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Abstract

Window and free surface interfaces perturb the flow in compression wave
experiments. The velocity of these interfaces is routinely measured in shock-compression
experiments using interferometry (i.e., VISAR). Interface perturbations often must be
accounted for before meaningful material property results can be obtained. For shockless
experiments when stress is a single valued function of strain, the governing equations of
motion are hyperbolic and can be numerically integrated forward or backward in either
time or space with assured stability. Using the VISAR results as “initial conditions” the
flow fields are integrated backward in space to the interior of the specimen where the
VISAR interface has not perturbed the flow at earlier times and results can be interpreted
as if the interface had not been present. This provides a rather exact correction for free
surface perturbations. The method can also be applied to window interfaces by selecting
the appropriate initial conditions. Applications include interpreting Z-accelerator ramp
wave experiments. The method applies to multiple layers and multiple reverberations.

For an elastic-plastic material model the flow is dissipative and the governing
equations are parabolic. When the parabolic terms are small, the equations also can be
successfully integrated backward in space. This is verified by using a traditional elastic-
plastic wave propagation code with a backward-derived stress history as the boundary
condition for a forward calculation. Calculated free surface histories match the starting
VISAR record verifying that the backward method produced an accurate solution to the
governing equations. With our cooperation, workers at Los Alamos have successfully
applied the Sandia-developed backward technique for the time-dependent quasielastic
material model and are analyzing stress histories at a spall plane using the VISAR free
surface velocity measurement from a “pullback” experiment. 
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Figures

Figure 1. Example of perturbation caused by a free surface. To determine Lagrangian sound speed,
experimenters make measurements of free surface velocity for two different thicknesses of
specimen material. (result for only one thickness is shown in this figure). Lagrangian sound
speed at some particle velocity should be determined by dividing specimen thickness
difference by arrival time difference of the in situ velocity. Errors are incurred if the in situ
velocity is approximated by dividing the free surface result by two. The backward method is
the most accurate way we have found for treating the data. ........................................................... 8

Figure 2. The initial pressure history was used as a boundary condition in the WONDY code. It was
applied at x=0 to a copper specimen to calculate a simulated VISAR record at x=0.491mm.
This simulated VISAR record was used as an initial condition and the equation of motion
were integrated backward in space to x=0. The pressure history re-generated with the
backward method agrees with the initial pressure history to better than ¼%. No attempt was
made to refine the calculation. There appears to be no practical limit to the accuracy of the
backward calculation for an idealized problem like this; refining the time-space mesh will
produce even better agreement. .....................................................................................................15

Figure 3. Two VISAR records from copper samples of two different thicknesses were obtained during
a single Z experiment. Each free surface record was integrated backward in space to x=0.
The stress-strain relation was varied systematically until the two calculated load histories at
x=0 were the same. They agree to about 1%. The deduced stress-strain agrees with the
known behavior of copper and is shown in a later figure. .............................................................17

Figure 4. Analysis of Z-516. The caption of Figure 3 pertains to this figure as well. ..................................18
Figure 5.The stress-strain relation (shown as sound speed versus stress) for copper deduced from the

backward method compared with the known behavior of copper. 
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Figure 6. The deduced stress-strain behavior of copper compared with the known behavior. For
experiment 516, the two curves lie on one another and cannot be seen as separate in the
above diagram. ..............................................................................................................................19

Figure 7. Backward was used to analyze a pair of simulated VISAR records. The load was applied to
two different thicknesses of copper. Each copper slab was backed by a LiF window and the
predicted VISAR histories were generated. The stress-density behavior of copper was
deduced by the backward calculation directly from these simulated VISAR histories and
compares well with the one actually used by Reisman..................................................................20

Figure 8. Reisman’s two simulated VISAR records that were used in the backward calculation. The
method of Grady and Young, used to estimate what the in situ particle velocity would have
been if no interface were present, is compared with TRAC II results of calculated in situ
velocities. Errors are as large as about 10ns by using this procedure Backward integration
deduced the load history in a rather exact way (see Figure 9), so calculating the in situ
velocities by backward integration of the VISAR records followed by forward integration of
the problem in TRAC II gives a precise result of the in situ results (not shown). For this
idealized example the backward method makes essentially an exact correction for the
window interface perturbations. ....................................................................................................21

Figure 9. Reisman’s load history compared with that deduced from backward integration of the
VISAR records. They agree almost exactly. .................................................................................21

Figure 10. Results from backward integration of a spall pullback free surface VISAR experiment on
6061-T6 aluminum. The VISAR free surface record (lower left) was integrated backward in
space to ~150% of the estimate scab thickness. The 3-D graph shows the calculated stress as
function of time and Lagrangian distance from the free surface. Note the slice marked “spall
plane”. That is the plane where the stress stays at zero after spall occurs. Stress at that plane
is also shown in the lower right graph. The backward integration sought best values for the
two quasielastic parameters and for the position where the RMS of the late time stress was a
minimum. Two quasielastic parameters deduced for 6061-T6 Al agree well with those
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determined by Johnson. The position of the deduced spall plane agrees with experiment. The
two-step failure seen in the lower right graph displays secondary spall resistance behavior
seen previously in tantalum. The calculated free surface velocity (lower left) was obtained
with WONDY where the backward-determined load (lower right) was applied to an
aluminum layer with thickness equal to the backward-determined scab thickness [5]. The
VISAR record and the WONDY simulation agree almost exactly................................................25

Figure 11. Analysis of a high velocity flyer plate. The VISAR-measured velocity (upper left) was used
in conjunction with the backward method to determine gradients in the flyer at impact time.
In the remaining three figures, x is time and y is Lagrangian depth from the free surface.
Upper right is particle velocity; lower left is pressure and lower right density. Impact time is
approximately 350ns. The measured particle velocity can be seen as the Y=1 slice in the
upper right. The experimenter (Marcus Knudsen, SNL) used gradients in density, pressure
and particle velocity at impact time as initial conditions at this time for a subsequent
WONDY calculation to estimate the effects of gradients in the flyer plate on the shock
induced in the target (target not shown). .......................................................................................26
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Background and Summary

The backward integration technique was motivated by the need analyze
experimental results from the Z-accelerator. These experiments measure free surface
velocity for two or more specimen thicknesses using VISAR interferometry [1]. The
desire is to interpret these signals by assuming the particle velocity characteristics are
straight lines in space-time and thus infer the wave speed as a function of particle
velocity. This is sufficient to determine the stress-strain behavior of the specimen
material through Reimann invariants. The central problem is as follows: as early parts of
the ramp wave arrive at the free surface, they reflect and interact with the later parts of
the oncoming ramp wave. This interaction bends the oncoming characteristics negating
the assumption of straight-line behavior required for conventional analysis techniques.
Since ramp waves steepen with propagation distance, perturbations are different for each
specimen thickness. In the case of the Z experiments this perturbation introduces
unacceptably large errors in the desired result and the free surface interactions must be
corrected for. 

For example, Figure 1 shows calculated perturbations caused by free surface reflections
for a typical ramp load on Z. The free surface perturbation is seen to be large for interface
velocities above about 0.5km/s. If characteristics did not bend near the free surface, half 

Figure 1. Example of perturbation caused by a free surface. To determine Lagrangian
sound speed, experimenters make measurements of free surface velocity for two different
thicknesses of specimen material. (Result for only one thickness is shown in this figure).
Lagrangian sound speed at some particle velocity should be determined by dividing
specimen thickness difference by arrival time difference of the in situ velocity. Errors are
incurred if the in situ velocity is approximated by dividing the free surface result by two.
The backward method is the most accurate way we have found for treating the data. 

Free Surface Correction Necessary Above ~ 0.5km/s
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of the free surface velocity would exactly equal the in situ velocity. For an isentropic
compression experiment on Z, two specimens of different thickness are subjected to
identical loads and the free surface motion of each is monitored allowing the Lagrangian
sound speed as a function of particle velocity amplitude to be obtained. This is done by
dividing the difference in specimen thicknesses by the difference in the arrival times of a
given in situ particle velocity amplitude for each specimen. There are two error
considerations whenever the in situ velocity is estimated as one-half of the free surface
velocity: one first order and the other second order. The first order error is easily seen in
Figure 1; namely ufs(t)/2 < uis(t) for all times and the difference increases with increasing
velocity. This means that at the higher particle velocities, there is an increasingly large
error in estimating the correct in situ particle velocity associated with a given amplitude
of directly-measured free surface velocity. The more important error is second order.
When the free surface records are directly analyzed using the above procedure, some of
the free surface perturbation is common to each record and therefore “cancels” in the data
reduction procedure. But since the ramp is steeper for the thicker sample, the correction is
not the same for each record and there is a residual error in time difference not accounted
for. This second error is not shown in figure 1 but is typically of the order of several
nanoseconds, which is unacceptable given the accuracy requirements for the Z
environment.

Various methods for addressing free surface or window perturbations have been
used. One method compares calculations of the in situ particle velocity history for a
specimen with another calculation with the free surface present [2]. Twice the calculated
in situ velocity for the specimen is compared with the free surface velocity at the same
Lagrangian position and a time or amplitude offset determined at each free surface
particle velocity amplitude. This offset is determined for each specimen thickness and
these offsets are then used to correct the times from the free surface measurements. The
difficulty is that the correction depends upon the result, is non-unique and cannot
differentiate between delay in arrival of the characteristic and the change in magnitude of
the free surface motion associated with the given characteristic. Furthermore, the free
surface velocity does not typically reach twice the in situ velocity meaning that the
corrections vary from small at low velocity to big at large velocity, which makes
accuracy difficult to quantify.

Another method (our earliest attempt) assumes a ramp wave steepens with
distance in an orderly way and attempts to find time corrections from dimensional
analysis. Although this showed some promise, it was too general and suffered from many
of the same difficulties as the above approach.

Prior work [3] made approximate corrections by solving for the interactions near
the free surface using an iterative Reimann invariant technique. This method was
unacceptable for our problem.

The brute force forward calculation method supposes the load history is known
and integrates forward in time using a traditional “hydrodynamic” code, varying the load
and stress-strain relationship for the sample until experimental records are matched. This
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method is typically difficult if not impossible to use when both the load history and the
material properties are unknown and sometimes produces results that are not unique. For
experiments where specimen properties are known and only the load history is to be
determined, or vice versa, it is possible to find adequate solutions. The former is the case
in some plate impact experiments and iterative procedures have been used to interpret
free surface measurements. However, the process is cumbersome and this kind of
problem is usually of low interest for experiments on Z.

The approach here is quite simple: use the equations of motion and a VISAR
measurement to numerically integrate backwards in space, toward the loading surface, to
a region that is interaction-free. In effect this is what Z experimenters had desired to do
when they performed their experiments and used the previously described time
corrections. The difference is that we numerically integrate using the equations of
motion. It is worth noting that our method automatically corrects for the free surface or
window perturbations and for a class of material types where stress is a single valued
function of strain, this correction is essentially exact. And we have numerical evidence
that the free surface corrections achieved by the backward method are also quite accurate
for elastic-plastic and for quasielastic materials.

Although this method was developed for free surface corrections, it is easily
applied to experiments in which the VISAR measurement surface of the specimen has an
interferometer window. Rather than specify free surface history (free-surface particle
velocity, zero stress, ambient density) as the “initial condition for the numerical
integration, one need only specify the window history (window particle velocity, window
stress, specimen density at that stress) as that “initial condition”. This is easily done
whenever the window has a known relationship between the first two quantities. Aside
from providing the initial condition, the window plays no role in the subsequent
integration. An example is shown in the body of this report. 

It is also obvious that the backwards integration can be through multiple layers, or
can be continued through multiple reverberations in some of those layers, provided care
is taken not to violate the boundary condition at the loading surface. 

The backward integration technique can be applied to single VISAR records
whenever it is desired to infer the loading history. To do this, the stress-strain response of
the specimen must be known. 

If there are multiple VISAR records taken simultaneously on specimens of
different thickness, it is possible to integrate each backward to the same interior position -
say the original loading surface. Each record should produce the same result since the
same load history was applied to each specimen. If these calculated loads do not agree,
the assumed stress-strain behavior must be incorrect. We parameterize the stress-strain
behavior (i.e., a two-parameter Murnaghan BO, B′) or Lagrangian wave speed as a quartic
polynomial in stress, etc. and systematically vary the parameters until the two (or more)
inferred load histories agree. Thus analysis of two or more records is not only used to
calculate the load history but also defines the stress-strain behavior of the specimens.
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At Los Alamos National Laboratory (LANL), we have successfully integrated a
free-surface record from a spall experiment back to the damage plane to infer the stress-
strain history during failure. This entails introducing time-dependent, quasielastic
strength behavior into the material model [4]. Although the equations for this case are
parabolic and therefore may become unstable, a subsequent forward calculation using the
backward-deduced stress history applied to a specimen of thickness equaling the scab
thickness produces a calculated free surface motion that matches the measured result.
This addition to the technique will be described in a forthcoming report [5].

