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ABSTRACT

The primary objective of novelty detection is to examine if a
system significantly deviates from the initial baseline condition
of the system. In reality, the system is often subject to changing
environmental and operation conditions affecting its dynamic
characteristics. Such variations include changes in loading,
boundary conditions, temperature, and humidity. Most damage
diagnosis techniques, however, generally neglect the effects of
these changing ambient conditions. Here, a novelty detection
technique is developed explicitly taking into account these
natural variations of the system in order to minimize false
positive indications of true system changes. Auto-associative
neural networks are employed to discriminate system changes
of interest such as structural deterioration and damage from the
natural variations of the system.

1. INTRODUCTION
Damage identification is a problem, which can be addressed at
many levels. Stated in its most basic form, the objective is to
ascertain simply if damage is present or not. One class of
algorithms, which show considerable promise for this purpose,
is grouped under the name novelty detection methods. The
philosophy is simple; during the normal operation of a system
or structure, measurement features are collected which
characterize the normal conditions. After training the diagnostic
in question, subsequent data can be examined to see if the
features deviate significantly from the norm. That is, novelty
detection is a technique for deciding if measurements from a
system or structure indicate departure form previously
established normal conditions. An alarm is signaled if the index
value increased above a pre-determined threshold.
Unfortunately, matters are seldom as simple as this. In
reality, structures will be subjected to changing environmental
and operational states such as varying temperature, humidity,
and loading conditions affecting the measured features and the
normal condition. In this case, there may be a continuous range

of normal conditions, and it is clearly undesirable for the
novelty detector to signal damage simply because of a change
in the environment or operation. In fact, these changes can
often mask more subtle structural changes caused by damage.

One approach to solving this problem is to measure
parameters related to these environmental and operational
conditions as well as the vibration features over a wide range of
these varying conditions to characterize the normal conditions.
The normal conditions can be parameterized at different
environmental and operational states. Then, a novelty detector,
which does not provide false indication of damage under
changing environmental and operational conditions, can be
built. On the other hand, there are other cases where it is
practically difficult to measure parameters related to the
environmental and/or operational conditions. This paper
addresses the later cases where no measurements are available
for these natural variations.

The idea is based on auto-associative neural networks
where target outputs are simply inputs to the network. Using
the measured features corresponding to the normal conditions,
the auto-associative neural network is trained to characterize
the underlying dependency of the measured features on the
unmeasured environmental and operational variations by
treating these environmental and operational conditions as
hidden intrinsic variables in the neural network.

The layout of this paper is as follows. In Section 2, a brief
description of auto-associative neural network is given relating
this network with Principal Component Analysis (PCA) and
Nonlinear Principal Component Analysis (NLPCA). A measure
of novelty or novelty index is defined in Section 3 using the
auto-associative network outputs. In Section 4, the applicability
of the auto-associative neural network to damage diagnosis
problems is demonstrated on synthetic data sets obtained from
a simplified model of a computer hard disk. The paper
concludes with a general discussion in Section 5.



2. AUTO-ASSOCIATIVE NEURAL NETWORKS

PCA has been proven to facilitate many types of multivariate
data analysis including data reduction and visualization, data
validation, fault detection, and correlation analysis (Fukunaga
and Koontz, 1970). Similar to PCA, NLPCA is used as an aid
to multivariate data analysis. While PCA is restricted on
mapping only linear correlations among variables, NLPCA can
reveal the nonlinear correlations presented in data. If nonlinear
correlations exist among variables in the original data, NLPCA
can reproduce the original data with greater accuracy and/or
with fewer factors than PCA. This NLPCA can be realized by
training a feedforward neural network to perform the identity
mapping, where the network outputs are simply the
reproduction of network inputs. For this reason, this special
kind of neural network is named as an auto-associative neural
network (See Figure 1). The network consists of an internal
“bottleneck” layer and two additional hidden layers. The
bottleneck layer contains fewer nodes than input or output
layers forcing the network to develop a compact representation
of the input data. The NLPCA presented in this paper is a
general purpose feature extraction/data reduction algorithm
discovering features that contain the maximum amount of
information from the original data set. In the following
sections, PCA and NLPCA are briefly reviewed. More detailed
discussions on PCA, NLPCA, and auto-associative networks
can be found from Fukunaga (1990), Kramer (1991),
Rumelhart and McClelland (1988), respectively.

2.1. Principal Component Analysis (PCA)

PCA is a linear transformation mapping multidimensional data
into lower dimensions with minimum loss of information. Let
Y represent the original data with the size of mXxn . Here, m is
the number of variables and » is the number of data sets. PCA
can be viewed as a linear mapping of data from the original
dimension m to a lower dimension d:

X=TY (D

where X (€ R¥") is called the scores matrix. T (€ R™) is

called the loading matrix and TT' =I. The loss of
information in this mapping can be assessed by re-mapping the
projected data back to the original space:

Y=T"X 2
Then, the reconstruction error (residual error) matrix E is
defined as:

E=Y-Y ()
The smaller the dimension of the projected space, the greater
the resulting error. The loading matrix T can be found such that
the Euclidean norm of the residual matrix, ||E|, is minimized
for the given size of d. It can be shown that the columns of T
are the eigenvectors corresponding to the d largest eigenvalues
of the covariance matrix of Y (Fukunaga, 1990).

2.2. Nonlinear Principal Component Analysis (NLPCA)
NLPCA generalizes the linear mapping by allowing arbitrary
nonlinear functionalities. ~Similar to Equation (1), NLPCA
seeks a mapping in the following form:

X =G(Y) @)

where G is a nonlinear vector function and consists of d
number of individual nonlinear functions: G = {GI,GZ,...,G 4 }.

By analogy to Equation (2), the inverse transformation,
restoring the original dimensionality of the data, is
implemented by a second nonlinear vector function H:

Y =H(X) (5)

The information lost is again measured by E=Y-Y.
Similar to PCA, G and H are computed to minimize the
Euclidean norm of ||E|| meaning minimum information loss in
the same sense as PCA. NLPCA employs artificial neural
networks to generate arbitrary nonlinear functions. Cybenko
(1989) has shown that functions of the following form are
capable of fitting any nonlinear functiony= f(x) to an

arbitrary degree of precision:

N, N
Y =2w§k0[2wfjxi+bj} (6)
=1 i=1

where y,and x; are the kth and ith components of y and x,
respectively. W; represents the weight connecting the ith node
in the kth layer to the jth node in the (k+/)th layer, and b; is a

node bias. o(x) is a monotonically increasing continuous

function with the output range of O to 1 for an arbitrary input x.
A sigmoid transfer function is often used in neural networks to
realize this function.

Note that, to fit arbitrary nonlinear functions, at least two
layers of weighted connections are required, and the first
hidden layer should be composed of sigmoidal functions.
Therefore, the two nonlinear vector functions in Equations (4)
and (5) should have the same architecture: one hidden layer
with sigmoidal functions and one output layer. The output layer
can have either linear or sigmoidal transfer functions without
affecting the generality of the mapping. For instance, the first
hidden layer of G, which consists of M, nodes with sigmoidal

functions, operates on the columns of Y mapping m inputs to
M, node outputs. The output of the first hidden layer is

projected into the bottleneck layer, which contains d nodes. In a
similar fashion, the inverse mapping function H takes the
columns of X as inputs relating d inputs to M, node outputs.

The final output layer reconstructs the target output Y, and
contains m nodes. This network architecture consisted of
mapping and de-mapping G and H is shown in Figure 1. It
should be noted that if the neural networks for G and H are to
be trained separately, the target output X is unknown for the
training of the G network. For the same reason, the input for
the H network is not known. It is observed that X is both the



output of G and the input of H. Therefore, combining the two
networks in series, where G feed directly into H, results in a
new network whose inputs and target outputs are not only
known but also identical. Now, the supervised training can be
applied to the combined network.

The combined network contains three hidden layers; the
mapping, the bottleneck, and de-mapping layers. The second
hidden layer is referred to as the bottleneck layer because it has
the smallest dimension among the three layers. Note that the
nodes in the mapping and de-mapping layers must have
nonlinear transfer functions to model arbitrary G and H
functions. However, nonlinear transfer functions are not
necessary in the bottleneck layer. If the mapping and de-
mapping layers were eliminated and only the linear bottleneck
layer were left, this network would reduce to linear PCA as
demonstrated by Sanger (1989). Typically M, and M, are

selected to be larger than m and they are set to be equal
(M,=M,). Hereafter, the dimensions of the mapping and de-

mapping layers are collectively referred to as the dimension of
the mapping layers and denoted as M .

