skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective excitation of the yellow and blue luminescence in n- and p-doped Gallium Nitride

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/788068· OSTI ID:788068
 [1]
  1. Univ. of California, Berkeley, CA (United States)

GaN is an interesting material: technologically very useful, but still having many unexplained features. Two such features are the broad defect-related luminescence bands: the YL of n-type GaN and the BL of Mg-doped p-type GaN. We have employed selective excitation to investigate these bands. In the case of the YL, most of the previous evidence has supported a recombination model between distant donors and acceptors, most likely a transition involving a shallow donor to a deep acceptor. Our selective excitation experiments have resolved finer structures within the YL. Our results indicate that the YL in bulk samples is related to the YL in film samples. We suggest that selectively excited YL involves recombination at DAP complexes, rather than between spatially distant DAPs (however other recombination channels, including that of distant DAPs may become significant under other excitation conditions). Characteristics of the DAP complexes within our YL model include (a) an electron localization energy of around 60-70 meV, (b) a localized phonon energy of around 40 meV, and (c) excited states of the complex at 200 and 370 meV above the ground state. In the case of the BL, the deep defect responsible for the BL is unknown, and there may not even be a deep defect involved. Also in dispute is the role of potential fluctuations in the properties of the BL. Our results have been explain in a model whereby emission is from DAPs, and significant effects are produced by doping-related potential fluctuations and disorder. Characteristics of the our model for the BL include (a) an Urbach tail, having width E{sub 0} = 33 meV, (b) a strong electron-LO phonon coupling occurring with a Frank-Condon shift of {approx} 180 meV between excitation and emission, (c) a mobility gap at 2.8 eV, separating highly mobile states and highly localized states, and (d) PL-like behavior for excitation energies larger than 2.8 eV, having a blue-shift with increasing excitation energy caused by the increased number of free carriers in the material.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
788068
Report Number(s):
LBNL-48888; R&D Project: 506201; TRN: US0110650
Resource Relation:
Other Information: TH: Thesis (Ph.D.); Submitted to Univ. of California, Berkeley, CA (US); PBD: 31 Dec 2000
Country of Publication:
United States
Language:
English