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ABSTRACT

A thermal equilibrium prediction algorithm is developed
and tested using a heat conduction model and data sets from
calorimetric measurements. The physical model used in this
study is the exact solution of a system of two partial differential
equations that govern the heat conduction in the calorimeter. A
multi-parameter estimation technique is developed and
implemented to estimate the effective volumetric heat
generation and thermal diffusivity in the calorimeter
measurement chamber, and the effective thermal diffusivity of
the heat flux sensor. These effective properties and the exact
solution are used to predict the heat flux sensor voltage readings
at thermal equilibrium. Thermal equilibrium predictions are
carried out considering only 20% of the total measurement time
required for thermal equilibrium. A comparison of the predicted
and experimental thermal equilibrium voltages shows that the
average percentage error from 330 data sets is only 0.1% . The
data sets used in this study come from calorimeters of different
sizes that use different kinds of heat flux sensors. Furthermore,
different nuclear material matrices were assayed in the process
of generating these data sets. This study shows that the
integration of this algorithm into the calorimeter data
acquisition software will result in an 80% reduction of
measurement time. This reduction results in a significant
cutback in operational costs for the calorimetric assay of
nuclear materials.

INTRODUCTION

A simple physical model for a calorimeter was developed by
C. Aviles-Ramos [1]. A parameter estimation problem is solved
using this model and the voltage signal from the calorimeter
heat flux sensor. This model assumes that the calorimeter is
divided into two cylindrical regions and that heat is transferred
by conduction. However, the estimated thermophysical
properties also contain the effects of convection and radiation
heat transfer that could be present in the calorimeter. A hybrid
algorithm developed by C. Aviles-Ramos [2] is used to solve a

parameter estimation problem that involves the calculation of
the effective thermophysical properties of the two cylindrical
regions. The hybrid algorithm takes advantage of the linearity
of the heat conduction model. This algorithm separates the
linear and nonlinear dependence of the heat conduction model
on the parameters to be estimated. It consists of a linear
parameter estimation solver and a nonlinear minimization
algorithm. These algorithms are put into communication
through a FORTRAN function subprogram. This programming
structure allows different nonlinear minimization algorithms to
be tested while keeping the same linear parameter estimation
solver.

NOMENCLATURE

a inner radius of power sensor, cm

b outer radius of power sensor, cm

¢,  heat capacity of region 1, J/(kg K)
C,, heat capacity of region 2, J/(kg K)

d height of power sensor, cm

e percentage error defined by Eq. (43)
C,o coefficients, Eqs. (16) or (18)

D, coefficients, Eq. (17) or (19)

o symbol that represents g

C,  symbol that represents ¢,

C, symbol that represents &/,

FLmn eigenfunction in region 1

Fz,mn eigenfunction in region 2

Fi;*mn eigenfunction in region 1 for &) <,
Fzmn eigenfunction in region 2 for o) <,
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volumetric heat generation, W/em®
Bessel function of the first kind and order zero

thermal conductivity in region 2 along r—direction,

W/(cm K)
thermal conductivity in region 2 along z—direction,

W/(cm K)

thermal conductivity in region 1, W/(cm K)
norm, Eq. (21)

modified norm, Eq. (23)

norm calculated using Ffmn and F;mn
predicted thermal equilibrium, Watts or Volts
heat flux at z =0 in 0<r<a, W/cm2

. 2
heat flux at z=d in 0<r<a, W/cm
time, s

final prediction time, s

temperature in power sensor, < C
prescribed surface temperature, ~C

initial temperature in regions 1 or 2, “C

coordinate, cm
Bessel function of the second kind and order zero

coordinate, cm

thermal diffusivity in region 2, in z-direction, cmZ/s
thermal diffusivity in region 2, in r-direction, cmZ/s
thermal diffusivity in region 1, em?/s

pic, Ty, =T,). Yem®

Py (To, = T,) Yem®

. o . -1
eigenvalue for the r—direction in region 2, cm

eigenvalue for the r—direction in region 2 for ¢ <, ,

-1
cm

eigenvalue for the r—direction in region 1, cm™

eigenvalue for the r—direction in region 1 for a; <o, ,

-1
cm

. . -1/2
eigenvalue for time, s

. . -1/2
eigenvalue for time, s

heat flux sensor signal, Volts or Watts

&(n) integer function

‘Pl

function defined by Eq. (26)

