

Efficient Feature-Based Contour Extraction

James R. Gattiker

Los Alamos National Laboratory

gatt@lanl.gov

Abstract

Extraction of contours in binary images is an important ele-

ment of object recognition. This paper discusses a more ef-

ficient approach to contour representation and generation.

This approach defines a bounding polygon as defined by its

vertices rather than by all enclosing pixels, which in itself is

an effective representation. These corners can be identified

by convolution of the image with a 3x3 filter. When these

corners are organized by their connecting orientation, iden-

tified by the convolution, and type, inside or outside, con-

nectivity characteristics can be articulated to highly con-

strain the task of sorting the vertices into ordered boundary

lists. The search for the next bounding polygon vertex is re-

duced to a one dimensional minimum distance search rather

than the standard, more intensive two dimensional nearest

Euclidean neighbor search.

1 Introduction

This paper describes a method to decompose the contour

extraction from binary images into two stages. The first

stage is a parallelizable identification of a reduced set of

contour features. The second stage is combinatorial con-

tour construction, that is greatly reduced in complexity from

simple contour following approaches. This new algorithm

can greatly reduce the computational burden of the prob-

lem compared to previous algorithms for contour extraction,

while at the same time allowing the parallelization of the al-

gorithm.

The most basic algorithm for contour extraction uses an

automaton to traverse the contour pixel by pixel, or a more

complex version involving multiple partial lists build dur-

ing a raster-scan of the image [1]. Although this approach

is intuitively clear, it does not take advantage of the parallel

nature of the task, nor of the useful properties of the con-

tours. The chain-coding method of representation uses the

observation that contour boundary pixels can be extracted

using a convolution-style operation[2], and contours can be

generated using the knowledge that these edge pixels need

to be arranged so they are in a list according to connectivity

[3]. Other results explore the concept of using contour fea-

tures with logical completeness to represent bi-level images

[4] [5], naming these features transition points, developed

for purposes of lossless encoding rather than efficient con-

tour extraction.

The method presented in this paper goes beyond previ-

ous results by distilling a set of high-level features that not

only represent the image contours without loss of informa-

tion, but have the further property that the logical extraction

of contours is efficient through inherent constraints of the

proposed feature set.

Section 2 presents the details of a simple example that

illustrates the feature-based contour generation concepts.

Section 3 fills in details that extend the concept into gen-

erality. Section 4 discusses expected performance enhance-

ments with this method.

2 Contour Generation Method Con-

cepts and Example

The contour extraction algorithm is organized into two al-

gorithms that operate in sequence: feature extraction, and

contour generation.

2.1 Feature Extraction

Figure 1 shows an example object from which contour fea-

tures are to be extracted, with features explicitly labelled.

These features are the corner pixels in the object, both in-

terior and exterior. The corners are distinctly orientated, so

there are four types of outside corners that will be referred

to as O1,O2,O3,O4, and there are four corresponding inside

corners, I1,I2,I3,I4. The figure shows the method’s labeling

of outside and inside corners in the object, which can be ac-

complished in a number of ways. The most straightforward

is through the convolution over the image with a 3x3 matrix

whose result is to produce a numeric code for each of the 8

types of features. For example, convolve with the matrix���� � �� ��� 	
���� ��� � �
���
��

(1)

1

Figure 1: Example image with contour features labelled

O1 O2

O3O4

O1 O2

O3O4

I1 I2

I4 I3

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Table 1: List of Figure 1’s extracted points by feature type

Feature Type Member Pixel Coordinates

O1 (7,3) , (3,7)

O2 (10,3) , (14,7)

O3 (14,10) , (10,14)

O4 (3,10) , (7,14)

I1 (7,7)

I2 (10,7)

I3 (10,10)

I4 (7,10)

which results in the numeric results:� �����
��� � ����������� � 	�����	
��� � ��� ���! �"���
�
��� ! �#� ��$%�%� ! 	�� ����$�� ! �����
�%�
.

These features are then extracted into unordered lists by

type. The lists of points extracted from the shape in Figure 1

are collected in Table 1. We presume throughout that there

are no foreground pixels on the edge of the image, which

can be assured by padding with a border of background.

