
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-01-4337

Approved for public release;
distribution is unlimited.

Title: PREDICTIVE PERFORMANCE AND SCALABILITY
MODELING OF A LARGE-SCALE APPLICATION

Author(s): Darren J. Kerbyson,
Henry J. Alme,
Adolfy Hoisie,
Fabrizio Petrini,
Harvey J. Wasserman,
Michael L. Gittings.

Submitted to: SuperComputing 2001
Denver, CO
November 2001

Los Alamos
NATIONAL LABORATORY

PREDICTIVE PERFORMANCE AND SCALABILITY
MODELING OF A LARGE-SCALE APPLICATION

D.J. Kerbyson
*
, H.J. Alme

*
, A. Hoisie

*
, F. Petrini

*
, H.J. Wasserman

*
, M. Gittings

**

*
 Los Alamos National Laboratory,

**
SAIC and

Parallel Architectures and Performance Team Los Alamos National Laboratory
CCS-3 Modeling, Algorithms and Informatics Group,

, Los Alamos, NM 87545
+1 (505)-667-4913

{djk,hoisie}@lanl.gov

ABSTRACT
In this work we present a predictive analytical model that
encompasses the performance and scaling characteristics of an
important ASCI application. SAGE (SAIC’s Adaptive Grid
Eulerian hydrocode) is a multidimensional hydrodynamics code
with adaptive mesh refinement. The model is validated against
measurements on several systems including ASCI Blue Mountain,
ASCI White, and a Compaq Alphaserver ES45 system showing
high accuracy. It is parametric - basic machine performance
numbers (latency, MFLOPS rate, bandwidth) and application
characteristics (problem size, decomposition method, etc.) serve
as input. The model is applied to add insight into the performance
of current systems, to reveal bottlenecks, and to illustrate where
tuning efforts can be effective. We also use the model to predict
performance on future systems.

Keywords
Performance analysis, full application codes, parallel
system architecture, Teraflop scale computing.

1. INTRODUCTION
SAGE (SAIC's Adaptive Grid Eulerian hydrocode) is a

multidimensional (1D, 2D, and 3D), multimaterial, Eulerian

hydrodynamics code with adaptive mesh refinement (AMR). The

code uses second order accurate numerical techniques. SAGE

comes from the Los Alamos National Laboratory Crestone

project, whose goal is the investigation of continuous adaptive

Eulerian techniques to stockpile stewardship problems. SAGE has

also been applied to a variety of problems in many areas of

science and engineering including water shock, energy coupling,

cratering and ground shock, stemming and containment, early

time front end design, explosively generated air blast, and

hydrodynamic instability problems [9]. SAGE represents a large

class of production ASCI applications at Los Alamos that

routinely run on 2000-4000 processors for months at a time.

SAGE is a large-scale parallel code written in Fortran 90, using

MPI for inter-processor communications. Early versions of SAGE

were developed for vector architectures. More recently, optimized

versions of SAGE have been ported to all teraflop-scale ASCI

architectures, as well as the CRAY T3E and Linux-based cluster

systems.

This work describes a performance and scalability analysis of

SAGE. One essential result is the development of a performance

model that encapsulates the code’s crucial performance and

scaling characteristics. The performance model has been

formulated from an analysis of the code, inspection of key data

structures, and analysis of traces gathered at run-time. The model

has been validated against a number of ASCI machines with high

accuracy. The model is also applied in this work to predict the

performance of SAGE on extreme-scale future architectures, such

as clusters of SMPs. Included is the application of the model for

predicting the performance of the code when algorithmic changes

are implemented, such as using a different parallel data

decomposition.

There are few existing performance studies that extend to full

codes (for instance [10]), many tend to consider smaller

applications especially in distributed environments (e.g. [5,7]).

This paper represents an example of performance engineering

applied to a full-blown code. SAGE has been analyzed and a

performance model proposed, and validated, on all architectures

of interest. The validated model is utilized for point-design studies

involving changes in the architectures on which the code is

running and in the algorithms utilized in the code. A predictive

performance model of another important ASCI application is

described in previous work [4].

(c) 2001 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only.

SC2001 November 2001, Denver (c) 2001 ACM 1-58113-293-X/01/0011 $5.00

2. ESSENTIAL CHARACTERISTICS OF

SAGE
In this section the important characteristics of SAGE that affect its
performance and scaling behavior are described. In particular, the
spatial data decomposition, the scaling of the sub-grid, the
common operations within a code cycle and the adaptive mesh
refinement operations are analyzed. In this work it is assumed that
the spatial grid is three dimensional.

2.1 Parallel Spatial Decomposition in SAGE
SAGE uses a spatial discretization of the physical domain
utilizing Cartesian grids. This spatial domain is partitioned across
processors in “sub-grids” such that the first processor is assigned

the first E cells in the grid (indexed in dimension order – X,Y,Z),

the second processor is assigned the next E cells and so on. The

assignment is actually done in blocks of 2x2x2 as illustrated in

Figure 1a), where M is the number of blocks in the X-dimension.

Figure 1b) illustrates the approximate assignment of cells over 4

processors (PEs). Note that the grid is primarily partitioned in the

Z dimension. Each processor contains cells which are either:

a) internal – all neighbor cells are contained on the same PE,

b) boundary – belong to one of the spatial domain’s physical

boundaries (“faces”), or

c) inter-processor boundary – neighbor cells in physical space

belong to sub-grids contained on different PEs (in one or

more dimension).