W, function defined by Eq. (27)
W, function defined by Eq. (28)

HEAT CONDUCTION MODEL

The geometry used to develop the calorimeter model is
shown in Fig. 1. The heat conduction equation in the isotropic
inner cylinder shown in Fig. 1 is

2
kl li(rﬂj—i_kl a Tl

ror\ or 07>
oT,
+g1(V’Z,t):p1Cpla—lin O<r<a (1)
t
Also, the diffusion equation in the orthotropic outer layer has
the form
10( oT o°T.
o ——| T == |k, —
ror\ or 0z

T.
+g2(r,z,t)=p2cpzaa—t2in a<r<b )

where g,(7,z,t) and g,(r,z,t) are volumetric heat source
functions. The volumetric heat generation function g,(r,Zz,t)

could include the heat flux at the surface 7 =b . Subscripts 1
and 2 indicate the inner and outer cylinders respectively.
Equations (1) and (2) are subjected to the following boundary
and initial conditions

£=0 at r=0 3)

or
kl%zqzl(r,t) at z=0in O<r<a 4)

z

—klﬁzqzz(r,t) atin 0<r<a (5)

Jdz
kzZBaLZOat z=0and z=d ina<r<b (6

z

T,(b,z,t)=T.(z,t) in 0<z<d (7

1,(r,z,0)= f,(r,2) and T,(r,2,0) = f,(r,2) (8)

The solution of the system represented by Eqgs. (1) and (2) was
found in reference [1] and it is used as the physical model for
this thermal equilibrium prediction research. Since the voltage
signal of the calorimeter power sensor is proportional to the
heat flux at the inner or outer surface of the outer cylinder (see

Fig. 1), the temperature solution, Tz, found in reference [1] is

differentiated with respect to 7 to obtain the heat flux at the
surface as

2 Copyright © 2002 by ASME



a7,

al,(n,.a)
or Odz .

- 2
r=b m=1 an ﬂ’mO

a1-72,1710

. \,_b[l_exm_z;on]

p(_ﬂ‘;ot) Cld Jl (ana)

— €X
kr2plcpl Ty, — T, )Z

m=1 Nmo an
X aF‘Z,mO
ar r=b

_ PrC (T(),z —T, )kfz/z i d exp(—/liot)
kzZ m=1 7m0Nm0

oF.
X 2,m0
or

{Cm() [b‘ll (7m05) —al, (7m05)]

r=b

D, |6, (7,00) - a¥, (7,00}

o< J,(m,,a) OF,,,
ZZ S

m=1 n= 0 mnnmn ar

r=b

X [qzl +49., COS(””)][I —exp(—4, mnt)]

We J] (n;na) aFZ%jmn

+krzazz

*2 # *
m=1 n=1 ﬂ'mn Nmnnmn ar

r=b

9., +q., cosm)][1 — exp(—A2 )] for & <ax., 9
The definitions of all the parameters appearing in Eq. (9) are
given in [1]. The last two terms of Eq. (9) contain g, and ¢,

which represent the heat losses through the top and bottom
surfaces of the inner enclosure of the calorimeter. If we had a
heat flux sensor that produced at least two voltage signals that
depend in the z-direction, it would be possible to keep the last
two terms of Eq. (9). For example, we could have a heat flux
sensor manufactured in such a way that a voltage signal would
correspond to the region 0 < z<d /2 and another voltage
signal that would correspond to the region d /2 < z < d . This
would make the estimation of the parameters ¢, and ¢,

possible. Since the heat flux sensors we have available produce
only one voltage signal independent of the z—direction, the last

Figure 1. Two-domain calorimeter cylindrical geometry. The
region defined by {0 <7 <a and 0 < 7 < d } represents the
measurement chamber and the region located in {a <r <b
and 0 < 7 < d } represents the heat flux sensor.

