

INFORMATION CLEARANCE FORM

6-15-91

A. Information Category

<input type="checkbox"/> Abstract	<input type="checkbox"/> Journal Article
<input type="checkbox"/> Summary	<input type="checkbox"/> Internet
<input type="checkbox"/> Visual Aid	<input type="checkbox"/> Software
<input type="checkbox"/> Full Paper	<input checked="" type="checkbox"/> Report
<input type="checkbox"/> Other _____	

B. Document Number DOE/RL-99-41

C. Title

Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1998

D. Internet Address

E. Required Information

1. Is document potentially Classified? No Yes (MANDATORY)

Refer to Attached
Manager's Signature Required

If Yes No Yes Classified

ADC Signature Required

2. Internal Review Required? No Yes

If Yes, Document Signatures Below

Counsel _____

Program _____

3. References in the Information are Applied Technology No Yes

Export Controlled Information No Yes

4. Does Information Contain the Following: (MANDATORY)

a. New or Novel (Patentable) Subject Matter? No Yes

If "Yes", Disclosure No.: _____

b. Information Received in Confidence, Such as Proprietary and/or Inventions?

No Yes If "Yes", Affix Appropriate Legends/Notices.

c. Copyrights? No Yes If "Yes", Attach Permission.

d. Trademarks? No Yes If "Yes", Identify in Document.

5. Is Information requiring submission to OSTI? No Yes

If Yes UC-702 and B&R-_____

6. Release Level? Public Limited

7. Charge Code 100019 *HN 970141*

F. Complete for a Journal Article

1. Title of Journal

G. Complete for a Presentation

1. Title for Conference or Meeting _____

2. Group Sponsoring _____

3. Date of Conference _____

4. City/State _____

5. Will Information be Published in Proceedings? No Yes

6. Will Material be Handed Out? No Yes

H. Author/Requestor

Refer to Attached
(Print and Sign)

Responsible Manager

Refer to Attached
(Print and Sign)

I. Reviewers

Yes Print

Signature

Public Y/N (If N, complete J)

General Counsel

L. F. Willis

Y / N

Office of External Affairs

Attached to Section 3.7

Y / N

DOE-RL

Attached to Section 3.7

Y / N

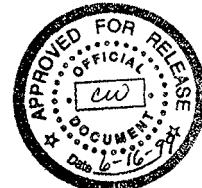
Other

Attached to Section 3.7

Y / N

Other

Attached to Section 3.7


Y / N

J. If Information Includes Sensitive Information and is not to be released to the Public indicate category below.

Information Clearance Approval

<input type="checkbox"/> Applied Technology	<input type="checkbox"/> Protected CRADA
<input type="checkbox"/> Personal/Private	<input type="checkbox"/> Export Controlled
<input type="checkbox"/> Proprietary	<input type="checkbox"/> Procurement-Sensitive
<input type="checkbox"/> Business-Sensitive	<input type="checkbox"/> Patentable
<input type="checkbox"/> Predecisional	<input type="checkbox"/> Other (Specify) _____
<input type="checkbox"/> UCNI	

K. If Additional Comments, Please Attach Separate Sheet

DISTRIBUTION (cont)**MSIN**Fluor Daniel Hanford, Inc. (cont)

D. G. Ranade

H6-23

CH2M Hill, Inc.

E. T. Coenenberg

H9-03

B&W Hanford Company

J. M. Barnett

L1-05

J. E. Bramson

T5-54

N. R. Dahl

N2-57

T. A. Dillhoff

S5-03

D. L. Johnson

L1-05

G. J. LeBaron

S4-49

D. E. Rasmussen

L1-04

R. D. Weissenfels

S6-51

D. L. Wiegand

T4-20

DE&S Hanford, Inc.

R. G. Gant

X3-79

D. J. Watson

X3-79

DynCorp Tri-Cities Services, Inc.

B. J. Dixon

G3-26

Lockheed Martin Hanford Corporation

M. S. Allen

R1-51

M. J. Brown

R1-51

D. J. Carrell

R1-51

G. M. Crummel

R1-51

D. L. Dyekman

S7-03

B. G. Erlandson

R1-51

P. C. Miller

R1-51

K. S. Tollefson

R1-51

Lockheed Martin Services, Inc.

Central Files

B1-07

DPC

H6-08

EDMC (2)

H6-08

Numatec Hanford Corporation

R. A. Kaldor

H5-25

Waste Management Federal Services of Hanford, Inc.

B. M. Barnes

T4-04

M. W. Bowman

S6-72

H. C. Boynton

T4-52

J. B. Buckley

T3-04

B. L. Curn

H6-36

W. E. Davis

H6-36

L. P. Diediker (50)

H6-36

RELEASE AUTHORIZATION

Document Number: DOE/RL-99-41, Rev. 0

Document Title: Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1998

This document, reviewed in accordance with DOE Order 241.1, "Scientific and Technical Information Management," and DOE G 241.1-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

Christine Willingham

C. Willingham

6/16/99

Date

Lockheed Martin Services, Inc.
Document Control/Information Release

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

Trademark Disclaimer. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy.

Printed in the United States of America.

Available to the U.S. Department of Energy and its contractors from the U.S. Department of Energy Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; Telephone: 423/576-8401.

Available to the public from the U.S. Department of Commerce National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; Telephone: 703/487-4650.

S

Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1998

**United States
Department of Energy
Richland, Washington**

RECORD COPY

Approved for Public Release

S

Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1998

L. P. Diediker

Waste Management Federal Services of Hanford, Inc.

K. Rhoads

Pacific Northwest National Laboratory

Date Published

June 1999

**United States
Department of Energy
Richland, Washington**

Approved for Public Release

RELEASE AUTHORIZATION

Document Number:	DOE/RL-99-41, Rev. 0
Document Title:	Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1998

This document, reviewed in accordance with DOE Order 241.1, "Scientific and Technical Information Management," and DOE G 241.1-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

Christine Willingham

C. Willingham

6/16/99

Date

Lockheed Martin Services, Inc.
Document Control/Information Release

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

Trademark Disclaimer. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy.

Printed in the United States of America.

Available to the U.S. Department of Energy and its contractors from the U.S. Department of Energy Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; Telephone: 423/576-8401.

Available to the public from the U.S. Department of Commerce National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; Telephone: 703/487-4650.

RADIONUCLIDE AIR EMISSIONS REPORT FOR THE HANFORD SITE, CALENDAR YEAR 1998

ABSTRACT

This report documents radionuclide air emissions from the Hanford Site in 1998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR 61), Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities," and with the Washington Administrative Code Chapter 246-247, Radiation Protection — Air Emissions.

The federal regulations in 40 CFR 61, Subpart H, require the measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv), which is 0.13 percent of the federal standard.

Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.5 E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE, which is 0.38 percent of the 10 mrem/yr standard.

An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned event was similar in magnitude to that from routine releases during 1998. Were the release from this unplanned event combined with routine releases, the total dose would be less than 1 percent of the 10 mrem/yr standard.

Mr. Arthur V. Ingle, of the U.S. Department of Energy, Richland Operations Office, can be contacted by phone, at (509) 372-1822, concerning the information in this document.

This page intentionally left blank.

CONTENTS

ABSTRACT	iii
TERMS	xi
1.0 INTRODUCTION	1-1
1.1 PURPOSE AND SCOPE	1-1
1.2 SITE DESCRIPTION	1-1
1.2.1 Historical Background	1-1
1.2.2 Major Activities	1-1
1.3 POINT-SOURCE DESCRIPTIONS	1-5
1.3.1 General Description and Reporting Criteria	1-5
1.3.2 100 Area Facilities	1-5
1.3.2.1 N Reactor	1-5
1.3.2.2 100-K East and West Areas	1-8
1.3.3 200 East Area Facilities	1-8
1.3.3.1 PUREX Plant	1-8
1.3.3.2 B Plant	1-8
1.3.3.3 Waste Encapsulation and Storage Facility	1-10
1.3.3.4 244-AR and 244-CR Vaults	1-10
1.3.3.5 200 East Area Tank Farms	1-11
1.3.3.6 242-A Evaporator	1-12
1.3.3.7 200 Area Effluent Treatment Facility	1-12
1.3.3.8 209-E Critical Mass Laboratory	1-12
1.3.4 200 West Area Facilities	1-13
1.3.4.1 REDOX Plant	1-13
1.3.4.2 T Plant Complex	1-13
1.3.4.3 224-T Building	1-13
1.3.4.4 U Plant	1-15
1.3.4.5 Plutonium Finishing Plant	1-15
1.3.4.6 200 West Area Tank Farms	1-15
1.3.4.7 200 West Area Evaporators	1-16
1.3.4.8 222-S Laboratory	1-16
1.3.4.9 Waste Sampling and Characterization Facility	1-16
1.3.4.10 Waste Verification and Sampling Facility	1-17
1.3.4.11 Waste Receiving and Processing Facility	1-17
1.3.5 300 Area Facilities	1-17
1.3.5.1 305-B Hazardous Waste Storage Building	1-17
1.3.5.2 306-W Materials Development Laboratory	1-17
1.3.5.3 309 Plutonium Recycle Test Reactor	1-17
1.3.5.4 340 Complex	1-19
1.3.5.5 318 Radiological Calibrations Laboratory	1-19
1.3.5.6 320 Analytical and Nuclear Research Laboratory	1-19
1.3.5.7 323 Mechanical Properties Laboratory	1-20
1.3.5.8 324 Waste Technology Engineering Laboratory	1-20
1.3.5.9 325 Radiochemical Processing Laboratory	1-20
1.3.5.10 326 Materials Sciences Laboratory	1-20
1.3.5.11 327 Post-Irradiation Testing Laboratory	1-20
1.3.5.12 329 Chemical Sciences Laboratory	1-20
1.3.5.13 331 Life Sciences Laboratory	1-21

1.3.5.14	331-G Interim Tissue Repository	1-21
1.3.5.15	3020 Environmental Molecular Science Laboratory.....	1-21
1.3.5.16	3720 Environmental Sciences Laboratory	1-21
1.3.5.17	3730 Gamma Irradiation Facility	1-21
1.3.5.18	3745 Radiological Calibrations and Standards Facility	1-23
1.3.6	400 Area Facilities	1-23
1.3.6.1	Fast Flux Test Facility	1-23
1.3.6.2	MASF	1-23
2.0	RADIONUCLIDE AIR EMISSION DATA ON POINT SOURCES	2-1
3.0	POINT-SOURCE EMISSION DOSE ASSESSMENTS	3-1
3.1	DESCRIPTION OF POINT-SOURCE EMISSIONS DOSE MODEL.....	3-1
3.2	SUMMARY OF INPUT PARAMETERS	3-1
3.3	COMPLIANCE ASSESSMENT.....	3-2
3.3.1	40 CFR 61, Subpart H, Regulatory Standard.....	3-2
3.3.2	WAC 246-247 Regulatory Standard	3-2
3.4	METEOROLOGICAL DATA	3-5
3.5	NONROUTINE RELEASES OF RADIONUCLIDES TO THE ATMOSPHERE	3-5
3.6	ADDITIONAL INFORMATION	3-6
3.7	CERTIFICATION.....	3-9
4.0	DIFFUSE AND FUGITIVE SOURCES OF EMISSIONS.....	4-1
4.1	DIFFUSE AND FUGITIVE EMISSIONS MONITORING	4-2
4.1.1	Near-Facility Environmental Monitoring	4-3
4.1.2	Environmental Surveillance	4-3
4.2	ESTIMATED DOSES FROM DIFFUSE AND FUGITIVE EMISSIONS	4-5
4.2.1	Description of Dose Assessment Method	4-5
4.2.2	Results of Dose Assessment	4-7
4.2.3	Estimate of Uncertainty in Dose Assessment	4-8
4.2.4	Discussion	4-9
4.3	DIFFUSE AND FUGITIVE EMISSION SOURCES	4-9
4.3.1	Description of Diffuse and Fugitive Emission Sources	4-11
4.3.1.1	Crib	4-12
4.3.1.2	Pond	4-13
4.3.1.3	Ditch	4-13
4.3.1.4	Trench	4-13
4.3.1.5	Retention Basin.....	4-13
4.3.1.6	Diversion Box	4-13
4.3.1.7	Valve Pit	4-13
4.3.1.8	French Drain and Reverse Well	4-13
4.3.1.9	Tank	4-14
4.3.1.10	Burial Ground.....	4-14
4.3.1.11	Deactivation, Decontamination and Decommissioning Activities.....	4-14
4.3.1.12	Waste Site Cleanup Activities	4-14
4.3.1.13	Outdoor Radioactive Surface Contamination Areas	4-15
4.3.1.14	Structures with Radioactive Contamination	4-16
4.3.2	Description of Specific Diffuse and Fugitive Emission Sources	4-16
4.3.2.1	100 Area Inactive Reactor Sites	4-16
4.3.2.2	100-K Area Basins	4-16
4.3.2.3	N Reactor	4-16
4.3.2.4	PUREX Plant	4-17

4.3.2.5	Uranium-Oxide Plant	4-17
4.3.2.6	PFP	4-18
4.3.2.7	T Plant Complex	4-20
4.3.2.8	224-T Building	4-21
4.3.2.9	B Plant	4-21
4.3.2.10	Waste Encapsulation and Storage Facility	4-22
4.3.2.11	222-S Laboratory Complex	4-22
4.3.2.12	Waste Verification and Sampling Facility	4-24
4.3.2.13	Central Waste Complex	4-25
4.3.2.14	Tank Farms	4-26
4.3.2.15	242-A Evaporator	4-27
4.3.2.16	242-S Evaporator	4-27
4.3.2.17	242-T Evaporator	4-27
4.3.2.18	Grout Treatment Facility	4-28
4.3.2.19	Low-Level Burial Grounds	4-28
4.3.2.20	340 Complex	4-29
4.3.2.21	300 Area Fuel Supply	4-31
4.3.2.22	Facility	4-31
4.3.2.23	Fast Flux Test Facility	4-35
5.0	SUPPLEMENTAL INFORMATION	5-1
5.1	POPULATION DOSE ESTIMATE	5-1
5.2	COMPLIANCE STATUS WITH 40 CFR 61, SUBPARTS Q AND T	5-1
5.3	EMISSION ESTIMATES AND CONFIRMATORY MEASUREMENT DATA FOR SPECIFIC NOCs	5-2
5.3.1	Sitewide Notices of Construction for Portable Exhausters	5-2
5.3.2	Miscellaneous Periodic Confirmatory Emission Measurements	5-3
5.3.3	Periodic Confirmatory Measurements in 1998 on NOC Sources Not Equipped with Record Sampling	5-4
5.4	AMBIENT AIR SAMPLING MEASUREMENTS	5-11
5.5	QUALITY ASSURANCE PROGRAM COMPLIANCE STATUS	5-22
6.0	REFERENCES	6-1
APPENDIX	APP-1

FIGURES

Figure 1-1. Hanford Site Map.	1-2
Figure 1-2. 100-N Area Emission Point Sources.	1-6
Figure 1-3. 100-K Area Emission Point Sources.	1-7
Figure 1-4. 200 East Area Emission Point Sources.	1-9
Figure 1-5. 200 West Area Emission Point Sources.	1-14
Figure 1-6. 300 Area Emission Point Sources.	1-18
Figure 1-7. Environmental Molecular Science Laboratory Emission Point Source.	1-22
Figure 1-8. 400 Area Emission Point Sources.	1-24
Figure 3-1. Historical Doses to the MEI Due to Point-Source Emissions of Radionuclides from the Hanford Site.	3-2
Figure 4-1. Historical Impact on Gross Beta Radioactivity in Hanford Site Ambient Air Samples, 1979 through 1990 (PNL 1991).	4-2
Figure 4-2. Near-Facility Ambient Air Sampling Locations.	4-4
Figure 4-3. Environmental Surveillance Ambient Air Sampling Locations.	4-6

TABLES

Table 2-1. Hanford Site Radionuclide Air Emissions from Major Point Sources in 1998.....	2-2
Table 2-2. Hanford Site Radionuclide Air Emissions from Minor Point Sources in 1998.....	2-6
Table 2-3. Distances and Directions from Major Operating Areas.....	2-11
Table 3-1. Release Estimates of Hanford Site Radionuclide Air Emissions in 1998.....	3-4
Table 3-2. CAP88-PC Effective Dose Equivalent Estimates for Maximally Exposed Individual at Sagemoor Road, Resulting from Hanford Site Radionuclide Air Emissions in 1998.....	3-5
Table 3-3. Doses from Major Point Sources	3-8
Table 4-1. Estimated Hanford Site Diffuse and Fugitive Emissions in 1998 and Resulting Effective Dose Equivalents.....	4-10
Table 4-2. Types of Waste and Number of Waste Sites at the Hanford Site.....	4-12
Table 4-3. Types of Diffuse and Fugitive Emission Sources	4-12
Table 4-4. Hanford Site Soil and Underground Contamination Areas.....	4-15
Table 5-1. Emission Estimates for PTREAU in 1998	5-2
Table 5-2. Annual Report for HEPA-Filtered Vacuum Usage in 1998.....	5-3
Table 5-3. Radionuclide Emission Estimates for FDH NOC at 309 Building for 1998.....	5-3
Table 5-4. Radionuclide Emission Estimates for PNNL NOC at 331G Building for 1998	5-4
Table 5-5. Notice of Construction Emission Sources Not Record Sampled	5-4
Table 5-6. Hanford Site Near-Field Monitoring Air Sampling Results for 1998.....	5-11
Table 5-7. Ambient Air Monitoring Data for 1998 Related to Environmental Restoration Contractor Projects	5-22

This page intentionally left blank.

