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ABSTRACT
A thermal equilibrium prediction algorithm is developed

and tested using a heat conduction model and data sets from

calorimetric measurements. The physical model used in this

study is the exact solution of a system of two partial differential

equations that govern the heat conduction in the calorimeter. A

multi-parameter estimation technique is developed and

implemented to estimate the effective volumetric heat

generation and thermal diffusivity in the calorimeter

measurement chamber, and the effective thermal diffusivity of

the heat flux sensor. These effective properties and the exact

solution are used to predict the heat flux sensor voltage readings

at thermal equilibrium. Thermal equilibrium predictions are

carried out considering only 20% of the total measurement time

required for thermal equilibrium. A comparison of the predicted

and experimental thermal equilibrium voltages shows that the

average percentage error from 330 data sets is only 0.1% . The

data sets used in this study come from calorimeters of different

sizes that use different kinds of heat flux sensors. Furthermore,

different nuclear material matrices were assayed in the process

of generating these data sets. This study shows that the

integration of this algorithm into the calorimeter data

acquisition software will result in an 80% reduction of

measurement time. This reduction results in a significant

cutback in operational costs for the calorimetric assay of

nuclear materials.

INTRODUCTION
A simple physical model for a calorimeter was developed by

C. Aviles-Ramos [1]. A parameter estimation problem is solved

using this model and the voltage signal from the calorimeter

heat flux sensor. This model assumes that the calorimeter is

divided into two cylindrical regions and that heat is transferred

by conduction. However, the estimated thermophysical

properties also contain the effects of convection and radiation

heat transfer that could be present in the calorimeter. A hybrid

algorithm developed by C. Aviles-Ramos [2] is used to solve a

parameter estimation problem that involves the calculation of

the effective thermophysical properties of the two cylindrical

regions. The hybrid algorithm takes advantage of the linearity

of the heat conduction model. This algorithm separates the

linear and nonlinear dependence of the heat conduction model

on the parameters to be estimated. It consists of a linear

parameter estimation solver and a nonlinear minimization

algorithm. These algorithms are put into communication

through a FORTRAN function subprogram. This programming

structure allows different nonlinear minimization algorithms to

be tested while keeping the same linear parameter estimation

solver.

NOMENCLATURE
a         inner radius of power sensor, cm

b         outer radius of power sensor, cm

cp1       heat capacity of region 1, J/(kg K)

cp2      heat capacity of region 2, J/(kg K)

d        height of power sensor, cm

e         percentage error defined by Eq. (43)

0mC    coefficients, Eqs. (16) or (18)

0mD    coefficients, Eq. (17) or (19)

1C       symbol that represents 0g

2C       symbol that represents 3α

3C       symbol that represents 4α

F mn1,   eigenfunction in region 1

F mn2,   eigenfunction in region 2

∗
mnF ,1   eigenfunction in region 1 for 21 zαα <

∗
mnF ,2   eigenfunction in region 2 for 21 zαα <
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 0g      volumetric heat generation, 
3

W/cm

0J       Bessel function of the first kind and order zero

2rk      thermal conductivity in region 2 along r–direction,

            W/(cm K)

2zk      thermal conductivity in region 2 along z–direction,

            W/(cm K)

1k        thermal conductivity in region 1, W/(cm K)

0mN    norm, Eq. (21)

∗
0mN    modified norm, Eq. (23)

∗
mnN    norm calculated using 

∗
mnF ,1  and 

∗
mnF ,2

P        predicted thermal equilibrium, Watts or Volts

1zq      heat flux at 0=z  in 0<r<a, 
2

W/cm

2zq      heat flux at dz =  in 0<r<a, 
2

W/cm

t          time, s

ft        final prediction time, s

2T        temperature in power sensor, C�

sT        prescribed surface temperature, C�

iT ,0      initial temperature in regions 1 or 2, C�

r         coordinate, cm

0Y        Bessel function of the second kind and order zero

z         coordinate, cm

Greek

2zα     thermal diffusivity in region 2, in z-direction, /scm
2

2rα     thermal diffusivity in region 2, in r-direction, /scm
2

1α       thermal diffusivity in region 1, /scm
2

3α      )( 1,011 sp TTc −ρ , 
3

J/cm

4α      )( 2,022 sp TTc −ρ , 
3

J/cm

γ mn    eigenvalue for the r–direction in region 2, 
1

cm
−

∗
mnγ     eigenvalue for the r–direction in region 2  for 21 zαα < ,

           
1

cm
−

mnη     eigenvalue for the r–direction in region 1, 
1cm−

∗
mnη     eigenvalue for the r–direction in region 1 for 21 zαα < ,

           
1

cm
−

λ mn    eigenvalue for time, 
2/1−

s

∗
mnλ    eigenvalue for time, 

2/1−
s

Θ       heat flux sensor signal, Volts or Watts

)(nξ  integer function

1Ψ      function defined by Eq. (26)

