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ABSTRACT: This paper is a continuation of a study
entitled "Damage Detection in Building Joints by Statistical
Analysis" [1] in which accelerometer data were acquired
from a simulated three-story building driven by an electro-
dynamic shaker attached to the base of the structure. Joint
damage and environmental conditions were simulated and
data were collected systematically for comparison.
Operational variability was introduced by changing the
shaker input amplitudes and frequency range. An Auto-
Regressive model with Exogenous Inputs (ARX) was fit to
the collected data and the standard deviations of the residual
errors between ARX predictions and the measured data
were used as the damage sensitive features. A Sequential
Probability Ratio Test (SPRT) was used to make damage
detection decisions. The test produced promising results, but
was shown to be sensitive to the operational and
environmental variability. This investigation was conducted
as part of a conceptual study to demonstrate the feasibility of
detecting damage in structural joints caused by seismic
excitation.

NOMENCLATURE:

x = acceleration time history value

o = auto-regressive (AR) model coefficients

o, = ARX model coefficients

e = AR residual error

¢ = ARX residual error

n = number of data points

p = mean

o = standard deviation

Z, = SPRT test statistic

a,b = upper and lower bounds of Z,, respectively

1. INTRODUCTION

Recent earthquakes have shown that welded moment-
resisting steel connections are susceptible to failure [2].
Current methods of damage detection for joints in buildings
subjected to earthquakes are quite costly and time-
consuming visual procedures. If a damage detection method
based on measured vibration response can be developed, it

can then be combined with current MEMS or fiber optic
sensing technology, constituting a more economical and
quantifiable damage detection method. Such a damage
identification method can potentially provide significant
economic and life-safety benefits. The focus of this study is
to conceptually demonstrate a vibration-based damage
detection system for structural connections.

In the research presented herein, baseline data sets
measured from a structure in an undamaged state were
compared in a statistical manner to data sets measured from
the structure after various damage conditions had been
introduced to the structural connections. The test structure
was representative of a three-story frame building. A modal
analysis of the structure preceded the damage detection
portion of the experiment to lend insight into the dynamic
response of the structure. The damage detection method
used in this study was composed of a four-part process [3,4]:

1. Operational evaluation,

2. Data acquisition and cleansing,

3. Feature extraction, and

4. Feature discrimination through statistical modeling.

Possibly the most important part of implementing a damage
detection strategy is to determine the appropriate damage-
sensitive features to be extracted from the data. Features
that are highly sensitive to damage while being insensitive to
other variables must be chosen. The features extracted are
used to develop a statistical model, which will discriminate
between features from the undamaged and damaged states.

2. TEST STRUCTURE DESCRIPTION

The test structure (shown in Figure 1) was a simulated three-
story frame structure, constructed of Unistrut columns and
aluminum floor plates. Floors were 0.5-in-thick (1.3-cm-thick)
aluminum plates with two-bolt connections to brackets on the
Unistrut columns. Floor heights were adjustable. The base
was a 1.5-in-thick (3.8-cm-thick) aluminum plate. Support
brackets for the columns were bolted to this plate. All bolted
connections were tightened to a torque of 220 inch-pounds



(25Nm) in the undamaged state. Four Firestone airmount
isolators, which allowed the structure to move freely in
horizontal directions, were bolted to the bottom of the base
plate. The isolators were mounted on aluminum blocks and
plywood so that the base of the structure was level with the
shaker. The isolators were inflated to 10 psig (69 kPag). The
shaker was connected to the structure by a 6-in-long (15-cm-
long), 0.375-in-dia (9.5-mm-dia) stinger connected to a
tapped hole at the mid-height of the base plate. The shaker
was attached 3.75-in from the corner on the 24-in (61-cm)
side of the structure, so that both translational and torsional
motion would be excited.
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Figure 1. Assembled frame structure, out of plane shaking
(not to scale).