X

Y

Z

...

..
.

...

1 2 3

M+1

a) Cell and block ordering

PE

1

PE

2

PE

3

PE

4

X

Y

Z
b) Example assignment of the spatial grid across four PEs

Figure 1. Cell and block assignment to Processors in SAGE.

A library designed for the communication requirements of the

code is used to handle the necessary communications within

SAGE. This includes the common MPI operations of allreduce

and broadcast for instance, as well as two main application

specific communication kernels: gather (get data) and scatter (put

data) operations. These operations are used when processors

require an update of their sub-grid with local cell information and

inter-processor boundary data. The library uses a notion of tokens

to record where all the necessary data can be found for each

individual processor. A token is defined on each processor for

each of cell centered values and cell face values in each data

neighbor direction - 6 in total, and for the relationships of cells

between levels in the AMR operation. Each token contains

information on:

- sub-grid boundaries,

- data held locally within a processor,

- data held off processor (requiring communication), and

- data required off processor (also requiring communication).

2.2. Scaling of the Sub-grid
The sub-grid volume on each PE is a function of the number of

cells per PE, a parameter which is specified in the input deck.

SAGE assigns this number of cells to each PE. We are concerned

with “weak scaling” in this analysis, in which the problem size

grows proportionally with the number of processors resulting in

each PE doing approximately the same amount of work.

The decomposition of the spatial grid across PEs is done in

“slabs” (2-D partitioning), as suggested in Figure 1b). Each slab is

uniquely assigned to one processor.

Taking the number of cells in each sub-grid to be E, the total grid

volume V in cells is:

V = E.P = L3 (1)

and the volume of each sub-grid is:

E=l.L2 (2)

where P is the number of PEs, l is the short side of the slab (in the

Z dimension) and L the side of the slab in X and Y directions

(assuming a square grid in the X-Y plane). The surface of the

slab, L2, in the X-Y plane is:

L2 = V2/3 = (E.P)2/3 (3)

From this it can be seen that the surface increases as P2/3. This

sub-grid surface is directly proportional to the maximum data size

that is communicated between PEs on data gather and scatter

operations.

The maximum size of this surface that a PE will contain is

constrained by E. In fact, since the assignment of cells to PEs is

done in 2x2x2 blocks, the maximum surface is E/2, at which point

the slab degenerates to a “foil” with a thickness of 2 cells. It is

possible for the surface of the full spatial domain to be greater

than E - thus resulting in each surface being assigned to more than

one PE. This leads to physically neighboring data cells assigned to

logically distant PEs. Hence communications will take place

between more distant processors. The total communication

requirements will remain as (E.P)2/3, but will be dealt with by

more than one PE.

1 2

2PEs

1 2 3 4 5 6 7 8

8PEs

...

64PEs

1

256PEs

1

2

3

4

2

3

5

2

4

5

3

4

6

7

7

8

9

...

Figure 2. Cross-sections of the spatial grid and the assignment

of cells to 2, 8, 64, and 256 processors.

Examples of the partitioning of the spatial grid across processors
using slab decomposition are shown in Figure 2. The cross-
section in the Z dimension is shown and it is assumed that
E=13,500 cells throughout this work. Note that the volume of the
spatial grid scales in accordance with equation 1. It can be seen
that when using 2 and 8 processors, each PE holds more than one
foil. In the case of 64 PEs each foil is mapped to two processors,
and in the case of 256 PEs, each foil is held by 4 processors. The
maximum logical distance between PEs on foil boundaries for the
four cases shown is 1, 1, 2 and 4 respectively.

Consider again the volume of the entire grid:

V = E.P = (l.L2).P (4)

This is partitioned across PEs such that there will be L/(2P) foils
of width 2 on each PE, or:

(E.P)1/3/2P = (E/8P2)1/3 (5)

When this has a value less than one, a processor will contain less
than a single foil, i.e. when

P > SQRT(E/8) (6)

The maximum distance between the processors that hold a foil,
termed the “PE Distance” (PED) here is:

() 



 −

=
3/128/ PEPED

(7)

where   indicates an integer ceiling function. The minimum

distance between the processors that hold that foil is:

()













−

−





 1,1

3/128/ PEMAX

(8)

Thus when a processor is not assigned a full foil of the spatial

domain, boundary exchange will involve all the processors that

own the boundary, located at a logical distance PED apart.

The sub-grid surface, L2, the actual inter-processor boundary area

owned by a processor due to the slab degenerating to a foil and

the subsequent splitting of the boundary amongst the processors

within the PED, the “PE surface”, and the PED are shown in

Figure 3. It can be seen that the PE surface achieves a maximum

after 32 PEs. The sub-grid surface approximately equals the PE

surface multiplied by the PED. It is important to note that the

PED is related to the communication requirements of the code,

more precisely it is proportional to the size of messages generated

in order to satisfy each necessary inter-processor boundary

exchange. This is a consequence of the slab decomposition and

could lead to communication inefficiencies depending on a

specific machine topology.