two terms of Eq. (9) are neglected for the purposes of this study.
Neglecting the last two terms of Eq. (9), the form of the model
for the thermal equilibrium prediction is given by

o7, alJ,(m,.a)
_ k mQ
2 ar r=b Od; nm() ﬂ’fnﬂ
aF
X 2,m0

[1 exp(— ﬂfnot)]

p(_ﬂ'fnot) ad Jl (nmoa)

— €X
kr2plcp1 (T,, - T, )Z

m=1 Nmo nmo
oF
X 2,m0
ar r=b
= d exp(=A.,t)
= PsC (T, =T, L Z—NO
m=1 m0* " m0
JF, _ _
X az . {CmO [b‘]l (7/mob ) - aJl (}/mOa )]
r r=b
D, oY, (,00) - at, (@)} (0
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The heat flux given by Eq. (10) depends on PiCpi» PrCps s

k., k,, kZ2 017 Toz’ T, ,and g,. This represents a total

of 9 parameters. Since the objective is to predict thermal
equilibrium and not to estimate actual thermophysical
properties, Eq. (10) is modified to reduce the number of
constants. A reduction of the number of parameters is possible
because of the following identity

kN _ P \/;1 (1)
krz \/a_l PrC 2 \/a_rz

The eigenfunctions contained in the model equation (10) are
defined as

Jo(,07) (12)

F,o(r) =

F2,m0 (r) = [Cmo JO (}/mO r) + DmOYO (ym() r)] (13)

where an = ﬂ'mO / Va ’ }/mO = ﬂ’mo/ VarZ ’ and CmO

and D, are given by

T
CmO == }/50 J (77 Oa)Y (7moa)

7[771710 k a

+T’Q1J1 (nmoa)YO (7m0a) (14)

T
D,, = %2"0 1o @,0@)d, (,00)

TN, ka

2% J (1,00 o (V,0@) (15)

Using the definitions of 77,,, and %, , Egs. (14) and (15) can

be written as

TA a
{ ;0 Jo (1,00, (V,,00)
k,
k— 5 T 2\ [0 @Yy (7o) | (16)
1 |7#A a
DmO :—|: - J (nmoa)‘] (}/ Oa)
arZ 2
k r2 wa

— Ao 1 (M0 ) T o (V,0a) | (A7)

k,“/_l 2

The substitution of identity (11) into Eqgs. (16) and (17) makes
C, and D, functions of &;, &,,,and p,c, /(p,c,,)

C = 1 {_ﬂ/lmoa

Jo (1,00, (V,,00)

arZ 2

plpl\/—ﬂ.a/l

p 2 mO‘Il (ana)YO (7m0a) (18)
2% p2 r2

1 {ﬂlmo a

mo:ﬁ 2
pl il \/_ﬂ-a/l

p2 p2 r2 2

D J (ana)J (7moa)

01 Mo @ o (¥ ,00) (19)

From Eqgs. (10) and (11), and the definitions of 77,, and %, .,
the eigenfunctions given by Eqs. (12) and (13) also become
&, &, and pc,/(pyc,,). As a

consequence of the definitions of C,, and D, given by Eqs.

functions of

(18) and (19), the transcendental equation (34) given in [1]
becomes

ﬂ-aﬂ’mo J ﬂ'mOa J ﬂ'mOa Y A’mOb
1 0

2'\/a_r2 ’ W arZ arZ

00 A,.ob P, O,
- Y1 Jo + —
arZ arZ pch2 arZ
2,00 00

A b
J] m Y() m J() 'm0

'\/a—l arZ arZ

A Aol
mOa Y() 'm0 — O (20)
arZ ar2

_JO

It can be seen from transcendental equation (20) that the

eigenvalues A’mO also depend on ¢, «,, and
Pi€, 1(pyc,,) . For n=0, the norm defined by Eq. (40) of

reference [1] can be written as

a d
N,y = J- Iplcpl( 1mo) rdrdz
r=0 z=0
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b d
+J- J./02cp2 2m0 rdrdz (21)

r=a z=0
Because the definitions given by Egs. (18) and (19) make F1,mo
and F,,, dependenton €, &,,, and p,c, /(p,C,,), the
factorization of p,c,, in Eq. (21) produces a norm that is
dependenton &, &,,, P,c, /(P,C,,),and p,c,,

