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ABSTRACT

This report, the seventh in a series on the evaluation of several chemical sensors for use in the
U.S. Department of Energy’s (DOE’s) site characterization and monitoring programs, concentrates
on the potential use of chemometrics techniques in analysis of sensor data.

Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods
that employ formal logic to:

* design or select optimal measurement procedures and experiments and

* provide maximum relevant chemical information by analyzing chemical data.

The report emphasizes the latter aspect. In a formal sense, two distinct phases are in
chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis
phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to
add a third aspect—the independent validation and verification phase. In practical applications,
such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in
chemometrics are: |

* establishing the necessary infrastructure (to manage sampling records, data handling, and data
storage and related aspects),

* exploring data analysis, and

* solving calibration problems, especially for nonlinear models.

Chemometrics techniques are different for what are called zeroth-, first-, and second-order
systems, and the details depend on the form of the assumed functional relationship between the
measured response and the concentrations of components in mixtures. In general, linear
relationships can be handled relatively easily, but nonlinear relationships can be difficult. These
difficulties are the subject of a great deal of current chemometrics research.

The applications of chemometrics techniques in the analysis of mixtures using arrays of chemical
sensors has met with some success, but almost all of the published work is based on a great deal
of a priori knowledge about the qualitative and quantitative characteristics of the mixtures being
analyzed (such mixture problems are called “white”). By contrast, a priori knowledge about most
of the real-world DOE ERWM problems is likely to be very meager, approaching what has been
called a “black” mixture problem, implying no a priori qualitative or quantitative knowledge.
Black problems have been tackled using the hyphenated analysis techniques of analytical
chemistry.

Chemometrics has significant potential in solving DOE’s ERWM analytical chemistry problems,
but determination of the validity of this opinion requires that a chemometrics capability be
established and used to tackle the real problems (i.e., no set of “chemometrics lore” exists from
which one can learn whether the techniques would work for any given problem). A syllogism
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expresses the sitnation: if you want real answers to chemometrics analysis problems, you must
pose real problems. If you want to evaluate the methods, you must try them. If you want the
benefits of chemometrics, you must have a well-equipped and active chemometrics team.

The authors recommend establishment of advisory panels tasked to plan coordinated programs
for sensor array and chemometrics developments. In addition, it is suggested that a research
program be established to carry out mixture analysis research for the various types of DOE
ERWM problems.
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SUMMARY

The status of chemometrics applications to the Department of Energy’s (DOE’s) Environmental
Restoration and Waste Management Program’s (ERWM'’s) problems can be summarized as
follows:

e The multivariate analysis methods in chemometrics, together with all the appropriate
statistics, instrumentation, and engineering — including systems engineering and computer
technology — are the only choice for which there is any real hope of solving the ERWM-type
problem.

* Many analysis methods suited to environmental problems exist and await application.
Application requires creation of certain infrastructure, but potentially many advances can be
made by tackling the problem.

» The difficulty of judging the efficacy of analysis methods and the lack of “ground truth” in
chemometrics is a strong argument for implementing a dedicated chemometrics analysis effort
that is tasked to evaluate the methods and validate the answers.

* A dedicated chemometrics effort may be able to determine which currently available analysis
methodologies can provide the results needed for particular types of ERWM problems.
The following syllogism says it well.

* If you want real answers to chemometrics analysis problems, you must pose real problems.
If you want to evaluate the methods, you must try them. If you want the benefits of
chemometrics, you must have a well-equipped and active chemometrics team.

Recommendations include the following items:

* Establish a sensor development advisory panel tasked to recommend a program for
development of sensor arrays for DOE’s problems,

* Establish a sensor systems chemometrics advisory panel to recommend a chemometrics
development program closely coordinated with the sensor array development program,

* Initiate a research program to extend mixture analysis research to consideration of real-world,
highest priority ERWM problems.
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1. INTRODUCTION

This report is the seventh in a series of analytical studies performed by Advanced Sciences, Inc.,
under a subcontract with the Hazardous Waste Remedial Actions Program, managed by Martin
Marietta Energy Systems, Inc., for the U.S. Department of Energy (DOE). The primary purpose
of the overall project is to evaluate the various types of chemical sensors that might be useful
in the DOE’s Environmental Restoration and Waste Management (ERWM) work. This objective
is being approached in a series of tasks; this report is the results of Task 7.

The first five task reports (1, 2, 3, 4, and 5) contain reviews of pertinent literature and the results
of interviews with researchers and manufacturers of the various types of chemical (and
biochemical) sensors: acoustic (previously called piezoelectric), electrochemical, and fiber-optical.
In addition, the reports include surveys of radiological analyzers and instrumentation and special
detectors used in what we called field-portable gas chromatographs.

This report is the second in the series that is not directly concerned with the sensors themselves.
The sixth report (6) contains information about the possible uses of cone penetrometers for DOE
ERWM site characterization problems. This seventh report addresses what is a crucial part of
analytical chemistry problems (regardless of what sensors or instruments are used in the analyses)
— namely, the various techniques that have been developed for analysis of analytical chemistry
data. These techniques are part of the field that, according to a world-recognized expert, Massart
(7), was named chemometrics in 1972. According to Massart,

“ ... chemometrics, . . . which can be defined as the chemical discipline that uses
mathematical, statistical, and other methods employing formal logic (a) to design or
select optimal measurement procedures and experiments and (b) to provide maximum
relevant chemical information by analyzing chemical data.”

Some remarks in Chapter 4 are about the first of the two listed aspects of chemometrics, but the
majority of this report is about the second aspect.

This report takes as a basic programmatic assumption that those DOE personnel who are involved
in technology development for ERWM work include as part of their responsibility the
development of chemometrics techniques for specific applications to ERWM problems involving
chemical sensors and advanced analytical chemistry instruments.

In an attempt to develop a better understanding of the subject, we suggest the following scenario.
We imagine a person who has been given responsibility for cleanup of some specified site (or
distinct area at a larger site). That person’s responsibility is to determine the three-dimensional
distribution of the concentrations of some list of contaminants, to plan and then carry out the
remediation of the area, and to do whatever is necessary to validate that the site has been
“cleaned up” (i.e., that the imposed criteria have been met). Focussing only on the analytical
chemistry problem (i.e., a three-dimensional mapping of the concentrations of a list of chemicals),
in general three different types of analytical chemistry tools can be used. In a very few instances,
highly selective chemical sensors may be used. In more instances, there will be situations in
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which arrays of chemical sensors can be used. Finally, there is both the field analytical laboratory
and the more extensively equipped central analytical chemistry laboratory. In each of these
instances analytical chemistry data are to be analyzed. This report summarizes the applications
of chemormnetrics in such a scenario.

In a general way, chemometrics consists of two phases: the exploratory data analysis phase and
the calibration and prediction phase. These aspects of the problem are discussed in Chapter 2.

Chapter 3 includes reviews of several papers devoted to the use of chemical sensor arrays. Three
types of arrays are reviewed: electrochemical sensor arrays, semiconductor gas sensor arrays, and
surface acoustic wave sensor arrays. In addition, we mention what is a very important
consideration for DOE ERWM work, the so-called “white, grey, black” mixture analysis problem
(8), where “black” denotes no knowledge of chemical composition or concentrations in a sample,
and “white” denotes that all chemical components are known and it is also known that the
concentrations of the analytes of interest are within the range covered by a complete set of
calibrations that can be carried out. As will be evident, all — or almost all — real samples in DOE
ERWM work are either “black™ or some shade of “grey.”

Chapter 4 includes remarks, conclusions, and recommendations.

At the end of each chapter is a list of references cited in that chapter; however, the lists do not
include articles reviewed in the chapter. Bibliographies relevant to Chapters 2 and 3 are presented
in Appendix A and B, respectively.

1.1 REFERENCES

1. Literature Search, Review, and Compilation of Data for Chemical and Radiochemical
Sensors — Task 1 Report, DOE/HWP-130, Hazardous Waste Remedial Actions Program
Oak Ridge, TN, January 1993.

2. Literature Search, Review, and Compilation of Date for Chemical and Radiochemical
Sensors — Task 2 Report, DOE/HWP-133, Hazardous Waste Remedial Actions Program,
Oak Ridge, TN, April 1993.

3. Chemical Sensor R&D Status Based on Research and Industrial Interviews — Task 3
Report, DOE/HWP-138, Hazardous Waste Remedial Actions Program, Oak Ridge, TN,
October 1993.

4. Literature Search, Review, and Compilation of Data for Biosensors and Thermal Sensors
— Task 4 Report, DOE/HWP-144, Hazardous Waste Remedial Actions Program, Oak Ridge,
TN, December 1993.

5. Literature Search, Review, and Compilation of Data for Gas Chromatography Sensors and
Electrochemical Sensors — Task 5 Report, DOE/HWP-148, submitted to Hazardous Waste
Remedial Actions Program, Oak Ridge, TN, January 1994.
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6. Review of Instrumentation and Sensors — Cone Penetrometer Applications — Task 6 Report,
DOE/HWP-149, submitted to Hazardous Waste Remedial Actions Program, Oak Ridge,
TN, April 1994,

D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte, and L. Kaufman,
Chemometrics: A Textbook, Volume 2 of the series Data Handling in Science and
Technology, Series Editors B. G. M. Vandeginste and L. Kaufman, Elsevier, New York,
1988.

Y.-Z. Liang, O. M. Kvalheim, and R. Manne, “White, Grey and Black Multicomponent
Systems. A Classification of Mixture Problems and Methods for Their Quantitative
Analysis,” Chemom. Intell. Lab. Syst. 18 235-250 (1993).
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2. CHEMOMETRICS SUMMARY

As mentioned in Chapter 1, this chapter is a summary of information about the second aspect of
the definition of the field of chemometrics (i.e., “to provide maximum relevant chemical
information by analyzing chemical data”). By way of explanation, it is important to remember
certain terminology; zeroth-order, first-order, and second-order measurement systems; and
univariate and multivariate data analysis techniques.

2.1 TERMINOLOGY

Imagine an analytical chemistry experiment in which a pH electrode is used to measure the pH
of an aqueous sample. Assuming good laboratory practices are followed, the result of a pH
measurement on a sample is a single number. Such a measurement system is called zeroth-order
(the result is a scalar quantity), and the data analysis techniques used are called univariate
techniques.

Another example of a zeroth-order system would be an optical measurement of sample
transmittance or absorptance performed over some relatively narrow wavelength range. In this
example, the result of the measurement is either a difference or a ratio of transmitted light
intensity measured with and without the sample interposed between light source and light
detector. Again, for each sample, a single number is the result of the measurement.

However, if in the optical measurement system we use some instrument that can change the
wavelength of light incident on the sample, we imagine producing a set of number pairs, each
pair being a number related to transmittance or absorbance and a number that specifies the
wavelength. Such a system is called a first-order system (the result of a measurement is a vector),
and the data analysis techniques used in this and more complex situations are called multivariate
analysis techniques. Note that this same situation would hold regardless of how many different
kinds of molecules are present in the sample; the result is still 2 vector composed of response and
wavelength elements.

Again, assuming good laboratory measurement practices, if we imagine using a set of chemical
sensors each of which is partially selective (i.e., a given sensor response depends on the
concentrations of two or more chemicals) then the result of a measurement for each sensor is a
vector, and the set of data for all sensors is a matrix. This is yet another example of a first-order
measurement system.

To continue the terminology explanation, if we imagine an optical analysis system in which the
chemical composition of the sample whose spectrum is being measured is made to change in
some controlled fashion, say in time as the result of passing some sample through a
chromatograph, then clearly the spectrum would change with time. [We also suppose that the
measurement of a spectrum over whatever wavelength range is of interest can be performed in
a time interval that is short compared with the time rate of change of composition (i.e., the efflux
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rate from the chromatography tube)]. In this situation, the measurement system is called a
second-order system, and multivariate analysis techniques are required in the data analysis.

The example described just above is one of several different techniques called “hyphenated
techniques.” Other examples of second-order/hyphenated systems are gas chromatograph
(GC)-mass spectrometer (MS), GC~ion-mobility spectrometer (IMS), MS-MS, even GC-IMS-MS,
[which could instead be a liquid chromatograph (LC)]. Several other well-known examples that
involve various types of optical spectroscopy exist.

To summarize, univariate data analysis (implying one independent variable) is used for zeroth-
order systems and multivariate analysis (more than one independent variable) is used for first-
and higher-order systems. Second-order (and higher-order) systems are the subject of much
current chemometrics research, but our reviews do not include systems higher than second-order.

2.2 EXPLLORATORY DATA ANALYSIS

It seems highly likely that almost all of DOE’s ERWM analytical chemistry problems will be
first- or second-order. Only very few, if any, problems can be solved by zeroth-order
measurements. The principal factor in this conclusion is the belief that there will almost always
be some chemical present in a real-world sample of interest that was not included in calibrations,
and that this interferent will make some (unknown and unknowable) contribution to the measured
response. But even if not invalidated by some interferent, then a great deal of knowledge may
be required to know under what conditions of temperature, pressure, . . . and others of a long list
of environmental parameters the system used would produce reliable results. Consequently, a
problem in the real world may not be amenable to analysis by univariate methods.

For simplicity, we assume an analyst has generated a data set of measurements made using
several partially selective sensors, seeking to develop the details to provide determination of the
concentrations of some set of chemicals. The techniques of exploratory data analysis (EDA),
which are mostly graphical rather than statistical computations, are applied to such data sets. One
goal of EDA is to free the data set from any a priori assumptions and preconceptions that might
be imposed and to attempt to derive unexpected relationships between data elements. Three
different but unusually instructive analyses that show the power of graphics in data exploration
follow. -

1. J. Mandel, “Data Analysis With Minimal Assumptions,” J. Chemom. 6 247-255 (1992).

According to Mandel, one point of view about graphical exploratory data analysis is that by
making properly conceived graphs, one can provide information “. . . that is both detailed
and comprehensive about data. They have the further advantage of allowing the data analyst
to decide what further analysis, if any, should be carried out. It is our contention that the use
of computers in data analysis should consist of making the graphs appropriate to the data.”

