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ABSTRACT

Our goal is to develop constitutive relations for the behavior

of a solid polymer during high-strain-rate deformations. In con-

trast to the classic thermodynamic techniques for deriving stress-

strain response in static (equilibrium) circumstances, we employ

a statistical-mechanics approach, in which we evolve a probabil-

ity distribution function (PDF) for the velocity fluctuations of the

repeating units of the chain. We use a Langevin description for

the dynamics of a single repeating unit and a Lioville equation to

describe the variations of the PDF. Moments of the PDF give the

conservation equations for a single polymer chain embedded in

other similar chains. To extract single-chain analytical constitu-

tive relations these equations have been solved for representative

loading paths. By this process we discover that a measure of non-

uniform chain link displacement serves this purpose very well.

We then derive an evolution equation for the descriptor function,

with the result being a history-dependent constitutive relation.

NOMENCLATURE

L Polymer chain length

N Number of repeating units in the polymer chain

P Probability density function

T Temperature

f Viscous drag parameter

k Boltzmann’s constant

m Mass of a repeating unit in the polymer chain

s Order parameter describing the deformation within a chain

�Address all correspondence to this author.

t Time

Ai(t) Randomly fluctuating (thermal) force per unit mass

Ki Intermolecular force per unit mass

L0 Initial polymer chain length

lc0 Initial length of a repeating unit in the chain

R0 Initial polymer chain radius

ui Velocity

u0 Loading velocity

xi Current spatial coordinate

Xi Material frame coordinate vector

κ Curvature

λ Stretch defined as L=L0

λ̇ Rate of stretch

Ψ Potential function

ρ Density

σst Surface tension stress

σ Stress

τ Traction

1 INTRODUCTION

Thermodynamically based solid polymer modeling tradi-

tionally has been applied with great success to quasi-static cir-

cumstances using the single chain model of Wang and Guth

(1952) with homogenizations provide by James and Guth (1943)

and more recently by Arruda and Boyce (1993). These ap-

proaches rely on describing the configurational entropy of the

single chain, i.e., based on the chain elongation, the number of

possible states the chain can occupy is used to determine the

configurational entropy. The inherent assumption in this type
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of analysis is that the chain is in equilibrium. It is difficult to

extend the thermodynamic approach to non-equilibrium circum-

stances. Since our interests lie in describing the chain behavior

under both equilibrium and non-equilibrium(rate-dependent) cir-

cumstances we develop a physically based statistical model for

the micromechanical motion of a chain.

We assume that a Langevin equation governs the mo-

tion of the repeating units of the chain. The Langevin equa-

tion includes the classical frictional-drag and random-thermal-

fluctuation terms along with an intermolecular force term that

accounts for the connection of each repeating unit to its neigh-

bors in the chain. This Langevin equation is incorporated into an

evolution equation for a Probability Distribution Function (PDF),

and moments are taken in order to determine conservation equa-

tions for the chain.

We use the conservation equations in the numerical calcula-

tion of the single polymer chain behavior under several represen-

tative cases of rapid loading and unloading. One of the goals of

these calculations is to determine the contribution that the single

chain makes to the polymer network. The computational expense

of solving the conservation equation for every chain in the net-

work is not feasible, so that we determine a constitutive model

that can reproduce the single chain behavior.

In a follow-on paper, we show the homogenization proce-

dure, and how it builds on the single chain constitutive model

derived in this work. A brief summary of the homogenization

procedure is as follows: We account for the orientation of the

chains and their evolution as the network is deformed. With the

use of the single-chain constitutive equation, a response for each

chain is determined, and through an upper-bound stress assump-

tion a macro response is found by summing the individual re-

sponses. In addition, we introduce weighting functions and sim-

plified initial chain geometries in order to reduce the number of

chains that need to be simulated, which reduces significantly the

computational expense associated with this type of homogeniza-

tion. A full account of the homogenization procedure is given by

Harstad (2001).

2 STOCHASTIC CONSERVATION EQUATIONS

In order to derive the stochastic conservation equations, we

use a Liouville equation with a Langevin representation of the

dynamics of each chain link. The Liouville equation describe

how the PDF evolves in time. The PDF gives the probability

per unit volume per unit velocity interval of finding a chain link

with position x, and velocity u, at time t. The chain link is the

repeating unit or micro-mechanical unit found in the chain. For

this description, the appropriate Liouville equation is

∂P

∂t
+

∂Pẋi

∂xi
+

∂Pu̇i

∂ui
= 0 (1)