A further observation related to the communication pattern is that

when processors are considered to be labeled in a vector-like

manner, from 0 to P-1, and with PSMP processors per SMP box,

out-of-box communication involves no more than a number of

pairs of processors equal to the min(PED, PSMP). Of course, if the

PED is larger than PSMP, more than two SMP boxes will be

involved in the boundary exchange. As an example, on the ASCI

Blue Mountain at Los Alamos, composed of SGI Origin 2000

boxes, given that PSMP =128 and that, from Figure 2b) the PED is

not larger than 100 for a reasonable number of PEs, no more than

2 Origin 2000 boxes will be involved in the communication for

one boundary exchange.

SAGE Scaling Behavior (Surface Sizes)

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1 10 100 1000 10000 100000

PEs

S
u

rf
a
c
e
 S

iz
e
 (

c
e
ll
s
)

Subgrid surface

PE Surface

a) sub-grid surface and PE surface sizes,

SAGE Scaling Behavior (PE Distance)

1.E+00

1.E+01

1.E+02

1 10 100 1000 10000 100000

PEs

L
o

g
ic

a
l

n
e

ig
h

b
o

r
d

is
ta

n
c

e

Max Neighbor PE

b) PED, the logical neighbor distance.

Figure 3. SAGE scaling characteristics

2.3 An Iteration Cycle of SAGE
The processing stages within a cycle typically involve three
operations which are repeated a number of times dependent on the
time interval utilized for integration of the equations in the code:

i) one (or more) gather operations to obtain a copy of the
local and remote neighbor data

ii) computation in each of the local cells

iii) one (or more) scatter operations to update data on remote
processors.

These three operations of SAGE directly relate to the surface-to-
volume ratio of the code [2]. The first and the third stage define
the surface, related to the amount and pattern of communication,
while the second stage represents the volume, related to the
amount of computation. The gather and scatter operations are
performed using the token library described in section 2.1.

These three operations in a cycle of SAGE are shown
schematically in Figure 4. In this example, it is assumed that the
number of PEs (P) is 256, and the number of cells per PE (E) is
13,500. A single gather operation in all dimensions is depicted,
followed by a processing step, and then a single scatter operation
in all dimensions. The communication is shown only for
processor n but in reality all processors perform communications
of the same sizes, in the same direction, at the same time. In this
example it can be seen that the main communication is in the Z
dimension dealing with the sub-grid surface. The preponderance
of communication in the Z dimension is also a consequence of the
slab decomposition and is intuitive from Figure 1b). The message
sizes in both directions (HI and LO in SAGE terminology) of the
three dimensions is shown in the box on the right side of Figure 4.

In addition to the gather and scatter operations, a number of other
communications take place including several MPI type allreduce
communications per cycle. A number of broadcast operations also
exist but only during the initialization phase of the code.

The frequency of the gather/scatter operations was analyzed using
MPI trace data. From this, the number of scatter/gather operations
was taken to be 160 real and 17 integer operations per cycle. The
surface communications in the Z-dimension represent 20% of the
total number of messages but over 95% of the total
communication time. In addition, 120 allreduce operations take
place per cycle each of 4 bytes in size.

2.4 Adaptive Mesh Refinement in SAGE
SAGE performs adaptive mesh refinement operations at the end
of each cycle iteration. Each cell in the spatial grid at this point
may either be:

- split into a 2x2x2 block of cells, or

- combined with its neighbors, within the same cell block, to
form a single cell, or

- remain unchanged.

The decision on whether to split or combine cells is determined by
the current cell values in the calculation being performed. AMR
enables more refined calculations to take place in those areas of
the spatial grid characterized by more intense physical
phenomena.

For example, the shock-wave indicated in the 2-D example in
Figure 5 by the solid line may cause the cells associated with it
(and close to it) to be split into smaller cells. In this example, cells
are represented at a certain level of refinement. A cell at level 0 is
not refined while a cell at level n represents a domain 8n times
smaller than one at level 0 in 3 dimensions.

The adaptive refinement of cells can result in load imbalance
across processors, for instance when there is a large degree of
activity in a localized region of the spatial grid in comparison to
the grid as a whole. To overcome this, a load-balancing operation
is performed at the end of each cycle when the maximum number
of cells on any processor is greater than 10% above the average
number of cells on the processors, i.e. load-balance if

() 







> ∑

=

P

i

ii
i

E
P

EMAX
1

1
1.1 (9)

where Ei is the number of cells on processor i.

The load-balancing operation takes advantage of the fact that the
cells are organized into a one dimensional logical vector. The
cells at level 0 are indexed in X, Y, Z ordering corresponding to
positions in the spatial grid. By partitioning this vector into
approximately equally sized segments, the number of cells can
remain approximately equal among processors. However, the
load-balancing process requires the communication of all data
values associated with cells to be moved between processors. This
can impact the overall application performance.

n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4

n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4

n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4

Gather

Compute

Scatter

Gather/Scatter Comms

X, LO 4

Y, LO 152

Z, LO 6860

X, HI 4

Y, HI 152

Z, HI 6860

Direction Size (cells)

Figure 4. Schematic representation of the communication and computation within a cycle of SAGE consisting of: a data gather,

processing, and a data scatter.

Level0 Level1

Level2 Level3

Figure 5. AMR example at multiple levels

The resulting data decomposition of the spatial grid among
processors after this process remains similar to that depicted in
Figure 2. However, the surface (in the X-Y plane) of each
processor’s sub-grid will no longer be of equal size.

