skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compositional Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats

Abstract

In order to achieve long thermal barrier coating lifetimes, underlying metallic bond coats need to form adherent, slow-growing Al{sub 2}O{sub 3} layers. A set of guidelines for developing aluminide bond coat compositions is proposed in order to maximize oxidation performance, i.e. forming a slow-growing adherent alumina scale. These criteria are based on results from cast, model alloy compositions and coatings made in a laboratory-scale chemical vapor deposition facility. Aluminide coatings are thought to have more long-range potential because of their lower coefficient of thermal expansion compared to MCrAlYs. The role of Pt in improving alumina scale adhesion and countering the detrimental role of indigenous sulfur is discussed. However, the improvements associated with Pt are minimal compared to reactive element doping. One strategy which has great promise for improvement is to incorporate Hf into the coating. From an oxidation standpoint, this would preclude the need for Pt in the coating and also reduce the scale growth rate. While excellent oxidation performance was observed for cast Hf-doped NiAl, its benefits can be compromised and even eliminated by co-doping with elements such as Cr,Ti, Ta and Re. Creating a pure Hf-doped NiAl is one promising approach for improving the oxidation performance of bondmore » coats.« less

Authors:
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
788673
Report Number(s):
P00-107612
TRN: US200203%%218
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: Superalloys 2000, Seven Springs, PA (US), 09/17/2000; Other Information: PBD: 22 Oct 2001
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ADHESION; ALLOYS; CHEMICAL VAPOR DEPOSITION; COATINGS; HEAT RESISTING ALLOYS; OXIDATION; PERFORMANCE; RECOMMENDATIONS; SULFUR; THERMAL BARRIERS; THERMAL EXPANSION

Citation Formats

Pint, B A. Compositional Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats. United States: N. p., 2001. Web. doi:10.7449/2000/Superalloys_2000_629_638.
Pint, B A. Compositional Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats. United States. https://doi.org/10.7449/2000/Superalloys_2000_629_638
Pint, B A. 2001. "Compositional Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats". United States. https://doi.org/10.7449/2000/Superalloys_2000_629_638. https://www.osti.gov/servlets/purl/788673.
@article{osti_788673,
title = {Compositional Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats},
author = {Pint, B A},
abstractNote = {In order to achieve long thermal barrier coating lifetimes, underlying metallic bond coats need to form adherent, slow-growing Al{sub 2}O{sub 3} layers. A set of guidelines for developing aluminide bond coat compositions is proposed in order to maximize oxidation performance, i.e. forming a slow-growing adherent alumina scale. These criteria are based on results from cast, model alloy compositions and coatings made in a laboratory-scale chemical vapor deposition facility. Aluminide coatings are thought to have more long-range potential because of their lower coefficient of thermal expansion compared to MCrAlYs. The role of Pt in improving alumina scale adhesion and countering the detrimental role of indigenous sulfur is discussed. However, the improvements associated with Pt are minimal compared to reactive element doping. One strategy which has great promise for improvement is to incorporate Hf into the coating. From an oxidation standpoint, this would preclude the need for Pt in the coating and also reduce the scale growth rate. While excellent oxidation performance was observed for cast Hf-doped NiAl, its benefits can be compromised and even eliminated by co-doping with elements such as Cr,Ti, Ta and Re. Creating a pure Hf-doped NiAl is one promising approach for improving the oxidation performance of bond coats.},
doi = {10.7449/2000/Superalloys_2000_629_638},
url = {https://www.osti.gov/biblio/788673}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Oct 22 00:00:00 EDT 2001},
month = {Mon Oct 22 00:00:00 EDT 2001}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: