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Abstract

Funding Material, Control and Accountability (MC&A) system upgrades has been identified as a
partial solution for mitigating the diversion threat of weapons-grade nuclear material. Effective
MC&A system upgrades are dependent on appropriate decisions based on based on funding,
implementation, operation and oversight. Traditional MC&A upgrade decisions inherently assumed
that all decision-makers possessed similar payoff vectors allowing for a fairly consistent and unified
approach to MC&A system enhancements; however, MC&A upgrade projects in non-traditional
environments may be required to take into account situations where the potential payoff vectors
among decision-makers may be significantly different. Once a decision-maker is required to take
into account the decisions of others, the process can be modeled as a game. Game theory has been
previously be used to shed light on many aspects of social and economic behavior where a payoff
from a set of strategies is dependent on the strategy of others. In this paper, the application of game
theory in the context of MC&A upgrades is discussed. Various MC&A upgrades decision payoff
matrices for relevant circumstances are evaluated for static (simultaneous) and dynamic (sequential
decisions) games. Optimal strategies and equilibrium conditions for these payoff matrices are
analyzed. Additional game factors (bargaining, uncertain outcomes, moral hazards) that may affect
the outcome of the game are briefly discussed. By demonstrating the application of game theory to a
nontraditional environment that may require MC&A upgrades, this work increases the
understanding out how outcomes are logically connected to the respective value decision-makers
assign to choices.

Introduction

The funding of MC&A upgrades where the “funder” and the “fundee” have different interests, and
different benefits (or penalties) for applying those interests can be analyzed in terms of a non-zero
sum 2 by 2 matrix. Let Ruth be designated as the “Funder” and Charlie designated as the “Fundee”.
Ruth’s choices, or pure strategies, will be listed in the rows of the matrix while Charlie’s pure
strategies will be designated in columns. A value in the matrix cell ¢;; represents Ruth’s payoft for
Ruth’s choice i and Charlie’s choice j, while -c; represents Charlie’s payoff for the same choices. If
two values are given in a cell, a/b, then Ruth payoff is represented as a and Charlie’s payoftf is given
as b. Payoffs are representation of gain or loss associated with a particular outcome. In some
scenarios the designation of an associated value for a payoff may be relatively straight forward
while in other cases the designation of a particular value may be uncertain. Payoff values may be
associated with real-world values such as profits or prison terms. In other cases, the payoff values
may only have relative association with other cell in the matrix. For example, the outcome c¢;; may
be considered twice “as good” as outcome c;;; therefore, ¢; would be given a payoff twice as large
as c¢;;. In the case of relatively assigned payoff values, strategies can still be analyzed.



Ruth and Charlie both attempt to maximize their respective payoffs. The exact methods used by
Ruth and Charlie to maximize their individual payoffs is dependent on their beliefs how to “play the
game”. For example, are the player confined to pure strategies? Do the players feel they can read
each other? Do any implied social conventions enhance cooperation? Are guarantees important?

In the following examples the term “coordinated’ and “uncoordinated” upgrades are considered
from Ruth’s point-of-view; therefore, a coordinated upgrade is when Ruth funds an upgrade and
Charlie implements the upgrade from Ruth’s perspective. Note that a coordinated upgrade does not
necessarily mean a cooperative upgrade.

Example 1: “coordinated” upgrades are twice as important as “uncoordinated”
upgrades.

Ruth has a higher penalty for not funding potential “coordinated” upgrades (-2), than for funding
“bad” upgrades (-1). In addition, Ruth has a higher gain for funding “coordinated” upgrades than for
not funding potential “uncoordinated” upgrades. The payoff matrix is shown below.

MC&A Upgrades with | MC&A Ruth’s row
Ruth’s Interests Upgrades in | minimum
Charlie’s
Interests
Fund MC&A Upgrades 2/1 -1/2 -
1 (maximum)
Do not fund MC&A -2/-2 1/-3 -2
Upgrades
Charlie’s column minimum | -2 (maximum) -3

A possible method of “hunting” for an equilibrium position is described below. Both Ruth and
Charlie are looking for a guarantee. Ruth decides that row one provides a minimum guarantee of —1,
while Charlie selects column one based on the same rational.