N,,= pchzN;;o (22)
where N, is given by

a d
Ny =25 1 (R, ) rdrdz

p2cp2 r=0 z=0

b d

+ J I( Zmo) rdrdz (23)

r=a z=0

The substitution of Egs. (12), (13), (18), (19), and (22) into Eq.
(9) makes it possible to experess the heat flux at the surface of
the sensor as a function of 6 parameters

J,
Odz a (nmoa*)

- krz - lz
r=b m= 177m0 m()

o

F2m()

> [1 - exp-22,0)]

r=b

X

—a.a i exp(_ﬂ’fnot) ad Jl (nmoa) anva |
2 m=1 N:;,() an ar

r=b

P ek e OF.0|
- Yoo N o or

r=b

X{C,[b7, (7,00) — aJ (7,00
D, [bY,(7,,b) — aY,(¥,,0)] } 24)

Thus, the heat flux at the surface of the sensor becomes a
function of the form

T c
a 2 :f al,az’ pl pl

-k
" or r=b Prc

05,0, 8 (25)

p2

where @ = pic,, (T, —T,) and &, =p,c,,(T,,-T,).
The values of 0,C,;, P5C . To - To ,,and T don’t need to
be determined individually because the objective here is to
predict the onset of thermal equilibrium. These parameters are
lumped into the ratio p,c,, /(P,¢,,) and the constants &,

and &, . Note from Egs. (12), (13), (18), (19), (20), and (24)
that the heat flux at the surface of the sensor depends linearly on

the parameters &;, &, , and g, . Furthermore, function (25)
depends nonlinearly on the parameters ¢, «&,,, and

Pic, I(p,c »2)- This type of dependence permits to use a
linear parameter estimation solver to obtain the parameters &,
&, ,and g,. A nonlinear minimization algorithm can be used

to obtain the constants &, , &,, , and p,C, /(,02CP2) .

NUMERICAL IMPLEMENTATION

Equation (24) was implemented in FORTRAN. An
algorithm developed in [1] was used to determine the
eigenvalues from the transcendental equation (20). Initially, a
FORTRAN program was written to implement Eq. (9). Later
on, this computer program was modified to implement Eq. (24).
Extensive numerical testing was carried out to make sure that
the results from both programs agree to sixteen decimal places.

THERMAL EQUILIBRIUM PREDICTION ALGORITHM

Thermal equilibrium predictions are carried out using a
parameter estimation hybrid algorithm [2] and the numerical
implementation of Eq. (24). For the sake of describing the key
aspects of this hybrid algorithm, Eq. (24) is written in a more
convenient form as

aT. >
—k, = =D.C.¥,® (26)
ol =
where C, = g,, C, =a;,, C; =, , and
al,(1,,a)
YO =-0,d),— 5"
? ; an ﬂ’anNmO
F2 mO
o | lmewenn] @7
= -2 adJ
\P2 (t) — _ar2 eXp( - 'm0 ) a 1(77moa)
m=1 NmO nmo
oF,
X 2,m0 (28)
ar r=b
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i d eXp(_ﬂiot) aF12,m()

Y1) =-a, ;
’ ’ m=1 7/1710Nm0 al"

r=b

xA{C, 01, (7,00) = aJ (7,00
+Dm0 [bYI (}/mob) - aYl (7m0a)]} (29)

Let ® represent the heat flux sensor signals at discrete intervals
of time, the functional to be minimized is defined as

M

S= Z|:®(tp) - i C,\Y, (tp)} (30)

where {tl,tz,...,
measurements are taken and M is the number of measurements
considered in the minimization. The method selected to
minimize Eq. (30) is a technique without derivatives modified
by Powell (in Brent [4]). Powell’s method is used to minimize

tM} are the times at which the voltage

Eq. (30) with respect to the parameters &,;, &,,, and
Pi¢, /(pyc,,). For each set of parameters selected by

