LA-UR-01-4205

Approved for public release;
distribution is unlimited.

Tile: Efficient Feature-Based Contour Extraction

Author(s): | James R. Gattiker

Submitted to:

http://lib-www.lanl.gov/cgi-bin/getfile?00796675.pdf

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of

Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-

free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the

viewpoint of a publication or guarantee its technical correctness.
FORM 836 (10/96)

Efficient Feature-Based Contour Extraction

James R. Gattiker
Los Alamos National Laboratory
gatt@lanl.gov

Abstract

Extraction of contours in binary images is an important ele-
ment of object recognition. This paper discusses a more ef-
ficient approach to contour representation and generation.
This approach defines a bounding polygon as defined by its
vertices rather than by all enclosing pixels, which in itselfis
an effective representation. These corners can be identified
by convolution of the image with a 3x3 filter. When these
corners are organized by their connecting orientation, iden-
tified by the convolution, and type, inside or outside, con-
nectivity characteristics can be articulated to highly con-
strain the task of sorting the vertices into ordered boundary
lists. The search for the next bounding polygon vertex is re-
duced to a one dimensional minimum distance search rather
than the standard, more intensive two dimensional nearest
Euclidean neighbor search.

1 Introduction

This paper describes a method to decompose the contour
extraction from binary images into two stages. The first
stage is a parallelizable identification of a reduced set of
contour features. The second stage is combinatorial con-
tour construction, that is greatly reduced in complexity from
simple contour following approaches. This new algorithm
can greatly reduce the computational burden of the prob-
lem compared to previous algorithms for contour extraction,
while at the same time allowing the parallelization of the al-
gorithm.

The most basic algorithm for contour extraction uses an
automaton to traverse the contour pixel by pixel, or a more
complex version involving multiple partial lists build dur-
ing a raster-scan of the image [1]. Although this approach
is intuitively clear, it does not take advantage of the parallel
nature of the task, nor of the useful properties of the con-
tours. The chain-coding method of representation uses the
observation that contour boundary pixels can be extracted
using a convolution-style operation[2], and contours can be
generated using the knowledge that these edge pixels need
to be arranged so they are in a list according to connectivity
[3]. Other results explore the concept of using contour fea-

tures with logical completeness to represent bi-level images
[4] [5], naming these features transition points, developed
for purposes of lossless encoding rather than efficient con-
tour extraction.

The method presented in this paper goes beyond previ-
ous results by distilling a set of high-level features that not
only represent the image contours without loss of informa-
tion, but have the further property that the logical extraction
of contours is efficient through inherent constraints of the
proposed feature set.

Section 2 presents the details of a simple example that
illustrates the feature-based contour generation concepts.
Section 3 fills in details that extend the concept into gen-
erality. Section 4 discusses expected performance enhance-
ments with this method.

2 Contour Generation Method Con-
cepts and Example

The contour extraction algorithm is organized into two al-
gorithms that operate in sequence: feature extraction, and
contour generation.

2.1 Feature Extraction

Figure 1 shows an example object from which contour fea-
tures are to be extracted, with features explicitly labelled.
These features are the corner pixels in the object, both in-
terior and exterior. The corners are distinctly orientated, so
there are four types of outside corners that will be referred
to as 01,02,03,04, and there are four corresponding inside
corners, [1,12,13,14. The figure shows the method’s labeling
of outside and inside corners in the object, which can be ac-
complished in a number of ways. The most straightforward
is through the convolution over the image with a 3x3 matrix
whose result is to produce a numeric code for each of the 8
types of features. For example, convolve with the matrix

1 2 4
8 16 32 (1)
64 128 256

Figure 1: Example image with contour features labelled

Table 1: List of Figure 1’s extracted points by feature type

Feature Type | Member Pixel Coordinates
(0]} (7,3), (3,7)

02 (10,3), (14,7)

03 (14,10) , (10,14)

04 (3,10), (7,14)

11 7,7

12 (10,7)

13 (10,10)

14 (7,10)

which results in the numeric results:
01 =27,02=216,03 = 432,04 = 54
I1 =255,12 =207,13 = 510,14 = 447.

