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VARIATIONAL METHODS FOR ELLIPTIC PROBLEMS IN 
FLUID MODELS 

f 

Piotr K Smolarkiewiczr and Len G Margolin! 
*National Center for Atmospheric Research, Boulder, Colorado, U S A .  

Los Alamos National Laboratory, Los hlamos, New Mexico, U.S.A. 

1. INTRODUCTION 

Numerical models used for simulating fluid flows often require solutions to general, second- 
order elliptic partial differential equations, which are implied by the governing model equa- 
tions themselves (e.g,, the incompressible or anelastic approximations) or their implicit dis- 
cretizations. In meteorological applications, this generality may arise from the effects of 
rotation, from the use of general curvilinear coordinates in the governing equations, or from 
free-slip conditions imposed along an irregular lower boundary. There are several difficulties 
associated with solving such a general problem on discrete meshes. First, modern prognostic 
atmospheric models employ large grids (w lo7 grid points) so that solving the elliptic eqution 
at each of numerous time steps represents a significant computational task. Second, in at- 
mospheric applications the discretized elliptic operator frequently does not possess certain 
regularity properties that renders some otherwise attractive methods inadequate (cf. Leslie 
and McAvaney, 1973). Third, in spite of a number of solvers proposed in the mathematical 
literature that in principle appear suitable for prognostic atmospheric models, only limited 
numerical experience exists at present with their performance in complex practical applica- 
tions (cf. Navon and Cai 1993). Such difficulties are recognized in the atmospheric literature 
as a serious drawback of those fundamental formulations of the equations of motion that 
lead to complex elliptic problems (cf. Durran 1989, Skamarock and Klemp 1992). 

Here, we discuss iterative, conjugate-gradient (alias: Krylov, variational, CG) methods 
for solving the general linear elliptic equation 



with'varisble coefficients A, CfJ ,  D', R, and periodic, Dirichlet, or Neumann boundary 
conditions. We emphasize a particular class of conjugate-gradient methods, the conjugate- 
residual (CR) schemes, which are attractive for atmospheric applications because of their 
robustness, relative simplicity and computational efficiency. Another important feature is 
that the convergence of CR schemes does not depend on the self-adjointness of the elliptic 
operator L($) on the lhs of (1). Self-adjointness-Le., the symmetry of the matrix represen- 
tation of C on the grid-is usually assumed in textbooks on numerical methods, but cannot 
be generally assured when, e.g., Coriolis forces or curvilinear boundaries are present, as in 
atmospheric flows. Finally, CR schemes do not require any explicit knowledge of the ma- 
trix resulting from the discretization of C(#I), and so are particularly well-suited for models 
where the discrete representation of C follows from the general definition of spatial derivative 
operators such as gradient and divergence on the grid.l 

This paper is organized as follows. In section 2, we outline the essential concepts on which 
Krylov solvers are based while emphasizing the key assumptions underlying various schemes. 
In section 3, we discuss in some detail how to enforce proper boundary conditions in the 
context of the Krylov methods. In section 4, we outline the idea of preconditioning. In order 
to appeal to the meteorologist's experience with integrating PDEs of weather and climate, 
we exploit the unorthodox exposition of Srnolarkiewicz and Margolin (1994; hereafter SM94) 
where the elliptic problem is augmented with a pseudo-time dependence (Richardson 1910). 
The coefficients of the resulting transient problem are determined by minimizing solution 
errors in the course of the pseudo-time integration toward the steady state. In essence, 
this allows for circumventing the idea of quadratic forms (alias "energy functionals") and 
the associated interpretation of CG schemes as searching algorithms (for the functionals' 
extrema)-standards in the culture of the optimization theory; cf. Shewczuk 1994. While 
working through the basics, we describe academic algorithms such as the method of steepest 
descent, the method of minimum residual, and the conjugate gradient method itself, because 
they aid in the understanding of CG methods especially well. These schemes, however, are 
about as useless for solving elliptic problem in atmospheric fluid models, as the straightfor- 
ward upwind or leap-frog schemes are for evaluating advective transport of interest to NWP. 

L 

'Note that values of Li($) at the grid points xi = AX i, where Vr=i,..,M ZI = 1, ..., d, may be easily 
computed following (1); whereas, coefficients of the matrix representation U j k $ k  [where k, j = 
1, ..,nl*..*nM number grid points in the lexicographicorder, e.g., j(i) = n'n2..nM-'(iM-l)+..+n1(i2-l)+i1] 
may be cumbersome to evaluate and may require storing up to 27 matrices in a three-dimensional problem 
with second-order-accurate approximations to the partial derivatives of $. 

(4) = 



SMOLARKIE WICZ A N D  MARGOLIN: ITARIATIONAL ELLIPTIC SOLVERS 

In section 5, we focus on practical applications. We present a preconditioned generalized 
conjugate-residual scheme (GCR(lc); Eisenstat a t  al. 1983)-substantially more complex 
than its elementary predecessors yet truly useful-and outline one particular preconditioner 
that we have found to be effective in meteorological applications. Remarks in section 6 
conclude the paper. 