TERMS

AMU	aqueous make-up
BHI	Bechtel Hanford, Incorporated
CAM	continuous air monitor
CFR	Code of Federal Regulations
CWC	Central Waste Complex
D&D	decontamination and decommissioning
DCRT	double-contained receiver tank
DOE	U.S. Department of Energy
DOE-RL	U.S. Department of Energy, Richland Operations Office
DOH	State of Washington Department of Health
DST	double-shell tank
EDE	effective dose equivalent
EDP	electronic data processing
EMSL	3020 Environmental Molecular Science Laboratory
EPA	U.S. Environmental Protection Agency
ERC	Environmental Restoration Contractor
ERDF	Environmental Restoration Disposal Facility
ETF	200 Areas Effluent Treatment Facility
FDH	Fluor Daniel Hanford, Inc.
FFCA	Federal Facilities Compliance Agreement
FFTF	Fast Flux Test Facility
FSS	Fuel Supply Shutdown
GTF	Grout Treatment Facility
Hanford	Hanford Site
HEPA	high-efficiency particulate air
HT	elemental tritium (an incondensable gas)
HTO	tritiated water vapor (condensable)
HVAC	heating, ventilation, and air conditioning
MASF	Maintenance and Storage Facility
MEI	maximally exposed individual (a hypothetical person)
MW	mixed waste
NESHAP	National Emission Standards for Hazardous Air Pollutants
NPDES	National Pollutant Discharge Elimination System
NOC	notice of construction
PPF	Plutonium Finishing Plant
PHMC	Project Hanford Management Contract
PNL	Pacific Northwest Laboratory
PNNL	Pacific Northwest National Laboratory (formerly PNL)
PRF	Plutonium Reclamation Facility
PTRAEU	portable temporary air emission unit
PUREX	Plutonium-Uranium Extraction
RCRA	Resource Conservation and Recovery Act
REDOX	Reduction-Oxidation
RSB	Reactor Service Building
SNM	special nuclear materials

TERMS (cont)

SST	single-shell tank
Supply System	Washington Public Power Supply System
TRIGA	Test Reactor and Isotope Production by General Atomics
TRU	transuranic
TRUSAFAF	224-T Transuranic Waste Storage and Assay Facility
UO ₃ Plant	Uranium-TriOxide Plant
WAC	Washington Administrative Code
WESF	Waste Encapsulation and Storage Facility
WHC	Westinghouse Hanford Company
WIPP	Waste Isolation Pilot Plant
WNP-2	Washington Public Power Supply System Nuclear Plant 2
WRAP	Waste Receiving and Processing Facility
WSCF	Waste Sampling and Characterization Facility

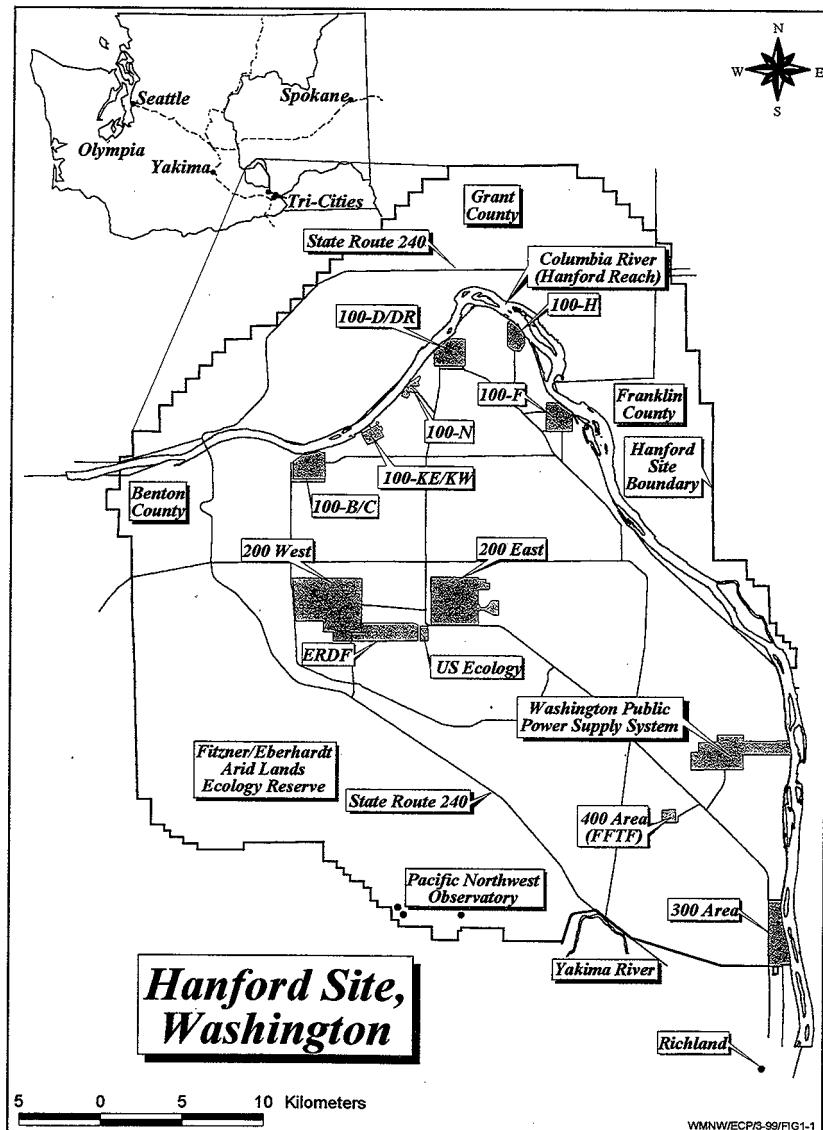
1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This report documents radionuclide air emissions from the Hanford Site in 1998, and the resulting effective dose equivalent (EDE) to the maximally exposed individual member of the public, referred to as the "MEI." The report has been prepared in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, *National Emission Standards for Hazardous Air Pollutants*, Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities." This report has also been prepared in accordance with the reporting requirements of the Washington Administrative Code (WAC) Chapter 246-247, *Radiation Protection — Air Emissions*.

1.2 SITE DESCRIPTION

The Hanford Site (Figure 1-1) is located in a rural region of southeastern Washington State between 468159° and 468459° longitude and between 1198159° and 1208009° latitude, occupying an area of about 560 mi² (1,450 km²). It lies about 200 mi (320 km) northeast of Portland, Oregon; 170 mi (270 km) southeast of Seattle, Washington; and 124 mi (200 km) southwest of Spokane, Washington. More in-depth discussions on the Hanford Site's characteristics and activities are available in the *Hanford Site National Environmental Policy Act (NEPA) Characterization* (PNNL 1998) and the *Hanford Site Climatological Summary 1998, with Historical Data* (PNNL 1999c).


1.2.1 Historical Background

The federal government acquired the Hanford Site in 1943, on which to construct and operate facilities for use in the atomic weapons program that began during World War II. For more than 40 years, most Hanford Site facilities were dedicated to operations that produced plutonium for national defense and to managing the radioactive and chemical wastes generated from those production processes. In more recent years, defense programs have declined considerably while new programs have emerged, including research and development of waste disposal technologies and the cleanup of environmental and facility contamination from past operational practices.

1.2.2 Major Activities

Five of the major U.S. Department of Energy (DOE) operating areas at the Hanford Site generated radioactive effluents in 1998: the 100, 200 East, 200 West, 300, and 400 Areas (Figure 1-1). The 100 Area has the two 100-K Spent Fuel Storage Basins and nine deactivated production reactors and their support facilities, all located near the Columbia River. The 200 Area is on a plateau about 21.5 mi (34.7 km) northwest of the city of Richland, and close to 7 mi (11.3 km) from the Columbia River. Facilities in the 200 East Area include the PUREX Plant, B Plant, Waste Encapsulation and Storage Facility (WESF), 242-A Evaporator, 200 Areas Effluent Treatment Facility, and East Tank Farms. Facilities in the 200 West Area include PFP, Uranium-TriOxide (UO₃) Plant, West Tank Farms, T Plant Complex, U Plant, REDOX Plant, 222-S Laboratory, Central Waste Complex, Waste Receiving and Processing, and the Low-Level Burial Grounds. The 300 Area, approximately 1 mi (1.6 km) due north of Richland, has research and development laboratories and the deactivated N Reactor Fuel Fabrication Facilities. The 400 Area has the Fast Flux Test Facility (FFTF), approximately 8 mi (12.9 km) north-northwest of Richland.

Figure 1-1. Hanford Site Map.

The 600 Area has the Waste Sample Characterization Facility (WSCF) — just east of the 200 West Area main entrance — and the rest of the facilities and not in the major operating areas.

Major events in 1998 relevant to radioactive airborne emissions monitoring and reporting are summarized as follows:

- Eight stacks, or point sources, were deactivated during 1998. They are 107-N, 116-N, 296-A-17, 291-B-1, 296-B-12, 296-B-13, 296-B-21, and 296-T-13.
- The emission point EP-331-01-V was upgraded from a "minor" to a "major" emission point in January 1998.
- A new, smaller stack was constructed in February 1998 for emission point EP-318-01-S as part of an energy-efficiency project.
- Environmental Restoration activities continued along the river in the 100 and 300 Areas of the Hanford Site. Contaminated soil from inactive waste sites was excavated, transported, and disposed of at the 200 Area Environmental Restoration Disposal Facility (ERDF).
- Cleanup activities at the 100-N Area continued with the deactivation of several facilities, removal and containment of N Reactor radioactive materials, and removal of radioactively contaminated water. The water was transferred to the 200 Areas Effluent Treatment Facility (ETF), and radioactively contaminated solid waste was disposed of at ERDF. Deactivation activities were completed in July 1998.
- Decontaminating and decommissioning of inactive contaminated facilities continued in the 100-B and -C Areas. Interim safe storage activities were completed at the C Reactor in September 1998.
- The 3020 Environmental Molecular Science Laboratory (EMSL) operated in 1998. EMSL is a national focal point for molecular science research with an emphasis on the Hanford Site's long-term environmental management mission.
- ETF operated in 1998, processing mixed aqueous waste streams.
- The 242-A Evaporator did not operate in 1998. (A cold run was made in June for testing purposes.)
- The 222-S Laboratory operated in 1998, performing tank waste characterization activities.
- The Waste Sampling and Characterization Facility (WSCF) operated in 1998, analyzing environmental samples.
- PFP Laboratory development testing was conducted on plutonium solutions. Plutonium storage vault activities consisted of moving considerable quantities of special nuclear material (SNM) to facilitate implementation of International Atomic Energy Agency (IAEA) safeguards on one of the storage vaults. Clean-out activities were also conducted in the 232-Z Incinerator Building.
- The PUREX Plant has remained in a shutdown condition since extensive deactivation activities were completed in June 1997.
- Extensive deactivation activities were performed at B Plant and completed in August 1998.

- WESF continued to manage and store the cesium and strontium capsules safely. The WESF 296-B-10 stack was upgraded to a major point source (i.e., potential of >0.1 mrem/yr EDE to nearest offsite receptor) in September 1998.
- The two 100-K Spent Fuel Storage Basins continued to store irradiated fuel removed from N Reactor.
- The 340 Complex operated in 1998, shipping liquid waste to the 200 Areas.
- FFTF did not operate in 1998. In December 1993, DOE had FFTF put into a radiologically and industrially safe shutdown condition. Pending decisions about possible future missions for FFTF, further shutdown activities were put on hold in 1996, a status that remained unchanged through 1998.

DOE-RL contractors at the Hanford Site are identified as follows, along with their management responsibilities and facilities they oversee having radionuclide air emissions:

- **Fluor Daniel Hanford, Inc. (FDH)** Manages the Project Hanford Management Contract (PHMC). FDH has responsibility for facilities such as Tank Farms, PFP, FFTF, Central Waste Complex (CWC), Low-Level Burial Grounds, 222-S Laboratory, WSCF, T Plant Complex, 224-T Building, PUREX Plant, B Plant, N Reactor Fuel Fabrication Facilities, 200 Area Power Houses, and 100-K Area Spent Fuel Storage Basins. It monitors liquid effluents and air emissions, performs environmental surveillance near DOE facilities managed by FDH and BHI, and provides Hanford Site support services, such as fire protection, central stores, distribution of electrical power, and generation of steam heat and power.
- **Battelle Memorial Institute.** Manages the Pacific Northwest National Laboratory (PNNL) for DOE. PNNL does research and development in the physical, chemical, life, and environmental sciences; produces advanced methods of nuclear waste management; and conducts environmental monitoring on and off the Hanford Site and liquid effluent and air emission monitoring at the DOE facilities it manages.
- **Bechtel Hanford, Incorporated (BHI).** BHI is the Environmental Restoration Contractor having responsibility for the surveillance and maintenance of inactive past-practice waste sites and inactive facilities; remediation of past-practice waste sites and contaminated groundwater; closure of Resource Conservation and Recovery Act land-based treatment, storage, and disposal units; overall Hanford Site groundwater project management and sitewide drilling management; facility transitions; and decontamination and decommissioning of facilities.

Privately and publicly owned facilities capable of generating airborne radioactive emissions are located at or near the Hanford Site. These facilities include (1) a low-level radioactive-waste burial site operated by U.S. Ecology, Richland, Washington, on the 200 Area plateau; (2) the Washington Public Power Supply System (Supply System) reactor (WNP-2) and office buildings, located near the Columbia River, several kilometers north of the 300 Area and east of the 400 Area; (3) the radioanalytical laboratory immediately south of the 300 Area operated by Quanterra, a subsidiary of IT Analytical Services; (4) the Siemens Nuclear Power Corporation fuel fabrication facility, which is immediately adjacent to the southern boundary of the Hanford Site; (5) Allied Technology Group, adjacent to Siemens on its east side; (6) Interstate Nuclear Services, located 1 mi (1.6 km) south of Hanford's southern boundary; and (7) Battelle's non-DOE research laboratories in north Richland. Emissions from these privately owned facilities are not included in this report because these are not regulated as part of the Hanford Site.

1.3 POINT-SOURCE DESCRIPTIONS

This section includes descriptions of point sources at the Hanford Site. For an emission source to be classified as a point source for reporting in the certified sections (1.0, 2.0, and 3.0) of this report, it had to meet the following four criteria during 1998: (1) it required continuous monitoring or periodic confirmatory measurements in accordance with 40 CFR 61 (Subpart H) or WAC 246-247, (2) it was registered with the State of Washington Department of Health (DOH), (3) it normally or potentially had radionuclide air emissions, and (4) effluent sampling was the monitoring method used. Point sources not included in the certified sections of this report did not meet all these criteria.

Emissions from other radionuclide air emission sources are reported in Sections 4.0 and 5.3. Emissions from these sources were estimated or verified using methods approved by EPA and DOH.

1.3.1 General Description and Reporting Criteria

Radionuclide air emissions from point sources generally are discharged from stacks and vents (stack implies vent as well, unless vent is used as the proper name or description of a point source). Stack sizes, shapes, and discharge paths vary because of facility requirements at the time of construction. Discharge heights range from nearly ground level to 200 ft (61 m), and flow rates range from less than 100 ft³/min (0.047 m³/s) to more than 200,000 ft³/min (94 m³/s). Stacks vary in design from horizontal to vertical, rectangular to cylindrical, actively to passively ventilated, and permanent to portable.

The following methods are used singly or in combination to remove radioactive constituents from most stack emissions: (1) high-efficiency particulate air (HEPA) filters; (2) sand filters; (3) deep-bed fiberglass filters; (4) fiberglass prefilters; (5) charcoal absorbers; and (6) water scrubbers. Generally, from one to three stages of HEPA filtration are used as the final particulate-removal method before an air emission stream is exhausted to the atmosphere.

1.3.2 100 Area Facilities

The 100 Area contains nine inactive production reactors and their associated support facilities. Point sources of radionuclide air emissions at facilities in the 100-N Area and 100-K Area are described briefly and shown respectively in Figures 1-2 and 1-3.

1.3.2.1 N Reactor

This dual-purpose reactor operated until 1987, producing electrical power for the regional energy system and plutonium for weapons production. The reactor and associated facilities were recently deactivated.

- **116-N.** This stack was permanently shut down on July 23, 1998. It had exhausted filtered air from the 105-N Reactor Building. Emission sampling consisted of a record sampler for particulate radionuclides.
- **107-N.** This stack was permanently shut down on April 22, 1998. It had exhausted filtered air from the 107-N Basin Recirculation Building. Emission sampling consisted of a record sampler for particulate radionuclides.
- **RCF-1-EX.** This Radiological Counting Facility (RCF) exhausts filtered air from a hood in the H0-64-4230 trailer. Emissions are periodically sampled for particulate radionuclides.

Figure 1-2. 100-N Area Emission Point Sources.

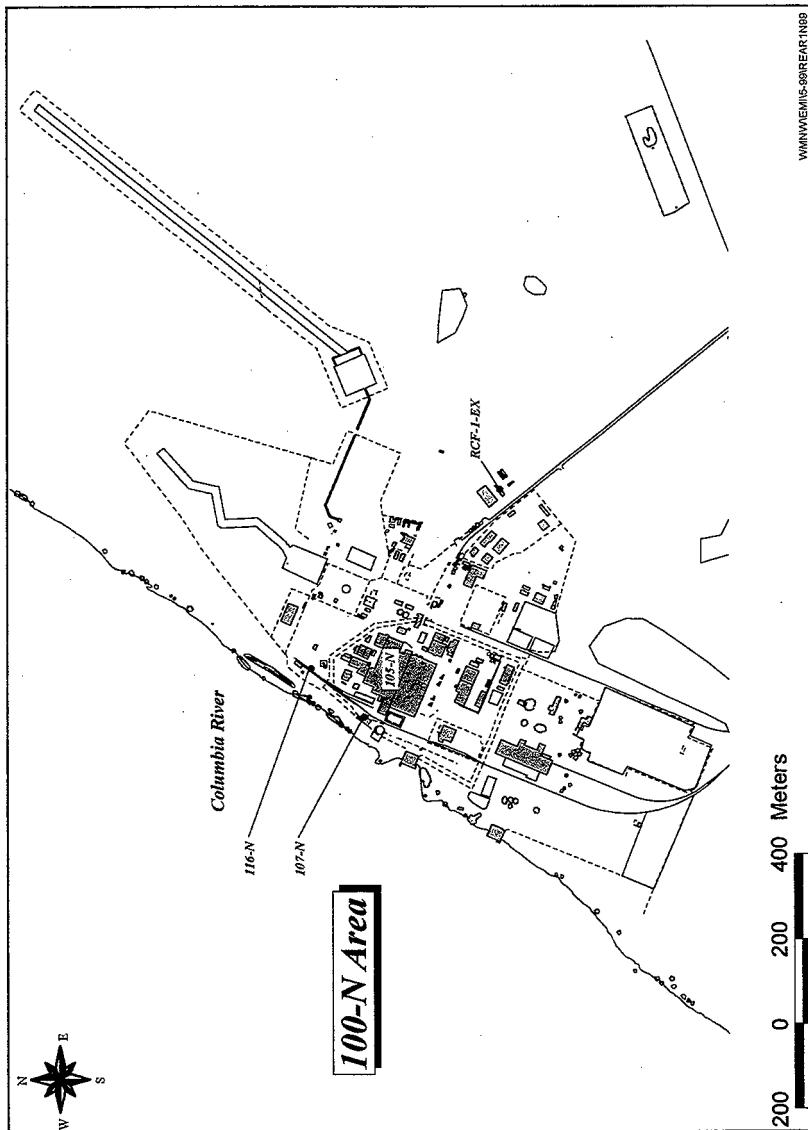
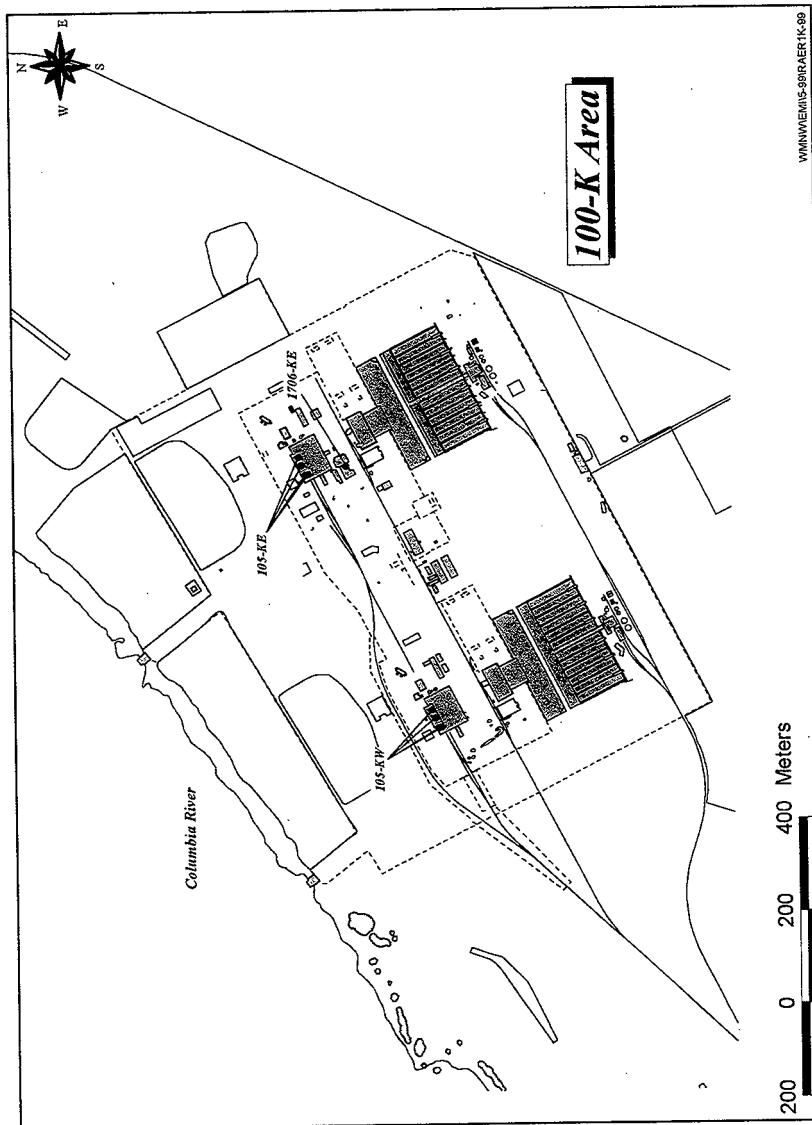



Figure 1-3. 100-K Area Emission Point Sources.

1.3.2.2 100-K East and West Areas

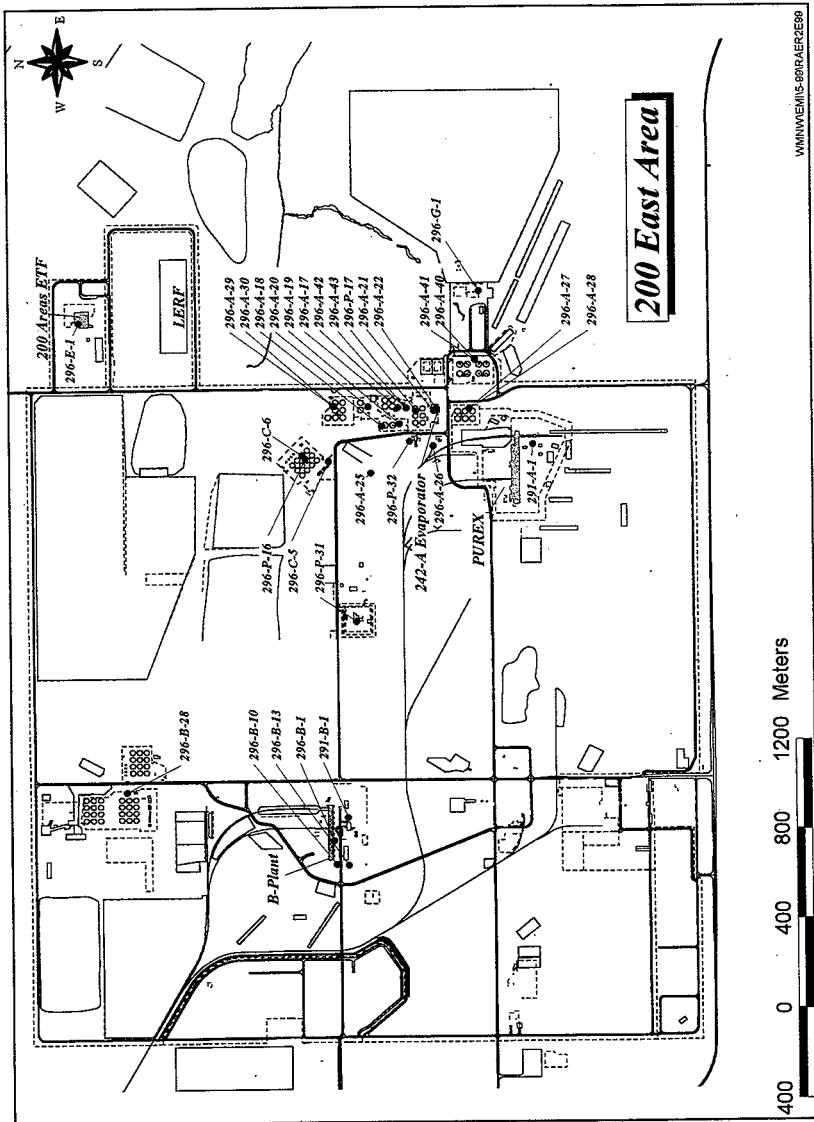
These areas contain two retired reactors awaiting decommissioning, two water-filled storage basins storing irradiated nuclear fuel, and radiological analysis laboratories.

- **105-KE.** This point source consists of three powered vents exhausting unfiltered air from the spent fuel storage basin in the 105-KE Building. Emission sampling consists of four record samplers for particulate radionuclides.
- **105-KW.** This point source consists of four powered vents exhausting unfiltered air from the spent fuel storage basin in the 105-KW Building. Emission sampling consists of three record samplers for particulate radionuclides.
- **1706-KE.** This stack exhausts filtered air from the 1706-KE Laboratory. Emission sampling consists of a record sampler for particulate radionuclides.
- **1706-KER.** This exhaust was shut down on June 27, 1997, and de-registered by DOH through AIR-99-203, dated February 18, 1999. It had exhausted filtered air from the basement area (approximately 27 ft [8.2 m] below grade) of the 1706-KE Laboratory.

1.3.3 200 East Area Facilities

The 200 East Area contains facilities for chemical separations, reprocessing, and waste handling and disposal. Radionuclide air emission discharge points in the 200 East Area are shown in Figure 1-4. The majority of radionuclides discharged from the 200 Areas are in particulate form. PUREX Plant, B Plant, and related tank farm and evaporator facilities discharge gaseous radionuclides and volatile forms of radionuclides, specifically ^3H , ^{106}Ru , ^{125}Sb , and ^{129}I .

1.3.3.1 PUREX Plant


Shutdown orders were issued for the PUREX Plant in December 1992; the plant was eventually deactivated in June 1997. During 1996, deactivation work rerouted all of the plant's ventilation to discharge through the 291-A-1 stack. As a result, many of the PUREX stacks were shut down and deactivated during 1996 and 1997.

- **291-A-1.** This stack exhausts filtered air from the canyon ventilation system (Cells A to M) and vessel and condenser vents. Emission sampling consists of a record samplers for particulate and volatile radionuclides.

1.3.3.2 B Plant

B Plant separated plutonium from spent nuclear fuel. It was later reconfigured to remove ^{137}Cs and ^{90}Sr from high-level liquid waste. The main canyon building, 221-B, contains radioactive contamination (from many production campaigns) that must be properly managed. B Plant, excluding WESF, was deactivated in 1998.

Figure 1-4. 200 East Area Emission Point Sources.

- **291-B-1.** This is the B Plant main stack, which had exhausted filtered air from the main canyon and process cells in the 221-B Building, the process cell in the 212-B Building, and the 224-B Building. Emission sampling consisted of a record sampler for particulate radionuclides. It was permanently shut down on August 31, 1998. (The 291-B-1 stack is one of several emission points deregistered with DOH in 1998; others are 296-B-21, 296-B-22 through 296-B-26 [which are wall exhausters within B Plant that did not exhaust directly to the outside atmosphere], and 296-T-13.) The retired HEPA filters have been isolated and passively ventilated through the new 296-B-2 stack since September 3, 1998; this new stack is not record sampled, but instead has periodic confirmatory measurements performed to verify that its emission levels are low.
- **296-B-1.** This is the new B Plant main stack, which started up July 22, 1998. It exhausts filtered air from the main canyon and process cells in the 221-B Building, from the process cell in the 212-B Building, and from the 224-B Building. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-B-5.** This stack was permanently shut down on May 28, 1997, and its deactivation completed on May 30, 1997. It had exhausted filtered air from the 221-BB Building, which houses the B Plant process condensate and B Plant steam condensate receiver tanks. Emission sampling consisted of a record sampler for particulate radionuclides.
- **296-B-13.** This stack was permanently shut down on February 12, 1997, and its deactivation completed on February 21, 1997. It had exhausted filtered air from the 221-BF Condensate Effluent Discharge Facility, which houses process condensate retention tanks. Emission sampling consisted of a record sampler for particulate radionuclides.

1.3.3.3 Waste Encapsulation and Storage Facility

WESF converted ⁹⁰Sr and ¹³⁷Cs from waste separations material to solid strontium fluoride and cesium chloride. These new forms of cesium and strontium were separately double encapsulated and placed in water-filled storage basins at WESF. The current mission for WESF is to continue storing these radioactive capsules.

- **296-B-10.** This stack exhausts filtered air from the 225-B Building. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.3.4 244-AR and 244-CR Vaults

The 244-AR and 244-CR Vaults are retention facilities used during transfers of high-level radioactive liquid wastes from tank farms.

