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A CONSISTENT KINETICS POROSITY (CKP) MODEL
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Abstract. A theory is presented for the mechanical response of porous media to high-strain-rate defor-
mations. The model is “consistent” because each feature is incorporated in a manner that is mathemati-
cally compatible with all the other features. Unlike simple p-o models, the onset of pore collapse
depends (via a user-adjustable yield function) on the amount of shear present. The elastic part of the
strain rate is linearly related to the stress rate, except for nonlinear ¢ontributions due to the change in the
elastic moduli upon pore collapse. The inelastic part of the strain rate includes parts from plastic defor-
mation of the matrix material, pore nucleation, and phase transformations in the matrix material. The
plastic strain rate is taken normal to the yield surface. Consequently; if phase transformation and/or
nucleation are simultaneously occurring, the inelastic strain rate will be non-normal to the yield surface.
The matrix yield stress is permitted to harden linearly. Plastic volume changes of the matrix material are
assumed negligible in comparison to macroscopic volume changes associated with pore collapse. Rate
dependence is allowed via an overstress model. The theory has been exercised under a rigorous array of
canonical loading paths with special care to ensure sensible response upon unloading and reloading.
Results show good progress toward modeling a particular 10% porous ferroelectric ceramic.

INTRODUCTION

The develobment of deformation-induced
porosity or the presence of artificially-induced

The bulk and shear moduli, K and G, vary
exponentially with the unstressed pore ratio y by
4G, +3K,,

K =K_e ™Y where x, = 1
porosity can significantly affect the mechanical m ™ 4G, M
performance of a material. The theory outlined - 5(4G,, +3K,)
below combines numerous disjoint porosity model G =Gpe where ¥, = 8G,, +9K,, @

features from the literature into a single consistent
framework that is designed to be flexible enough to
apply to a wide array of porous materials,

We derived the above expressions for y,, and x,, by
generalizing published low-porosity analytical
results!! to reflect exponential trends in data for
ceramics?. In our implementation, the user gives
the macroscopic bulk and shear moduli, K and G,
and the above equations are numerically inverted to
infer the matrix moduli K,, and G, .

THEORY

Rather than quantifying porosity by the pore
volume fraction f, we instead use the ratio of pore
volume to matrix volume, y = f/(1 - f) . Some other
pore models use a distention density ratio défined
a = p/p, , where p is density and the subscript

The present model is isotropic, and yield is
presumed expressible via a wuser-supplied yield

“m” denotes the matrix material. Qur pore ratio y is
related to o by y=a-1. The pore ratio y in our
equations is at the unstressed reference state. It
- changes only via plastic deformations. The actual
loaded porosity can change during elastic
deformations, but y would remain constant.

function F that depends on four variables: an
equivalent shear stress 1, the pressure p, the pore
ratio v, and internal state variable(s) ¢. A stress
state is below yield if

F(1, p,¥,6)<0 ©)
The “strain rate” tensor £ is decomposed as




g =g, +EF+EN el @)

where ¢ is the elastic part, while £G, eN and g7
are the plastlc parts due to void growth nucleatxon
and phase transformation, respectively.

Stress is linearly related to elastic strain, but the
stress rate contains terms for the change in moduli as
the porosity changes. For example, p = -Kg¢,
where €2 is the elastic logarithmic volume strain,
defined so that &f = trace(£,) . Applying (1),

p = - Kuace(§,) -, pV 5)

Similarly, the stress deviator t is related to the

elastic strain deviator, g; , by ;E = 2G§; , so that

I = 2GE, ~Y,I¥ : 6

The growth part of the plastic strain rate is taken to
be directed normal to the yield surface:

¢¢ = 1 0F/dg 7

The proportionality variable A is called the plastic
segment. It is zero during any interval of elastic
loading, and it must be positive during plastic
deformation. The numerical implementation of this
model constantly monitors to check that A>0.
Negative values of A are permitted only during
iterations to put the stress state on the yield surface
(the final value of dA must still be positive).

The rates of the internal state variables (if any) are
presumed proportional to the plastic segment:

¢ = hEL,  where E=||oF/og|| ®

For linear hardening, & is a user-supplied constant.
Our implementation treats the yield stress. of the
matrix material as an internal state variable.

During an interval of continued plastic
deformation, not only must the stress state be on the
yield surface, it must also remain on the yield
surface. Thus, F=0 and F=0, giving

a—F'c+g§ gﬁuﬂ-gl;g =0 =9

In the absence of phase transformation,
permanent volume changes of the matrix material are
neglected in comparison to volume changes that
result from pore growth/collapse within the
composite. This approximation gives an elegant
relationship between the unstressed reference

porosity and the total plastic strain rate!34l;

= (1+vy) trace(gg+§g), (10)
For the present model, we rewrite this as A
= (1+y) trace(gg) + yN an

where the pore nucleation rate yV is proportional to
the amount by which an ad hoc estimated local stress
in the matrix material exceeds a critical value.
(Future versions of this model will include fracture
damage that will activate well before nucleation.)

The transformation strain is taken proportional to
the extent of transformation n so that £T = ng*,
where g* is the final strain of transformatlon
(uniaxial irr the local domain dipole direction for our
ferroelectric ceramic of interest). Nonlinear phase
transformation is accomplished by allowing the
transformation stress to be a function of the extent of
transformation. For our material of interest, data
show an increase in the bulk modulus following
transformation. Lacking sufficient micromechanical
data to the contrary, we have presumed that the
macroscopic stiffening is caused by a stiffening of
the matrix material, not by a change in the porosity.