These features are then extracted into unordered lists by
type. The lists of points extracted from the shape in Figure 1
are collected in Table 1. We presume throughout that there
are no foreground pixels on the edge of the image, which
can be assured by padding with a border of background.

The number of contour features is a subset of the whole
contour, and will be less than or, strictly, equal to the num-
ber of pixel edges in the contour. In typical cases where
there are horizontal and vertical runs in the contour, the
number of extracted contour features will be significantly
smaller than the number of pixel edges in the contour.

These extracted lists represent in themselves a highly
compressed complete version of the original image. They
may also be used to efficiently generate the contours, as il-
lustrated in the next section.

2.2 Contour Generation

Given the contour feature lists as defined above, the algo-
rithm for the contour generation is a highly and uniquely

Table 2: Constraints for contour generation from the con-
tour features

Current Contour | Next Contour | Dimension and
Feature Type Feature Type | Direction of
Next Point
01,12 02,11 horizontal, right
02,13 03,12 vertical, down
03,14 04,13 horizontal, left
04,11 01,14 vertical, up

constrained combination of these lists. Once the lists are
generated properly, the algorithm is straightforward: Take
the starting point for serial contour generation to be the first
element of the Ol list, although this choice is arbitrary. The
next point on the list, given that we are currently on an O1
point, must come from either the O2 or the I1 lists. Further,
the next point will be the closest point on these lists in a
specific direction along one dimension: from an Ol point,
the next point on the contour must be to the right, and it will
be on the same horizontal line. !

The search through the feature lists for the neighboring
point on the contour is thus constrained to 2 of the 8 lists of
feature points. For each next corner search, the algorithm
has two steps: find exact 1-D match along the relevant di-
mension, then find nearest 1-D distance along the remain-
ing dimension. This greatly constrains the search for the
next contour feature on the contour, in comparison to the
general x-y search problem to locate the closest pixel in two
dimensions. Table 2 shows the complete set of constraints.

The simplest algorithm for producing a sequential list of
contour features is to successively find the closest contour
feature according to the above constraints, removing that
feature from the list as it is generated. This algorithm can
obviously be parallelized, given the observation that every
contour stage is independent of the last. Contour segments
can be built independently, and the segments constructed it-
eratively, joining contour corner features to make contour
line segments, joining these to make contour corner seg-
ments (two line segments at right angles), joining these to
make contour 4-line segments and so on. Eventually these
contour segments will be joined to make a complete con-
tour.

3 General Contour Extraction

The previous section chose an illustrative example for ex-
planatory purposes, but it does not cover all of the possible
configurations leading to inner and outer corners. For ex-
ample, there are the issues of directly neighboring corners

IThis description presumes one of two symmetric sets of constraints,
namely clockwise exterior border generation.

Figure 2: Example of values in diagonal pixel contact

510 508 432

20

21

22r- 439

23+ 447

, , .
10 508 HRUFTToRUF R0 307 of% g 30 31 32 33 34

302 475 438

and corners in diagonal contact. This section will present
two alternative approaches to making the presented concept
general. The first approach, the double resolution method,
enhances the method only slightly to deal with pixel corner
contact, but has the disadvantage of doubling the computa-
tion of the image convolution/scanning stage. The second
approach, the direct corner extraction method, does not re-
quire change of the input image, but introduces complex-
ity in the feature labeling and extraction stage. Although
these two approaches are equivalent in the abstract the lat-
ter may be preferred, because the feature extraction stage,
which will usually dominate the total computation time, is
relatively smaller.

3.1 Double Resolution Method

The simplest complete method is to double the resolution
of the input image, splitting each pixel in the original image
into four pixels in the new image. This eliminates neigh-
boring pixel features which cause additional complexity in
feature types and contour building, by what can be seen as
adding buffer pixels between each feature. The process,
from feature extraction through contour generation, can be
executed with only minor additions to the feature value lists
demonstrated above.