2Ψ     function defined by Eq. (27)

3Ψ      function defined by Eq. (28)

HEAT CONDUCTION MODEL
  The geometry used to develop the calorimeter model is

shown in Fig. 1. The heat conduction equation in the isotropic

inner cylinder shown in Fig. 1 is
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Also, the diffusion equation in the orthotropic outer layer has

the form
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where ),,(1 tzrg  and ),,(2 tzrg  are volumetric heat source

functions. The volumetric heat generation function ),,(2 tzrg

could include the heat flux at the surface br = . Subscripts 1

and 2 indicate the inner and outer cylinders respectively.

Equations (1) and (2) are subjected to the following boundary

and initial conditions
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           ),()0,,( 11 zrfzrT =  and ),()0,,( 22 zrfzrT =      (8)

The solution of the system represented by Eqs. (1) and (2) was

found in reference [1] and it is used as the physical model for

this thermal equilibrium prediction research. Since the voltage

signal of the calorimeter power sensor is proportional to the

heat flux at the inner or outer surface of the outer cylinder (see

Fig. 1), the temperature solution, 2T , found in reference [1] is

differentiated with respect to r  to obtain the heat flux at the

surface as
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The definitions of all the parameters appearing in Eq. (9) are

given in [1]. The last two terms of Eq. (9) contain 1zq  and 2zq

which represent the heat losses through the top and bottom

surfaces of the inner enclosure of the calorimeter. If we had a

heat flux sensor that produced at least two voltage signals that

depend in the z-direction, it would be possible to keep the last

two terms of Eq. (9). For example, we could have a heat flux

sensor manufactured in such a way that a voltage signal would

correspond to the region 2/0 dz <<  and another voltage

signal that would correspond to the region dzd <<2/ . This

would make the estimation of the parameters 1zq  and 2zq

possible. Since the heat flux sensors we have available produce

only  one  voltage signal independent of the z–direction, the last

  z

  a

  r

  b

  d

Figure 1. Two-domain  calorimeter  cylindrical  geometry. The

region defined by { dzar ≤≤≤≤ 0  0   and } represents the

measurement chamber and the region located in { bra ≤≤
and dz ≤≤0 } represents the heat flux sensor.

two terms of Eq. (9) are neglected for the purposes of this study.

Neglecting the last two terms of Eq. (9), the form of the model

for the thermal equilibrium prediction is given by
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The heat flux given by Eq. (10) depends on 11 pcρ , 22 pcρ ,

1k , 2rk , 2zk  1,0T , 2,0T , sT , and 0g . This represents a total

of 9 parameters. Since the objective is to predict thermal

equilibrium and not to estimate actual thermophysical

properties, Eq. (10) is modified to reduce the number of

constants. A reduction of the number of parameters is possible

because of the following identity
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The eigenfunctions contained in the model equation (10) are

defined as
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Using the definitions of 0mη  and 0mγ , Eqs. (14) and (15) can

be written as
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The substitution of identity (11) into Eqs. (16) and (17) makes

0mC  and 0mD  functions of 1α , 2rα , and )/( 2211 pp cc ρρ

          �
�

�
−= )()(

2

1
0100

0

2

0 aYaJ
a

C mm

m

r

m γη
λπ

α

          

�
�
�

�
+ )()(

2
00010

2

1

22

11
aYaJ

a

c

c
mmm

rp

p
γηλ

π

α

α

ρ

ρ
     (18)

            �
�

�
= )()(

2

1
0100

0

2

0 aJaJ
a

D mm

m

r

m γη
λπ

α

          

�
�
�

�
− )()(

2
00010

2

1

22

11
aJaJ

a

c

c
mmm

rp

p
γηλ

π

α

α

ρ

ρ
     (19)

From Eqs. (10) and (11), and the definitions of 0mη  and 0mγ ,

the eigenfunctions given by Eqs. (12) and (13) also become

functions of  1α , 2rα , and )/( 2211 pp cc ρρ . As a

consequence of the definitions of 0mC  and 0mD  given by Eqs.