2. R. R. Megien, “Examining Large Databases: A Chemometric Approach Using Principal
Component Analysis,” J. Chemom. 5 163-179 (1991).
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Meglen discusses another point of view, namely that graphical tools, principal component
analysis, and factor analysis can be judiciously combined to allow the objective selection of
“information rich” plots from the multitude of possibilities. This approach is suggested as
an antidote to the “shotgun approach” and massive efforts to design and assemble
instrumentation; emphasis should be on the effort to design the experiment for optimal
information extraction. The use of principal component analysis in this paper is
“demonstrated in an application that required a multivariate approach to exploratory data
analysis.” Meglen makes the point that as “the scientific investigations become more
complex, it becomes increasingly important to apply techniques that are as interpretationally
sophisticated as the measurement instruments” and that “the appropriate instruments of
reasoning must be assembled if data are to be fully exploited.”

3. C. Weihs, “Multivariate Exploratory Data Analysis and Graphics: A Tutorial,” J. Chemom.
7 305-340 (1993).

This article is a tour de force: a review article that builds tools from graphical subtools,
illustrates their power and their usage on a graphics computer, and uses prediction as well
as a demonstration of exploratory data analysis. This article is also a tutorial. The paper
includes a quotation from the person considered by many statisticians to be the “father” of
exploratory data analysis, J. W. Tukey. Weihs states:

“. . . (Tukey) claimed that exploratory data analysis, properly understood, ‘is based on
the principle that it is important to understand what you can do before you learn to
measure how well you seem to have done it . . .”

2.3 CALIBRATION AND PREDICTION

We assume that appropriate EDA has been performed for some data set with the conclusion that
the planned analysis method has some reasonable chance of achieving the desired results. The
next step is to develop a model that expresses the functional relationship between the
concentrations of the analytes of interest and the responses of the set of sensors we assume. With
that model chosen, the analyst must plan a set of calibration measurements and get the results
from those calibrations. Chemometricians refer to this step as deriving the “training data set.”
Following successful completion of this phase (i.e., the model has been defined), the final
measurement step is the measurements on real samples, followed by application of the model
derived in the calibration phase. This latter phase is sometimes called the prediction phase of
a chemometrics problem.

It will frequently be the case that the predictions indicate that the model used is inadequate in
some way (e.g., the predicted concentrations lie outside the range of concentrations used in the
calibration data for the model) or the predictions suggest unacceptable drift in the sensor
response. In such a sitvation, it may be necessary to repeat the calibration phase and develop a
better model. It is not uncommon to perform many iterations through these different phases to
achieve best results.
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As will be seen in some examples reviewed in Chapter 3 and as discussed at considerable length
for many types of sensors by Vaihinger and Gopel (1), the particular form of the functional
relationship can have an important effect on the uncertainties associated with predicted
concentrations. For example, when using semiconducting metal oxide gas sensors, one can choose
to measure either (a) the difference in conductivity (resulting from testing the sample), (b) the
ratio of conductivities, or (c) several other quantities. The particular form chosen, one would
suppose, would best be chosen from consideration of the basic mechanisms by which the sensor
operates. However, for chemometrics purposes, almost any functional form can be assumed and,
for mathematical simplification, it is quite common to assume that the response of a given sensor
depends on some linear combination of responses from the separate chemicals in the mixture. In
addition, the analyst must keep in mind the possible or likely interferents in the analysis. In a
logical sense, there are two kinds of interferents to consider: modeled interferents are those
unknown chemical species present in the calibration sample set to which the sensors responded,
and unmodeled interferents are chemical species that may not be present in the calibration
samples that generate an “interfering” response or in some other way interfere with the
measurement result.

The following is a formal discussion of the calibration problem for zeroth- and first-order
problems.

2.3.1 Calibration in Univariate Analysis

Univariate data analysis is applied when measurement data are obtained from a zeroth-order
measurement system, as mentioned above. In this case the response is a function of only one
variable, say the concentration of an analyte of interest; for example,

r = f(¢),

where r denotes the response measured and c is the analyte concentration. This functional
relationship will apply over some range of concentrations — perhaps a relatively narrow range,
perhaps a very broad range. Suppose the concentration range of interest is an interval, say [c,,C,],
as determined by other analyses from a certain set of samples. The analyst would first do
graphical analysis of a measurement set obtained from calibration samples. It may be that the
graph of r as a function of ¢ looks linear in the range [c,,c,], in which case the “model” used
might be expressed as

r=ac+Db.

On the other hand, perhaps a non-linear relationship appears to be better, in which case the
“model” might be expressed as

r=dc’ +ec+g.
Regardless of the functional form, the calibration problem is to find the appropriate unknown

parameters for the assumed functional relationship [(a,b) or (d.e,g) in the examples here] to arrive
at a way to predict concentrations from measured responses from other samples. The model will
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be useful to the extent that it can usefully extend or fill in knowledge of concentrations not
included in the calibration data set. For the linear model, the result is trivial (i.e., having
determined a and b from calibrations),

c* = (r* — b)/a, where the * denotes a new sample, not a calibration sample.

a. Regression and correlation

Clearly, one needs two or more measurements to fit a straight line. If the calibration data set has
many points, then a systematic way of finding the parameters (a,b) is desirable: a very common
approach is the ancient and efficient least squares regression. It is important to note here that we
have found only a few chemometrics papers that discuss procedures for handling the propagation
of errors in measurements. An obvious exception is the case of least squares regression for linear
functions.

b. Inherent Limitations of Univariate Analysis

For this type of analysis to be useful, the measuring instrument (sensor or whatever is being
used) response must in fact depend on only one variable — we assume concentration in this
example, but in most examples of electrochemical sensors the variable would be activity. If the
instrument is a chemical sensor, it must be highly selective.

If such is not the case, it may be possible to separate the analyte of interest from interferents in
a controlled and quantitative process (i.e., physical resolution may be used to solve the

- interference problem). Another way might be to use a more selective instrument; for example,
in an optical photometric analysis one might use a narrower wavelength range to select a narrow
band absorption feature of the molecule of interest. This approach is an example of what is
sometimes called improved instrument response resolution.

But if an interferent is present in the calibration samples, there is no way in univariate calibration
to detect the error. As a result, the predictions will be in error if the analysis is applied to a
sample where either (a) the interferent is missing, or (b) the interferent is present at a
significantly different concentration, or (c) other interferents are present.

2.3.2 First-Order Calibration
A first-order system is one that produces a measurement data set consisting of vectors, one vector

for each sensor when several sensors are used.

In these situations, multivariate calibration techniques can remove the necessity for complete
selectivity or complete resolution, provided that a calibration set of responses is available. We
suppose that the calibration data set has the following properties:

» every chemical species of interest is represented in the response data set, and

* the concentrations (or activities, etc., as appropriate to the sensor) of each of the analytes of
interest are known for the calibration data set.
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Under these conditions, multivariate calibration techniques usually work well and provide
excellent results. The various techniques have as their goal the determination of what is called
the inverse calibration matrix. For linear functional relationships between response and
concentrations, the methods are straightforward. However, often great difficulty and complexity
occur when the functional relationship is other than linear. The interested reader should review
the chemometrics literature — see Appendix A.

The main first-order calibration methods and the formulas for matrix inverses required are given
in the paper by Sanchez and Kowalski (2), along with illuminating comments and comparisons
of the methods and their relative strengths and weaknesses. The methods discussed are:

» multiple linear regression by least squares (MLR),
* principal components regression (PCR),

* latent root regression (LRR),

» ridge regression (RR), and

* partial least squares (PLS).

2.3.3 Second-Order Calibration

In some instances, second-order data sets can be unfolded (3) so that first-order calibrations can
be applied. One example of such a system would be a GC-MS in which the chromatograph
column packing and the composition of the sample are such that a clean chromatographic
separation is achieved for all components of the mixture before mass spectrometric analysis. In
such cases, the analysis is more complicated than direct first-order calibration, but the technique
can provide quantitative concentration data for modeled interferents and can detect unmodeled
interferents, but concentrations of unmodeled interferents cannot be determined.

Techniques for more complex second-order calibrations — properly called tensorial calibration —
depend very strongly on whether or not the data are bilinear. An example of a second-order
bilinear data set would be produced by the hyphenated system LC-UV (liquid chromatograph —
ultraviolet spectrometry). These techniques can compensate for both modeled and unmodeled
interferents under very special conditions described in the papers listed in Appendix A.
Difficulties met in trying to solve the second-order bilinear calibration problem have had a
damping effect on the earlier optimistic view about the many successes anticipated in applications
of chemometrics to complex analytical chemistry problems.

Even further afield from solving real analytical chemistry problems, if the second-order data are
not bilinear, the problem is very much more complex and difficult (see Appendix A). According
to Sanchez et al. (4), generalized rank annihilation methods (GRAM) have been successfully
applied to several bilinear data sets (e.g., LC-UV). However, for application to nonbilinear data
sets, GRAM requires modifications.
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2.4 STATUS OF TOOLS FOR ANALYSIS
The following books contain useful information.

Four textbooks are commonly cited. Each book provides a different orientation to software for
learning the techniques involved, which is the recommended way to approach chemometrics.

1. R. G. Brereton, Ed, Multivariate Pattern Recognition in Chemometrics, Illustratéd by Case
Studies, Elsevier, New York, 1992.
The principal subjects treated are
» multivariate data display and the software SPECTRAMP,
» principal component analysis (PCA),
* PCA cross-validation and the F-test using SIMCA and SIRIUS software, and
* exploratory data analysis and hard modeling using PARVUS software.

2. E.R.Malinowski, Factor Analysis in Chemistry, 2nd edition, Wiley-Interscience, New York,
1991.

This book has two distinct parts: (1) a textbook on factor analysis and (2) a software toolkit
based on the MATLAB software package. In the textbook, the main subjects are

» eigenvalue analysis with the TARGET 90 program,
» iterative key set factor analysis,

e PCA and binary cross validation,

* rank annihilation factor analysis, and

* uniqueness tests and miscellaneous subjects.

The MATLAB toolkit includes
» significance factor analysis (MATLAB code provided),
» target factor analysis (with MATLAB code),
* loading factor analysis (with MATLAB code), and
¢ other do-it-yourself MATLAB programs.

3. D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte, and L. Kaufman,
Chemometrics: A Textbook, Vol. 2 of the series Data Handling in Science and Technology,
Series Editors, B. G. M. Vandeginste and L. Kaufman, Elsevier, New York, 1988.

The main parts of interest in this well-known textbook are

» general statistics package with the BALANCE program,
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* principal components and factor analysis,
* hard and soft modeling, and

* supervised pattern recognition.

4. M. Meloun, M. Militky, and M. Forina, Chemometrics for Analytical Chemistry, Volume 1:
PC-Aided Statistical Data Analysis, Translation Editor, Dr. M. Masson, Ellis Horwood, New
York, 1992.

Two other even more specialized books are:

5. G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, 1985. '

6. C. R. Rao, Generalized Inverse for Matrices and Its Applications in Mathematical Statistics,
Research Papers in Statistics Series, Festschrift for J. Neyman, F. N. David, Ed, John Wiley,
New York, 1966.

2.5 STATUS OF THE FIELD OF CHEMOMETRICS

This section includes reviews of several journal articles that provide a variety of insights into the
history, current research activities, and other aspects of chemometrics. '

2.5.1 General Perspective of Chemometrics

Chemometrics is an emerging multidisciplinary field of research. The disciplines being drawn
together, in addition to the dominant chemistry, are mathematics, statistics, and engineering. To
these should be added a term to signify the “computing component,” but the words computer
science, which rarely seem appropriate, seem especially wrong in this context. Through all of
these individually, and through chemometrics separately, run the influences, trends, and forces
affecting every human enterprise.

According to Geladi and Esbensen, who launched a chemometrics history project (5), the activity
of chemometrics is a specific part of chemistry that is based on a large number of successful
applications. Since its origin in the early 1970s, it has had a significant impact on academic,
industrial, and educational environments in chemistry. To summarize and oversimplify, the key
to understanding the chemometrics phenomenon is the applications of mathematics made possible
by the digital computer.

The “queen” of the chemometrics imports from mathematics is linear algebra. The theorems and
techniques of this elegant part of mathematics are very basic to chemometrics applications. For
chemometrics it is probably not overstating the case to draw a parallel between the importance
of the concept of multivariate space and the importance of the concept of coordinate systems that
was introduced into 17th-century European mathematical analysis by Descartes. Chemometrics
has benefitted, too, from applications of mathematical techniques to the social sciences, and
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especially from the applications of mathematics and statistics to psychology in the 1950s and
1960s.

Simply put, the status of chemometrics is the status of the techniques used to solve the problems
that have so far been addressed. This assessment implies that a new type of problem, such as
may arise implicitly in the DOE ERWM work, may not have a ready solution “lying on the
shelf” in chemometrics. When this is the case, the clear imperative is to start to work on the
problem. Even when there may be an off-the-shelf solution to a problem, it may not be found
for a variety of reasons. The most important aspect of tackling a problem is the problem
definition, which requires development of a very detailed understanding of the real-world needs
and the real-world environment so that the problem can be formulated in a meaningful way.

Another force in shaping chemometrics has been instrumentation development. Put very simply,
developments in instrumentation gave applied chemists a task analogous to “drinking out of a fire
hydrant” — new instrumentation provided much more data than anyone could analyze or manage.
Increasingly sophisticated instruments always follow increased transducer resolution and advances
in data acquisition and data processing. Advances in data storage technology, communications,
and data compression provide increasingly overwhelming amounts of data from which the analyst
must derive insights and solutions to problems.