Since the AMR process is data dependent, each separate

calculation using SAGE will exhibit in a different adaptive

refinement process and hence a different performance will result.

3. A PERFORMANCE MODEL OF SAGE
In the analysis that follows in Section 3.1, the main characteristics

of SAGE as described in Sections 2.1 to 2.3 are used to construct

a performance model but without AMR. This model is extended

in Section 3.2 to include refinement. Applications of the model

are illustrated in Section 4.

3.1 SAGE Model without AMR
The communication and computation stages of SAGE are

centered around the gather/compute/scatter operations as

described in Section 2.3. The runtime for one cycle of the code,

given that the three stages are not overlapped, can be described as:

() () ()
() ()PTEPT

EPTETEPT

allreduceGScomm

memconcompcycle

+
++=

,

,, (10)

where:

P is the number of PEs

E is the number of cells per PE

Tcomp(E) is the computation time

TGScomm(P,E) is the gather and scatter communication time

Tallreduce(P) is the allreduce communication time

Tmemcon(P,E) is memory contention that may occur between

PEs within an SMP box

The computation time, Tcomp(E), is measured from an execution of

SAGE on a single PE for a given number of cells E.

The gather and scatter communication time is the time taken to

provide boundary information by processors owning the

boundary. This is related to the PED (the communication distance

described in Section 2.2), and on the sizes of the messages.

TGScomm(P,E) is modeled as:

() ()

()
()
()
()
()
() 






















+
+
+

+
+

=

PMPISurfaceT

PMPISurfaceT

PMPISurfaceT

PMPISurfaceT

PMPISurfaceT

PMPISurfaceT

EPCEPT

INTXcomm

RealXcomm

INTYcomm

RealYcomm

INTZcomm

RealZcomm

GScomm

,..17

,..160

,..17
,..160

,..17

,..160

.,,

8

8

8

(11)

where C(P,E) is the contention on the processor network when

using P processors due to distant processor neighbor

communications (i.e. PED > 1) and Tcomm(S,P) is the time taken to

communicate a message of size S when using P processors in the

system. The sizes of the messages, SurfaceZ, SurfaceY, SurfaceX

(words) are determined by the size of the sub-grid mapped to each

processor, the number of processors P, and the data

decomposition used as described in Section 2. For slab

decomposition SurfaceZ = MIN(L2, E/2), SurfaceY = 2.L, and

surfacex = 4 words. The size of MPIreal8 and MPIINT are

determined by the MPI implementation. The coefficients

multiplying the communication times in equation 11 are the

frequency of the messages, as described in Section 2.3.

A linear model for the communication time is assumed which

uses the Latency (Lc) and Bandwidth (Bc) of the communication

network in the system. The communication latency and bandwidth

vary depending on the size of the message and also the number of

processors used (for instance when dealing with in-box or with

out-box communication for an SMP based machine).

() () ()PSB
SPSLPST

c

ccomm
,

1
.,, += (12)

The communication model utilizes the bandwidth and latencies of

the communication network observed in a single direction when

performing bi-directional communications, as is the case in

SAGE. This should not be confused with the peak uni-directional

communication performance of the network or peak measured

bandwidths from a performance evaluation exercise (e.g. [11]).

The impact of the PED on communication performance depends

on the specific network topology. On a cluster of Compaq ES45

SMPs, the maximum contention from an SMP box occurs when

all 4 PEs within the box perform out-of-box sends and each

receives from out-of-box PEs. This system’s topology is a fat-tree

using the Quadrics QSNet [6] as shown in Figure 6. This network

is able to handle any logical PED without penalty – hence for this

particular network there will be no extra overhead due to the

physical distance between processors within the PED.

Other topologies are not contention free under this
communication pattern, for example the Cray T3E, ASCI Red,
and ASCI Blue Mountain. Communication involving processors
within the PED will be bottlenecked by the lack of physical
communication links between processors that limit the
concurrency of messages. For example, with the initial
configuration of the ASCI Blue Mountain, the minimum number
of HiPPi channels that are used to interconnect SMP boxes of 128
PEs is 2, as shown in Figure 7.

The contention on the processor network, C(P,E), is modeled as:

() 















=

CL

P

PEsurface

L

CL
MAXMINEPC SMP,1,

1
,

2

(13)

where CL is the number of communication links per node, and
PSMP is the number of PEs per node. Thus the contention has a
maximum - the number of nodes within the SMP divided by the
number of communication links, i.e. when all PEs perform out-
box sends and receives. It has a minimum of one since at least one
PE will perform out-box communications. This model of the
contention on the processor network is optimistic as it does not
take into account possible overhead in the management of
multiple communication links within an SMP box.

The time taken to perform the allreduce operations is modeled as:

() ()),4(.log.2.120 2 PTPPT commallreduce = (14)

which consists of log2(P) stages in a binary tree reduction
operation. This is multiplied by 2 (since the operation is
effectively a reduction followed by a broadcast). This occurs at a
frequency of 120 per SAGE cycle.

2

8 SMPs

12
...

8 SMPs

12
...