2. VARIATIONAL ITERATIVE SCHEMES 

2.1 Fundamentals 
2.1.1 Pseudo-tame augmentation, solution errors, and negative definiteness 

The model elliptic equation (l), can be written symbolically as 

Iterative solvers for (2) have been derived sometimes by augmenting (2 )  with a pseudo-time 
dependence (cf. Richardson 1910, Frankel 1952; Birkhoff and Lynch 1984), e.g., 

84 - -= L($) - R . 87- 

Denoting the exact solution in (2) by $, the augmented equation (3) implies 

de  -- = L ( e )  , 87 

(3) 

(4) 

where e t 4 - 4 is the solution error. In order to  derive (4) from (3), we have employed 
R = L($),  assumed that ,C is linear, and used a$/& = 0. Multiplying both sides of (4) by 
e and integrating the results over the entire domain gives 

where (...) denotes the domain integral. The resulting equation (5) implies that the aug- 
mented problem (3) will yield the exact solution as r -+ 00, given Ve # 0 (eC(e)) < 0. The 
latter is the definition of the negative definiteness of the operator C-a property sometimes 
referred to as dissipativity.2 The LapIacian operators that form the core of elliptic problems 
in atmospheric models tend to possess this property, but not exactly as stated. In discrete 

21n order to associate C with the diffusion-type operator, we refer to negative definiteness rather than, 
as is more traditional in the mathematical literature, positive definiteness, and adjust all signs accordingly. 
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form, L may have a nontrivial null space, Le., a set of such q5 # 0 that L(q5) = O q 3  This 
means that ( e L ( e ) )  5 0 for all e # 0-Le., C is oniy negative semi-definiteand that for the 
elements of the operator’s null space the exact solution may be never achieved. However, 
this is not particularly bothersome in atmospheric applications. In Helmholtz-type elliptic 
problems (resulting typically from semi-implicit discretizations of compressible systems), the 
Helmoltz term will assure negative definiteness; alternately, in Poisson- type problems (re- 
sulting typically from the discretization of incompressible or anelastic systems) only pressure 
gradients are of interest, and the exact solution is not required. 

Negative-definiteness appears as a natural property of elliptic problems in atmospheric 
flows, and we shall assume this property (or a t  least negative semi-definiteness) throughout 
the rest of this paper. In general, however, this important property must not be taken 
for granted. It is possible to conceive a siituation (e.g., a semi-implicit approximations to 
chemical reactions in atmospheric flows) where C is dissipative for some q5 and “energy 
increasing” for others. In such a situation, the iterative schemes founded on this assumption 
may not work at  all. 

2.1.2 Self-adjointness 

Conjugate-gradient methods are often interpreted as algorithms that search for the ex- 
trema of certain functionals. The quadratic form 

J(q5) 2 --k?W)) 2 + (#4 , (6) 

often referred to as the “energy” functional, is perhaps the most familiar (Birkhoff and 
Lynch, 1984) of these. 

Exploiting the definition of the error e and replacing R with C($), we are led straightfor- 
wardly to the equation 

Note that if the third term on the rhs of (7) can be assumed to vanish, then the negative 
definiteness of C implies positivity of the first term on the rhs of (a),  and so J ( 4 )  > J($)  V&, 
Le., the exact solution $ minimizes the energy functional (6). The property of the linear 
operator that is referred to as self-adjointness (or symmetry in 

3Familiar examples are 2AX-wave on the Arakcawa A grid, the hourglass pattern on the Arakawa B grid, 

(cC(q5)) == (qX(c)) Vq5, [ 

and a constant on the staggered grid C. 
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the context of the matrix representing C on the grid). Since cAq5 3 V ([ad - $Vc) +&le, 
self-adjointness is a common property of continuous Laplacian or Helmholtz operators, given 
suitable boundary conditions. 

Although self-adjointness may appear natural, in practical applications it is difficult to 
achieve. Curvilinear boundaries are notorious for destroying the symmetry of finite-difference 
operators, and a great care may be required to assure this property in atmospheric models 
(cf. Bernardet 1995). We shall return to this issue throughout the paper. 

2.1.3 Residual error 

Equation (3) implies another useful entity. Note that the rhs of (3) vanishes only for the 
exact solution $, and otherwise it defines a residual error 

Thus, (3) can be rewritten as 
13d 

(9) 

Acting on both sides of (9) with L, and subtracting R under the partial r-derivative on the 
lhs gives 

This equation describes the evolution of the residual, just as (4) describes the evolution of 
the solution error. Further, in analogy with (5), we multiply (10) by r ,  and integrate the 
result over the entire domain, deriving 

which shows that T -+ 0 as 7- -+ co, for negative definite L 

2.1.4 Richardson iteration 
I) 

Discretizing (3) in pseudo-time with an increment AT = p, while using one-sided differ- 
encing €or the aq5/ar, leads to a two-term recurrence formula 

known as the Richardson iteration, or the Richardson diffusion scheme. When applied to the 
integration of diffusion equations, ,8 must be properly limited to  assure numerical stability. 
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This limiting must take into account the "diffusion coefficient(s)" embedded within L and 
local increments of the spatial discretization. This consideration also applies when integrat- 
ing (3) in pseudo-time; however the value of ,L? determined by this limiting is not necessarily 
optimal for the convergence of the Richardson iteration to the steady state. We describe two 
choices of an optimal p in the next section. 

2.2 Steepest descent and minimum residual 

By the same arguments that convert (3) .into (4) and (10) for the continuous evolution of 
error, (12) implies 

(13) en+l - - en + pL(en)  , 
and 

- - rn + p L ( q  , (14) 

equations that predict the evolution of the error and the residual in the discretized case. 
For self-adjoint C, (7) implies that 

1 1 
2 

Z ( e )  = --,(eL(e)) = --(er) . 

Since the exact solution minimizes J ,  one way of assuring an optimal convergence in (12) is 
to choose ,L? (the independent variable in pseudo-time) to minimize - ( e n f l r n f l )  Taking%he 
product; of (13) and (14), integrating the result over the entire domain, differencing over p, 
and demanding that the resulting derivative vanishes, results in 

(rnrn) + ( e n C ( P ) )  + 2,0(rr'L(rn)) = 0 (16) 

In general, (16) is useless since e is not computable within the iteration. However for self- 
adjoint C, (enC(rn)) = (C(en)rn)  = (rnrn), whereupon 

(rnrn) 
= -- ( rnL(rn) )  

The elementary variational iterative scheme built on 

(16) implies 

(17) 

the Richardson iteration (12), and 

(17)-known as the steepest descent scheme-can be written as follows: 

For any initial guess q5', set ro = L(q5') - R; then iterate : 

For n = 0 ,1 ,2 ,  ... until convergence do 



SiVf 0 L A R  KIEI/VICZ AND iVA RGO LIN: VARIATIONAL ELLIPTIC'S0 LVERS 

DIGRESSION 1: In the literature, conjugate gradient metlLods are often derived by using 
certain orthogonality relationships. The steepest descent scheme introduced above can be 
derived requiring the orthogonality of the residual errors from two subsequent iterations, i.e., 
(rnrn+') = 0. In order to show this, note that 

With (1.3), (14), and self-adjointness of L the latter implies 

(rnrn+') + (en+lC(rn)) = 2(r r n+l) = 0 . 

We have emphasized in section 2.1.2 that self-adjointness is difficult to achieve in practi- 
cal applications. If C does not possess this property, then there is no reason to expect the 
convergence of the method of steepest descent. Fortunately, there is an alternative way to 
optimize the convergence of the Richardson iteration (12) that does not require use of either 
self-adjointness or an energy functional. Since (14) predicts the residual error at the next 
iteration, it can be used to choose that minimizes (rn+lrnS1) norm of the residual error. 
So, taking the product of (14) with itself, integrating the result over the entire domain, dif- 
ferencing over 0, and demanding the resulting derivative vanish, we are led straightforwardly 
to b 

(r"C(rn)) + ,O(L(r")C(r")) = 0 , (18) 

which implies 

The variational scheme built on the Richardson iteration (12) with (19) is known as the 
minimum residual. It takes precisely the same algorithmic form as the steepest descent 
except it uses a different choice of 0. The convergence of this scheme requires no reference 
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to the self-adjointness, symmetry, or quadratic forms. The scheme can be derived from first 
principles assuming merely a linear negative-definite L. 

DIGRESSION 2: It is easy to show that the minimum residual scheme yields the L- 
orthogonality of the residual errors from two subsequent iterations, i.e., ( r n S I C ( r n ) )  = O. 

2.3 Conjugate gradient and conjugate residual 

The elementary schemes discussed in section 2.2 are merely a convenient vehicle to intro- 
duce the fundamental ideas underlying Krylov solvers. Since the convergence rate of these 
schemes is relatively slow, their utility is insignificant, Much better performance can be 
obtained by beginning with the damped wave equation in lieu of (3) 

Discretizing (20) in pseudo-time with an increment AT and a yet to be determined damping 
scale T r]-lAr and using, respectively, centered- and one-sided differencing for the first 
and second term on the Ihs of (20), leads to a three-term recurrence formula (also known as 
the second-order Richardson scheme, due to Frankel 1.950) 

where y = (2 + q ) / ( l  + ri), and ,L? = (Ar>'$/(l  + 7). The recurrence formula in (21) implies 
the corresponding recurrence relations for the solution and residual errors: 

en+' = yen + (1 - ?)en-' -t PL(en) , (22) 

As with the two-term recurrence in (12)) one can minimize directly either ( e r )  or ( T T )  by 
setting their ,8 and y derivatives to zero and solving the resulting linear system for ,f3 and 
y. The first scheme becomes a special form of the classical conjugate gradient, whereas the 
second becomes a special form of the classical conjugate residual (both due to Hestenes and 
Stiefel, 1952); see SM94 for a discussion. In order to  obtain the standard forms of these 
algorithms, as they appear in the literature, we rewrite (21) as 
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where an E ( y n  - l)pn-'/pn, pn (@+I -- 4 n ) / p n ,  and the superscripts appearing on y, p, 
and a refer to values of the coefficients at different iterations. This leads to the algorithm 
in the form 

For any initial guess $loj set po  = ro = L($') - R; 

For n = 0, I., 2, ... until convergence do 

p" = ..... , 

n+l __ ( p + l '  p n + rn.+l . P -  

where the coefficients p and a can be derived by either a direct minimization of the proper 
error norms or by employing orthogonality relationship derivable from the minimization (see 
SM94, for further discussion). For the conjugate gradient scheme, 

whereas for the conjugate residual scheme, 

< r"C(p") > anS.1 = I < .c(r"+')L(p") > 
pn = -<  C ( p n ) L ( p n )  > ' < .c(Pn>.c(P"> > a 

Although the operator C appears in the algorithm as acting both on p and r ,  it needs to be 
evaluated only once per iteration as the recurrence of p implies 

B 

~ ( p ~ + l )  = C(rn+') + a n + ' ~ ( p n )  . (27) 

As is the case for the method of steepest descent and of minimum residual, the conjugate 
gradient requires both the self-adjointness and definiteness of C, whereas only the definite- 
ness of C suffices for the convergence of the conjugate residual. For examples of relative 
performance sof the two algorithms, see SM94. 
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3. BOUNDARY CONDITIONS 

Elliptic problems are boundary value problems, and so are extremely sensitive to the 
imposed boundary conditions. This is a trivial statement in the context of the analytic 
equations, yet its consequence for discrete solvers is often underappreciated. Careful design 
of the discretized boundary conditions, especially along curvilinear boundaries, may have a 
dramatic impact on the rate of convergence of Krylov solvers (for example, see Bernardet, 
1995) and the overall accuracy of the fluid model. In order to illustrate a principle for 
imposing boundary conditions in Krylov solvers, consider the conjugate residual scheme 
from the preceding section. For either Dirichlet or Neumann boundaries, the recurrence 
relation for the solution q5 implies, respectively, 

where n is the unit vector normal to the boundary, and the subscript B refers to the boundary 
values. Note that if the boundary conditions were satisfied at  the preceding iteration, they 
will be satisfied at the subsequent iteration, given that the boundary conditions on p are 
homogeneous. This latter implies that the residual also satisfies homogeneous boundary 
conditions, a result of the recurrence relation for p .  Thus, to ensure the correct boundary 
conditions throughout the iteration process, it is important to satisfy them from the outset- 
i.e., at the initialization of the iteration loop, and to maintain the equivalent homogeneous 
boundary conditions while computing C ( P f l )  right before evaluating an+'. 