The tools chosen for the analyses reflect the capabilities and limitations of the human users.
Pattern recognition and graphical presentation of data play an essential role in providing
geometrical insight to creatures limited to two or three dimensions as they attempt to navigate
in multidimensional geometrical spaces whose intrinsic dimensionality exceeds that of the analyst
by orders of magnitude.

The term “data reduction” is seldom heard these days: modeling, analysis, and data compression
are the methods now applied to reduce the data glut. Multivariate analysis is built on the edifice
of matrix computations, which includes many complexities and surprises as well as pitfalls that
might well be expected in an environment whose dimension is larger than the usual two, three,
and four (with time) dimensions of ordinary human life.

One of this report’s authors, after reading quite a bit of the reasonably current literature and
interviewing several researchers, has the following observations.

* Among some workers (but not among those interviewed), there is evident a somewhat
cavalier attitude towards the essential mathematical facts and rigorous approach that a
mathematically oriented, real-world problem solver would like to find. However, there is
validity in the proposition that so long as one is firmly grounded in reality, because of the
nature of the problem and the luxury of unequivocal tests of validity, one may sacrifice rigor
and emphasize intuitive understanding with no sacrifice exacted by the “gods of science.”

* To summarize, chemometrics is a very healthy field, so long as one remains problem-oriented
and firmly in touch with reality through real-world test and evaluation.

* It may be useful to note that in a young, multidisciplinary field, tradeoffs will always be
required. In the case of chemometrics, consider for a moment just four of the disciplines
involved: chemistry, mathematics, statistics, and engineering. (One could add computing, but
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that would be considered infrastructure like buildings, transportation, and food markets that
provide the essentials of life from agriculture.) It would be too much to expect that any one
person would become an expert in all four disciplines. Consequently, the imperfections
mentioned are inevitable, but proper attention to these aspects is important for those who
must, of necessity, delve into the field to learn how to apply chemometrics to real world
problems.

2.5.2 Towards Statistical Discipline and Data Stewardship Standards

In this section we include reviews of three articles that address, directly or peripherally, issues
of rigor, attempts to control or eliminate subjectivity, and preservation of the requisite
information when reporting and treating data and their analyses.

1. S. Wold and P. Geladi, “Editorial: The Importance of Raw Data,” Chemom. Intell. Lab. Syst.
22 1-2 (1994).

The essence of this paper is summarized in the following outline.

¢ Some of the Problems
— Lack of adequate documentation and explanation of raw parameters and raw
experimental data sets
— Lack of mention/description of preprocessing of raw data in preparation for
analysis
— Lack of a corpus of reference raw data comprising true test data for verification
and validation use ‘

* Some Suggested Solutions

— Data set count, variables, and any preprocessing should be flagged in the abstract
of an article.

— Data set size, parameters, and preprocessing should be fully described in an article
and the count and parameter details repeated a few times to provide a redundant
check on their availability and accuracy.

— Raw data should be published as appendices, whether or not the data sets are
candidates for standards.

— Reference data sets are needed for regression, not just for pattern recognition.
These could well include pattern recognition as a subtopic.

— Most importantly, there needs to be established a data base of large test data sets.
Standard data sets from statistics are typically poor for chemometrics because of
the traditional emphasis on large samples and few variables. For chemometrics
many of each are needed.

» The Need for Standards — The need to capture ground truth in the form of a database
of large chemometrics data sets is a complex but pressing requirement for the field.
Questions about the management of such a database and the security of the answers
to the questions would inevitably raise larger questions, but clearly this would provide
a valuable service for those analysts seeking to validate their analysis methods. The
economics of the validation exercise might also dictate an approach whereby a user
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of information might find it desirable to maintain such a facility for its own use, and
one explicitly designed for its own needs. An example is the use of standard tests for
quality assurance (QA).

2. T. Permutt, S. D. Eland, M. Moezzi, and S. C. Grosser, “Likelihood Techniques For
Interlaboratory Calibration in the National Stream Survey,” J. Chemom. 5 299-308 (1991).

3.

This paper makes the following points:

The need for QA and consistency in field survey programs is clear; the analysis
methods and measurement interpretations must be consistently applied.

Statistical methods of testing must be used to detect interlaboratory bias by means of
an audit program using field samples.

There is a need for detection of bias and correction for regional differences (e.g., from
the different sites) that are confounded with bias.

Results and conclusions include the following:

V. 1L

For some analytes, no bias exists.

For many analytes, a well-fitting interlaboratory bias calibration function was linear
over the range of concentrations of the audit samples, but the range was too small.

For some analytes, a multivariate approach to interlab (two labs) calibration of bias
is required, because a linear calibration seemed impossible.

It is recommended that random samples for audits come from the population of
interest and that the experimental design be revised to increase the information per
unit cost.

Dvorkin, “Data Processing in the Interlaboratory Test by Analysis of Covariance,”

Chemom. Intell. Lab. Syst. 22 127-146 (1994).

Dvorkin describes a series of statistical tests based on analyses of variance and covariance
for data collected from six laboratories. The data included results of both qualitative and
quantitative analyses of standard reference materials. The authors conclude that the analysis
of variance with scaling, using the ANOVA software, and the analysis of covariance, using
the ANCOVA software, complemented each other. Detailed analyses of the errors found
made improvements in the analysis procedures possible and suggest that the methods may
be useful for detecting errors in both clinical and analytical chemistry laboratories.
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2.6 SOFTWARE, COMMERCIAL AND OTHER
2.6.1 Commercial Software

a. MACSYMA

MACSYMA has been one of the two leading mathematical packages for a decade, the other
being MATHEMATICA. The two packages share the feature that they not only do mathematics,
but they support symbolic mathematics. The programs available cover a wide range of
mathematical techniques, including eigenvalue and eigenvector calculations. Neither tries to be
a general purpose statistical package, and their overlap with the latter is small.

A free demonstration diskette shows a limited set of capabilities, including a good (advanced)
tutorial on eigenvector algebra.

The minimal brochures are primarily promotional; they contain a list of mathematical capability
highlights. The program PC MACSYMA 417.125 is a subset of a program for mid-range
workstation computers and the VAX VMS or ULTRIX of Digital Equipment Corp.

VENDOR: MACSYMA Inc,,
20 Academy Street
Arlington, MA 02174-6436
Telephone: (617) 646-4550 or (800) 622-7962
Fax: (617) 646-3161 or (800) 622-7962

b. MATLAB

Because of the variations in requirements for analysis in the problem-driven field of
chemometrics, MATLAB has been a favorite. It is a programming language that targets
“technical concepts, design algorithms, and prototype solutions.” It is sometimes used to append
the code at the end of a technical journal article. A MATLAB advertisement states that it is “an
elegant language . . . rich with built-in functionality . . . [with] powerful GUI tools [that] let you
build intuitive, interactive displays” with sound and animation.

Reviews of the software are given in the following references:

C. H. Spiegelman, “Software Review, MATLAB and MATLAB Optimization Toolbox
(Macintosh Version),” Chemom. Intell. Lab. Syst. 19 128 (1993).

T. C. O’Haver, “Teaching and Learning Chemometrics with MatLab,” Chemom. Intell. Lab.
Syst. 6 95-103 (1989).

VENDOR: The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760
Telephone: (508) 653-1415
Fax: (508) 652-6284
E-mail: info@mathworks.com
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¢. MATLAB Toolboxes

Several MATLAB toolboxes have been developed that allow a potential user to avoid becoming
a MATLAB programmer. Some are available through MATLAB: these are “targeted, and include
symbolic math, image processing, and statistics. They require the MATLAB environment in
which to work.”

There is at least one chemometrics-targeted MATLAB toolbox: PLS_Toolbox, Version 1.3, by
Barry Wise is a fairly mature toolbox with a wide variety of MATLAB routines growing out of
Wise’s research activities. This software, in combination with the necessary MATLAB itself, may
represent the best approach to developing familiarity with chemometrics and capability in the
techniques because it seems to follow a coherent approach oriented to the mathematics rather
than to ad hoc solutions for specific problems.

According to the instruction manual, “PLS_Toolbox differs somewhat from other MATLAB
toolboxes in that it is the mathematical roots of the routines that tie them together, rather than
the intended applications.”

The manual is a valuable source in itself, including informative discussions of regression
methods, dealing with sensor issues, and including references to current literature. It is the
author’s “continuing education” project, and it is continually updated with new techniques and
routines.

VENDOR: Barry M. Wise
4154 Laurel Drive
West Richland, WA 99352
E-mail: bm_wise @pnl.gov

d. PIROUETTE

In contrast to MATLAB, PIROUETTE is a package that presents the user with tools for
multivariate data analysis without programming. It is an advanced and powerful capability. The
software company, InfoMetrix, considers itself a “leading developer of software products
employing pattern recognition techniques for the analysis of multivariate data sets in chemistry
and biotechnology.” Their goal is software that “will be completely integrated with
instrumentation to provide better solutions to complex problems in chemistry, engineering, and
other sciences.”

A free demonstration diskette of PIROUETTE Version 1.2 for MS-DOS systems includes an
initiation by walk-through of a data set to illustrate the capabilities in data exploration,
multivariate regression, calibration, and data presentation (plots). The demonstration comes with
a 50-page manual.

The brochure comes with high-quality technical notes, with references, chemometrics applications
overview, and applications notes.
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VENDOR: InfoMetrix
2200 Sixth Avenue, Suite 833
Seattle, WA 98121
Telephone: (206) 441-4696
Fax: (206) 441-0941
E-mail: infomtrx @halcyon.com

e. General Purpose Statistical Software
See the article: S. Canter, “State of the Art,” PC Magazine, May 11, 1993, pp 227-287.

- From time to time, personal computer magazines review commercially available general purpose
software packages. While the process of reviewing software is difficult and subjective, the
magazines do an admirable job of choosing factors, rating systems, comparing packages, and
formatting the results in a user-friendly fashion. Thirteen systems were rev1ewed in this recent
feature article, including some of the packages listed here.

f. SPSS

This package has been around a long time and has a large installed base. It won an “editors’
choice” in the magazine review mentioned in Item e. An excellent free demonstration diskette
is available for SPSS. '

The brochure suggests an interesting integration of data presentation with MaplInfo, the “desktop
mapping software,” that could be a powerful tool when combined with the data producing
software for managing a DOE cleanup program.

VENDOR: SPSS Inc.
12030 Sunrise Valley Drive, Suite 300
Reston, VA 22091
Telephone: (703) 391-6020
Fax: (703) 391-6002
E-mail: billr@spss.com

g. S-PLUS

This package affords an immediate capability by means of a large number of statistical tools,
while it is immediately possible to create custom analyses by using the built-in command
language. A detailed review is available in the following reference.

M. C. Denham, “Software Review, S-PLUS,” J. Chemom. 7 559-566 (1993).

h. STATGRAPHICS

This general purpose statistical analysis program consistently rates high for graphical capabilities.
It is one that also has needed capabilities that are unusual in general packages. S. Canter states
(Item e) that “STATGRAPHICS . . . Version 6, is an interactive program that artfully combines
statistics, graphics, and data manipulation. With just a few keystrokes, you can do a regression,
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plot residuals, and pop up a screen to create a new variable to be used in the next step of the
regression. The program is strong in graphics, quality-control procedures, response surface
graphs, time series analysis, and experimental design (an area addressed by few general statistics
packages).”

The program provides interactive outlier rejection, which “lets you plot data with a regression
line, highlight an outlying point, and see how the line would change with the point removed.”

The brochure includes examples of graphics produced.

VENDOR: Manugistics, Inc.
2115 East Jefferson Street
Rockville, MD 20852
Telephone: (301) 984-5123 or (800) 592-0050
Fax: (301) 984-5094

i. UNSCRAMBLER

This package is closely associated physically and theoretically with the Norwegian school of
chemometrics resident at Trondheim. As might be expected from pioneering innovators in
chemometrics who are thoroughly connected to real-world problems, the company, CAMO,
casually steps up to a convincing attempt to “do it all.” In addition to multivariate regression with
PLS and PCR, “UNSCRAMBLER has nearly limitless options for data handling, modeling, and
assorted graphics capabilities, including pseudo-three-dimensional plots.”

The first review cited at the end of this summary (by an academic researcher) complains about
“a user interface [that] does not feel like any other program I have used in the last few years.”
Nevertheless, the reviewer raves about the great manual, the included tutorial examples, and the
user’s group and its newsletter.

Recent CAMO brochures tout the addition of a neural net module. The reviews in hand are
presumably dated since they mention launch of a Version 5. The neural net module, Neural-
UNSC, which was to be released in March 1993, is “an add-on module for constructing Neural
Network models, which are combined with PCR or PLS models to solve systems with
nonlinearities.”

It is said that CAMO listens to its users and is committed to continual improvements. This
package certainly should be carefully evaluated as a possible tool. Unfortunately, no free
demonstration diskette is available. Instead, a 6-week trial installation is available from the
CAMO U.S.A. office (see VENDOR) for $100.00.

The brochure illustrations should calm any concerns about the user interface. The brochure also
indicates that Version 5 includes a high-quality capability in support of experimental design. The
experimental design description indicates implementation of the “classical approaches of Box,
Hunter, and Hunter and includes saturated designs for screening and optimization purposes for
up to 8 or 16 experiments, with blocking and the possibility to add center points. The program
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suggests low-cost experimental plans [sic] for 3-15 variables in fractional or full factorial
designs. . . . For 10-15 variables or more you may also use Plackett-Burman designs.”

In discussing response surface capabilities “. . . there is of course no limit on the number of
responses. Mixture designs will be implemented in 1993. The program shows you the pitfalls —
which main effects and interactions become confounded.”

Given the unique addition to UNSCRAMBLER of a neural net add-on module, which is
advertised as a measure taken for dealing with nonlinear data sets, the brochure, interestingly,
claims that by judicious use of PLS or PCR models as preprocessing, the risk of overfitting is
reduced or eliminated, resulting in smaller networks and faster processing.