2

128node SMP n HiPPi links

4

Figure 7. Inter-SMP network on ASCI Blue Mountain

The memory contention represents the extra time required per
cycle when multiple PEs contend for memory within an SMP. On
some systems this can be measured by considering the use of
different configurations of processors for the same problem – for

instance using all processors within an SMP node or using 1

processor in each of PSMP nodes. The difference in execution

times can be considered as the additional time due to memory

contention. This is modeled as:

())(., PTEEPT memmemcon = (15)

where Tmem(P) is the measured memory contention on P

processors per cell per cycle.

Our overall model contains many inputs which may be

conveniently categorized into either: application, system, or

mapping parameters. These inputs specify a particular design

point – a matching of the application, in a particular

configuration, with a target system in a particular configuration.

The application and mapping parameters can be specified

appropriately for the design point based on the input deck of a

specific run while the system parameters need to be measured or

otherwise specified for a particular system.

The input parameters to the SAGE performance model are listed

in Table 1 below.

Table 1: Input parameters to the SAGE performance model.

Application E Cells per processor

Mapping Surfacex

Surfacey

SurfaceZ

Surface size (in cells) of the sub-grid

mapped to each processor (in each of

the three dimensions)

System P Number of processors

PSMP Processors per SMP box

CL Communication Links per SMP box

Lc(S,P)

Bc(S,P)

Latencies and Bandwidths achieved

in one direction on bi-directional

communication

MPIReal8

MPIINT

Size of MPI data types

Tcomp(E) Sequential cycle time of SAGE on E

cells

Tmem(P) Memory contention per cell per cycle

3.2 SAGE Model with AMR
The adaptive mesh refinement process in SAGE is performed at

the end of each cycle as described in Section 2.4. The AMR

operation is triggered by one of several thresholds on the physical

quantities contained in the cell. Thus it is heavily dependent on

the calculation being performed. In order to accurately model this

operation information on the AMR process due to the calculation

being performed is required. This includes:

Figure 6. Network topology for a 64-node cluster of Compaq SMPs using Quadrics’ QSNet Fat-tree network.

- the number of new cells added in a cycle,

- the current cell division factor (the total cells divided by
the number of cells level 0 cells), and

- movement of cells between processors to load-balance.

For a particular calculation this information needs to be defined
on a per-cycle basis. For example, a calculation which results in
intense physical phenomena in a localized area of the spatial grid
will require more time to load-balance (see Section 2.4) in
contrast with a calculation with uniformly distributed phenomena.

The performance model of SAGE presented in Section 3 can be
extended to include the main characteristics of the adaptive mesh
refinement process. A model that includes these operations is:

() () ()
() ()

() ()
()PMT

DETAT

DEPTPT

DEPTDETEPT

i

i

cmload

icombineidivide

iGScommallreduce

imemconicompcycle

,

.

,,

.,.,,,,

++
++

++=cmMAD
(16)

The main additional components in this model in comparison to
that defined previously in equation 10, are:

Tdivide(Ai,) - the time to divide cells in the current cycle

Tcombine(E.Di) - the time to combine cells in the current cycle

Tload(Mcmi, P) - the time to perform the load-balancing

In addition three parameters are included in this model that define
characteristics of the calculation being performed. Each represents
a time history of values defined on a cycle by cycle basis:

D - a vector containing the cell division factor [1..8maxlevel]

A - a vector containing the maximum number of cells added
(over all processors) through the division process

Mcm - a vector containing the maximum number of cells
moved between any two PEs in the load balancing.

By defining these inputs on a per cycle basis, the model can
accurately encompass the change in computation time and
communication time due to the change in the amount of cell
division. For instance, the computation time will scale in
proportion to the amount of cell division (the volume of the sub-
grid) whereas the size of communications for the gather and
scatter operations will scale as the 2/3 power of the cell division
(the surface of the sub-grid). This model is not described in any
further detail in this work. An application of the model with
adaption is illustrated in Section 4.3.

Table 2. System parameters used in the validation for each system.

System AlphaSever ES45 AlphaServer ES40 ASCI Blue Mountain ASCI White

Psmp (PEs per node) 4 4 128 16

Nodes used in

Validation

8 64 40 256

CL (Communication

Links per node) 1 1






>
≤<

≤

20482

204810244

10248

P

P

P

2

Tcomp(E) (s) 0.36 0.48 1.80 0.77

Lc(S,P) (µs) ()4≤Pboxin










>
≤<
≤≤

<

81922.23

81922565.13

256649.4

648.4

S

S

S

S

()4>Pboxout







>
≤≤

<

5128.13

5126444.6

6410.6

S

S

S

()4≤Pboxin










>
≤<
≤≤

<

81927.25

81922563.30

256648.12

647.12

S

S

S

S

()4>Pboxout







>
≤≤

<

5124.21

5126400.9

6428.9

S

S

S

()128≤Pboxin










>
≤<
≤≤

<

20487.18

20485120.15

5121285.11

1280.8

S

S

S

S

()128>Pboxout
 S∀150

()16≤Pboxin







>
≤<

≤

5120.19

5121280.17

1280.12

S

S

S

()16>Pboxout










>
≤<
≤<

≤

655363.28

6553640960.87

40961280.25

1280.18

S

S

S

S

1/Bc(S,P) (ns) ()4≤Pboxin










>
≤<
≤≤

<

819237.1

819225604.1

256649.13

640.0

S

S

S

S

()4>Pboxout







>
≤≤

<

51230.8

512642.12

640.0

S

S

S

()4≤Pboxin










>
≤<
≤≤

<

81922.3

81922560.9

2566424

640.0

S

S

S

S

()4>Pboxout







>
≤≤

<

5127.13

512645.25

640.0

S

S

S

()128≤Pboxin










>
≤<
≤≤

<

20483.7

20485124.7

5121289.13

1280.0

S

S

S

S

()128>Pboxout
 S∀10

()16≤Pboxin







>
≤<

≤

5120.2

5121284.2

1286.21

S

S

S

()16>Pboxout










>
≤<
≤<

≤

6553632.4

65536409646.8

40961286.16

1286.84

S

S

S

S

Tmem(P) (µs)