The number of contour features is a subset of the whole

contour, and will be less than or, strictly, equal to the num-

ber of pixel edges in the contour. In typical cases where

there are horizontal and vertical runs in the contour, the

number of extracted contour features will be significantly

smaller than the number of pixel edges in the contour.

These extracted lists represent in themselves a highly

compressed complete version of the original image. They

may also be used to efficiently generate the contours, as il-

lustrated in the next section.

2.2 Contour Generation

Given the contour feature lists as defined above, the algo-

rithm for the contour generation is a highly and uniquely

Table 2: Constraints for contour generation from the con-

tour features
Current Contour Next Contour Dimension and

Feature Type Feature Type Direction of

Next Point

O1,I2 O2,I1 horizontal, right

O2,I3 O3,I2 vertical, down

O3,I4 O4,I3 horizontal, left

O4,I1 O1,I4 vertical, up

constrained combination of these lists. Once the lists are

generated properly, the algorithm is straightforward: Take

the starting point for serial contour generation to be the first

element of the O1 list, although this choice is arbitrary. The

next point on the list, given that we are currently on an O1

point, must come from either the O2 or the I1 lists. Further,

the next point will be the closest point on these lists in a

specific direction along one dimension: from an O1 point,

the next point on the contour must be to the right, and it will

be on the same horizontal line. 1

The search through the feature lists for the neighboring

point on the contour is thus constrained to 2 of the 8 lists of

feature points. For each next corner search, the algorithm

has two steps: find exact 1-D match along the relevant di-

mension, then find nearest 1-D distance along the remain-

ing dimension. This greatly constrains the search for the

next contour feature on the contour, in comparison to the

general x-y search problem to locate the closest pixel in two

dimensions. Table 2 shows the complete set of constraints.

The simplest algorithm for producing a sequential list of

contour features is to successively find the closest contour

feature according to the above constraints, removing that

feature from the list as it is generated. This algorithm can

obviously be parallelized, given the observation that every

contour stage is independent of the last. Contour segments

can be built independently, and the segments constructed it-

eratively, joining contour corner features to make contour

line segments, joining these to make contour corner seg-

ments (two line segments at right angles), joining these to

make contour 4-line segments and so on. Eventually these

contour segments will be joined to make a complete con-

tour.

3 General Contour Extraction

The previous section chose an illustrative example for ex-

planatory purposes, but it does not cover all of the possible

configurations leading to inner and outer corners. For ex-

ample, there are the issues of directly neighboring corners

1This description presumes one of two symmetric sets of constraints,

namely clockwise exterior border generation.

2

Figure 2: Example of values in diagonal pixel contact
510 508 432

502

439

447 319 54

510 508 433

502 283 54

439 223 439

447 319 127 255 447 319 54

510 508 504 504 504 504 432

502

439

447 319 54

510 508 504 504 505 507 438

502 475 438

24 25 26 27 28 29 30 31 32 33 34

13

14

15

16

17

18

19

20

21

22

23

and corners in diagonal contact. This section will present

two alternative approaches to making the presented concept

general. The first approach, the double resolution method,

enhances the method only slightly to deal with pixel corner

contact, but has the disadvantage of doubling the computa-

tion of the image convolution/scanning stage. The second

approach, the direct corner extraction method, does not re-

quire change of the input image, but introduces complex-

ity in the feature labeling and extraction stage. Although

these two approaches are equivalent in the abstract the lat-

ter may be preferred, because the feature extraction stage,

which will usually dominate the total computation time, is

relatively smaller.

3.1 Double Resolution Method

The simplest complete method is to double the resolution

of the input image, splitting each pixel in the original image

into four pixels in the new image. This eliminates neigh-

boring pixel features which cause additional complexity in

feature types and contour building, by what can be seen as

adding buffer pixels between each feature. The process,

from feature extraction through contour generation, can be

executed with only minor additions to the feature value lists

demonstrated above.

We will assume diagonal contact, i.e. pixels joined only

at a single corner point, does not represent connectivity of

the foreground object, and conversely does represent con-

nectivity of the background. The converse formulation is

also possible.