The Langevin equation is a momentum equation for each of the

repeating units in the chain, which includes all the forces that

are applied to the link. Classically, the Langevin equation has

been used in the derivation of equations to describe Brownian

motion (McQuarie,1973). For a single polymer chain imbedded

in a medium of other polymer chains, several forces affect the

motion of the chain as a whole, and the motion of the individual

elements. There are viscous forces that describe the frictional

force or drag. The thermal force due to the vibrations of the

repeating units in the chain must be considered. Also, the inter-

molecular force that physically holds the repeating units into a

chain affects the motion of the chain, especially near the limits

of large extension. All of these forces are included in our form

of the Langevin equation (Uhlenbeck and Ornstein, 1930), which

governs the motion of each element of the chain

dui

dt
=� f ui +Ai(t)+Ki(x) (2)

f is the drag coefficient, Ai(t) is the randomly fluctuating (ther-

mal) Note that for the frictional drag the lowest order approxi-

mation (linear) is used and, if needed, higher order terms can be

considered. We impose the following assumptions on the statis-

tics of the randomly fluctuating term. The term has a zero mean

sum, and the product of two of the terms only has value if the

times are close to each other within the terms, and the statistics

of the term are Gaussian. The Gaussian assumption would ap-

pear to contradict our goal to capture the non-equilibrium effects

of high-strain-rate deformations. However, we indicate how this

assumption can be relaxed through a Chapman-Enskog approach

(Harstad,2001). Our current postulate, however, is that the dom-

inant effects of non-equilibrium are produced by transient depar-

ture of the chain from uniformity of link spacing.

The conservation equations are found by inserting the

Langevin equation into the Liouville equation and taking mo-

ments over a sphere of radius r in velocity space. When taking

these moments, we assume that P goes to zero sufficiently fast

enough that r4P! 0 as r !∞. This is to say that the probability

of having a large velocity vanishes much faster than r4. With this

assumption of the statistics of P, the first through third moments

give the conservation equations for mean mass, momentum, and

energy (Qi j Transport) equations at any point in the chain.

∂ρ

∂t
+

∂ρui

∂xi
= 0 (3)

∂ρui

∂t
+

∂ρuiu j

∂x j
+

∂Qi j

∂x j
= ρ(Ki� f ui) (4)

2 Copyright  2002 by ASME



∂Qi j

∂t
+

∂ukQi j

∂xk
+

∂Qi jk

∂xk
=

�2 f Qi j +ρ 2kT f
m

δi j�Q jk
∂ui

∂xk
�Qik

∂u j

∂xk
(5)

In the above equations variables with an overbar denote

mean quantities, variables with a prime denote fluctuating quan-

tities, such that the overbar plus the fluctuating quantity equals

the instantaneous quantity. The variables not previously defined

are as follows: Qi j �
R

u0iu
0

jPdVu and Qi jk �
R

u0iu
0

ju
0

kPdVu, in

which dVu is a volume element in ui space.

3 SINGLE CHAIN SIMULATIONS

3.1 REDUCTION OF THE EQUATION SET

Assume that the chains deform in an incompressible man-

ner (ρ = constant), which is consistent with observations of vis-

coelastic polymer behavior at low to moderate strain rates. Then,

∂ui

∂xi

= 0 (6)

and

ρ
∂ui

∂t
+ρ u j

∂ui

∂x j
+

∂Qi j

∂x j
= ρ(Ki� f ui) (7)

Next, assume that the stochastic variable Ki is derivable from a

potential i.e.,

ρ Ki = �∂Ψ

∂xi

The momentum equations become

ρ
∂ui

∂t
+ρu j

∂ui

∂x j

=�∂Ψ

∂xi

�ρ f ui (8)

With incompressibility the divergence of the momentum equa-

tion results in a Poisson equation for the potential function.

ρ
∂u j

∂xi

∂ui

∂x j
=� ∂2Ψ

∂xixi
(9)

If we neglect time and spatial variations in Eq. (5), Qi j is exactly

constant,

Qi j =
ρkT

m
δi j (10)

3.2 BOUNDARY CONDITIONS
We refer to the configuration of the chain as a cloud. This

cloud represents the portion of a polymer chain that is between

tie-points. Note that the cloud is a stochastic concept; at any in-

stant some elements may lie briefly outside the cloud boundary.

It is the stochastic cloud that is considered to be incompressible.