Copious application notes are available to orient and instruct in the various techniques.
Furthermore, as a result of the active interest by Norwegian chemometricians, the user group
newsletters are said to be a rich source of current insights and give unusual access to these
workers. One reviewer found newsletter discussions, “How to detect and deal with nonlinearities”
by Tormod Naes and “Leverage correction and other validation methods” by Tormod Naes and .
Kim Esbensen, so enlightening that he used the material for a seminar.
The following list of some applications notes accompanied the brochure:

* Prediction of dioxines

* Predictions of concentrations: Spectroscopy

» Finding relationships by projections

» Handling overlap in spectra sets

* Production quality problem

* Design for a reaction
The previous software reviews were forwarded by CAMO along with the brochure and
application notes. The review references follow, with the caveat that the earliest is very dated
indeed. Howeyver, it may be of value in comparisons with other packages or with improvements

to the program itself. The track record supports the CAMO claim to be interested in the needs
of the users. Reviews are available in the following references.

D. Dahlberg, Software Review: UNSCRAMBLER II Ex Update, North American Chapter of
the International Chemometrics Society, Newsletter No. 6, April 30, 1993.

“Software Review: UNSCRAMBLER 11, Version 4.0,” Chemom. Intell. Lab. Syst. 19
269-275 (1993).

K. Helland, “Software Review: UNSCRAMBLER 1II, Version IL,” J. Chemom. 5 413-415
(1991).

9750.K03 — May 1994 2-16




Chapter 2 ’ DOE-HWP.153

VENDOR: CAMO
CAMO U.S. (Redwood Shores, CA), contact John Dibble
Telephone: (415) 598-9860
CAMO AS
Olav Tryggvasonsgata 24
N-7011 Trondheim, Norway
Telephone: 011 47 73 51 49 66
Fax: 011 47 73 51 42 57

2.6.2 Other Software (Shareware, Freeware, Bundled Bookware)

a. SCOUT

This is an excellent exploratory data analysis package in the public domain developed under
contract to the U.S. Environmental Protection Agency by Lockheed Engineering & Sciences
Company. SCOUT is the subject and tool of use for the following article.

M. A. Stapanian, F. C. Garner, K. E. Fitzgerald, G. T. Flatman, and J. M. Nocerino,
“Finding Suspected Causes of Measurement Error in Multivariate Environmental Data,” J.
Chemom. 7 165-176 (1993).

In the appendix of the article, SCOUT is described as “a small, multivariate, exploratory data
analysis package [whose] major statistical features include
* outlier testing and identification,

* estimating prediction intervals of “acceptable” values for the identified discordant
observations with standard multiple-regression techniques,

* principal components analysis,
* univariate tests of normality, and
* summary statistics.”
SCOUT for IBM compatible machines may be obtained by sending a formatted high-density

diskette and a self-addressed, postage-paid mailer to F. C. Garner, Lockheed Environmental
Systems and Technologies Co., 980 Kelly Johnson Drive, Las Vegas, NV 89119.
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3. APPLICATIONS OF CHEMOMETRIC TECHNIQUES
TO CHEMICAL SENSOR ARRAYS

This chapter contains short reviews of journal articles that describe research and development of
methods for analysis of mixtures using three different types of chemical sensors: electrochemical
sensors, tin oxide semiconductor vapor sensors, and surface acoustic wave devices. Section D
includes reviews of a few articles that are general in nature (e.g., mathematical theory of sensor
array designs, or cover more than one type of sensor). Reviews are in descending chronological
order and alphabetically within the year. A list of other references obtained from the Scientific
and Technical Information Network (STN) is presented in Appendix B.

Although there have been a great many studies of the application of chemometrics techniques to
the more common analytical methods, such as chromatography and spectroscopy, the great
majority of research done using the types of chemical sensors considered in these tasks has been
done with the three types of sensors chosen. Readers interested in other applications should
consult the several textbooks on chemometrics and the journals devoted to that subject, as well
as the commonly available analytical chemistry journals.

3.1 ELECTROCHEMICAL SENSOR ARRAYS

1. M. Esteban, C. Arifio, I. Ruisdnchez, M. S. Larrechi, and F. X. Rius, “Expert System for The
Voltammetric Determination of Trace Metals, Part V. Methods for Determining Total Iron,
Manganese (IT), Aluminum and Titanium,” Anal. Chim. Acta 285 377-389 (1994).

The expert system previously described (see Items 2, 6, 8, and 9 on pages 3-1, 3-2, and 3-3
for Parts I, II, III, and IV by the same authors) has been enlarged and improved by including
methods for the determination of total Fe, Mn*?, Al, and Ti. The expert system used the
commercially available building tool KES.

2. M. Esteban, C. Arifio, I. Ruisdnchez, M. S. Larrechi, and F. X. Rius, “Expert System for the
Voltammetric Determination of Trace Metals, Part IV. Methods for Speciation of Chromium
and Arsenic,” Anal. Chim. Acta 285 193-208 (1994).

The expert system described in earlier papers (see Items 6, 8, and 9 on pages 3-2 and 3-3)
adds Cr and As. Procedures were developed for Cr*?, Cr*S, As*’, and As*. Cr** and As* are
determined as the difference between total Cr and Cr*® and total As and As*?, respectively.

3. F. J. Séez de Viteri and D. Diamond, “Ammonium Detection Using an Ion-Selective
Electrode Array in Flow-Injection Analysis,” Electroanalysis 6 9-16 (1994).

This paper describes the use of an array of ISEs selective for NH,*, Na*, K*, and Ca*? as a
flow injection analysis sensor. The sensor response was modeled using projection pursuit
methods.

4. D. R. Bull, G. J. Harris, and A. B. Ben Rashed, “A Connectionist Approach to Fuel Cell
Sensor Array Processing for Gas Discrimination,” Sens. Actuators B15-16 151-161 (1993).
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Fuel cell sensors are widely used for evidential breath testing and environmental monitoring,
but problems often arise from lack of specificity because the sensors respond to several
alcohols and aldehydes in addition to ethyl alcohol. Specificity can be improved by using
discrimination algorithms based on neural networks. Better results are obtained when the
neural net techniques are used with arrays of sensors operated under different conditions
(e.g., operating temperature).

D. Diamond, “Progress in Sensor Array Research, Review Article,” Electroanalysis 5
795-802 (1993).

Diamond focuses on electrochemical sensors, including arrays of potentiometric ISEs and
ion-sensitive field effect transistors (ISFETs), amperometric and voltammetric arrays, and
semiconductor oxide sensor arrays. Diamond suggests that “The use of sensor arrays will
expand quickly during the 1990s as the cost of computing power continues to plummet,
software becomes more user-friendly, statistical tools are developed or refined, and, perhaps
most importantly of all, high-quality, replicate arrays become available at low cost. This
latter development is the key to future progress and will depend on advances in technology
for the fabrication of high-quality microdimensioned substrates, the reproducible deposition
of chemically sensitive layers or membranes, and surface analysis techniques for quality
control. These are already largely available, and it is now becoming a question of putting
all the parts of the jigsaw together.”

. H M. Esteban, C. Arifio, I. Ruisdnchez, M. S. Larrechi, and F. X. Rius, “Expert System for The
Voltammetric Determination of Trace Metals, Part IIl. Methods for Determining Mercury,
Selenium, and Vanadium,” Anal. Chim. Acta 284 435-443 (1993).

The expert system described in earlier papers for voltammetric determination of Cu, Zn, Cd,
Pb, In, Ni, Co, and Tl is enhanced and improved by adding methods for Hg, V, and Se (also
Te). Methods used are as before plus cathodic stripping voltammetry and adsorptive stripping
voltammetry using dropping Hg electrodes and a gold electrode (for Hg). Data analysis uses
the multiple standard addition method. The expert system uses the KES software framework.

F. X. Rius, “Expert Systems in Trace Analysis,” Anal. Chim. Acta 283 518-527 (1993).

This paper reviews the fundamentals of knowledge-based expert systems, mentioning recent
applications in trace analysis as well as-novel approaches. Applications are distinguished as
qualitative or quantitative. Quantitative examples include sample preparation by microwave
dissolution, solid phase extraction of drugs from aqueous samples, liquid-liquid extraction
of rare earths, sampling, liquid chromatography — lots of examples, atomic absorption
spectroscopy, voltammetric analyses, and environmental pollutant analysis advice, among
others.

M. Esteban, I. Ruisdnchez, M. S. Larrechi, and F. X. Rius, “Expert System for the
Voltammetric Determination of Trace Metals, Part II. Methods for Determining Nickel,
Cobalt, and Thallium at Different Concentration Ratios,” Anal. Chim. Acta 268 107-114
(1992).
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The expert system reported in the preceding paper of the series by the same group (see Item
9) has been extended to include methods for the determination of nickel, cobalt, and
thallium. Quantitative data are obtained using the multiple standard addition method. The
expert system was developed using the KES framework.

9. M. Esteban, I. Ruisdnchez, M. S. Larrechi, and F. X. Rius, “Expert System for The
Voltammetric Determination of Trace Metals; Part I. Determination of Copper, Zinc, Lead,
‘and Indium,” Anal. Chim. Acta 268 95-105 (1992).

This paper gives a detailed description of an expert system for voltammetric determination
of Cu, Zn, Cd, Pb, and In. The system guides the user in the choice of sample treatment, the
appropriate voltammetric procedure, and identification and determination of the trace metals.
Techniques included are differential-pulse polarography and anodic stripping voltammetry
using dropping Hg electrodes.

10. R. J. Forster and D. Diamond, “Nonlinear Calibration of Ion-Selective Electrode Arrays for
Flow Injection Analysis,” Anal. Chem. 64 1721-1728 (1992).

This paper describes the application of an array of ion-selective electrodes (ISEs) to the
simultaneous determination of Na*, K*, and Ca*. The array consists of three highly selective
ISEs and a fourth sensor that responds to all three ions but to differing degrees. Calibrations
were done using “mixed calibration solutions” and a computational method called simplex
optimization. The combination of sensors used gives better results than single electrode
measurements and array results obtained using sparingly selective electrodes.

11. L Ruisidnchez, M. S. Larrechi, F. X. Rius, and M. Esteban, “Computer-Aided Voltammetric
Method Development Employing a Knowledge-Based Expert System,” Trends in Anal.
Chem. 11 135-142 (1992).

This paper describes an expert system for voltammetric analysis. The system guides the user
through the analytical process, offering advice on sample pretreatment, selection of a suitable
methodology for voltammetric determination, and appropriate methods for qualitative and
quantitative analysis.

12. H. Sundgren, I. Lundstrom, and H. Vollmer, “Chemical Sensor Arrays and Abductive
Networks,” Sens. Actuators B9 127-131 (1992).

This paper describes the use of abductory induction to evaluate sensor array data. Such
techniques have been used in sensor fusion applications, but they have not been used
heretofore in chemical sensor array analysis. Research described used a commercially
available algorithm called “abductory induction mechanism (AIM).” Data for the analyses
were obtained using six FETs for H, and NH,. As explained in the paper, deduction is the
process of reasoning from general principles and facts to new facts with certainty. Abduction
is the process of reasoning from general principles and facts to new facts under uncertainty.
Induction is the process of reasoning from facts to general principles. The term abductory
induction is applied to the process of reasoning from facts to abductive principles — also said
to be a special class of inductive learning for synthesizing abductive principles from
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13.

14.

15.

16.

databases of empirical observations. Abductive functions are numerical functions used to
reason under uncertainty.

AIM evolved from research on neural nets and statistical methods; the mathematical
background is contained in what is called the “group method of data handling,” which
originated in the Ukraine about 25 yrs ago.

R. J. Forster and D. Diamond, “Multivariate Calibration of Potentiometric Sensor Arrays,”
Anal. Proc. 28 117-122 (1991).

This paper describes nonlinear optimization procedures used to calibrate an array of
potentiometric ISEs and applied to the analysis of Na*, K*, and Ca*2. A fourth sensor that
was sparingly sensitive to all three ions was included in the array. The optimization
procedures used in the calibration phase of the work were based on “direct search and
gradient methods,” which included schemes called the Hooke and Jeeves method (1), the
modified simplex optimization (2), and the gradient search method of Davidon, Fletcher, and
Powell (3).

These procedures and ISEs give better analytical results than traditional single-electrode
methods. The methods also avoid the problems associated with traditional methods of
defining selectivity coefficients. It is suggested that applications of modern computer
technology would lead to the reassessment of the traditional procedures for calibrations of
potentiometric ISEs.

R. J. Forster, F. Regan, and D. Diamond, “Modeling of Potentiometric Electrode Arrays for
Multicomponent Analysis,” Anal. Chem. 63 876-882 (1991).

The research described in this paper uses the same procedures as those explained in the
preceding review. In this paper, the methods were applied to determination of Na*, K*, and
Ca*? in tertiary mixtures of these cations at concentrations found in physiological research.
Unlike traditional single-electrode methods, the array and procedures used can determine
accurately low levels of the individual cations in the presence of large and widely varying
concentrations of the other two ions.

H. Sundgren, F. Winquist, I. Lukkari, and I. Lundstrom, “Artificial Neural Networks and Gas
Sensor Arrays: Quantification of Individual Components in a Gas Mixture,” Meas. Sci.
Technol. 2 464469 (1991).

The research described in this paper used six MOSFET: for analysis of mixtures of H,, NH,,
ethyl alcohol, and ethylene in air and for H, and acetone in air. Data analyses were done in
three ways: conventional multivariate analysis, PLS, and neural nets. H, and NH; can be
done by PLS, but better results are obtained with neural nets. Ethyl alcohol and acetone
results were poor by both of those methods. In two-component mixtures, H, and acetone are
both done best by neural nets.

M. Bos, A. Bos, and W. E. Van Der Linden, “Processing of Signals from an Ion-Selective
Electrode Array by a Neural Network,” Anal. Chim. Acta 233 31-39 (1990).
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17.