3. MODAL ANALYSIS

The benefits of performing modal analysis on the structure
were threefold. First, the modal testing acted as a thorough
system check. Faulty accelerometers or wires were replaced
and a general familiarity with the data acquisition system
was gained during these tests. The second benefit was the
insight on operational variability gained by performing two
separate modal tests. The structure was taken apart
between the tests then reassembled and tested a second
time. These two tests allowed us to examine how the
structure’s modal frequencies were affected by slight
structural changes. A summary of the modal frequencies is
given in Table 1. The third reason for the modal analysis was
to gather data with which to correlate a finite element model
being developed outside this experiment. Accelerometer
triads were placed at each joint for the modal analysis.
Figure 2 shows a sample mode shape.

Table 1: Modal Analysis Results.

Frequency (Hz) Mode (Xand Y direction)

Test1 Test 2

2.288 2.309 Rigid body Y

3.037 3.109 Rigid Body X

12.568 12.71 1st Torsion

13.903 14.396 1st Bending X

14.457 1st Bending Y

24.87 24.726 2nd Torsion

32.038 31.749 Possible Unistrut Mode
40.081 39.087 2nd Bending X

49.816 49.297 Possible Unistrut Mode
69.095 66.034 2nd Bending Y

73.424 69.633 3rd Torsion

74.297 71.626 3rd Bending X
120.327 114.651 3rd Bending Y
138.887 134.714  |4th Torsion
145.037 144.645 Possible Air Bearing Mode
187.593 184.17 Possible Floor Plate Mode

30Wiew OB2TE.5HP - ModeH1Z 74.3025 Hz) [xp.2)

i

‘r'difx

Right (+] 0621B.5HF - Modef12 74.3025 Hz) [« 2)

=N

)

Figure 2: 12th mode of the test structure.
4. OPERATIONAL EVALUATION
Operational evaluation is essentially the problem definition

phase; this involves defining the scope of the experiment [5].
In this stage, damage was defined and implementation



flexibility and variability of the structure were considered.
Damage definition should attempt to model the effect of
damage in actual structures. Damage was defined as a
significant change in dynamic response of the structure. This
was evaluated with the SPRT described in section 7.
Implementation flexibility governs the number, placement,
and type of sensing devices to be used in the test. For this
test, sensor pairs were placed at each joint. If the method
used in the experiment is overly complicated or costly it will
be impractical to implement. Variability was introduced in
three forms: environmental, operational and testing
variability. Each of these sources of variability must be
carefully considered and the feature extracted for damage
detection should be insensitive to all of them.

5. DATA ACQUISITION AND CLEANSING

The structure was instrumented with 33 piezoelectric
accelerometers, two per joint (see Figure 3) plus additional
pairs at damage joints. Accelerometers were mounted on
blocks glued to the floors and Unistrut columns. This
configuration allowed relative motion between the column
and the floor to be detected. The nominal sensitivity of each
accelerometer was 1 V/g. Additionally, a force transducer
was mounted between the stinger and the base plate. This
force transducer was used to measure the input to the base
of the structure. A commercial data acquisition system
controlled from a laptop PC was used to digitize the
accelerometer and force transducer analog signals.
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Figure 3: A typical floor plan showing sensor locations.

The sensor and cabling setup was verified by sending a low
frequency sine wave into the structure and visually
inspecting the read-outs for each channel. The acceleration
time histories were analyzed in the feature extraction and
statistical modeling portion of the study. For this type of
measurement, 8-second time histories were sampled at a
rate of 512 samples/sec. A uniform window was applied to
these measurements.

A matrix of baseline undamaged data sets was recorded
before damage was introduced to the structure. This
included operational and environmental variability from

varying the shaker input level, adding mass to the structure,
and placing a small handheld shaker outputting a 100 Hz
sine wave on the building. Before acquiring each data set,
the pressure in the air mounts was inspected, the bolt
torques throughout the structure were verified and the
accelerometers were also inspected for proper mounting.
Damage was introduced by loosening or removing bolts at
the joints as summarized in Table 2.

Table 2: Test Cases.