To complete the list of the above convolution filter’s pro-

duced values of interest, we must also take into account the

additional values generated by diagonal contact. Examples

are shown in Figure 2. The four possible diagonal selections

Table 3: Correspondence between pixel value and feature

type for the double resolution method

Pixel Value Feature Type

27,283 O1

54,118 O2

432,433 O3

216,220 O4

255 I1

447 I2

510 I3

507 I4

Figure 3: Examples of single-pixel features

23

91 191 311

219 447 319 63

217 507

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

1

1.5

2

2.5

3

3.5

4

4.5

add 4 new outside corner values, resulting in the complete

feature value list shown in Table 3.

The algorithm using these values and the constraints de-

scribed in the example section above are sufficient to extract

contours from any shape. The next section discusses an al-

ternative algorithm to complete contours generally without

change of the original image.

3.2 Direct Extraction of Pixel Corners

Directly moving to the mode of pixel corners during the

feature extraction phase is effectively equivalent to the dou-

ble resolution approach, although the complexity is shifted

from the increased computation in convolution, i.e., four

times the number of pixels, to the number of features re-

quired, trading off complexity for computation.

3.2.1 Single Pixel Features

The feature extraction process here must incorporate a

much longer list of possibilities. For example, Figure 3

shows new values associated with single-pixel sized fea-

tures. A significant change here is that the pixels of, e.g.,

type 23 and 191 in the example, cause additions to two lists,

3

since they have more than one salient feature, for example

type 23 represents two outside corners, and type 191 two

inside corners.

3.2.2 Closure Asumptions

There are two possible closure assumptions, mentioned

briefly above. One possibility is that pixels touching at a

single corner represent contact of the foreground and sepa-

ration of the background. This analysis will take the oppo-

site assumption, that foreground pixels touching at a single

corner are not connected. This choice is arbitrary, and the

method can be implemented under either alternative.

3.2.3 Sub-pixel Corner Coordinates

It is necessary to take measures to ensure corners from dif-

ferent pixels do not have the same recorded location. The

corners from pixel type 191 (see Figure 3) cannot both be

listed as the pixel center without introducing combinatorial

ambiguity. If the pixel corners are moved to 1/2 native pixel

grid spacing (at & $�' � of the pixel coordinates), corner posi-

tions from pixels touching at a single point will be identical,

also causing ambiguity in the combinatorial stage. The so-

lution is to take the corners of a pixel to be inside a pixel,

so that for example pixel type 23 corresponds to a I1 feature

at (-0.25,-0.25) to the current pixel center, and an I2 feature

at (+0.25,-0.25) to the current pixel center. A remapping

could instead maintain integer values by simply multiply-

ing the fractional value by four, avoiding the overhead of

floating point computation.

3.2.4 Feature Generation

It is in this operation that the overall complexity is increased

from the introductory example. Instead of one feature per

pixel, we now have a maximum of 4 features per pixel, in

the cases of a single pixel (four outside corners) or a single

pixel sized cross (four inside corners). It is expected that the

average number of features per contour pixel will still allow

for significant complexity savings versus methods which

maintain all exterior edge pixels, since all horizontal and

vertical runs are inherently eliminated. This savings com-

pounds the inherent savings of the constrained combination.

The exhaustive list of pixel values and their associated

lists are shown in Table 4. This list includes rotational sym-

metries expected from the symmetric grid. The convolution

algorithm for feature extraction of generating these values

then keying to list membership can be reduced to a set of

more efficient boolean operations for efficiency.