For the reduced equation set, boundary condition expressions are

developed. These conditions provide the link between the ap-

plied forces on the boundary and the internal variables such as Ψ
and Qi j. Derivation of the boundary conditions is accomplished

by looking at the change in momentum due to the applied forces

on the surface of the chain cloud

∆momentum

∆t
= ∑external forces +∑ internal forces (11)

Each force is the product of a traction, τi, and an area. These

forces are shown in Fig. 1. In the limit in which the dimensions

of the slice go to zero, the mass also goes to zero, so that causes

the left side of Eq. (11) to go to zero. Because the change in

momentum must be bounded, the right side of Eq. (11) must go

to zero. A tangential force balance shows that the left and right

forces cancel with one another. The resulting force balance in

the normal direction results in

τexternal
i Aexternal + τinternal

i Ainternal = 0 (12)

In addition, in the limit in which the thickness of the slice is

infinitesimally small, the external and internal areas are the same

and we can directly relate the tractions to one another,

τexternal
i = τinternal

i (13)

The internal traction is given by the normal component of the

sum of the potential function and Qi j The external traction is

composed of two components, an applied traction that occurs at

tie-points and a traction due to the interactions of the chain with

Figure 1. FORCES ON A POINT ON THE SURFACE CONTAINING AN

ENTIRE CHAIN.

3 Copyright  2002 by ASME



other surrounding chains:

τexternal
i = τ

applied

i + τinteractions
i (14)

We postulate that interaction with the surrounding chains can be

represented by a surface tension force. In other words, the chain

keeps its cloud shape due to encasement by surrounding chains.

This stress is represented mathematically in the standard form

σst =Cκ; (15)

in which C = ρkT
m

lc0 is a constant with units of force per unit

length, and the curvature, κ=� ∂ni

∂xi
. In terms of the two principal

curvatures, the surface tension stress is

σst =
ρkT

m
lc0 (κ1 +κ2) ; (16)

thus

τinteractions
i = �σstni (17)

With this result and the equilibrium value for Qi j =
ρkT

m
δi j, we

can solve for the applied traction, from which we hereafter omit

the superscript on the traction symbol;

τi =

�
ρkT

m
[1+ lc0 (κ1 +κ2)]+Ψ

�
ni (18)

3.3 ELLIPSOIDAL DEFORMATION

The equations for determining the behavior of a polymeric

chain with arbitrary shape are given in Section 2. To demonstrate

the validity of this model for the case of static deformation, we

consider its application for a single chain in the configuration

of an axisymmetric ellipsoid. This shape allows for the inves-

tigation of the traction-stretch relationship in a geometry with a

simple expression for the surface curvature. The configuration

of the chain and its deformed shape are shown in Fig. 2. We

assume that during pulling on the tie-points to the single chain

the cloud maintains the configuration of the ellipse. The applied

tractions are partially balanced through the curvatures of the el-

lipse as shown in Eq. (18). We determine the curvatures through

the geometric description of the ellipse. The locations on the el-

lipse where we need the curvatures are at the point of loading,

and where it meets the vertical axis. The radius of the surface in

polar coordinates is

rs =
abp

a2 sin2 θ+b2 cos2 θ
(19)

2

1

Original

Configuration
Position ∗ Position **

τapplied τapplied

rs(θ)

a

b

Figure 2. LOADING PATH IMPOSED ON THE ELLIPSOID.

The curvature κ in an r�z cut of the surface is (Zwillinger, 1996)

jκj=

�
r2

s +2
�

drs
dθ

�2

� rs
d2rs

dθ2

�
�

r2
s +

�
drs
dθ

�2
�3=2

(20)

There are two principal orthogonal curvatures at every point on

the surface of the ellipsoid. At angles of 0 and π, the two princi-

pal curvatures are the same

κ1;κ2 = � a

b2
(21)

For angles of π=2 and 3π=2, the curvature in the plane shown in

Fig. 2 is

κ1 =� b

a2
(22)

In the orthogonal plane, the cross section of the ellipsoid at posi-

tion �� is a circle of radius b, so that the component of curvature

is

κ2 =�1

b
(23)

These expressions for curvature based on the ellipsoid parame-

ters a and b can be converted to expressions based on the stretch,

λ, through the relations

λ1 =
a

ao

; λ2 =
b

bo

; (24)

in which the subscript, o, refers to the undeformed sphere. The

incompressibility assumption provides a constraint on the values

of a and b. In conserving the volume of the ellipse, the following

must be satisfied:

λ2 =
1p
λ1

(25)
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At the point on the surface labeled position�, the applied traction

is found from Eq. (18)

τ1 =

�
ρkT

m
+Ψ� ρkT

m
lc0

2ao

b2
o

λ2
1

�
n1 (26)

At the surface in position �� the traction is purely in the vertical

direction. For this position there is no applied stress so that

τ2 = 0 =

�
ρkT

m
+Ψ+

ρkT

m
lc0

�
bo

a2
o

λ
�3=2

1 +
1

bo

λ
1=2

1

��
n2 (27)

