specimen that has been partially saturated with approximately
20-30% paraffin. The gray phase corresponds to quartz grains, the white phase cor-
responds to pores that have been impregnated with paraffin, and the black phase
corresponds to the remaining pore space, which was filled with blue epoxy for imag-
ing purposes. Paraffin has invaded grain-contact pore space (i.e., thin sheets and
micropores) and intergranular pore space connected by smaller throats, but has only
coated the available intergranular channels connected by larger throats. A minor
effect on effective permeability is observed (Figure 6.2). Therefore, the fraction of
the pore structure connected by smaller constrictions (e.g., grain-contact pore space)
do not contribute much to effective permeability. Figure 6.4 shows an SEM photomi-
crograph collage of a rock specimen partially saturated with approximately 40-50%
paraffin. At this stage, we are filling main intergranular conduits connected by the
larger throats. A substantial effect on effective permeability is observed. Figure 6.5
shows an SEM photomicrograph collage of a rock specimen partially saturated with
approximately 60-70% paraffin. We have filled almost a]l'intergranular conduits con-
nected by larger throats. A few intergranular pores not well connected still remain
unfilled. When paraffin saturation is ~ 70%, the whole pore structure behaves as
though hydraulically disconnected. Results are summarized in Table 6.2.
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FIG. 6.4: SEM photomicrograph collage of a Berea sandstone specimen impregnated with approx-
imately 40-50% paraffin. Actual width of field is about 6 mm. The gray phase represents quartz
grains, the white phase represents pores saturated with paraffin, and the black phase represents
remaining pores filled with blue epoxy for imaging purposes.
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FIG. 6.5: SEM photomicrograph collage of a Berea sandstone specimen impregnated with approx-
imately 60-70% paraffin. Actual width of field is about 6 mm. The gray phase represents quartz
grains, the white phase represents pores saturated with paraffin, and the black phase represents
remaining pores filled with blue epoxy for imaging purposes.
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FIG. 6.6: SEM photomicrograph collage of a Berea sandstone pore cast. Actual width of field is
about 6 mm. The rock pore space was completely filled with Wood’s metal alloy and the quartz
grains removed by hydrofluoric acid to allow direct observation of the pore structure.
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TABLE 6.2: Wetting fluid invasion and permeability.

e 0.0<Syx <03
Wetting fluid fills well-connected grain-contact pore space (e.g., thin sheets and
micropores) and intergranular conduits connected by smallest throats, while only
coating available intergranular pore space connected by larger throats.

=  Very small effect on effective permeability.

¢ 0.3<Sx <05
Wetting fluid fills to partially-fills few intergranular conduits connected by large
throats.

=  Very large effect on effective permeability.

¢ 0.5 <Sy <07
Wetting fluid fills remaining more tortuous intergranular conduits connected by
large throats.

=—>  Smaller effect on effective permeability.

¢ 0.7<Sx <10
Structure is disconnected, i.e., nonwetting phase is trapped in disconnected in-
tergranular pore space.
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6.2.2 Irreducible wetting phase saturation

Overall, it is observed that that the wetting phase is confined to a continuous
network of conduits throughout the porous medium (Figure 6.3). It is composed of
clusters of intergranular pores, edges, corners and wedges of intergranular pores, capil-
lary channels present on rough surfaces of pores, and single grain-contact pores. Since
the wetting fluid at the ‘irreducible saturation’ limit forms a hydraulically connected
continuum, it is possible to reduce the ‘irreducible wetting phase saturation’ progres-
sively, at least in principle. Therefore, the ‘irreducible wetting phase saturation’ is

not constant and becomes a function of the externally applied pressure.

Thus, the existence of the ‘irreducible wetting phase saturation’ in a consolidated
rock such as Berea sandstone is due to the fact that (1) grain-contact pores have
narrow throats and large surface area, (2) pores have corners (angular cross sections),

and (3) the pore surface is rough at the microscopic scale (Figure 6.7).
6.3 Effect of clay minerals

X-ray diffraction studies by Khilar and Fogler (1984), in conjunction with scanning
electron microscopy (Figures 6.8 to 6.10) and energy-dispersive x-ray analysis indicate
that Berea sandstone contains ~ 8% by weight of dispersable and swelling clays
(mainly kaolinite with some illite and smectite). The injection of a fluid such as
triple-distilled water whose solution chemistry is not compatible with the porous rock
in its natural state can bring significant reductions in the permeability. This is just
the manifestation of peptization and flocculation of clay particles in Berea sandstone.
Khilar and Fogler (1984) found that when flow is switched from salt water to fresh
water, clay particles are released from the pore wall. The particles then migrate in the
direction of the flow and are trapped at throats which results in blockage of the pores
of the sandstone, decreasing the permeability. For electrolyte solutions with cations
of valence 1, at pH = 7, a critical salt concentration (0.07 M for sodium chloride
solution at 30°C) has been found below which clay particles are released from Berea
sandstone pore walls (Khilar and Fogler, 1984). Particle migration is thought to be
the most important mechanism in water-sensitive Berea sandstone due to the fact

that the amount of swelling clays is minimal. The peptization and flocculation of
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clay particles in Berea sandstone may be explained in terms of double-layer theory.
The major forces that hold the clay particles to the pore walls are the London-van der
Waals forces of attraction. The forces causing the detachment of the clay particles are
the double-layer forces of repulsion and possibly, under conditions of high flow rate,
the hydrodynamic shear. Calculations show these two forces of double-layer repulsion
and hydrodynamic shear to be the most probable cause for particle release (Mungan,
1968). Experimental observations (Khilar and Fogler, 1984) strongly suggest that the
double-layer force of repulsion may be the dominant cause of particle release. These
observations include the two most important parameters that govern the stability
of the colloidal suspension of clay particles: temperature and type of cation. More
importantly, the phenomenon occurs only at relatively low salt concentration, where

the double-layer repulsive forces are large.

It is important to recognize that the clay minerals present in the rock have been
immobilized by coating pores with hydrocarbon paraffin. Therefore, the permeability
extrapolated to paraffin saturation of zero (i.e., no hydrocarbon paraffin) corresponds
to either the permeability of the clean rock without clays or the permeability of the
rock with clay, but with brine as flowing fluid (with concentration above critical salt
concentration if monovalent cations are employed). This hypothesis was verified by
partially removing clays in a Berea sandstone core by acid treatment with a mixture
of 6% hydrochloric and 1.5% hydrofluoric acids (Suarez-Rivera, personal communi-
cation, 1991). After the core was treated and clays flushed out, the permeability was
found to be 574 mD, higher than the measured value obtained using triple-distilled
water (~ 300 to 400 mD) (Table 6.1).
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FIG. 6.7: Typical SEM photomicrograph collage of Berea sandstone showing pore-grain interface
roughness. The rock is composed mainly of quartz grains (dark gray), feldspar grains (medium
gray), and products of grain dissolution (light gray). The pore space is impregnated with Wood’s
metal alloy (white), and epoxy (black). Actual width of field is about 1.5 mm.
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FIG. 6.9: SEM photomicrographs of a Berea sandstone specimen showing the presence of fine-grained
clay minerals (mainly illite) partly filling pores between quartz grains.
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6.4 Effect of nonwetting phase saturation

In this experimental investigation, we have sought to examine the relationship
between the microscopic pore occupancy by the nonwetting fluid and its effect on

effective permeability and capillary pressure.

We have used three-dimensional imbibition of a nonwetting Wood’s metal alloy
instead of the conventional mercury porosimetry. This technique offers the advantage
of allowing analysis of the occupied pore space after the experimeﬁt. Wood’s metal is
an alloy of about 43% Bi, 38% Pb, 11% Sn, and 9% Cd, with a specific gravity of 9.6, a
“viscosity of about 1.3 X 1073 Pa-s at 75°C, and a surface tension of about 400 mN/m
(Yadav et al., 1987). The apparatus for the three-dimensional imbibition experiments
is shown in Figure 5.1. It consists of a metallic container of Wood’s metal placed in a
metal vacuum chamber provided with a lucite window and surrounded by a heating
element to keep the metal molten (melting point varies from about 50°C to 70°C,
depending on its composition). A micrometer is attached to the metallic container to
determine the pressure at which the Wood’s metal first enters the specimen. The 5
cm-long and 5 cm-diameter sandstone sample is first oven-dried, and then immersed
in the molten Wood’s metal in the metallic container and placed in the metal vacuum
chamber. Then the sample is de-aired by applying a full vacuum for about 60 minutes,
until no air bubbles are observed through the lucite window. A sub-atmospheric
pressure is applied by drawing a partial vacuum, which is maintained at the desired
value by a regulating valve until capillary equilibrium is achieved. Each sample was
allowed to imbibe at a fixed equilibrium pressure for approximately 90 minutes, at
a fixed pressure, until no movement of Wood’s metal was noticed through the lucite
window. At a pressure of about 5 to 6 psia, the micrometer signaled the first indication
of Wood’s metal entering the pore space (probably an edge effect on the sample sides).
The Wood’s metal imbibition experiment was repeated on several samples by applying
pressure externally under quasistatic conditions in the range of approximately 6 to
14 psia. The imbibed samples were cut into four axial quarters, each of which had
a different saturation. To minimize the effect of gravity (hydrostatic) gradient, we
took the top quarter of each imbibed specimen at a particular equilibrium pressure

and measured its saturation. Figure 5.2 shows the Wood’s metal imbibition curve, in
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TABLE 6.3: Effective (and absolute) permeability data - Berea
sandstone partially saturated with Wood’s metal, with triple-dis-
tilled water used as permeant.

[Sample [ P (psia) [ S;., (%) [ kéry (mD) [ Koy, (mD) |

ESB5 6.8 5.2 280 346
EMB3 6.9 7.7 242 388
KBS11 7.2 26 45 386
ESB3 7.3 32 19 345
KBS9 7.7 42 0.71 319

¢ Capillary pressure.

b Wood’s metal saturation.

¢ Effective permeability.

4 Absolute permeability.

which the volume of Wood’s metal intruded (normalized by the total pore volume)
is plotted vs. the applied pressure. Fluid saturation increases rather sharply with
a corresponding small increase in capillary pressure in the saturation range from
about 10 to 50% (Fig. 5.2). After Wood’s metal application, the rock samples were
vacuum-saturated and permeated with triple-distilled water to measure the effective
permeability (Table 6.3). Figure 6.11 shows the effective permeability curve of the

spaces not occupied by the nonwetting fluid, measured at various saturations (in a

Berea sandstone of absolute permeability of ~ 600 mD).
6.4.1 Effect of pore structure and topology

To understand how pore structure and topology control the physical property un-
der consideration, we have studied the effective permeability and capillary pressure
data in light of the nonwetting fluid distributions observed at each equilibrium pres-
sure. For this purpose, optical and scanning electron microscopic examinations of
the tops of samples (after cutting off 3 mm) have provided valuable insights into the
pore-level complexity of the natural porous media. In the Wood’s metal imbibition
process, some external pressure is needed to overcome surface tension and push the
Wood’s metal through the pores and throats. Large throats, with their compara-
tively weak capillary pressures, will fill more readily than small throats. Once the
fluid reaches a pore, capillary pressure is reduced, and the pore will fill rapidly. In
this process, the flow dynamics are mainly controlled by the throats. Isolated regions

will occur because a region of large throats surround a region of constricted throats.
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FIG. 6.11: Effective permeability vs. Wood’s metal saturation for Berea sandstone. The pore space
was partially saturated with Wood’s metal at different pressures, with the remainder of the pore
space filled with triple-distilled water. The capillary pressures (in psia) for the points on the plot
areI =6.8,II =6.9, 01 = 7.2, IV = 7.3, and V = 7.7 psia.
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Figure 6.12 shows an optical photograph of the nonwetting fluid distributions ob-
tained in axial quarters in the pressure range 6.8 to 7.7 psia. It is observed that the
nonwetting fluid flow network is composed of a set of imbibing clusters correlated in
space. At every pressure step, the nonwetting fluid resides in the pores accessible
through throats with a radius larger than that corresponding to the current equilib-
rium capillary pressure. As the pressure increases, the nonwetting phase saturation
increases, and the nonwetting fluid invades successively smaller pores and becomes
connected to regions which were separated from this phase by small throats. At
6.8 psia (Figure 6.12), the fluid has preferentially penetrated the sample sides. The
saturation is greatest near the perimeter of the sample, and least at the center. This
observation suggests that pores near the cylindrical surface of the sample are bet-
ter connected than those towards the center. This interconnection could arise from
exposure of pores where they intersect the surface, or from damage adjacent to this
surface. At 6.9 psia (Figure 6.12), a saturation gradation is observed in the direction
of flow at this pressure (preferentially horizontal). The longer flow paths are con-
nected by smaller constrictions, so fewer flow channels are going to the sample center
starting from all available channels at the sample surface. At pressures of 7.2 psia
(Figure 6.12) and greater, the nonwetting fluid invades more and more smaller pores,
becoming connected to regions that were separated to this phase by smaller pores,

and the clusters of nonwetting phase become larger and larger.