Powell’s algorithm [3, 4], a least-squares procedure is applied
to solve the linear system

a 2
ac Z[Q(t) ZC‘P(t )} =0

p=1

for j =123 (3D

The estimation procedure begins by providing initial guesses

for the parameters &, ,,, and p,c,, /(P,C,,). Then the

solution of the linear system described by Eq. (31), yields the

coefficients {C,,C,,C;}. Once the coefficients C; are

known, the value of the functional S is calculated and returned
to Powell’s algorithm. At this stage, Powell’s algorithm

provides a second estimation for the parameters &,, &,,, and
Pi¢,1 /(pyc,,) . This process is repeated until a predefined

convergence criterion for the functional S is satisfied. Figure 7
shows a simplified flowchart of the hybrid algorithm.

The major goal in this study is to reduce the assay time in
calorimeter measurements. Once the parameter estimation
problem described above is solved, the estimated parameters
are substituted back into Eq. (24) and a thermal equilibrium
prediction is obtained by taking the limit of Eq. (24) as
t — oo . Note that only the first summation term in Eq. (24)
survives in the limit as f — oo . This is to be expected since
this term contains the volumetric heat generation constant

g, which is a measure of the heat produced by the radioactive

decay of the material being assayed in the calorimeter. The

value of g, obtained from the parameter estimation problem

described above and the steady-state closed form solution can
also be used to predict thermal equilibrium. Equation (10) is a
one-dimensional solution of the heat conduction equations in
the calorimeter. These equations have the form

k li ra_T — c % (32)
"rorl or T80 = Py ot

k 1 J aT C % (33)
ror Br =Pl ot

As time tends to infinity, aTl /0t and 8T2 /0t in Egs. (32)

and (33) tend to zero to produce

1 d{ dT

k,——|r—L|+g,=0 34
rdr(rdrj 8o GY
1d( de 0 )
rdr\ dr

Equations (34) and (35) are the steady-state versions of Eqgs.
(32) and (33). They can be solved using the continuity of
temperature and heat flux at the interface between the sensor
and the inner enclosure of the calorimeter. These conditions can
be stated as

T (a)=T,(a) (36)
klﬂzk,2d—T at r=a (37)
dr dr

The boundary condition at ¥ =b used to obtain Eq. (10) is
also used to solve Eqs. (34), (35), (36), and (37). This condition
reads

LB =T, (38)
where 7, is the temperature of the outer surface of the tube that

surrounds the sensor. The solutions of Egs. (34) and (35) are

2

8o
T(r)y=A—=-—"— 39
1(r) 4k (39)
I,(r)y=C+Dlnr (40)

The constants A, C,and D can be obtained applying

conditions (36)—(38). After calculating these constants, Eq. (40)
takes the form

2
804 r
T,(r)=T. —2°"1In| — 41
(=T, o (bj (41)
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oT,| g,a°

42
or|._, 2b @

After calculating g, using the thermal equilibrium prediction

algorithm, Eq. (42) can also be used to obtain the steady-state
heat flux.

STRUCTURE OF THE THERMAL EQUILIBRIUM
PREDICTION ALGORITHM AND NUMERICAL
PROCESSING OF THE HEAT FLUX SENSOR SIGNAL
The objective of thermal equilibrium prediction is to reduce
the total assay time by a significant amount and still keep the
prediction percentage error at an acceptable level. The data sets
that contain the thermal response of the heat flux sensor are
modified first to define the initial time and voltage, and the
thermal equilibrium prediction region. A fraction of the total
assay time is defined first prior to the definition of this region.
Once the fraction of the total assay time is calculated, the
definition of the thermal equilibrium region is made based on
the shape of the heat flux sensor signal at the earliest stages of
the measurement. If the sensor signal contains the effects of the
opening and closing of the calorimeter, see Figs. 2 and 4, this
part of the signal is discarded. Otherwise, the definition of the
thermal equilibrium prediction region is done as shown in Figs.