The result is the initial choice is (1,1). Both players are initially pleased that their scores are higher
than predicted. Ruth would not gain from changing her position; however, Charlie changes his
choice to column two, resulting in a higher payoff for Charlie. Charlie’s decision will cause Ruth to
change her decision to row two, resulting in Charlie switching to column one, resulting in a cyclic
pattern, where each side attempts to increase its gain: Charlie by implementing funded upgrades in
his interests but willing to perform unfunded upgrades in Ruth’s interests and Ruth by not funding
upgrades in Charlie’s interests and funding upgrades in her own interests. Any attempt to develop a
predictable strategy from one side, can eventually be “read” by the other side, and subsequently
countered with a resulting payoff for Ruth of zero and a payoff for Charlie of —2. At the same time,
any attempt to find an equilibrium position will force Ruth to understand Charlie’s position and
Charlie, Ruth’s.

It would appear difficult to break out of the above cyclic trap. If Ruth and/or Charlie consider
making their respective choices on a random basis, then their moves could not be predicted.



If Ruth is agreeable to a random mixed strategy game, what strategy should she choose? The
following model is used to devise a strategy for Ruth.

MC&A Upgrades with | MC&A
Ruth’s Interests Upgrades in
Charlie’s
Interests
Fund MC&A Upgrades a;, by a; by
Do not fund MC&A ay, by a, by
Upgrades

If [1-p, p] is Ruth’s strategy for (row 1, row 2) and [1-q, ¢] is Charlie’s strategy for (column 1,
column 2), it can be shown' that Ruth’s expectation er(p,q), for any (p,q) combination is

er(p,q)=mp+c
m=(a;-a;—az+asq+ (a;—a;) and c=(a;— a;)q+ a;
Ruth’s expectation can be either increasing, constant or decreasing as a function of p. Ruth, of
course, is attempting to maximize her expected payoff. The behavior of the function depends on the

slope of the line.; therefore, the following decision criteria should apply to Ruth:

p=0 if m<0; 0<p<1 if m=0; p=1 it m>0

For the above example, m=(2-(-1)-(-2)+1)g+ (-2-2)=6¢-4, c=(-1-2)q+2 = -3g+2.

If Charlie plays a strategy of ¢g<2/3, then Ruth would play p=0. Consider Charlie playing g=0.5;
Ruth would play p=0, with an expected payoft of er(p,q)=-3(0.5)+2= 0.5.for Ruth.

Charlie’s expected payoff for such a strategy would be, in general,

ec(p,q)=m'q+c’

where m'=( b] -bg — b3 + b4)p + (bg— b]) and C'=(b3— b[ p+ b[.

Specifically, m'=( 1 -2-(-2)-3)p + (2-1) = -2p+1 and ¢’ =(-2-1)p+1=-3p+1.

Charlie’s payoff for the above parameters would be, ec(p,q)=(2-1)(0.5)+1=1.5. Could Charlie
improve he strategy? Since m™0, Charlie would benefit from playing g=1, for a payoff of 2. Of
course, Charlie strategy of g=0 would cause Ruth the reevaluate her strategy.



Ruth can only stop Charlie from finding a better solution by playing the strategy that causes
Charlie’s slope of his expected payoff to be zero. Likewise, Charlie can only stop Ruth from finding
a better solution by playing the strategy that causes Ruth’s slope of her expected payoff to be zero.
The equilibrium strategy is the point where the two decision graphs intersect: p=0.5, g=2/3.

The expected values would be: er(0.5,.67)= 0.5 and ec(0.5,.67)=-0.5. While it is logical that Ruth
must focus Charlie’s payoff matrix in order to ensure an equilibrium, it may appear contrary to from
Ruth’s perspective that she can not focus on her own payoff matrix to ensure gain.

An important part of any game theory application is the use of sensitivity analysis. The below
example illustrates the effect of simple changes to the payoff matrix and the repercussions to the
players strategy.

Example 2: “uncoordinated” upgrades receive higher penalty to Ruth and

Charlie decisions are magnified if funding is not received.