Figure 6.13 shows an SEM photomicrograph collage of a 1 in X 1 in rock specimen
saturated with about 30% Wood’s metal at 7.2 psia equilibrium pressure. Large per-
colating clusters have been formed. An SEM photomicrograph collage of an enlarged
partial section from the last figure (Figure 6.14) show that there are relatively few
intergranular conduits connected by larger throats filled with the nonwetting phase.
At this stage, a substantial effect on effective permeability is observed. Figure 5.8
shows an SEM photomicrograph collage of a 1 in x 1 in rock specimen saturated
with approximately 50% of Wood’s metal at 8.5 psia equilibrium pressure. Smaller
percolating clusters are observed. An SEM photomicrograph collage of an enlarged
partial section from the last figure and its associated pore contours areas (Figure 5.9),
show that there are still many large (intergranular) pore segments connected by small

throats that do not contribute to the flow of the nonwetting phase in the rock. In
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addition, the grain-contact pore space (i.e., thin sheets and micropores) does not
contribute, either. Furthermore, simple statistical analysis of pore contour areas ob-
tained from Figure 6.14 has shown that relatively few conduits connected by large
intergranular throats carry up to about 30% of the nonwetting fluid in the porous
media under consideration, producing a clustered structure. At this stage, the effec-
tive permeability is low (Table 6.3). Thus, we have found that a large percentage
of the permeability of the medium is contributed by a relatively small number of
intergranular conduits connected by larger throats of narrow size distribution and of
high hydraulic conductance. The effect of nonwetting phase saturation on effective

permeability is summarized in Table 6.4.
6.4.2 Irreducible nonwetting phase saturation

In contrast to the previously discussed ‘irreducible wetting phase saturation’, it is
observed that the trapped clusters of a nonwetting fluid are separate entities that are
not hydraulically interconnected with each other (Figure 6.5). We have found that
when the wetting phase saturation is about 70%, the effective permeability is zero.
Thus the nonwetting fluid simply ceases to flow when its saturation falls below the
irreducible nonwetting phase saturation limit (~ 30%) because its continuity breaks

down, leaving isolated stranded clusters of disconnected fluid.
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FIG. 6.13: SEM photomicrograph collage of a 1 in X 1 in Berea sandstone specimen partially
saturated with approximately 30% Wood’s metal at 7.3 psia equilibrium pressure. The rock is
composed mainly of quartz grains (gray phase) and pore space that has been impregnated with
Wood’s metal (white phase) and epoxy (black phase) for imaging purposes.
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FIG. 6.14: SEM photomicrograph collage of an enlarged partial section obtained from a Berea
sandstone sample partially saturated with approximately 30% Wood’s metal (white phase) at 7.3
psia pressure shown in Fig. 6.13. Actual width of field is about 5 mm.
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TABLE 6.4: Nonwetting fluid invasion and permeability.

¢ 0.0<Spw <0.2
Nonwetting fluid fills few intergranular conduits connected by larger throats of
narrow distribution. Large clusters are observed.

==  Very large effect on effective permeability.

e 02<S,w<04
Nonwetting fluid fills remaining more tortuous intergranular conduits connected
by large throats of narrow distribution. Smaller clusters are observed.

=  Smaller effect on effective permeability.

[ ) 0.4 < Snw S 0.7
Nonwetting fluid fills grain-contact and intergranular pore space connected by

smallest throats.

=  Very small effect on effective permeability.

e 0.7 < Spw <1.0
When is structure disconnected? i.e., wetting phase is coating connected inter-
granular pore space filled with the nonwetting phase and is present in intergran-
ular pore space connected by smaller throats as well.
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6.5 Results and discussion

Experimental studies have been conducted aimed at studying permeability of a
partially saturated rock. For this purpose, the effective permeabilities of the spaces
not occupied by the wetting fluid (paraffin wax) or the nonwetting fluid (Wood’s
metal), respectively, have been measured at various saturations, while solidifying the
other phase. The experiments were conducted on Berea sandstone samples of ~ 600
mD absolute permeability. The absolute permeability was extrapolated from the
effective permeability curve after partially filling the rock pore space with paraffin.
The extrapolated value of permeability at zero paraffin saturation (~ 600 mD) is
higher than the measured value of permeability obtained at the same saturation
when using triple-distilled water (~ 300 to 400 mD). A possible explanation is that
the paraffin immobilizes the effect of clay present in the rock pore space (e.g., prevents

clay migration, swelling, etc.).

The relative permeabilities, k,, obtained as a ratio of effective permeability to
absolute permeability of the rock, are shown in Figure 6.15. The wetting phase rela-
tive permeability is concave upward while the nonwetting phase relative permeability
has an S shape. The shape of the nonwetting phase relative permeability in the
steep-sloped zone indicates that for a small reduction in nonwetting phase (increase
in wetting phase) there is a relatively large decrease in relative permeability. This
rapid decrease is due to the occupation of larger pores or flow paths by the wetting
phase. The nonwetting relative permeability curve reaches nearly 100% at a nonwet-
ting phase saturation less than a 100% which means that part of the interconnected
space composed by smaller pores (e.g., grain-contact) does not contribute to the
nonwetting phase relative permeability of the porous medium, but does contribute to
electrical conductivity (Chapter 4). The sum of the relative permeabilities is less than
unity. One of the reasons is that part of the pore channels available for flow of a fluid
may be reduced in size by the other fluid present in the rock. Another reason is that
immobilized droplets of one fluid may completely plug some constrictions in a pore
channel through which the other fluid would otherwise flow. The laboratory-derived
relative permeability data conforms with typical relative permeability curves using oil

and gas as the wetting and nonwetting phase, respectively, in Berea sandstone using
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conventional methods (Figure 6.16). It is observed that the two curves have similar
trends. The relative permeabilities are nearly symmetric within the same range of sat-
uration at which intergranular channels connected by larger throats control effective
permeability. This observation then is consistent with fluid flow studies that show
that when immiscible fluids flow simultaneously through a porous medium, each fluid
follows its own flow path (Honarpour et al., 1986). When Darcy’s law is applied to
the measurement of relative permeabilities of immiscible fluids, it is assumed that the
interfaces are steady, the phases flow through their respective channels as if the other
phase were absent, and each fluid phase obeys Darcy’s law (Yadav et al., 1987). These
conditions are met in the application of this technique. Thus, it is possible to mea-
sure the macroscopic properties using only single-phase experiments, while the other
phase is frozen in place. It is worth noting that strong phase interference has been
found experimentally for the relative permeability function (e.g., krw + krnw << 1)
of a 3-D porous media. Moreover, the fluid phases are allowed to flow together in a

rather narrow range of saturation.

The capillary pressure curve obtained when partially saturating the rock with the
nonwetting phase (Wood’s metal) is presented in Figure 5.2. Our result is consistent
with typical capillary pressure curves based on conventional mercury porosimetry
saturation for Berea sandstone (Figure 5.3). The initial portion of the curve with
positive curvature is interpreted as being associated with surface defects. The rapid
rise in the curve occurs when the intruded Wood’s metal initially forms a connected
cluster. Thereafter, there is a sharp increase in fluid saturation with a corresponding
small increase in capillary pressure due to the narrow distribution of pore-throat
sizes. In our previous work on Berea sandstone capillary pressure function and its
relationship to microgeometry (Chapter 5), we have used a simple functional form
to determine average pore and throat sizes controlling capillary pressure and relative
permeability. Our result, assuming a lognormal distribution of pore sizes, gave a
narrow distribution of intergranular pore throats represented by a hydraulic radius
Ry, = 6.6 pm, and a standard deviation ¢ = 0.14. The corresponding nonwetting
fluid distributions are presented in Figure 6.12. It is found that the flow network
is composed by spatially correlated percolating clusters. As the nonwetting phase

saturation reduces, the network for this phase breaks down and becomes discontinuous

173

4T AT A ape L PTAYTC A YT W e e S e YT i T e A e e P T T T T —— & s - - e



e non-wetting o wetting

O

>
‘3 06
[¢)]
£
= .
o
(03]
=04 |
IS
[6))
a: =

0.2

o 1 I 1 O ..
0 20 40 60 80 100

Wetting Phase Saturation (%)

FIG. 6.15: Relative permeability vs. saturation curve for Berea sandstone using two fluids, serving
as the wetting and nonwetting phases, that can be frozen in situ, one at a time. The effective
permeability of the spaces not occupied by the wetting fluid (paraffin wax) and the nonwetting fluid
(Wood’s metal), respectively, have been measured at various saturations in Berea sandstone samples
of absolute permeability of 600 mD. The capillary pressures (in psia) for the points on the plot are
=69 101=72,IV=73,and V = 7.7 psia.
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FIG. 6.16: Relative permeability vs. saturation curve for Berea sandstone measured by Corey and
Rathjens (1956) using oil and gas.

175

FEANEEES o oI VT S T TRTRTION N A T RN R IS TR AN Y . e



and hydraulically disconnected. Thus, the irreducible nonwetting phase saturation,
Srnw, is found to have a value of about 30% (percolation threshold). In conmtrast,
since the wetting phase constitutes a continuous network even at low wetting phase
saturations, the irreducible wetting phase saturation becomes a function of applied

external pressure (e.g., Srw < 30%).

The permeability of a partially-saturated rock is controlled by the rock structure
and topology as well as the physics and chemistry of mineral-fluid interactions. To
understand the relationships, we have measured the effective permeability in the pore
spaces not occupied by a wetting fluid (paraffin wax), or a nonwetting fluid, after so-
lidifying the fluid in place. It is important to recognize that when the rock is partially
saturated with the hydrocarbon paraffin, the clay minerals present in the rock pore
space are immobilized. Thus, permeability extrapolated to paraffin saturation of zero,
k =~ 600 mD, corresponds to the permeability of the ‘clean’ rock (e.g., without clay).
Effective permeability data have been studied in light of the fluid distributions ob-
served at different saturations with the aid of a complete pore cast and its associated
rock section. Our analysis shows that (1) ~ 30% of the pore space consists of grain-
contact pores (i.e., thin sheets and micropores) and intergranular pores connected
by smaller throats, (2) ~ 40% of the pore space comprises intergranular conduits
composed of pores connected by larger throats, and (3) ~ 30% of the intergranular
pore space remains hydraulically disconnected. The grain-contact pore space of large
surface areas (thin sheets), micropores, and intergranular pores connected by smaller
throats provide only minor alternate paths for the fluid to flow to the intergranular

conduits connected by larger throats.

On the basis of our experimental observations of the relationship between micro-
scopic nonwetting fluid occupancy and the fluid distributions and of their effect on
capillary pressure of Berea sandstone, we have found that relatively small number of
intergranular channels connected by large throats of narrow size distribution are re-
sponsible for conducting a relatively large amount of the nonwetting fluid through the
medium (at least in the saturation range up to approximately 50%). In fact, we have
also found that a large percentage of the permeability of the medium is contributed
by a relatively small number of conduits connected by large intergranular throats of

narrow size distribution and high hydraulic conductance.
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7 SUMMARY AND CONCLUSIONS

An attempt to assemble a comprehensive picture of a sedimentary rock based
on observation of pore casts, laboratory measurements, and a physically accurate

representation of the phenomena has been achieved.