For illustration, consider the Euler equations for an ideal incompressible fluid in Carte- 
sian geometry, integrated with a standard projection of the preliminary velocity v* onto a 
solenoidal flow (cf. SmoIarkiewicz et al. 1997) 

with the velocity boundary conditions 

The normal component of the pressure gradient in the last equation of (31) is equal to the 
appropriate spatial partial derivative. Thus, one can express the boundary pressure gradient 
term in (30) with the last equation in (31), thereby assuring correct boundary condition 
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at  the initialization of the iteration loop. In the iterations that follow, the corresponding 
gradient term of the residual error must be set tu  zero, 

At Neumann boundaries in general, standard centered partial derivative operators in a 
discrete representation of C may be undefined wherever they require data from outside the 
computational domain. A common procedure is to replace the centered approximations with 
one-sided difference formulae at the boundaries where required (cf. Chorin 1968, Glowinski 
1992). This seemingly minor aspect of fluid model design has important consequences. 
Because of local anisotropies of the difference formulae, the numerical operator C may not 
be symmetric, and spurious vorticity may be generated at the free-slip boundaries. In the 
general curvilinear three-dimensional case, this is a nontrivial issue that so far does not seem 
to have a rigorous yet practical solution (cf. Bernard and Kapitza 1992).* In our models 
(Smolarkiewicz and Margolin 1997, Smolarkiewicz et al. 1999), we adopt the following 
approach. At Neumann boundaries, the normal component of the pressure gradient in (29) 
combines all spatial derivatives 

where the coefficients C X ,  C Y ,  and CZ depend in general on all the spatial coordinates. 
At the initialization of the conjugate residual solver, we evaluate all but the normal partial 
derivatives explicitly from pressure field values available on the grid (e.g., from the previ- 
ous time step of the model). The normal derivatives are then computed from the velocity 
boundary conditions (in the spirit of the example above) and are substituted for the other- 
than-normal components of the pressure gradient. Within the iteration loop, we do the 
same for the residual error while computing the normal derivatives from the homogeneous 
boundary conditions. More specifically, we evaluate all but the normal partial derivatives 
explicitly from the residual error field available from the preceding iteration. The normal 
derivatives are then computed from tHe homogeneous boundary conditions and substituted 
for other-t han-normal components of the residual-error gradient. This procedure has sev- 
eral virtues important for applications: a) it assures that the velocity boundary conditions 
are satisfied exactly at each iteration of the solver; 1))  it assures that the correct pressure 
boundary conditions (viz. free of splitting errors) are employed in the limit of convergence 
and c) in our experience, it  minimizes the production of spurious vorticity a t  the curviIin- 

41n three spatial dimensions, a possible formal solution may require incorporation of six two-dimensional, 
and twelve one-dimensional additional elliptic equations. 
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ear boundaries. Since the symmetry of the discrete elliptic operator is not assured, such a 

procedure cannot be employed within solvers that rely on self-adjointness, 

4. OPERATOR PRECONDITIONING 

The convergence of variational schemes may be further accelerated by operator precon- 
ditioning. In essence, preconditioning procedures replace (2) (e.g., by means of operator 
splitting and/or composition) with a modified governing equation L'(q5) - R' = 0 that can 
be more easily inverted on the grid. There is no general theory of how to design an optimal 
preconditioner (Axelsson 1994, section 7), Here, we consider the so-called left precondition- 
ing that we have found particularly useful in atmospheric models. 

To illustrate the concept of the preconditining, let us return to the augmented parabolic 
equation (3) and consider L = a / O z K ( z ) d / d z ;  Le., a one-dimensional diffusion operator with 
variable coefficient K .  Let us assume that K is large near the ground and decreases rapidiy 
with height. Numerical integration of such a diffusion problem with, say, the Richardson 
scheme (12) requires limiting the time step ,O 5 0 . 5 ~ l z ~ K - ~  for stability. In effect, the con- 
vergence toward steady state a t  higher altitudes will be much slower than near the ground. If 
only the steady state is of interest, in (3) may be replaced with dKd/dr ,  thereby re- 
ducing the stiffness of the problem and accelerating the convergence at the higher elevations. 
So, effectively the left preconditioning replaces (3) with 

where P is the preconditioner. The preconditioner P can be (in principle) any linear operator 
such that LP-' is negative definite. Its goal, however, is to augment the original recurrence 
(12) with 

(34) q5ni-1 - - bn + p P - ' ( L ( p )  - R) -- q5n + pP- ' (T)  , 

which converges faster (than the original problem) due to the smaller condition number 
(i.e., a closer clustering of the eigenvalues of the auxiliary elliptic operator P-lC). For the 
preconditioner to be useful, the convergeince of the auxiliary problem must be sufficiently 
rapid to overcome the additional effort associated with inverting P in (34). In general, the 
closer P approximates C, the faster the scheme converges, but the more difficult it is to 
invert the operator in (34). For example: in the limit P G L,  (34) converges in one iteration 
but the entire effort of solving (2) is placed in inverting P (bringing us back to the starting 

L 
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point); whereas in the P = Z limit, inverting P is effortless but there is no acceleration 
of the convergence. In between, there is great flexibility in designing preconditioners that 
exploit either direct or relaxation methods. This flexibility adds another degree of freedom 
to the study of Krylov methods, which in itself constitutes an established research area (see 
Axelsson 1994, for a review). The choice of an effective preconditioner is both problem 
and computer dependent (cf. Shadid and Turninaro, 1994) and a detailed discussion of the 
associated issues is beyond the scope of this paper. In the discussions that follow, we focus 
on aspects particularly important for meteorological models. 

