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ABSTRACT

This paper describes the implementation, verification, and comparison of two

techniques for updating nonlinear finite-element structural dynamics models using

transient time-domain data. The methods are motivated in terms of the intended

applications, and the derivations are shown as they relate to the model updating

methods for linear finite element models. The application of the two methods to

simulated results for an impact problem (with a structure containing a hyperelastic

polymer) is presented.

SECTION 1. INTRODUCTION

In many engineering applications it is advantageous or necessary to possess an

accurate means of predicting the dynamic response of a system. Many of these

systems contain significant geometric complexity or nonlinearity causing

acquisition of an analytical representation to be impossible. Because of this, the

finite element method (FEM) is often used in the modeling of such systems. While

being a powerful tool, the FEM is inherently based on approximation leading to a

direct contradiction with the goal of having an accurate device for response

prediction. One approach taken to remedy this contradiction is to use measurement

data taken from the modeled system to update the finite element model, so

improving its predictive quality. Adapting this approach for use with nonlinear

systems and applying it to a simple nonlinear test structure has been the focus of this

research.

Development of methods of finite element updating for nonlinear systems could

have a significant effect on the manner in which structural health monitoring is



carried out. These methods would be particularly influential in the area of damage

identification. Model updating can be used to gain a more accurate prediction of the

response for an undamaged structure. The possession of an accurate model

facilitates simpler recognition of the presence of damage. The updating procedure

would also be applicable for locating and quantifying any structural damage. This

technique could serve as an replacement for traditional, labor-intensive methods of

damage detection.

In this paper, the methods are applied to characterize the stress-strain curve of a

hyperelastic polymer foam. The experiment described in this paper is designed to be

a geometrically simple yet nonlinear precursor to the eventual application of this

technology. The eventual goal is to update a large finite element model with

multiple metal/metal and metal/polymer interfaces using data from a corresponding

experimental structure subjected to explosive shock loads. Another possible

application of this technology that will eventually be explored is the characterization

of strain-rate-dependence in the constitutive models of polymeric materials, such as

the foam layer described in this paper. This technique has the potential to cover

strain-rate ranges not coverable by current techniques (e.g. Split Hopkinson Bar).

Here is an outline of the paper: SECTION 1 introduces the research by

providing motivation and potential applications. A brief explanation of the

challenges of nonlinear updating is presented in SECTION 2 in the form of a

comparison with linear updating methods. SECTION 3 is devoted to a description

of an experiment designed to verify the nonlinear updating techniques of SECTION

2 and results of experimental simulation and updating are given. Finally, a summary

of the conclusions and future work for this project is contained in SECTION 4.

SECTION 2. NONLINEAR FINITE ELEMENT MODEL UPDATING

This section provides a description of the steps involved in updating a nonlinear

FEM while highlighting the difficulties that arise when analyzing nonlinear rather

than linear systems. The initial step naturally includes the development of a finite

element model of the system’s dynamics. It is important that the model to be

updated be a reasonably accurate approximation of the real system. A FE model that

produces a response drastically different from the measurement data is unlikely to

converge upon updating. For linear systems, the dynamic equation of motion can be

expressed as

( )[ ] ( ){ } ( )[ ] ( ){ } ( ){ }tFetupKtapM =+ (1)

which is representative of the equilibrium between inertial forces, internal (linear)

forces and applied loading. This equation clearly denotes the dependency of the

mass and stiffness matrices on the model parameters {p} and expresses the

parametric nature of FE models. It is these parameters that are updated to increase

the correlation between the measured and finite element model data.

Since the dynamics are linear, equation (1) can be transformed to the frequency

domain using a convolution operator. The resulting equation relates the input and



output frequency response functions (FRF) of the system at any given sampling

frequency λ as

( )[ ] ( )[ ]( ) ( ){ } ( ){ }λλλ FeupMpK =− (2)

Consideration of the homogenous version of equation (2) nets the system resonant

frequencies, λ, and mode shapes, {φ}, which, upon the addition of orthogonality

conditions, provide a basis for the subspace to which the response, {u(λ)}, belongs.

The dynamic equation of motion for nonlinear systems is simply equation (1)

modified by the addition of the nonlinear internal force vector, ( ){ }tpFi , , as shown

in equation (3),

( )[ ] ( ){ } ( )[ ] ( ){ } ( ){ } ( ){ }tFetpFitupKtapM =++ , (3)

The addition of the nonlinear force term changes the interpretation of the system’s

behavior in the frequency domain because signals resulting from this system are no

longer necessarily periodic. This being the case, meaningful dynamic response

analyses must be completed in the time domain.