De-mapping function H

Mapping function G

Mapping Bottleneck  De-mapping Output
layer layer layer layer

Figure 1: A schematic presentation of an auto-associative neural
network

In this study, the auto-associative network is employed to
reveal the latent relationship between the measured features and
the unmeasured intrinsic parameters causing the variations of
the measured features. For example, the measured fundamental
frequency of the Alamosa Canyon Bridge in New Mexico
varied approximately 5% during a 24-hour test period, and the
change of the fundamental frequency was correlated to the
temperature difference across the bridge deck (Sohn et al.,
1999). (Because the bridge is approximately aligned in the
north and south direction, there is a large temperature gradient
between the west and east ends of the bridge deck throughout
the day.) The auto-associative neural network presented here
can be trained to learn these correlations and reveal the inherent
variables driving the changes. Then, assuming that the neural
network is trained to capture the embedded relationships, the
prediction error of the neural network will grow when an

irrelevant data set, such as ones obtained from a damage state
of the system, is fed to the network. Based on this assumption,
the auto-associate network is incorporated with novelty
detection, which is described in the following section. The
objective of novelty detection is to observe a sequence of
patterns and signal if one significantly differs from the rest of
population.

3. NOVELTY INDEX

The objective of the present novelty detection is to eschew the
physics-based model approaches such as finite element
analysis, and therefore pave the way for signal-based
techniques applicable to systems of arbitrary complexity.
However, the present novelty detection provides an indication
only about the presence of damage in a system of interest. This
method does not give information about the location and extent
of the damage. That is, the novelty detection only identifies if a
new pattern differs from previously obtained patterns in some
significant respect. Although the damage assessment problem
can be posed with several levels of complexity, the detection of
damage presence is arguably the most important step. Once the
existence of damage is confirmed the system can be taken out
of service and subjected to detailed inspection to locate and
quantify damage. The concept of novelty detection is not
entirely new and applications in other fields can be found in
literature (Bishop, 1994; Tarassenko et al., 2000; Worden et al.,
2000).

For the current specific application of our interest, the
auto-associative neural network will be trained using features
extracted from the healthy baseline system and the threshold
value for the novelty index will be established accordingly.
When damage occurred in the system, the damage would alter
the dynamic characteristics of the system and consequently the
novelty indicator would signal a fault. One of the biggest
challenges here is to identify significant system changes such
as structural damage and degradation which cannot be
attributed to natural fluctuations in the system responses due to
changing environmental and operation variations. As described
above, the auto-associative neural network is forced to learn the
underlying dependency of the extracted features on these
natural variations. Therefore, when the auto-associative
network is fed with the inputs obtained from an unprecedented
state of the system, for example, a damage state of the system,
the novelty index (NI), which is defined as the Euclidean
distance between the target outputs and the outputs of the
neural network (Worden, 1997):

Ny)=lly-yI ()

where y and y are each individual columns of Y and Yin
Equation (3). If the learning has been successful, y=y and
NI(y) =0 for all data in the training data set. However, if y
were acquired after damage is introduced to the system, NI(y)

would noticeably departure from zero providing an indication
of an abnormal condition of the system.



The novelty index can be also defined using the
Mahalanobis distance measure between the target outputs and
the network outputs (Duda and Hart, 1973):

NIy =(y=$)"E" (y=9) ®)
where X is the sample covariance matrix of the training data.
This covariance matrix can be calculated with or without the
potential outlier in the sample depending upon whether
inclusive or exclusive measures are preferred (Barnett and

Lewis, 1994). In this study, the first definition of the novelty
index is employed.

4. EXAMPLE
4.1. Description of the Numerical Example
The proposed novelty detection technique is demonstrated
using a simplified model of a computer hard disk (MathWorks,
1998). Using Newton’s law, the second order differential
equation for the read/write head shown in Figure 2 can be
written as follows:
2
J¥+Cﬁ+ KO=Ki;i ©))
dt dt

where J is the inertia of the head assembly, C is the viscous
damping coefficient of the bearings, K is the return rotational

spring constant, K, is the motor torque constant, € is the

angular position of the head, and i is the input current.
Although most modern hard disks have closed-loop controllers
to accurately position the read/write head, reduce the seek time
of the hard disk, and stabilize the system, the feedback
compensator of the hard disk is omitted in this example for
simplicity.

