

A LAYER-BASED OBJECT-ORIENTED PARALLEL FRAMEWORK FOR

BEAM DYNAMICS STUDIES

J. Qiang∗, LANL, Los Alamos, NM 87545, USA

R. D. Ryne, LBL, Berkeley, CA 94720, USA

Abstract

A three-dimensional time-dependent parallel particle-

in-cell framework has been developed to model complex

accelerator systems. This framework has been designed

based on object-oriented methodology using a layered

structure. The layer-based object-oriented software de-

sign helps to encapsulate both the details of the physical

application and its parallel implementation and gives the

program good maintainability and extensibility. The new

framework is currently being applied to the study of the

LEDA beam halo experiment at the Los Alamos National

Laboratory. Using the new framework running on a parallel

supercomputer we can simulate, with high resolution, mul-

tiple bunches propagating and merging through the LEDA

system, including the effects of interbunch and intrabunch

3D space-charge forces. Such high resolution multi-bunch

simulation is beyond the capability of current serial beam

dynamics codes.

1 INTRODUCTION

Macroparticle simulation plays an invaluable role in

the study of charged-particle beams transporting through

accelerators. A number of computer programs using

macroparticle simulation have been developed during the

last few decades [1, 2, 3, 4, 5]. However, as far as we

know, at present, there is not a totally object-oriented pro-

gram doing three-dimensional macroparticle simulation of

intense beams using parallel computers in the time do-

main in the accelerator community. With growing inter-

est in high resolution large scale simulation on parallel

computers, a computer program based on object-oriented

software design will have better maintainability, reusability

and extensibility, resulting in a longer lifetime. In this pa-

per, we have developed a multi-layer based object-oriented

software framework for accelerator beam dynamics system

study.

2 PHYSICAL MODEL AND

COMPUTATION METHODS

We will consider charged particles moving in an acceler-

ator that can be described by the Poisson-Vlasov equation:

∂f

∂t
+ r′ ·

∂f

∂r
+ p′ ·

∂f

∂p
= 0 (1)

∗ jiqiang@lanl.gov

where f denotes the distribution function of particles, a su-

perscript prime denotes the derivative with respect to time,

r is the spatial coordinate, p is the conjugate momentum

with p′ = F, where F is the force including the contri-

butions from both the external applied field Fext and the

self (space-charge) force Fself . The space-charge force

in this equation is a mean-field approximation of the N-

body micro-particle Coulomb force. In the beam frame,

the space-charge force can be obtained from the solution of

Poisson’s equation

∇2φ(r) = −
ρ(r)

ε0
(2)

and

Fself = −q∇φ (3)

where φ is the electrostatic potential in the beam frame, ρ

is the particle spatial charge density, and ε0 is the vacuum

permittivity. The solution of the Poisson equation can be

written as

φ(r) =

∫
G(r, r′)ρ(r′)dr′ (4)

where G is the Green’s function of the Poisson’s equa-

tion. For three-dimensional open boundary conditions, the

Green’s function can be written as:

G(r, r′) =
1

4πε0|r − r′|
(5)

The Poisson-Vlasov equations are solved using the

particle-in-cell approach. Here, macroparticles are gener-

ated with the same charge to mass ratio as the real particles

in the beam bunch. The equations of motion for the parti-

cles are integrated using a second order leap frog algorithm.

Within each step, the particles’ spatial coordinates are ad-

vanced a half step using their present velocities. Then the

particles are deposited onto a three-dimensional spatial grid

to obtain the charge density distribution. Using the charge

density distribution on the grid, the convolution Eq. 4 can

be calculated using a FFT based algorithm [6]. The electric

fields on the grid are calculated from the potential using

a central finite difference scheme. The fields on the grid

are reinterpolated back to the particles to obtain the space-

charge force on the particles. The particles’ momenta are

advanced for one step using both the external applied force

and the space-charge force. Finally, the particles’ coordi-

nates are advanced for another half step using the updated

velocities to complete a full step.