The analytical calculations of transport properties are based on pore microge-
ometry measurements obtained directly from two-dimensional scanning electron mi-
croscope (SEM) photomicrographs of rock sections partially filled with wetting and
nonwetting liquids solidified in place. Account has been taken of the fact that the
rock cross-sections are randomly oriented with respect to the channel axes. The ori-
entation effect is corrected by means of geometrical and stereological considerations.
In addition, account is also taken of possible variation of the cross-sectional area along

the length of each tube, i.e., pore throats and pore bodies.

Good agreement was found between measured and predicted analytical calculations
of permeability for a variety of sandstones using the cubic lattice-effective medium
model of intergranular pore space (discrete approach). It is found that the ratio of
average pore throat to pore body ranges from about 0.3 to 0.5 for different sand-
stones. If a parallel-effective medium or series model is used instead, permeability
is overpredicted or underpredicted, respectively, by at least a factor of three. This
investigation highlights the importance of pore connectivity in understanding the

relationships between pore microstructure and permeability.

A perimeter-area power-law relationship of a smooth representation of the pore
space was found for a variety of rocks of different porosities. Examples have been
given of how the area-perimeter power-law information together with a pore-size dis-
tribution and a classical model of the pore space can be used for making quantitative
predictions of permeability (statistical approach). The analysis emphasizes the im-
portance of pore connectivity in understanding the relationship of permeability and

rock microstructure.

The region of validity of the Kozeny-Carman permeability formulas for consol-
idated porous media and their relationship to the microscopic spatial variations of

channel dimensions has been established. The permeabilities of most sandstones have
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been found to fall in zone II of the conductance envelope. Thus, the permeabilities
predicted by the Kozeny-Carman formulas are approximately valid within a factor
of three of the observed values. This finding is a direct result of the various sand-
stones ‘principal’ pore networks approaching homogeneity in channel dimensions. For
highly inhomogeneous rock-pore-space systems falling in zone III of the conductance
envelope, the critical path analysis (which focuses on the details of the critical paths
along which much of the flow must occur) can be applied within limits to obtain the
hydraulic permeability.

Fair-to-good agreement was found between measured and predicted electrical con-
ductivities for a variety of sandstones when using the cubic lattice-effective medium
model of the intergranular pore space. In particular, good agreement was found in
case of a poorly consolidated rock such as Saint-Gilles sandstone, whereas the agree-
ment was not very good for well-cemented rocks. The possible reason(s) for this effect

were investigated experimentally.

In the experimental studies, wetting and nonwetting phases that can be frozen
in place have been used one at a time to allow measurement of effective transport
properties (hydraulic and electrical) and to allow direct analysis of fluid distributions
in the pore space after the experiment. At low wetting phase saturations in Berea
sandstone pore space (saturations less than 30%), the wetting fluid preferentially
invades grain contact pore space (i.e., thin sheets and micropores) while only coating
the intergranular pore space connected by larger throats. A substantial effect on

effective formation factor (but a very small effect on effective permeability) is found.

It is observed that there is no unique definition of pore structure and pore-size dis-
tribution to model permeability and formation factor, e.g., permeability is strongly
controlled by intergranular pore space whereas the formation factor is controlled by
both intergranular and grain contact pore spaces. It is found that there is no single
characterization of the Archie saturation exponent n, for the full range of saturation.
Archie saturation exponents are found to vary from about 3 when mainly grain con-
tact pore space is filled with the wetting fluid, to about 5 when mainly intergranular
conduits connected by the larger throats are filled with the wetting fluid, with a crit-

ical electrolyte saturation (Se:) of 0.7. The basic intergranular pore space model
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that was employed in the analytical calculations of formation factor has to be modi-
fied to incorporate relevant geometrical and topological characteristics important for

electrical conductivity of consolidated rocks (e.g., grain-contact pore space).

Although the change in trend of Berea sandstone electrical conductivity at low
electrolyte concentrations reflects the contribution of surface conduction due to clays,
this represents a negligible contribution to formation factor for most practical appli-

cations.

Pore microgeometry—based analytical calculations of the capillary pressure vs. sat-
uration function have been conducted. The mathematical expression depends on the
distribution of pore hydraulic radii and the area-perimeter power-law relationship.
The analytical predictions of capillary pressure are compared to laboratory capillary
pressure curves obtained using Wood’s metal alloy as the nonwetting phase intead
of the conventional mercury porosimetry. This technique allows the examination of
the occupied pore space after the experiment. The general shape of our experimental
capillary pressure vs. saturation curve for Berea sandstone is consistent with typical
capillary pressure curves reported in the literature obtained using mercury porosime-
try. The nonwetting fluid in Berea sandstone (in the saturation range up to 50%)
invades and fills relatively few intergranular conduits connected by large throats, pro-
ducing a clustered structure, and controlling capillary ﬁressure within that saturation
range. The analytical calculations of Berea sandstone capillary pressure vs. satura-
tion relation together with the analysis of the nonwetting phase fluid distributions
in the rock pore space show that the experimental capillary pressure vs. satura-
tion function (in the saturation range up to about 50% saturation) is controlled by
relatively few channels connected by large intergranular throats of narrow size dis-
tribution, represented by a mean hydraulic radius of approximately 6.6 ym and a
standard deviation of 0.14. This analysis confirmed that pore throats are smaller

than pore bodies with an average aspect ratio of 0.5 for Berea sandstone.

The experimental relative permeability and capillary pressure data of Berea sand-
stone has been analyzed in light of the distribution of wetting and nonwetting phases
in the rock pore space. The analysis shows that (1) ~ 30% of the pore space con-

sists of grain-contact pores (i.e., thin sheets and micropores) and intergranular pores
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connected by smaller throats, (2) ~ 40% of the pore space comprises intergranular
conduits composed of pores connected by larger throats, and (3) ~ 30% of the in-
tergranular pore space remains hydraulically disconnected. The grain-contact pore
space of large surface areas (thin sheets), micropores, and intergranular pores con-
nected by smaller throats provide only minor alternate paths for the fluid to flow to

the intergranular conduits connected by larger throats.

At low wetting phase saturations in Berea sandstone pore space, the wetting fluid
preferentially invades grain-contact pore space, coats intergranular pore space con-
nected by larger throats, thus permitting the nonwetting fluid to rapidly invade rel-
atively few intérgranular conduits connected by large throats, controlling relative
permeability and capillary pressure. Thus, pore geometry and topology establish a
hierarchy that governs how wetting and nonwetting fluid invasion processes occur in
the pore space, allowing the two processes to be complementary, i.e., each fluid follows

its own path.

The laboratory-derived relative permeability data for Berea sandstone conforms
well with typical relative permeability curves obtained using conventional methods.
Strong phase interference has been found experimentally for the relative permeability

function of a 3-D porous media.

The permeability of a partially-saturated rock such as Berea sandstone is controlled
by the rock structure and topology as well as the physics and chemistry of mineral-
fluid interactions. When the rock is partially saturated with the hydrocarbon paraffin,
the clay minerals present in the rock pore space are immobilized. Thus, permeability
extrapolated to paraffin saturation of zero, corresponds to the permeability of the
‘clean’ rock (e.g., without clay).

The experimental relative permeability data of Berea sandstone has been examined
near threshold saturation conditions. As the nonwetting phase saturation reduces,
the network for this phase breaks down and becomes discontinuous and hydraulically
disconnected. Thus, the irreducible nonwetting phase saturation is found to have a
value of about 30% (percolation threshold). In contrast, since the wetting phase con-
stitutes a continuous network even at low wetting phase saturations, the irreducible

wetting phase saturation becomes a function of applied external pressure reaching a
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value less than 30%.

1t is clear from this study that the transport properties of porous media (hydraulic
and électrical) are strongly controlled by both pore microgeometry and topology as
implicit, for example, in constitutive relations expressed by Egs. (12), (82), (94), and
(140).

Finally, the analytical/experimental method can be applied to various extensions.
These include (a) to develop a network/percolation model to estimate two-phase
relative permeabilities of Berea sandstone from direct measurements of pore microge-
ometry obtained from 2-D SEM photomicrographs of thin sections, (b) to find consti-
tutive relationships between the area-perimeter power-law relationship of pores and
two-phase relative permeabilities, (c) to study the rock void space power-law relation-
ships (i.e., perimeter-area, volume-surface) in light of the law derived by Mandelbrot
(1988) for islands whose boundaries are fractal: P = e® AP/2, where ¢ is some con-
stant that depends on the length of the measuring grid size, and D is the fractal
dimension of the pore perimeter, (d) to develop constitutive relations between sin-
gle and two-phase transport properties (hydraulic and electrical) of unconsolidated
porous media to pore microstructure, and to compare these to consolidated porous
media, (e) to measure three-phase relative permeabilities of consolidated porous me-
dia using multiple fluids that can be solidified in place to allow direct observation and
analysis of the fluid distributions in the pore space after the experiment, and (f) to
measure single and multiphase transport properties of fractured media and to study

.their relationship to microstructure and heterogeneity.
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A: EXPLORATORY SIMULATIONS OF GAS INJECTION TESTS IN
AN UNDERGROUND ROCK LABORATORY!

Abstract

A computational model of a gas injection fest in a dual-porosity dual-permeability medium
under isothermal conditions was developed. Results from the numerical simulations provide
general guidelines for the design of the phase II gas test in the fracture investigation (FRI) zone
at Grimsel, Switzerland.

A.1 Introduction

The Nationale Genossenschaft fiir die Lagerung radioaktiver Abfaelle (NAGRA) of
Switzerland is studying the feasibility of disposing low and intermediate level nuclear
wastes at an Oberbauenstock mountain site. The corrosion of metals and microbial
degradation of the organic materials from a nuclear waste repository are expected
to generate large amounts of gas, the main constituent being hydrogen with minor
amounts of methane, carbon dioxide, and others (Wiborgh et al.ll). From the data
given by Wiborgh et al.,[!! it can be estimated that due to the expected gas release,
pressures in the repository may rise to several hundred bars. The high pressure
could endanger the engineered repository structure unless proper venting is installed.
Additionally, the influence of gas production on solute transport may produce: 1) a
displacement of contaminated water by the gas front, 2) a pumping effect due to
pressure variations in the gas front, and/or 3) a mixed flow of contaminated water
and gas. Thus it becomes important to study the evolution of a free gas phase (and
associated multiphase effects) from waste package corrosion in an initially saturated

environment.

1This work was jointly supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098
and by the Swiss National Cooperative for the Storage of Nuclear Waste (NAGRA).
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A.2 Radial flow in a fracture with permeable rock matrix

The evolution of a free gas phase in an initially saturated environment is mod-
eled numerically via the multiphase simulator TOUGH!!, using its air component
to model the gas behavior. For an exploratory calculation a dual-porosity, dual-
permeability system with only one fracture and one matrix continuum was defined

using an idealized radial flow geometry (Figures A-la and A-1b).

The problem design and parameters for the numerical simulation were provided
by Dr. Bob Andrews (memo of September 1, 1988)B). The following changes to the
specified data were made (Table A-1):

e Coreyld relative permeability functions instead of Grant!®! relative permeability
functions were used, as it is considered that k., + k. < 1 is a more realistic and
conservative approach than is k., + ky = 1[6); je., Corey relative permeability
curves give higher pressure and lower saturation versus time curves for well grid
block AA-1 (Figures A-2a and A-2b).

e The gas injection rate was reduced one order of magnitude (from 10~%t0 10~° kg/s),
since pressure at the injection grid block increased to a value larger than 60 bars

with the higher injection rate (Figures A-3a and A-3b).

e Gravity was neglected since if a pressure P = 1 bar was taken at z = 0 m, we
would obtain a pressure P = 0 bar at z = 10 m (i.e., at the top of the matrix
grid). Also, gravity effects are minor as compared to the pressure-time response

from gas injection tests (Figures A-2b, A-3a, A-3b, and A-3c).

e An initial gas saturation of 1% across the domain was specified to decrease the
nonlinear effects associated with the advance of the gas injection front. To avoid
unphysical effects from this gas saturation, an irreducible gas saturation of 2%
in the fractures and of 10% in the matrix was introduced so that the initial gas
is immobile.

o Capillary pressure effects were neglected.