(18) and (19), the transcendental equation (34) given in [1]

becomes
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It can be seen from transcendental equation (20) that the

eigenvalues 0mλ  also depend on 1α , 2rα , and

)/( 2211 pp cc ρρ . For 0=n , the norm defined by Eq. (40) of

reference [1] can be written as
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Because the definitions given by Eqs. (18) and (19) make 0,1 mF

and 0,2 mF  dependent on 1α , 2rα , and )/( 2211 pp cc ρρ , the

factorization of 22 pcρ  in Eq. (21) produces a norm that is

dependent on 1α , 2rα , )/( 2211 pp cc ρρ , and  22 pcρ
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The substitution of Eqs. (12), (13), (18), (19), and (22) into Eq.

(9) makes it possible to experess the heat flux at the surface of

the sensor as a function of 6 parameters
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Thus, the heat flux at the surface of the sensor becomes a

function of the form
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where )( 1,0113 sp TTc −= ρα  and )( 2,0224 sp TTc −= ρα .

The values of 11 pcρ , 22 pcρ , 1,0T , 2,0T , and sT don’t need to

be determined individually because the objective here is to

predict the onset of thermal equilibrium. These parameters are

lumped into the ratio )/( 2211 pp cc ρρ  and the constants 3α

and 4α . Note from Eqs. (12), (13), (18), (19), (20), and (24)

that the heat flux at the surface of the sensor depends linearly on

the parameters 3α , 4α , and 0g . Furthermore, function (25)

depends nonlinearly on the parameters 1α , 2rα , and

)/( 2211 pp cc ρρ . This type of dependence permits to use a

linear parameter estimation solver to obtain the parameters 3α ,

4α , and 0g . A nonlinear minimization algorithm can be used

to obtain the constants 1α , 2rα , and )/( 2211 pp cc ρρ .

NUMERICAL IMPLEMENTATION
 Equation (24) was implemented in FORTRAN. An

algorithm developed in [1] was used to determine the

eigenvalues from the transcendental equation (20). Initially, a

FORTRAN program was written to implement Eq. (9). Later

on, this computer program was modified to implement Eq. (24).

Extensive numerical testing was carried out to make sure that

the results from both programs agree to sixteen decimal places.

THERMAL EQUILIBRIUM PREDICTION ALGORITHM
Thermal equilibrium predictions are carried out using a

parameter estimation hybrid algorithm [2] and the numerical

implementation of Eq. (24). For the sake of describing the key

aspects of this hybrid algorithm, Eq. (24) is written in a more

convenient form as
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Let Θ represent the heat flux sensor signals at discrete intervals

of time, the functional to be minimized is defined as
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where { }Mttt ,...,, 21  are the times at which the voltage

measurements are taken and M is the number of measurements

considered in the minimization. The method selected to

minimize Eq. (30) is a technique without derivatives modified

by Powell (in Brent [4]). Powell’s method is used to minimize

Eq. (30) with respect to the parameters 1α , 2rα , and

)/( 2211 pp cc ρρ . For each set of parameters selected by

Powell’s algorithm [3, 4], a least-squares procedure is applied

to solve the linear system
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The estimation procedure begins by providing initial guesses

for the parameters 1α , 2rα , and )/( 2211 pp cc ρρ . Then the

solution of the linear system described by Eq. (31), yields the

coefficients },,{ 321 CCC . Once the coefficients jC  are

known, the value of the functional S is calculated and returned

to Powell’s algorithm. At this stage, Powell’s algorithm

provides a second estimation for the parameters 1α , 2rα , and

)/( 2211 pp cc ρρ . This process is repeated until a predefined

convergence criterion for the functional S  is satisfied. Figure 7

shows a simplified flowchart of the hybrid algorithm.

