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Abstract. The diocotron spectrum for a simplified model of Malmberg-Penning traps that includes
compression effects due to end curvature is investigated herein. Performing an initial value treat-
ment, we find that there is a class of length profiles for which the linearized eigenvalue equation
of the model can be integrated in quadratures (integrable case). In this case, there is only algebraic
growth when the effective angular frequency has a maximum (hollow profile) or a minimum, and
the model is mathematically equivalent to the zero curvature (2D Euler) case. Furthermore, we study
profiles that are slightly different from the integrable one (the difference being characterized by a

small parameter, ε), finding that the frequency of the unstable l � 1 mode scales as ε 2�3. Analytical
calculations and numerical simulations are found in remarkable agreement.

INTRODUCTION

The analogy between the 2D Euler equations for an incompressible and inviscid fluid

and the classical equations for the evolution of a non-neutral plasma (2D drift-Poisson

model) in a Penning trap is well known [1]. According to the linear theory, the 2D drift-

Poisson model has demonstrated to be satisfactory only for (exponentially unstable)

perturbations with azimuthal mode number l � 1. On the other hand, it can be proved

theoretically that perturbations with mode number l � 1 are always stable, regardless

of the initial equilibrium density profile [1]. Experiments, however, show that the linear

growth of the l � 1 mode is exponential [2].
New fluid-dynamics models have been developed for a non-neutral plasma, trying to

solve the problem of the l � 1 diocotron instability [3, 4]. These works show that a

possible explanation of the instability comes from the finite curvature of the ends of the

plasma column due to the confining voltage (i.e. compression effects).

The present study investigates the modification of the low-frequency branch of the

diocotron spectrum when these compression and finite electron temperature effects are

taken into account.



PHYSICAL MODEL

We focus our attention on a simplified version of the model developed by some of the

authors in Ref. [4]. In normalized units, the model is the following:�����������������

∂σ

∂t
��V� �∇�σ

V� � �ez�∇� φeff

∇2
�φ �

σ

L0

φeff � φ�αlog
L0

L0�r�0

� (1)

For a detailed derivation of this model we refer to Refs. [4, 5, 6]. Compression effects

are retained in the terms depending on the normalized temperature α (assumed to be

uniform) and on the normalized effective plasma length L0�r�. The relation between

physical and dimensionless quantities can be found in Ref. [5]. The effective plasma

length is assumed fixed in time and this makes the model 2D.

The motivation of this study is that this approximated model is still able to capture
the features of the l � 1 diocotron instability (as shown in Ref. [4]) but, since it is 2D,

it is possible to perform analytical calculations to match numerical simulations. Our

goal is to get some insights on the effects of both temperature and length profile on the

diocotron spectrum that will help us in the study of the complete model of Ref. [4].

ALGEBRAIC INSTABILITY IN INTEGRABLE CASE

First, we perform an analysis similar to the one by Smith and Rosenbluth [7]. Applying

the Laplace transformation to the linearized time-evolution equation that can be deduced
from model (1), one obtains:
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where the prime means derivative with respect to r and δφω and δσ�r�0� are respectively

the Laplace transformed perturbation of the potential and the initial perturbation of the
line integrated charge density. A new effective angular frequency has been defined

Ω�r� � ωE �r��
α

r

L �
0 �r�

L0 �r�
(3)

where ωE �r� � φ�c0 �r��r is the E�B equilibrium angular frequency in the central plane

of the trap. In the limit of L0 �const, Eq. (2) reduces to the classical Euler case.

After some algebra, it can be shown that under a certain condition Eq. (2) can be

integrated in quadratures, i.e. δφω�r� � r �ω�Ω�r�� is a solution of the problem for

l � 1. We refer to this case as the integrable case. The condition is that the following
equation be satisfied:
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FIGURE 1. Effective length profiles.
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where χ � L �
0�L0. In this case, provided that the effective angular frequency has a

stationary point, the system is algebraically unstable and the mode perturbation grows

asymptotically proportionally to
�

t (as for the classical 2D Euler case [7]). This result

has been confirmed numerically.
Given the equilibrium initial parameters, Eq. (4) can be used to obtain the integrable

length profile and in general this profile will be different from the one that comes from

the equilibrium solution for a given configuration of the Penning trap. In order to make

these two profiles as close as possible inside the plasma radius (which is the most

important region, as pointed out in Ref. [3]) we use the boundary conditions χ�0� � 0

and χ� �0� � L ��
0�eq �0��L0�eq �0�. Note however that one could in principle choose the

geometry of the trap (which determines the equilibrium profile) to match the integrable

length profile L0�integ�r�.
Figure 1 shows the length profiles. The equilibrum length profile is calculated for

the same geometrical and physical parameters of Ref. [4], with the choice of confining

voltage V � 50 V and temperature Θ � 7�5 V. Accordingly, we choose the normalized

temperature α � 0�42 and the normalized equilibrum density profile [3, 4]:
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with n0�0� � 6�2, µ � 3 and rp � 0�59.



INITIAL VALUE TREATMENT

In Eq. (2), the Laplace transformation of the perturbation of the potential is defined

as δφω�r� �
�
�∞
0 eiωtδφ�r� t�dt, while the inverse Laplace transformation is given by

δφ�r� t� �
� �∞�iη
�∞�iη δφω�r�e

�iωt dω
2π where η is a large enough real positive number, such

that all irregular points of the function δφω are located below the line Imω � η in the

complex plane of ω.

We introduce the function ψ�r�ω� � rδφω�r� and solve the second order equation for

ψ induced by Eq. (2). Unlike δφω, the solutions for ψ are bounded at r �� 0, which is

necessary for Eq. (6) below.

We perform our analysis in the vicinity of the stationary point rs (ωs � Ω�rs�), by
using the method of matched asymptotic expansions for ψ�r�ω�. For simplicity, the

initial perturbation is chosen to be localized, δσ�r�0� � σiδ�r� ri�, as it is done in Ref.

[8]. This method gives the following result
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Here the contour C goes around the vertical branch cut attached to the point ω � ωs in

the complex plane of ω. ψr�r�ω� and ψs�r�ω� are two linear independent solutions of

the homogeneous part of the Laplace transformed equation such that ψr � O��r� rs�
2�

and ψs � O�1��r� rs�� in the vicinity of rs. We have also introduced ∆ � ω�ωs and

Ω
���rs

�
d2Ω

dr2

����
r�rs

.

Two merging singular points are present when r approaches rs and the contour of

integration in the complex plane of r should always go between these two points [9].

We expand in power of ∆ the integrand of Eq. (6) and perform the integral. Each term

of the expansion contributes as

�
C

∆νe�iωt dω

2π
∝ t�ν�1e�iωst . The algebraic instability

(ν � �1) is only possible if the term proportional to ∆�3�2 in the denominator of

expression (6) vanishes, i.e. if ψr�0�ω� � 0 or ψr�Rw�ω� � 0. In the integrable case

ψr � r2�Ω�r��ωs� and, therefore, ψr�0�ω�� 0. Thus, in the integrable case, the leading

term of the expansion has ν ��3�2 (from the numerator of Eq. (6)) and the calculation

of the contour integral leads to growth ∝
�

t. Exact calculations of the contour integral

(6) recover the asymptotic formula obtained by the stationary phase method in Ref. [7].

When the length profile deviates only a little from the integrable profile (we refer
to this case as non-integrable case), L0 � �1� ε�L0�integ � εL0�eq, where ε is a small

parameter, the perturbation to the solutions of Eq. (2) are ∝ ε. In particular, δψr ∝ ε and

ψr�0�ω� ∝ ε. Since ψr�0�ω� 	� 0, algebraic growth does not occur in the non-integrable
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FIGURE 2. Frequency shift of the unstable l � 1 mode, log-log scale.

case (continuum modes near the endpoint ω � ωs phase mix according to t�1�2 in this

case). The zeroes of the denominator in Eq. (6) determine the discrete eigenfrequencies.

One can see that for small ε the eigenfrequencies exist with ∆ ∝ ε2�3 (as predicted by

Smith in Ref. [10] for an ad-hoc model and seen in Ref. [3]). These eigenfrequencies are

located close to the edge of the continuum ωs.

Numerical simulations have been done to compare with analytical predictions. Specif-

ically, Fig. 2 shows the frequency shift of the real frequency (ωr) of the unstable l � 1

mode with respect to the edge of the continuum, for ε between 0 and 1. We perform the
best fit with the least squares method only for the points marked with triangles, since for

very small ε there is a loss of accuracy and for large ε the perturbation theory fails. We

find ωs�ωr ∝ ε0�70, in good agreement with the result ωs�ωr ∝ ε2�3 obtained from Eq.

(6).

Figure 3 shows the growth rate (γ) of the unstable l � 1 mode as a function of ε.

Remarkably, we find γ ∝ ε0�65, in excellent agreement with γ ∝ ε2�3. One can also notice

that the integrable case is a very specific case and as soon as one moves a little bit from

this profile, an exponential growth is found.

Figure 4 shows the diocotron spectrum for ε � 1, corresponding to L0 � L0�eq. The

upper edge of the continuum splits in two complex conjugate discrete modes (with real

part of the frequency that decreases as ε increases from 0 to 1). It is seen in Fig. 4 that

another discrete mode appears at the lower edge of the continuum (in the integrable

case this mode is the stable diocotron mode). As predicted analytically and confirmed

numerically, its real frequency shift (with respect to the lower edge of the continuum)

scales proportionally to ε.
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FIGURE 3. Growth rate of the unstable l � 1 mode, log-log scale.
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