After making the above modifications to the specified data, the desired injection/shut-
in schedule was followed yielding the following results (Figure A-4):

192



Step 1: Gas is injected at 10~° kg/s until about 10% gas saturation is 10 m from the
well. This is achieved after approximately 7 days in grid block AA-9 (R = 6.05
to 10.05 m). Pressure at the injection grid block AA-1 reaches a value of 19.95
bars after 3.9 days and remains essentialy constant thereafter. Initial pressure
buildup is very rapid, reaching 9.9 bars after 7 s, and 16.42 bars after 55 s.

Step 2: Gas injection is stopped at 7.04 days. Subsequent pressure recovery is rapid
at first but slows down progressively. About 80% of pressure recovery is reached

after 114 days.

Step 3: Gas injection is resumed at 10~° kg/s after 114 days. Gas saturation of 50%
at 10 m from the well is reached after ~ 5000 days.

Step 4: Gas injection is stopped again and pressure allowed to recover. The recovery

is extremely slow, requiring about 45,000 days for 80% recovery.

The [specified] injection/recovery schedule was terminated at this point due to
slow time scales of the flows. Gas saturation response is plotted in Figures A-5a,

A-5b, A-5c, and A-5d.
A.3 Discussion and Conclusions

When evaluating the numerical simulation results one has to keep in mind that
the test case studied here is of a highly idealized and schematic nature; furthermore,
important formation characteristics such as relative permeability and capillary pres-
sure behavior are not known at the present time, and hypothetical assumptions had
to be made. The dominant feature seen in the simulations is the very tight nature of
the formation into which gas injection is made. Matrix permeability is extremely low,
and the higher fracture permeability is available only in a very thin zone. This tight-
ness causes a very strong pressure response to injection, as gas pushes in to displace
formation water. Single phase flow of formation water ahead of the gas displacement
front is the dominant cause of pressure buildup; additional flow resistance is generated

from two-phase relative permeability effects behind the displacement front.

Assuming that the FRI test section at Grimsel is in fact as tight as specified in

the simulations, the following recommendations for the phase II gas injection tests
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can be made:

1. Use an injection rate of 10~° kg/s so as to avoid excessive pressure buildup at

the wellbore. (Pressures up to 60 bars after 7 days may occur at the injection

rate of 10~ kg/s).

2. Readjust the [specified] gas testing schedules to a more sensible time frame ac-

cording to the results obtained.

In order to have more confidence in simulation predictions it may be worthwile

to attempt to calibrate the model developed here against data obtained in previous

single-phase injection tests. Model parameters should be re-examined and adjusted

as needed as soon as gas injection test data become available.
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TABLE A-1: Initially specified parameters for the reference casel3l.

Formation parameters:

domain permeability porosity
Fracture 10 mD (saturated) 50%
Matrix 10~? mD (saturated) 1%
Relative permeability:
(Corey’s curves)!
liquid phase: kg =[S*]*
gas phase: kg =(1—S*)2(1-[S*?)
where: S* = (S — Si)/(1 — Sir — Sgr)
S = 0.3
Sgrsracture = 0-02
S, =0.1

IPmatriz
Air injection rate: Q =107°kg/s

Boundary conditions:

bottom: no flow
top: no flow
fracture, outer: specified pressure of 1.0 bar
matrix, outer: no flow

Initial conditions:

temperature: 10°C
pressure: 1 bar
Syt 1% across the domain
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FIG. A-2a: Gas pressure vs. time at wellblock.
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B: SENSITIVITY STUDIES ON PARAMETERS AFFECTING GAS
RELEASE FROM AN UNDERGROUND ROCK CAVERN?

Abstract

A series of numerical simulation ezperiments is performed to quantify the effects of the
release and migration of non-condensible gas in water-saturated fractured rock formations. The
relative importance of multiphase parameters such as relative permeability, capillary pressure,
intrinsic permeability, and porosity on system behavior is studied.

B.1 Introduction

The Nationale Genossenschaft fiir die Lagerung Radioaktiver Abfaelle (NAGRA) of
Switzerland is studying the feasibility of disposing low and intermediate level nuclear
wastes in a geologic repository. The corrosion of metals and microbial degradation of
the organic materials from such a repository are expected to generate large amounts
of gas, the main constituent being hydrogen, with minor amounts of methane, carbon
dioxide, and othersi!l. From the data given by Wiborgh et al.lll, it can be estimated
that due to the expected gas release pressures in the repository may rise to several
hundred bars, unless proper venting is installed. Gas production and migration may
also influence the transport of soluble species in groundwater, through displacement

of water by the gas front, and/or a mixed flow of contaminated water and gas.

In a previous study two reference cases were developed for evaluating effects of gas
release and migration at a potential nuclear waste repository site at Oberbauenstock!Z.
The reference cases used alternative conceptualizations of the rock mass as a porous
and a fractured-porous medium, respectively, and employed ‘best estimates’ for the
hydrologic parameters applicable at the site. Many important parameters are not
well known, however, leading to considerable uncertainty in expected behavior. The
present study attempts a broader and more systematic evaluation of gas release ef-
fects. We consider an idealized geometric model of the flow system that represents

the conditions encountered at Oberbauenstock in a schematic way. Flow effects from

2This work was jointly supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098
and by the Swiss National Cooperative for the Storage of Nuclear Waste (NAGRA).
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gas release are investigated under a variety of conditions of relative permeability, cap-
illary pressure, intrinsic permeability, and porosity. The numerical simulations are
performed with the multiphase numerical simulator TOUGH2 using its air component

to model the gas behavior>4.

B.2 Model domain and computational grid

It is assumed that gas release occurs uniformly over a large area. Ignoring regional-
scale boundary effects, the flow system is taken to be a one-dimensional vertical
column of 1 m? cross-sectional area and 100 m height (Figure B-1). The column is
assumed to be water-saturated initially with a hydrostatic gradient, so that initial
pressure at the bottom is approximately 10 bars. Pressure is maintained at ambient
conditions, i.e., P = 1 bar at the top, while gas is injected at the bottom of the column
at a rate of 1078 kg/s x m? (Appendix B.A). For numerical simulation, the section
is subdivided into 40 elements spaced at 2.5 m. The parameters for the reference
case are similar to those used in the porous medium case of Pruess®?, except that we
include a non-zero capillary pressure (Table B-1 and Appendix B.B; Code Listings 1
to 3) (Figures B-2 and B-3).5¢1 The parameter variations considered in the sensitivity
studies are summarized in Table B-2 (cases 1 to 8). A sample input file for TOUGH2
is shown in Code Listing 4. Note that, because of the one-dimensional model used
in this report, we cannot address issues of formation heterogeneities and (viscous or

gravitational) flow instabilities.
B.3 System behavior for the reference case

The gas injected into the porous medium initially dissolves in the water that is
present in the injection grid block. However, gas solubility is soon exceeded and a
free gas phase forms (Figure B-4). Further gas release leads to an increase in gas
saturation accompanied by pressurization, as water is displaced by the growing gas
bubble (Figure B-5). At approximately 6 x 10° s (80 days), gas saturation reaches
the irreducible limit of 5%, and begins to flow upward. A gas-water displacement
front then migrates up the column (Figure B-6). Note that the pressure gradient is
smaller behind the displacement front than ahead of it (Figure B-7), due to the much

smaller viscosity of the gas phase. In the well block, gas pressure reaches its maximum
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(38 bars) at about 7 x 107 s (2.2 years) (Figure B-5). Then it enters into a period of
slow decline, with a continued increase in gas saturation. After 6.5 x 108 s (20.6 years)
the gas reaches the top of the boundary of the flow domain (Figures B-6 and B-8;
Code Listing 5). It is of interest to consider the liquid outflow at the top of the column
in response to gas injection at depth (Figure B-9). Due to the small compressibility
of liquid water, the pressurization at depth is transmitted rapidly upward. Outflow
at the top commences as soon as a free gas phase is formed near the injection point.
The outflow rate increases rapidly at first, and more slowly after gas becomes mobile
at depth (=~ 6 x 10° s). A quasi-steady situation with slowly increasing liquid outflow
prevails until about 5 x 10% s. Subsequently, as the gas front approaches the top
boundary, liquid outflow is enhanced from the steep pressure gradient ahead of the
front (see Figure B-7).

B.4 Sensitivity studies

The hydrologic parameters that characterize fractured rock masses on a large scale
are difficult to determine accurately in practice. It is important to evaluate the un-
certainty in flow behavior that arises from the parameter uncertainty. In this section
we present results of sensitivity studies, which examine the impact on flow behavior
of variations in capillary pressures, relative permeabilities, absolute permeability, and
porosity. All of these formation parameters are of course interrelated, because they all
depend on the geometry of the pore space in which flow takes place. For certain classes
of permeable media, such as @consoﬁdated sands, quantitative relationships between
some of these parameters have been found. However, due to the inherent variability
of the pore geometry in natural media, there are no generally useful quantitative re-
lationships that would apply to broad classes of media. For example, one expects the
permeability of a medium to generally decrease with decreasing porosity. However,
in fractured media one often encounters large permeability accompanied by small
porosity. Because of the strong inherent variability of flow properties of fractured
rock masses, we have adopted the approach of varying the important parameters one
at a time, independently of each other. The specifications of the sensitivity studies

are given in Table B-2.
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B.4.1 Capillary pressure

To explore the sensitivity of system behavior to variations in capillary pressure,
case 1 uses a stronger capillary pressure with air entry effects (Figure B-10)[7], while
in case 2 capillary effects are neglected. Stronger capillary pressures accelerate and
increase gas pressurization at the injection point (Figure B-11), as expected, while
slowing and diminishing gas saturation buildup (Figure B-12). Neglect of capillary
pressures has the opposite effects. Capillary pressures are generally relatively weak
compared to the pressurization from viscous flow resistance, so that their impact in
systems response is minor. This can also be seen from the weak retardation of the

gas displacement front due to capillary effects (Figure B-13).
B.4.2 Relative permeability

There is considerable uncertainty at present about the relative permeability be-
havior of fractured rock masses. It has often been postulated or assumed that fracture
relative permeabilities should obey the constraint k. + k., = 119, while recent the-
oretical work has suggested that phase interference in fractures may be very strong,
with both k,; and k,, being small at intermediate saturationsl®. Here we consider
two variations on the reference case, corresponding to the conventional view of frac-
ture relative permeabilities (case 3; Figure B-14) and the recent suggestion of strong
phase interference (case 4; Figure B-15, Appendix B.C, and Code Listing 6), respec-
tively. Figures B-16 and B-17 show that relative permeability uncertainty can have
a very major effect on predicted fluid pressures and gas saturations. For the Grant
curves (case 3), gas flow is facilitated in comparison to the reference case, giﬁng rise
to smaller pressure and saturation increases. The strong interference relative per-
meabilities (case 4) on the other hand, produce a vastly stronger pressure response
and much higher gas saturations. Very strong corresponding effects are seen on the

advancement of the gas displacement front (Figure B-18).
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B.4.3 Absolute permeability

Variation of absolute permeability produces the expected effects (Figures B-19 and
B-20). Fluid pressures near the injection point increase (decrease) when permeability
is diminished (enhanced). For higher permeability the advance of the gas front is

more rapid. It is interesting to note that permeability effects on gas saturation are

rather minor (Figure B-21).
B.4.4 Porosity

Effects from porosity variations are somewhat complementary to those from per-
meability variations (Figures B-22 and B-23). Gas saturation near the injection point
increases more rapidly and to higher values for smaller porosity, due to the smaller
available pore volume. Pressure response is also more rapid for smaller porosity, but
the pressure level maintained during the advancement of the gas displacement front
up the column is little affected by porosity. The rate at which the gas front advances
is approximately inversely proportional to porosity (Figure B-24).