3 OBJECT-ORIENTED MULTI-LAYER

SOFTWARE DESIGN FOR BEAM

DYNAMICS SYSTEM SIMULATIONS

A multi-layer based object-oriented software design is

a system method of organizing the subsystems into an or-

dered set of ”virtual worlds” [7]. In this design, objects

identified from the analysis are organized into different

physical modules. The physical modules are built into an

ordered layer structure. The objects in the lower layer pro-

vide the service for the objects in the upper layer. Usually,

the upper layer is related to the problem domain and the

lower layer is related to the available resources. In applying

this design to beam dynamics system simulations, we have

defined a four-layer framework. These four layers are the

data structure layer, function layer, application layer and

control layer. A schematic plot of these four layers together

with physical modules in each layer is given in Fig. 1. Here,

Figure 1: A schematic plot of the multi-layer structure for

beam dynamics system simulations.

the data structure layer contains an array module, stan-

dard template library module and constant module. Each

module may consist of one or more class objects work-

ing together to fulfill some given functions. The classes

in this layer are very generic and can be reused for differ-

ent problem domains. The function layer contains a com-

munication module, numeric function module and utility

module. The communication module is a group of classes

handling explicit communication among different proces-

sors in the parallel implementation. The numeric function

module provides all numeric function libraries used in the

simulation. The utility module provides auxiliary functions

for the simulation, e.g. a sorting function. The modules in

this layer are relatively independent of the details of beam

physics and could be reused in other system simulations.

The application layer contains a beam bunch module, beam

line element lattice module, field module and computation

domain module. The modules in this layer are directly as-

sociated with the beam dynamics system. The beam bunch

module defines the class information of a charged parti-

cle beam in the accelerator. The lattice module consists

of classes defining external focusing and acceleration ele-

ments. Run-time polymorphism is used in the implemen-

tation so that a single operation using the function of the

beam line element base class can automatically select the

appropriate function from different concrete external beam

line element objects to execute. The field module defines

the classes for dealing with electromagnetic fields gener-

ated by the moving beam bunch. The computational do-

main module contains the classes describing the global and

local geometry domain in the simulation. Since the mod-

ules in this layer are directly related to the beam physics,

they might not be reusable in the other fields of study. The

control layer contains a simulator module, driver module

and input/output module. The simulator module contains

function classes to set up the simulation environment, e.g.

linac simulator, and do the simulation. The driver mod-

ule provides a driver needed to run the simulation. The

input/output module contains classes providing input and

output functions. The object-oriented multi-layer structure

gives the program good resuability, maintainability and ex-

tensibility. The classes in the lower layers can be reused in

different applications. A class object is clearly defined in

association with a given module and layer. New function

modules and class objects can be added to different layers

without affecting the other modules or classes. A software

system with good maintainability and extensibility could

have a longer life in principle.

4 PARALLEL IMPLEMENTATION AND

APPLICATION

The computational model described above is imple-

mented on high performance parallel multiprocessor com-

puters using a message passing programming paradigm. A

two-dimensional domain decomposition approach has been

employed in the parallel implementation. The physical pro-

cessors are mapped onto a two-dimensional logical proces-

sor grid. Each processor has a unique identification num-

ber and contains a local computation domain. The parti-

cles with their spatial coordinates inside the local compu-

tation domain are assigned to that processor. Computation

is done simultaneously on all processors with local data.

When particles move to a different computation domain,

communication will be used to send these particles to the

corresponding domain. In the Poisson solver and field cal-

culation, when the information of more than a local pro-

cessor is required, communication will be used to transfer

the data to the local processor. A detailed discussion of the

parallel implementation can be found in reference [5].

As an application, we have applied this new frame-

work to the study of the LEDA halo experiment at the

Los Alamos National Laboratory [8]. In this experiment, a

mismatched beam is transported through a periodic focus-

ing system. The system consists of 52 alternating-focusing

quadrupole magnets with a focusing period of 41.96 cm.