- **296-A-12.** This stack did not operate in 1998, but when in use exhausts filtered air from the 244-AR Vault vessel ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-13.** This stack did not operate in 1998, but when in use exhausts filtered air from the 244-AR Vault canyon and cells. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-C-5.** This stack exhausts filtered air from the 244-CR Vault Cell and vessel ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.

- **296-C-6.** This stack exhausts filtered air from the 241-C-106 Tank Slicing ventilation. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-P-32.** This stack (more precisely a portable exhauster) was connected to the 244-AR Vault vessel ventilation system because it has better emissions control and sampling systems than does the 296-A-12 stack, which it replaced through all of 1998. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.3.5 200 East Area Tank Farms

Radioactive waste stored in tank farms consists of sludge and saltcake in single-shell tanks (SSTs) and slurry in double-shell tanks (DSTs).

- **296-A-17 (and 296-P-26).** These stacks were shut down on March 20, 1998, and replaced by the new 296-A-42 stack. They had exhausted filtered, incondensable vapors from waste storage tanks in the 241-AY and -AZ Tank Farms. Emission sampling for each stack consisted of a record sampler for particulate and volatile radionuclides. The 296-P-26 stack served as the backup exhauster for the 296-A-17 stack.
- **296-A-18.** This stack did not operate in 1998, but when in use exhausts filtered air from the 241-AY-101 tank annulus. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-19.** This stack exhausts filtered air from the 241-AY-102 tank annulus. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-20.** This stack did not operate in 1998, but when in use exhausts filtered air from the 241-AZ-101 and -102 tank annuli. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-25.** This stack exhausts filtered air from the catch tank at the 244-A lift station. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-26.** This stack exhausts filtered air from the waste unloading room and sump tank at the 204-AR Waste Unloading Facility. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-27.** This stack exhausts filtered air from all 241-AW tanks. Emission sampling consists of a record sampler for particulate and volatile radionuclides.
- **296-A-28.** This stack exhausts filtered air from all tank annuli in the 241-AW Tank Farm. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-29.** This stack exhausts filtered air from all 241-AN tanks. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-30.** This stack exhausts filtered air from all tank annuli in the 241-AN Tank Farm. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-A-40.** This stack exhausts filtered air from all 241-AP tanks. Emission sampling consists of a record sampler for particulate and volatile radionuclides.

- 296-A-41. This stack exhausts filtered air from all tank annuli in the 241-AP Tank Farm. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-A-42. This new stack began operation on March 20, 1998, when it replaced the 296-A-17 and -P-26 stacks. It exhausts filtered, incondensable vapors from waste storage tanks in the 241-AY and -AZ Tank Farms. Emission sampling consists of a record sampler for particulate and volatile radionuclides.
- 296-A-43. This new stack began operation on March 20, 1998. It exhausts filtered air from the 702-AZ Building. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-B-28. This stack exhausts filtered air from the 244-BX saltwell receiver tank and annulus. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-P-16. This stack exhausts filtered air from the 241-C-105 and -106 tanks. The 241-C-104 tank is also vented by this stack, since it is connected to the 241-C-105 tank with an underground cascade line. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-P-33 and 296-P-34. These emission points are the portable exhausters for the Rotary Mode Core Samplers (RMCS). These emission sources exhaust filtered air from the waste tanks being core sampled. Emission sampling consists of a record sampler for particulate radionuclides. These units were used for seven core-sampling activities in tank farms (S, TX, U, and BY) during 1998.

1.3.3.6 242-A Evaporator

The evaporator processed liquid waste in 1998. The 242-A Evaporator is used to remove most of the water from liquid mixed waste, leaving a slurry that is pumped back to tank farms.

- 296-A-21. This stack exhausts filtered air from the 242-A Building. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-A-22. This stack exhausts filtered air from the 242-A Evaporator vessel ventilation system. Emission sampling consists of a record sampler for particulate and volatile radionuclides.

1.3.3.7 200 Area Effluent Treatment Facility

The ETF treats mixed aqueous waste streams prior to their disposal at the 616-A crib.

296-E-1. This stack exhausts filtered air from the 2025-E Building and ETF processing vents. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.3.8 209-E Critical Mass Laboratory

This facility was originally used for testing critical mass configurations. Currently, a portion of it is being used for office space; the laboratory sectors are inactive.

- 296-P-31 (formerly 209-E). This stack exhausts filtered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4 200 West Area Facilities

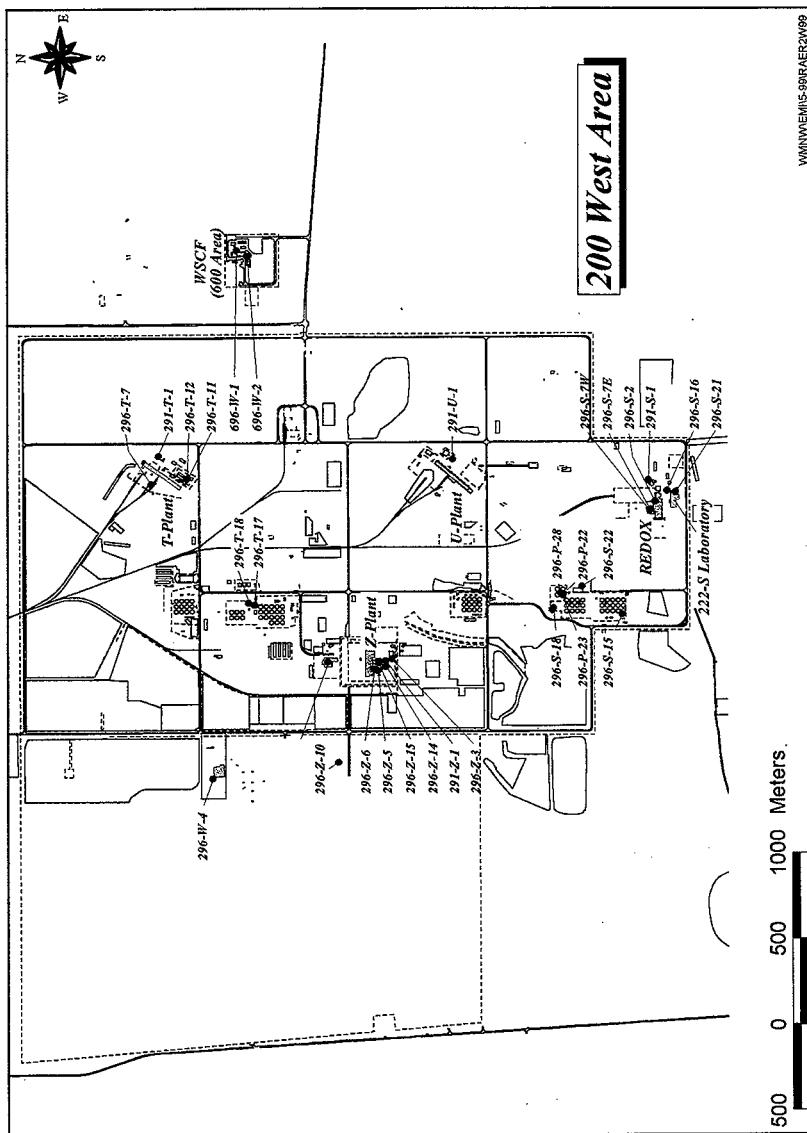
The 200 West Area contains facilities for laboratory analysis; chemical separations and processing; and waste handling and disposal. The radionuclide air emission discharge points in the 200 West Area are shown in Figure 1-5.

1.3.4.1 REDOX Plant

The Reduction-Oxidation (REDOX) Plant is also known as the 202-S building and as S Plant. The REDOX Plant was operated as a fuel-reprocessing facility until it was shut down in 1967.

- **291-S-1.** The REDOX main stack exhausts filtered air from the REDOX canyon, vessel ventilation system, and treated dissolver offgas system. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-S-2.** This stack exhausts filtered air from the REDOX north and south sample galleries, plutonium loadout hood, and product removal cage. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-S-7W and 296-S-7E.** These stacks exhaust filtered air from the 233-S REDOX product building, the REDOX plutonium-processing greenhouse, and process vessel ventilation and loadout area. Emission sampling for each stack consists of a record sampler for particulate radionuclides. The 296-S-7E stack serves as the backup exhauster for the 296-S-7W.

1.3.4.2 T Plant Complex


T Plant Complex consists of two main structures: the 221-T Building and the 2706 Facility. The 221-T Building is one of the original fuel-processing facilities. The last fuel processed there was in 1956. It and the 2706 Facility are now used for the treatment, storage, repackaging, sampling, and verification of waste containers. Liquid waste is treated and stored in tank systems and radioactively contaminated equipment is decontaminated in both structures.

- **291-T-1.** This stack exhausts filtered air from the 221-T canyon and process ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-T-7.** This stack exhausts HEPA-filtered air from the 2706-T and 2706-TA Buildings while decontamination activities are being performed or when other activities create a potential for increased airborne radionuclide contamination; otherwise, the stack does not operate. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.3 224-T Building

The 224-T Building, formerly known as the Transuranic Waste Storage and Assay Facility (TRUSA), was originally used to purify plutonium nitrate by the lanthanum-fluoride process. After phase-out of the bismuth-phosphate plants, the lanthanum-fluoride process was no longer needed, and the facility remained inactive until the early 1970s. At that time, the 224-T Building was modified to store plutonium scrap in liquid and solid forms. In 1984, it was selected to house the transuranic waste storage and assay operation, in which transuranic waste containers were nondestructively tested and stored for use in future shipments to the Waste Isolation Pilot Plant (WIPP). By September 1998, all stored transuranic wastes were removed from TRUSA and nondestructive examination and nondestructive assay operations terminated.

Figure 1-5. 200 West Area Emission Point Sources.

- 296-T-11. This stack exhausts filtered air from the TRUSAf ventilation system through the east part of the plenum. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-T-12. This stack exhausts filtered air from the TRUSAf ventilation system through the west part of the plenum. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.4 U Plant

U Plant was constructed as a fuel reprocessing plant but never used for that purpose. Instead, it was used to recover uranium from bismuth-phosphate waste and high-level radioactive wastes from tank farms. In 1998, characterization activities were conducted at U Plant in support of the Canyon Disposition Initiative. Otherwise, U Plant is a retired facility with a few offices and shops still in use.

- 291-U-1. This stack exhausts filtered air from the U Plant and 221-U canyon ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.5 Plutonium Finishing Plant

PFP was constructed to produce plutonium metal from recovered nitrate and plutonium nitrate received from the PUREX Plant. PFP also recovered plutonium, in the form of plutonium nitrate, from plutonium scrap. The current mission for PFP is to stabilize and store the established inventory of plutonium compounds.

- 291-Z-1. This stack exhausts filtered air from the 234-5Z, 236-Z, and 242-Z Buildings. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-Z-3. This stack exhausts filtered air from the 241-Z vault sump and vessel ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-Z-5. This stack exhausts filtered air from 2736-ZB Building, used for shipping and receiving. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-Z-6. This stack exhausts filtered air from the 2736-Z Building and its plutonium storage vault ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-Z-14. This stack exhausts filtered air from the 232-Z Incinerator Building. Emission sampling consists of a record sampler for particulate radionuclides.
- 296-Z-15. This stack exhausts filtered air from the 243-Z Low-Level Waste Treatment Facility. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.6 200 West Area Tank Farms

These tanks farms hold high-level radioactive waste, consisting of sludge and saltcake in SSTs and liquid and slurry in DSTs.

- 296-P-22. This stack exhausts filtered air from annuli in the 241-SY-101, -102, and -103 tanks. Emission sampling consists of a record sampler for particulate radionuclides.

- **296-P-23 (and 296-P-28).** This stack exhausts filtered air from the 241-SY-101, -102, and -103 tanks. The 296-P-28 serves as the backup stack to 296-P-23. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-S-15.** This stack exhausts filtered air from the 241-SX-101 through -112 and 241-SX-114 tanks. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-S-22.** This stack exhausts filtered air from the 244-S saltwell receiver tank and annulus. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-T-18.** This stack exhausts filtered air from the 244-TX saltwell receiver tank and annulus. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.7 200 West Area Evaporators

The evaporators are designed to remove most of the water from radioactive liquid waste; the resulting slurry is then routed to tank farms for interim storage. The 242-S Evaporator-Crystallizer did not operate in 1998, but was on standby. The 242-T Evaporator-Crystallizer was deactivated and has been inoperable since 1986.

- **296-S-18.** This stack exhausts filtered air from the 242-S Evaporator-Crystallizer Building. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-T-17.** This stack exhausts filtered air from the 242-T Evaporator-Crystallizer and cold-cell ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.8 222-S Laboratory

The 222-S Laboratory provides chemical and radiochemical analytical support for tank farm waste characterization, research and development, and environmental sample analysis.

- **296-S-16.** This stack exhausts filtered air from the 219-S Building and waste tanks. Emission sampling consists of a record sampler for particulate radionuclides.
- **296-S-21.** This stack exhausts filtered air from 222-S Laboratory hoods, gloveboxes, hot-cells, and the room ventilation system. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.9 Waste Sampling and Characterization Facility

WSCF provides low-level radiological and chemical analyses on various types of samples and sample media. The majority of the analyzed samples are used to determine compliance with the requirements of environmental regulations and DOE Orders. WSCF is actually in the 600 Area, but is included in this section of 200 West Area facilities because of its proximity to the 200 West Area main entrance. Therefore, emissions from WSCF are modeled as though they originated in the 200 West Area.

- **696-W-1.** This stack exhausts filtered air from the analytical laboratory, on the main floor of the 6266 Building. Emission sampling consists of a record air sampler for particulate radionuclides.

- **696-W-2.** This stack exhausts filtered air from the Nuclear Spectroscopy Laboratory (NSL), in the basement of the 6266 Building. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.10 Waste Verification and Sampling Facility

The facility is used to verify the contents of drums received from generators. Because of limited use, this facility was transferred to West Tank Farms in 1995.

- **296-W-3.** This stack did not operate in 1998, but when in use exhausts filtered air from the 213-W Building. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.4.11 Waste Receiving and Processing Facility

This facility is used for examining, assaying, characterizing, and repackaging wastes. Emission sampling and monitoring consists of an isokinetic stack emission monitoring system, including a beta CAM and a record sampler for particulate radionuclides.

1.3.5 300 Area Facilities

The 300 Area primarily comprises laboratories, research facilities, a radioactive liquid waste handling facility, and several inactive facilities associated with prior Hanford missions. Emission points in the 300 Area are shown in Figure 1-6.

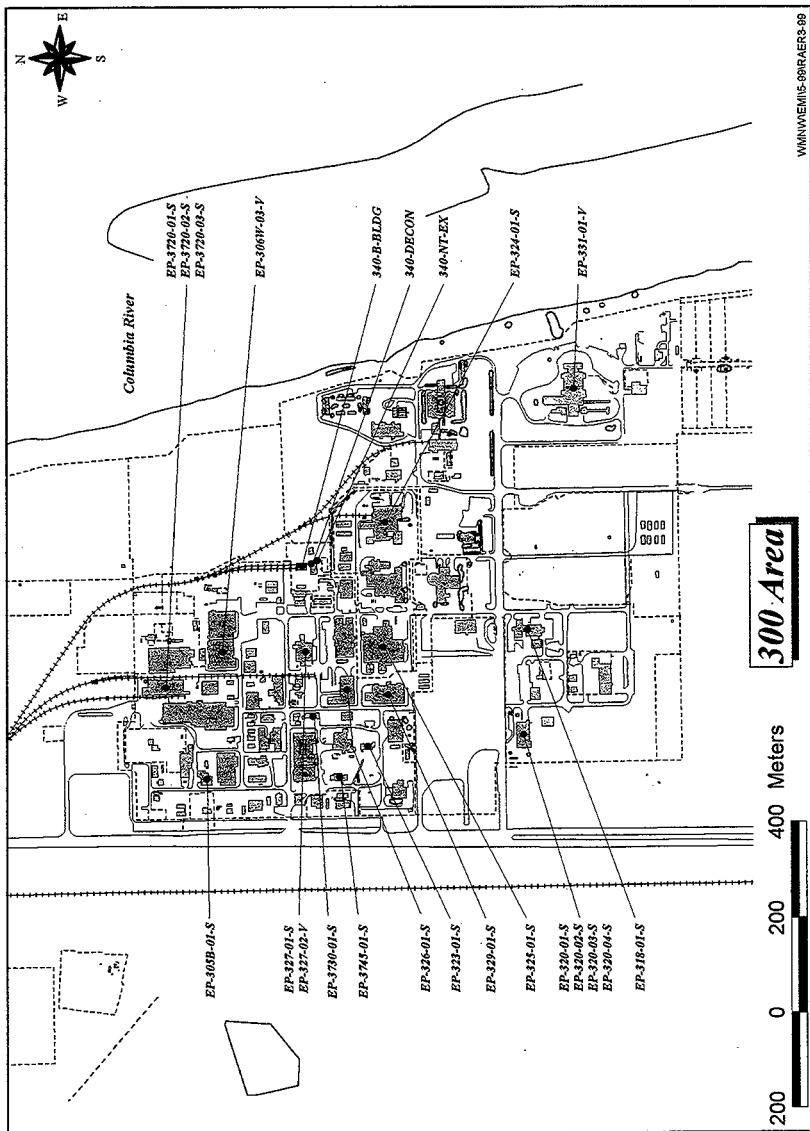
1.3.5.1 305-B Hazardous Waste Storage Building

This building is used to receive, store, and prepare shipments of dangerous waste and radioactive mixed waste generated by Hanford Site research and development programs.