The basis of finite element model updating is the correlation of FE model

simulated data with measurement data and the minimization of the difference. One

way to quantify this difference is to define residue vectors and incorporate them into

the system’s dynamic equation of motion. For linear systems, the frequency domain

based equilibrium expression, equation (2), is often used during correlation.

Experimentally, the system’s modal quantities, { }
testφ  and testλ , are determined from

measured FRFs or directly from time-domain data using identification algorithms

[1]. These modal quantities, when substituted into the finite element model dynamic

equation of motion, result in a violation of equilibrium that can be corrected by the

incorporation of residue vectors:

( )[ ]{ } ( )[ ]{ } ( ){ }λφλφ ,pRfpMpK testtesttest += (4)

Here, the modal residue vectors, ( ){ }λ,pRf , account for the out-of-balance forces in

the model. Vectors ( ){ }λ,pRf  contain the largest entries at the degrees of freedom

where the equilibrium is violated the most. This can be used as the basis for: 1)

Identifying the source of modeling error; and 2) Updating the model by minimizing

a norm of vectors ( ){ }λ,pRf . This approach is referred to as force-based model

updating since entries of residues ( ){ }λ,pRf  in equation (4) are consistent with

forces.

The objective function, which is the quantity that when minimized results in

correlation between the test and finite element model data, can be defined as the

norm of the residue vectors. This is shown in equation (5).

( ) ( )λ,pRfpJ = (5)

For simplicity, we assume that time-domain, displacement measurements { }
testu  are

obtained by instrumenting the system. However, it can be verified easily that all

developments below apply to arbitrary combinations of displacement, velocity and



acceleration measurements. (Note that higher-order derivatives such as strains could

also be employed.)

As mentioned previously, nonlinear systems generally do not allow for much

meaningful interpretation in the frequency domain. This being the case, correlation

between finite element model and measurement data must be done in the time

domain. Here we present two different implementations for solving the nonlinear

inverse problem. The first approach is the rather obvious definition of the residue

vectors as the difference between the test and simulation data, as shown in equation

(6). The objective function to be minimized, J(p), is defined as the 2-norm of these

residue vectors: note that the same definition applies in the linear case with modal

residues (4).

( ){ } ( ){ } ( ){ }tututpR test −=, (6)

( ) ( )tpRpJ ,= (7)

The correlation approach presented above can be viewed as a rather

conventional generalized least-squares (GLS) minimization. The GLS formulation

has been used for solving inverse problems in many engineering applications for

several decades. It is well known that its success is conditioned by the ability of the

math model to span the subspace to which the test data belongs. It is interesting to

notice that this is exactly what modal correlation attempts with linear systems since

the measured response belongs to a subspace spanned by the identified mode

shapes.

Along these lines, the principal component decomposition (PCD) method,

developed and validated in Reference [2], attempts to generalize the notion of a

“mode shape” for nonlinear systems. Rather than using the direct comparison of

expression (6), the singular value decomposition (SVD) of time-domain data is first

performed to get equation (8). Residue vectors (9), (10), and (11) can be extracted

from this.

[ ][ ] ( )[ ] ( )[ ]( )tuSVDtVU
T

=Σ (8)

( )[ ] [ ] [ ] IUUtpR
T

testU −=, (9)

( )[ ] [ ] [ ]Σ−Σ=Σ testtpR , (10)

( )[ ] ( )[ ] ( )[ ] ItVtVtpR
T

testV −=, (11)

In the above, Utest, Σtest, and Vtest(t) refer to the principal components extracted

from the measured data; U, Σ, and V(t) refer to the principal components extracted

from the finite element model simulated data; and I is the identity matrix. Because

the singular vectors are orthogonal, they provide a basis of the multi-dimensional

space to which the nonlinear signals belong [3]. The PCD approach consists of

minimizing the distance between these decompositions rather than between the

original signals. The objective function to be minimized is defined as the sum of the

norms of these residues,



( ) ( ) ( ) ( )tpRWtpRWtpRWpJ VVUU ,,, ++= ΣΣ
(12)

The final step in the finite element model updating process is the generation of

the model’s response surface, which is essentially a look-up table containing the

chosen objective function, ( )pJ , evaluated at a range of model parameters, { }p .