18.

19.

20.

This paper describes neural net software for processing signals from ISE arrays. The
software was tested in determinations of Ca*? and Cu*? in binary mixtures of copper nitrate
and calcium chloride, and in simultaneous determinations of K*, Ca*?, NO,, and CI in
mixtures of KCl, CaCl,, and NH,NO,. Ca*?* and Cu*? measurements used pH-glass electrodes
and Ca*? and Cu** ISEs and gave results accurate to + 8%. For other mixtures, ISEs for the
analyte ions were used with glass electrodes, resulting in relative errors of + 6%, but worst
case errors were as large as * 20%. Many problems are encountered in such work — see
Items 20, 21, and 23 on page 3-6. Neural networks seem ideally suited to handling ISE array
data because they can treat interactions and nonlinear behavior.

H. V. Shurmer, “Basic Limitations for an Electronic Nose,” Sens. Actuators Bl 48-53
(1990).

The model nose was first described by Persaud and Dodd (4), who showed that a system
using three SnO, sensors could provide discrimination between chemically similar odors.
“Many laboratories are now investigating alternative types of sensors. The particular form
of development that appears most attractive is the creation of integrated arrays of sensing
elements, each of which is tailored to have a broad-tuned response that is offset from that
of the other elements. Developments in related test procedures and information processing
techniques are still in their infancy. In due course, however, each will significantly influence
the form of instrumentation for the wide range of applications awaiting exploitation.”

Sensor types being investigated include, among others, SnO,, conducting polymers such as
substituted polypyrroles and polyanilines, and Langmuir-Blodgett films (including Cu
phthalocyanine and certain porphyrins) in CHEMFET designs.

H. Sundgren, 1. Lundstrém, F. Winquist, I. Lukkari, R. Carlsson, and S. Wold, “Evaluation
of a Multiple Gas Mixture with a Simple MOSFET Gas Sensor Array and Pattern
Recognition,” Sens. Actuators B2 115-123 (1990).

Analyses reported in this paper used PLS. Good results were obtained for H, in the presence
of three other interfering gases.

M. Gall and R. Miiller, “Investigation of Gas Mixtures with Different MOS Gas Sensors
With Regard to Pattern Recognition,” Sens. Actuators 17 583-586 (1989).

Work described in this paper used metal oxide semiconductor (MOS) sensors sensitive to
different gases; sensors use different catalytic metals. Data evaluation includes a model of
sensor response. Cross sensitivity of a single MOS sensor is compared with cross sensitivity
of an MOS sensor array using pattern recognition methods.

Mixture analysis can be done with nonselective sensors if responses are linear. This paper
describes what is called the Transformed Least Squares method.

K. R. Beebe and B. R. Kowalski, “Nonlinear Calibration Using Projection Pursuit
Regression: Application to an Array of Ion-Selective Electrodes,” Anal. Chem. 60 2273-2278
(1988).
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21.

22.

23.

24.

Beebe and Kowalski describe a new method of regression analysis that performs both linear
and nonlinear regression and can determine the form of the model as well as the model
parameters. The method is applied to data obtained using ion-selective electrodes (ISEs) in
solutions containing mixtures of Na* and K'. The sensor response is assumed to be
Nemstian. Other analysis techniques discussed include (a) multiple linear regression,
(b) partial least squares, (c) nonlinear regression based on a simplex algorithm, and
(d) multiple linear regression. Electrodes used include Corning general purpose cation glass
electrode, Orion sodium glass electrode with nonselective behavior, and three plastic -
membrane electrodes.

K. Beebe, D. Uerz, J. Sandifer, and B. Kowalski, “Sparingly Selective Ion-Selective
Electrode Arrays for Multicomponent Analysis,” Anal. Chem. 60 66-71 (1988).

This paper describes experiments and a theoretical basis that demonstrate the superior
analytical results that can be obtained by the use of sparingly selective ISEs. The principal
requirements for successful analyses are stable electrodes and reproducible
characterization/calibration of the array.

R. Miiller and E. Lange, “Multidimensional Sensor for Gas Analysis,” Sens. Actuators 9
3948 (1986).

Sensors used for the work described in this paper are four MOS gas sensors coated with
layers of different types of zeolite filters. Data analysis used pattern recognition. The paper
points out that with MOS sensors, one can measure two characteristics of the signal change
resulting when gas is introduced, namely, the slope at the beginning of the transient, and the
stationary value. (Although not discussed by the authors, their analysis assumes that the
response of the sensor is slow compared to the rate at which the sample is introduced.
Otherwise, the analysis discussed would depend on the response time of the sensor and the
speed of sample introduction.)

M. Otto and J. D. R. Thomas, “Chemometrics in Jon-Selective Electrode Potentiometry,”
Ion-Selective Electrode Rev. 8 55-84 (1986).

Section 3.1, “Selectivity and Multicomponent Analysis” discusses arrays of ISEs. The
schemes described are based on the Nikolskii extension of the Nernst equation, which takes
into account selectivities of ISEs for different ions.

Techniques used in data analysis include Response Surface Methodology (RSM), which is
used to judge the adequacy of the model and for drawing conclusions about the performance
of the analytical method. Other necessary techniques include singular value decomposition,
principal components analysis, partial least squares, rank annihilation, and eigenvector
projection or factor analysis — to correct for drift and problems of low selectivity.

J. R. Stetter, P. C. Jurs, and S. L. Rose, “Detection of Hazardous Gases and Vapors; Pattern
Recognition Analysis of Data from an Electrochemical Sensor Array,” Anal. Chem. 38
860-866 (1986).

9750.K03 — May 1994 3-6




Chapter 3 DOE-HWP.153

25.

26.

Work reported in this paper used four different electrochemical sensors operated in four
different modes. Results were analyzed using pattern recognition techniques.

M. Otto and J. D. R. Thomas; “Model Studies on Multiple Channel Analysis of Free
Magnesium, Ca, Na, and K at Physiological Concentration Levels with Ion-Selective
Electrodes,” Anal. Chem. 57 2647-2651 (1985).

Work described in this paper used PLS analysis of ISE data to analyze mixtures at
concentrations typical of human intracellular, urine, and serum fluids.

S. Zaromb and J. R. Stetter, “Theoretical Basis For Identification and Measurement of Air
Contamination Using An Array of Sensors Having Partly Overlapping Selectivities,” Sens.
Actuators 6 225-243 (1984).

This is an early, general paper on the use of electrochemical sensor arrays for mixture
analysis. Sensors were operated in different modes, which is said to mean using, for
example, different pre-catalysts, different temperatures, chemically selective filters, or any
combination of circumstances that affect sensor output in a predictable manner. The analysis
techniques used were capable of recognizing nonlinear character.

3.2 SEMICONDUCTOR SENSOR ARRAYS

1.

9750.K03 - May 1994

H. V. Shurmer, “The Electronic Nose,” Anal. Proc. 31 39-40 (1994).

Shurmer reviews the work done at the University of Warwick (UK) on artificial olfactory
sensing systems. While most of the work has involved tin oxide semiconductor vapor sensor
arrays, some work is also done using conducting polymer sensor arrays. Data analysis work
has been focused on the use of artificial neural networks. Considerable effort has been
devoted to identifying the optimum sensor output and developing the best equipment for
making those measurements (conductance measured by a conductivity bridge). Effort is now
focused on development of standardized odors.

J. A. de Agapito, L. de Agapito, M. Schneider, R. Garcia Rosa, and T. de Pedro, “Fuzzy
Logic Applied to Gas Sensors,” Sens. Actuators B15-16 105-109 (1993).

Fuzzy logic in this paper refers to a combination of knowledge-based expert systems and
fuzzy logic. The technique is applied to measurement of the concentration of NO in air that
also contains CO and water vapor. Three sensors are used.

S. W. Moore, J. W. Gardner, E. L. Hines, W. Gopel, and U. Weimar, “A Modified
Multilayer Perceptron Model for Gas Mixture Analysis,” Sens. Actuators B15-16 344-348
(1993).

This paper describes the application of neural networks to analysis of gas mixtures in air
using SnO, sensors. The aim was to design a neural net paradigm for analysis of H,, CH,,
CO, and CO,. Sensors used included Figaro sensors types 813, 815, and 822, along with type
812 doped with a microgram of Pd, Au, and Rh, respectively — six semsors all told.
Individual sensor responses were nonlinear and CO, data were in the noise. Previous
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research on electronic noses (Items 8, 10, 11, and 14 on pages 3-9 and 3-10) shows that
neural nets perform well; work on quartz resonator arrays and on a piezoelectric gas sensor
array shows that neural nets hold considerable promise in gas mixture analysis. The paper
uses what is called a multilayer perceptron model of a neural net together with a back-
propagation algorithm for the learning paradigm as most suitable for classification of
combustible gas mixtures.

4. M. S. Nayak, R. Dwivedi, and S. K. Srivéstava, “Transformed Cluster Analysis: An
Approach to the Identification of Gases/Odours Using an Integrated Gas-Sensor Array,”
Sens. Actuators B12 103-110 (1993).

This paper presents another data analysis method, this one tailored to analysis of data from
four different types of semiconductor sensor (SnO,, ZnO, MoO, and CdS). Vapors used were
acetone, methyl ethyl ketone, carbon tetrachloride, and xylene. The authors state, “It has
been observed that while the technique is useful for the analysis of one or a mixture of two
gases, much work has still to be carried out to develop optimized gas sensors, the data from
which can be reliably used for analysis using the TCA method.”

5. X. Wang, J. Fang, P. Carey, and S. Yee, “Mixture Analysis of Organié Solvents Using
Nonselective and Nonlinear Taguchi Gas Sensors with Artificial Neural Networks,” Sens.
Actuators B13-14 455457 (1993).

The protype gas analysis system described in this paper uses eight nonselective, nonlinear
SnO, sensors to analyze two- and three-component mixtures of benzene, toluene, acetone,
and trichloroethylene. Sensors included a temperature sensor. Data analysis used multivariate
calibration algorithms, including neural nets.

6. X. Wang, S. Yee, and P. Carey, “An Integrated Array of Multiple Thin-Film Metal Oxide
Sensors for Quantification of Individual Components in Organic Vapor Mixtures,” Sens.
Actuators B13-14 458-461 (1993).

The research described in this paper used eight thin film metal oxide sensors — SnO,, ZnO,
TiO,, and WO,, with and without a heated Pd catalyst. Sensor response data were processed
by a neural net system for calibrating the sensor array and predicting vapor concentrations.
Mixtures used were methanol and acetone. Results show quantitative discrimination.

7. W. P. Carey and S. S. Yee, “Calibration of Nonlinear Solid-State Sensor Arrays Using
Multivariate Regression Techniques,” Sens. Actuators B9 113-122 (1992).

This paper describes the use of eight semiconductor sensors to analyze two- and three-
component mixtures of toluene, benzene, acetone, and trichloroethylene. Calibrations were
performed using two linear-based parametric modeling techniques, PLS and NLPLS, and two
nonparametric modeling methods — multivariate adaptive regression splines and projection
pursuit regression. Nonparametric techniques for calibration of nonlinear sensors produces
much better calibration results than linear parametric methods.
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8.

10.

11.

J. W. Gardner, E. L. Hines, and H. C. Tang, “Detection of Vapours and Odours from a
Multisensor Array Using Pattern Recognition Techniques, Part 2. Artificial Neural
Networks,” Sens. Actuators B9 9-15 (1992).

Performance of pattern recognition techniques depends on the choice of parametric
expression used to define the array output (see Item 11 below). At present, there is no
generally agreed choice of this parameter for either individual semiconducting oxide sensors
or arrays of those sensors. Data used in this paper consist of responses of 12 SnO, sensors
to five alcohols and three beers. Five different parametric expressions are used for sensor
response: fractional conductance change, relative conductance, log of conductance change,
and normalized versions of the last two. Data were processed using neural nets. Nearly all
nets can correctly identify all alcohols used, so the paper’s results use the total sum of
squared network errors to determine relative performance. Best results were obtained using
fractional change in conductance as the data parameter; results using relative conductance
gave “errors” about twice as large. The neural net outperforms principal component and
cluster analysis (discussed in the paper reviewed in Item 11), primarily because it has
significant capability to cope with nonlinear and highly correlated data.

J. W. Gardner, H. V. Shurmer, and T. T. Tan, “Application of an Electronic Nose to the
Discrimination of Coffees,” Sens. Actuators B6 71-75 (1992).

Twelve SnO, sensors were used to sense the headspace of three different coffee packs that
contained two different blends and two roasts and a coffee that had been roasted in six
different ways. Results were analyzed in several ways to show that SnO, sensors can
discriminate between blend and roasting time in coffee.

H. V. Shurmer and J. W. Gardner, “Odour Discrimination with an Electronic Nose,” Sens.
Actuators B8 1-11 (1992).

This paper is a review of research conducted at the University of Warwick (UK). Summaries
are given of current work on various sensor developments and on implementation of pattern
recognition techniques that include correlation, principal component analysis, cluster analysis,
and artificial neural networks. Application areas most likely to be of interest in the next
decade include the development of neural network computer chips that can be used for such
work.

J. W. Gardper, “Detection of Vapours and Odours from a Multisensor Array Using Pattern
Recognition,  Part 1. Principal Component and Cluster Analysis,” Sens. Actuators B4
109-115 (1991).

Mathematical models for the response of individual sensors and arrays of SnO, sensors are
based on the barrier-limited electron mobility model. The fractional change in conductance
is the optimal response parameter to characterize array performance instead of the more
usual relative conductance (see Item 8 above). The data used for this research were obtained
from 12 SnO, sensors exposed to five alcohols and six beers and spirits. The data were
analyzed using pattern recognition methods. Results show that theoretically derived
normalization of data improves the analysis results. Improvements suggested are (a) use only
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12.

13.

14.

15.

five sensors, and perhaps SAWs as well, or (b) use more generalized analysis techniques
such as neural networks.