- **EP-305B-01-S.** This stack exhausts air from a filtered process hood. The exhaust is sampled for particulate radionuclides.

1.3.5.2 306-W Materials Development Laboratory

The building contains shops and laboratory facilities for metal-working and ceramic studies.


- **EP-306W-03-V.** This vent exhausts filtered building ventilation air. The exhaust is sampled for particulate radionuclides.

1.3.5.3 309 Plutonium Recycle Test Reactor

The containment dome and support areas of this building once housed the Plutonium Recycle Test Reactor (PRTR). In 1962, the Plutonium Recycle Critical Facility (PRCF) was added to support the PRTR operations. By 1975, the PRTR had been deactivated, all reactor fuel removed from the building, and the fuel storage basin decontaminated. In the mid 1980s, an extensive clean-out effort removed most of the process equipment and vessels. The ground level of the containment dome is currently being used as an assembly shop and the remainder of the building as office space.

- **309-PRTR.** This emission point ventilates this former PRTR facility. Surveys are taken to periodically confirm low emissions.

Figure 1-6. 300 Area Emission Point Sources.

1.3.5.4 340 Complex

The 340 Complex houses the radioactive liquid waste and solid waste handling operations for the 300 Area. The 340-A Building contains six aboveground storage tanks for radioactive liquid waste. The east side of the 340-B building is a railway car load out facility for shipping liquid waste to the 200 Areas. The west side of the 340-B building is a storage area for non-radioactive and radioactive solid waste. The 340 Vault houses two accumulation tanks for radioactive liquid wastes.

- **340-NT-EX.** This stack exhausts filtered air from the 340 Building vault, the 340 Building vault tanks, the 340-A Building waste tanks, and the associated piping system. Emission sampling consists of a record sampler for particulate and volatile radionuclides.
- **340-B-BLDG.** This stack exhausts filtered air from the 340-B East Building. The stack exhaust system operates when railway cars are housed within the facility. Emission sampling consists of a record sampler for particulate radionuclides.
- **340-DECON.** This stack exhausts air from the 340 Facility truck lock, operators' office, change rooms, decontamination area, and sampling hood. Emission sampling consist of a record sampler for particulate radionuclides.

1.3.5.5 318 Radiological Calibrations Laboratory

The building contains areas for calibrating radiation survey instruments and processing personnel dosimeters.

- **EP-318-01-S.** This stack exhausted unfiltered building ventilation air, until 1998. In early 1998, the emission point was relocated as part of DOE's Energy Savings Performance Contract, and since then it only exhausts a single unfiltered fume hood. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.6 320 Analytical and Nuclear Research Laboratory

The building contains environmental radiochemistry laboratories.

- **EP-320-01-S.** This stack exhausts filtered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.
- **EP-320-02-S.** This stack exhausts filtered chemistry hoods. Emission sampling consists of a record sampler for particulate radionuclides.
- **EP-320-03-S.** This stack exhausts filtered chemistry hoods. Emission sampling consists of a record sampler for particulate radionuclides.
- **EP-320-04-S.** This stack exhausts filtered chemistry hoods. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.7 323 Mechanical Properties Laboratory

The building contains areas for investigating structural properties of irradiated materials.

- **EP-323-01-S.** This stack exhausts filtered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.8 324 Waste Technology Engineering Laboratory

The building contains laboratories for performing chemical and process development activities. The landlord responsibilities for the 324 building were transferred from PNNL to FDH on November 1, 1996.

- **EP-324-01-S.** This stack exhausts filtered building air. Emission sampling consists of record samplers for particulate radionuclides and tritium in two forms: HT (tritium as incondensable gas) and HTO (tritium as condensable water vapor).

1.3.5.9 325 Radiochemical Processing Laboratory

The building contains radiochemistry laboratories and hot cells used for research process development and mixed hazardous waste treatment activities.

- **EP-325-01-S.** This stack exhausts filtered building air. Emission sampling consists of a record sampler for particulate radionuclides and a tritium (HT and HTO) sampler.

1.3.5.10 326 Materials Sciences Laboratory

The building contains laboratories and equipment for studies of metallurgical, chemical, and physical behavior of reactor components and fuel materials.

- **EP-326-01-S.** This stack exhausts filtered building air. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.11 327 Post-Irradiation Testing Laboratory

The building contains hot-cells for examining and testing irradiated materials. The landlord responsibilities for the 327 building were transferred from PNNL to FDH on November 1, 1996.

- **EP-327-01-S.** This stack exhausts filtered building air. Emission sampling and monitoring consists of a record sampler for particulate radionuclides and a tritium (both HT and HTO) record sampler.
- **EP-327-02-V.** This roof vent exhausts filtered air from the decontamination cell. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.12 329 Chemical Sciences Laboratory

The building contains chemistry laboratories for radioanalytical studies, environmental radionuclide studies, and radiation detection instrumentation development.

- **EP-329-01-S.** This vent exhausts filtered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.13 331 Life Sciences Laboratory

The building contains areas for biological and ecological research studies.

- **EP-331-01-V.** This stack exhausts filtered and unfiltered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.14 331-G Interim Tissue Repository

The facility provides research capabilities for conducting radioactive tracer studies using animals, biota, vegetation, and soils.

- **EP-331G-01-S.** This stack exhausts HEPA-filtered building air. Its annual emissions were estimated using methods from 40 CFR 61, Appendix D (see Section 5.3.2, Table 5-4).
- **EP-331G-02-S.** This stack exhausts HEPA-filtered building air. Its annual emissions were estimated using methods from 40 CFR 61, Appendix D (see Section 5.3.2, Table 5-4).

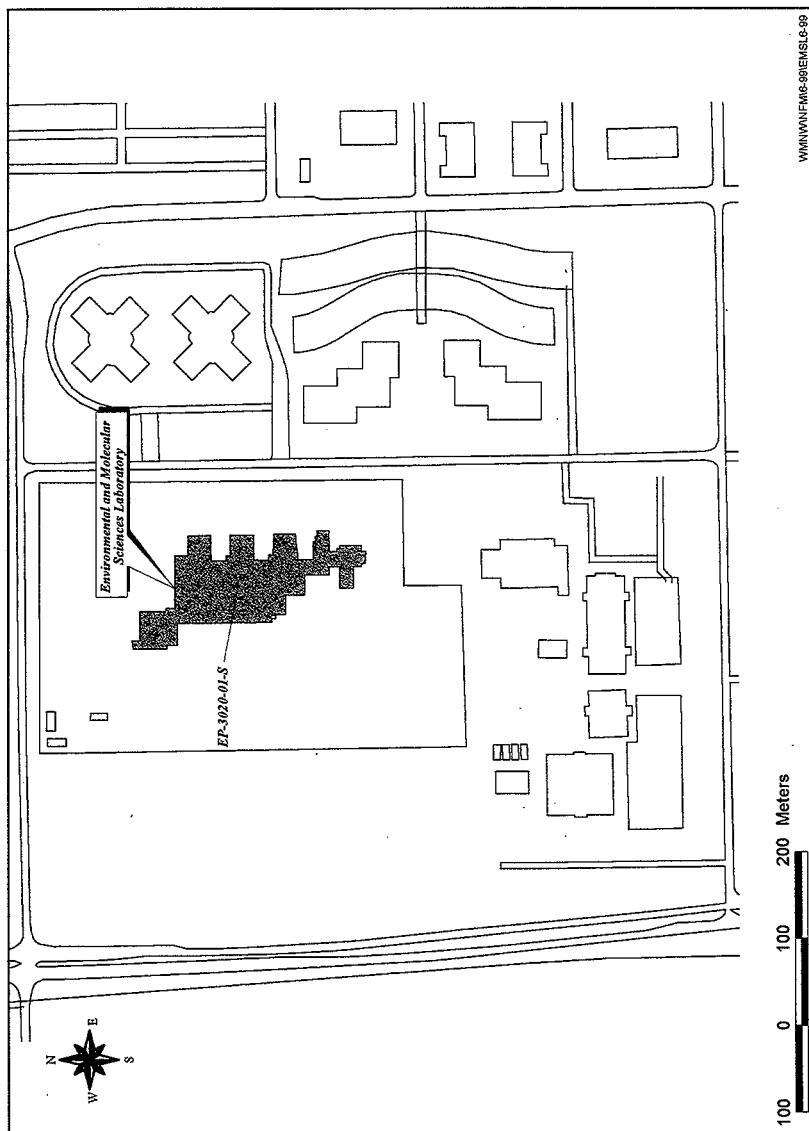
1.3.5.15 3020 Environmental Molecular Science Laboratory

EMSL contains basic, multidisciplinary research programs involving chemical, biological, materials, and computational sciences. Research and development activities are undertaken at EMSL to advance the understanding of molecular sciences and to apply the information gained to a broad spectrum of environmental restoration and waste management missions. (The EMSL description was placed in this section since the EMSL lies near the southern perimeter of the 300 Area and because its emissions are modeled as though emanating from there.)

- **EP-3020-01-S.** This stack exhausts filtered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.16 3720 Environmental Sciences Laboratory

The building contains laboratories for multidisciplinary research in the areas of materials characterization, waste management, and environmental restoration.


- **EP-3720-01-S.** This stack exhausts filtered building air. Emission sampling consists of a record sampler for particulate radionuclides.
- **EP-3720-02-S.** This stack has not operated since August 1996. It exhausted filtered building air from the north-annex low-level radiochemistry laboratories. When operating, emission sampling consists of a record sampler for particulate radionuclides.
- **EP-3720-03-S.** This stack exhausts filtered building air from the south-end laboratories. This region of the building contains a counting room and low-level radiochemistry laboratories. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.5.17 3730 Gamma Irradiation Facility

The building contains a hot-cell for metallurgical studies of specimens of irradiated metals.

- **EP-3730-01-S.** This stack exhausts filtered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.

Figure 1-7. Environmental Molecular Science Laboratory Emission Point Source.

1.3.5.18 3745 Radiological Calibrations and Standards Facility

The building contains a counting laboratory used to analyze samples in support of an occupational health physics program.

- **EP-3745-01-S.** This stack exhausts filtered building ventilation air. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.6 400 Area Facilities

The 400 Area consists of the Fast Flux Test Facility (FFTF), the Maintenance and Storage Facility (MASF), and the Fuels Materials Examination Facility (FMEF). Emission points in the 400 Area are shown in Figure 1-7.

1.3.6.1 Fast Flux Test Facility

FFTF, located in the 400 Area, is a 400-megawatt thermal, sodium-cooled, low-pressure, high-temperature reactor plant, which had been used for irradiation testing of breeder reactor fuels and materials.


- **FFTF-RE-SB.** Lower Reactor Service Building (RSB). This exhaust discharges unfiltered air from the lower level of the RSB. Emission sampling consists of a record sampler for particulate and volatile radionuclides.
- **FFTF-CB-EX.** Combined exhaust: This stack exhausts normally unfiltered air from the reactor containment and gases from the argon processing system. Standby particulate filters are automatically dampered into the system if airborne radioactive particulate concentrations exceed administrative limits. Emission sampling consists of a record sampler for particulate radionuclides and a record sampler for tritium (HTO, the condensable water vapor form of tritium).
- **FFTF-HT-TR.** Heat Transport System South: This exhaust discharges normally unfiltered air from portions of FFTF that are exterior to the containment. Standby particulate filters are automatically dampered into the system if airborne radioactive particulate concentrations exceed administrative limits. Emission sampling consists of a record sampler for particulate radionuclides.

1.3.6.2 MASF

MASF, or the 437 Building, is a multipurpose service center supporting the specialized maintenance and storage requirements of FFTF. MASF provides the capability for sodium film removal, decontamination, repair, and storage of non-fueled components and hardware for FFTF.

- **437-MN&ST.** This exhaust discharges filtered air from the MASF. Emission sampling consists of a record sampler for particulate radionuclides.
- **437-1-61.** This exhaust discharges filtered air from the MASF. Emission sampling consists of a record sampler for particulate radionuclides.

Figure 1-8. 400 Area Emission Point Sources.

2.0 RADIONUCLIDE AIR EMISSION DATA ON POINT SOURCES

This section presents information on point sources of radionuclide emissions at the Hanford Site. These point sources are almost always actively (or forcibly) ventilated stacks and vents, with "actively" meaning that motor-driven exhaust fans are used to discharge air to the atmosphere. The criteria for reporting point source emissions are discussed in section 1.3, which also gives the basis for when an emission source is to be included in the certified sections (i.e., 1.0, 2.0, and 3.0) of this report. Data on radionuclides emitted from point sources in 1998 are shown in Tables 2-1 and 2-2.

Table 2-1 displays emission data on the Hanford Site's 25 major point sources. A point source is classified as "major" when its potential maximum emissions after all treatment controls have been hypothetically removed can cause the nearest human receptor to receive greater than 0.1 mrem/yr effective dose equivalent (EDE).

A point source is considered "minor" when its potential maximum emissions after all treatment controls have been hypothetically removed cannot cause a dose to a receptor at the nearest residence to exceed 0.1 mrem/yr EDE. Table 2-2 displays source data on the Hanford Site's 71 minor point sources. These point sources are grouped according to facility and operating area.

Included with each point source listed are its discharge height; type of emission control (if any); and the total releases in 1998 of radionuclides or types of radioactivity. The filtration efficiencies of emission control devices are specified in footnotes to the tables.

Emission points on the Hanford Site are assigned to the major operating area (of which five exist: 100, 200 East, 200 West, 300, and 400 Areas) in which they are located. For each of the five operating areas, a nearest location (e.g., dwelling, business, school, or office) not on the Hanford Site is determined where a human receptor has the potential of being maximally exposed to emissions from that area. A common distance for all the emission points within an operation area is measured between the area and its respective "nearest receptor." Thus, five locations of nearest receptors — one for each of the five operating areas — have been established. Radioactive doses calculated for these receptors are used to determine the compliance status of each emission point source as well as the requisite monitoring. Information on these nearest receptors is in Table 2-3, including distances to the nearest farms that produce milk, meat, and vegetables.

In contrast to the five nearest receptors is the Hanford Site Maximum Exposed Individual (MEI). The MEI, owing to lifestyle and location, is calculated to receive the highest dose of any offsite person, caused by radionuclide emissions from *all* point sources in *all* areas on the Hanford Site, not just emissions from a single operating area. For the last several years, and again in 1998, the MEI has been modeled as a resident on a farm near Sagemoor Road in Franklin County, Washington, east of the 300 Area. The dose to the MEI is calculated using the EPA-approved dose modeling program, CAP88-PC. This dose value is used in determining the status of Hanford Site compliance with the dose standard in 40 CFR 61, Subpart H, of 10 mrem/yr EDE to any offsite member of the public.