At present, the method cannot be used if shocks are present anywhere in the flow.
Since shocks produce entropy, which destroys information, there are simply regions of
the x-t plane that are inaccessible by information obtained at the measurement surface. As
a practical matter, if a shock is present in the VISAR record, it immediately begins to
spread into an isentropic compression wave as the integration proceeds back into the
interior of the specimen. Thus for large amplitude shocks, significant entropy generation
will be ignored during backward integration. But for low amplitude shocks like the
20kbar shock present in the spall experiment, the entropy generated by the shock is
completely negligible and apparently, as evidenced by the good comparison with the
subsequent forward calculation, solutions are accurate enough for our purposes. Thus if
we use the method for experiments with weak shocks, a case by case evaluation will be
made to assess if errors introduced are significant.

We have not explored material behavior with irregular stress-strain behavior such
as materials that undergo an equilibrium polymorphic phase change. Typically, phase
changes have large volume changes and the shock process produces significant entropy
meaning the parabolic terms in the governing equations are not necessarily small. It
remains to be determined if such equations can be successfully integrated backward with
manageable growth in the expected instabilities.

Reducing Z Data
Z is used to ramp load materials.  Loading times are many 100’s of ns and peak

magnetic pressures are up to 2.5Mbar so propagation distances can be 100’s of microns
before the ramp wave steepens into a shock.

For non-dissipative materials the resulting compression wave is isentropic,
providing a unique probe for the low-temperature, high-pressure region of the equation of
state. Often the actual dissipation energy (from plastic work, viscosity and the like) is
small compared with compression energy so that the experiments are quasi-isentropic.
i.e., the deviation from isentropic compression is small and data can be treated as
isentropic. The isentropic compression approach, pioneered by Barker, Asay and others,
is presently being exploited by many new and innovative experimental techniques owing
to the development of Z as a tool for exploring material behavior.

Early ramp loading compression experiments on copper gave a VISAR velocity
history at the free surface. On a single Z experiment, such a velocity history is obtained
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for more than one specimen thickness. The desire is to obtain material property data from
multiple histories. VISAR velocity histories are judged by the experimenters to be
accurate to 0.5ns in time and better than 1% of peak velocity.

Questions arise as to the best way to analyze the data. One way is to start with the
loading history and simulate the problem, adjusting the material properties until a match
with the VISAR results is obtained.  This is not a satisfactory approach. The applied load,
measured with Bdot probes in the Z accelerator, is inadequate for modeling purposes for
two reasons. First is accuracy of the Bdot results due to calibrations and current focusing
within the load. More importantly, Joule heating lowers the electrical conductivity of the
specimen allowing the B-field to penetrate. Thus the acceleration experienced within the
specimen arises not only from the externally applied magnetic pressure but also from
both gradients in the magnetic fields that have propagated into the copper and from early-
time Joule heating when inertial confinement causes pressures to rise and internal
pressure gradients to form.

Before the leading disturbance reaches the free surface, the wave is simple and
characteristics are straight lines. If there were no boundaries and if the same amplitude in
situ particle velocity could be measured at two different locations, the wave speed of that
amplitude of particle velocity and hence the stress-strain wound be known.  Wave speed
as a function of particle velocity can be related to stress-strain through the Reimann
invariants. The difficulty with this approach is that in situ particle velocity histories must
be inferred from measurement made at a free surface.  As the ramp wave interacts with
the free surface, reflected rarefactions propagate back into the oncoming ramp wave,
lowering the stress and bending the characteristics

Approach
These difficulties led us to try the backward integration approach.  Usually in

wave propagation simulations the equations of motion are solved by partitioning space
and numerically stepping in time.  In this new approach, time is partitioned and the
equations of motion are numerically stepped in space.  The VISAR record now becomes
an initial condition and the equations are integrated back in space to the loading surface.
Multiple VISAR histories should all integrate back to an identical loading history if the
stress-strain material response is correct. This approach mitigates the problem of the free
surface correction by properly accounting for the bending of the characteristics

The present approach has some features of Lagrangian analysis techniques
pioneered by Cowperthwaite and by Fowles circa 1960-70.  Forrest and Seaman applied
Lagrangian analysis techniques to complex materials and Aidun and Gupta [6] present a
comprehensive analysis.  What is new here is addressing the case where both forward-
and backward-going waves are present in the flow field. We are trying to remove free
surface perturbations here rather than track the wave evolution.  Also, unlike Lagrangian
analysis, the present method requires choice of an analytical form material response
model, although this restriction is a practical rather than a fundamental limitation as
discussed later.
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Backward Method
A test problem assesses the accuracy to be expected by this technique.  The

following equations were used.
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These Lagrangian equations of motion contain no convective terms because the
spatial coordinates, x, move with the material.