Disk Platen

Disk Drive Motor

\o_& 0

Read/Write
Head

Solenoid

Figure 2: A computer hard disk drive

Note that although the example presented in this study is
simple, the proposed method has much wider applicability than
this simulation because the method presented does not assume
any physics-based modeling. For instance, when detecting
faults in a composite plate, the complexity of the geometry,

boundary conditions, and the lay-up make it difficult to model
the baseline structure. Furthermore, the modeling of damage
such as fiber pullout, fiber fracture, matrix fracture, and
delamination could be even more difficult (Worden, 1997). The
proposed method combining the auto-associative network and
novelty index only requires a sequence of measurements
corresponding to the normal conditions of the system.

To simulate an operational variation of the system, it is
assumed that the values of K, K, J, and C are a function of an
ambient temperature, T, as shown in Figure 3. For example, the
nominal values of K, K,, J, and C are 10 Nm/rad, 0.047
Nm/rad, 0.01 Kg-m, 0.0 Nm/(rad/sec), respectively, at
T=15C°. For the temperature range of (—15C°,45C°), K,

K;, and J values vary about £20% from this nominal values at

T=15C°. C is simply changed from -0.004 to +0.004

although the negative damping value does not have any
physical meaning into it. The explicit expressions for these
temperature dependent variables are assigned as follows:

%(O.le—1.5)3+%(O.1><T—1.5)+10 (10)

K, =%[(0.1><T—1.5)3 +(0.1xT-1.5)°

K:

an

+(0.1><T—1.5)+1]+%
7=001 L+9 (12)
15
C =0.004x tanh| 7% (13)
300 2

The temperature dependencies of these variables are arbitrarily
assumed without any physical understandings of the actual
system.

Taking the Laplace transform of Equation (9) and
discretizing the continuous transfer function, the discrete
transfer function, H(z) , fromito & is obtained:

bz+b,

H(z)=—
Z“+az+a,

14
The coefficients of the transfer function in Equation (14) are
chosen as features for the subsequent network training. Here,
feature extraction refers to identifying the salient features of
data to facilitate its use in a subsequent analysis, in the current
case, the novelty detection. That is, features are a set of
variables derived from the original data set and they are
supposed to capture the relevant information contained in the
original data. Because of the underlying dependencies of K,
K.,J,andConT, qa,,a,,b ,and b, also become temperature

dependent variables as shown in Figure 4. In actual
applications, these coefficients should be estimated by using
time series analyses (Box et al., 1994) or system identification
techniques (Ljung, 1999). However, for simplicity, the
coefficients for the numerical transfer function are used in this
example.



The superficial dimensionality of data, or the number of
observations, is often much larger than the intrinsic
dimensionality, or the number of independent variable causing
the underlying variations in the observations. This is also true
in the current example because four parameters (a, ,a,,b, ,b,)

are extracted and there is only one intrinsic variable (T) driving
the changes of these four parameters. The auto-associative
neural network should be able to capture these nonlinear/linear
dependencies of the transfer coefficients on the temperature.
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Figure 3: Temperature variation of K, K;, J, C
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Figure 4: Temperature variation of a,, a,, b,, b,

4.2. Training of Auto-Associative Neural Network

In order to train the neural network, the coefficients of the
transfer function, a,, a,, b,, b, are specified as inputs to the
auto-associated neural network. Assuming a uniform
distribution of temperature in the range of (—15C°,45C°), K,

K., J, and C values are computed at randomly selected 600

temperature values according Equations (10)-(13). Then, the
associated a,, a,, b, b, coefficients are obtained, corrupted

with Gaussian noises, and used as the training data set. That is,
the data set consists of 600 observations with 4 input variables
(m=4 and n=600). The data set was scaled so that each variable
ranges from —1 to 1. This scaling weighs all four variables
equally important and is similar to the division of data set by
standard deviation often used in the preparation of data for
PCA. It should be noted that temperature, T, is only one
underlying parameter driving the changes of these coefficients.
Therefore, the auto-associative neural network with only one
node in the bottleneck layer should be able to reproduce this
training data set (see Figure 5).