Table 2-1. Hanford Site Radionuclide Air Emissions from Major Point Sources in 1998.
(major point source: potential of >0.1 rem/yr EDE to nearest offsite receptor)^a (4 sheets)

Stack (facility; contractor) ^b	Discharge height (ft [m])	Emission control ^c (stages)	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^d	Annual emissions (Ci) ^e	EDE ^f for MEI (mrem/yr)
<i>200 Area Point Sources</i>							
291-A-1 (PUREX Plant; FDH, BHI)	200 (61)	HEPA (3)	4.1E+09 (1.2E+08)	7,800 (3.7)	⁹⁰ Sr ¹⁰⁶ Ru ¹¹³ Sn ¹²⁵ Sb ¹²⁹ I ¹³⁴ Cs ¹³⁷ Cs ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Pu • ²⁴¹ Am	5.8E-07 ND ND ND 2.8E-04 ND 1.9E-06 7.9E-10 1.1E-07 2.9E-08 4.2E-07	1.3E-08 4.7E-05 8.9E-08 9.7E-10 1.5E-07 6.1E-10 8.5E-07
291-B-1 (B Plant; FDH)	200 (61)	HEPA (2)	1.4E+10 (4.0E+08)	41,000 (19)	⁹⁰ Sr ¹³⁴ Cs • ¹³⁷ Cs ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	6.1E-06 ND 1.4E-04 ND 7.8E-07 6.8E-08	1.3E-07 6.6E-06 1.0E-06 1.4E-07
296-B-1 (B Plant; FDH)	90 (27.4)	HEPA (2)	3.3E+09 (9.4E+07)	18,000 (8.3)	• ⁹⁰ Sr ¹²⁵ Sb ^{239,240} Pu ²⁴¹ Am	1.9E-07 1.0E-07 1.3E-09 9.0E-09	4.2E-09 5.1E-10 1.7E-09 1.8E-08
296-B-10 (WESF; FDH)	75 (22.9)	HEPA (1)	1.1E+10 (3.0E+08)	20,000 (9.5)	⁹⁰ Sr ¹²⁵ Sb ¹³⁴ Cs ¹³⁷ Cs total α	1.1E-04 3.8E-07 ND 4.3E-05 4.6E-07	2.4E-06 2.0E-09 2.0E-06 6.1E-07
296-A-12 (TWRS; FDH)	150 (45.7)	HEPA (2)	0	0	• ⁹⁰ Sr	did not operate	
296-A-17 backup: 296-P-26 (TWRS; FDH)	50 (15.2)	HEPA (2)	3.6E+08 (1.0E+07)	3,200 (1.5)	• ⁹⁰ Sr ¹⁰⁶ Ru ¹¹³ Sn ¹²⁵ Sb ¹²⁹ I ¹³⁴ Cs • ¹³⁷ Cs ²³⁸ Pu • ^{239,240} Pu ²⁴¹ Am	9.1E-08 ND ND ND 2.9E-05 ND 1.1E-06 ND 2.4E-10 1.3E-09	2.0E-09 4.9E-06 5.2E-08 3.2E-10 2.6E-09

Table 2-1. Hanford Site Radionuclide Air Emissions from Major Point Sources in 1998.
(major point source: potential of >0.1 mrem/yr EDE to nearest offsite receptor)^a (4 sheets)

Stack (facility; contractor) ^b	Discharge height (ft [m])	Emission control ^c (stages)	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^d	Annual emissions (Ci) ^e	EDE ^f for MEI (mrem/yr)
296-A-25 (TWRS; FDH)	9.8 (3)	HEPA (2)	6.3E+07 (1.8E+06)	150 (0.069)	• ⁹⁰ Sr • ¹³⁴ Cs • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	3.5E-09 ND 2.0E-06 ND 3.6E-11 1.2E-10	7.7E-11 9.4E-08 4.8E-11 2.4E-10
296-A-42 (TWRS; FDH)	55 (16.8)	HEPA (2)	2.9E+08 (8.2E+06)	700 (0.33)	• ⁹⁰ Sr • ¹³⁷ Cs • ^{239,240} Pu total β	ND ND ND 2.8E-08	6.1E-10
296-B-28 (TWRS; FDH)	11 (3.4)	HEPA (2)	8.4E+07 (2.4E+06)	160 (0.075)	• ⁹⁰ Sr • ¹³⁴ Cs • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	ND ND 2.3E-09 ND 5.8E-11 3.1E-10	1.1E-10 7.7E-11 6.3E-10
296-C-5 (TWRS; FDH)	48 (14.6)	HEPA (2)	1.9E+09 (5.3E+07)	3,600 (1.7)	• ⁹⁰ Sr • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	1.0E-07 2.1E-07 ND 3.4E-10 2.7E-09	2.2E-09 9.8E-09 4.5E-10 5.5E-09
296-C-6 (TWRS; FDH)	18.7 (5.7)	HEPA (2)	2.8E+07 (7.9E+05)	53 (0.025)	• ⁹⁰ Sr • ¹³⁷ Cs • ^{239,240} Pu • ²⁴¹ Am	ND 7.5E-10 ND 7.1E-11	3.5E-11 1.4E-10
296-P-16 ^g (TWRS; FDH)	15 (4.6)	HEPA (2)	1.4E+09 (3.9E+07)	2,600 (1.2)	• ⁹⁰ Sr • ¹³⁴ Cs • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	1.6E-07 ND 5.1E-07 ND 4.4E-09 3.6E-09	3.5E-09 2.4E-08 5.9E-09 7.3E-09
296-P-32 (TWRS; FDH)	15 (4.6)	HEPA (2)	1.1E+05 (3.0E+03)	200 (0.094)	• ⁹⁰ Sr • ²⁴¹ Am total β	5.2E-10 8.0E-11 4.6E-09	1.1E-11 1.6E-10 1.0E-10
296-P-33 (TWRS; FDH)	15 (4.6)	HEPA (2)	1.0E+06 (3.0E+04)	200 (0.094)	• ⁹⁰ Sr • ¹³⁷ Cs • ^{239,240} Pu	3.2E-10 ND ND	7.0E-12
296-P-34 (TWRS; FDH)	15 (4.6)	HEPA (2)	1.1E+07 (3.1E+05)	200 (0.094)	• ⁹⁰ Sr • ¹³⁴ Cs • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am total β	ND ND 1.5E-11 8.7E-11 1.1E-09	2.0E-11 1.8E-10 2.4E-11

Table 2-1. Hanford Site Radionuclide Air Emissions from Major Point Sources in 1998.
(major point source: potential of >0.1 mrem/yr EDE to nearest offsite receptor)^a (4 sheets)

Stack (facility; contractor) ^b	Discharge height (ft [m])	Emission control ^c (stages)	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^d	Annual emissions (Ci) ^e	EDE ^f for MEI (mrem/yr)
296-S-22 (TWRS; FDH)	12 (3.7)	HEPA (2)	6.9E+07 (2.0E+06)	140 (0.067)	• ⁹⁰ Sr • ¹³⁴ Cs • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	4.2E-10 ND 6.9E-10 1.9E-11 3.1E-11 2.2E-10	7.2E-12 2.5E-11 1.8E-11 3.2E-11 3.5E-10
296-T-18 (TWRS; FDH)	12 (3.7)	HEPA (2)	1.2E+08 (3.5E+06)	230 (0.11)	• ⁹⁰ Sr • ¹³⁴ Cs • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	7.7E-10 ND 2.5E-09 ND 2.7E-10 2.8E-10	1.3E-11 9.2E-11 2.8E-10 4.4E-10
296-W-4 (WRAP; FDH)	47 (14.2)	HEPA (2)	7.9E+09 (2.2E+08)	16,000 (7.7)	• ⁹⁰ Sr • ¹³⁷ Cs • ^{239,240} Pu • ²⁴¹ Am	5.5E-08 ND 3.3E-09 9.5E-09	9.4E-10 3.4E-09 1.5E-08
291-Z-1 (PFP; FDH)	200 (61)	HEPA (1-3)	1.5E+11 (4.3E+09)	290,000 (140)	• ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Pu • ²⁴¹ Am	3.4E-06 1.6E-04 4.4E-05 3.0E-05	3.3E-06 1.7E-04 7.2E-07 4.7E-05
<i>300 Area Point Sources</i>							
EP-324-01-S (324 Building; FDH)	157 (48)	HEPA (2)	3.5E+10 (1.0E+09)	67,000 (32)	• ³ H (as HTO) ^g • ⁹⁰ Sr • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	2.5E-01 2.7E-08 ND ND ND 1.3E-08	4.9E-05 2.7E-08 ND
EP-325-01-S (325 Building; PNNL)	89 (27.1)	HEPA (2)	7.4E+10 (2.1E+09)	140,000 (66)	• ³ H (as HTO) ^g • ³ H (as HTO) ^g • ⁹⁰ Sr • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Pu • ²⁴¹ Am • ²⁴² Am unspec. α unspec. β	93 ^b 64 ^b 4.3E-08 ND ND 3.8E-08 ND ND ND 6.0E-09 1.1E-07	1.8E-04 1.2E-02 4.3E-08 ND ND 2.9E-06 ND ND 4.5E-07 1.1E-07

Table 2-1. Hanford Site Radionuclide Air Emissions from Major Point Sources in 1998.
(major point source: potential of >0.1 mrem/yr EDE to nearest offsite receptor)^a (4 sheets)

Stack (facility; contractor) ^b	Discharge height (ft [m])	Emission control ^c (stages)	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^d	Annual emissions (Ci) ^e	EDE ^f for MEI (mrem/yr)
EP-327-01-S (327 Building; FDH)	46 (14)	HEPA (2)	2.6E+10 (7.3E+08)	49,000 (23)	³ H (as HTO) ^g • ⁹⁰ Sr • ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu • ²⁴¹ Am	4.8E-01 2.5E-07 5.6E-07 1.7E-09 1.3E-08 5.0E-09	9.4E-05 2.5E-07 1.3E-07 1.2E-06 9.9E-07 5.9E-07
EP-331-01-V (331 Building; PNNL)	62 (18.9)	HEPA (1)	3.2E+10 (9.2E+08)	62,000 (29)	⁹⁰ Sr ¹³⁷ Cs ²³⁸ Pu ^{239,240} Pu ²⁴¹ Am ²⁴³ Am unspec. α unspec. β	ND ND ND 2.0E-08 ND 3.7E-09 ND 2.8E-07 1.0E-06	1.4E-07 4.3E-07 1.0E-06
340-NT-EX (340 Complex; FDH)	18 (5.5)	HEPA (2)	9.7E+08 (2.7E+07)	1,800 (0.87)	¹²⁹ I ¹³⁷ Cs • ²³⁸ Pu • ^{239,240} Pu ²⁴¹ Am	4.6E-08 6.8E-09 ND 5.3E-10 1.1E-09	4.7E-07 1.6E-09 4.0E-08 1.3E-07
EP-3720-01-S (3720 Building; PNNL)	36 (11)	HEPA (1)	1.1E+10 (3.2E+08)	22,000 (10)	⁹⁰ Sr ¹³⁷ Cs ²³⁸ Pu ^{239,240} Pu ²⁴¹ Am ²⁴³ Am unspec. α unspec. β	3.3E-09 1.3E-08 ND ND ND ND 7.0E-09 3.5E-08	3.3E-09 3.1E-09

^a To determine the state of compliance with 40 CFR 61, *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, for each point source necessitated using nearest offsite receptors, who differ from the MEI.

^b FDH = Fluor Daniel Hanford, Inc.; PNNL = Pacific Northwest National Laboratory; BHI = Bechtel Hanford, Inc.

^c Efficiencies are: <99.95% for HEPA; <95% for charcoal; <99.8% for sand filter; zero for no emission control.

^d Bullets identify specific radionuclide sampling and analysis required by 40 CFR 61, Subpart H; "unspec. α " and "unspec. β " stand for unspecified alpha and unspecified beta, respectively. Unspecified alpha releases are derived by subtracting the total activity of specifically analyzed alpha emitters released from the total analytical value of alpha activity released. The same process was used to calculate releases for unspecified beta emitters.

^e Ci = curie; 1 Ci = 3.7 E+10 becquerels; ND = not detected (i.e., either the radionuclide was not detected in any sample during the year or the average of all the measurements for that given radionuclide or type of radioactivity made during the year was below background levels); NM = not measured.

^f EDE = effective dose equivalent for the MEI (located at Sagemoor Road farm east of the 300 Area), not the nearest residence; 1 mrem = 1 E-02 mSv.

^g HT = tritium as incondensable gas; HTO = tritium as condensable water vapor.

^h These tritium emission releases from the 325 Building represent those from planned, routine operations. Unplanned emissions of tritium also occurred at the 325 Building as described in Section 3.5 of this report.

Table 2-2. Hanford Site Radionuclide Air Emissions from Minor Point Sources in 1998.
(minor point source: potential of <0.1 mrem/yr EDE to nearest offsite receptor) (5 sheets)

Source ID ^a (facility; contractor)	Discharge height (ft [m])	Emission control ^b	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^c	Annual emissions (Ci) ^d
<i>100 Area</i>						
105-KE Basin (100-K Area; FDH)	42 (12.8)	none	2.4E+10 (6.7E+08)	14,000 (6.6)	⁹⁰ Sr ¹³⁷ Cs ^{239,240} Pu ²⁴¹ Pu ²⁴¹ Am	1.4E-05 2.6E-05 5.1E-07 3.1E-06 3.8E-05 1.9E-06
105-KW Basin (100-K Area; FDH)	42 (12.8)	none	1.1E+10 (3.0E+08)	6,800 (3.2)	⁹⁰ Sr ¹³⁷ Cs ^{239,240} Pu ²⁴¹ Pu ²⁴¹ Am	4.2E-07 3.9E-06 6.1E-10 2.3E-08 3.4E-07 4.1E-08
1706-KER (100-K Area; FDH)	3 (0.9)	HEPA	0	0	did not operate	
1706-KE (100-K Area; FDH)	25 (7.6)	HEPA	2.1E+09 (5.8E+07)	3,900 (1.9)	total α total β	1.9E-07 7.8E-07
116-N (100-N Area; BHI)	201 (61.3)	HEPA, charcoal	1.7E+10 (4.9E+08)	59,000 (28)	⁹⁰ Sr ¹³⁷ Cs ^{239,240} Pu ²⁴¹ Am	1.2E-06 1.5E-07 7.6E-09 2.4E-08 1.2E-07
107-N (100-N Area; BHI)	39 (12)	HEPA	2.1E+09 (6.0E+07)	3,300 (1.6)	total α total β	ND 2.8E-08
RCF-1-EX (100-N Area; BHI)	9.8 (3)	HEPA	3.6E+07 (1.0E+05)	69 (0.033)	total α total β	1.0E-10 2.0E-09
<i>200 East Area</i>						
296-A-13 (TWRS; FDH)	125 (38.1)	HEPA	0	0	did not operate	
296-A-18 (TWRS; FDH)	15 (4.6)	HEPA	0	0	did not operate	
296-A-19 (TWRS; FDH)	15 (4.6)	HEPA	2.4E+08 (6.8E+06)	1,200 (0.56)	total α total β	2.6E-09 1.4E-08
296-A-20 (TWRS; FDH)	24 (7.3)	HEPA	0	0	did not operate	
296-A-26 (TWRS; FDH)	31 (9.4)	HEPA	8.4E+08 (2.4E+07)	1,600 (0.75)	total α total β	ND 1.9E-08
296-A-27 (TWRS; FDH)	12 (3.7)	HEPA	5.0E+08 (1.4E+07)	950 (0.45)	total α total β	2.3E-09 1.3E-07