This enables us to solve for the potential, Ψ, which is constant

throughout the interior for the quasi-static case and given by

Ψ =�ρkT

m

�
1+ lc0

�
bo

a2
o

λ
�3=2

1 +
1

bo
λ

1=2

1

��
(28)

This is substituted back into the relationship for the traction in

the horizontal direction

τ1 =
ρkT

m
lc0

�
� 1

bo

λ
1=2

1 � bo

2a2
o

λ�3=2 +
2ao

b2
o

λ2
1

�
n1 (29)

so that the normal stress can be determined from τi = σi jn j to

give

σ11 =
ρkT

m
lc0

�
� 1

bo
λ

1=2
1 � bo

2a2
o

λ�3=2 +
2ao

b2
o

λ2
1

�
(30)

Because the undeformed geometry is a sphere, the parameters ao

and bo equal the initial radius r0, so that Eq. (30) becomes

σ11 =
ρkT

m

lc0

r0

�
�λ

1=2

1 �λ
�3=2

1 +2λ2
1

�
(31)

The behavior of this equation is illustrated by choosing material

parameters as: R0 = 3� 10�7m, T = 300 K, ρ = 1088 kg=m3,

m = 3� 10�25kg, and lc0 = 1� 10�8m and plotting the result-

ing stress-stretch relation. Figure 3 shows a comparison of our

micro-mechanical model with these parameters to the Mooney-

Rivlin model for uniaxial stress (Treloar, 1975). We see that there

is a close correlation between the response of the two models. It

is also observed that as the stretch gets large, the stress varies in

proportion to λ2
1.

For large stretches, Eq. (31) must be modified by the con-

straint of finite chain extensibility, in which all of the links of the

-1 107

-5 106

0

5 106

1 107

1.5 107

2 107

2.5 107

0 1 2 3 4 5 6 7

Micro-Mechanical Model
Mooney-Rivlin

σ
1

1
 (

P
a
)

λ
1

Figure 3. COMPARISION OF THE CURRENT MICRO-MECHANICAL

MODEL WITH THE MOONEY-RIVLIN MOCEL FOR UNIAXIAL STRESS.

Figure 4. NON-UNIFORM LINK DISTRIBUTION FROM RAPID EXTEN-

SION AT ONE END.

chain are essentially in a straight line and further tensile defor-

mation must overcome the force required to physically separate

the repeating units in the chain. The finite chain extensibility

has been included in equilibrium thermodynamic models start-

ing with the development of James and Guth (1943). While we

realize that this is an important feature of polymer behavior at

deformations near the locking stretch, as a first attempt at model-

ing the single chain, we do not include it in this paper. This limits

us to only considering problems in which the finite extensibility

does not dominate the behavior.

3.4 LOADING PATHS AND PREDICTED BEHAVIOR

The essence of our work is to demonstrate that a single chain

imbedded in a random array of other chains responds to transient

deformations through the development of variations in relative

displacement of its links; see Fig. 4. This non-uniformity is

continuously created during the deformation, but also is contin-

uously tending to relax to uniformity. We show the effects of

these competing processes for several types of loading paths us-

ing both analytical and numerical methods. Under several sim-

plifying assumptions, the full equation set can be reduced to a

one-dimensional partial differential equation. Numerical solu-

tions at different stretch rates and for different loading paths pro-

vide descriptions of macroscopic chain behavior. i.e. the end

stresses as functions of the overall stretch. The goal is to use

these solutions to find a constitutive law, based on the available

macroscopic single-chain variables, that represents the simula-
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tions for simple loads.

In order to investigate the properties of the chain behavior,

a one-dimensional equation of motion is determined from the

three-dimensional form(Eq. (8)). In the axial direction the equa-

tion of motion is

∂u

∂t
+u

∂u

∂x
=�1

ρ

∂Ψ

∂x
� f u (32)

Several assumptions have been imposed in the reduction to this

form:

1. The material is incompressible

2. The deformation of the chain cloud is axisymmetric

3. The only interaction in the radial direction is with other

chains. i.e. the externally applied loads are only in the axial

direction.

4. The axial velocity is independent of radius, i.e. u = u (x; t).

The one dimensional mass equation is

∂R2

∂t
+

∂R2u

∂x
= 0 (33)

With the third assumption, the potential Ψ in Eq.(18)) becomes

Ψ = �ρkT

m
[1+ lc0 (κ1 +κ2)] (34)

For the assumed ellipsoidal shape, the curvatures to lowest order

in the r� z and r�θ directions are

κ1 =
∂2R

∂x2
and κ2 =

1

R
; (35)

respectively. With the use of the previous assumptions, the curva-

tures, and when higher-order terms are neglected, the momentum

equation is

∂u

∂t
+u

∂u

∂x
=

1

ρ

∂σ

∂x
� f u (36)

in which σ = E0(λ�1); E0 = ρkTlc
R0

.

