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The primary objective of novelty detection is to examine if a 
system significantly deviates from the initial baseline condition 
of the system. In reality, the system is often subject to changing 
environmental and operation conditions affecting its dynamic 
characteristics. Such variations include changes in loading, 
boundary conditions, temperature, and humidity. Most damage 
diagnosis techniques, however, generally neglect the effects of 
these changing ambient conditions. Here, a novelty detection 
technique is developed explicitly taking into account these 
natural variations of the system in order to minimize false 
positive indications of true system changes. Auto-associative 
neural networks are employed to discriminate system changes 
of interest such as structural deterioration and damage from the 
natural variations of the system.  

 

Damage identification is a problem, which can be addressed at 
many levels. Stated in its most basic form, the objective is to 
ascertain simply if damage is present or not. One class of 
algorithms, which show considerable promise for this purpose, 
is grouped under the name novelty detection methods. The 
philosophy is simple; during the normal operation of a system 
or structure, measurement features are collected which 
characterize the normal conditions. After training the diagnostic 
in question, subsequent data can be examined to see if the 
features deviate significantly from the norm. That is, novelty 
detection is a technique for deciding if measurements from a 
system or structure indicate departure form previously 
established normal conditions. An alarm is signaled if the index 
value increased above a pre-determined threshold. 

Unfortunately, matters are seldom as simple as this. In 
reality, structures will be subjected to changing environmental 
and operational states such as varying temperature, humidity, 
and loading conditions affecting the measured features and the 
normal condition. In this case, there may be a continuous range 

of normal conditions, and it is clearly undesirable for the 
novelty detector to signal damage simply because of a change 
in the environment or operation.  In fact, these changes can 
often mask more subtle structural changes caused by damage. 

One approach to solving this problem is to measure 
parameters related to these environmental and operational 
conditions as well as the vibration features over a wide range of 
these varying conditions to characterize the normal conditions. 
The normal conditions can be parameterized at different 
environmental and operational states. Then, a novelty detector, 
which does not provide false indication of damage under 
changing environmental and operational conditions, can be 
built. On the other hand, there are other cases where it is 
practically difficult to measure parameters related to the 
environmental and/or operational conditions. This paper 
addresses the later cases where no measurements are available 
for these natural variations.  

The idea is based on auto-associative neural networks 
where target outputs are simply inputs to the network. Using 
the measured features corresponding to the normal conditions, 
the auto-associative neural network is trained to characterize 
the underlying dependency of the measured features on the 
unmeasured environmental and operational variations by 
treating these environmental and operational conditions as 
hidden intrinsic variables in the neural network.  

The layout of this paper is as follows. In Section 2, a brief 
description of auto-associative neural network is given relating 
this network with Principal Component Analysis (PCA) and 
Nonlinear Principal Component Analysis (NLPCA). A measure 
of novelty or novelty index is defined in Section 3 using the 
auto-associative network outputs. In Section 4, the applicability 
of the auto-associative neural network to damage diagnosis 
problems is demonstrated on synthetic data sets obtained from 
a simplified model of a computer hard disk. The paper 
concludes with a general discussion in Section 5.  
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PCA has been proven to facilitate many types of multivariate 
data analysis including data reduction and visualization, data 
validation, fault detection, and correlation analysis (Fukunaga 
and Koontz, 1970). Similar to PCA, NLPCA is used as an aid 
to multivariate data analysis. While PCA is restricted on 
mapping only linear correlations among variables, NLPCA can 
reveal the nonlinear correlations presented in data. If nonlinear 
correlations exist among variables in the original data,  NLPCA 
can reproduce the original data with greater accuracy and/or 
with fewer factors than PCA.  This NLPCA can be realized by 
training a feedforward neural network to perform the identity 
mapping, where the network outputs are simply the 
reproduction of network inputs. For this reason, this special 
kind of neural network is named as an auto-associative neural 

network (See Figure 1). The network consists of an internal 
“bottleneck” layer and two additional hidden layers. The 
bottleneck layer contains fewer nodes than input or output 
layers forcing the network to develop a compact representation 
of the input data. The NLPCA presented in this paper is a 
general purpose feature extraction/data reduction algorithm 
discovering features that contain the maximum amount of 
information from the original data set.  In the following 
sections, PCA and NLPCA are briefly reviewed. More detailed 
discussions on PCA, NLPCA, and auto-associative networks 
can be found from Fukunaga (1990), Kramer (1991), 
Rumelhart and McClelland (1988), respectively. 
 

