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Abstract. A refinement to the theory published by Finn ef al. is presented here. Compression effects
are taken into account by a rigorous definition of the plasma length and by modifying the expression
of the velocity field. The perturbation of the plasma length is calculated exactly by a suitable Green
function. Growth rates and real frequencies of the unstable mg = 1 mode are compared with the
experimental values, showing a good agreement when compression effects are strong (i.e., for short
traps).

INTRODUCTION

The mg = 1 diocotron instability is one of the open problems in non-neutral plasma
theory. According to the classical theory, the mg = 1 diocotron spectrum does not present
discrete unstable modes (regardless of the equilibrium density profile) [1], while the
continuum spectrum can only produce an algebraic growth proportional to /2 [2]. On
the contrary, experiments show that the linear growth of the mode is exponential [3, 4].

Finn et al. [5] provided a justification of the mg = 1 diocotron instability in terms
of compression of the plasma column due to the confining potential along the axial
direction of the trap. However, the theory by Finn ef al. neglects the finite electron
temperature and the effects of the perturbation of the plasma length in the axial direction
are treated in a simplified manner. These two issues are treated rigorously in a recent
work by the Authors [6].

In particular, the new model differs from the one in Ref. [5] for three main aspects:

1. arigorous definition of the length of the plasma column is used;

2. an effective electrostatic potential is introduced, in order to calculate the E x B drift
on a string of variable axial density (finite temperature effects are included);

3. the perturbation of the plasma length, induced by density variations, is calculated
in terms of a suitable Green function.

In the present work the theory presented in Ref. [6] is reviewed and comparisons with
experimental data provided by Kabantsev and Driscoll [4] are presented.



THE PHYSICAL MODEL

A Penning trap confining an electron plasma is considered in the following. The central
electrode, which extends between z = —L./2 and z = L. /2, is grounded, while the end
electrodes (each having length L;) are at a negative potential, —V. The radius of the trap
is indicated by Ry, and the gap between the central and the end electrodes is L.

The main difference of the present model with respect to the classical one is regarding
electrons as string of variable length and, consequently, of variable density (while in the
classical approach they are considered as strings of uniform density). Since the plasma
length changes radially (due to the confining potential), the columns are compressed or
rarefied as they move radially. This phenomenon is known as compression effect.

The model can be deduced starting from the following two hypotheses:

1. Due to the presence of an axial magnetic field, in the characteristic time scale of
the diocotron instability the Maxwell-Boltzmann distribution is reached only along
the z direction [7] and the particle density is
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where ® = kT /e is the electron temperature expressed in Volts, while n. (r,0,1) and
0. (,0,1) are respectively the electron density and the electrostatic potential in the
central region of the trap, i.e., for |z| < L./2.

2. Electrons move in the transverse plane due to the E x B drift velocity:

n(r,0,z,t) =n.(r,0,t)exp (1)
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The continuity equation

Instead of n. (r,0,t), experiments yield the line integrated density, 6 (r,0,7), given by

o0
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where the effective length of the plasma column, £ (r,0,7), has been defined as
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Averaging the continuity equation for n(r,0,z,¢) over z, one obtains a new continuity
equation for the line integrated density
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with the velocity given by a suitable z-averaged E x B drift.



The z-averaged E x B drift

The present theory differs from the one by Finn et al. [5] in the evaluation of V| .
In fact, the velocity is here calculated in terms of the E x B drift estimated on a whole
string (a similar assumption has been employed by Fine and Driscoll [8]) and it is given
by
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Equation (6) can be rewritten as
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where the effective potential, ¢cfr(7, 0,17), is defined as
L
(l)eff = (l)c + G)log 13 (8)
r=0

The model

The model is completed by the Poisson equation for ¢. The set of equations can
be written in a more compact way by defining the quantity W (r,0,z,7) = ¢ (r,0,z,¢) —
o (r,0,1), which represents the correction to the potential in a trap of finite length, with
respect to the one in a trap of infinite length. Finally, the following system of equations
is to be solved:
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TABLE 1. Confining potential and geomet-
rical parameters of the experiments performed
by Kabantsev and Driscoll [4].

VIV] Lc[em] Lg[em] Lg[cm]

36 34.6 0.175 6.8
80 20.7 0.175 13.8
100 7 0.175 6.8
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FIGURE 1. Experimental line integrated density from experiments by Kabantsev and Driscoll [4].

A modified Rayleigh criterion for linear stability and the conservation of canonical
angular momentum and of the energy of the system can be deduced from system (9)
[6]. The criterion proves that when G(r) is a monotonic function, the system is linearly
stable.

COMPARISON WITH EXPERIMENTAL RESULTS

Growth rates calculated with the present theory have been compared with those resulting
from recent experiments performed by Kabantsev and Driscoll [4]. For each experiment
the electron temperature is approximately 1 V and the axial magnetic field is Bo = 0.4 T.
Three different cases (labelled A — B — C) have been considered. Table 1 summarizes the
confining voltage and the geometrical parameters of the trap for these cases.

For each case, the initial z-integrated density, ¢ (r), is reported in Fig. 1. From such
measured density distributions, the corresponding profiles for n. (r) and L (r) have been
calculated, by solving Eqgs. (9) iteratively for the initial equilibrium. The results of the
calculations are presented in Figs. 2 and 3. Growth rates of the instability, y, and real
frequencies, f, for the mg = 1 mode have been evaluated by linearizing system (9).
Table 2 summarizes the results.
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FIGURE 2. Equilibrium density profile calculated from experimental G ¢.
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FIGURE 3. Equilibrium length profile calculated from experimental G g.

A few considerations are in order. It can be noticed that in a short trap (case C) com-
pression effects are very strong and the equilibrium length profile varies considerably
with 7. On the contrary, for longer traps (cases A and B) the equilibrium length profile
has a small variation with respect to its value for r = 0 (10% inside the plasma radius).
When compression effects are small (i.e., for long traps), the growth rates calculated
with the present theory are not comparable with the corresponding experimental values.
Viceversa, when compression effects are strong (i.e., for short traps) the agreement be-
tween theory and experiment is remarkable. When compression effects are small, the
disagreement between theory and experiment is probably to be explained in terms of
kinetic effects, as pointed out in Refs. [9] and [10].



TABLE 2. Real frequency and growth rate (in kHz) for
the unstable mg = 1 mode

experiment theory
f Y v v vf
A 179 6.0 034 170 099 0.058
B 232 5.6 0.24 21.0 093 0.044

C 427 10.6 0.25 36.1 8.5 0.24
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