We consider 4 loading cases for the single chain; see Fig 5.

Loading One: Constant velocity then hold

u(L; t)=

�
u0 : t < t1
0 : t � t1

λ

λ

Symmetry Plane

σ σ

~

~ ~

L

Figure 5. SINGLE CHAIN MACROSCOPIC STRESS AND STRETCH

ASSOCIATED WITH THE END POINTS OF THE CHAIN.

Loading Two: Constant velocity, then reverse the direction

of the velocity

u(L; t) =

�
u0 : t < t1

�u0 : t � t1

Loading Three: Constant velocity, hold, then reverse

u(L; t)=

8<:
u0 : t < t1
0 : t1 � t < t2

�u0 : t � t2

Loading Four: Sinusoidal loading

u(L; t)= u0 sin

�
2πt

t f

�

in which t f is the period of oscillation.

We use these loading cases to examine the single chain response

under rate dependent circumstances.

3.5 MATERIAL PARAMETERS

Material parameters used in this investigation are chosen to

be within the range of relevant polymers, such as plasticized es-

tane, rather than to fit the properties of any one material. Some

parameters, such as initial modulus, come from true macroscopic

(multi-chain) tests. The relationship of these parameters to their

equivalent single chain parameters is unknown, but we work

under the assumption that the values are similar. The parame-

ters used in the simulations are: T = 300K, ρ0 = 1190 kg/m3,

m = 100 AMU, lc0 = 0:001µm, f = 4� 1010kg=(s m2), k =
1:3792�10�23J=K, L0 = 100 µm, and R0 = 100 µm.

3.6 MACROSCOPIC PROPERTIES

Several macroscopic properties of a single chain are useful

in describing the mechanical response, which guides the devel-

opment of a single chain constitutive model. These include λ̃,
˙̃λ,
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σ and a non-equilibrium parameter s. These are not the contin-

uum level macroscopic properties, but the properties describing

the overall state of a single chain.

The first two variables are the average stretch and stretch rate

experienced by the entire chain.

λ̃ =
1

L0

Z L0

0

�
∂x

∂X

�
dX (37)

˙̃λ =
dλ̃

dt
(38)

The macroscopic stress, σ, is identified as the current stress at the

ends of the chain. We can consider symmetric deformation about

the center of the chain without loss of generality, so the stress at

both ends of the chain is identical, and the tractions differ by a

sign. This is shown in Fig. 5. In addition, it can be shown that the

average stretch for the chain and the half chain are identical. This

type of symmetric deformation allows for calculations involving

half of the chain.

In the determination of a suitable constitutive model, a non-

equilibrium descriptor variable is developed to show the state

of non-uniformity of the chain-link displacement. The non-

equilibrium descriptor, s, is the following measure of the non-

uniformity of the chain deformation.

s =

sZ L0

0

1

L0

�
∂x

∂X
� 1

L0

Z L0

0

∂x

∂X
dX

�2

dX (39)

For quasi-static situations, s is very small. In high stretch rate

circumstances, one end of the chain may be deforming rapidly,

whereas the other end has barely moved. This gives a large value

for s. The quantity s can also be thought of as a measure of

how much viscous stress is stored in the chain. As the viscous

stress in the chain relaxes, the value of s drops and vice-versa. A

major postulate of our investigation is that the strain-rate effects

for many circumstances of interest can be adequately described

by the behavior of this single non-equilibrium descriptor.

In order to use the constitutive model for general problems,

it is necessary to know the evolution of this descriptor. No simple

equation exists that accurately describes its evolution. Therefore,

in addition to the development of the constitutive model, the non-

equilibrium descriptor is also modeled and compared against the

exact value.

3.7 SIMULATIONS AND RESULTS

We use the form of a linear elastic stress-stretch relation-

ship without the finite extensibility term to describe the behavior

~
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Figure 6. STRESS VERSUS TIME FOR LOADING TYPE ONE.

of the links in the chain, and show results for each of the four

loadings. The results shown are stress versus time or stretch and

the time evolution of the non-equilibrium parameter. The input

parameters for each loading are similar, with the following vari-

ations in velocity.

u0 = (0:01;0:05;0:10;0:2)m/s (40)

These variations in velocity correspond to the following macro-

scopic values of stretch rate.

˙̃λ = (100;500;1000;2000) s�1 (41)

For comparison purposes, each type of loading was calculated to

the same maximum value of stretch. Due to the variation in the

stretch rate for the sinusoidal loading, the end time was adjusted

to obtain the same value of maximum stretch.