1 and 3. Figures 2—4 show the time, f,, and voltage, V, , used to

transform the time and voltage scales so that the thermal
equilibrium region starts at time equal to zero and at voltage

equal to zero.

The calorimeter heat flux sensor voltage readings are taken
with a digital multi-meter and they contain some degree of

noise. The voltage readings are taken at time intervals, Ata,
defined by the operator of the data acquisition software. The

data acquisition sampling interval, At , is not the optimum

a’

discretization interval, ¢ T t ool that should be used to define

the number of measurements used for the minimization of Eq.
(30). For this reason, numerical experiments were carried out
using 18 data sets to estimate the optimum size of the
discretization interval that should be used in Eq. (30). It was
found empirically that two numerical interpolations applied in
series provided reasonable results. Initially, a prediction region
that represents a fraction of the total assay time is defined. Next,
two numerical interpolations are applied to this prediction
region. First, the experimental data is interpolated linearly using
a time step, At, equal to 16 seconds. Second, a cubic or linear

interpolation that uses Lagrange’s classical formula and
Neville’s algorithm [3] is applied to divide the prediction region
into 5 to 3 data points. These data points represent the number
of measurements, M , considered in the minimization of Eq.
(30). Figure 5 shows a sketch of the numerical processing of the
experimental data contained in the thermal equilibrium

prediction region. The data points generated in the prediction
region are fed to Powell’s algorithm and the hybrid algorithm
starts as explained in the paragraph subsequent to the statement
of Eq. (30). A flow chart of the hybrid algorithm is shown in
Fig. 7.

&
3

&5
3

Thermal Eqiilibrium Prediction Region

Heat Flux Sefsor Readings, Volts
5
1
1

o
3

0091~ -

6298524e10  6208525¢10  6298525e10  6.298526e10 620852610  6.298527¢10
Time, seconds

Figure 2. Typical heat flux sensor calorimeter response that
includes the effects of opening and closing the calorimeter
cover to insert the sample. The location of the minimum at

(¢;,V,) is also depicted.

qmr?&;ilibﬁun Prediction Region

o o
e e
= o
I I

Heat Flux Sensor Readings, Volts
R
1

oo

0 5000 10000 15000
Time, seconds

Figure 3. Typical heat flux sensor calorimeter response
depicting the thermal equilibrium prediction region.
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uranium (HEU) calorimeter have an average percentage error of
0.085%. This average is calculated using an error defined as

0030 [ V/ = E_p

1 e =

x100. (43)

&
&

The thermal equilibrium prediction
Thermel Eqilibrium Prediction Region region shown in Figures 2-5 is
" discretized using linear interpolation
and a time step of 16 seconds.

Heat zlux Sensor Readings, Volts
g
1
1

\ 4
The discretized thermal equilibrium
region is divided into 5, 4, or 3 data
g 3 points using linear or cubic Lagrange’s
| [ ) I ) I interpolation .

6.2995790e10 6.2995795¢10 6.2995800¢10 6.2995805¢10
Time, seconds

\ 4

Five, four, or three data points
belonging to the thermal equilibrium
prediction region are fed to the hybrid

(¢;,V,) is also depicted. algorithm

Figure 4. Typical heat flux sensor calorimeter response that
includes the effects of opening and closing the calorimeter
cover to insert the sample. The location of the minimum at

Figure 6. Numerical processing applied to the
! ' ! ' ! ' data set represented by the thermal equilibrium
v’ prediction region.

o
R
I

Data points from prediction region | | Guess: 07,0, , 0C,/(P,C,5)

\ 4

¢— Powell’s Algorithm

a, 0, PC(PC,,)

\ 4

Heat Flux Sensor Readings, Volts

000 - -1
Thermal Equilibrium Prediction Region Yes Is S<Tolerance?
& Solution Converged
0021 =
. I . | . | . Equation (31) Equation (30)
0 5000 10000 15000 4
Time, seconds ) y , >
M 3
Figure 5. Typical heat flux sensor calorimeter response 9 Qr)-SC¥ )| t=0|] S=>|6¢)-d>C¥(,)
depicting the thermal equilibrium prediction region. o = " ; e ,; g ; T
forj=123 f