Damage No clamped mass, joint 2a has induced

Case 1 damage

Damage Clamped mass on level a, joint 4b has

Case 2 induced damage

Damage Clamped mass on level b, joints 4b and

Case 3 2a have induced damage

Damage Clamped mass on level c, induced

Case 4 damage at joint 4b, loose masses on
level a and level b

Damage Clamped mass on levels a & b, induced

Case 5 damage at joints 2a and 4b, handheld
shaker emitting sign wave on level a

The time histories for the paired accelerometers at each joint
were numerically subtracted, giving the relative acceleration
at each joint. The relative signals were normalized by
subtracting their respective mean values and dividing by
their standard deviations. This data normalization process
was used to minimize any shifts caused by DC offsets and to
minimize shaker amplitude dependence. Hereafter the
normalized relative signals will be referred to as the data
signals.

6. FEATURE EXTRACTION

Because of the accelerometer placement, the relative
difference between adjacent column and plate acceleration
time histories should demonstrate movement at the joint. If
the plate is securely bolted to the bracket, both
accelerometers should provide similar readings. If damage is
introduced at a joint, the adjacent accelerometers should
exhibit some quantifiable difference in their readings. For this
reason the difference between the time histories measured
from accelerometers on the column and on the plate at every
joint was examined. An AR model was first fit to each data
signal. Residual errors between actual time history
differences and predicted differences were computed. These
residual errors were used as the approximated inputs to the
ARX models. Because the AR-ARX model is a linear
predictive model, it was assumed that residual errors from
this model applied to a nonlinear, or damaged, case would
be larger and exhibit greater variance than when the linear
model was applied to the intact, linear structure. Also, it was
assumed that the largest changes in the residual errors
would be associated with the damaged joint. Thus the
standard deviation of the residual errors from the AR-ARX
model was used as the selected damage detection feature.



The AR model used in this study was:
40

x(t) =D ax(t—i)+e(t) (1)
i=1

Where 40 is the model order, o’s are coefficients that weigh
previous response measurements, X, and e is the residual
error term. The order of the AR model was determined using
a partial auto-correlation function [6]. Successive AR models
of increasing order are fit to the data and the magnitudes of
the last alpha coefficients from these various models are
plotted. The point at which the alpha values fall below a
specified tolerance is selected as the order of the AR model.
For this study the tolerance was set at 1/Vn. Figure 4 shows
a plot of the partial auto-correlation function. Based on this
analysis an AR model of order 40 was chosen. Figure 5
shows a comparison of the 40th order model and a 100th
order model with the actual data; the 40th order model was
sufficient.
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Figure 4: Partial auto-correlation of an undamaged test case.

This model is then fit to the data signals at each joint and
alpha coefficients are derived by a least squares fit. The
residual errors are calculated from the AR model and are
used as approximated input to the ARX model given here:

8 7
x() =Y ax(t—i)+ Y Bre(t— j)+&() )
i=1 j=0

Where o and B are the linear predictor coefficients and ¢ is
the residual error (o here is different from the o in the AR
model). For the undamaged cases o and 3 were determined
by a least squares fit and saved in an array. The damaged
cases were then paired with the undamaged cases
experiencing the same operating conditions. This pairing
was done both through a least squares matching of the AR
coefficients and manually. The damaged (test) data were
then fit to AR-ARX models using the coefficients from the
undamaged cases.

The model order of the AR-ARX was determined by looking
at the AR-ARX residual errors and determining when they
were small enough [6]. An order of 8 sufficed here.
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Figure 5: Comparison of actual data with 40th and 100th
order fit AR models.

7. STATISTICAL MODELING

A Sequential Probability Ratio Test was used to establish
when a significant change in the damage-sensitive feature
had occurred [7,8]. The residual errors of the AR-ARX model
fit to the data signals when the structure is in good condition
will have some distribution with mean, p, and standard
deviation, o. If the structure is damaged, then the mean, the
variance, or both might change. Statistical process control
provides a framework for monitoring future residual error
values and for identifying new data that are inconsistent with
past data.