R. Miiller, “High Electronic Selectivity Obtainable with Nonselective Chemosensors,” Sens.
Actuators B4 35-39 (1991).

This short review paper on different methods of pattern recognition for chemosensors shows
that an essential first step is identification of substances. Two examples are used to illustrate
the needed definitions of electronic selectivity and sensitivity. Usually the real number of
distinguishable substances (patterns) is much lower than the theoretical limit. Two methods
to improve this situation are tailoring the cross-sensitivities of the sensor elements and
reducing the number of sensor elements.

For linearly responding sensors, PLS has been used with great success. If responses are
nonlinear, different approaches must be used. Piecewise linear regression is possible when
substances are identified first and when their concentrations are known roughly. In many
cases it is possible to transform signals into an “artificial superposition plane” — this
transformed least squares (TLS) method works best when the substances are identified first.
Partial model building (see Item 15 on page 3-11) uses two steps sequentially; first is
identification of substances or components of the mixture, and next is application of a
substance-specific PLS or TLS method. The paper stresses that identification is essential for
nonlinear sensor systems. The example given is analysis of a mixture of CO, n-butane, and
methane using four semiconductor sensors. Another example is a mixture of NF,, CF,Cl,,
C,HCl,, CO, H,, and C,H, using four electrochemical cells (H,, H,S, CO, and Cl,) with
thermal catalysts.

A. R. Newman, “Electronic Noses,” Anal. Chem. 63 585A-588A (1991).

This Analytical Chemistry “Focus” article gives a summary of papers presented at the 1991
Pittsburgh Conference in Chicago on electronic chemical analysis of air. The majority of the
article is a discussion of work by Gardner et al. on artificial noses (see Items 1, 8-11, 14,
17, and 19 on pages 3-7 thru 3-12) and the very careful work by Grate et al (see the reviews
in Section C of this chapter) on the design of coatings for organic vapor analysis using
acoustic sensors.

J. W. Gardner, E. L. Hines, and M. Wilkinson, “Application of Artificial Neural Networks
to an Electronic Olfactory System,” Meas. Sci. Technol., 1 446-451 (1990).

This paper summarizes the development of the SnO, electronic nose and introduces data
analysis using neural networks: “Results of the classification of the signal spectra measured
from several alcohols are reported and they show considerable promise for the future
application of Artificial Neural Networks within the field of sensor array processing.”

G. Horner and C. Hierold, “Gas Analysis by Partial Model Building,” Sens. Actuators B2
173-184 (1990).

Analysis of data from nonselective sensors requires two steps: classification and
quantification. This paper describes a nonlinear pattern recognition model that combines a
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nonlinear transformation of the data with a linear regression model. This method, which the
authors call a TLS model, was applied to a set of calibration data from SnO, sensors used
for two-component mixture analysis. To overcome certain difficulties, the authors use a
“preclassification” of the several classes of possible gas mixtures, enabling a more specific
TLS model to be applied in quantification. This procedure is called partial model building.

Data used were obtained from up to eight SnO, sensors, and sometimes four additional
sensors (for temperature, pressure, etc.). Gases used included methane, n-butane, CO, and
their mixtures in synthetic air. Partial modeling results for binary mixtures of three different
gases are significantly better than those without the classification procedure.

16. K. D. Schierbaum, U. Weimar, and W. Gopel, “Multicomponent Gas Analysis: An
Analytical Chemistry Approach Applied to Modified SnO, Sensors,” Sens. Actuators B2
71-78 (1990).

The essential part of this complex paper is the methodology for chemically changing the
selectivity of SnO,-type sensors in a systematic way to achieve reversible sensor signals in
the analysis of mixtures of CO and methane in moist air.

17. H. V. Shurmer, J. W. Gardner, and P. Corcoran, “Intelligent Vapour Discrimination Using
a Composite 12-Element Sensor Array,” Sens. Actuators Bl 256-260 (1990).

This paper describes the use of 12 SnO, sensors for discrimination of odors. Each sensor has
significant sensitivity to a broad spectrum of gases. Mixtures used in the research were of
two types: (a) several alcohol compounds and (b) beverages and alcoholic spirits. Data
analyses used a weighted, fault-tolerant, least-squares method. Results show that such
systems successfully discriminate between methanol, ethanol, propan-2-ol, and butan-1-ol,
but are not so good at discriminating between beverages and spirits and mixtures of same.

18. U. Weimar, K. D. Schierbaum, W. Gopel, and R. Kowalkowski, “Pattern Recognition
Methods for Gas Mixture Analysis: Application to Sensor Arrays Based upon SnQ,,” Sens.
Actuators B1 93-96 (1990).

This paper reports research on determination of single gases in air (H,, CH,, and CO) from
specific response patterns of chemically modified SnO, sensors. Data were analyzed in two
different multicomponent approaches; one in which the conductivity of several chemically
modified sensors is measured, and the other in which measurements are made of different
parameters from a single sensor. The former approach gives somewhat better results than the
latter for the mixtures and sensors used.

19. H. V. Shurmer, J. W. Gardner, and H. T. Chan, “The Application of Discrimination
Techniques to Alcohols and Tobaccos Using Tin-Oxide Sensors,” Sens. Actuators 18
361-371 (1989).

This early paper discussed the use of SnO, sensors for odor discrimination research. The
techniques used have been superseded by later work.
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20. C. Hierold and R. Miiller, “Quantitative Analysis of Gas Mixtures With Non-Selective Gas
Sensors,” Sens. Actuators 17 587-592 (1989).

Hierold and Miiller discuss the use of nonselective, nonlinear sensors with data
transformation and pattern recognition analysis. To illustrate the method, data were obtained
from commercially available SnO, sensors exposed to mixtures of CO and CH,. Data
transformation used is a combination of data transformation and linear regression techniques
called transformed least squares.

21. H. Abe, S. Kanaya, Y. Takahashi, and S.-I. Sasaki, “Extended Studies of the Automated
Odor-Sensing System Based on Plural Semiconductor Gas Sensors With Computerized
Pattern Recognition Techniques,” Anal. Chim. Acta 215 155-168 (1988).

Research described in this paper used an odor sensing system described in the first paper of
the series (see Item 22). In this work, that system was used to study 47 compounds. Analysis
techniques used included three different pattern recognition schemes; k-NN, simplex, and
potential function methods. Best results were obtained using the potential function method.

22. H. Abe, T. Yoshimura, S. Kanaya, Y. Takahashi, Y. Miyashita, and S.-I. Sasaki, “Automated
Odor-Sensing System Based on Plural Semiconductor Gas Sensors and Computerized Pattern
Recognition Techniques,” Anal. Chim. Acta 194 1-9 (1987).

This paper presents a scheme for classification and identification of odors. Data were
obtained from eight semiconductor gas sensors that have different gas sensitivities. Data for
30 substances were analyzed by cluster analysis. Sensors used were generally sensitive to
NH;; CO; alcohols; and mixtures of alcohols, CO, chlorofluoro-carbons, in addition to three
that were generally sensitive to combustible gases. Substances used for testing included the
following: methyl acetate, diethyl ether, acetone, ethyl acetate, acetyl acetone, methyl
formate, ethyl formate, acetaldehyde, allyl acetate, isobutyl methyl ketone, pentyl formate,
isopropyl acetate, tertiary pentanol, 2-methylcyclohexanone, 3-methylcyclohexanone,
4-methylcyclohexanone, methyl butyrate, isobutylaldehyde, menthone, acetic acid, methyl
valerate, furfural, acrylic acid, phenetole, propionic acid, dioxane, chloroform, pyridine,
2-methyl-3-butanone, and pyrrole.

3.3 SAW SENSOR ARRAYS

The most comprehensive work on the use of SAW sensor arrays for chemical mixture analysis
seems to be that reported since 1986 by J. W. Grate and coworkers, first at the U.S. Naval
Research Laboratory and now at the DOE/Battelle Pacific Northwest Laboratory. Their work is
aimed at the development of models that can be used to choose the number of SAWs for an array
and to select SAW coatings for those sensors so as to achieve optimum selectivity and sensitivity
for a specified mixture analysis problem. Six papers on that subject are reviewed here. The most
comprehensive paper, a review paper published in 1991, is discussed first. The other papers
follow in descending chronological order.

The basic idea in Grate’s work is that the appropriate number of SAWSs and the types of coatings
to be used on those SAWs can be derived from a detailed understanding of the chemical
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interactions that occur between the analyte molecules and the coatings. The particular focus is
on the use of solubility parameters to indicate the relative magnitudes of basic types of chemical
interactions (i.e., dipole-dipole, hydrogen bonding, induced-dipole/induced-dipole, etc.).

1.

J. W. Grate and M. H. Abraham, “Solubility Interactions and the Design of Chemically
Selective Sorbent Coatings for Chemical Sensors and Arrays: Review Paper,” Sens.
Actuators B3 85-111 (1991).

Grate and Abraham explain in great detail the chemical basis for the methods being
developed.

By understanding sorption phenomena and solubility interactions, “interactive materials can
be chosen for vapor detection that will collect and concentrate analyte molecules selectively
at the sensor’s surface. . . .

“. .. when it is necessary to detect an analyte at trace concentrations in field environments
where potential interferences (such as humidity) may be present at orders of magnitude
higher concentrations, . . . the use of pattern recognition techniques in combination with an
array of chemical sensors offers improved selectivity. . . .

“The success of the array detector approach depends on the amount and quality of
information being provided by the sensors. To be useful, each sensor must give unique
information™ (i.e., sensors and sensor coatings must be carefully chosen). “Each sensor in
the array must be selective for different classes of vapor. . . . However, . . . one must also
design sensors that will be selective for known and possibly unknown potential
interferences.” Thus the need to take a “comprehensive approach to chemical selectivity so
that an array can gather as much information as possible about any vapor which may sorb
and produce sensor signals.”

The paper focuses “on a solubility model for absorption” in SAWs exposed to “organic
vapors.” Emphasis is “on bulk absorption (as opposed to surface adsorption) of neutral
organic vapors into soft coating materials containing neutral organic functional groups. In
addition, the discussion (is) limited to reversible sensors. The issue of reversibility is closely
related to the issue of chemical selectivity. Weak interactions between the vapor and sensor
coating will produce sensors with good reversibility and little hysteresis. However, such
sensors may not have sufficient sensitivity and selectivity to be widely useful. Very strong
interactions may improve the sensitivity and selectivity, but can result in sensors which are
irreversible or only slowly reversible.” Necessary “balance can be achieved by using sensor
coatings which interact with vapors via solubility interactions.”

The method explained in the paper uses solvation parameters that have been developed to
describe the types of solubility interactions occurring between non-ionic, organic functional
groups. Solubility interactions considered are:

* induced-dipole/induced-dipole (dispersion) interactions,

* dipole/induced-dipole (dipole induction) interactions,
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» dipole/dipole (dipole orientation) interactions, and

* hydrogen-bonding interactions.

As explained in the paper, the characterization of the total absorption resulting from these
interactions can be made in terms of the partition coefficient, K, which measures the
equilibrium distribution of solute molecules between the gas phase and the solvent phase.
K is defined as the ratio of concentration of the solute in the stationary phase (sensor coating
— assuming thin film), C,, to the concentration of the solute in the vapor phase, C,. For SAW
delay lines, the frequency shift resulting from absorption of vapor is given by

Af, = ALC,K/p,

where Af, is the frequency shift observed when the sorbent coating was applied to the bare
SAW device, and p is the density of the coating material.

K can also be expressed in terms of certain solute parameters (i.e., hydrogen bond
parameters, a dispersion parameter, and parameters for dipolarity and polarizability).

Much of the work by Grate et al. has focused on the necessary evaluation of many coatings
exposed to many organic vapors so as to derive a self-consistent set of solubility parameters
for the coatings/vapors interactions. This work is discussed in great detail in the paper, and
references are given for reports of the applications of such results to analysis of organic
vapors using this design technique and various types of pattern recognition techniques.
Several of those papers are reviewed following this review. '

The review paper describes the process of developing an array. Optimization of an array for
an application depends on boundary conditions [i.e., the analyte to be detected (compound
or class of compounds) and associated questions — how fast, reversibly, sensitivity required,
are there other compounds that could cause sensor signals]. Selection of coating materials
to use starts with a large set of carefully chosen materials, to include materials in all of the
solubility interaction classes, as well as materials optimized for the analyte and materials
optimized for known interferents. Once the materials are chosen and sensors made, a
“training set” of data is collected from which the pattern recognition algorithm is developed.
The design of the training set is not a simple task. The next step is the use of statistical
pattern recognition techniques to decrease the number of coatings used in the array. These
procedures reveal sensors that are providing needlessly redundant information.

When vapor mixtures are involved, two types of problems may occur. One is simply the
detection of the analyte in the environment (i.e., it is not important to identify all
components of the mixture). If the array must detect more than one analyte, then a separate
algorithm must be developed for each analyte. The other type of problem is simultaneous
analysis of all mixture components.

The paper stresses an important point: pattern recognition techniques do not operate by

checking the observed pattern against a library of vapor signatures. Instead, pattern
recognition techniques plot the “pattern of response” as a point in n-dimensional space,
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where n is the number of sensors and each axis represents the response of the sensor for that
axis. Any vapor that is dissimilar to the target analyte will be plotted in a different region
of the n-dimensional space. Consequently, it is important to choose coating materials
carefully — a diverse set of sensors with strong, selective, and uncorrelated responses will
more effectively spread the different vapors into different regions of n-space, facilitating
discrimination.

This paper makes it clear that successful results with SAW arrays require that the analyte
(or analytes) be identified and a reasonable idea of the concentrations of all analytes and
possible interferents must be available. With this information, one can then build sensors that
have appropriate coatings, train them, derive the optimum set of sensors, and finally get
meaningful test results that can be analyzed. It will not work to assume you can develop
SAW array sensors that will analyze for compound A in the presence of unknown
compounds.