PCA is a linear transformation mapping multidimensional data 
into lower dimensions with minimum loss of information. Let 

 represent the original data with the size of nm × . Here, m is 
the number of variables and n is the number of data sets. PCA 
can be viewed as a linear mapping of data from the original 
dimension m to a lower dimension d:  

=  (1) 

where  ( nd×ℜ∈ ) is called the scores matrix.  ( md×ℜ∈ ) is 

called the loading matrix and =T .  The loss of 
information in this mapping can be assessed by re-mapping the 
projected data back to the original space:  

Tˆ =  (2) 

Then, the reconstruction error (residual error) matrix E is 
defined as: 

ˆ−=  (3) 

The smaller the dimension of the projected space, the greater 
the resulting error. The loading matrix  can be found such that 
the Euclidean norm of the residual matrix, || ||, is minimized 
for the given size of d.  It can be shown that the columns of  
are the eigenvectors corresponding to the d largest eigenvalues 
of the covariance matrix of Y (Fukunaga, 1990).  
 
 

NLPCA generalizes the linear mapping by allowing arbitrary 
nonlinear functionalities.  Similar to Equation (1), NLPCA 
seeks a mapping in the following form: 

=  (4) 

where  is a nonlinear vector function and consists of d 

number of individual nonlinear functions:  = { }dGGG ,...,, 21 . 

By analogy to Equation (2), the inverse transformation, 
restoring the original dimensionality of the data, is 
implemented by a second nonlinear vector function : 

=ˆ  (5) 

The information lost is again measured by = ˆ− . 
Similar to PCA,  and  are computed to minimize the 
Euclidean norm of || || meaning minimum information loss in 
the same sense as PCA. NLPCA employs artificial neural 
networks to generate arbitrary nonlinear functions. Cybenko 
(1989) has shown that functions of the following form are 
capable of fitting any nonlinear function )(f=  to an 

arbitrary degree of precision: 
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where ky and ix  are the kth and ith components of  and , 

respectively. k

ijw  represents the weight connecting the ith node 

in the kth layer to the jth node in the (k+1)th layer, and jb  is a 

node bias. )(xσ  is a monotonically increasing continuous 

function with the output range of 0 to 1 for an arbitrary input x. 
A sigmoid transfer function is often used in neural networks to 
realize this function.  

Note that, to fit arbitrary nonlinear functions, at least two 
layers of weighted connections are required, and the first 
hidden layer should be composed of sigmoidal functions. 
Therefore, the two nonlinear vector functions in Equations (4) 
and (5) should have the same architecture: one hidden layer 
with sigmoidal functions and one output layer. The output layer 
can have either linear or sigmoidal transfer functions without 
affecting the generality of the mapping. For instance, the first 
hidden layer of , which consists of 1M  nodes with sigmoidal 

functions, operates on the columns of  mapping m inputs to 

1M  node outputs. The output of the first hidden layer is 

projected into the bottleneck layer, which contains d nodes. In a 
similar fashion, the inverse mapping function  takes the 
columns of  as inputs relating d inputs to 2M  node outputs. 

The final output layer reconstructs the target output ˆ , and 
contains m nodes. This network architecture consisted of 
mapping and de-mapping  and  is shown in Figure 1. It 
should be noted that if the neural networks for  and  are to 
be trained separately, the target output  is unknown for the 
training of the  network. For the same reason, the input for 
the  network is not known. It is observed that  is both the 
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output of  and the input of . Therefore, combining the two 
networks in series, where  feed directly into , results in a 
new network whose inputs and target outputs are not only 
known but also identical. Now, the supervised training can be 
applied to the combined network. 

The combined network contains three hidden layers; the 
mapping, the bottleneck, and de-mapping layers. The second 
hidden layer is referred to as the bottleneck layer because it has 
the smallest dimension among the three layers. Note that the 
nodes in the mapping and de-mapping layers must have 
nonlinear transfer functions to model arbitrary  and 
functions. However, nonlinear transfer functions are not 
necessary in the bottleneck layer. If the mapping and de-
mapping layers were eliminated and only the linear bottleneck 
layer were left, this network would reduce to linear PCA as 
demonstrated by Sanger (1989). Typically 1M  and 2M  are 

selected to be larger than m and they are set to be equal 
( 1M = 2M ). Hereafter, the dimensions of the mapping and de-

mapping layers are collectively referred to as the dimension of 
the mapping layers and denoted as M . 
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Figure 1: A schematic presentation of an auto-associative neural 
network 