The gradients of the first four quadrupole magnets can be

adjusted to create a mismatch that excites the breathing

mode or the quadrupole mode. Since there is no longi-

tudinal focusing, the bunched beam out of the RFQ will

gradually debunch and merge longitudinally through the

system. Fig. 3 shows the X − Z plot of three bunches

Figure 2: X − Z distribution of three beam bunches near

the end of halo channel.

near the end of transport system from a three-bunch simu-

lation. It is seen that there is significant overlapping among

the three bunches from the debunching of the beam. Only

the middle bunch will be used as a comparison with ex-

perimental data since it has the correct boundary condi-

tions. A longitudinal periodic boundary condition is ap-

plied to the whole computation domain containing the three

bunches. Fig. 3 and Fig. 4 give the simulation results of

the transverse beam rms size and maximum amplitude for

the breathing mode and the quadrupole mode, plotted at

the center of the drift spaces between quadrupole magnets.

The physical parameters for the simulation are I = 75mA,

E = 6.7MeV and f = 350MHz. From Fig. 3, the two

transverse components of the breathing mode are in phase,

while the quadrupole mode in Fig. 4 has the two compo-

nents out of phase. Work is now underway to compare the

simulation results with experimental measurements.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 2 4 6 8 10 12

d
is

p
la

c
e

m
e

n
t

(m
)

distance (m)

X rms
Y rms
X max
Y max

Figure 3: Transverse beam size as a function of distance

for the breathing mode in the LEDA halo experiment.

5 ACKNOWLEDGMENTS

We would like to thank Drs. K. Crandall and T. Wan-

gler for suggesting using multiple bunch simulation for

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 2 4 6 8 10 12

d
is

p
la

c
e

m
e

n
t

(m
)

distance (m)

X rms
Y rms
X max
Y max

Figure 4: Transverse beam size as a function of distance

for the quadrupole mode in the LEDA halo experiment.

the LEDA experiment. This work was performed on the

Cray T3E and IBM SP at the National Energy Research

Scientific Computing Center located at Lawrence Berke-

ley National Laboratory, and the SGI Origin 2000 at the

Advanced Computing Laboratory located at Los Alamos

National Laboratory. This work was supported by the U.S.

Department of Energy, Office of Science, Division of High

Energy and Nuclear Physics, under the project, Advanced

Computing for 21st Century Accelerator Science and Tech-

nology. This work was also supported by the Division of

High Energy Physics through the Los Alamos Accelerator

Code Group.

6 REFERENCES

[1] M. E. Jones, B. E. Carlsten, M. J. Schmitt, C. A. Aldrich, an

d E. L. Lindman, Nucl. Instr. and Meth. in Phys. Res. A318,

323 (1992).

[2] A. Friedman, D. P. Grote and I. Haber, Phys. Fluids B 4,

2203 (1992).

[3] R. Ryne and S. Habib, in: Computational Accelerator

Physics, ed. J. J. Bisognano and A. A. Mondelli, AIP Con-

ference Proceedings 391, Woodbury, p. 377, New York,

1997.

[4] J. Qiang, R. D. Ryne, S. Habib, Comput. Phys. Comm. 133,

18 (2000).

[5] J. Qiang, R. D. Ryne, S. Habib, V. Decyk, J. Comput. Phys.

163, 434 (2000).

[6] R. W. Hockney and J. W. Eastwood, Computer Simulation

Using Particles, Adam Hilger, New York, 1988.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.

Lorensen, Object-Oriented Modeling and Design, Prentice-

Hall, New Jersey, 1991.

[8] T. P. Wangler, et al., ”Experimental Study fo Proton-Beam

Halo Induced by Beam Mismatch in LEDA,” these proceed-

ings.

	A LAYER-BASED OBJECT-ORIENTED PARALLEL FRAMEWORK FOR BEAM DYNAMICS STUDIES
	Abstract
	1 INTRODUCTION
	2 PHYSICAL MODEL AND COMPUTATION METHODS
	3 OBJECT-ORIENTED MULTI-LAYER SOFTWARE DESIGN FOR BEAM DYNAMICS SYSTEM SIMULATIONS
	4 PARALLEL IMPLEMENTATION AND APPLICATION
	5 ACKNOWLEDGMENTS
	6 REFERENCES