The key to building the response surface is the selection of values for the model

parameters. A large enough number of values must be used to completely define the

surface or the correct minimum may not be located. In opposition to this, a large

number of values will result in large numbers of finite element analyses and

escalating CPU costs.

The objective function was defined such that minimization would result in the

best correlation between the simulated and measured data sets. This being the case,

once the response surface has been constructed, updating the model is reduced to

the task of finding the smallest value on the response surface. The parameter values

that correspond to this smallest value are those that should be used to update the

model.

SECTION 3. EXPERIMENTAL VERIFICATION

In order to verify the effectiveness of the nonlinear finite element model

updating techniques discussed in SECTION 2, a simple experiment was designed

to incorporate nonlinearity from multiple sources. The experimental structure

consists of a cylindrical steel impactor and a foam (cushion) layer assembled on a

mounting plate and attached to a drop table. This assembly is illustrated

schematically in FIGURE 1.

During the experiment the table is dropped from a height to produce a velocity

of 500 in/sec at impact. Accelerometers are placed on top of the steel to collect

measurement data that can be used for validating the predictive quality of our

models. At press time, the experiment was still being developed. As a preliminary

step to using measurement data from the drop test to update the finite element

model, simulated experimental data was generated as a substitute. This section

describes the experiment and the results of updating the finite element model using

simulated experimental data.

A description of the geometric configuration used for this experiment is given

here. The steel and foam cylinders have the following dimensions:

Outer radius: 3.000 inches

Inner radius: 0.250 inches

Thickness of steel: 3.000 inches

Thickness of foam: 0.375 inches

Both cylinders have hollowed centers and have been fixed with a rigid collar to

restrict the motion of the impactor to the vertical direction.



FIGURE 1. Schematic of Steel/Foam Impact Experiment

This experiment was designed to incorporate nonlinearity from both the impact

conditions and the foam material behavior. The foam layer is a hyper-elastic

material that is highly compressible. It has the following properties:

Density: 2.744e-04 3/ inlbf

Poisson’s Ratio: 0.0

The stress-strain properties of this material are defined using pseudo-static uniaxial

test data. FIGURE 2 shows this data plotted along with a parabolic curve fit to the

data. It can be observed from this figure that the foam behavior is fairly linear up to

15% deformation. However, for deformations higher than 15%, the material’s

nonlinearity is clearly visible.

FIGURE 2. Uniaxial Test Data for Foam Material and Parabolic Curve Fit

Steel Impactor

Foam
Mounting

Plate
Drop Table



The steel material demonstrates only its elastic behavior during this experiment,

thus nonlinearity does not enter the experiment from this source. The elastic

behavior of the steel (SS304, stainless steel) is described by the following

properties:

Density: 7.41e-04 3/ inlbf

Modulus of Elasticity 28.7e+06 psi

Poisson’s Ratio: 0.264

Geometric, material, and operational specifications for the drop table are given in

Reference [3].

The finite element model of this experimental system was developed using the

HKS ABAQUS/Explicit, a general-purpose package for finite element modeling of

nonlinear structural dynamics [4]. It features an explicit time integration algorithm,

which is convenient when dealing with nonlinear material behavior, potential

sources of impact, and high frequency excitations.

In order to create the response surface, it was first necessary to determine which

model parameters were variable and not well known and therefore good candidates

for updating. The impact velocity, which can be approximately determined from the

drop height, was chosen as an updating parameter. The foam material model, which

was defined by uniaxial stress-strain data, is somewhat uncertain because little

information is known about the behavior of the foam at high strain rates. As a result

of this, a parameter representative of the foam’s material behavior was chosen for

updating. This parameter, referred to as alpha in this paper, is the coefficient of the

highest order term from the parabolic curve fit to the stress strain data of the foam.

FIGURE 2 shows the result of the parabolic curve fit. The limit states and analysis

points for both model parameters to be updated were selected and are listed in

TABLES I and II.