If the motion u, at the location x is specified by an array spaced at time intervals
dt, the motion can be calculated at location x+dx using second-order difference analogues
for the equations of motion. Dropping the subscript x on the longitudinal stress, �X
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The procedure is to complete step one for all times before proceeding to step two
and likewise for step two before step three. These equations can be used to calculate the
entire motion, stress and density fields at the new position. Repeating this entire
procedure moves the solutions back yet another distance dx into the interior of the
specimen, etc.

In practice, the function F(�) is sometimes transcendental and the new volumes
must be calculated from a finite differencing of the stress-strain relation. In these cases
step 2 is replaced by:

)],(),(}[2/)],(),({[),(),( txtdxxtxtdxxFtxVtdxxV ���� ��������    (2a)

More common is that the differential relating stress and volume is a function of
volume rather than stress: d�/dV=g(V). In these cases, step two is replaced by a
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predictor-corrector method where V is first estimated at x+dx/2, to preserve the second
order accuracy of the equation set:
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Boundary Conditions on Time
Care must be taken to ensure that the time domain is initially selected large

enough to accommodate the solution. For instance, if the first motion of the VISAR
record is at time t = t0, first motion at depth X from the VISAR measurement surface will
occur at t = t0 – X/C0. Therefore, the VISAR time array must begin at or before this time.
Similarly, if the last valid VISAR measurement occurs at t = t1, the backward solution
will only be valid at times less than how far back in time the left-going characteristic
from x=0, t= t1 can propagate. Restricting solutions to inside of these “world lines”
ensures the time boundary conditions do not influence solutions.

Testing the Backward Method
To test the method we began with a traditional forward solution to an initial-value

problem using WONDY, a well-known finite difference code [7].  A 0.491mm slab of
copper, initially at rest was subjected to the Z-452 ramp pressure load on the left-hand
boundary.  V(p) was chosen as the known principal isentrope for copper.  The result of
this traditional calculation was a simulated VISAR history at the rear surface of the
copper that could be used as an “initial condition” for our backward test. The “backward”
difference equations described above were integrated in space from x = 0.491mm back to
the original loading surface at x = 0. A comparison of the starting profile with the
backward-regenerated profile in Figure2 shows the method accurate to about � 0.3ns or
about  � 0.5kbar.No effort has been made to improve this accuracy of this particular
calculation but it is likely that it could easily be done. With sufficiently fine zoning, there
appears to be no practical limit to the achievable accuracy for idealized problems like
this. 
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Figure 2. The initial pressure history was used as a boundary condition in the WONDY
code. It was applied at x=0 to a copper specimen to calculate a simulated VISAR record
at x=0.491mm. This simulated VISAR record was used as an initial condition and the
equation of motion were integrated backward in space to x=0. The pressure history re-
generated with the backward method agrees with the initial pressure history to better than
¼%. No attempt was made to refine the calculation. There appears to be no practical limit
to the accuracy of the backward calculation for an idealized problem like this; refining
the time-space mesh will produce even better agreement.

Applying the Method to Z Data
Z-452 was actually an early Z experiment with experimental VISAR histories for

copper samples of 0.491 and 0.808mm thickness. See Figure 3.  We applied the backward
method to those Z-452 experimental results.  The relation we are seeking is V(�X).
Backward calculations were made with a Murnaghan form.
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Figure 3. Two VISAR records from copper samples of two different thicknesses were
obtained during a single Z experiment. Each free surface record was integrated backward
in space to x=0. The stress-strain relation was varied systematically until the two
calculated load histories at x=0 were the same. They agree to about 1%. The deduced
stress-strain agrees with the known behavior of copper and is shown in a later figure.