The above governing equations can be solvedP! to
determine all of the rate quantities, which are then
numerically integrated to update the material state. ’

The above theory is rate independent and has been
carefully constructed to ensure consistent kinetics
(e.g., the stress remains on/in the yield surface). This
consistent kinetics porosity (CKP) theory governs
the “equilibrated” state. For high strain rates, we
allow the instantaneous stress to differ from the
equilibrated stress g®@ by an overstress go¢r, as
illustrated in Fig. 1. The instantaneous stress rate is
taken to equal the elastic trial stress rate minus a
restoring stress rate that brings the stress back
towards the equilibrated stress. The restoring stress
rate is proportional to the magnitude of the

overstress. Figure 2 shows the shear response to
zo'

% trial stress rate
L)

restonng stress rate= —00"31'/ t*

FIGURE 1. Overstress model. The stress is the vector sum of
the solid arrows. The stress rate is the sum of the dashed vectors.




identical strains applied at different rates (see inset).
For higher strain rates, the characteristic relaxation
time ¢* increases the apparent yield stress.

Recall that the yield function of Eq. (3) is ideally
supplied by the user. Our model has been
implemented with a “dearth of data” (DOD) yield
function that may be used as a flexible default when
measurements of the yield function are unavailable.
For our DOD yield function, the yield stress T of the
matrix material is a user input. The macroscopic
yield in shear taken to be T times the solid volume
fraction (thus initial yield is less than T in Fig. 2).
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FIGURE 2. Shear response with hardening and rate effects.

The default DOD yield point for pure isotropic
volumetric straining is given by the Gurson-Rice!®
implied p-a curve (dashed line in Fig. 3). The solid
line in Fig. 3 shows a computed prediction of the
CKP model, demonstrating consistency because the

pressure always remains on or within this p-o yield

curve. The associated pressure vs. volumetric strain
shows considerable initial pore collapse. When the
pressure is further increased, the slope approaches
the bulk modulus of the matrix material.
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FIGURE 3. CKP model under hydrostatic loading.

For loading that includes both shear and volume
change, we allow the shape of the DOD yield surface
'in T vs. p space to be interpolated between an ellipse
and a circumscribed rectangle (like conventional p-o
theory). The major axes of the ellipse or rectangle
correspond to the pure shear and volumetric loadings

described above. To allow for different yield in
tension and compression, the ellipse/rectangle may
be shifted along the pressure axis. To allow shear-
enhanced compaction (or to compensate for a yield
shift), the slope at the midpoint may be altered.

RESULTS AND DISCUSSION

To ensure robustness, a stand-alone test code was
developed to exercise the model under strain-con-
trolled paths that were more severe than normally en-
countered in physical applications. Correct installa-
tion of the model into the Sandia wave propagation
code ALEGRAI7) was verified by duplicating these
single-cell results using ALEGRA’s prescribed bound-
ary velocity capability. Comparisons with shock im-
pact experiments are now being conducted. Fig. 4
shows the improved agreement of the CKP model
(using a Gurson yield function) with measurements
of shock-induced particle velocity for a PZT ferro-
electric ceramic. Optimal parameters, alternative
yield functions, and mechanical anisotropy (induced
by ferroelectric poling) are now being implemented,
so the agreement is expected to further improve.

120 v
mwo b T -
100 4
90 / e
@ 70 i _
= :
=~ eo0 | i E
= :
5 so0f q e
(=3 s
2 40} i E
= i
30 | i J
v
20 b t g
----- CXP Modet i
L Y N troditionl EP model i b
o b— ——— EXPERMENT i 1
-10 " L " " X X ) N
0.2 0.6 1.0 1.4 1.8
TIME (us)

FIGURE 4. Comparison (to date) with velocity interferome-

ter measurements for a conventional elastic-plastic model and

for the new CKP pore model (using Gurson’s yield function).
For the same ferroelectric ceramic, the parameters
that control the phase transformation have been fit to
the experimental datal®! shown in Fig. 5. Note that
the present model does mnot include reverse
transformation. Fig. 5 also depicts the qualitatively
different response of the same material under
uniaxial strain (H=K+3G is the constrained
modulus, o, is the axial stress, and o; is the
lateral stress, which becomes tensile because the
lateral strain constraint prevents transformation




contraction). The transformation pressure for this
material is well below the yield point, so all of the
nonlinearity is due to phase change, not plasticity.
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FIGURE 5. Phase transformation for (a) unpoled isotropic
strain compression and (b) poled uniaxial strain compression.
Figure 6 shows a verification test of ‘the CKP

model under severe uniaxial strain compression
followed by extension. The initial slope matches the
porous constrained modulus. Yield and pore collapse
commences gradually (B) and continues until pores
have all compressed out (C), beyond which the slope
equals the matrix bulk modulus. Release (D) is elastic
until yield resumes (E). Eventually enough tension
builds to nucleate pores (F), which grow (G) and
cause a stress drop. At recompression (H) the elastic
slope is shallower due to increased porosity.

D

FIGURE 6. CKP prediction of uniaxial strain response. The
inset shows the strain vs. time. Elastic slopes are shown dashed.
The DOD yield surface is methodically explored in
Fig. 7 under uniaxial strain. All of the test parameter
sets in that figure would predict identical response in
hydrostatic compression. The presence of shear and
the shape of the yield surface account for the
illustrated differences in uniaxial strain. Specific

changes in the stress-strain curve can be realized by

more than one possible change in the physical model
parameters. Hence, a systematic study of numerous
measured strain paths is essential to reveal a truly
appropriate family of parameters.
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FIGURE 7. pOD yield parameter study for uniaxial strain
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