B.5 Summary of multiphase effects

For the particular process considered here, i.e., displacement of water by gas,
the impacts of system parameters on flow behavior can be summarized as follows

(Table B-3):
B.5.1 Capillary pressure

Its effects were found to be generally weak, because typical capillary pressures are
only of the order of a few bars, while pressure increase from viscous flow resistance
in the problem considered here is typically a few tens of bars. Increased capillary
pressures will tend to cause increases in gas phase pressurization, while diminishing

and slowing gas saturation buildup.
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B.5.2 Relative permeability

Interference between liquid and gaseous phases as described by relative permeabil-
ity functions has an overwhelmingly strong impact on system behavior. Pressurization
effects from gas release can increase dramatically when phase interference is strong,

i.e., when relative permeabilities are small at intermediate saturations.
B.5.3 Absolute permeability

This parameter has a strong impact on pore pressures and advancement of the gas

front, but relatively small impact on fluid saturation.
B.5.4 Porosity

This parameter has a strong impact on the time scale of the flow processes, with
things happening faster for smaller porosity. The rate of advancement of the gas
front and the rate of saturation buildup are approximately inversely proportional to

porosity. Pressure effects are relatively minor.
B.6 Conclusions

Major multiphase system parameters such as relative permeability and capillary
pressure of fractured media are poorly understood at the present time. In this report
we have attempted to analyze the relative impact of these and other fluid flow pa-
rameters such as porosity and intrinsic permeability on a particular two-phase system
under isothermal conditions. It is important to note that due to the strong coupling
effects in multiphase flow, there is a complex relationship between the input param-
eters and the output variables. The parameter that was shown to have by far the
largest impact is relative permeability. It affects strongly both the gas pressure and
the gas front displacement velocity (Table B-3). It is followed in importance by in-
trinsic permeability that affects more the gas pressure values than the displacement
front speed. The parameter that has the least impact, within the range studied here,
is capillary pressure. Porosity does not have much influence on gas pressures at the

injection point but it strongly affects gas saturation front velocities. On the other
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hand, intrinsic permeability has a higher impact on gas pressures than on gas front

velocities.

We conclude that relative permeability constitutes a crucial multiphase system
parameter. Efforts have to be made to obtain reliable relative permeability functions
that would apply to the particular field conditions under consideration. We would
like to note that the strong interference relative permeability model is expected to be
more applicable to a single fracture viewed as a two-dimensional heterogeneous porous
medium rather than to a three-dimensional fracture network. A three-dimensional
network would present less interference between the fluid phases because it allows

more alternative pathways for the phases to flow.

In our studies, we have assumed immiscible displacement of water by gas in a
homogeneous sparsely fractured rock. However, the variation in apertures in any
given fracture will mean that gas will tend to follow the widest aperture paths. Hence,
it is conceivable that some parts of the medium may never allow gas to flow and will
remain saturated with water. It is not clear a-priori to what extent the relative
permeability concept being a continuum concept can be applied to flow processes in

highly heterogeneous media.

In general, we can state that our sensitivity studies are useful to:

o identify the importance (or lack thereof) of formation parameters;
e identify the most important physical processes;

e quantify the extent and sources of error for prediction;

e serve as a guide for fitting a model to actual data;

e assist in the design of field experiments aimed at reducing uncertainty in system

parameters.
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APPENDIX B.A: GAS RELEASE RATES

The gas release rate was obtained as follows:

Top surface area of repository is 700 x 1 = 700 m? .

Q, = 3.3 x 1077 kg/s of hydrogen over 700 m?2.%?

Equivalent @, for 1 m? = 3.3 x 1077/700 = 4.7 x 10710 kg/s.
To scale for air (same rate on molar or volumetric basis):

From the ideal gas law, P,V, = (m/M)RT, where P, is gas pressure, V, is gas
volume, m is moles per molecule, M is molecular weight, R is universal gas

constant, and T is temperature.

The molecular weights of hydrogen and air are My, = 2.016 and M,;. = 28.96,

respectively.

Thus
Qg eq0i» = (28.96/2.016) x 4.7 X 1071° = 6.75 x 1079 kg/s x m®.

The gas rate used was: @, = 1078 kg/s x m?.

APPENDIX B.B: CAPILLARY PRESSURE FOR A FRACTURE WITH
LOG-NORMAL APERTURE DISTRIBUTION

B.B.1 Function origin

Laboratory measurements of fracture void space geometry have shown that, in
many cases, apertures follow a log-normal distribution. Under those conditions, a
relationship between liquid saturation and aperture can be obtained in closed form,

as follows:[5]

5 =1/2(1 + erf[(log(b,) — B)/y/20%) , log(b;) —B>0, (B1)
S =1/2(1 — erf[(log(b) — B)/y/26%)) , log(b,) ~B<0, (B2

where
B = o In(10) + log(b/ el 1n(10))?/2y
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and S; = liquid saturation ,
b, = cut-off aperture (apertures b < b, containing liquid and b > b, gas) ,
o = variance ,

b = mean aperture .

Note that 8 is the logarithm of the aperture cutoff corresponding to S; = 50%.

Egs. (B1) and (B2) can be rewritten as follows:

§i = 1/2(1+ erf[(log(t,) — B)/v2o%) . (B3)

Thus
by = 108~ V2oPerfi(1-25)) (B4)

where er fi = inverse error function.

The capillary pressure is defined by Laplace’s equation. Assuming a contact angle

of zero, we then have

Pc — 2§/bp — 2€10\/17erfi(1—251)—ﬁ , (35)

where ¢ = air-water surface tension (= 0.073 N/m).
B.B.2 Parameter adjustment

The theoretically-based capillary pressure curve for o = 0.43 and b = 81.8 um as
used by Pruess and Tsang!® is presented in Figure B-25. This curve was fitted with
the ‘limestone’ curve of Wiborgh et al.l} at S; = 50% as follows (Figure B-26):

P, =3.15 x 10° N/m? at S; = 50% for ‘limestone’.

Thus

2x0.073 N/m -
bpey = B = ertis iy = 0.0463 x 10~° m = 0.463 pm.

Then it follows that
B = log(bpcq) = log(0.463) = —0.3344.
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From Eq. (B49) (with o = 0.43) we obtain

B = —0.3344 = (0.43)?In(10) + log(h/e(®431210/2) .
Hence

b ~ 0.2836 pm.

Thus the parameters of the capillary pressure for the reference case are (Figure B-25):
c=043, b=0.2836pum, B=-0.3344.

B.B.3 Numerical implementation

Capillary pressure must be calculated as a function of saturation to be used in the
TOUGH?2 simulator. This involves inversion of the relationships Egs. (B1) and (B2)
or Eq. (B3).

The programming was executed in two alternative ways:

1. Using Eqs. (B1) and (B2) (Code Listing 1).

2. Using Eq. (B3) (Code Listing 2).
1. Inverse error function

As it is presented in Eqs. (B4) and (B5), the expression that relates aperture size or
capillary pressure with liquid saturation contains the inverse error function (Figure
B-27). The error function analytical inversion is not a trivial operation. A Cray-
IMSLSFUN mathematical library function erfi(x), was implemented in TOUGH2 to

calculate the inverse error function.

Restrictions of erfi(x):

e —1l<z<l.

e data may be real or double precision if the double precision version derfi(x)
is used. Results of derfi(x) are accurate to less than one half precision if the
absolute value of the argument is too large (Terrie Dickson (LLNL), private

communication).
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2. Access procedure of erfi(x) on the Cray (see Code Listing 3)
3. Treatment of singularities

As it is shown in Figure B-27, erfi(+1) is not defined. Also, erfi(-1) = -erfi(1) is not
defined either. From formula (B5), it is obvious that at values of saturation S; = 0
and S; = 1; erfi(z) = erfi(+1) and erfi(z) = erfi(—1), respectively. Therefore, a
special treatment is required for the mathematical singularities at S; = 0,1 (Fig. B-2).

Study first how the function P, vs. S; behaves for:

e Increasingly small S; values: (e.g., S; — 0; Table B-4a).
e Increasingly large S; values: (e.g., S; — 1; Table B-4b).

From the observed behavior (S; — 0, P, — oo0; S; — 1, P. — 0), the following

solution was proposed. For small liquid saturation, we impose a cutoff:
e For §; < 107%: P, = P.,, where P, = P, at S; = 107°; while for large liquid
saturation we perform a linear interpolation.
eFor $;>1-10"% P, = P,(1 — §;)/107%, where P,, = P. at S; = 1 — 107°.
(Note that at S; =1, P. =0).

4. Test cases

Test cases were performed to study:

1. Performance of erfi(x).

2. Comparison of analytical solution using the probability table with the numerical
solution proposed (Table B-5). (Pick cut-off aperture b, and calculate liquid
saturation S; and capillary pressure P ... Then, use the code with S; to

calculate P, . and compare the two capillary pressure values thus obtained).
3. Handling at the boundaries S; — 0 and S; — 1.
4. Comparison of codings using either Eqs. (B1) and (B2) or Eq. (B3).
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5. Comments:

e noted that erfi(x) is very accurate.

the analytical solution checks against the numerical solution.

the boundaries behave well numerically.

codings using either Egs. (B1) and (B2) or Eq. (B3) are both correct.

5. P, vs. S; functions for different o and b

e Constant o = 0.43 and varying b (Figure B-25)

b, = 81.8 ym
by = 0.2836 um

Note that the curve simply translates vertically parallel to the capillary pres-
sure axis since the range of apertures is scaled by a common factor, e.g.,
P, =~ 1/b. The theoretically-based capillary pressure-saturation relation de-
pends only on the variance of the lognormal distribution and the ratio of
the most probable aperture to the cut-off aperture. Therefore, the relation-
ship between capillary pressure and saturation for fractures with lognormal
aperture distribution for fixed standard deviation has the same functional
form independently of the magnitude of the most probable aperture. If all
apertures are scaled by a common factor, the capillary pressure at a given

saturation will scale by the inverse of that factor.

o Constant b = 0.2836 ym and varying o (Figure B-28)

g1 = 0.23
09 = 0.43
o3 = 0.63

Note that there is leftward rotation and flattening of the curves with decreasing

variance.
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APPENDIX B.C: STRONG INTERFERENCE RELATIVE PERMEABIL-
ITY FUNCTIONS

The strong interference relative permeability functions used in this studies were
described by the following polynomials:
k,, = (S; )4 s
k"g = ("5132.:)4 ?
St=(S-5,)/(1-5.),

S = (8~ 5:.)/(1=5s.) »

where k., = liquid relative permeability ,
k., = gas relative permeability ,
S;, = liquid irreducible saturation ,

Ss, = gas irreducible saturation .

These functions as coded in TOUGH2 are presented in Code Listing 6 and plotted
in Figure B-15.
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APPENDIX B.D: CODE LISTINGS

B.D.1: FORTRAN source code for calculating fracture capillary pressure (version 1).
B.D.2: FORTRAN source code for calculating fracture capillary pressure (version 2).
B.D.3: Access procedure for inverse error function from IMSLSFUN library.

B.D.4: Coding for identifying the position of the gas saturation front.

B.D.5: Coding for relative permeability function with strong phase interference.

B.D.6: Sample TOUGH2-input file for reference case.
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CODE LISTING B.D.1: FORTRAN source code for calculating fracture capillary pres-

sure (version 1).