Each VISAR record was integrated back to x=0 and the two inferred pressure
histories compared. On the first attempt, they do not agree. The Murnaghan parameters
BS0 and BS′ were varied repeatedly in a systematic way and the equations integrated
backward in space to find the parameter values that gave the best agreement between the
two pressure load histories. Those are: 

BSo (Mbar) BS′
Z-452 1.4861 4.1911
Z-516 1.3493 4.8567

For Z-452, the difference in time at fixed particle pressure between two calculated
initial load histories (Figure 2) is about 1ns with most of the difference coming from
noise in the original VISAR records.  There is little systematic difference.

The entire procedure was repeated for a different experiment, Z-516. Z-516 is
qualitatively similar showing good agreement for most of the inferred compression
history at the front surface. Figure 4 overlays the two inferred loading profiles. Between
20 and 180 kbar, RMS timing differences over the relevant pressure interval are about
0.3ns.  The loading profile from the Bdot probe is also shown for Z-452.  Bdot loading
occurs about 10ns too early to match our analysis. The difficulty of field penetration
discussed earlier should lead to a Bdot record that is later in time and not leading the
inverted VISAR records in time as is seen.  This anomaly is not resolved here but the
calculation is more likely correct.
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Figure 4. Analysis of Z-516. The caption of Figure 3 pertains to this figure as well.
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Figure 5 shows Lagrangian bulk sound speed as a function of longitudinal stress
for the best fit and is compared with results using the characteristic method described
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earlier. The theoretical isentropic Lagrangian bulk sound speed for pure copper is also
shown for comparison. 

Discussion
Several points are noteworthy. Clint Hall [8], the Sandian who performed these

experiments has applied a traditional characteristics analysis to Z-452. Our best-fit
analysis using backward integration compares favorably with that analysis.  The slightly
stiffer best fit probably derives from our more accurate free surface treatment. Time
differences of about 1ns are sufficient to account for the difference in best-fit and
traditional results (Figure 5). These experiments had peak stress of about 200kbar.
Differences between backward solutions and characteristic solutions are much larger in
experiments above 1Mbar that are presently being analyzed.

Both the traditional and the backward analysis technique give sound speeds for Z-452
that are larger than for a pure copper result. Some of this may stem from the experiments
measuring longitudinal stress, not pressure and because the yield strength in copper is
known to increase with plastic strain in some alloys of copper. 
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Figure 6. The deduced stress-strain behavior of copper compared with the known
behavior. For experiment 516, the two curves lie on one another and cannot be seen as
separate in the above diagram.

Other Than Free Surfaces
There is no reason to restrict application of this method to free surface VISAR

histories. Whenever the stress-strain relationship is known for the window, one need only
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initialize the boundary conditions appropriately. For a VISAR window like LiF in a
copper experiment, the initial histories are configured:

Particle velocity - u(t) LiF window velocity from VISAR
Stress - �X(t) LiF window stress at this u(t)
Volume – V(t) Copper volume at this stress

Having initialized the backward problem in this way, no other account of the
window need be made; the problem is integrated back into the copper as usual. Note,
however, that the problem is implicit in that the stress-strain “answer” is required to
initialize the integration. While this leads to larger uncertainties in the stress-strain result,
the method is robust for two-specimen problems and satisfactory convergence is always
achieved.

We performed a check on this method. David Reisman [9], used the TRACII code
to simulate VISAR histories for two different thicknesses of copper, each backed by LiF
windows. We performed the backward analysis on these VISAR histories and deduced
both the loading history and the stress-strain relation for the copper. Comparison of the
starting and deduced stress-strain relationship is shown in Figures 7. The agreement is
remarkably good considering that we each used our own, slightly different description for
the �-u isentrope of LiF. Figure 8 

Figure 7. Backward was used to analyze a pair of simulated VISAR records. The load
was applied to two different thicknesses of copper. Each copper slab was backed by a LiF
window and the predicted VISAR histories were generated. The stress-density behavior
of copper was deduced by the backward calculation directly from these simulated VISAR
histories and compares well with the one actually used by Reisman.
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Figure 8. Reisman’s two simulated VISAR records that were used in the backward
calculation. The method of Grady and Young, used to estimate what the in situ particle
velocity would have been if no interface were present, is compared with TRAC II results
of calculated in situ velocities. Errors are as large as about 10ns by using this procedure
Backward integration deduced the load history in a rather exact way (see Figure 9), so
calculating the in situ velocities by backward integration of the VISAR records followed
by forward integration of the problem in TRAC II gives a precise result of the in situ
results (not shown). For this idealized example the backward method makes essentially
an exact correction for the window interface perturbations.