The major goal in this study is to reduce the assay time in

calorimeter measurements. Once the parameter estimation

problem described above is solved, the estimated parameters

are substituted back into Eq. (24) and a thermal equilibrium

prediction is obtained by taking the limit of Eq. (24) as

∞→t . Note that only the first summation term in Eq. (24)

survives in the limit as ∞→t . This is to be expected since

this term contains the volumetric heat generation constant

0g which is a measure of the heat produced by the radioactive

decay of the material being assayed in the calorimeter. The

value of 0g  obtained from the parameter estimation problem

described above and the steady-state closed form solution can

also be used to predict thermal equilibrium. Equation (10) is a

one-dimensional solution of the heat conduction equations in

the calorimeter. These equations have the form
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As time tends to infinity, tT ∂∂ /1  and tT ∂∂ /2  in Eqs. (32)

and (33) tend to zero to produce
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Equations (34) and (35) are the steady-state versions of Eqs.

(32) and (33). They can be solved using the continuity of

temperature and heat flux at the interface between the sensor

and the inner enclosure of the calorimeter. These conditions can

be stated as

                                     )()( 21 aTaT =                                 (36)

                          
dr

dT
k

dr

dT
k r

2
2

1
1 =   at ar =                     (37)

The boundary condition at br =  used to obtain Eq. (10) is

also used to solve Eqs. (34), (35), (36), and (37). This condition

reads

                                        sTbT =)(2                                    (38)

where sT  is the temperature of the outer surface of the tube that

surrounds the sensor. The solutions of Eqs. (34) and (35) are

                                 

1

2

0
1

4
)(

k

rg
ArT −=                              (39)

                                 rDCrT ln)(2 +=                             (40)

The constants ,, CA and D  can be obtained applying

conditions (36)–(38). After calculating these constants, Eq. (40)

takes the form
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After calculating 0g  using the thermal equilibrium prediction

algorithm, Eq. (42) can also be used to obtain the steady-state

heat flux.

STRUCTURE OF THE THERMAL EQUILIBRIUM
PREDICTION ALGORITHM AND NUMERICAL
PROCESSING OF THE HEAT FLUX SENSOR SIGNAL

The objective of thermal equilibrium prediction is to reduce

the total assay time by a significant amount and still keep the

prediction percentage error at an acceptable level. The data sets

that contain the thermal response of the heat flux sensor are

modified first to define the initial time and voltage, and the

thermal equilibrium prediction region. A fraction of the total

assay time is defined first prior to the definition of this region.

Once the fraction of the total assay time is calculated, the

definition of the thermal equilibrium region is made based on

the shape of the heat flux sensor signal at the earliest stages of

the measurement. If the sensor signal contains the effects of the

opening and closing of the calorimeter, see Figs. 2 and 4, this

part of the signal is discarded. Otherwise, the definition of the

thermal equilibrium prediction region is done as shown in Figs.

1 and 3. Figures 2–4 show the time, it , and voltage, iV , used to

transform the time and voltage scales so that the thermal

equilibrium region starts at time equal to zero and at voltage

equal to zero.  

The calorimeter heat flux sensor voltage readings are taken

with a digital multi-meter and they contain some degree of

noise. The voltage readings are taken at time intervals, at∆ ,

defined by the operator of the data acquisition software. The

data acquisition sampling interval, at∆ , is not the optimum

discretization interval, 1−− pp tt , that should be used to define

the number of measurements used for the minimization of Eq.

(30). For this reason, numerical experiments were carried out

using 18 data sets to estimate the optimum size of the

discretization  interval that should be used in Eq. (30). It was

found empirically that two numerical interpolations applied in

series provided reasonable results. Initially, a prediction region

that represents a fraction of the total assay time is defined. Next,

two numerical interpolations are applied to this prediction

region. First, the experimental data is interpolated linearly using

a time step, t∆ , equal to 16 seconds. Second, a cubic or linear

interpolation that uses Lagrange’s classical formula and

Neville’s algorithm [3] is applied to divide the prediction region

into 5 to 3 data points. These data points represent the number

of measurements, M , considered in the minimization of Eq.

(30). Figure 5 shows a sketch of the numerical processing of the

experimental data contained in the thermal equilibrium

prediction region. The data points generated in the prediction

region are fed to Powell’s algorithm and the hybrid algorithm

starts as explained in the paragraph subsequent to the statement

of Eq. (30). A flow chart of the hybrid algorithm is shown in

Fig. 7.
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    Figure 2. Typical heat flux sensor calorimeter response that

    includes  the  effects of opening and closing the calorimeter

    cover  to  insert the sample. The location of the minimum at

   ),( ii Vt  is also depicted.
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     depicting the  thermal equilibrium prediction region.
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     Figure 5.  Typical  heat  flux  sensor  calorimeter response

     depicting the  thermal equilibrium prediction region.