TABLE I. Magnitude of Alpha Perturbations
% nominal Alpha

95.0 1.0804e+04

97.5 1.1089e+04

100.0 1.1373e+04

102.5 1.1657e+04

105.0 1.1942e+04

TABLE II. Magnitude of Impact Velocity Perturbations
% nominal Velocity (in/sec)

82.0 410

88.0 440

94.0 470

100.0 500

106.0 530

112.0 560

118.0 590



The choice of the parameter variations listed in TABLES I and II result in a total

of 35 finite element analyses that need to be completed to build the response

surface. Completing this number of analyses is feasible because of the simplicity of

the model. From each analysis, the acceleration history at three evenly spaced points

around the top of the steel cylinder was recorded.

Building the response surface required the evaluation of the objective functions

for each of the parameter variations. For this experiment, two objective functions,

equations (7) and (12), were used, substituting acceleration data for displacements,

to build two separate response surfaces. These objective functions are a measure of

difference between the response generated at each model parameter perturbation

point and the response of the simulated experiment. In generating the simulated

experimental data, the values listed in TABLE III under Experiment were chosen.

The response surfaces generated using the GLS and PCD objective functions are

shown in FIGURE 3. It should be noted that for a certain range of the updating

parameters, the solution of the impact problem did not converge properly, resulting

in the large “peak” that is evident in FIGURE 3(a). Also, during the update process

the minimum value of the objective function was linearly interpolated between the

evaluated points in TABLES I & II.

Finding the minimum point on each of these response surfaces produced the

updated parameters listed in TABLE III, from which it is clear that both objective

functions produced the correct impact velocity. The values obtained for alpha from

the response surface varied from the actual value by up to 0.6%. The minimum

point on the response surface did not correspond exactly with the experimental

model because a finite element analysis was not evaluated at that point. Using these

updated parameter values the acceleration histories shown in FIGURE 4 were

produced. This figure shows very close correlation between the experimental

acceleration data and the acceleration data obtained from both updated finite

element models and significant improvement over the nominal model.

TABLE III. Nominal, Experimental, and Updated Model Parameters
Parameter Nominal Experiment GLS Updated PCD Updated

Alpha 11000 11600 11666 11654
Velocity 500.00 500.00 499.09 500.90

(a) (b)



FIGURE 3. Response Surfaces Generated Using (a) GLS and (b) PCD Objective

Functions

FIGURE 4. Acceleration Histories of Simulated Experiment and Updated

Models

Section 4. Comments and Conclusions

The results displayed in SECTION 3 allow the following observations to be

made. Although both methods successfully updated the model producing

acceleration responses that were almost indistinguishable from those of the

experiment, a more refined response surface mesh (that is, more finite element

analyses) would likely have produced improved results. No pronounced difference

in effectiveness was noticeable between the two approaches. However, the GLS

response surface in FIGURE 3(a) shows a decreased sensitivity to changes in the

velocity parameter, which could cause numerical problems during the optimization

and lead to an undetermined solution. The many peaks and valleys visible in the

PCD response surface in FIGURE 3(b) make it unlikely that these same problems

would occur. The GLS method is more cost efficient because minimal manipulation

of the time domain data is involved. However, the PCD approach has another

potential advantage unexplored in this paper: The SVD offers a practical way of

filtering out any measurement noise or rigid-body mode contribution because these



are typically associated with singular values much smaller than those characteristic

of the dynamics. This is a beneficial function of the PCD approach since time

domain data is being used.

Several issues stem from the conclusion of this phase in the research. A

significant one is how to efficiently generate more accurate response surfaces. One

approach being considered as a possible answer to this issue is to incorporate the

statistical software package, NESSUS, created by Southwest Research Institute [5],

into the updating algorithm. This avenue would, at a minimum, allow for a more

automated response surface generation process. It has the potential to considerably

reduce the number of analyses that must be completed. Currently the interface

between NESSUS and ABAQUS Explicit is still being developed. The use of the

NESSUS/ABAQUS link will enable the efficient computation of response surfaces

for many parameters with a relatively small number of runs. However, a more

standard continuous-space optimization technique will the be required because the

complete space of model parameters will not have been exhaustively calculated.

Typical problems with convergence, local vs. global minima, etc., will then need to

be addressed. Also, applying the techniques to systems with more geometric

complexity and limited instrumentation will lead to the classical issues involving

test/analysis DOF mismatch.

Overall, the study described in this paper indicates that it should be possible to

update constitutive model parameters for a nonlinear elastic polymer material using

transient impact data. The next step will be the application of this technique to

experimentally measured data. Finally, the techniques described will be applied to a

large finite element model of a structure subjected to an explosive shock load .
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