Table 4: Correspondence between pixel value and feature

type for the direct method

Pixel Value Feature Type

27,31,91,95,283,287,347,351 O1

54,55,118,119,310,311,374,375 O2

432,433,436,437,496,497,500,501 O3

216,217,220,221,472,473,476,477 O4

182,183,246,247,248,249,252,253,255 I1

155,159,411,415,440,441,444,445,447 I2

62,126,218,222,318,382,474,478,510 I3

59,123,315,379,434,435,498,499,507 I4

18,19,22,23,82,83,86,87,274,275,

278,279,338,339,342,343 O1,O2

48,49,52,53,112,113,116,117,304,

305,308,309,368,369,372,373 O2,O3

144,145,148,149,208,209,212,213,

400,401,404,405,464,465,468,469 O3,O4

24,25,28,29,88,89,92,93,280,281,

284,285,344,345,348,349 O4,O1

184,185,188,189,191 I1,I2

154,158,410,414,446 I2,I3

58,122,314,378,506 I3,I4

178,179,242,243,251 I4,I1

254 I1,I3

443 I2,I4

26,30,90,94,282,286,346,350 O1,I3

50,51,114,115,306,307,370,371 O2,I4

176,177,180,181,240,241,244,245 O3,I1

152,153,156,157,408,409,412,413 O4,I2

190 I1,I2,I3

442 I2,I3,I4

187 I1,I2,I4

250 I1,I3,I4

16,17,20,21,80,81,84,85,272,273,

276,277,336,337,340,341 O1,O2,O3,O4

186 I1,I2,I3,I4

4

3.2.5 Comments on Postprocessing Operations

Postprocessing can determine properties of interest, such

as nesting of contours. Extending this to a multi-level im-

age, regions can be annotated with a region type that they

enclose. Also, it may be of interest to modify the con-

tours from the pixel boundaries, which lie on the grid of

the integers & $�' �
� in the algorithm defined above. Arbi-

trary remapping of these values can be performed easily, by

maintaining and using of the corner type. Description of

the contours may not require the distinction between inside

and outside corners is not necessary, only an indication of

the direction from the center of the pixel to the corner is

relevant.

This postprocessing can also remap the contour from

the quarter- to the half-integer grid, thereby preserving ex-

pected notions of area enclosed of one pixel equals one unit,

or moving the contour back to integer pixel center values,

thereby preserving pixel locations. The nature of the post-

processing naturally depends on the specific nature of fur-

ther use to be made of the contour.

3.3 Extracting Multiple Contours

If the lists are not empty when the contour is completed,

there are additional contours in the image. The methods

discussed apply equivalently to interior or exterior contours.

Note that if there are remaining contours, there will always

be either an outside corner or its corresponding inside cor-

ner, so it suffices to check for whether these corresponding

lists (e.g. O1 and I1) have entries.

4 Complexity Comparison for Per-

formance Evaluation

Performance assessment is very problem dependent, so per-

formance comparison will be treated apart from specific im-

plementations or images first, with some examples supplied

later. In image operations, asymptotic results using order

of magnitude are not indicative of perfomance; the number

of operations are in reality bounded by real image size, and

so the magnitude of the multipliers can be more significant

than the strict order of complexity of the operations. In or-

der to abstract performance of this new method compared

to other methods, we will consider four basic operations for

contour extraction algorithms:

1. Image convolution, for extraction of boundary pixels

or corner features, constant (�)+*-,�.0/ ;

2. 2-D search for nearest neighbor, *213.4/3576
8 1 / ;

3. 1-D search for nearest neighbor, *293.4/3576
8:/ ;

4. local image search for next neighbor boundary pixel,*<;�.0/ .

where / is the number of boundary features (all contour

edges or corner features, as appropriate). The methods we

will consider are

(A) automaton contour following, complexity = ; , where /
is number of all border pixels;

(B) contour construction from extraction of all borders,

complexity = ,)>= 1 where / is the number of all border

pixels;

(C) the described method of contour construction from

corner features, complexity = ,)?= 9 where / is the

number of corner features.

where =A@ is the time for operation B above. Typically, the or-

der multiplier for operation 1, * , will be extremely small,

simply the time to read out the features of interest. The *21
and *29 are the most significant, they are searches of lists,

and can be expected to be comparable. * ; (indexing into

image) can be expected to be larger than *21 and *29 (ac-

cessing a list), but in the same order of magnitude.

Comparing the new method C to method A, we can ob-

serve there is added a constant and a very small term scal-

ing with the number of features added for operation 1, but

as described *-, is very small so this component is not con-

sidered to be significant for possible image sizes, and the

constant (corresponding to convolution will dominate this

term. Besides this approximately constant added term, the

significant pixel-dependent terms are
�DC /FEHG compared to�DC /FI�5J6
8:/FIKG , where we must now consider the difference

between the / E , the number of border pixels, and /FI , the

number of corner feature pixels.