Table 2-2. Hanford Site Radionuclide Air Emissions from Minor Point Sources in 1998.
(minor point source: potential of <0.1 mrem/yr EDE to nearest offsite receptor) (5 sheets)

Source ID ^a (facility; contractor)	Discharge height (ft [m])	Emission control	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^c	Annual emissions (Ci) ^d
296-A-28 (TWRS; FDH)	12 (3.7)	HEPA	1.8E+09 (5.1E+07)	3,400 (1.6)	total α total β	3.6E-08 1.7E-07
296-A-29 (TWRS; FDH)	12 (3.7)	HEPA	3.8E+08 (1.1E+07)	720 (0.34)	total α total β	ND 3.7E-08
296-A-30 (TWRS; FDH)	12 (3.7)	HEPA	2.4E+09 (6.8E+07)	4,600 (2.2)	total α total β	4.2E-08 2.8E-07
296-A-40 (TWRS; FDH)	13.4 (4.1)	HEPA	4.7E+08 (1.3E+07)	890 (0.42)	⁹⁰ Sr ¹²⁹ I ¹³⁷ Cs ²³⁸ Pu ^{239,240} Pu ²⁴¹ Am	ND 1.5E-06 2.8E-09 ND 2.6E-10 9.0E-10
296-A-41 (TWRS; FDH)	29 (8.9)	HEPA	4.4E+09 (1.3E+08)	8,400 (4.0)	total α total β	ND 9.6E-08
296-A-43 (TWRS; FDH)	55 (16.8)	HEPA	3.8E+08 (1.1E+07)	910 (0.43)	total α total β	ND 5.6E-09
296-P-17 (TWRS; FDH)	15 (4.6)	HEPA	0	0	closed and deregistered	
296-P-31 (TWRS; FDH)	33 (10)	HEPA	5.1E+08 (1.4E+07)	970 (0.46)	total α total β	7.9E-09 1.6E-08
296-A-21 (242-A Evaporator; FDH)	22 (6.7)	HEPA	6.1E+09 (1.7E+08)	12,000 (5.5)	total α total β	ND 1.9E-07
296-A-22 (242-A Evaporator; FDH)	61 (18.6)	HEPA	2.3E+08 (6.6E+06)	440 (0.21)	⁹⁰ Sr ¹³⁷ Cs ²³⁸ Pu ^{293,240} Pu ²⁴¹ Am	2.7E-09 6.5E-10 ND 1.9E-10 9.8E-10
296-E-1 (ETF; FDH)	51 (15.5)	HEPA	3.1E+10 (8.7E+08)	59,000 (28)	total α total β	1.3E-07 6.0E-07
<i>200 West Area</i>						
296-P-22 (TWRS; FDH)	15 (4.6)	HEPA	4.6E+08 (1.3E+07)	880 (0.41)	total α total β	ND 4.0E-08
296-P-23 backup: 296-P-28 (TWRS; FDH)	15 (4.6)	HEPA	4.7E+08 (1.3E+07)	870 (0.41)	total α total β	7.9E-09 2.5E-06
296-S-15 (TWRS; FDH)	15 (4.6)	HEPA	1.6E+09 (4.5E+07)	3,100 (1.5)	total α total β	4.1E-09 3.3E-07
296-S-18 (TWRS; FDH)	22 (6.7)	HEPA	1.6E+09 (4.4E+07)	6,700 (3.1)	total α total β	ND 1.1E-07

Table 2-2. Hanford Site Radionuclide Air Emissions from Minor Point Sources in 1998.
(minor point source: potential of <0.1 mrem/yr EDE to nearest offsite receptor) (5 sheets)

Source ID ^a (facility; contractor)	Discharge height (ft [m])	Emission control ^b	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min. [m ³ /s])	Radionuclide or type of radioactivity ^c	Annual emissions (Ci) ^d
296-T-17 (TWRS; FDH)	33 (10.1)	HEPA	6.2E+08 (1.7E+07)	1,200 (0.55)	total α total β	ND ND
291-S-1 (REDOX Plant; BHI)	200 (61)	sand filter	1.1E+10 (3.1E+08)	21,000 (9.8)	total α total β	4.7E-07 6.0E-06
296-S-2 (REDOX Plant; BHI)	68 (20.7)	HEPA	3.8E+08 (1.1E+07)	730 (0.34)	total α total β	ND 4.2E-08
296-S-7W backup: 296-S-7E (REDOX Plant; BHI)	25 (7.6)	HEPA	4.4E+09 (1.2E+08)	8,300 (3.9)	total α total β	2.0E-06 6.7E-07
296-S-16 (222-S; FDH)	9.8 (3)	HEPA	7.1E+07 (2.0E+06)	130 (0.063)	total α total β	1.2E-08 3.1E-08
296-S-21 (222-S; FDH)	38 (11.6)	HEPA	3.9E+10 (1.1E+09)	75,000 (35)	total α total β	ND 2.0E-06
291-T-1 (T Plant; FDH)	200 (61)	HEPA	1.7E+10 (4.8E+08)	32,000 (15)	total α total β	3.7E-05 1.3E-04
296-T-7 (T Plant; FDH)	28 (8.5)	HEPA	2.5E+09 (7.1E+07)	4,800 (2.2)	total α total β	8.9E-09 2.5E-08
296-T-13 (T Plant; FDH)	68 (20.7)	HEPA	0	0	did not operate	
296-T-11 (TRUSAf; FDH)	25 (7.6)	HEPA	0	0	did not operate	
296-T-12 (TRUSAf; FDH)	25 (7.6)	HEPA	8.6E+09 (2.4E+08)	16,000 (7.7)	total α total β	1.2E-06 1.8E-06
291-U-1 (U Plant; BHI)	200 (61)	sand filter	1.5E+10 (4.2E+08)	28,000 (13)	total α total β	3.6E-07 7.2E-05
696-W-1 (WSCF; FDH)	25 (7.6)	HEPA	2.6E+10 (7.2E+08)	49,000 (23)	total α total β	ND 1.2E-07
696-W-2 (WSCF; FDH)	32 (9.8)	HEPA	5.3E+08 (1.5E+07)	1,000 (0.48)	total α total β	ND ND
296-W-3 (TWRS; FDH)	25 (7.6)	HEPA	0	0	did not operate	
296-Z-3 (PFP; FDH)	25 (7.6)	HEPA	4.6E+08 (1.3E+07)	870 (0.41)	^{238}Pu $^{239,240}\text{Pu}$ ^{241}Pu ^{241}Am total β	2.3E-08 2.3E-08 3.2E-08 1.1E-08 3.7E-08
296-Z-5 (PFP; FDH)	28 (8.5)	HEPA	5.4E+09 (1.5E+08)	10,000 (4.9)	total α total β	ND 1.2E-07
296-Z-6 (PFP; FDH)	15 (4.5)	HEPA	3.9E+09 (1.1E+08)	7,500 (3.5)	total α total β	ND 2.6E-08

Table 2-2. Hanford Site Radionuclide Air Emissions from Minor Point Sources in 1998.
(minor point source: potential of <0.1 mrem/yr EDE to nearest offsite receptor) (5 sheets)

Source ID ^a (facility; contractor)	Discharge height (ft [m])	Emission control ^b	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^c	Annual emissions (Ci) ^d
296-Z-14 (PFP; FDH)	20 (6.1)	HEPA	7.0E+08 (2.0E+07)	1,300 (0.63)	total α total β	1.6E-08 7.5E-08
296-Z-15 (PFP; FDH)	42 (12.8)	HEPA	8.4E+08 (2.4E+07)	1,600 (0.76)	total α total β	ND 7.5E-09
<i>300 Area</i>						
EP-305B-01-S (305-B Building; PNNL)	33 (10)	HEPA	5.4E+08 (1.5E+07)	1,100 (0.5)	unspec. α unspec. β	6.8E-10 5.5E-09
EP-306W-03-V (306-W Building; PNNL)	29 (8.8)	HEPA	1.4E+10 (4.0E+08)	28,000 (13)	unspec. α unspec. β	2.4E-08 4.7E-07
EP-318-01-S (318 Building; PNNL)	29 (8.8)	none	2.6E+08 (7.5E+06)	420 (0.2)	unspec. α unspec. β	4.3E-09 6.5E-08
EP-320-01-S (320 Building; PNNL)	40 (12.1)	HEPA	1.6E+10 (4.5E+08)	30,000 (14)	unspec. α unspec. β	4.3E-08 6.0E-07
EP-320-02-S (320 Building; PNNL)	32 (9.7)	HEPA	2.7E+08 (7.6E+06)	420 (0.2)	unspec. α unspec. β	3.8E-09 1.6E-08
EP-320-03-S (320 Building; PNNL)	26 (7.9)	HEPA	2.3E+08 (6.4E+06)	420 (0.2)	unspec. α unspec. β	7.4E-10 4.8E-09
EP-320-04-S (320 Building; PNNL)	26 (7.9)	HEPA	1.7E+08 (4.9E+06)	420 (0.2)	unspec. α unspec. β	7.4E-10 8.0E-09
EP-323-01-S (323 Building; PNNL)	16 (4.9)	HEPA	2.5E+09 (7.1E+07)	4,700 (2.2)	unspec. α unspec. β	5.8E-09 9.0E-08
EP-326-01-S (326 Building; PNNL)	47.6 (14.5)	HEPA	3.0E+10 (8.4E+08)	55,000 (27)	unspec. α unspec. β	6.5E-07 6.3E-06
EP-327-02-V (327 Building; FDH)	29.5 (9)	HEPA	4.0E+08 (1.1E+07)	770 (0.3)	⁶⁰ Co ⁹⁰ Sr ¹³⁷ Cs ^{239,240} Pu unspec. α unspec. β	ND 2.0E-09 4.0E-09 ND 1.5E-09 1.6E-08
EP-329-01-S (329 Building; PNNL)	62.6 (19.1)	HEPA	2.7E+10 (7.6E+08)	51,000 (24)	unspec. α unspec. β	5.2E-09 2.4E-08
340-B-BLDG (340 Complex; FDH)	38 (11.6)	HEPA	1.1E+08 (3.1E+06)	2,500 (1.2)	total α total β	ND 1.1E-08
340-DECON (340 Complex; FDH)	9.8 (3)	HEPA	3.7E+09 (1.1E+08)	7,100 (3.3)	total α total β	ND 5.8E-07
EP-3020-01-S (EMSL; PNNL)	52.5 (16)	HEPA	3.4E+09 (9.7E+07)	6,600 (3.1)	unspec. α unspec. β	ND ^e ND ^e

Table 2-2. Hanford Site Radionuclide Air Emissions from Minor Point Sources in 1998.
(minor point source: potential of <0.1 mrem/yr EDE to nearest offsite receptor) (5 sheets)

Source ID ^a (facility; contractor)	Discharge height (ft [m])	Emission control ^b	Total flow (ft ³ [m ³])	Annual average flow rate (ft ³ /min [m ³ /s])	Radionuclide or type of radioactivity ^c	Annual emissions (Ci) ^d
EP-3720-02-S (3720 Building; PNNL)	16.4 (5)	HEPA	0	0	did not operate	
EP-3720-03-S (3720 Building; PNNL)	30.5 (9.3)	HEPA	4.1E+09 (1.2E+08)	7,800 (3.7)	unspec. α unspec. β	5.9E-09 4.6E-09
EP-3730-01-S (3730 Building; PNNL)	19.4 (5.9)	HEPA	1.8E+08 (5.1E+06)	420 (0.2)	unspec. α unspec. β	6.9E-10 3.3E-09
EP-3745-01-S (3745 Building; PNNL)	9.2 (2.8)	HEPA	3.0E+08 (8.4E+06)	640 (0.3)	unspec. α unspec. β	ND 3.5E-08
<i>400 Area</i>						
FFTF-CB-EX (FFTF; FDH)	47 (14.3)	none	1.1E+10 (3.1E+08)	21,000 (9.8)	^3H total α total β	4.2E+00 ND 8.8E-07
FFTF-HT-TR (FFTF; FDH)	29 (8.8)	none	2.7E+09 (7.8E+07)	5,200 (2.5)	total α total β	2.7E-09 1.6E-07
FFTF-RE-SB (FFTF; FDH)	20 (6.1)	none	6.8E+09 (1.9E+08)	13,000 (6.1)	total α total β	4.9E-07 2.9E-06
437-MN&ST (MASF; FDH)	30 (9.1)	HEPA	7.6E+09 (2.1E+08)	14,000 (6.8)	total α total β	ND 8.8E-07
437-1-61 (MASF; FDH)	38.4 (11.7)	HEPA	7.0E+09 (2.0E+08)	13,000 (6.3)	total α total β	ND 6.5E-07

^a ID = identification, i.e., the alpha-numeric designator for the respective point source; FDH = Fluor Daniel Hanford, Inc.; PNNL = Pacific Northwest National Laboratory; BHI = Bechtel Hanford, Inc.

^b Efficiencies are: <99.95% for HEPA; <95% for charcoal; <99.8% for sand filter; zero for no emission control.

^c "unspec. α " and "unspec. β " stand for unspecified alpha and unspecified beta, respectively. Unspecified alpha releases are derived by subtracting the total activity of specifically analyzed alpha emitters released from the total analytical value of alpha activity released. The same process was used to calculate releases for unspecified beta emitters.

^c "Unspec. α " and "unspec. β " stand for unspecified alpha and unspecified beta, respectively. Unspecified alpha releases are derived by subtracting the total activity of specifically analyzed alpha emitters released from the total analytical value of alpha activity released. The same process was used to calculate releases for unspecified beta emitters.

^d 1 curie = 3.7 E+10 becquerels; ND = none detected (i.e., either the radionuclide was not detected in any sample during the year or the average of all the measurements for that given radionuclide or type of radioactivity made during the year was below background levels).

^e No unsealed radioactive material was present in this facility during 1998; for the same period, therefore, no radionuclides were emitted from this stack.

Table 2-3. Distances and Directions from Major Operating Areas to Receptors at Respective Nearest Residences.

Receptor		Distance (mi) and direction from major operating area ^a				
		100 Area	200-E Area	200-W Area	300 Area	400 Area
Residence ^b	Nearest	7.0 NNW	13.2 E	8.5 W	0.9 NE	5.5 E
	Nearest in prevailing wind	15.1 E	13.2 E	16.9 SE	2.1 S	6.7 SE
Vegetable-producing farm	Nearest	6.1 NW	13.1 E	11.0 NW	2.0 E	6.5 ESE
	Nearest in prevailing wind	15.5 E	13.1 E	18.6 E and 18.6 SE	2.5 NE	7.8 SE
Milk-producing farm	Nearest	21.7 E	18.1 ENE	21.5 S	3.6 SES	8.3 E
	Nearest in prevailing wind	21.7 E	19.0 ESE	24.2 ESE	5.7 NE	9.5 SE
Meat-producing farm	Nearest	7.0 NNW	13.0 WNW	11.0 WSW	1.7 ESE	7.6 SE
	Nearest in prevailing wind	19.5 ESE	14.9 E	16.8 SE	5.0 NE	7.6 SE

^a 1 mi = 1.609 km; all emission points within emission area are assigned a single distance to the nearest receptor.^b Residence includes dwelling, school, business, or office.

This page intentionally left blank.

3.0 POINT-SOURCE EMISSION DOSE ASSESSMENTS

3.1 DESCRIPTION OF POINT-SOURCE EMISSIONS DOSE MODEL

The CAP88-PC computer code (EPA 1992) was used to determine the compliance status of Hanford Site radionuclide air emissions with the 10 mrem/yr EDE standard set in both Subpart H of 40 CFR 61 and in WAC 246-247. Because the Hanford Site has numerous emission points that are widely separated, it is necessary to determine the point at which the maximum dose would be received from the combined air emissions released from all locations. Emission points used for modeling purposes were centered on each of the major operating areas that released radionuclides to the atmosphere during 1998. A single geographical reference location for each of the five major operating areas has been chosen, representative of all point sources in each respective area. For the 100 Area, that location is the spent fuel storage basin in the 105-KE Building; for the 200 East Area, the PUREX Plant; for the 200 West Area, PFP; for the 300 Area, the 325 Building; and for the 400 Area, FFTF.