IF (SL.GT.CP (2 ,NMAT)) SS=(SL-CP(2,NMAT))/(1.-CP(2,NMAT))
0sSS=1.-SS

F=1.417«0S5-2.120«05S+42+1.263+«055++3

CALL SIGMA(T,ST)

PC=-~CP (1 ,NMAT) «STeF

RETURN
18 CONTINUE
Camem-- CAPILLARY FUNCTION OF VAN GENUCHTEN, SOIL SCI. SOC. AM. J. 44,
C PP.892-898, 1980.
C
IF(SL.NE.1.)GO TO 166
PC=@.
RETURN
o
160 SLX=SL
IF (SLX.GE.CP(5,NMAT)) GOTO 161
IF (CP (4, NWAT) .£Q.6.) SLX=AMAX1 (SL,1.801+CP (2, NMAT))
PC=—ABS (CP (4,NMAT))
IF (SLX.GT.CP(2,NMAT))
XPC=—1. JABS (CP (3, NMAT) ) o (((SL-CP (2,NMAT)) / (CP (5, NMAT) =CP (2, NMAT)) )
Xes (1. /CP (1,NMAT)) -1.) # (1.-CP (1,NMAT))
IF (CP (4, NMAT) .NE.B.) PC=AMAXL (PC,-ABS (CP(4,NMAT)))
IF(SL.GT..999) PC=PCe(1.-SL)/.001
RETURN
161 PC=0.
RETURN

17 CONTINUE

C
Ceo————CAPILLARY FUNCTION FROM LOG-NORMAL APERTURE DISTRIBUTION, EMS.

C
SLX=SL
IF(SLX.GE. (1.-1.€-5)) SLX=1.-1.E-§
IF(SLX.LE.1.E-§) SLX=1.E-§
BO=CP (1,NMAT) /EXP (((CP(2,NMAT) «ALOG (10.)) «+2)/2.)
WRITE (6,300) 80
300 FORMAT(’8B0 =°,1X,E12.5)
BETA=CP (2,NMAT) =¢24AL0G (16.) +AL0OG19(B0)
WRITE (6,500) BETA
500 FORMAT (°BETA =?,1X,E12.5)
BP=10=« (BETA-SQRT(2.) +CP (2, ,NMAT) «ERFI(1.-2.45LX))
XYZ=ERFI (1.-2.+SLX)
WRITE(6,6080) SLX,XYZ,CP(2,NMAT),BP
600 FORMAT (’SLX =°,E12.5,2X,°XYZ =’,E12.5,2X, *CP(2,NMAT) =7,
E12.5,2X,’BP =’,E12.5)
Do 999 I=1,5
X=0.01+I+0.02
Y=ERF (X)
Z=ERFI(Y)
WRITE(6,9060) X,Y,Z
900 FORMAT(’X =?,E12.5,3X,’Y =°,E12.5,3X,’Z =’,E12.5)
999 CONTINUE
IF((ALDG16(BP)-BETA)/CP (2,NMAT) .LE.8.) THEN
PC=(2+CP (3,NMAT) +10+«6) /BP

ELSE
BP=10+s (BETA+SQRT(2.) +CP (2,NMAT) «ERFI(2.eSLX-1.))

OO NAN OO0 NO
Re

C XYZ=ERFI (2.+SLX-1.)
C WRITE (6,800) SLX,XYZ,CP(2,NMAT),BP

¢ 800 FORMAT (*SLX =’,E12.5,2X,’XYZ =*,E12.5,2X, *CP(2,NMAT) =,
C 3 £12.5,2X,’8P =’ E12.5)

IF ((ALOG1® (BP)-BETA) /CP (2,MMAT) .GT.98.) THEN
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PC=(2CP (3,NMAT) «10¢+6) /BP

ELSE
WRITE (6 ,400)
400 FORMAT (>STOP-48¢, ERROR IN 8P CALCULATION?)
STOP
END IF
END IF

PC=-PC

IF(SL.GE.(1.-1.E-5)) PC=PCe(1.-SL) /CP(4,NMAT)

RETURN
C

END

SUBROUTINE SIGMA(T,ST)
C
Co—-m- COMPUTE SURFACE TENSION OF WATER, USING THE
C "INTERNATIONAL REPRESENTATION OF THE SURFACE TENSION OF
C WATER SUBSTANCE" (1975).
C

IF(T.GE.374.15) GOTO 1

ST=1.-9.625«(374.15-T) /647.3

ST=5Te.23584 ((374.15-T) /647.3)=+1.256

RETURN
C

1 ST=0.

RETURN

END

SUBROUTINE OUT
C ;
C—m- THIS SUBROUTINE GENERATES PRINTOUT.
C
C
C3333333%S COMMON BLOCKS FOR ELEMENTS $3333333333533333333333333%383
C
C THESE BLOCKS HAVE A LENGTH OF NEL (= NUMBER OF ELEMENTS)
C

COMMON/E1/ELEM(1)

COMMON/E2/MATX (1)

COMMON/E3/EVOL (1)

COMMON/E4 /PHI (1)

COMMON/ES/P (1)

COMMON/E6/T(1)

C
C$$$$$SSS$$$$$S$$$$$$$$$SSSSSSSS3$$S$$$$$$$S$$S$S$S$$$$8$$$$$S$S$$$S$$$$

C
C3$333333% COMMON BLOCKS FOR PRIMARY VARIABLES 3$333333333333333333333383

C
C THESE BLOCKS HAVE A LENGTH OF 3eNEL

C
COMMON/P1/X (1)
COMMON/P2/0X (1)
COMMON/P3/DELX (1)
COMMON/P4 /R (1)
COMMON/PS/DOLD (1)

C
C$33333533323355553333333353533333333333333353353TITITTITTITIISIFITIISSS
C

C
C$333333SS COMMON BLOCKS FOR CONNECTIONS $33333353383333833853338833C

COMMON/C1/NEX1 (1)
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CODE LISTING B.D.2: FORTRAN source code for calculating fracture capillary pres-
sure (version 2).

160

X,Y
C 908 FORMAT(’X =7,E12

WATER RES. RES., VOL. 18 NO.3 (JUNE 1982), PP. 489-498.

IF (SL-CP(1,NMAT) .GE..371) GOTO 139
SLX=AMAX1 (SL, 1.801CP (1,NMAT))
EX=(8.371/(SLX~CP(1,NMAT))~1.)ee .25
EX=2.26«EX-2.

PC=-9.7783E3«10. «¢EX

RETURN

PC=-97.783

RETURN

CONTINUE

CONTINUE
-LEVERETTQS J-FUNCTION.

$S=0.

IF(SL.GT.CP(2,NMAT)) SS=(SL-CP(2,NMAT))/(1.-CP(2,NMAT))
0SS=1.-SS

F=1.417«0SS~-2.12040SS«¢2+1_.26340SS+«3

CALL SIGMA(T,ST)

PC=~CP (1 ,NMAT) «STeF

RETURN

CONTINUE
~CAPILLARY FUNCTION OF VAN GENUCHTEN, SOIL SCI. SOC. AM. J. 44,

PP.892-898, 198J.

IF(SL.NE.1.)G0 TO 160
PC=0.
RETURN

SLX=SL

IF(SLX.GE.CP(5,NMAT)) GOTO 161

IF(CP (4,NMAT) .EQ.©8.)SLX=AMAX1 (SL,1.001«CP (2,NMAT))
PC=-ABS (CP (4 ,NMAT))

IF(SLX.GT.CP(2,NMAT))
XPC=-1. /ABS (CP (3,NMAT) ) s ( ( (SL-CP (2,NMAT) )/ (CP (5,NMAT) ~CP (2,NWAT)))
Xews (-1./CP(1,NMAT))-1.)ee(1.-CP(1,NMAT))
IF(CP(4,NMAT) .NE.2.) PC=AMAX1 (PC,-ABS(CP(4,NMAT)))
IF(SL.GT..999) PC=PC+{1.-SL)/.001

RETURN

PC=0.

RETURN

CONTINUE

JF(ICALL.GT.1.) GO TO 1900

~CAPILLARY FUNCTION FROM LOG-NORMAL APERTURE DISTRIBUTION, EMS

BO=CP (1,NMAT) JEXP (( (CP (2,NMAT) +ALOG(10.)) «+2) /2.)

BETA=CP (2 ,NMAT) «+2+ALOG(10.)+ALOG1@ (B0}

CONTINUE

SLX=SL

IF (SLX.GE. (1.-CP (4,NMAT))) SLX=1.-CP (4,NMAT)

IF (SLX.LE.CP(4,NMAT)) SLX=CP(4,NMAT)

BP=10++ (BETA+SQRT(2.) «CP (2,NMAT) «ERFI (2.eSLX-1.})

DO 999 I=1,6

X=0.01+1+0.02

Y=ERF (X)

Z=ERFI (¥)

WRITE (6,900) 4
's,3x,’Y =’,€12.5,3X,°Z =’,E12.6)

999 CONTINUE
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PC=(2«CP (3 ,NMAT) «10««8) /BP
PC=-PC
IF (SL.GE. (1.-CP(4,NMAT))) PC=PCe(1.-SL)/CP(4,NMAT)
RETURN

END
SUBROUTINE SIGMA(T,ST)

----- COMPUTE SURFACE TENSION OF WATER, USING THE
"INTERNATIONAL REPRESENTATION OF THE SURFACE TENSION OF
WATER SUBSTANCE" (1975).

IF(T.GE.374.15) GOTO 1- -
ST=1.-8.625+(374.15-T) /647.3

ST=ST».2358+ ((374.15-T) /647.3) ««1.256

RETURN

1 ST=86.
RETURN
END
SUBROUTINE 0UT

C
Commmm THIS SUBROUTINE GENERATES PRINTQUT.

C333333333 COMMON BLOCKS FOR ELEMENTS $333333333333333333333338338333
C
C THESE BLOCKS HAVE A LENGTH OF NEL (= NUMBER OF ELEMENTS)

COMMON/E1/ELEM (1)
COMMON/E2/MATX (1)
COMMON/E3/EVOL (1)
COMMON/E4 /PHI (1)
COMMON/ES /P (1)
COMMON/E6/T (1)

C
C3333333392333335339333333333T33TTTTTI3TITTITIISIIITII53TI33933333338333
C

C33333333% COMMON BLOCKS FOR PRIMARY VARIABLES $3333333333333333333833883

c
c THESE BLOCKS HAVE A LENGTH OF 3eNEL
c

COMMON/P1/X (1)

COMMON/P2/DX (1)

COMMON/P3/DELX (1)

COMMON/P4/R (1)

COMMON/PS/DOLD (1)

C
C$3333333333333333333333332333333333333333333333333333933333333338338838
C

C
C$333393333 COMMON BLOCKS FOR CONNECTIONS $$33333333333333333353838388C

c
COMMON/C1/NEX1 (1)
COMMON/C2/NEX2 (1)
COMMON/C3/DEL1 (1)
COMMON/C4/DEL2 (1)
COMMON/CS5/AREA (1)
COMMON/C6/BETA (1)
COMMON/C7/ISOX (1)
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CODE LISTING B.D.3: Access procedure for inverse error function from IMSLSFUN

library.

b=(bmulkm,bgasic,bmuIkz,bnrceBc?,bmaZB),Iib:imslsfun,x:xtc?

eee warning - module MULTI in file bgasic will be used
ess warning - copy in file bmulkz will be ignored

ese warning -~ modufe CONVER in file bgasic will be used
eee warning - copy in file bmulkz will be ignored

see warning - module OUT in file bgasic will be used
ess warning - copy in file barce3c7 will be ignored

crayl loader - 11/63/89

time and date of load is - 18:56:50 02/18/96 , machine is e
program length is ©1432144
transfer address = 0001205700

loader size = 240364.

unrestricted memory management heap is at ©@200312,size is 00011504
stack is at 00002451, size is 00003217

following is a list of relocatable binaries specified for this foad.
they will be referred to by their ordinal elsewhere in this load map.

ordinal name

bmu fkm
bgasic
bmulkz
bnrce3c?
bma28
imslsfun
imsicore
fortliib
mathlib
10 omnilib
11 stacklib
12 basel ib

WW~ND U O WA -

libraries used

library updated created used
] 94/21/89 13:58:32 29/18/88 10:46:47 yes
7 24/21/89 13:48:45 69/16/88 10:47:57 yes
8 11/13/89 11:88:38 18/26/89 14:14:53  yes
9 ©2/12/96 11:47:57 11/13/89 13:28:39 yes
10 98/28/89 12:83:32 11/25/85 14:17:09 no
i1 @4/21/89 16:16:29 21/09/84 165:32:44 yos
12 12/12/89 11:41:19 12/12/89 11:41:19 yes
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1 'DX2?,9X,’°DX3’,8X, ’K(GAS) K(LIQ.) H(GAS) H(LIQ.))