The auto-associative neural networks with different
dimensions in the mapping and de-mapping layers are applied
to this training data to determine the best network architecture.
In general, the number of nodes in the mapping and de-
mapping layers is set to be larger than that of the bottleneck
layer (M,,M,> d). However, there are no definitive rules for

deciding the dimensions of the mapping and de-mapping
layers. The complexity of the nonlinear functions, which the
neural network represents, primarily controls the number of
nodes in the mapping and de-mapping layers. If too few nodes
are specified in the mapping layers, the accuracy of the neural
network might be poor. On the other hand, if too many
mapping nodes are provided, the network will be prone to
overfitting learning the stochastic nature of the data rather than
the underlying functionalities. In practice, the available data
might impose constraints on the number of nodes in the hidden
layers if the number of training data sets is limited. Otherwise,
explicit criteria trading off between the accuracy and the
dimension of the hidden layers are often used. Two such
criteria are Akaike’s Final Prediction Error (FPE) and An
Information theoretic Criterion (AIC) (Ljung, 1999):

FPE=e¢(1+N,/N)/(1-=N,/N) (15)

AIC =In[e]+2N,/N (16)

where N,=(m+d+1)(M,+M,)+m+d is the total number

of weights, N =nmis the number of points in the data,
e=E/(2N), and E is the sum of squared errors for all entries

in Y-Y . Minimization of these criteria identifies the number
of nodes that are neither underparameterized nor overfitted. In
this example, a neural network with 10 nodes in each mapping
and de-mapping layer has minimized the two criteria on
average, and is employed for the subsequent novelty detection.
The number and time of iterations are not reported here
because the iterations depend on the training method and the
initial conditions. However in most cases, less than 10,000
iterations were required before convergence. Several trainings
with different initial conditions were required for a given
architecture to assure that the global minimum had been
achieved. Also, sigmoidal transfer functions were used in all
hidden layers as well as the output layer so that the outputs



were bounded in the range (-1, 1). The networks employed in
this study are conventional feedforward networks and trained
by a Levenberg-Marquardt version of backpropagation. It is
reported that the Levenberg-Marquardt algorithm is 10 to 100
times faster than the usual gradient descent method (Hagan and
Menhaj, 1994).
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Figure 5: The neural network architecture for the hard disk drive
example
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Figure 6: Correlation between temperature and the output in the
bottleneck layer

Although it is not presented in this paper, the difference
between the original training data Y and the reconstructed data

Y was negligible for most cases. If the neural network was
successfully trained, the output of the bottleneck layer should
be analogous to the unmeasured temperature T because the
temperature is the only underlying intrinsic variable causing all
the fluctuations. Figure 6 shows the relationship between the
output of the bottleneck layer and temperature, T. The
bottleneck output is indeed closely related to the temperature:
the relationship, although not linear, is monotonic and this is
sufficient to reconstruct the input at the output layer. Therefore,
this auto-associative neural network had in a sense revealed the
unmeasured temperature embedded in this data set.

4.3. Damage Scenarios

The fault in this system is simulated by changing K and C by
various degrees. The four damage cases investigated in this
study are summarized in Table 1. For instance, the damping
coefficient of case (a) is fixed at the damping value
corresponding to T= 20C° (C,=C,,), and the damaged
return spring constant, K,, is varied between 0.85K,, and

0.95K,, . Here, K,, is the value of the return spring constant at

T= 20C°. More specifically, 600 sets of K, values are
randomly sampled between 0.85 K,, and 0.95 K,, assuming a
uniform distribution between these two values. Then, the
corresponding values of «,, a,, b,, and b, are computed, and

fed to the previously trained auto-associative neural network
for the computation of the novelty index. In a similar manner,
input data with the size of 4x600 are generated for damage
cases (b) — (d).

60 -20 0 20 40 60

0 0
-05 05
- -
-20 0 20 40 60 -20 0 20 40 60
T(C T(C)

Figure 7: Comparison of the variation magnitudes caused by
ambient temperature and damage case (d)
(-: variation caused by temperature, +: variation cause by
damage)

To provide a perspective of the variation magnitudes
caused by damage and ambient temperature, Figure 7 shows the
fluctuations of the transfer function coefficients associated with
damage case (d) in Table 1. It is clearly shown that, in this
example, temperature produces much larger changes in these
coefficients than damage. Therefore, without special cautions
and treatment, it is very difficult to identify what is causing
these variations. This kind of observation can be often found in
many applications. For example, dynamic characteristics of
offshore platforms undergo significant variations in time as a
result of tides and change of oil storage producing a continuous
range of normal conditions. In this case, it is clearly undesirable
for the novelty detector to signal damage simply because of a



change in the environment. The presented auto-associative
network can help to address this issue by learning the concealed
dependency of the network inputs on the unmeasured intrinsic
parameters.