In this study, the auto-associative network is employed to 
reveal the latent relationship between the measured features and 
the unmeasured intrinsic parameters causing the variations of 
the measured features. For example, the measured fundamental 
frequency of the Alamosa Canyon Bridge in New Mexico 
varied approximately 5% during a 24-hour test period, and the 
change of the fundamental frequency was correlated to the 
temperature difference across the bridge deck (Sohn et al., 
1999). (Because the bridge is approximately aligned in the 
north and south direction, there is a large temperature gradient 
between the west and east ends of the bridge deck throughout 
the day.) The auto-associative neural network presented here 
can be trained to learn these correlations and reveal the inherent 
variables driving the changes. Then, assuming that the neural 
network is trained to capture the embedded relationships, the 
prediction error of the neural network will grow when an 

irrelevant data set, such as ones obtained from a damage state 
of the system, is fed to the network. Based on this assumption, 
the auto-associate network is incorporated with novelty 
detection, which is described in the following section. The 
objective of novelty detection is to observe a sequence of 
patterns and signal if one significantly differs from the rest of 
population. 
 

The objective of the present novelty detection is to eschew the 
physics-based model approaches such as finite element 
analysis, and therefore pave the way for signal-based 
techniques applicable to systems of arbitrary complexity. 
However, the present novelty detection provides an indication 
only about the presence of damage in a system of interest. This 
method does not give information about the location and extent 
of the damage. That is, the novelty detection only identifies if a 
new pattern differs from previously obtained patterns in some 
significant respect.  Although the damage assessment problem 
can be posed with several levels of complexity, the detection of 
damage presence is arguably the most important step. Once the 
existence of damage is confirmed the system can be taken out 
of service and subjected to detailed inspection to locate and 
quantify damage.  The concept of novelty detection is not 
entirely new and applications in other fields can be found in 
literature (Bishop, 1994; Tarassenko et al., 2000; Worden et al., 
2000).  

For the current specific application of our interest, the 
auto-associative neural network will be trained using features 
extracted from the healthy baseline system and the threshold 
value for the novelty index will be established accordingly. 
When damage occurred in the system, the damage would alter 
the dynamic characteristics of the system and consequently the 
novelty indicator would signal a fault. One of the biggest 
challenges here is to identify significant system changes such 
as structural damage and degradation which cannot be 
attributed to natural fluctuations in the system responses due to 
changing environmental and operation variations. As described 
above, the auto-associative neural network is forced to learn the 
underlying dependency of the extracted features on these 
natural variations. Therefore, when the auto-associative 
network is fed with the inputs obtained from an unprecedented 
state of the system, for example, a damage state of the system, 
the novelty index (NI), which is defined as the Euclidean 
distance between the target outputs and the outputs of the 
neural network (Worden, 1997): 

||ˆ||)( −=NI  (7) 

where  and ˆ  are each individual columns of  and ˆ in 

Equation (3). If the learning has been successful, ˆ≈  and 

0)( ≈NI  for all data in the training data set. However, if  

were acquired after damage is introduced to the system, )(NI  

would noticeably departure from zero providing an indication 
of an abnormal condition of the system.  
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The novelty index can be also defined using the 
Mahalanobis distance measure between the target outputs and 
the network outputs (Duda and Hart, 1973): 

)ˆ()ˆ()( 1T
−−=

−
NI  (8) 

where  is the sample covariance matrix of the training data. 
This covariance matrix can be calculated with or without the 
potential outlier in the sample depending upon whether 
inclusive or exclusive measures are preferred (Barnett and 
Lewis, 1994). In this study, the first definition of the novelty 
index is employed. 
 

The proposed novelty detection technique is demonstrated 
using a simplified model of a computer hard disk (MathWorks, 
1998). Using Newton’s law, the second order differential 
equation for the read/write head shown in Figure 2 can be 
written as follows: 

iKK
dt

d
C

dt

d
J i=++ θ

θθ
2

2

 (9) 

where J is the inertia of the head assembly, C is the viscous 
damping coefficient of the bearings, K is the return rotational 
spring constant, iK  is the motor torque constant, θ  is the 

angular position of the head, and i is the input current. 
Although most modern hard disks have closed-loop controllers 
to accurately position the read/write head, reduce the seek time 
of the hard disk, and stabilize the system, the feedback 
compensator of the hard disk is omitted in this example for 
simplicity.  
 

Disk Platen

Disk Drive Motor

Read/Write
Head

Solenoid

θ

 

Figure 2: A computer hard disk drive 

Note that although the example presented in this study is 
simple, the proposed method has much wider applicability than 
this simulation because the method presented does not assume 
any physics-based modeling. For instance, when detecting 
faults in a composite plate, the complexity of the geometry, 

boundary conditions, and the lay-up make it difficult to model 
the baseline structure. Furthermore, the modeling of damage 
such as fiber pullout, fiber fracture, matrix fracture, and 
delamination could be even more difficult (Worden, 1997). The 
proposed method combining the auto-associative network and 
novelty index only requires a sequence of measurements 
corresponding to the normal conditions of the system. 

To simulate an operational variation of the system, it is 
assumed that the values of K, iK , J, and C are a function of an 

ambient temperature, T, as shown in Figure 3. For example, the 
nominal values of K, iK , J, and C are 10 Nm/rad, 0.047 

Nm/rad, 0.01 Kg-m, 0.0 Nm/(rad/sec), respectively, at 

T= oC15 . For the temperature range of ( oC15− , oC45 ), K, 

iK , and J values vary about %20±  from this nominal values at 

T= oC15 . C is simply changed from 004.0−  to +0.004 

although the negative damping value does not have any 
physical meaning into it. The explicit expressions for these 
temperature dependent variables are assigned as follows: 

( ) ( ) 105.1T1.0
87

4
5.1T1.0

87

6 3
+−×+−×=K  (10) 

( ) ( )[

( ) ]
3

14.0
15.1T1.0

5.1T1.05.1T1.0
30

01.0 23

++−×+

−×+−×=iK

 (11) 

+= 9
15

T
01.0J  (12) 

−×=
230

T
tanh004.0

π
πC  (13) 

The temperature dependencies of these variables are arbitrarily 
assumed without any physical understandings of the actual 
system. 

Taking the Laplace transform of Equation (9) and 
discretizing the continuous transfer function, the discrete 
transfer function, )(zH , from i to θ is obtained: 

21
2

21)(
azaz

bzb
zH

++

+
=  (14) 

The coefficients of the transfer function in Equation (14) are 
chosen as features for the subsequent network training. Here, 
feature extraction refers to identifying the salient features of 
data to facilitate its use in a subsequent analysis, in the current 
case, the novelty detection. That is, features are a set of 
variables derived from the original data set and they are 
supposed to capture the relevant information contained in the 
original data. Because of the underlying dependencies of K, 

iK , J, and C on T, 1a , 2a , 1b , and 2b  also become temperature 

dependent variables as shown in Figure 4. In actual 
applications, these coefficients should be estimated by using 
time series analyses (Box et al., 1994) or system identification 
techniques (Ljung, 1999). However, for simplicity, the 
coefficients for the numerical transfer function are used in this 
example. 
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The superficial dimensionality of data, or the number of 
observations, is often much larger than the intrinsic 

dimensionality, or the number of independent variable causing 
the underlying variations in the observations. This is also true 
in the current example because four parameters ( 1a , 2a , 1b , 2b ) 

are extracted and there is only one intrinsic variable (T) driving 
the changes of these four parameters. The auto-associative 
neural network should be able to capture these nonlinear/linear 
dependencies of the transfer coefficients on the temperature.  
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Figure 3: Temperature variation of K, iK , J, C 
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Figure 4: Temperature variation of 1a , 2a , 1b , 2b  

In order to train the neural network, the coefficients of the 
transfer function, 1a , 2a , 1b , 2b  are specified as inputs to the 

auto-associated neural network. Assuming a uniform 

distribution of temperature in the range of ( oC15− , oC45 ), K, 

iK , J, and C values are computed at randomly selected 600 

temperature values according Equations (10)-(13). Then, the 
associated 1a , 2a , 1b , 2b  coefficients are obtained, corrupted 

with Gaussian noises, and used as the training data set. That is, 
the data set consists of 600 observations with 4 input variables 
(m=4 and n=600). The data set was scaled so that each variable 
ranges from –1 to 1. This scaling weighs all four variables 
equally important and is similar to the division of data set by 
standard deviation often used in the preparation of data for 
PCA. It should be noted that temperature, T, is only one 
underlying parameter driving the changes of these coefficients. 
Therefore, the auto-associative neural network with only one 
node in the bottleneck layer should be able to reproduce this 
training data set (see Figure 5).  