In order to derive the preconditioned conjugate-residual algorithm from section 2.3, one 

and repeat the entire derivation while acting with P-l on both sides of the equations. The 
. recurrence relations for $, T ,  and p then take, respectively, the form 

Redefining pn,, = P-l ( p o l d )  the complete preconditioned conjugate residual scheme can be 
written as follows 

1 0  For any initial guess do, ?jet T O  = C(q5') - R, po  = P- (T ) 

For n = 0,1,2, ... until convergence do 
< r"C(p") > pn = -- 

<: C(p")C(p")  > ' 
@+' := p + pnp7'" , 
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Since the recurrence relation for + retains its original form, our discussion of the bound- 
ary conditions from section 3 holds, except that the recurrence relation for p implies now 
homogeneous boundary conditions on q. 

The technical difference between the preconditioned and unpreconditioned scheme is that 
there is an auxiliary elliptic problem to be solved, respectively, at the initialization po = 

T 1 ( r 0 ) ,  and at each iteration q n f l  = P-.l(V+’). This auxiliary problem has two degrees 
of freedom: a) the definition of the operator P itself; and b) the solution method. In 
principle, P could be identical with C and the solution method could be the unpreconditioned 
conjugate residual scheme. Such a preconditioner would reduce the number of iterations in 
the outer, preconditioned conjugate residual solver, but its overall cost would be about the 
same (slightly larger, in fact) as that of the unpreconditioned outer solver with an accordingly 
larger number of iterations. The goal is not to reduce the number of iterations in the main 
solver, bur f,o reduce overall CPU time of the entire solver! The possibilities for exercising 
ingenuity are endless and “goals justify means”. In particular, understanding the physics of 
the modeled flows may be helpful for designing effective preconditioners, In the following 
section we shall return to this topic and outline the preconditioner we have found useful for 
practical applications in meteorology. 

5 ,  PRACTICAL APPLICATIONS 

5.1 Generalized Conjugate Residual 

Given a suitable preconditioner, the conjugate residual solver is quite effective for a broad 
class of applications. Nonetheless, as the symmetry of the discrete operator deteriorates, the 
convergence rate decreases. The generalized conjugate residual, GCR( I C ) ,  scheme of Eisenstat 
et al. 1983 is capable of maintaining the optimal CG convergence for nonsymmetric problems. 
It is mathematically equivalent to the truncated ORTHOMIN and GMRES schemes (Kapitza 
and Eppel 1992, Saad and Schultz 1986), yet it has a clear interpretation in terms of the 
pseudo-time augmentation of (2). 

We generalize our derivation of the conjugate residual method by starting with a kth-order 
damped oscillation equation 
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in lieu of (20). We proceed with the formalism of section 2.3-viz. discretize (39) in a 

pseudo-time 7, form the affine discrete equation for the progression of the residual errors r ,  
and determine the optimal parameters TI, .., Tk-1 and integration increment AT (variable in 
r )  that assure minimization of the residual errors in the norm defined by the inner product 
(rr)-leading to the following algorithm. 

For any initial guess @, set ro = C(q5O) - R, po = T1(r0); then iterate: 

For n = 1 , 2 ,  ... until convergence do 

for Y = 0, .., k - 1 do 

U 

p u s 1  =: q + alp1 , 
1=0 

U 

L(pU+I) = &(a)  + QlL(P‘) 7 

1=0 

end do , 

end do . 
Direct evaluation of the elliptic operator on the grid takes place only once per iteration 
following the preconditioning q = P-l(V+l>. 

The common wisdom for nonsymmetric solvers such as GMRES is to use a quite long 
expansion in (39) of k x 10. The price to be paid for this is the necessity of storing 
many matrices of p and C ( p )  from preceding iterations. In our experience with atmospheric 
problems, IC = 4 appears sufficient, It handles satisfactorily flows on all scales from micro to 
global, with possibly steep orography and large planetary rotations. 
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5.2 Implicit Richardson-iterat ion preconditioner 
> <  

A distinctive feature of meteorological flows is their anisotropy in the vertical direction. 
The larger the ratio of the horizontal scale of the problem to the fluid depth, the stiffer 
is the elliptic problem. In modeling small scale motions (e.g., large-eddy-simulations of 
planetary boundary layer) even an unpreconditioned conjugate residual scheme performs 
reasonably well, as the solver takes advantage of having an accurate first guess, namely the 
model solution from the preceding time step. On the other end of the spectrum, there are 
nonhydrostatic global models with full three-dimensional elliptic problems and outrageous 
condition numbers. For the purpose of practical applications, the condition number may be 
thought as the squared ratio of the longest to the shortest wavelength present in the system. 
In global model simulations, it  can easily be O(lO1o). Since the asymptotic convergence 
rate of CR schemes is inversely proportional to the square root of the condition number, 
in global flows it can be so slow5 that iterative updates may be smaller than the machine 
precision; i.e., the solver will stall and there will be no convergence at  all. Thus, designing 
a preconditioner capable of mitigating this aspect of meteorological models is a necessary 
prerequisite for any solver suitable for simulating all-scale flows. 