2. S.L.Rose-Pehrsson, J. W. Grate, and M. Klusty, Chemical Sensors, Proc. Chemical Sensors
Symposium, Honolulu, 1993, The Electrochemical Society, Pennington, NJ, 1993,
pp. 609-620.

Four temperature-controlled SAWs with preconcentrators for sampling were used to analyze
two- and three-component mixtures of several organophosphorus and organosulfur vapors
(chemical warfare agents).

3. J. W. Grate, S. L. Rose-Pehrsson, D. L. Venezky, M. Klusty, and H. Wohltjen, “Smart
Sensor System for Trace Organophosphorus and Organosulfur Vapor Detection Employing
a Temperature-Controlled Array of Surface Acoustic Wave Sensors, Automated Sample
Preconcentration, and Pattern Recognition,” Anal. Chem. 65 1868-1881 (1993).

Four temperature-controlled SAWs and pattern recognition analysis, together with an
automated sampling system (including thermally desorbed preconcentrator tubes), were used
to detect organophosphorus and organosulfur vapors.

4. S. L. Rose-Pehrsson, J. W. Grate, D. S. Ballantine, Jr., and P. C. Jurs, “Detection of
Hazardous Vapors Including Mixtures Using Pattern Recognition Analysis of Responses
from Surface Acoustic Wave Devices,” Anal. Chem. 60 2801-2811 (1988).

Ten SAWs coated with polymers were used to sense several hazardous vapors and two-
component mixtures of the vapors.

5. J. W. Grate, A. Snow, D. S. Ballantine, Jr., H. Wohltjen, M. H. Abraham, R. A. McGill, and
P. Sasson, “Determination of Partition Coefficients from Surface Acoustic Wave Vapor
Sensor Responses and Correlation with Gas-Liquid Chromatographic Partition,” Anal. Chem.
60 869-875 (1988).

This paper compares partition coefficients from gas chromatography and SAW measurements
using 158 MHz SAWs and fluoro-polyol coatings. Results give the same trends, but absolute
values differ for some vapors. _
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6.

D. S. Ballantine, Jr, S. L. Rose, J. W. Grate, and H. Wohltjen, “Correlation of Surface
Acoustic Wave Device Coating Responses with Solubility Properties and Chemical Structure
Using Pattern Recognition,” Anal. Chem. 58 3058-3066 (1986).

Twelve different SAWs/coatings were used to sense 11 different chemicals, and the SAW
responses were then correlated with the solubility properties and coating structures. Data
analysis used included principal component analysis and hierarchical clustering.

Another research group that has performed significant work on the use of acoustic sensor arrays
for multicomponent analysis is the University of Washington (UW) group spearheaded by
W. P. Carey. Reviews of four UW papers follow.

7.

10.

W. P. Carey and B. R. Kowalski, “Monitoring a Dryer Operation Using an Array of
Piezoelectric Crystals,” Anal. Chem. 60 541-544 (1988).

An array of six SAWs was used to analyze mixtures of (a) water vapor and acetone and
(b) water vapor, hexane, and methylene chloride. Multicomponent prediction of solvent
concentrations in exhaust gases was used as the indicator of degree of dryness. Tests made
used a laboratory simulator, not a commercial dryer. There is no mention of what is being
dried, other than “a wet product” so it is unclear whether a real case would have interferents.
Analysis was done using a principal component regression technique — partial least squares
couldn’t be used because of insufficient calibration data.

W. P. Carey, K. R. Beebe, and B. R. Kowalski, “Multicomponent Analysis Using an Array
of Piezoelectric Crystal Sensors,” Anal. Chem. 59 1529-1534 (1987).

Nine SAWs were used for multicomponent organic vapor analysis. Analyses of two- and
three-component mixtures used multiple linear regression and PLS techniques.

W. P. Carey, K. R. Beebe, B. R. Kowalski, D. L. Illman, and T. Hirschfeld, “Selection of
Adsorbates for Chemical Sensor Arrays by Pattern Recognition,” Anal. Chem. 58 149-153
(1986). )

Twenty-seven SAWs were used to sense 14 analytes to determine whether some number less
than 27 sensors would produce essentially the same quality results as the full set. Results
showed that approximately seven sensors gave 95% of the available information. A selection
procedure for use in other systems would clearly depend on sorption interactions, but the
discussion also mentions iterative use of analysis techniques together with perhaps some
chemical interaction insights.

W. P. Carey and B. R. Kowalski, “Chemical Piezoelectric Sensor and Sensor Array
Characterization,” Anal. Chem. 58 3077-3084 (1986).

This paper describes a model for the response of SAWs. Data obtained from two sets of
arrays for three- and seven-component mixtures were analyzed using principle components
analysis.

A series of four papers published by a Japanese group, the first in 1989, describes research on
the use of acoustic devices as artificial noses. The papers are similar to those published by the
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University of Warwick (UK) group (reviewed in Sections A and B), but the Warwick papers give
more detailed explanations of the work than the Japanese papers.

11.

12.

13.

14.

T. Nakamoto, A. Fukuda, and T. Moriizumi, “Perfume and Flavour Identification by Odour-
Sensing System Using Quartz-Resonator Sensor Array and Neural-Network Pattern
Recognition,” Sens. Actuators B10 85-90 (1993).

An array of six quartz-resonator sensors (the same array as used for earlier work — see Items
12, 13, and 14 below) was used to sense perfumes and food flavors. Perhaps the most
interesting result is that when the ratio of foreign substances to orange flavor is more than
about 0.5%, the sample could be distinguished from the pure orange sample, with a detection
limit much like normal people’s limit.

T. Nakamoto, A. Fukuda, T. Moriizumi, and Y. Asakura, “Improvement of Identification
Capability in an Odor-Sensing System,” Sens. Actuators B3 221-226 (1991).

The same six-resonator array as in the above review was used to sense alcoholic drinks.

T. Nakamoto, K. Fukunishi, and T. Moriizumi, “Identification Capability of Odor Sensor
Using Quartz-Resonator Array and Neural-Network Pattern Recognition,” Sens. Actuators
B1 473-476 (1990).

This paper is similar to the other papers by the Japanese group, except that 18 sensors were
used to sense five Japanese whiskies and five other alcoholic spirits.

K. Ema, M. Yokoyama, T. Nakamoto, and T. Moriizumi, “Odour-Sensing System Using a
Quartz-Resonator Sensor Array and Neural-Network Pattern Recognition,” Sens. Actuators
18 291-296 (1989).

Six quartz resonators were used to sense 11 kinds of alcoholic spirits. Data were analyzed
using neural network pattern recognition techniques.

Reviews of five papers on SAW arrays follow.

15.

A. J. Ricco, S. J. Martin, R. M. Crooks, C. Xu, and R. E. Allred, Chemically Sensitive
Interfaces on SAW Devices, in Chemically Sensitive Interfaces, T. E. Mallouk and D. J.
Harrison, eds., American Chemical Society Symposium Series xxx, American Chemical
Society, Washington, D.C. 1994, Chapter xx (to be published in 1994).

This paper describes three approaches to using nonselective interfaces for chemical sensing:
one is time dependence of the response of a single SAW, which depends on details of
chemical interactions between vapor and coating (authors dub this “time-resolved permeation
transients™); another is multifrequency SAW devices; and the third is an array of
nonselective SAWSs. The first approach is not useful for simultaneous analysis of
multicomponent mixtures. It is unclear how far the multifrequency approach could be taken
(i.e., how many components could conceivably be analyzed, and how many might be
possible realistically).
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16.

17.

18.

19.

S. J. Patrash and E. T. Zellers, “Characterization of Polymeric Surface Acoustic Wave
Sensor Coatings and Semiempirical Models of Sensor Responses to Organic Vapors,” Anal.
Chem. 65 2055-2066 (1993).

The approach Patrash and Zellers describe is very similar to the Grate approach, but it is
probably less comprehensive. The experimental work seems to be limited by using only four
SAWs.

A. J. Ricco and S. J. Martin, “Multiple-Frequency SAW Devices for Chemical Sensing and
Materials Characterization,” Sens. Actuators B10 123-131 (1993).

This research report describes the use of two multifrequency devices: a four-frequency
device and a seven-frequency device. The measured responses were wave velocity and
attenuation. Results show that multifrequency SAW devices can function as selective
chemical sensors without selective coatings. In addition, for three organic vapors studied, the

-data also determine the concentrations of three vapors as well as that there are three vapors.

Furthermore, these techniques enhance the ability of acoustic sensors to distinguish changes
in other perturbations (e.g., temperature and pressure, from changes in mass, viscoelastic
properties, and thin-film conductivity).

E. T. Zellers, T.-S. Pan, S. J. Patrash, M. Han, and S. A. Batterman, “Extended Disjoint
Principal-Components Regression Analysis of SAW Vapor Sensor-Array Responses,” Sens.
Actuators B12 123-133 (1993).

This paper describes the use of what is called “extended disjoint principal components
regression” (EDPCR) for analysis of data from 10 SAWs exposed to 9 organic vapors. Data
for mixtures — for all 36 possible binary mixtures and all 84 possible ternary mixtures —
were calculated from measured responses for the single vapors with the assumption that the
sensor responses were additive, but there is little discussion of the probable validity of the
assumption.

The mixture data were analyzed using several different multivariate techniques. The
conclusion reached is that the EDPCR technique is an alternative to other methods that have
been used and is well-suited to SAW arrays where responses are linear and additive.
Regarding the assumption of additivity of response, the paper states that it should be possible
to develop methods for nonadditive mixture responses.

From an experimental point of view, it seems likely that this paper is only a numerical
exercise whose real value is obscure at the best. Perhaps that opinion is only a reflection of
the inadequate experience of the reviewer.

A. Schmautz, “Application-Specific Design of a Piezoelectric Chemosensor Array,” Sens.
Actuators B6 38-44 (1992).

The approach Schmautz describes is similar to Grate’s approach, but uses partition
coefficients and heats of adsorption to derive criteria for selecting coatings. Data used were
from four bulk acoustic wave resonators (10 MHz) and one uncoated crystal, but there is no
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mention of temperature control of the sensors. The scheme was applied to the analysis of
anesthetic vapors using pattern recognition data processing.

3.4 GENERAL ARTICLES

In this section we have included short reviews of several papers that describe sensor array
research using more than one type of sensor as well as other papers of a more general nature than
those devoted to one type of sensor. One paper that seems highly significant to us for its
application to the DOE ERWM programs describes work on analysis of all types of mixtures (see
Item 1 below).

1.

Y .-Z. Liang, O. M. Kvalheim, and R. Manne, “White, Grey and Black Multicomponent
Systems. A Classification of Mixture Problems and Methods for Their Quantitative
Analysis,” Chemom. Intell. Lab. Syst. 18 235-250 (1993).

This is one of the series of “Tutorial” papers that periodically appears in this journal. The
authors discuss multivariate calibration and resolution methods for handling samples of
chemical mixtures from the point of view of the analytical chemist. Advantages and
limitations of available multivariate calibration and resolution methods are discussed for
three types of mixtures, called — following Chinese usage — “white,” “grey,” and “black”
multicomponent systems.

White systems are those in which — in spectroscopic terminology — spectra of the chemical
species present in the sample, as well as spectra from samples that contain possible
interferents, are available, and the concentrations of all the desired analytes are known for
the “training set” samples. “Methods for this kind of analysis are relatively mature and do
almost always provide excellent results (5). Exceptions are ill-conditioned and seriously
nonlinear systems (5,6).”

Black systems are those for which there is no a priori information regarding the chemical
composition of the samples. “Several methods for resolving this type of analytical system
have been developed. Most of them are based on instrumental techniques giving data of
matrix form (i.e., hyphenated chromatography). In the quantitation step, one needs samples
of known concentrations of the resolved chemical components. Effectively, this strategy
transforms the black system into a white or grey system, depending on whether the system
is fully or partially resolved.”

Grey systems lie between the white and black, their basic characteristic being incomplete
knowledge about the qualitative chemical composition. The aim of the analysis is to
determine quantitatively the concentrations of certain analytes in the presence of unknown
coexisting interferents. “Grey systems are frequently encountered in the analysis of real-
world samples. Several powerful multivariate calibration methods have been developed to
cope with vectorial data (each sample being represented by a spectrum, for instance) and
with bilinear data of matrix form (each sample being represented, for example, by a matrix
of chromatographic elution profile-time spectra).”
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The citation given by the authors at the start of their paper is of historical interest:

“Every attempt to employ mathematical methods in the study of chemical questions must
be considered profoundly irrational and contrary to the spirit of chemistry. . . . If
mathematical analysis should ever hold a prominent place in chemistry — an aberration which
is happily almost impossible — it would cause a rapid and widespread degeneration of that
science.” Auguste Comte, Philosophie Positive (1830).

This is the only paper we have found that treats what will often be the situation faced by
the DOE in site characterization (i.e., sometimes grey, sometimes black mixtures/systems).
We also note that we found no mention of chemical sensors in this paper. The authors
conclude:

“Quantification of multicomponent systems by means of multivariate calibration and
resolution methods has released the chemist from constraints imposed by classical analytical
methods. On the other hand, the application of these methods has placed new burdens upon
the shoulders of the cautious analytical chemist. He must not only be a knowledgeable
chemist, but also needs competence in applied mathematics, computer science, and statistics
in order to be at the forefront of his profession. These requirements reflect the development
of chemical instrumentation during the last decade and the penetration of chemical
measurement techniques, to an ever-increasing extent, into new areas.”

“Despite the prophesy of Auguste Comte, analytical chemistry has not deteriorated or lost
its spirit because of this. On the contrary, analytical chemistry has revived and expanded to
becorne the science of measurements and will surely continue to do so in the future.”