>
=

28.4

28.1

P

P





>
=

24.4

22.2

P

P - -

4. APPLICATION OF THE MODEL
In this section the SAGE performance model described in Section
3 is validated against four existing architectures and also applied
to predicting performance on future architectures. In addition, the
performance of SAGE is investigated given algorithmic changes
that could be implemented in the code. An example of predicting
the performance of SAGE with the adaptive mesh refinement
process is also illustrated.

4.1. Validation and Performance Prediction

on Future Architectures
The model presented in Section 3 has been validated against
measurements taken on a Compaq AlphaServer ES45, an
AlphaServer ES40, the ASCI Blue Mountain (SGI Origin 2000),
and from a preliminary performance analysis of ASCI White
(IBM SP3). A detailed performance study of ASCI White can be
found in [8]. The input parameters to the SAGE performance
model are listed in Table 2. This includes the number of nodes
used in the validation along with the system parameters used in
the model for each architecture. The parameters are either
measured or otherwise specified. The comparison is performed
with the default slab decomposition in SAGE as described in
Section 2.

For each system, the time taken to perform one cycle of SAGE as
given by the performance model is compared to measurements. In
the case of the two Compaq systems, predictions are given for
systems larger than was available in the measurement process.
The Compaq AlphaServer ES45 cluster that we had access to was
very small, but a larger system of this kind is being installed at
Los Alamos National Laboratory. Without an available large-
scale system, the performance model is able to provide an
expectation of the performance on such a future architecture.

The comparison of predictions and measurements on the four
systems is shown in Figure 8. The predictions from the
performance model show high accuracy – mostly within 10% of

the actual measurements.

A comparison of the cell-cycles per second on SAGE is shown in

Figure 9. This metric is used by SAGE as a further indication of

performance. It represents the number of cells that can be

processed in each wall-clock time unit. In Figure 9 measurements

are used for the CRAY T3E, ASCI White, and ASCI Blue

Mountain, whereas we predict the performance of the Compaq

system using our model.

SAGE Performance Model (Compaq AlphaServer ES45)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000 10000 100000

PEs

T
im

e
 f

o
r

1
 c

y
c
le

 (
s
)

Prediction

Measurement

SAGE Performance (Compaq AlphaServer ES40)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100 1000 10000 100000

PEs

T
im

e
 f

o
r

1
 c

y
c
le

 (
s
)

Prediction

Measurement

a) Compaq AlphaServer ES45 b) Compaq AlphaServer ES40

SAGE Performance Model (ASCI Blue Mountain)

0

1

2

3

4

5

6

100 1000 10000

PEs

T
im

e
 f

o
r

1
 c

y
c
le

 (
s
)

Prediction

Measurement

SAGE Performance Model (ASCI White)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 10 100 1000 10000

PEs

T
im

e
 f

o
r

1
 c

y
c
le

 (
s
)

Prediction

Measurement

c) ASCI Blue Mountain (SGI Origin 2000) d) ASCI White (IBM SP3)

Figure 8. Comparison of predictions from the SAGE performance model with actual measurements

SAGE - Architecture Performance Comparison

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 10 100 1000 10000

PEs

C
e
ll

-C
y

c
le

s
/s

e
c

AlpaServer ES45

T3E-1200

ASCI White

ASCI Blue Mountain

Figure 9. Comparison of the performance of SAGE across

several systems.

The model predicts the performance of the AlphaServer ES45 to
be approximately a factor of 2 times greater than that on the ASCI
White (IBM SP3) on a comparable number of processors. A
system with a peak performance of 30Tflops composed of the
Compaq SMP boxes with Quadrics QSNet would be
approximately 20 times greater than the performance of SAGE
achieved to date on the ASCI Blue Mountain with 6000 SGI
Origin 2000 processors. By comparison, the ratio of peak speeds
is approximately 10.

4.2. Performance Prediction on Algorithmic

Transformations: an alternative Data

Decomposition
The surface-to-volume ratio of the processing in SAGE is
dependent on the grid decomposition. There is a large difference
between the use of the slab decomposition (Figure 1) and a “cube”

decomposition (Figure 10). Where the slab decomposition results

in communications scaling as the 2/3 power of the number of PEs,

as shown by equation (3), with a cube decomposition the

communication size will remain approximately constant, though

the number of PE pairs communicating will be larger. It can be

easily shown (see for example [2]) that the surface-to-volume

ratio (i.e. the communication-to-computation ratio) gets better (i.e.

smaller) as the aspect ratio of the sub-grids changes towards being

perfect cubes, as suggested in Figure 10. Of course, perfect cubic

decomposition can only be achieved when the number of

processors is a cubic power, as is the decomposition on 8

processors shown in Figure 10.

