skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Bernstein Wave Research on CDX-U and NSTX

Technical Report ·
DOI:https://doi.org/10.2172/784554· OSTI ID:784554

Mode-converted electron Bernstein waves (EBWs) potentially allow the measurement of local electron temperature (Te) and the implementation of local heating and current drive in spherical torus (ST) devices, which are not directly accessible to low harmonic electron cyclotron waves. This paper reports on the measurement of X-mode radiation mode-converted from EBWs observed normal to the magnetic field on the midplane of the Current Drive Experiment-Upgrade (CDX-U) and the National Spherical Torus Experiment (NSTX) spherical torus plasmas. The radiation temperature of the EBW emission was compared to Te measured by Thomson scattering and Langmuir probes. EBW mode-conversion efficiencies of over 20% were measured on both CDX-U and NSTX. Sudden increases of mode-conversion efficiency, of over a factor of three, were observed at high-confinement-mode transitions on NSTX, when the measured edge density profile steepened. The EBW mode-conversion efficiency was found to depend on the density gradient at the mode-conversion layer in the plasma scrape-off, consistent with theoretical predictions. The EBW emission source was determined by a perturbation technique to be localized at the electron cyclotron resonance layer and was successfully used for radial transport studies. Recently, a new in-vessel antenna and Langmuir probe array were installed on CDX-U to better characterize and enhance the EBW mode-conversion process. The probe incorporates a local adjustable limiter to control and maximize the mode-conversion efficiency in front of the antenna by modifying the density profile in the plasma scrape-off where fundamental EBW mode conversion occurs. Initial results show that the mode-conversion efficiency can be increased to {approximately}100% when the local limiter is inserted near the mode-conversion layer. Plans for future EBW research, including EBW heating and current-drive studies, are discussed.

Research Organization:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Energy Research (ER) (US)
DOE Contract Number:
AC02-76CH03073
OSTI ID:
784554
Report Number(s):
PPPL-3568; TRN: US0106119
Resource Relation:
Other Information: PBD: 18 May 2001
Country of Publication:
United States
Language:
English