In our nonhydrostatic anelastic models for meteorological flows on scales from micro to 

planetary (Smolarkiewicz and Margolin 1997, Smolarkiewicz et al. 1999), we solve a general 
Poisson equation 

3 

p I=1 J=1 

where all coefficients (due to  coordinate transformations and implicit integrals of the rhs of 
the momentum equations) are significant functions of coordinates, j3 is the reference den- 
sity premultiplied by the Jacobian of the Coordinate transformation, and T is a normalized 
pressure perturbation. Equation (40) has the form of the generalized elliptic equation (1) 
where the coefficients A = D =- 0, the rhs R is included under the divergence operator,6 
and where the entire equation has been premultiplied by -At/jj. The factor (-1) assures the 
formal negative-definiteness of the elliptic operator on the lhs of (40); further normalization 
by At/p gives the residual errors of (40) the sense of being the divergence of a dimension- 
less velocity on the grid. The latter compares directly to the magnitudes of the Courant 

5For example, it may take lo5 iterations to reduce the residual error by the factor e-'. 
' E ( $ - -  ...) in (40) is the updated transformed velocity, so the impermeability condition at the model surface 

and lid, translates into the implicit Neumann boundary conditions for pressure U3 = C3J(8n/d2J). 
J=1. 3 
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and Lipschitz numbers and facilitates the design of a physically meaningful stopping criteria 
(Smolarkiewicz et al. 1997). The coefficients E ,  V' and CIJ appearing in (40) are given 
explicitly in Smolarkiewicz et al. 1999. 

For complex atmospheric models, we have found it beneficial to keep the preconditioner 
P close to the main operator L. Based on our experience, we choose P identical to L implied 
by (40), except for the cross-derivative terms which are set to zero. Such a P can be written 
as 

Following the experience with AD1 preconditioners summarized in Skamarock et al. 1997, 
we invert P only approximately (in the liorizontal) using a few iterations of the implicit 
Richardson iteration7 

where Ph and Pz are the horizontal and the vertical counterparts of the operator P,  respec- 
tively, A? is a parameter of the iteration (a pseudo-time step) based on spectral properties of 
Ph [viz., linear stability analysis of (42)], 1-1 numbers successive Richardson iterations, and v 
numbers the outer iterations of the GCR solver. The equation (42) leads to a linear problem 

where f i f i  z q!-' + A?(Ph(qp) - rVs1), that can be solved readily using the well-known 
tridiagonal algorithm (cf. Appendix A in Roache 1972).8 

For this preconditioner to work, it is essential that the details of differencing and boundary 
conditions within Pz are consistent with those within L. Otherwise unstable modes will leak 
to the solver and the entire preconditioning effort may be partially or totally lost. When 
implemented consistently, this fairly simple preconditioner works quite effectively and in 
large-scale models makes a dramatic difference. In fact, this preconditioner is what makes 
our nonhydrostatic global modeIs run efficiently (cf. Smolarkiewicz et al. 1999). Without 
the preconditioner, the convergence of the GCR is so slow that the solver stalls. In small 
scale models, the impact of the preconditioner (42) is smaller, but is still substantial and 
can accelerate the convergence of entire pressure solver by a factor of about 2. 

within the preconditioner; however, in a massively parallel environment, the opposite may be true. 

requires a customized tridiagonal algorithm for its inversion. 

7As the horizontal scale of the model incremes, it may be beneficial to use a few more (several) iterations 

8 0 n  the nonstaggered mesh that we use, the resulting linear problem is formally pentadiagonal and 
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The preconditioner in (42) can be further improved. The simplest thing to consider is to 
extend the Richardson diffusion scheme with respect to Ph on the diagonally-preconditioned 
Duffort-Frankel type implicit algorithm 

where -27 stands for the diagonal coefficient embedded within the matrix representing Ph 
on the grid. Note that adding the relaxation term on the rhs of (42) has the effect of replac- 
ing the Dqp term with Z)(qPt1) in Ph(qP:) without complicating flux boundary conditions 
imposecl in constructing Ph(q).  In the limit A? -+ 00, (44) is equivalent to  the block Ja- 
cobi preconditioner. In our small scale models, (44) improves the effectiveness of the elliptic 
solver by about 10 percent compared to (42), but it has no impact in the global model. 

In general, the larger the horizontal scde of the nonhydrostatic fluid model, the higher 
the relative cost of the elliptic solver. In small-scale models, the time step is accordingly 
short, limited by the local advection and nonlinear dynamics. There, elliptic solvers can 
make effective use of the first guess provided by the previous time step(s) of the fluid model. 
Global models tend to have a much greater degree of implicitness in order to allow for long- 
term integrations with time steps as large a s  possible without sacrificing accuracy. The latter 
is particularly important in climate simulations. When a large time step is employed, most of 
the computational effort is already in the elliptic solver, so that the overall model efficiency 
strongly depends on effective preconditioning. 