We will assume diagonal contact, i.e. pixels joined only
at a single corner point, does not represent connectivity of
the foreground object, and conversely does represent con-
nectivity of the background. The converse formulation is
also possible.

To complete the list of the above convolution filter’s pro-
duced values of interest, we must also take into account the
additional values generated by diagonal contact. Examples
are shown in Figure 2. The four possible diagonal selections

Table 3: Correspondence between pixel value and feature
type for the double resolution method

Pixel Value | Feature Type
27,283 01

54,118 02

432,433 03

216,220 04

255 I

447 12

510 I3

507 14

Figure 3: Examples of single-pixel features

63

L L L L L L L L
8 8.5 9 95 10 10.5 1" 115 12 125
217 507

add 4 new outside corner values, resulting in the complete
feature value list shown in Table 3.

The algorithm using these values and the constraints de-
scribed in the example section above are sufficient to extract
contours from any shape. The next section discusses an al-
ternative algorithm to complete contours generally without
change of the original image.

3.2 Direct Extraction of Pixel Corners

Directly moving to the mode of pixel corners during the
feature extraction phase is effectively equivalent to the dou-
ble resolution approach, although the complexity is shifted
from the increased computation in convolution, i.e., four
times the number of pixels, to the number of features re-
quired, trading off complexity for computation.

3.2.1 Single Pixel Features

The feature extraction process here must incorporate a
much longer list of possibilities. For example, Figure 3
shows new values associated with single-pixel sized fea-
tures. A significant change here is that the pixels of, e.g.,
type 23 and 191 in the example, cause additions to two lists,

since they have more than one salient feature, for example
type 23 represents two outside corners, and type 191 two
inside corners.

3.2.2 Closure Asumptions

There are two possible closure assumptions, mentioned
briefly above. One possibility is that pixels touching at a
single corner represent contact of the foreground and sepa-
ration of the background. This analysis will take the oppo-
site assumption, that foreground pixels touching at a single
corner are not connected. This choice is arbitrary, and the
method can be implemented under either alternative.

3.2.3 Sub-pixel Corner Coordinates

It is necessary to take measures to ensure corners from dif-
ferent pixels do not have the same recorded location. The
corners from pixel type 191 (see Figure 3) cannot both be
listed as the pixel center without introducing combinatorial
ambiguity. If the pixel corners are moved to 1/2 native pixel
grid spacing (at +0.5 of the pixel coordinates), corner posi-
tions from pixels touching at a single point will be identical,
also causing ambiguity in the combinatorial stage. The so-
lution is to take the corners of a pixel to be inside a pixel,
so that for example pixel type 23 corresponds to a I1 feature
at (-0.25,-0.25) to the current pixel center, and an 12 feature
at (+0.25,-0.25) to the current pixel center. A remapping
could instead maintain integer values by simply multiply-
ing the fractional value by four, avoiding the overhead of
floating point computation.

3.2.4 Feature Generation

It is in this operation that the overall complexity is increased
from the introductory example. Instead of one feature per
pixel, we now have a maximum of 4 features per pixel, in
the cases of a single pixel (four outside corners) or a single
pixel sized cross (four inside corners). It is expected that the
average number of features per contour pixel will still allow
for significant complexity savings versus methods which
maintain all exterior edge pixels, since all horizontal and
vertical runs are inherently eliminated. This savings com-
pounds the inherent savings of the constrained combination.

The exhaustive list of pixel values and their associated
lists are shown in Table 4. This list includes rotational sym-
metries expected from the symmetric grid. The convolution
algorithm for feature extraction of generating these values
then keying to list membership can be reduced to a set of
more efficient boolean operations for efficiency.