THERMAL EQUILIBRIUM PREDICTION RESULTS

Thermal equilibrium predictions were carried out using 330 Figure 7. Flow chart of the hybrid algorithm that estimates
data sets from different calorimeters. One hundred and sixty the parameters used to carry out the thermal equilibrium
four predictions using 164 data sets from the highly enriched prediction using Eq. (24).
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0.06 = —

004 -

0021

Experimental Thermal Equilibrium Flegii

000~ -

Thermal Equilibrium Prediction Region

Heat Flux Sensor Readings, Volts

A

-0.02 =

0 10000 20000 30000 40000
Time, seconds

Figure 8. Typical calorimeter voltage readings showing the
experimental and prediction thermal equilibrium regions.

Table 1. Thermal equilibrium predictions average error
calculated using the error defined by Eq. (43) and data
sets for each calorimeter.

Average | Time Mean(E — P),
Calorimeter Error Ratio
Volts
HEU 0.085% 0.208 | 2.723E-6* 1.70E-5
RFETS 0.145% 0.202 | 9.109E-6 & 1.63E-5
SS 0.179% 0.205 | 4.507E-7% 1.46E-6

The symbol E appearing in Eq. (43) is the experimental thermal
equilibrium obtained taking the arithmetic average of the
voltage data in the experimental thermal equilibrium region,
and P is the predicted thermal equilibrium obtained using the
model Eq. (24). A typical experimental thermal equilibrium
region is depicted in Fig. 8. One hundred and seventeen thermal
equilibrium predictions using 117 data sets from the Rocky
Flats Environmental Technology site (RFETS) have an average
percentage error of 0.145%. Results for the solid state
calorimeter (SS) show that 69 thermal equilibrium predictions
have an average error of 0.179%. Table 1 summarizes these
results. Furthermore, the second column of Table 1 shows the
average percentage error calculated using the error defined by
Eq. (43), the third column shows the ratio of the time used to
carry out the prediction to the total assay time, the fourth

column shows the average of the difference, |E - P| , in Volts.

The fourth column in Table 1 can be converted into Watts
dividing by the sensitivity of each calorimeter given in
Volt/Watt. For the HEU calorimeter, this average produces:
Mean(P — E) =9.55E-5% 5.95E-4 Watts. The RFETS row

yields: Mean(P — E) = 6.66E-4+ 1.19E-3 Watts. For the SS

calorimeter: Mean(P — E) = 4.29E-5 & 1.39E-4 Watts. Table 1

shows that the average percentage error for the 330 equilibrium
predictions made in this study is only 0.136%.

REMARKS AND CONCLUSIONS

A thermal equilibrium prediction algorithm is developed
using an exact heat conduction model. The results shown in
Table 1 show that this model can reduce the total assay time
significantly and still maintain a reasonable error level.
Furthermore, this thermal equilibrium prediction algorithm can
reduce the assay time in large volume calorimeters. Large
volume calorimeters have longer assay times.

The percentage of the total assay time used in this study,
20%, can be reduced further by developing a criterion to
estimate the optimal final prediction time. This criterion may
reduce the percentage of the total assay time somewhere
between 10% and 20%. One approach that can be used to
develop this criterion is to look at the behavior of the first and
second derivatives of the calorimeter response at the early
stages of the measurement. Furthermore, this criterion can be
used to develop a real time algorithm that will decide when to
stop acquiring data and carry out the thermal equilibrium
prediction.

Typical calorimeter calibration curves are constructed using
the arithmetic average of the voltages at thermal equilibrium,
see Fig. 8. A calibration curve can also be constructed using the
model Eq. (24) by carrying out thermal equilibrium predictions
considering the total assay time. A calibration curve constructed
with the model Eq. (24) would provide more consistency when
predictions using a fraction of the total assay time are carried
out utilizing Eq. (24).
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