Although the preconditioner in (42) makes our nonhydrostatic global model perform rea- 
sonably well, there is no doubt that further improvements are important. The precondi- 
tioner (42) removes the worst aspect of the elliptic problem’s stiffness, Le., that due to the 
anisotropy in the vertical direction. However, there is another problem to be conquered for 
flows on the sphere. In spherical coordinates, the zonal grid elements become small near 
the poles, thereby slowing the overall,convergence of the solver. In order to mitigate this 
aspect of the problem stiffness in (42), we have decomposed the horizontal operator Ph into 
its zonal and meridional counterparts P z  and PM, respectively, and allowed for the implicit 
(in pseudo-time) discretization of the zonal part 

To invert (45) with respect to  q P s l ,  we have used a rigorous spectral decomposition in the 
zonal direction, Based on the few results available in the CFD literature (cf. Elman and 
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O’Leary, 1998), one might expect that such a preconditioner would accelerate substantially 
the convergence of the Krylov solver, thereby leading to a much faster model for large 
‘climatic’ time steps. Indeed, for a standard benchmark problem of the zonal flow past 
a smooth Gaussian hill, the new preconditioner reduces the total number of the Krylov 
solver’s iterations by the factor of about 30, thereby reducing the overall cost of the model 
by the factor of about 2--even with FFTs, the cost of the spectral preconditioner itself is 
relatively high. However, when the smooth hill is replaced by the real orography of Earth, 
the new approach works just the opposite: it degrades substantially the convergence of the 
default preconditioner in (42). This is because the spectral preconditioner zonally averages 
the original coefficients of the elliptic operator. Although the latter may be satisfactory for 
smooth problems (which so far comprise the literature) it is absolutely unacceptable for the 
real orography of the planet. 

There is an important lesson in the above-outlined exercise: any preconditioner for ap- 
plications to natural atmospheric/oceanic flows has to account for small-scale variability of 
the coefficients, In other words, it is more important to keep P close to L then to invert an 
oversimplified P exactly. The latter narrows considerably the set of preconditioning methods 
useful for the applications addressed. Either spectral or multigrid preconditioners appear 
effective if they can be kept simple. If the majority of the coefficients of L must be invoked 
in spectral decomposition or multigrid cycling, then such a precondtitioner becomes complex 
and costly. Then, simply allowing for more iterations in the outer Krylov solver may be more 
effective. The quest for an ultimate precoiiditioner will likely never end. At the moment, it 
seems that following the path of AD1 preconditioners, set forth in Skamarock et al. 1997, 
warrants further investment. 

6. REMARKS 
b 

In the literature of the Krylov methods, schemes derived based on the minimization of the 
LZ norm of the residual error r-such as the minimum or conjugate residual-are sometimes 
presented as inferior members of the conjugate-gradient family. The accompanying argument 
is that they are equivalent to schemes that; minimize the solution error e but for the squared 
operator L2, thereby converging much more slowly to the exact solution. Such statements are 
made out of context of practical applications and fail to recognize that “superior” schemes 
based on the self-adjointness simply lack robustness. 
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,4 potentially confusing statement one can encounter in the literature is that conjugate 
residual schemes derivable by minimization of the residual error do require self-adjointness. 
There can be a few special reasons for such statments, which are not true in general. First, 
some variants may exploit self-adjointness to reformulate coefficients such as ,O and a! in (26); 
cf. Stoer (1983). Second, the convergence theory may invoke self-adjointness of the operator 
but then do not require its definiteness (cf'. Ashby et al. 1990). In SM94, we have provided 
a formal proof showing that the definiteness is sufficient for the convergence. Fortunately 
(for meteorological applications) either self-adjointness or definiteness is sufficient. This 
flexibility is rarely noted in the mathematical literature where self-adjointness is frequently 
assumed a priori. 

Throughout this paper we have advocated those schemes derivable by minimizing the 
residual error. Here we offer an argument that in atmospheric/oceanic fluid models, it is the 
residual error whose minimization is of primary concern. Consider a prototype equation for 
fluids in an arbitrary M-dimensional curvilinear reference frame x 

at + V (pGV$) = pG3 , 

where G = G(x) is the Jacobian of the coordinate transformation from the Cartesian to the 
curvilinear framework, $J is an arbitrary specific variable (e.g., velocity component, potential 
temperature, water vapor mixing ratio, etc.), V = x, and F combines all forcings and/or 
sources (e.g., pressure gradient and Coriolis terms in the momentum equation, heat sources 
in the potential temperature equation, arid 3 = 0 in the mass continuity equation). The 
prototype equation (46) can be written equivalently as 

. 

The latter form shows that in regions where $ is locally constant, it  can evolve in time only 
in response to  F. While passing from' (46) to (47), we have exploited the mass continuity 
equation, as the complete form of (47) is 

w - Dt + pG (%: + V (pGV)) = T , 

The second term on the lhs vanishes in analytic models, since the expression in the paren- 
theses is the mass continuity equation. However, in numerical models, either implicit corn- 
pressible or anelastic, the entire expressioin that multiplies $ in the second term on the Ihs, 
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forms the residual error of the elliptic equation at hand. Thus, Eulerian flux-form schemes 
for (46) react to spurious sources of the transported field in proportion to the residual error. 
The semi-Lagrangian schemes are more forgiving in this respect. Since they approximate 
(47), they are free of the linear source error. However, multiplying either (46) or (47) by $ 
and integrating over the entire domain shows that both types of schemes suffer from spuri- 
ous sink/sources in quadratic integrals. The latter is especially important for the nonlinear 
stability and accuracy of‘ the long-term integrations; see Smolarkiewicz et al. (1997) for a 
discussion. In any case, it is essential to azisure that the residual error is sufficiently small to 
keep spurious sources from becoming comparable to those physical sources in F. 

Acknowledgements. Stimulating discussions with John Adams, Jeffrey Scroggs, and Steven 
Thomas are gratefully acknowledged. National Center for Atmospheric Research is sponsored 
by the National Science Foundation. Los Alamos National Laboratory is operated by the 
University of California for the U.S. Department of Energy. This work has been supported in 
part by the Department of Energy “Climate Change Prediction Program” research initiative. 
Elements of this work were accomplished {during PKS’s collaborative leave at the European 
Centre for Medium-Range Weather Forecasts, Reading, UK. 