Table 4: Correspondence between pixel value and feature
type for the direct method

Pixel Value Feature Type
27,31,91,95,283,287,347,351 01
54,55,118,119,310,311,374,375 02
432,433,436,437,496,497,500,501 03
216,217,220,221,472,473,476,477 04
182,183,246,247,248,249,252,253,255 | 11
155,159,411,415,440,441,444,445,447 | 12
62,126,218,222,318,382,474,478,510 | I3
59,123,315,379,434,435,498,499,507 | 14
18,19,22,23,82,83,86,87,274,275,
278,279,338,339,342,343 01,02
48,49,52,53,112,113,116,117,304,
305,308,309,368,369,372,373 02,03
144,145,148,149,208,209,212,213,
400,401,404,405,464,465,468,469 03,04
24,25,28,29,88,89,92,93,280,281,
284,285,344,345,348,349 04,01
184,185,188,189,191 11,12
154,158,410,414 ,446 12,13
58,122,314,378,506 13,14
178,179,242,243,251 14,11
254 11,13
443 12,14
26,30,90,94,282,286,346,350 Ol,I3
50,51,114,115,306,307,370,371 02,14
176,177,180,181,240,241,244,245 03,11
152,153,156,157,408,409,412,413 04,12
190 I1,12,13
442 12,13,14
187 11,12,14
250 11,13,14
16,17,20,21,80,81,84,85,272,273,
276,277,336,337,340,341 01,02,03,04
186 I1,12,13,14

3.2.5 Comments on Postprocessing Operations

Postprocessing can determine properties of interest, such
as nesting of contours. Extending this to a multi-level im-
age, regions can be annotated with a region type that they
enclose. Also, it may be of interest to modify the con-
tours from the pixel boundaries, which lie on the grid of
the integers +0.25 in the algorithm defined above. Arbi-
trary remapping of these values can be performed easily, by
maintaining and using of the corner fype. Description of
the contours may not require the distinction between inside
and outside corners is not necessary, only an indication of
the direction from the center of the pixel to the corner is
relevant.

This postprocessing can also remap the contour from
the quarter- to the half-integer grid, thereby preserving ex-
pected notions of area enclosed of one pixel equals one unit,
or moving the contour back to integer pixel center values,
thereby preserving pixel locations. The nature of the post-
processing naturally depends on the specific nature of fur-
ther use to be made of the contour.

3.3 Extracting Multiple Contours

If the lists are not empty when the contour is completed,
there are additional contours in the image. The methods
discussed apply equivalently to interior or exterior contours.
Note that if there are remaining contours, there will always
be either an outside corner or its corresponding inside cor-
ner, so it suffices to check for whether these corresponding
lists (e.g. O1 and I1) have entries.

4 Complexity Comparison for Per-
formance Evaluation

Performance assessment is very problem dependent, so per-
formance comparison will be treated apart from specific im-
plementations or images first, with some examples supplied
later. In image operations, asymptotic results using order
of magnitude are not indicative of perfomance; the number
of operations are in reality bounded by real image size, and
so the magnitude of the multipliers can be more significant
than the strict order of complexity of the operations. In or-
der to abstract performance of this new method compared
to other methods, we will consider four basic operations for
contour extraction algorithms:

1. Image convolution, for extraction of boundary pixels
or corner features, constant C' + My X n;

2. 2-D search for nearest neighbor, Ms x n log2 n;

1-D search for nearest neighbor, M3 x nlogn;

4. local image search for next neighbor boundary pixel,
M4 X n.

e

where n is the number of boundary features (all contour
edges or corner features, as appropriate). The methods we
will consider are

(A) automaton contour following, complexity Ty, where n
is number of all border pixels;

(B) contour construction from extraction of all borders,
complexity 71 +T» where n is the number of all border
pixels;

(C) the described method of contour construction from
corner features, complexity T + T3 where n is the
number of corner features.

where T;; is the time for operation ¢ above. Typically, the or-
der multiplier for operation 1, M; will be extremely small,
simply the time to read out the features of interest. The M,
and M3 are the most significant, they are searches of lists,
and can be expected to be comparable. M, (indexing into
image) can be expected to be larger than My and M3 (ac-
cessing a list), but in the same order of magnitude.

Comparing the new method C to method A, we can ob-
serve there is added a constant and a very small term scal-
ing with the number of features added for operation 1, but
as described M is very small so this component is not con-
sidered to be significant for possible image sizes, and the
constant C' corresponding to convolution will dominate this
term. Besides this approximately constant added term, the
significant pixel-dependent terms are O(n;) compared to
O(nclogn.), where we must now consider the difference
between the np, the number of border pixels, and n., the
number of corner feature pixels.