Figure 9. Reisman’s load history compared with that deduced from backward integration
of the VISAR records. They agree almost exactly.
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shows the starting simulated VISAR records, the calculated in situ records and an attempt
to infer the second from the first using one of the approximate methods. Agreement is not
good. On the other hand, backward in situ calculations are essentially exact. Figure 9 
shows the deduced load agrees almost exactly with Reisman’s starting load. 

Elastic-Plastic (E-P) Material
It is possible to treat materials that have hysteretic stress-strain relations. Above,

we did not distinguish between longitudinal stress and pressure. This distinction is
necessary for treating elastic-plastic materials. Define terms as follows:
�X – longitudinal stress (below, when the subscript x is omitted, �x is implied).
P – pressure
� – shear stress = (�X-�Y)/2
x – Lagrangian position 
� – Poisson’s ratio
Y – yield strength
��– volumetric strain
��= E(P) – function relating volumetric strain and hydrostatic pressure

In the backward numerical method described above, momentum conservation,
equation of state and mass conservation were solved in that order. For E-P treatment,
steps 1 and 3 remain the same and only the equation of state is treated differently, being
supplemented by the elastic-plastic constitutive relation. The time integration of the
elastic-plastic relations at the new position x proceeds as follows:

(5)

(4)
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The latter equation is the von-Misis yield condition. If the inequality is not met,
the shear stress is set on the upper or lower yield surface as appropriate:

2
),( Y

dttx ����                                             (6)

The new strain is then easily calculated

�(x,t+dt)=E[�(x,t+dt)-4/3�(x,t+dt)]                                            (7)
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As before, sometimes E is transcendental and a predictor/corrector method is
required to calculate the new strain to second order accuracy

Comments on the Method

General Considerations
There are few limitations on the complexity that could be introduced in material

models although in practice the method can be very computationally intensive. Two free
parameters (n=2) were optimized in 10’s of minutes on a 450MHz. We have recently
implemented the Amoeba minimization method from Numerical Recipes by Press and
early examples show considerable speedup when n is greater than 3. This has allowed our
stress-strain relation to be expressed, for instance, through Lagrangian sound speed being
a quartic polynomial in pressure. This has been used recently to analyze a Z experiment
in aluminum to 1.1Mbar. The analysis is not shown here.

Integration can be done backward in space to any convenient location, provided it
is far enough back to avoid perturbations from the free surface at earlier times of interest.
The same stress-strain behavior would be obtained in the copper experiment on Z if the
integration were carried back to say 0.1mm, 0mm as was done above, or even to –
0.1mm! The position x=0 is usually chosen although the inferred loading profile at the
0mm location is not the one actually experienced by the copper whenever the magnetic
field has penetrated the copper during loading.  In that case, the experimental ramp load
is applied to the copper in depth through a combination of magnetic pressure and because
of gradients in the magnetic field in the specimen, which couple through the momentum
conservation equation.  It is likely that such skin depth effects are small in the present
case and that the inferred loading history reasonably reflects the actual magnetic pressure
history. However, the important results obtained with the backward method are
unaffected by this uncertainty. 

As long as the stress-strain relation is unique, no shocks appear in the solutions
and the time boundary conditions do not penetrate the solution, the governing equations
are hyperbolic and there are no practical limitations to the number of layers of different
materials or the number of reverberations that can be accommodated in a backward
solution.

For situations where E(p) is known, it would probably be easier to integrate Eqs.
(1a) using a commercial PDE solver. However, E(p) is often transcendental and the
introduction of strength into material models makes the equations parabolic. Therefore, it
is more convenient to use our own numerical procedure.

A general question arises about the numerical stability of these equations. Without
strength effects, the entire equation set is hyperbolic and presumably one can numerically
integrate backward and forward in time or space with impunity.  We usually select dx <
CLdt for this situation. But by adding strength, the equations become parabolic in time.
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The fundamental stability of numerical solutions to these equations has not yet been
determined. In lieu of analyzing the stability limit for space steps appropriate to this
equation set [for parabolic equations, dx~(dt)1/2], we simply decreased the space step until
satisfactory results were consistently achieved. This was about 5% of the equivalent
“Courant condition” –the Courant condition prevents disturbance speed from exceeding
mesh speed. 