5031 FORMAT (110X, ’ (J/KG) (J/KG) * /)

1000 FORMAT (A1,’ELEM. INDEX P*,11X,’T?,10X,’SG*,1@X, *SL? ,7X,
1 °XAIRG’,7X,’XAIRL’,8X, ’tmob’,8X, PCAP’, 10X, *DG’,108X, "DL’)

1001 FORMAT (17X, > (PA) (DEG-C) *,53X, *,8X,’(PA)’,TX,

1 ?(KG/Mse3)  (KG/Mee3)'/)

5040 FORMAT (1X,AS5,16,16(E11.4,1X))

5660 FORMAT (A1,2X,’ELEM1 ELEM2 INDEX FLOH? A6, *FLOH/FLOF ', 7X,
1 °FLOF®,7X, ’FLO(GAS) FLO(LIQ.)  VOL(GAS) VOL (LIQ.)’,
2° voL?)

5861 FORMAT (26X,” (W)’,8X,’ (J/KG) *,8X, * (KG/S)*,7X, * (KG/S)*,7X,

1’ (KG/S) (mee3/s)?,5x,’ (mee3/s),5x,” (mee3/s) /)

5070 FORMAT(3x,2A7,14,(16(1X,E12.4)))

5128 FORMAT (A1, ’ELEMENT SOURCE INDEX GENERATION RATE’,
1 ENTHALPY  FF (GAS) FF(LIQ.) P (WB) *)

5121 FORMAT (29X, (KG/S) OR (W) (3/KG) * ,33X, * (PA) * /)

5130 FORMAT(2X,AS,3X,A5,3X,I2,16X,E12.5,2X,6(1X,E12.5))

5140 FORMAT(’@°,131(°Q’)/Al)

END
SUBROUTINE CONVER

----- THIS SUBROUTINE XIS CALLED AFTER SUCCESFULL COMPLETION OF

A TIME STEP.
IT UPDATES PRIMARY VARIABLES, AND DEFINES THE NEXT TIME STEP.

[aXaYaTaXaXs!

COMMON/SECOND /PAR (1)
COMMON/E1/ELEM (1)
COMMON/E2/MATX (1)
COMMON/E4/PHI (1)
COMMON/ES/P (1)
COMMON/E6/T(1)
COMMON/P1/X (1)
COMMON/P2/DX (1)

COMMON/G4 JELEG (38) , SOURCE (3@) , LTABG (30) , G(3%) ,EG(30) ,NEXG(38)
A,SDENS (30) ,SSAT (30) , ITABG (39) ,NGIND (30) ,LCOM(30)
COMMON/G6/PI (30) , PWB (3@) , GVOL (306) ,HG(302)

COMMON/SOLI/COM(27) ,EXPAN(27) , CORY (27) , TORT (27)
COMMON/KC/KC

COMMON/DFM/TIMAX, REOLT

COMMON/SVZ /NOTTE, MOP (24)

COMMON/DM/DELTEN, DELTEX,FOR , FORD

COMMON/NN/NEL , NCON, NOGN,NK, NEQ ,NPH, NB ,NK1, NEQ1 , NBK ,NSEC , NFLUX
COMMON/DLT/NDLT,DLT (160)

COMMON/KONIT /KON, DELT, 1GOGD
COMMOGN/CYC/KCYC, ITER, ITERC, TIMIN, SUMTIM, GF , TIMOUT
COMMON/TIMES/ITI,DELAF, ITPR,TIS(168) , ITCOUNT , NOWTIM, DELTMX

DIMENSION DXM(10)

D018 K=1,NK1
10 DXM(K)=9.

NGAS=0.
003 N=1,NEL

SGAS=PAR (NLOC2+1)

IF (SGAS.EQ.@..OR.NGAS.NE.®) GO TO 1
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30

NGAS=N-1.

SGAS@=SGAS

PRES=X ((NGAS~1) s3+1)

CONTINUE

NLOC=(N-1) «NK1

NLOC2=(N-1) «NSECNEQ1
-COMPUTE CHANGES IN POROSITY.

PHIN=PHI (N)

NMAT=MATX (N)

DPHI=PHINe (COM (NMAT) «DX (NLOC+1) +EXPAN (NMAT) « (PAR (NLOC2+NSEC-1)
A-T(N)))

PHI (N) =PHIN+DPHI

—UPDATE ELEMENT PRESSURES AND TEMPERATURES.
P (N) =X (NLOC+1) +DX (NLOC+1)
T(N) =PAR (NLOC2+NSEC-1)

~INCREMENT PRIMARY VARIABLES.

D03 M=1,NEQ

NLM=NLOC+M

X (NLM) =X (NLM) +DX (NLM)

DXM (M) =AMAX1 (DXM (M) ,ABS (DX (NLM)))

CONTINUE

PRINT 600,ELEM(NGAS) ,NGAS,SGAS®@,PRES

FORMAT (1X,AS5,16,2X, >SGAS =’,E12.5,2X,’PRES=",E12.5)

—-FOR PERCENTAGE INJECTION, ASSIGN INJECTION RATE FOR NEXT
TIME STEP.

DO 3¢ N=1,NOGN

IF (LCOM(N) .NE.NEQ+4) GOTC 30

G(N)=-HG (N) «G(N-1)

CONTINUE

SUMTIM=SUMTIM<+DELTEX
IF (TIMAX.NE.@. .AND . TIMAX.EQ.SUMTINM) NOWTIM=1

-AFTER CONVERGENCE UPDATE TOTAL TIME AND ASSIGN NEW TIME STEP.
IF (NDLT.EQ.6) GOT020
IF (KC+1.GT.8NDLT.OR.DLT (KC+1) .EQ.6.) GOTO20

—IF NO FURTHER TIME STEP INSTRUCTIONS ARE PROVIDED, KEEP
GOING WITH LAST TIME STEP.

-COME HERE FOR NEW TIME STEP ASSIGNMENT.

DELT=DLT (KC+1)
GOTO 22
DELT=DELTEX
IF (ITER.LE.MOP (16)) DELT=2.<DELTEX

IF (TIMAX.NE.©.) DELT=AMINI1 (DELT, TIMAX-SUMTIM)
IF (DELTMX.NE.@.) DELT=AMIN1 (DELT,DELTMX)
RETURN

END
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CODE LISTING B.D.5: Coding for relative permeability function with strong phase

interference.

REPL=0.
REPG=1.
102 CONTINUE
IF (IRP (NMAT) .EQ.4) REPG=1.-REPL

RETURN
C
13 CONTINUE
[ BOTH PHASES ARE PERFECTLY MOBILE.
C
REPL=1.
REPG=1.
C
RETURN
14 CONTINUE
Comemm RELATIVE PERMEABILITIES OF FATT AND KLIKOFF (1959), AS REPORTED
C BY K. UDELL (BERKELEY, 1982).
C
S$S=0.
IF (SL.GT.RP(1,NMAT)) SS=(SL-RP(1,NMAT))/(1.-RP(1,NMAT))
REPL=SS==3
REPG=(1.~SS) =3
RETURN
C
C
15 CONTINUE
Commmm RELATIVE PERMEABILITY OF VAN GENUCHTEN, SOIL SCI. SOC. AM. J. 44,
C PP. 892-898, 1980.
C
IF (SL.GE.RP(3,NMAT)) GO TO 159
SS=(SL-RP (2,NMAT)) / (RP (3,NMAT) -RP (2,NMAT) )
REPL=0.
IF (SS.GT.@.)
1 REPL=SQRT(SS) ¢(1.-(1.-SSe¢«(1./RP(1,NMAT))) «sRP (1,NMAT) ) #»2
REPG=1.-REPL
RETURN
C
159 REPL=1.
REPG=0.
RETURN
C
16 CONTINUE
C RELATIVE PERMEABILITIES AS MEASURED BY VERMA ET AL. IN
C LABORATORY FLOW EXPERIMENTS FOR STEAM-WATER MIXTURES
C
SS=(SL-RP (1,NMAT) )/ (RP (2,NMAT) -RP (1,NMAT))
IF(SS.GT.1.) SS=1.
IF(SS.LT.9.) SS=8.
REPL=SS«e3
REPG=RP (3,NMAT) «RP (4 ,NMAT) «SS+RP (5,NMAT) «SS«SS
IF(REPG.GT.1.) REPG=1.
IF(REPG.LT.9.) REPG=0.
RETURN
C
17 CONTINUE -
C STRONG PHASE INTERFERENCE RELATIVE PERMEABILITIES, EMS
C

SSTAR1=0.
IF (SL.GT.RP (1,NMAT)) SSTAR1=(SL-RP (1,NMAT))/(1.-RP (1,NMAT))

REPL=SSTAR1#e4
IF (SL.LE.RP (1,NMAT)) REPL=8.
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NN

X

X

X

12

120

X
X

13

SSTAR2=0.
IF(SG.GT.RP (2,NMAT)) SSTAR2=(SG-RP(2,NMAT)) /(1.-RP (2,NMAT))
REPG=SSTAR2e«4

IF (SG.LE.RP (2,NMAT)) REPG=0.

RETURN

END
SUBROUTINE PCAP(SL,T,PC,NMAT)

THIS ROUTINE COMPUTES CAPILLARY PRESSURE AS FUNCTION OF LIQUID
SATURATION SL AND TEMPERATURE T.

DATA ICALL/9/
ICALL=ICALL+1
COMMON/RPCAP /IRP (27) ,RP (7,27) ,ICP (27),CP(7,27) ,IRPD,RPD (7),

ICPD,CPD (7)
G0TO(12,11,12,13,14,15,16,17), ICP (NMAT)

CONTINUE
LINEAR FUNCTION.

PC=-CP (1,NMAT) « (CP (3, NMAT) -SL) / (CP (3 ,NMAT) ~CP (2,NMAT) )
IF (SL.GE.CP(3,NMAT)) PC=g.

IF (SL.LE.CP(2,NMAT)) PC=-CP(1,NMAT)

RETURN

CONTINUE
CAPILLARY PRESSURE FUNCTION OF PICKENS ET AL, AS GIVEN IN

J. HYDROLOGY 406, 243-264, 1979.

SLX=AMAX1 (SL:,1.801+CP (2,NMAT))
IF(SLX.GT..999«CP (3,NMAT)) SLX=.999«CP (3,NMAT)
A=(1.+SLX/CP (3,NMAT)) » (CP(3,NMAT) ~CP (2, NMAT) ) /

(CP (3,NMAT) +CP (2,NMAT) )

B=(1.-SLX/CP(3,NMAT))

PC=-CP (1,NMAT) «ALOG (A% (1.+SQRT(1.-BeB/(A«A)))/B) x=
(1./CP (4,NMAT))

IF(SL.GT..999+CP(3,NMAT)) PC=PCe(1.-SL)/.001
RETURN

CONTINUE
CAPILLARY PRESSURE FUNCTION AS USED IN THE TRUST-PROGRAM, WHICH

WAS DEVELOPED BY T.N. NARASIMHAN AT LAWRENCE BERKELEY LABORATORY.