Comparing methd C to method B, we observe a very sim-
ilar component for the convolution term, although we are
dealing with n; for method B and n. for method C. There
is a significant difference in the construction phase, both
because ny is greater than n., and because of the greater
number of operations for 2-D search. The final comparison
is O(np log® np) for method B and O(n.. log n..) for method
C.

These comparisons critically come down to the magni-
tude of the ratio 2= € [0, 1]. As this ratio gets smaller, the
advantage of the new method gains. Two images are shown
in Figs. 4 and 5. The former is a person walking, sege-
mented based on motion. The ratio ”C is 0.53. The second
is a random image, intended to show a worst-case scenario,
The ratio is 0.78. This indicates a favorable position for the
new method since this ratio is typically significantly less
than one.

Regarding the possible parallel implementation of the
algorithms, method A is generally not parallelizable, and
methods B and C are parallelizable in a similar style. The
advantages of our proposed method remain intact.

Figure 4: Example of contour feature ratio, motion seg-
mented person walking binary image. The ratio of contour
corner features to all edge features is 0.53.

Figure 5: Example of contour feature ratio, random image
build under the driteria of randomly adding pixels along the
boundary of single starting point. Under the closure assum-
tions chosen, this shape has three contours, two of which
are interior. The ratio of contour corner features to all edge
features is 0.78.

5 Conclusions

A new algorithm for efficiently extracting contours was
presented. The two stages, corner feature extraction and
contour generation, trade off complexity with computation.
The corner feature extraction is an inherently highly parallel
operation, generating corner features from an examination
of the 3 x 3 neighborhood centered on each pixel, resulting
in a set of corner points annotated with feature types. The
contour generation from this representation of the objectis a
combinatorial optimization problem, with a number of new
constraints introduced which greatly constrain the search,
in particular avoiding assessment of two-dimensional dis-
tance. Although parallel algorithm implementation has not
been explored in this paper, this combinatorial problem ap-
pears to be decomposable.

This method can potentially be extended from horizon-
tal/vertical connectivity to direct connectivity over diagonal
runs. However, the constraints that ease the combinatorial
stage of the presented algorithm, specifically the reduction
in search dimension from two to one, would be replaced
with more challenging Az = Ay rules. It is likely that
postprocessing the contour to recover diagonals, if desired,
is a preferable approach.

References

[1] R.C.Gonzales, R.E.Woods, Digital Image Processing,
Addison-Wesley, 1992.

[2] H. Freeman, “On the encoding of arbitrary geometric config-
urations”, IRE Trans. Electron. Comput., col.C-10, pp.260-
268, June 1961.

[3] B.R.Schlei, L.Prasad, “A parallel algorithm for dilated con-
tour extraction from bilevel images”, Los Alamos National
Laboratory report LA-UR-00-0309.

[4] A.J. Pinho, “A method for encoding region boundaries based
on transition points”, Image and Vision Computing 16, 1998,
pp-213-218.

[5S] AlJ. Pinho, “A JBIG-Based Approach to the Encoding of
Contour Maps”, IEEE Transactions on Image Processing”,
vol.9, no.5, May 2000, pp.936-941.

	Efficient Feature-Based Contour Extraction
	Abstract
	1 Introduction
	2 Contour Generation Method Concepts and Example
	2.1 Feature Extraction
	2.2 Contour Generation

	3 General Contour Extraction
	3.1 Double Resolution Method
	3.2 Direct Extraction of Pixel Corners
	3.2.1 Single Pixel Features
	3.2.2 Closure Asumptions
	3.2.3 Sub-pixel Corner Coordinates
	3.2.4 Feature Generation
	3.2.5 Comments on Postprocessing Operations

	3.3 Extracting Multiple Contours

	4 Complexity Comparison for Performance Evaluation
	5 Conclusions
	References