Table 1: Damage scenarios investigated in this study

Cases Spring constant (K, ) Viscous damping (C, )

(a) [0.85K,, 0.95K,, ] Cy
(b) Ky [0.90C,, 1.10Cy, ]
© [0.95K,, 1.05K,, ] Cy

) [0.95K,, 1.05K,, ] [0.90C,, 1.10Cy ]

4.4. Novelty Detection
First, validation data corresponding to the baseline system are
created in a similar way to the generation of the training data
set. That is, for a randomly selected temperature value, the
physical parameters and the coefficients of the transfer function
are computed. Then, the auto-associative neural network takes
the coefficients as inputs and computes the novelty index. This
procedure is repeated 600 times to generate the same number of
novelty measures.

For each damage case in Table 1, a,, a,, b, and b,

coefficients are obtained from the partially perturbed K,, K,
J, and C, . Then, the novelty index defined in Equation (7) is

computed after feeding these coefficients into the previously
trained network. The diagnosis results are displayed in Figure
8. Case (a) produces novelty values, which show gross changes
and visual inspection suffices to identify the fault. Cases (c)
and (d) result in more subtle changes but still noticeable
changes. However, case (b) does not display any distinct
changes.

The establishment of a threshold value can be useful to
decide if “statistically significant” changes have occurred in the
system condition. However, the construction of the threshold
value based on a rigorous statistical analysis is not achieved in
this study. Further investigation is necessary to address this
issue. Worden (1997) and Cempel (1985) established the
warning level, above which it is considered that a reading is
sufficiently abnormal to require investigation. The computation
of the warning level is based on a continuous adjustment of the
mean and standard deviation of the parameter records, and then
confidence intervals can be assigned assuming a Gaussian
distribution of the records.

Based on permutation theory, Box and Andersen (1955)
proposed a modified hypothesis test to safely use in more
general applications without a normality assumption. The
primary objective is to test the null hypothesis, H,:

o’ (0)=0"(y)
o*(x)<o?(y). Here o*(x) and o*(y) are the variances of

against the one-sided alternative H,:

arbitrary variablesx and 1y, respectively. This modified

hypothesis test can be employed to check if the new signal has
significantly changed from the training data set. Various studies
based on Monte Carlo simulation (Miller 1997 and references
therein) have demonstrated that this Box-Andersen test
maintains reasonably correct significant levels under the null
hypothesis for a variety of heavy- and short-tailed distributions.

(a) K =[085 Ky, 0.95 K]
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Figure 8: Novelty indices evaluated at four different damage
cases

5. CONCLUSIONS

This paper extends the previous work on novelty detection for
structural damage diagnosis, explicitly taking into account
changing environmental and operational conditions. An attempt
is made to discriminate the changes of system responses due to
ambient operational conditions from those caused by structural
damage. The proposed approach is demonstrated using a
simplified model of a computer hard disk. Results indicate that
the incorporation of the auto-associative network with novelty
measure enables to detect damage even when the system
exhibits a rage of normal conditions. The development
presented here may allow some progress in in-service
monitoring of aerospace, automobile, civil, and mechanical
systems, which are subject to various operational and
environmental conditions.

Before the proposed approach could be used with
confidence on experimental data, several issues need to be
addressed. First, this study assumes that environmental
variations and damage have uncorrelated effects on the
system’s response, making it easier to discriminate them. In
some cases, the environmental effects, however, have similar
influence on the system’s dynamic characteristics as damage
has. In this case, the discrimination between environmental
effects and damage becomes more difficult. Therefore, further
studies are needed for this situation.

Second, the sensitivity of the novelty index performance
based on different noise types and levels need to be further
investigated. It is also important to establish what degree of
changes in the novelty is statistically significant. Joint research
work is currently underway at Los Alamos National Laboratory
and University of Sheffield to address these issues.
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