3.7.1 LOADING ONE We study the behavior of the

chain at four different strain rates for the extend and hold loading.

The results for the stress as a function of time for these rates are

shown in Fig. 6. After the stretch rate goes to zero, we get a rate

dependent response that decays to the elastic response. Figure 7

shows how the non-equilibrium parameter evolves in time. For

low strain rates, the value of s, as calculated by a finite-difference

approximation to Eq. (39), increases in a bilinear fashion and

then decays to near zero after the stretch rate goes to zero.

3.7.2 LOADING TWO The results from this loading

are valuable because they give the material response to an even

7 Copyright  2002 by ASME
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more severe discontinuity in the stretch rate than occurred from

loading one. The effect that this type of discontinuity has on the

material response is important for the simulation of impact tests

and other mid-rate stretch experiments. Examples of these ex-

periments the Hopkinson bar or Taylor cylinder impact test. It is

important to be able to model experiments of this type because

they provide useful measurements of the material behavior under

rate-dependent conditions.

The results for the stress as a function of stretch for various

stretch rates are shown in Fig. 8. This figure shows that we

obtain classic hysteresis loops. The magnitude of the hysteresis

displacement increases with increasing rate of stretch.

Figure 9 shows how s evolves with time for the load reversal,

as calculated by a numerical integration of Eq. (39). It can be

seen that the reversal of the loading manifests itself by briefly

restoring order to the chain, but then the chain begins to get more

non-uniform as it piles up against the right side. Eventually, the

entire chain commences to become increasingly more uniform

and the value of s decreases. The behavior of s depends on the

deformation wave speed, and rate of loading, and the length of
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Figure 9. s VERSUS TIME FOR LOADING TYPE TWO.

the chain. For the slowest loading rate (100 s�1), a sharp drop in

s is seen at around 0:014 seconds. The reversal time for this case

was 0:016 seconds. This result indicates that the loading speed

was slow enough that the deformation wave propagated nearly

across to the other end of the chain, and hence the deformation

was becoming more uniform. The other five cases do not show

this behavior because the loading is occurring at a much faster

rate.

3.7.3 LOADING THREE For this loading we extend

the chain, hold it, then recompresses. This allows us to combine

the effect of rapid loading with the decay in stress for a static

strain rate, as in loading two, and then to investigate the effects

on unloading to see if the history of chain deformation was a sig-

nificant effect. Figures 10 and 11 show stress versus time and s

versus time respectively.

From the stress plots, a rate dependent rise is followed by a

decay back to the elastic solution, and finally by a rate dependent

decrease in stress. This loading illustrates the complexities that

can occur as the chain returns to equilibrium. The relative inter-

vals of extension, holding, and returning are the same in all of the

calculations. For slow stretch rates, the non-equilibrium param-

eter has time to fully decay to a value consistent with a uniform

deformation. At higher rates, the chain cannot fully recover in

the constant strain portion of the loading before it is reloaded.

3.7.4 LOADING FOUR In this loading, the motion of

the right end of the chain is sinusoidal, through one complete

period of oscillation. The results for the stress as a function of

stretch for various stretch rates is shown in Fig. 12. We see that

the response is similar to that of the loading rate reversal, except

that with the smooth variation in stretch rate for the sinusoidal

loading, the mechanical response is much smoother. The non-

8 Copyright  2002 by ASME
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Figure 10. STRESS VERSUS TIME FOR LOADING TYPE THREE.
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equilibrium parameter behavior in Fig. 13 shows that decreasing

the stretch rate going into the load reversal and the slow ramping

after the reversal allows for s to return to almost its equilibrium

value for all of the calculations (i.e. s = 0). The evolution of

s is almost ”self-similar” among these runs, indicating that the

asymmetries occurring with the other loadings are due to discon-

tinuities in the stretch rate.

4 CONSTITUTIVE EQUATION DEVELOPMENT

From the differential description of single chain behavior

presented in Eq. (36), we wish to extract a relatively simple

model in which the macro stress in the chain, σ̃, can be described

as a function of the overall stretch, λ̃, stretch rate,
˙̃λ, and the non-
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equilibrium descriptor, s.

The determination of a suitable form for this constitutive re-

lation is based on the results of detailed numerical solutions of

the full equation. We use a purely linear form for stress as a func-

tion of stretch, and limit ourselves to deformations in which the

finite extensibility is not important. There are three main phases

of deformation for which we develop the model. These phases

are extension at various stretch rates, holding at constant defor-

mation leading to decay to the elastic solution, and cyclic load-

ing. The proposed constitutive equation is based on the postulate

of a single non-equilibrium descriptor, which means that there is

no guarantee that it will work for all stretch rates, stretches, and

loading paths.