Here the decision is whether or not the system is damaged.
The standard deviation is used to make a decision, and we
develop two hypotheses.

Ho: 6 < oo and Hi: o> 04

Where op and o1 are experimentally determined values of
standard deviation that represent thresholds of undamaged
and damaged c’s respectively. We develop a test statistic:

R o I SR U PR S e
Z,,—;Z[O_g 612](,91. M) h{%J (3)

This Z, is then tracked as more data come in and damage is
indicated when a Z, exceeds the “undamaged” region as
seen in Figure 6. Here the Z, diverges rapidly for the data
signals at the damaged joints and a clear decision can be
made. The undamaged region is defined heuristically by a
and b, which are the upper and lower limits, respectively.
However, because of the nature of the method, initial
incorrect guesses can be made, as in Figure 7; these are
usually corrected by delaying a decision until sufficient
amounts of data are recorded. Sometimes no clear decision
can be made even after much data have been collected.
Figure 8 shows a case where all the data signals are
muddled. There is no clear distinction between the damaged
and undamaged joints. This data came from a test case with
a large amount of environmental variability.
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Figure 6: Z, plot used in SPRT; all the data signals from the
building are plotted. The ones corresponding to damaged
joints diverge rapidly.
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Figure 8: Decision is difficult to make in ambiguous case.

8. CONCLUSIONS AND FUTURE WORK

Accelerometer Location:

Sensors detecting relative vertical (z-direction) motions could
have a practical placement advantage because they are less
dependent on whether excitation at the structure’s base
takes place in the x or y direction. The accelerometers at
these locations were surprisingly sensitive to damage, yet
susceptible to false positive decisions. Future work should
definitely include a more detailed look as to whether the
relative vertical motion would be a choice for joint damage
detection.

In general, the sensors in line with the excitation (x-direction)
were most effective while sensors lined up perpendicular to
excitation (y-direction) were wholly ineffective.

Excitation Levels:

As expected, the level of excitation played a large role in the
detection effectiveness. At the highest excitation levels, the
damage detection process worked relatively well; as
excitation levels were lowered, this detection ability was
severely reduced. At the low excitation levels, the relative
background noise was much higher and the results were
much more sporadic. A systematic way of choosing oo and
o1 could improve the detection effectiveness at the mid-
range (and more practical) levels of excitation.

Environmental Conditions:

The ability to detect damage with imposed variability in the
environmental conditions depended on the excitation level
and the condition imposed. The addition of loose masses
had little effect at high excitation levels, while the hand
shaker seemed to have devastating effects on the detection
ability in general. With improved values of oo and oy,
damage detection with loose masses at mid level excitation
should be attainable.

SPRT and Feature Choice:

The standard deviation of the AR-ARX errors appeared to be
quite sensitive to damage. A more appropriate method for
choosing oo and o1 should be developed to obtain optimum
detection abilities. The Sequential Probability Ratio Test
worked reasonably well at reducing the amount of data
needed to produce a correct decision. From Figure 8 one
can see a few data signals diverging extremely quickly at the
start of the plot; these correspond to damaged joints.
However, the algorithm is not able to correctly discern them
as the only damaged joints, as is obvious from the many
other data signals diverging above the threshold. A visual
inspection can determine the damaged joints but no
numerical method yet developed works here.

This study was undertaken to conceptually demonstrate a
vibration-based damage detection system for structural
connections in building subject to earthquakes. With the cost
of current data acquisition technology it would be considered
prohibitively expense to put two accelerometers at every
joint in an in-situ steel frame structure. However, current
developments in MEMS sensing technology (see www.imi-



mems.com) coupled with recent developments in wireless
data acquisition and transmission systems [9] indicate that
instrumenting every joint in a structure will be economically
feasible in the near future. The results of this study show that
there is the potential to identify and locate the damage at a
joint if such an instrumentation system were put in place.
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