Sometimes our elastic-plastic solutions develop instabilities. In those cases, stress
and particle velocity are lightly smoothed every 25 space steps to suppress these. e.g.,

(8)4/)],(),([2/),(),( dttxudttxutxutxu �����

We have determined that smoothing every 10-50 space steps has no influence on
the ultimate solution for most problems. Smoothing well outside these frequency bounds
leads to unacceptable errors in the solution.

When a backward-determined stress history at some interior location is used in a
subsequent forward calculation, the starting simulated VISAR history is always
replicated, even if the material model is incorrect, provided the integrations were done
accurately. Because the same equations are being integrated back in space and then
forward in time, backward integration can proceed to essentially any location in the
interior of the specimen, the stress history at that location used in WONDY for a forward
calculation, and the original VISAR record recovered. That is why another constraint
must be found to make use of this method. For Z experiments, this constraint is usually
that two specimen thicknesses must both produce the same load. This constrains the
specimen stress-strain relation. For determining gradients in an accelerating flyer plate,
which is shown in a subsequent example, the stress-strain relation must be known. For
the spall experiment that is given as another later example, stress after spallation must
remain zero at the spall plane, etc.

Additional Examples

The backward integration method is presently being used to analyze a variety of
experiments at Sandia, Los Alamos and Lawrence Livermore National Labs. Below are
two more that show the breadth of application. 

Starting from a free surface velocity history from a spall pullback experiment in
aluminum (John Vorthman, LANL) [10], determine the location of the spall plane and the
stress history of the failure process at that location. Also determine parameters for the
time-dependent quasielastic model of plasticity. (Figure 10)
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Figure 10. Results from backward integration of a spall pullback free surface VISAR
experiment on 6061-T6 aluminum. The VISAR free surface record (lower left) was
integrated backward in space to ~150% of the estimate scab thickness. The 3-D graph
shows the calculated stress as function of time and Lagrangian distance from the free
surface. Note the slice marked “spall plane”. That is the plane where the stress stays at
zero after spall occurs. Stress at that plane is also shown in the lower right graph. The
backward integration sought best values for the two quasielastic parameters and for the
position where the RMS of the late time stress was a minimum. Two quasielastic
parameters deduced for 6061-T6 Al agree well with those determined by Johnson. The
position of the deduced spall plane agrees with experiment. The two-step failure seen in
the lower right graph displays secondary spall resistance behavior seen previously in
tantalum. The calculated free surface velocity (lower left) was obtained with WONDY
where the backward-determined load (lower right) was applied to an aluminum layer with
thickness equal to the backward-determined scab thickness [5]. The VISAR record and
the WONDY simulation agree almost exactly.

Starting from a 13km/s shockless flyer plate acceleration (Marcus Knudson) [11],
determine density, stress and particle velocity gradients in the flyer at impact time.
(Figure 11)
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Figure 11. Analysis of a high velocity flyer plate. The VISAR-measured velocity (upper
left) was used in conjunction with the backward method to determine gradients in the
flyer at impact time. In the remaining three figures, x is time and y is Lagrangian depth
from the free surface. Upper right is particle velocity; lower left is pressure and lower
right density. Impact time is approximately 350ns which is approximately x = 90 in these
3-dimensional graphs. The measured particle velocity can be seen as the Y=1 slice in the
upper right. The experimenter (Marcus Knudsen, SNL) used gradients in density,
pressure and particle velocity at impact time as initial conditions at this time for a
subsequent WONDY calculation to estimate the effects of gradients in the flyer plate on
the shock induced in the target (target not shown).

Each of these examples is part of an ongoing experimental study in which the
backward method is finding application.
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Conclusion
There are many combinations of forward/backward analyses that can be used to

interpret experimental data. For instance, if one specimen of a two-specimen Z
experiment has a shock, the shockless result can be integrated backward and the
specimen with a shock integrated forward with a code like WONDY. By demanding the
calculated and measured shock results agree, the equation of state could be determined.
Or if a window has an unknown stress-strain relation but the sample is calibrated, two
experiments could define that unknown. Recent experiments by Clint Hall [8] have
combined free surface and window measurements in a unique way to define window
optical properties. The backward method is an essential part of this investigation. There is
seemingly an endless variety of ways to put forward and backward calculations together
to tease new results from experiments, provided we can shed our habit of viewing the x-t
plane from only one direction.
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