A relatively simple form that works well for stretch rates in

the interval 10 s�1�2000 s�1 for the loading histories examined

9 Copyright  2002 by ASME
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in Section 3.7 is

σ = Ee

�
λ̃�1

�
+Ess (42)

Es = Cs(Es0 +Es1

��� ˙̃λ���) (43)

Cs =

(
1 :

˙̃λ� 0

�1 :
˙̃λ < 0

(44)

The numerical validation of this model was done with material

values given in Section 3.5.

In order to fit this model to the calculation, the constants

Es0 and Es1 must be determined by the response predicted by the

numerical solutions of Eq. (36). By looking at extension runs at

several stretch rates, the value of Es can be computed from the

inverted constitutive model for Es, i.e.

Es =
h
σ�Ee

�
λ̃�1

�i
=s (45)

A value for Es was determined for each stretch rate and then a

linear fit to Eq. (43) was performed in order to find the value

of the unknown constants, Es0 and Es1. The values of Es versus

stretch rate are shown in Fig. 14. From this figure, the values of

the constants can be determined:

Es0 = 1:09�106 Pa

Es1 = 104 Pa � s

With these constants, we compare the constitutive-model results

with those obtained from full numerical solutions of Eq. (36)

for various stretch rates and loading paths. Identical loadings

with the same input parameters as in Section 3.7 were used in

these comparisons. Figures 15 - 18 show the comparisons of the

mechanical response for the calculation and the model for four
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Figure 15. MECHANICAL RESPONSE OF THE MODEL FOR LOAD-

ING TYPE ONE.
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Figure 16. MECHANICAL RESPONSE OF THE MODEL FOR LOAD-

ING TYPE TWO.

different loading paths that are described in Section 3.4. We ob-

serve from these comparisons that the results from the model and

the calculations indicate close agreement, but that as the stretch

rate increases, the model deviates somewhat from the calcula-

tion. This is particularly noticeable in the stretch rate reversal

loading, shown in Fig. 16. The discontinuity in the stretch rate,

as occurs in loading two, is an extreme challenge for any model

to describe. There are several possible ways to remedy this dis-

crepancy. One way could be the incorporation of higher time

derivatives of the stretch rate,
˙̃λ, i.e. to include terms proportional

to
¨̃λ and/or

:::

λ̃; however, there is concern as to whether this pro-
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Figure 17. MECHANICAL RESPONSE OF THE MODEL FOR LOAD-

ING TYPE THREE.
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Figure 18. MECHANICAL RESPONSE OF THE MODEL FOR LOAD-

ING TYPE FOUR.

cess would converge. Another avenue of pursuit is to introduce

one or more additional descriptors by which to more accurately

characterize the non-equilibrium configuration of the chain. Be-

cause the simple model nevertheless works well for rather com-

plicated loading histories, we believe that the next steps of the

investigation should be to compare the current model with exper-

imental data, before developing more complicated approaches.

In order make this comparison, the model has been implemented

into a homogenization scheme. We conclude that the proposed

model works well for stretch rates up to around 103 s�1, but may

need to be modified for larger rates.

5 NON-EQUILIBRIUM DESCRIPTOR DEVELOPMENT

Section 4 describes the single-chain constitutive model that

depends on the behavior of the non-equilibrium descriptor s.

This macrovariable varies as a function of the variation of de-

formation within the chain. In the calculations, the value of the

descriptor can be obtained at any time. The goal of this section

is to eliminate having to perform the micro-mechanical calcula-

tions to obtain s for use in the constitutive model. For this reason,

we develop an evolution equation for the non-equilibrium param-

eter.

5.1 ANALYTICAL DERIVATION OF THE EVOLUTION
OF s

To derive an evolution equation for s, we assume a polyno-

mial series to describe the local behavior of λ, and truncate the

series beyond the quartic term. The odd terms are eliminated by

the assumption of a symmetric deformation about the mid-point

in the chain (X = 0),

λ(X ; t) = A(t)+B(t)

�
X

L0

�2

+C(t)

�
X

L0

�4

(46)

One of the boundary conditions that can be applied to this expan-

sion is that the end of the chain lies at the position of the right

boundary

x(X = L0; t) =
Z L0

0
λ(X ; t)dX

=

�
A(t)X +

B(t)

3L2
0

X3 +
C(t)

5L4
0

X5

�L0

0

=

�
A(t)+

B(t)

3
L0 +

C(t)

5

�
L0 (47)