The auto-associative neural networks with different 
dimensions in the mapping and de-mapping layers are applied 
to this training data to determine the best network architecture. 
In general, the number of nodes in the mapping and de-
mapping layers is set to be larger than that of the bottleneck 
layer ( 1M , 2M > d). However, there are no definitive rules for 

deciding the dimensions of the mapping and de-mapping 
layers. The complexity of the nonlinear functions, which the 
neural network represents, primarily controls the number of 
nodes in the mapping and de-mapping layers. If too few nodes 
are specified in the mapping layers, the accuracy of the neural 
network might be poor. On the other hand, if too many 
mapping nodes are provided, the network will be prone to 
overfitting learning the stochastic nature of the data rather than 
the underlying functionalities. In practice, the available data 
might impose constraints on the number of nodes in the hidden 
layers if the number of training data sets is limited. Otherwise, 
explicit criteria trading off between the accuracy and the 
dimension of the hidden layers are often used.  Two such 
criteria are Akaike’s Final Prediction Error (FPE) and An 
Information theoretic Criterion (AIC) (Ljung, 1999): 

)/1()/1( NNNNeFPE tt −+=  (15) 

NNeAIC t /2]ln[ +=  (16) 

where dmMMdmN t +++++= ))(1( 21  is the total number 

of weights, nmN = is the number of points in the data, 
)2/( NEe = , and E  is the sum of squared errors for all entries 

in ˆ− . Minimization of these criteria identifies the number 
of nodes that are neither underparameterized nor overfitted. In 
this example, a neural network with 10 nodes in each mapping 
and de-mapping layer has minimized the two criteria on 
average, and is employed for the subsequent novelty detection. 

The number and time of iterations are not reported here 
because the iterations depend on the training method and the 
initial conditions. However in most cases, less than 10,000 
iterations were required before convergence. Several trainings 
with different initial conditions were required for a given 
architecture to assure that the global minimum had been 
achieved. Also, sigmoidal transfer functions were used in all 
hidden layers as well as the output layer so that the outputs 
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were bounded in the range (-1, 1). The networks employed in 
this study are conventional feedforward networks and trained 
by a Levenberg-Marquardt version of backpropagation. It is 
reported that the Levenberg-Marquardt algorithm is 10 to 100 
times faster than the usual gradient descent method (Hagan and 
Menhaj, 1994). 

 

 

Figure 5: The neural network architecture for the hard disk drive 
example 
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Figure 6: Correlation between temperature and the output in the 
bottleneck layer 

Although it is not presented in this paper, the difference 
between the original training data  and the reconstructed data 
ˆ  was negligible for most cases. If the neural network was 

successfully trained, the output of the bottleneck layer should 
be analogous to the unmeasured temperature T because the 
temperature is the only underlying intrinsic variable causing all 
the fluctuations. Figure 6 shows the relationship between the 
output of the bottleneck layer and temperature, T. The 
bottleneck output is indeed closely related to the temperature: 
the relationship, although not linear, is monotonic and this is 
sufficient to reconstruct the input at the output layer. Therefore, 
this auto-associative neural network had in a sense revealed the 
unmeasured temperature embedded in this data set.  

The fault in this system is simulated by changing K and C by 
various degrees. The four damage cases investigated in this 
study are summarized in Table 1. For instance, the damping 
coefficient of case (a) is fixed at the damping value 

corresponding to T= oC20  ( dC = 20C ), and the damaged 

return spring constant, dK , is varied between 0.85 20K and 

0.95 20K . Here, 20K  is the value of the return spring constant at 

T= oC20 . More specifically, 600 sets of dK  values are 

randomly sampled between 0.85 20K  and 0.95 20K  assuming a 

uniform distribution between these two values. Then, the 
corresponding values of 1a , 2a , 1b , and 2b  are computed, and 

fed to the previously trained auto-associative neural network 
for the computation of the novelty index. In a similar manner, 
input data with the size of 6004 ×  are generated for damage 
cases (b) – (d). 
 

 
To provide a perspective of the variation magnitudes 

caused by damage and ambient temperature, Figure 7 shows the 
fluctuations of the transfer function coefficients associated with 
damage case (d) in Table 1. It is clearly shown that, in this 
example, temperature produces much larger changes in these 
coefficients than damage. Therefore, without special cautions 
and treatment, it is very difficult to identify what is causing 
these variations. This kind of observation can be often found in 
many applications. For example, dynamic characteristics of 
offshore platforms undergo significant variations in time as a 
result of tides and change of oil storage producing a continuous 
range of normal conditions. In this case, it is clearly undesirable 
for the novelty detector to signal damage simply because of a 
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Figure 7: Comparison of the variation magnitudes caused by 
ambient temperature and damage case (d) 
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2b̂2b̂

1b̂1b̂

101 =M 102 =M1=d 4=m



 7

change in the environment. The presented auto-associative 
network can help to address this issue by learning the concealed 
dependency of the network inputs on the unmeasured intrinsic 
parameters.  