2PEs 4PEs 8PEs

Figure 10. Possible 3-D data decomposition configurations for

2, 4 and 8 processors

Comparison of Slab and Cube (Surface Sizes)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 10 100 1000 10000 100000

PEs

T
o

ta
l

S
u

rf
a

c
e

 (
c

e
ll

s
)

Slab

Cube

a) Surface sizes

Comparison of Slab and Cube (PE Distance)

1

10

100

1000

1 10 100 1000 10000 100000

PEs

L
o

g
ic

a
l

n
e

ig
h

b
o

u
r

d
is

ta
n

c
e

Slab (Z)

Cube (Y)

Cube (Z)

b) PE distance (PED)

Figure 11. Comparison of Slab and Cube decomposition

A comparison between the cube decomposition and the slab

decomposition is shown in Figure 11. The total surface of the sub-

grid on an individual PE is plotted which is proportional to the

communication that takes place in each gather (and scatter)

operation. The PE distance (PED) is also shown in Figure 11b).

The curves for the slab decomposition have already been

presented in Figure 2. The PED for the slab decomposition in the

X and Y dimensions are always equal to 1. For the cube

decomposition PED is always equal to 1 in the X dimension, but

varies in the Y and Z dimensions.

The communication size using the cube decomposition is

considerably smaller than that for the slab, but the PED is

considerably larger. A comparison between the expected

performance of SAGE using cube decomposition and the current

slab decomposition on the Compaq AlphaServer ES45, and the

ASCI Blue Mountain, is shown in Figure 12. This is achieved by

modifying the parameters SurfaceX, SurfaceY, and SurfaceZ, in

equation 11, to represent the sub-grid surface sizes in the cube

decomposition. For an ideal cube these would all be equal to

()23/1/ PL .The use of the cube decomposition reduces

communication requirements and hence results in an expected

performance improvement of 35% (on the Compaq system), and

between 15% and 45% (on the SGI system) compared with the

use of slabs.

SAGE Performance Model - Comparison of Slab and Cube

(Compaq System)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000 10000 100000

PEs

T
im

e
 f

o
r

1
 C

y
c

le
 (

s
)

Slab

Cube

a) Compaq AlphaServer ES45

SAGE Performance Model - Comparison of Slab and Cube

(ASCI Blue Mountain)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 10 100 1000 10000 100000

PEs

T
im

e
 f

o
r

1
 C

y
c

le
 (

s
)

Slab

Cube

b) ASCI Blue Mountain

Figure 12. Performance comparison of slab and cube

decomposition

The performance model can also be used to provide insight into
where time is spent within the application. In Figure 13, time
components representing computation (including memory),
communication latency, and communication bandwidth are shown
for both data decomposition schemes of SAGE on the Compaq
AlphaServer ES45. It can be clearly seen that the communication
bandwidth component is much reduced when using the cube
decomposition. Both the computation and the communication
latency components remain mostly unchanged.

SAGE could benefit from a cube decomposition of the full grid if
the communication network within the machine is able to handle
the large logical PEDs without performance penalty. This is true
in the fat-tree topology of the Quadrics network used on the
cluster of Compaq SMPs as described in Section 3.

SAGE - Component Times (ES45-Slab)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

PEs

C
y
c
le

 T
im

e
 (

s
)

Compute/memory

Bandwidth

Latency

Total

a) Slab decomposition

SAGE - Component Times (ES45-Cube)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

PEs

C
y
c
le

 T
im

e
 (

s
)

Compute/memory

Bandwidth

Latency

Total

b) Cube decomposition

Figure 13. Time-component predictions (Compaq ES45)

4.3 Extending the Performance Model to AMR
The model can be used to explore the performance on different
characteristic adaptive mesh refinement calculations on different
architectures. In Figure 14 an example time history for each of the
cell division factors (D), the maximum cells added in a cycle (A),
and the maximum cells moved for load balancing (Mcm) are
shown. The example time histories attempt to depict the situation
in which a shock-wave propagates through the spatial grid. This
causes the following characteristics:

- the cell division factor gradually increases with the number
of cells added per cycle as the shock-wave expands thus the
cell division factor increases, and

- load-balancing is assumed to take place every fifth cycle.

SAGE - Example time histories

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 20 40 60 80 100

Cycle Number

#
 C

e
ll

s

0

2

4

6

8

10

12

14

16

C
e
ll

 D
iv

is
io

n
 F

a
c

to
r

Cells Added (A)

Max cells load-balanced (Mcm)

Cell Division Factor (D)

Figure 14. Example time histories for: division factor, added

blocks, and blocks load-balanced (indexed by cycle).

The time histories as depicted in Figure 14 were used in the
performance model in order to investigate both the variation in
cycle time during the calculation (Figure 15a), and the time taken
to perform the 100 cycles while scaling the number of processors
(Figure 15b). This was undertaken for the Compaq AlphaServer
ES40. It can be seen from Figure 15a), that cycles requiring load-
balancing take slightly longer than those without.