REFERENCES 
Ashby, S. F., T. A. Manteuffel, and P. E. Saylor, 1990: A taxonomy for conjugate gradient 

methods. SIAM J.  Numer. Anal., 27, 1542-1568. 

Axelsson, O., 1994: Iterative Solution Methods. Cambridge University Press, Cambridge, 
654 pp. 

Bernard, R. S., and H. Kapitza, 1992: How to discretize the pressure gradient for curvilinear 
MAC grids. J .  Cornput. Phys., 99, 288-298. 

Bernardet, P., 1995: The pressure term in the anelastic model: A symmetric elliptic solver 
for an Arakawa C grid in generalized coordinates. Mon. Wea. Rev., 123, 2474-2490. 

Birkhoff, G., and R. E. Lynch, 1984: Numerical solutions of elliptic problems, SIAM, 
Philadelphia, pp. 319. 

Chorin, A. J., 1968: Numerical solution of the Navier-Stokes equations. Math. Comp., 22, 

Durran, D. R., 1989: Improving the anelastic approximation. J .  Atmos. Sci., 46, 1453- 

742-762. 

1461. 



SMOLARKIE WICZ A N D  M44RGOLIN: VARIATIONAL ELLIPTIC SOLVERS 

Elman, H. C, and D. P. O’Leary, 1998: Efficient iterative solution of the three-dimensional 
Helmholtz equation. J.  Comput. Phgs., 142, 163-181. 

Eisenstat, S. C., H. C. Elman, and M. H. Schdtz, 1983: Variational iterative methods for 
nonsymmetric systems of linear equations. SIAM J.  Numer. Anal., 20, 345-357. 

Frankel, S. P. I 1950: Convergence rates of iterative treatments of partial differential 
equations, Math. Tables Aids Comp., 4, 65-75. 

Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for 
the solutions of the Navier-Stokes eqpations. J .  Comput. Phys., 17, 209-228. 

Glowinski, R., 1992: Ensuring well-posedness by analogy; Stokes problem and Boundary 
control for the wave equation. J .  Comput. Phys., 103, 189-221. 

Hestenes, M. R., and E. Stiefel, 1952: Methods of conjugate gradients for solving linear 
systems. J .  Res. NBS, 49, 409-436. 

Kapitza, H., and D. Eppel, 1992: The non-hydrostatic mesoscale model GESIMA. Part 1: 
Dynamical equations and tests. Beitr. Phys. Atmosph., 65, 129-146. 

Leslie, L. M,, and B. J. McAvaney, 1973: Comparative test of direct and iterative methods 
for solving Helmholtz-Type equations. Mon. Wea. Rev., 101, 235-239. 

Navon, I. M., and Y. Cai, 1993: Domain decomposition and parallel processing of a finite 
element model of the shallow water equations. Comput. Methods Appl. Mech. tY Eng., 

Richardson, L. F,, 1910: The approximate arithmetical solution by finite differences of 
physical problems involving differential equations, with an application to the stress in 
a masonary dam. Philos. Trans. Roy. SOC., London A210, 307-357. 

Roache, P., J., 1972: Computational Fluad Dynamics., Hermosa Publishers, Albuquerque, 
446 pp. 

Saad, Y., and H. Schultz, 1986: GMRES: A generalized minimal residual algorithm for 
solving nonsymmetric linear systems. SIAM J .  Sci. Stat: Comput., 7, 856-869. 

Shadid, J. N., and R. T. Tuminaro, 1994: A comparison of preconditioned nonsymmetric 
Krylov methods on a large-scale MIMD machine. SIAM J.  Sci. Comput., 15, 440-459. 

Shewczuk, J. R., 1994: An Introduction to the Conju ate Gradient Method Without the 
Agonizing Pain. ht tp: //sepwww.st anford,edu/sep B matt /proj /mat hematics. html 

Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods 
for the hydrostatic and nonhydrostatic elastic equations. Mon. Wea. Rev., 120, 

Skamarock, W. C., P. K. Smolarkiewicz, and J. B. Klemp, 1997: Preconditioned conjugate- 
residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev. , 

Smolarkiewicz, P. K., and L. G. Margolin, 1994: Variational solver for elliptic problems in 
atmospheric flows, Appl. Math. 69 Comp. Sci., 4, 527-551. 

Smolarkiewicz, P. K., and L. G. Margolim, 1997: On forward-in-time differencing for fluids: 
An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos. Ocean 
Special, 35, 127-152. 

106, 179-212. 

2 109-2 127. 

125, 587-599. 



SMOLARKIEWICZ AND MARGOLIN: VARIATIONAL ELLIPTIC SOLVERS 

Smolarkiewicz, P. K., V. Grubisii, and L. G. Margolin, 1997: On forward-in-time differenc- 
ing far fluids: Stopping criteria for iterative solutions of anelastic pressure equations, 
Mon. Wea. Rev., 125, 647-654. 

Smolarkiewicz, P. K., and L. G. Margolin, 1998: MPDATA: A finite-difference solver for 
geophysical flows, J. Comput. Phys., 140, 459-480. 

Smolarkiewicz, P. K.,  V. Grubisit:, L. G. Margolin, and A. A. Wyszogrodzki, 1999: Forward- 
in-time differencing for fluids: Nonhydrostatic modeling of fluid motions on a sphere. 
Proc. 1998 Seminar on Recent Developments in Numerical Methods for  Atmospheric 
Modelling, Reading, UK, ECMWF, 21-43. 

Stoer, J., 1983: Solution of large linear systems of equations by conjugate gradient type 
methods. Muthematical Programming: The State of the Art, A. Bachem, M. Grotschel, 
and B. Korte, Eds., Springer-Verlag, pp. 655.  