Ruth, in this example, now has a lower penalty for not funding “coordinated” upgrades (-2) than for
funding “uncoordinated” upgrades (-3). Charlie, when faced with Ruth’s decision “not to fund” has
a higher penalty for maintaining the upgrades are in Charlie’s interest, than in Ruth’s interest. This
situation could arise if Charlie “regrets” the loss of possible funds from Ruth, if it is known that he
is the cause of the “uncooperation”. In addition, Charlie suffers less of a penalty if Ruth does not
fund and he felt he was “cooperative”.

MC&A Upgrades in MC&A in Ruth’s Row
Ruth’s Interests Charlie’s minimum
Interests
Fund MC&A Upgrades 2/1 -3/2 -3
Do not fund MC&A -2/-1 1/-4 -2
Upgrades (maximum)
Charlie’s Column minimum | -1 (maximum) -3

The initial outcome using a strategy of minimizing losses would be row 2, column 1 with the same
cyclic behavior as described in Example 1.

Ruth’s equilibrium strategy is given where Charlie’s slope is zero at m=0=(1-2+1-4)p+(2-1) and
p=1/4. Compared to example 1, Ruth would now double the number of funded upgrade decisions.
Note that Ruth, would change her strategy even if her own payoff matrix did not change. Charlie’s
equilibrium strategy would be m'=(2+3+2+1)g+(-2-2) and g= 0.5. Charlie’s equilibrium has shifted
to allow more upgrades to by in Rut’s interests. The expected payoffs are er(0.25,0.5)= -0.5 and
ec(0.25,0.5)= 0.5. Ruth should not be surprised that larger penalties in on cell lead to an overall
decrease in expected payoff. Charlie may be surprised that while his net sum of payoffs from the
cells is unchanged at —2, he now has a positive expected payoff.



Example 3 Smaller penalty for Charlie’s non-cooperation:

Let’s assume now that Charlie, when faced with Ruth’s decision “not to fund” has a smaller penalty
for not receiving funding for uncooperative upgrades. This situation could arise if the Charlie’s feels
“pushed-around” by conceding to Ruth’s interest.

MC&A Upgrades in MC&A Ruth’s Row
Ruth’s interests Upgrades in | minimum
Charlie’s
interest
Fund MC&A Upgrades 2/1 -3/2 -3
Do not fund MC&A -2/-2 1/-1 -2
Upgrades (maximum)
Charlie’s column minimum | -2 -1
(maximum)

The maximum value is row 1 column 2. Neither player will improve his position by changing his
position. The game is considered stable with the decision “not to fund”. Note that a slight change in
the payoff matrix causes a totally polarized position. Although both sides will gain by cooperating,
the funding of upgrades in Ruth’s interests is clearly an unstable state.

Example 4: Ruth has the same matrix as in example 1, Charlie has the same
matrix as in example 3.

MC&A Upgrades in MC&A Ruth’s Row
Ruth’s interests Upgrades in | minimum
Charlie’s
Interests
Fund MC&A Upgrades 2/1 -1/2 -1
(maximum)
Do not fund MC&A -2/-2 1/-1 -2
Upgrades
Charlie’s column minimum | -2 -1
(maximum)

The result is an initial unstable position at (2,1), Ruth will move to a decision not to fund; the point
(row 2,column2) will be a stable point. Note that a payoff matrix that previously worked for Ruth,
not results in a polarized position with a larger negative payoff.

Obviously, both players could benefit from cooperating for a cell on the payoff matrix that benefits
both sides.



Conclusion:

The application of game theory to MC&A upgrades can provide predictions of the outcomes of the
modeled games. Payoff matrices that are designed to reward and penalize decisions “appropriately”
may drive outcomes that are not expected. Occasionally, these predictions do not coincide with the
player’s common sense, since players tend to view the outcome from their own perspective or
payoff matrix. Sensitivity analysis can demonstrate in such games that the outcome can be fairly
sensitive to relatively slight changes in the payoff matrix. In many scenarios, the decision “not to
fund” will occur as a stable point or as part of a strategy using probabilities. The “stable-point” of a
decision “not to fund” frequently arises if the player implementing the upgrades encounters a higher
penalty for applying the funder’s interest, even in the face of no funding.
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