Table 1: Damage scenarios investigated in this study 

 
 

First, validation data corresponding to the baseline system are 
created in a similar way to the generation of the training data 
set. That is, for a randomly selected temperature value, the 
physical parameters and the coefficients of the transfer function 
are computed. Then, the auto-associative neural network takes 
the coefficients as inputs and computes the novelty index. This 
procedure is repeated 600 times to generate the same number of 
novelty measures. 

For each damage case in Table 1, 1a , 2a , 1b , and 2b  

coefficients are obtained from the partially perturbed dK , iK , 

J, and dC . Then, the novelty index defined in Equation (7) is 

computed after feeding these coefficients into the previously 
trained network. The diagnosis results are displayed in Figure 
8. Case (a) produces novelty values, which show gross changes 
and visual inspection suffices to identify the fault. Cases (c) 
and (d) result in more subtle changes but still noticeable 
changes. However, case (b) does not display any distinct 
changes.  

The establishment of a threshold value can be useful to 
decide if “statistically significant” changes have occurred in the 
system condition. However, the construction of the threshold 
value based on a rigorous statistical analysis is not achieved in 
this study. Further investigation is necessary to address this 
issue. Worden (1997) and Cempel (1985) established the 
warning level, above which it is considered that a reading is 
sufficiently abnormal to require investigation. The computation 
of the warning level is based on a continuous adjustment of the 
mean and standard deviation of the parameter records, and then 
confidence intervals can be assigned assuming a Gaussian 
distribution of the records.   

Based on permutation theory, Box and Andersen (1955) 
proposed a modified hypothesis test to safely use in more 
general applications without a normality assumption. The 
primary objective is to test the null hypothesis, 0H : 

)(2 xσ = )(2 yσ  against the one-sided alternative 1H : 

)(2 xσ < )(2 yσ . Here )(2 xσ  and )(2 yσ  are the variances of 

arbitrary variables x  and y , respectively. This modified 

hypothesis test can be employed to check if the new signal has 
significantly changed from the training data set. Various studies 
based on Monte Carlo simulation (Miller 1997 and references 
therein) have demonstrated that this Box-Andersen test 
maintains reasonably correct significant levels under the null 
hypothesis for a variety of heavy- and short-tailed distributions. 
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Figure 8: Novelty indices evaluated at four different damage 
cases 

 

This paper extends the previous work on novelty detection for 
structural damage diagnosis, explicitly taking into account 
changing environmental and operational conditions. An attempt 
is made to discriminate the changes of system responses due to 
ambient operational conditions from those caused by structural 
damage. The proposed approach is demonstrated using a 
simplified model of a computer hard disk. Results indicate that 
the incorporation of the auto-associative network with novelty 
measure enables to detect damage even when the system 
exhibits a rage of normal conditions. The development 
presented here may allow some progress in in-service 
monitoring of aerospace, automobile, civil, and mechanical 
systems, which are subject to various operational and 
environmental conditions.   

Before the proposed approach could be used with 
confidence on experimental data, several issues need to be 
addressed. First, this study assumes that environmental 
variations and damage have uncorrelated effects on the 
system’s response, making it easier to discriminate them. In 
some cases, the environmental effects, however, have similar 
influence on the system’s dynamic characteristics as damage 
has. In this case, the discrimination between environmental 
effects and damage becomes more difficult. Therefore, further 
studies are needed for this situation. 

Second, the sensitivity of the novelty index performance 
based on different noise types and levels need to be further 
investigated. It is also important to establish what degree of 
changes in the novelty is statistically significant. Joint research 
work is currently underway at Los Alamos National Laboratory 
and University of Sheffield to address these issues. 
 

Cases Spring constant ( dK ) Viscous damping ( dC ) 

(a) [0.85 20K , 0.95 20K ] 20C  

(b) 20K  [0.90 20C , 1.10 20C ] 

(c) [0.95 20K , 1.05 20K ] 20C  

(d) [0.95 20K , 1.05 20K ] [0.90 20C , 1.10 20C ] 
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