SAGE - Example Adaption performance (ES40)

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

Cycle Number

T
im

e
 (

s
)

a) time taken for each of 100 cycles

SAGE - Example Adaption Scalability (ES40)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 10000

PEs

T
im

e
 (

s
)

100 cycles

b) Example adaption scalabilty (time for 100 cycles)

Figure 15. Performance Prediction of SAGE with AMR (using

the input histories from Figure 14)

5. SUMMARY AND CONCLUSIONS
In this paper we have presented a predictive performance and
scalability model for an important application from the ASCI
workload. The model takes into account the main computation
and communication characteristics of the entire code. The model
proposed was validated on two large-scale ASCI architectures,
ASCI White (IBM SP3), and ASCI Blue Mountain (SGI Origin
2000), showing very good accuracy. The model was then utilized
to predict performance of SAGE on future architectures and also
when using an alternative parallel data decomposition.

We believe that performance modeling is the key to building
performance engineered applications and architectures. To this
end, the work presented in this paper represents one of a very few
existing performance models of entire applications. Like our
previous performance model of a particle transport application
[4], the model incorporates information from various levels of the
benchmark hierarchy [3] and is parametric - basic machine
performance numbers (latency, computational rate, bandwidth)
and application characteristics (problem size, decomposition
method, etc.) serve as input. Such a model adds insight into the
performance of current systems, revealing bottlenecks and
showing where tuning efforts would be most effective. It also
allows prediction of performance on future systems. The latter is
important for both application and system architecture design as
well as for the procurement of supercomputer architectures

A performance model is meant to be updated, refined, and further

validated as new factors come into play. The work performed in
this report was primarily concerned with the analysis of SAGE in
absence of grid adaptation. With additional analysis, the model
has been extended to include the main characteristics of the
adaptation process. The performance model can be used to
investigate performance on alternative application configurations
(data decompositions), and alternative target systems.

ACKNOWLEDGEMENTS
This work was supported by funding from the Los Alamos
Computer Science Institute. We would like to thank Ed Benson
for access and support on the AlphaServer ES45 at Compaq in
Marlborough, MA. Los Alamos National Laboratory is operated
by the University of California for the National Nuclear Security
Administration of the US Department of Energy.

6. REFERENCES
 [1] Culler, D.E., Singh, J.P., Gupta, A., Parallel Computer

Architecture, Morgan Kaufmann, ISBN 1-55860-343-3,
1999.

 [2] Goedecker, S., Hoisie, A., Performance Optimization of
Numerically Intensive Codes, SIAM Press, ISBN 0-89871-
484-2, March 2001.

 [3] Hockney, R., Berry, M., (Eds). Public International
Benchmarks for Parallel Computers. Scientific
Programming, Vol. 3, 1994, 101-104.

 [4] Hoisie. A., Lubeck, O., Wasserman. H., Performance and
scalability analysis of teraflop-scale parallel architectures
using multidimensional wavefront applications, Int. J. of
High Performance Computing Applications, Vol. 14, No. 4,
Winter 200, 330-346.

 [5] Nudd, G.R., Kerbyson, D.J., et.al. PACE: A Toolset for the
Performance Prediction of Parallel and Distributed Systems,
in the Journal of High Performance Applications, Vol. 14,
No. 3, Fall 2000, 228-251.

 [6] Petrini, F., Feng, W., Hoisie, A., Coll, S., and Frachtenberg,
E. The Quadrics Network (QsNet): High-Performance
Clustering Technology, Symposium on High Performance
Interconnects, Hot Interconnects 9, Stanford CA, August 22 -
24, 2001.

 [7] Rauber, T., and Runger, G., Modeling the Runtime of
Scientific Programs on Parallel Computers, in Proc. 2000
ICPP Workshops. IEEE Computer Society, 2000, 307-314.

 [8] de Supinski, B.R. The ASCI PSE Milepost: Run-Time
Systems Performance Tests, Int. Conf. On Parallel & Distrib.
Process. Tech. & Apps., Las Vegas, June 25-28, Vol. 4,
2001, 1987-1993.

 [9] Weaver, R., Major 3-D Parallel Simulations, BITS -
Computing and communication news, Los Alamos National
Laboratory, June/July, 1999, 9-11.
http://www.lanl.gov/orgs/cic/cic6/bits/99june_julybits/opener.html

[10] Worley. P.H., Performance Tuning and Evaluation of a
Parallel Community Climate Model, SC99, Portland,
Oregon, November 1999.

[11] Worley, P.H. Performance Evaluation of the IBM SP and the
Compaq AlphaServer SC. In Proc. ICS 2000, ACM, 2000,

235-244.

	PREDICTIVE PERFORMANCE AND SCALABILITY MODELING OF A LARGE-SCALE APPLICATION
	ABSTRACT
	1. INTRODUCTION
	2. ESSENTIAL CHARACTERISTICS OF SAGE
	2.1 Parallel Spatial Decomposition in SAGE
	2.2. Scaling of the Sub-grid
	2.3 An Iteration Cycle of SAGE
	2.4 Adaptive Mesh Refinement in SAGE

	3. A PERFORMANCE MODEL OF SAGE
	3.1 SAGE Model without AMR
	3.2 SAGE Model with AMR

	4. APPLICATION OF THE MODEL
	4.1. Validation and Performance Prediction on Future Architectures
	4.2. Performance Prediction on Algorithmic Transformations: an alternative Data Decomposition
	4.3 Extending the Performance Model to AMR

	5. SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	6. REFERENCES