THERMAL EQUILIBRIUM PREDICTION RESULTS
Thermal equilibrium predictions were carried out using 330

data sets from different calorimeters. One hundred and sixty

four predictions using 164 data sets from the highly enriched

uranium (HEU) calorimeter have an average percentage error of

0.085%. This average is calculated using an error defined as

                                  100×
−

=
E

PE
e .                            (43)

The thermal equilibrium prediction

region shown in Figures 2–5  is

discretized using linear interpolation

and a time step of 16 seconds.

The discretized thermal equilibrium

region is divided into 5, 4, or 3 data

points using linear or cubic Lagrange’s

interpolation .

Five, four, or three data points

belonging to the thermal equilibrium

prediction region are fed to the hybrid

algorithm

             Figure 6.  Numerical  processing applied  to the

             data  set represented by the thermal equilibrium

             prediction region.
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the  parameters used to carry out the thermal equilibrium

prediction   using Eq. (24).
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  Figure 8.  Typical  calorimeter  voltage readings showing the

  experimental and prediction thermal equilibrium regions.

     Table 1.  Thermal  equilibrium  predictions  average  error

     calculated  using  the  error  defined  by Eq. (43) and data

     sets for each calorimeter.

Calorimeter
 Average

  Error

Time

Ratio
Volts

Mean

       

),( PE −

HEU 0.085% 0.208 2.723E-6 ± 1.70E-5

RFETS 0.145% 0.202 9.109E-6 ± 1.63E-5

SS 0.179% 0.205 4.507E-7 ± 1.46E-6

The symbol E appearing in Eq. (43) is the experimental thermal

equilibrium obtained taking the arithmetic average of the

voltage data in the experimental thermal equilibrium region,

and P is the predicted thermal equilibrium obtained using the

model Eq. (24). A typical experimental thermal equilibrium

region is depicted in Fig. 8. One hundred and seventeen thermal

equilibrium predictions using 117 data sets from the Rocky

Flats Environmental Technology site (RFETS) have an average

percentage error of 0.145%. Results for the solid state

calorimeter (SS) show that 69 thermal equilibrium predictions

have an average error of 0.179%. Table 1 summarizes these

results. Furthermore, the second column of Table 1 shows the

average percentage error calculated using the error defined by

Eq. (43), the third column shows the ratio of the time used to

carry out the prediction to the total assay time, the fourth

column shows the average of the difference, PE − , in Volts.

The fourth column in Table 1 can be converted into Watts

dividing by the sensitivity of each calorimeter given in

Volt/Watt.  For the HEU calorimeter, this average produces:

=− )Mean( EP 9.55E-5 ± 5.95E-4 Watts. The RFETS row

yields: =− )Mean( EP 6.66E-4 ± 1.19E-3 Watts. For the SS

calorimeter: =− )Mean( EP 4.29E-5 ± 1.39E-4 Watts. Table 1

shows that the average percentage error for the 330 equilibrium

predictions made in this study is only 0.136%.

REMARKS AND CONCLUSIONS
A thermal equilibrium prediction algorithm is developed

using an exact heat conduction model. The results shown in

Table 1 show that this model can reduce the total assay time

significantly and still maintain a reasonable error level.

Furthermore, this thermal equilibrium prediction algorithm can

reduce the assay time in large volume calorimeters. Large

volume calorimeters have longer assay times.

The percentage of the total assay time used in this study,

20%, can be reduced further by developing a criterion to

estimate the optimal final prediction time. This criterion may

reduce the percentage of the total assay time somewhere

between 10% and 20%. One approach that can be used to

develop this criterion is to look at the behavior of the first and

second derivatives of the calorimeter response at the early

stages of the measurement. Furthermore, this criterion can be

used to develop a real time algorithm that will decide when to

stop acquiring data and carry out the thermal equilibrium

prediction.

Typical calorimeter calibration curves are constructed using

the arithmetic average of the voltages at thermal equilibrium,

see Fig. 8. A calibration curve can also be constructed using the

model Eq. (24) by carrying out thermal equilibrium predictions

considering the total assay time. A calibration curve constructed

with the model Eq. (24) would provide more consistency when

predictions using a fraction of the total assay time are carried

out utilizing Eq. (24).
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