Comparing methd C to method B, we observe a very sim-

ilar component for the convolution term, although we are

dealing with /FE for method B and / I for method C. There

is a significant difference in the construction phase, both

because / E is greater than /FI , and because of the greater

number of operations for 2-D search. The final comparison

is
�DC / E 576
8 1 / E G for method B and

�DC /FI�5J6
8:/FIKG for method

C.

These comparisons critically come down to the magni-

tude of the ratio L
ML
N0OQP $��R�RS . As this ratio gets smaller, the

advantage of the new method gains. Two images are shown

in Figs. 4 and 5. The former is a person walking, sege-

mented based on motion. The ratio L
ML
N is 0.53. The second

is a random image, intended to show a worst-case scenario,

The ratio is 0.78. This indicates a favorable position for the

new method since this ratio is typically significantly less

than one.

Regarding the possible parallel implementation of the

algorithms, method A is generally not parallelizable, and

methods B and C are parallelizable in a similar style. The

advantages of our proposed method remain intact.

5

Figure 4: Example of contour feature ratio, motion seg-

mented person walking binary image. The ratio of contour

corner features to all edge features is 0.53.

5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

80

90

100

Figure 5: Example of contour feature ratio, random image

build under the driteria of randomly adding pixels along the

boundary of single starting point. Under the closure assum-

tions chosen, this shape has three contours, two of which

are interior. The ratio of contour corner features to all edge

features is 0.78.

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

5 Conclusions

A new algorithm for efficiently extracting contours was

presented. The two stages, corner feature extraction and

contour generation, trade off complexity with computation.

The corner feature extraction is an inherently highly parallel

operation, generating corner features from an examination

of the
	 . 	 neighborhood centered on each pixel, resulting

in a set of corner points annotated with feature types. The

contour generation from this representation of the object is a

combinatorial optimization problem, with a number of new

constraints introduced which greatly constrain the search,

in particular avoiding assessment of two-dimensional dis-

tance. Although parallel algorithm implementation has not

been explored in this paper, this combinatorial problem ap-

pears to be decomposable.

This method can potentially be extended from horizon-

tal/vertical connectivity to direct connectivity over diagonal

runs. However, the constraints that ease the combinatorial

stage of the presented algorithm, specifically the reduction

in search dimension from two to one, would be replaced

with more challenging T>U � T�V rules. It is likely that

postprocessing the contour to recover diagonals, if desired,

is a preferable approach.

References

[1] R.C.Gonzales, R.E.Woods, Digital Image Processing,

Addison-Wesley, 1992.

[2] H. Freeman, “On the encoding of arbitrary geometric config-

urations”, IRE Trans. Electron. Comput., col.C-10, pp.260-

268, June 1961.

[3] B.R.Schlei, L.Prasad, “A parallel algorithm for dilated con-

tour extraction from bilevel images”, Los Alamos National

Laboratory report LA-UR-00-0309.

[4] A.J. Pinho, “A method for encoding region boundaries based

on transition points”, Image and Vision Computing 16, 1998,

pp.213-218.

[5] A.J. Pinho, “A JBIG-Based Approach to the Encoding of

Contour Maps”, IEEE Transactions on Image Processing”,

vol.9, no.5, May 2000, pp.936-941.

6

	Efficient Feature-Based Contour Extraction
	Abstract
	1 Introduction
	2 Contour Generation Method Concepts and Example
	2.1 Feature Extraction
	2.2 Contour Generation

	3 General Contour Extraction
	3.1 Double Resolution Method
	3.2 Direct Extraction of Pixel Corners
	3.2.1 Single Pixel Features
	3.2.2 Closure Asumptions
	3.2.3 Sub-pixel Corner Coordinates
	3.2.4 Feature Generation
	3.2.5 Comments on Postprocessing Operations

	3.3 Extracting Multiple Contours

	4 Complexity Comparison for Performance Evaluation
	5 Conclusions
	References