IF(SL.NE.1) GOTO 120
PC=0.
RETURN

SLX=SL
IF (CP (5,NMAT) .EQ.0.) SLX=AMAX1 (SL,1.801¢CP (2, NMAT))

PC=—ABS (CP (5,NMAT))

IF (SLX.GT.CP(2,NMAT))
PC=-~CP (4,NMAT) —=CP (1,NMAT) ¢ ( (1 .-SLX) / (SLX-CP (2,NMAT)))
e (1./CP(3,NMAT))

IF (CP(5,NMAT) .NE.®.)PC=AMAX1 (PC, -ABS (CP (5, NMAT) ))
IF(SL.GT..999) PC=PCe(1.-SL)/.201

RETURN

CONTINUE
CAPILLARY PRESSURE OF YOLO CLAY AFTER CHRIS MILLY,
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CODE LISTING B.D.6: Sample TOUGH2-input file for reference case.

ecycllde SENSITIVITY STUDIES - REFERENCE
ROCKS

CASE (GRAVITY)

FRACT 2 2600. .91 1.E-17
l.e~-10
3 2.3 .25
8 .2836 .43 .873 1.e-5
BOUND 2 2600. .91 1.E~17
l.e-10
5
1 .9 0.0 1.
START
MULTI
2 2 2 [
PARAM
2 156 150000030100000020379000000
-1. V 49 +9.80665
2.E6
1.E-5
1.E5 o. 10.
TIMES
6 6
.36E8 .294E9 .45E9 .55E9 .60E9 .B6735E9
ELEME
\' 1 39 1FRACT 2.5
B 1 BOUND 1.E39
CONNE
v v 2 38 1 1 1 1.25 1.25 1.
B v 1 1 1.E-10 1.25 1
INCON
\'s 1 ?.10000012e~01

0.1122557464220e+06 ©.1765930404651e-06
2 ¢.19000037e-91
©.1367674525159e+06 ©.19254894302220-08
3 9.10900061e~-9G1
. 16127944326010*06 0.2099353498015e-10
¢.10000086e~31
0.1857917187122e+ﬂ6 0.2300230425667e-12
5 ¢.10000110e-01
. 2193042791347e+66 9.2559756193228e-14
2.10000135e-01
0. 234817124577Qe+06 o.
7 9.10000159e-01
. 25933025562169+66 a.
9.10000184e-01
2. 28384367246486+06 a.
9.10000208e-01
g. 30835737468490+08 o.
vV 19 9.10000¢233e-01
©.3328713631771e+06 ©.14061256285000-14
v 11 9.10000257e-01
©.3673856375797e+06 0. 14800318977426-14
v 12 ¢.100002820~-01
¢.38190019808440+06 ©.1420207685712e-16
v 13 9.100003068e~-01
$.406841504530080+98 O.
v 14 ©.10000331e-01
0.4309301787973e+36 0.

< < < < < < < <

0.10000000008000e+02
©.100000000008006<02
0.1005002000080e<02
0.1000000000000e+02
©.1002000000090e+902
¢.1000000800000e+02
0.10000000000000<62
¢.1000000000000e+02
©.1000000000000C0+02
0.1000020000000e+82
9.1090000000000e+02
¢ .1000000000000e+02
©.10000000000000+02

0.1000000000000e+02
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v 18 0.10000355e-01
©.4554455996198e+06 ©.

v 18 3.10000380e-01
©.47996130719940+06 0.

v 17 0.10000404e-01
@.5044773025021e+06 ©.

vV 18 @.10000429%e-921
©.52899358453430e+26 0.

vV 19 ¢.10000454e-01
©.5535101541519e+06 O.

v 2e 9.10000478e-01
©.5780270118187e+06 O.

v 21 ©.10000503e-01
0.60254415706850+06 O.

v 22 ©.100005276~01
G.6270615904687e+06 @.

v 23 ©.100060552e-01
©.6515793123895e+06 O.

vV 24 ©.10008576e-01
0.6760973221617e+06 Q.

v 25 9.10000601e~-01
0.7006156213184e+06 9.

v 26 ©.10000625e~01
©.7251342081822e+06 O.

v 27 0.10000650¢-01
©.7496530832087¢+06 O.

v 28 ©.10000674e-01
B.77417224788760+06 O©.

v 29 0.10000699%e-01
©.798691700610%e+06 6.

vV 30 9.100097230-01

©.823211442866C00+06 0.4057354985448e-14

v 31 0.100060748e-01

©.84773147485540+06 ©.7423652773043e~14

v 32 @.10000772e-01

0.872251795049%e+96 ©.6587215970874e-16

v 33 ©.10000797e-01

©.8967724048514e+06 ©.5273578149481e-18

vV 34 ¢.1000¢821le-01

$.9212933036854e+06 ©.2825857613270e-14

v 35 ©.10000846e-01

8.9458144919453e+08 ©.17471866989466-16

Yy 36 ©.1000¢870%e-01

©.9703359698576e+06 ©.9132897765851e-19

v 37. 0.10000895e-01
©.9948577367295e+06 ©.

v 38 ©.1000091%e-01
©.1919379793928e+37 ©O.

v 39 0.100009440-01
9.1043902139969e+07 6.

vV 40 ©.10000968e-21
©.1068424775061e+07 0.

B 1 ©.10000000e-S1

9. 1000000000808 +06 ©.105000000C0000+02

GENER
vV 40AIR

ENDCY

AIR
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0.1000000000000e+02
¢.1000000000000e+J2
0.1000000000000e+02
0.10000000000280e+02
¢ .1000000200000e+02
0.1000000200000e+02
0.10000000000280e+02
2.1000000000000e+02
©.100000000000Ce+02
0.10000000028008e+02
0.1000000000000e+02
0.1000000000000e+02
0.1000000000008e+02
©.1000000000028e+02
0.109000000000%e+02
©.100000000000C8e+02
©.1000008000000e+02
7.1000000002000e+02
8.1000203000000c+02
0.1000000002000e+02
0.1009000000000e+02
9.1000000000000e+02
¢.1008000000000e+02
0.1090090000000e+02
0.100000000000Ce+02
0.1000000000000e+02

0.100000000000Ce+02

1.E-8 o.0



TABLE B-1: Parameters for the reference case.

Formation parameters:

permeability porosity compressibility

10717 m? 1%

Relative permeability:
(Corey’s Curves!®l; see Figure B-3)

10710 (Pa)~!

liquid phase: ka = [S*]4
gas phase: ko= (1-5*)*1-[S1)
where: S* = (81— Si)/(1 — Sir — Sgr)
S5, =0.3
S, = 0.05

Capillary pressure:
Fracture capillary pressure as derived for a lognormal

aperture distribution

by Pruess and Tsangl®l; see Appendix B.B and Figure B-2.

P = zglo(\/&?erfi(l—zgz)—ﬁ)

v=0.073 N/m
B =—0.3344
o=043

bave = 0.2836 yum

Boundary conditions:

bottom: air injection rate: 1072 kg/s

top: P,=P,=10°Pa=1bar
(Peap = 0)

Initial conditions:

temperature: 10°C

pressure: hydrostatic pressure gradient

gas saturation: no air present
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TABLE B-2: Sensitivity studies.

Case Variation

=t

stronger capillary pressure, with air entry effects
(Narasimhan et al.]; see Figure B-10)
parameters: ICP =3, P, =5 x 10° Pa,

S =03, vr=1.0, P, =2x10° Pa

2 no capillary pressure
P.=0

3 Grant’s relative permeabilities
(Grant!®l; see Figure B-14)
parameters: IRP = 4;
other specifications as in reference case

4 strong interference relative permeabilities
(see Appendix B.C and Figure B-15)
parameters: IRP = 9;
other specifications as in reference case

5 intrinsic permeability £ = 2 X k,.¢;
other specifications as in reference case

6 intrinsic permeability k£ = 0.5 X k;.s;
other specifications as in reference case

7 pOrosity ¢ = 2 X @res;
other specifications as in reference case

8 porosity ¢ = 0.5 X ¢y.y;
other specifications as in reference case
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TABLE B-3: Results of sensitivity studies.

Case F,... time Gas breakthrough
(bars) | (seconds) | time (seconds)
reference | 37.98 | 0.72 x 108 0.67 x 10°
1 39.38 | 0.93 x 108 0.69 x 10°
2 37.21 | 0.72 x 108 0.66 x 10°
3 35.18 | 0.29 x 108 0.19 x 10°
4 93.55 | 59 x 10® 3.8 x 10°
5 28.96 | 0.36 x 10® 0.49 x 10°
6 50.79 | 1.00 x 10® 0.94 x 10°
7 37.88 | 1.8 x 108 1.3 x 10°
8 37.95 | 0.36 x 10° 0.34 x 10°

TABLE B-4a: Behavior of fracture
capillary pressure for S; — 0.

Sy P,

(Pa)
10~* | —0.1253 x 10°
10~% | —0.2151 x 108
1076 | —0.3489 x 108

TABLE B-4b: Behavior of fracture
capillary pressure for Sy — 1.

S P,
(Pa)
1—10"* | —0.7936 x 10*
1-10"% | —0.4622 x 10*
1—10"% | —0.2850 x 10*
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TABLE B-5: Numerical check of fracture capillary pressure function.

by log,i/i_ﬁ erf (b_gt(,%’ztﬁ) S (bp) F Clanal.] (b5) P, c[mm.l(bp)
(pm) (Pa) (Pa)
05 | —1.5902 97546 0123 | —2.9 x 10° | —2.945 x 10°
1 | —1.0952 .87851 0607 | —1.5 x 10° | —1.457 x 10°
2 | —.6002 .60543 197 | —7.3 x 10° | —7.328 x 10°
332 | —.2382 26357 367 | —4.4 x 10° | —4.411 x 10°
6 1844 .20530 592 | —2.4 x 10° | —2.503 x 10°
8 .3899 41874 695 | —1.8 x 10° | —1.902 x 10°
1.0 5492 56249 781 | —1.5 x 10% | —1.462 x 10°
2.0 | 1.044 .86017 930 | —7.3 x10* | —7.309 x 10*
3.0 | 1.334 .94097 971 | —4.9 x 10* | —4.895 x 10*
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FIG. B-1: Schematic of flow system for gas migration studies.

241

VRSN Aot - et S At ™ Sl B 4 TR 7 I AN 100 3" 1 Oy eied Mk F vt i B AT SR A+ 'y S MG T M M | U e st o L e



108
107 F
g_‘i 106 F
o
3
2 osEn
Q.
o
@ :
S 104
O
O
b
102

Liquid saturation

FIG. B-2: Capillary pressure of rough-walled fractures with log-normal aperture distribution.
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FIG. B-3: Two-phase relative permeability curves (after Corey, 1954).
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FIG. B-4: Simulated gas saturation in injection grid block for reference case.
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FIG. B-5: Simulated gas pressure in injection grid block for reference case.
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FIG. B-6: Simulated gas saturation profiles for the reference case at different times.
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FIG. B-7: Gas pressure profiles for the reference case at different times.
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FIG. B-8: Simulated advance of the gas front for the reference case.
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FIG. B-9: Simulated rate of liquid outflow at the top of the column.
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FIG. B-10: Capillary pressure functions used in sensitivity studies.
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FIG. B-11: Sensitivity of gas pressures in injection block to variations in capillary pressure.
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FIG. B-12: Sensitivity of gas saturation in injection block to variations in capillary pressure.

252

109



100

Height (m)

80

60

40

20

|
: : O Casel
e e eiirenaas I y ......§ ............................. ;....... Reference Case .
: e No capillary pressure

| | |
0.1 2.1 4.1 6.1

Time (sec) * 108

FIG. B-13: Advance of gas displacement front for different capillary pressures.
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FIG. B-14: Grant’s relative permeabilities compared with Corey’s curves used for the reference case.
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FIG. B-15: Relative permeabilities with strong phase interference compared with Corey’s curves.
Note the logarithmic scale.
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FIG. B-16: Sensitivity of gas pressures in injection block to variations in relative permeability.
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FIG. B-17: Sensitivity of gas saturations in injection block to variations in relative permeability.
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FIG. B-18: Sensitivity of gas front advance to variations in relative permeability.
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FIG. B-19: Sensitivity of gas pressures in injection block to variations in absolute permeability.
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FIG. B-20: Sensitivity of gas front advance to variations in absolute permeability.
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FIG. B-21: Sensitivity of gas saturations in injection block to variations in absolute permeability.
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FIG. B-22: Sensitivity of gas saturations in injection block to variations in porosity.
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FIG. B-23: Sensitivity of gas pressures in injection block to variations in porosity.
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FIG. B-24: Sensitivity of gas front advance to variations in porosity.

264



108

107

106

109 f

104

Capillary pressure (Pa)

103 E

102

Liquid saturation

FIG. B-25: Fracture capillary pressures for log-normal aperture distribution.
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FIG. B-26: Capillary pressure functions for three geologic media (after Wiborgh et al., 1986).
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FIG. B-27: The error function.
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FIG. B-28: Fracture capillary pressures for different values of variance 0.
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