In addition, the right boundary position is related to the macro

stretch by x(X = L0; t)= λ̃(t)L0. This condition reduces Eq. (47)

to

λ̃(t) = A(t)+
B(t)

3
+

C(t)

5
(48)

Because the global stretch is specified for all times, we can use

this equation to eliminate one of the unknown functions. Equa-

tion (48) is solved for A(t) and substituted into the assumed form

of the deformation, Eq. (46), to obtain

λ(X ; t)= λ̃(t)� B(t)

3
�C(t)

5
+B(t)

�
X

L0

�2

+C(t)

�
X

L0

�4

(49)
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The next step is to evaluate s in terms of these functions. Recast-

ing Eq. (39) in terms of the stretch

s =

s
1

L0

Z L0

0

�
λ� λ̃

�2

dX

=

qe
λ

2� λ̃
2

(50)

Our assumed form of λ is inserted into Eq. (50) and the integra-

tion is performed.

s =

r
4

45
B(t)2 +

16

105
B(t)C(t)+

16

225
C(t)2 (51)

In order to determine the unknown functions B(t) and C(t),
we use the momentum equation in the original coordinate sys-

tem. The momentum equation in this configuration, excluding

finite extensibility effects, is

ρ0
∂2x

∂t2
= E0

∂2x

∂X2
=

�
∂x

∂X

�
� f

∂x

∂t
(52)

Equation (52) is rewritten in terms of the stretch

ρ0
∂2λ

∂t2
=

E0

λ

∂2λ

∂X2
� E0

λ2

�
∂λ

∂X

�2

� f
∂λ

∂t
(53)

With Eq. (49) substituted into this equation, we obtain two equa-

tions for the solution of the unknown functions. With the as-

sumption that B̈(t) and C̈(t) are negligibly small, these equations

are separated into two coupled ordinary differential equations

Ḃ(t) = � E0

f L2
0

�
1350B(t)2+900B(t)C(t)+540C(t)2

�2700C(t)λ̃(t)
�
=
�

5B(t)+3C(t)�15λ̃(t)
�2

(54)

and

Ċ(t) =
E0

f L2
0

��
3000B(t)2+1950B(t)C(t)+900C(t)2

�2250B(t)λ̃(t)�4500C(t)λ̃(t)
�
=�

5B(t)+3C(t)�15λ̃(t)
�2
�
+5

˙̃λ(t) (55)
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Figure 19. LOADING ONE: RESPONSE OF s FOR THE MODEL.
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Figure 20. LOADING TWO: RESPONSE OF s FOR THE MODEL.

We have not found an analytical solution to this equation set. To

demonstrate their relevance, we have implemented these equa-

tions into the computer code used in Section 4 and thereby ob-

tained a solution for s that is compared with the value as com-

puted by Eq. (39).

5.2 Numerical Solution and Comparison

In this section, we compare the approximation for s, Eq.

(51), with the value of s obtained from the full solution of Eq.

(39). In addition, the solutions for B(t) and C(t) are exhibited for

simple loading cases, in order to assess the possibility of model-

ing these terms. The loadings and parameters for this investiga-

tion are the same as those for Section 4.

Figures 19 - 22 compare the evolution of s with that of the

proposed model. The comparisons with the variations of s

predicted by the code, shows that the model gives good repre-

sentation for the non-equilibrium parameter if the deformations

are kept simple. The plots show that the model solutions worsen

with increasing stretch rate but still capture the essence of the
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Figure 21. LOADING THREE: RESPONSE OF s FOR THE MODEL.
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Figure 22. LOADING FOUR: RESPONSE OF s FOR THE MODEL.

parameter evolution very well.

It would be ideal if we could replace the ordinary differential

equations for B(t) and C(t) with simple analytical forms. Figure

23 illustrates these functions as they vary with the time for four

different loadings to see if this idea is plausible. At this stage,

we see no simple way to parameterize the results of these calcu-

lations as functions of the driving conditions.

6 SUMMARY

We have developed the stochastic conservation equations for

a single polymer chain embedded in other similar chains. The

conservation equations are solved numerically in order to obtain

the chain behavior for several loading paths and over a range

of strain rates. With the use of a non-equilibrium parameter to

help characterize these results, we develop a single chain consti-

tutive model. The proposed model works well for stretch rates

up to 103 s�1, under the assumption of simple deformation in the

chain. The single chain model has been used in a homogeniza-
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Figure 23. THE EVOLUTION OF THE FITTING FUNCTIONS B(t) AND

C(t) VERSUS TIME FOR FOUR SIMPLE LOADING PATHS.

tion step to extract ”continuum” behavior and then compare with

experimental data. These results will be report in a follow-on

paper.
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