2. W. P. Carey, Multicomponent Vapor Monitoring Using Arrays of Chemical Sensors, in
Pollution Prevention in Industrial Processes, J. J. Breen and M. J. Dellarco, eds., American
Chemical Society Symposium Series 508, American Chemical Society, Washington, D.C.,
1992, Chapter 21, pp. 258-269.

This paper describes the process of analyzing multicomponent vapor mixtures using arrays
of partially selective sensors and multivariate statistics. Examples discussed include data
obtained using both quartz crystal acoustic sensors and metal oxide semiconductor sensors.
Applications discussed include process analytical chemistry and pollution prevention.
Calibration techniques used include both linear and nonparametric regression techniques.

3. F. A. M. Davide and A. D’ Amico, “Pattern Recognition from Sensor Arrays: Theoretical
Considerations,” Sens. Actuators A32 507-518 (1992).
This paper describes a general approach (mathematical) to the design and evaluation of

multisensor measurements based on nonselective reproducible sensors.

4. J. W. Gardner, P. N. Bartlett, G. H. Doss, and H. V. Shurmer, The Design of an Olfactory
System, in Chemosensory Information Processing, NATO ASI Series, Volume H-39,
D. Schild, Ed, Springer-Verlag, Berlin, 1990.
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This article by researchers at the University of Warwick (UK) reviews several aspects of
sensor array applications in the development of artificial olfactory systems. The paper gives
an excellent summary of the sense of smell in humans, including current models of the
interactions of odorants with human sensory membranes, a short section on the history and
evolution of electronic noses, and a thorough discussion of “artificial odour transducers.”
The types of transducers described include (a) inorganic semiconductor gas
sensors/transducers — MOSFET transistors, capacitors, Schottky barrier diodes, hot wire
resistors, SAW devices, and metal oxide resistors, (b) conducting polymers — pyrrole and
several of its derivatives, furan, thiophene and several of its derivatives, and indole and a
few of its derivatives, (c) semiconducting metal phthalocyanines, and (d) Langmuir-Blodgett
film devices. The most widely used sensor for artificial odor sensing is the semiconducting
tin oxide (or tin oxide doped with a wide variety of catalysts) device.

Parts of the final major section of the article may be helpful:

“Several developments during the last fifty years have provided a tremendous impetus for
the design of algorithms for processing signals from distributed sensor arrays. These include
the discovery of RADAR and SONAR which generated the need for complex processing
algorithms; the development of semiconductor technology for the fabrication of 1,024 x
1,024 element CCD arrays for optical imaging; the study of image analysis in such diverse
fields as medical tomography; and nondestructive testing. These have produced a plethora
of processing algorithms based upon statistical techniques such as Correlation, Maximum
Likelihood, Minimum Entropy, etc. However, these sophisticated algorithms are not
generally applied to chemical sensor arrays, presumably due to the relatively slow response
time of a chemical sensor (1-100 s) compared to an optical sensor (1 ns—1 ps).

“The use of integrated sensor arrays in olfaction was postulated by Persaud and Dodd in the
early 1980s (4), and designed to overcome problems encountered by selectivity. Its arrival
acknowledged the partial failure to identify specific odours or vapours by a single sensing
material. The earliest work involved the investigation of different types of semiconducting
material in the array, such as metal oxides (7, 8, 9) and Langmuir-Blodgett films (10).
Simultaneously, statistical methods were applied to the detection of flammable and toxic
vapours by others (11, 12, 13). At Warwick we have applied a variety of algorithms . . .”

“By far the majority of pattern recognition techniques that have been applied to chemical
sensor arrays are based upon standard statistical techniques. However, more powerful
techniques are also being applied, such as Principal Components Analysis and Factor
Analysis. . . . Artificial Neural Networks offer several advantages over classical algorithms
such as fault-tolerance, flexibility, and adaptability. The inherent parallelism leads to a high
speed of operation which could be an advantage when processing large arrays. The method
is nonparametric and heuristic, this makes it difficult to interpret results but is closer to the
real olfactory system and may yet prove to be the most beneficial approach.”

5. W. P. Carey, K. R. Beebe, E.\Sanchez, P. Geladi, and B. R. Kowalski, “Chemometric
Analysis of Multisensor Arrays,” Sens. Actuators 9 223-234 (1986).
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This paper is a review of multivariate calibration techniques and their possible application
to data from partially selective sensor arrays. Analysis techniques discussed include linear
and multiple linear regression, principal component regression (which couples factor analysis
or principal component analysis with multilinear regression), partial least squares, and rank
annihilation factor analysis.

B. R. Kowalski and C. F. Bender, “Pattern Recognition. A Powerful Approach to
Interpreting Chemical Data,” J. Am. Chem. Soc. 94 5632-5639 (1972).

S. Wold, one of the founders of the field of chemometrics, says of this paper (14), “The first
[paper] was Kowalski’s 1972 pattern recognition in the Journal of the American Chemical
Society. That set the world on fire. That was before the Chemometrics Society started and
even before the word chemometrics was invented.”

One interesting aspect of the paper is the general statement of the problem treated: “can an
obscure property of a collection of objects (elements, compounds, mixtures, etc.) be detected
and/or predicted using indirect measurements made on the objects?” The principal example
describes the use of spectroscopic data for detection of molecular structural units.
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4. REMARKS/CONCLUSIONS AND RECOMMENDATIONS

4.1 REMARKS/CONCLUSIONS
4.1.1 What Is Known in the Beginning?

One noteworthy point that was mentioned only briefly in Chapter 2 is that there are very few
papers on the analysis of mixtures for which the composition and likely concentrations were
unknown. The one notable paper that is markedly different is the paper by Liang et al. (1) on
“white, grey, and black” mixture analysis problems.

As demonstrated very clearly by the research of Grate et al. (2), determination of the optimal set
of SAWs requires detailed knowledge of the chemical interactions between SAW coating and
analyte(s) of interest. Knowledge of the relative concentrations of various chemicals in a mixture
is a strong secondary need. :

To the authors of this report this situation seems to be a significant aspect of the DOE ERWM
problem in that, to the best of our knowledge, it must be expected that real world samples of
interest to DOE will contain both unknown chemicals and unknown concentrations. Consequently,
.unless future research uncovers new methods, it will probably be necessary always to perform
initial qualitative analyses to identify all significant chemicals, lest some unrecognized component
is a strong interferent. The need for information about concentrations is perhaps secondary, but
only real-world practice can provide reliable information.

4.1.2 Validation and Verification in Applied Chemometrics

Several papers (not reviewed in Sect. 2) make a simple point: because chemometrics analyses
rely very heavily on computer programs and because analysis of mixtures is complicated in its
own right, it becomes very important always to perform validation and verification of results. As
many years of experience show in almost any aspect of complicated science, this is best done
completely independently (clearly, we don’t imply that the samples are independent!). The
procedures for performing such independent validation and verification (IVV) will depend on
many factors, but the crucial aspect is that both chemometrics “teams” be experienced. A wide
variety of statistical tests can be applied to monitor IVV work.

To put it another way — chemometrics in the real world consists of three phases: exploratory data
analysis (EDA), calibration and prediction (CP), and IVV.

4.1.3 Chemometrics Camps

Several different groups of chemometricians around the world have developed their own sets of
outlooks about their work. Some of that is evident in the following notes about the principal

groups.
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* The Swedish group at the University of Umea seems to have important expertise and insights
into tackling real-world problems, yet they are also very much aware of theory and maintain
a practical and pragmatic interest. The principal researchers are S. Wold, P. Geladi, J Ohman,
et al.

» The Norwegian group at Bergen seems smaller (than the Swedish group) but is quite applied.
The Bergen group and the Umed group have shared scientific responsibilities for the
development of what may be the best commercially available chemometrics software —
UNSCRAMBLER 1I, which is discussed in Chapter 2.

» The Belgian/Dutch group — the Belgian Massart being a world leader — represents breadth,
with the Belgian group emphasizing multivariate analysis, statistical methodology, and signal
processing while the Dutch are more interested in neural networks and expert systems.

* We are aware that the U.S. EPA has some significant capability in their contractor, Lockheed,
but we have not found sufficient information to comment on their work.

» The group at the University of Washington under Kowalski is, of course, a major player
globally. Essentially, Kowalski is one of the two or three founders of the field and is the
principal author of what is the classic, original paper(s) in the field. However, their interest
seems to be chemical process-oriented and is much more strongly focused in academic
pursuits, especially in theory rather than applications. (Perhaps this is not surprising in view
of the fact that Kowalski is also a principal in the Center for Process Analytical Chemistry,
a university/industry cooperative research group.) The UW/CPAC capability is almost
certainly the largest, strongest group in the U.S.

* The UK effort is notable (witness the work by the University of Warwick team to develop
artificial olfactory systems), but we have not found enough of their work to make significant
comparisons with the work of other groups. It may be of interest to note that relative to U.S.
scientists, British scientists are much more likely to tackle problems analytically rather than
use computer modeling.

4.14 Chemometrics/Modern Computer-Based Applications
to Other Aspects of ERWM

It may be helpful to point out the potentially effective application of chemometrics and
chemometrics-like analysis tools in site characterization, particularly in the so-called expedited
site characterization (ESC) team concept developed by Argonne National Laboratory (3). As
noted in Chapter 2, the experienced chemometrician is essential in judging the validity of any
chemical analyses that might be performed using sensors and field laboratory instruments. But
in addition, very similar techniques — if not already being used as part of the data analysis
capability of the ESC team — could make valuable improvements in treating and interpreting data
from geology, hydrology, stratigraphy, etc.

The following sources illustrate the application of chemometrics techniques in designing the
sampling for chemical analyses:
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a. R. A. Olivero, S. Seshadri, and S. N. Deming, “Development of an Expert System for
Selection of Experimental Designs,” Anal. Chim. Acta 277 441-453 (1993).

“An expert system has been developed to assist chemists in the selection of experimental
designs for research projects. The system ranks thirteen types of experimental designs. . . .
Design categories included are factorial, response surface, sequential simplex optimization,
simplex mixture, and statistical testing. . . . uses mathematical concepts to mimic features
of human intuition and decision making. . . . A validation test was conducted with the
participation of four other experts in the field.”

b. K. Hitchcock, J. H. Kalivas, and J. M. Sutter, “Computer-Generated Multicomponent
Calibration Designs For Optimal Analysis Sample Predictions,” J. Chemom. 6 85-96 (1992).

“This paper utilizes variable step size generalized simulated annealing (VSGSA) to design
multicomponent calibration samples for spectroscopic data. VSGSA is an optimization
procedure which is capable of converging to exact positions of global optima located on
multidimensional continuous functions. On the basis of analysis of sample response vectors,
optimally designed calibration concentration matrices are obtained assuming knowledge of
components present. ...”

c. S.N. Deming, J. A. Palasota, and J. M. Palasota, “Experimental Design in Chemometrics,”
J. Chemom. 5 181-192 (1991).

“Chemometrics is defined as the application of mathematical and statistical methods to
chemical systems. Systems theory is seen to be useful for organizing and categorizing the
inputs to and outputs from chemical systems. Advances in measurement science in the 1950s
and 1960s, particularly in analytical chemistry, created a need for a multivariate approach
to data analysis. Early chemometrics emphasized the use of structure-finding methods for
existing data sets. In many instances, data sets can be obtained from designed experiments.
Such data sets are more likely to contain the desired information and the data can usually
be acquired at less cost. Renewed interest in statistical process control will provide many
new, more robust data sets in the future.”

d. P. Minkkinen, “SAMPEX - A Computer Program for Solving Sampling Problems,”
Chemom. Intell. Lab. Sys. 7 189-194 (1989).

“Chemical analysis always involves sampling. With heterogeneous solids the sampling error
may be the largest source of error which determines the overall reliability of theanalysis.
To help analysts to evaluate the reliability of sampling and sample preparation procedures,
a computer program, SAMPEX, was written. It is based on the theory developed by Pierre
Gy which allows the estimation of the fundamental sampling error, i.e., the error due to the
intrinsic heterogenicity of particulate material, from some basic material properties. . . .
subroutines included . . . (1) estimation of the sampling error for a given sample size, (2)
minimum sample size for a given sampling precision, (3) maximum particle size when both
the sampling size and the sampling precision are given, (4) analysis of multistep sampling
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and sample preparation procedures, (5) estimation of sampling constants from experimental
data, and (6) sampling error in particle size distribution measurement.”

4.1.5 Chemometrics for DOE ERWM Problems
Application of chemometrics techniques to DOE ERWM problems can be summarized as follows:

* The multivariate analysis methods in chemometrics, together with all the appropriate
statistics, instrumentation, engineering (including systems engineering), and computer
technology, appear to be the only choice for which there is any real hope of solving the
ERWM-type problem.

* Many analysis methods suited to environmental data analysis exist and await application.
Application requires creation of certain infrastructure, but potentially many advances can be
made by tackling the problem.

» The difficulty of judging the efficacy of analysis methods and the lack of “ground truth” in
chemometrics is a strong argument for implementing a dedicated chemometrics analysis
effort, tasked to evaluate the methods and validate the answers.

* A dedicated chemometrics effort may be able to determine which currently available analysis
methodologies can provide the results needed for particular types of ERWM problems.
The syllogism suggests itself.

» If you want real answers to chemometrics analysis problems, you must pose real problems.
If you want to evaluate the methods, you must try them. If you want the benefits of
chemometrics, you must have a well-equipped and active chemometrics team.

4.2 RECOMMENDATIONS
The information collected and reviewed suggests the following:

 Establish a sensor development advisory panel tasked to recommend a program for
development of sensor arrays for DOE’s problems.

* Establish a sensor systems chemometrics advisory panel to recommend a chemometrics
development program closely coordinated with the sensor array development program.

» Initiate a research program to extend mixture analysis research to consideration of real-world,
“highest priority ERWM problems.
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APPENDIX B
SCIENTIFIC AND TECHNICAL INFORMATION
NETWORK BIBLIOGRAPHY

The following listings were obtained from STN database searches.
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