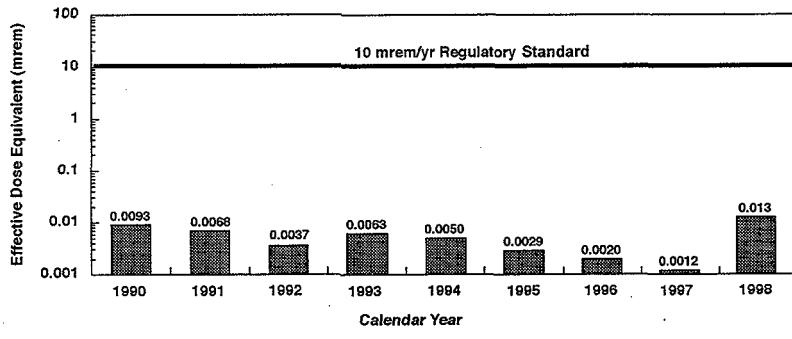
Emission point sources in the major operating areas are listed in Table 3-1. The location of the MEI selected for the compliance analysis is a farm at Sagemoor Road, directly across the Columbia River from the Hanford Site boundary east of the 300 Area. Table 3-2 lists the EDE to this receptor, caused by all radionuclide air emissions in 1998 from all point sources, as well as the five unified locations of those sources relative to Sagemoor Road where the MEI resides.

3.2 SUMMARY OF INPUT PARAMETERS

Dose calculations were performed using established standard parameters for the Hanford Site and its environment (PNL 1993). Release estimates, grouped by major operating area, were used to perform dose calculations (Table 3-1). Releases from point sources were modeled using an effective discharge height of 33 ft (10 m) for all release locations other than the 200 Area facilities, which were assumed to have an effective release height of 292 ft (89 m). Releases reported as total alpha or total beta were generally evaluated as ^{239}Pu or ^{90}Sr , respectively, to provide a conservative estimate of the expected impact. In the case of 400 Area, some releases reported as total beta measurements were modeled as ^{137}Cs , based on facility-specific information.

Radionuclide data used for the dose calculations are listed in Appendix A; all other radionuclide-specific parameters were default values provided by CAP88-PC data libraries. The maximum individual exposure and consumption parameters were those determined previously for the Hanford Site; they also are included in Appendix A. Parameters used for the ingestion pathway assumed that the receptor's entire diet was produced at the residence's location, which is the "local" food production option in CAP88-PC.

Radionuclide air concentrations at the receptor location were determined using site-specific meteorological data for each release point. Joint frequency distributions and CAP88-PC wind files were prepared from data collected at weather stations in each of the operating areas, and these represent the average of hourly data taken during 1998. This information was used to determine annual average dispersion coefficients in 1998 for each of the major release points (Appendix A).


3.3 COMPLIANCE ASSESSMENT

3.3.1 40 CFR 61, Subpart H, Regulatory Standard

For radionuclide air emissions from DOE facilities, the standard in 40 CFR 61, Subpart H, for a maximum dose to any member of the public is 10 mrem/yr EDE. During 1998, the combined dose to the MEI at the Sagemoor Road farm attributable to routine and nonroutine radionuclide air emissions from all point sources on the DOE Hanford Site was 1.3 E-02 mrem (1.3 E-04 mSv) EDE. As shown in Table 3-2, this dose resulted mainly from tritium emissions related to activities at the 325 Radiochemical Processing Laboratory in the 300 Area; these emissions accounted for more than 96% of the MEI dose. The MEI used in the Hanford Site compliance calculations is located approximately 0.93 miles (1.5 km) east of the 300 Area. To state again for the purpose of highlighting adequate compliance with the 10 mrem/yr EDE standard, the DOE Hanford Site EDE from point-source emissions of radionuclides in 1998 was 1.3 E-02 mrem, which is 0.13% of the standard.

This dose is somewhat higher than the annual dose in recent years. Figure 3-1 displays the offsite MEI doses (in accordance with requirements in 40 CFR 61, Subpart H) attributable to Hanford Site radionuclide emissions from point sources since 1990, the first year this report was issued. Doses from 1990 through 1992 were modeled using the mainframe version of CAP88 and an MEI location at Ringold. The doses from 1993 through 1998 were modeled using CAP88-PC and an MEI location at Sagemoor Road. CAP88-PC is the personal computer version of CAP88, which relies on default parameters more than the mainframe version does.

Figure 3-1. Historical Doses to the MEI Due to Point-Source Emissions of Radionuclides from the Hanford Site.

3.3.2 WAC 246-247 Regulatory Standard

For Hanford Site radionuclide air emissions, Washington state has adopted the federal dose standard of 10 mrem/yr EDE. The same MEI used in calculating the point-source dose was used in calculating the dose from diffuse and fugitive emissions, although the receptor site for diffuse and fugitive emissions was

at Byers' Landing, where the ambient air monitoring station nearest the MEI residence on Sagemoor Road is located. The dose from diffuse and fugitive emissions estimated at Byers' Landing was 2.5 E-02 mrem (2.5 E-04 mSv). For 1998, the combined dose to a receptor at the Sagemoor Road farm attributable to radionuclides emitted from all Hanford sources (i.e., point, diffuse, and fugitive) was 3.8 E-02 mrem EDE (3.8 E-04 mSv).

An unplanned release on August 26, 1998, resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access, north of the 300 Area. This release would not have caused a dose to the MEI at the Sagemoor Road farm since the wind was blowing toward the north and to the west during this release. The potential dose from the unplanned event was similar in magnitude to that from routine releases during 1998. On December 8, 1998, another unplanned release occurred in the 300 Area. Since the wind that day was in the direction of the MEI, this release was included in calculating the MEI dose.

To state again for the purpose of highlighting adequate compliance with the standard of 10 mrem/yr EDE, the Hanford Site EDE from diffuse, fugitive, and point-source radionuclide air emissions in 1998 was 3.8 E-02 mrem, which is 0.38% of the standard.

(*Erratum Note:* Two incorrect dose values were reported in the *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1997*. The first is for the EDE from diffuse and fugitive emissions: The reported value of 2.2 E-02 mrem should be corrected to 2.9 E-02 mrem. The second is for the combined EDE reflecting doses from all emission sources on the Hanford Site: The reported value of 2.6 E-02 mrem should be corrected to 3.3 E-02 mrem.)

Table 3-1. Release Estimates of Hanford Site Radionuclide Air Emissions in 1998.

Radionuclide	Routine Release (Ci) ^a					
	100-Areas	200 East Area	200 West Area	300 Area	400 Area	Total
³ H (as HT)	NM	NM	NM	93	0	93
³ H (as HTO)	NM	NM	NM	65	4.2	69
⁶⁰ Co	ND	ND	ND	ND	NM	ND
⁶⁵ Zn	ND	ND	ND	ND	NM	ND
⁹⁰ Sr	1.70E-05	1.20E-04 ^b	2.30E-04 ^b	9.62E-06	NM	3.95E-04
⁹⁵ Zr	ND	ND	ND	ND	NM	ND
¹⁰⁶ Ru	ND	ND	NM	ND	NM	ND
¹¹³ Sn	ND	ND	NM	ND	NM	ND
¹²⁵ Sb	ND	4.80E-07	NM	ND	NM	4.80E-07
¹²⁹ I	NM	3.10E-04	NM	4.60E-08	NM	3.10E-04
¹³⁴ Cs	ND	ND	ND	ND	NM	ND
¹³⁷ Cs	3.00E-05	1.90E-04	3.20E-09	5.83E-07	5.50E-06 ^c	2.26E-04
U (depleted)	NM	NM	NM	ND	NM	ND
²³⁸ Pu	5.20E-07	7.90E-10	3.40E-06	1.70E-09	NM	3.92E-06
^{239,240} Pu	3.40E-06	1.10E-06 ^e	2.00E-04 ^e	1.07E-06	5.00E-07 ^d	2.06E-04
²⁴¹ Pu	3.80E-05	2.90E-08	4.40E-05	ND	NM	8.20E-05
²⁴¹ Am	2.00E-06	5.00E-07	3.00E-05	2.27E-08	NM	3.25E-05
²⁴³ Am	NM	NM	NM	ND	NM	ND
Radionuclide	Unplanned Release (Ci) ^a					
	100 Areas	200 East Area	200 West Area	300 Area	400 Area	Total
³ H (HT) ^e	NM	NM	NM	17	NM	17
³ H (HTO) ^e	NM	NM	NM	106	NM	106

^a 1 Ci = 3.7 E+10 becquerels; ND = not detected (i.e., either the radionuclide was not detected in any sample during the year or the average of all the measurements for that given radionuclide or type of radioactivity made during the year was below background levels); NM = not measured.

^b This value includes total beta release data; total beta and unspecified beta data assumed to be ⁹⁰Sr in dose calculations.

^c This value includes total beta release data; total beta data assumed to be ¹³⁷Cs from FFTF emissions in dose calculations.

^d This value includes total alpha release data; total alpha and unspecified alpha data assumed to be ^{239,240}Pu in dose calculations.

^e HT = tritium as incondensable gas; HTO = tritium as condensable water vapor.

Table 3-2. CAP88-PC Effective Dose Equivalent Estimates for Maximally Exposed Individual at Sagemoor Road, Resulting from Hanford Site Radionuclide Air Emissions in 1998.

Radionuclide	Distances, directions, and effective dose equivalent (mrem) to offsite MEI, by radionuclide and operating area ^a					EDE (40 CFR 61, Subpart H), by radionuclide	
	100 Areas	200-E Area	200-W Area	300 Area	400 Area	EDE total (mrem)	Percent of EDE total
	41 km SE	28 km SE	35 km SE	1.5 km E	11 km SE		
³ H	0	0	0	1.3E-02 ^b	1.1E-04	1.3E-02	96.7%
⁹⁰ Sr ^c	1.7E-07	2.6E-06	3.9E-06	9.7E-06	0	1.6E-05	0.1%
¹²⁵ Sb	0	2.5E-09	0	0	0	2.5E-09	0.0%
¹²⁹ I	0	5.2E-05	0	4.7E-07	0	5.3E-05	0.4%
¹³⁷ Cs/Ba	6.5E-07	8.9E-06	1.2E-10	1.2E-06	1.5E-06 ^d	1.2E-05	0.1%
²³⁸ Pu	3.2E-07	9.7E-10	3.3E-06	1.2E-07	0	3.7E-06	0.03%
²³⁹ Pu ^e	2.3E-06	1.5 E-06	2.1E-04	8.3E-05	4.7E-06	3.0E-04	2.3%
²⁴¹ Pu	4.0E-07	6.1E-10	7.2E-07	0	0	1.1E-06	0.01%
²⁴¹ Am	2.1E-06	1.0E-06	4.7E-05	2.7E-06		5.3E-05	0.4%
Dose Totals	5.9E-06	6.6E-05	2.62E-04	1.3E-02	1.2E-04	1.3E-02	100%

^a 1 mrem = 0.01 mSv; 1 km = 0.621 mi.

^b The HT release was converted to equivalent curies of HTO for dose modeling purposes because the CAP88-PC models assume that tritium is in the oxidized form. For this assessment, 1 Ci of HT was assumed to be equivalent to 0.01 Ci of HTO (Brown et al. 1990).

^c This value includes total beta release data. Total beta and unspecified beta results were assumed to be ⁹⁰Sr for dose calculations at all facilities other than FFTF.

^d This value includes total beta release data, which were assumed to be ¹³⁷Cs for dose calculations from FFTF emissions.

^e This value includes total alpha release data; those data as well as unspecified alpha results were assumed to be ^{239,240}Pu for dose calculations.

3.4 METEOROLOGICAL DATA

Radionuclide air emissions disperse once the emissions enter the atmosphere. Atmospheric dispersion models predict the degree of dilution and the magnitude of resulting air concentrations at downwind locations. Site-specific measurements of the occurrence frequencies for wind speed, wind direction, and atmospheric stability are used in the models. The dispersion models yield annual average dispersion factors (in units of s/m³). Combining these factors with annual average release rates yields predictions of average radionuclide air concentrations for the year. Annual average dispersion factors around the 100, 200, 300, and 400 Areas for 1998 are in Appendix A.

3.5 NONROUTINE RELEASES OF RADIONUCLIDES TO THE ATMOSPHERE

On April 14, 1998, a Pacific Northwest National Laboratory (PNNL) classified experiment in the 324 Building caused a release of up to 20 Ci of tritium through the building main stack, a value verified by DOH. For security reasons, the tritium sampler was shut off during this experiment; actual emissions

data could possibly be used to gain information on the experiment, which related to nuclear weapon designs. One revealed purpose of the experiment was to demonstrate the feasibility of treating components from dismantled nuclear weapons using a plasma-arc furnace in the 324 Building. (For more complete information on this event, see DOE/RL-98-45, Rev. 0, June 1998, *Investigation of the Tritium Release from Building 324 in Which the Stack Tritium Sampler Was Off, April 14-17, 1998*.)

On August 26, 1998, a continuous air monitor measuring stack emissions from the radiochemical-processing laboratory in the 325 Building, in the 300 Area, alarmed because of elevated tritium (^3H) concentrations. The source of the tritium was determined to be a hot cell where a cold-vapor trap was being purged with helium as part of a sample collection process; liquid nitrogen coolant had already been removed from the trap as part of this procedure. Once the source was identified, the supply of helium purge gas was turned off and the cold-vapor trap isolated. The tritium concentrations in the stack then quickly decreased. Emission monitoring data indicated that 123 Ci of tritium (106 Ci as condensable vapor and 17 Ci as incondensable gas) had been released as a result of this event, but no release levels or exposure limits were exceeded. The potential doses to hypothetical onsite and offsite human receptors were estimated using the GENII dose-modeling computer code. Those doses were reported as less than 0.4 mrem onsite and 0.05 mrem offsite. (This offsite dose was not included in the annual dose estimate for the Hanford Site MEI because the direction of the wind at the time of the event was not toward the MEI residence.) Hot-cell procedures were reviewed and modified to prevent a recurrence of this type of release.

The release occurred for a brief time, and was therefore modeled as an acute release, not a chronic one as are routine releases. It would not have affected the offsite MEI for the Hanford Site since the wind was blowing in a northerly to westerly direction. The maximum dose estimated (using GENII software [PNL 1988]) was 4.1 E-02 mrem for a receptor 1,640 ft (500 m) north of the 300 Area.

On December 8, 1998, a continuous air monitor on the exhaust stack of the 325 Building, in the 300 Area, activated an alarm, which annunciated for 12 minutes. This release, lasting less than one hour, was caused by an operator error that resulted in an incorrect opening of a fume hood valve. Emission monitoring staff calculated that the alarm was triggered by a release of 68 Ci of tritium (3 Ci as condensable vapor and 65 Ci as incondensable gas). Because this release consisted mainly of elemental tritium (i.e., HT), was small relative to the remaining routine emissions, and was transported in the general direction of the offsite MEI, it was included in the annual dose estimate for the MEI. The estimated potential doses were 0.003 mrem to the offsite public and 0.0004 mrem to the nearest residential area (which was included in the dose estimate for the Hanford Site MEI). On December 10, 1998, DOH issued an order temporarily suspending tritium operations connected with the air permit for the Tritium Target Qualification Project in the 325 Building, pending corrective actions.

Other releases from actively ventilated point sources with a potential to release radioactivity were routinely sampled. The resulting quantities of radionuclides released and the corresponding EDEs are reported in Sections 2.0 and 3.0 of this document.

3.6 ADDITIONAL INFORMATION

Construction Projects and Modifications Exempted from 40 CFR 61.96

No waivers or exemptions of the approval process under 40 CFR 61.96 were granted in 1998. In late 1992, the Environmental Protection Agency (EPA) determined that some of the emission units on the Hanford Site were out of compliance with the requirements specified in 40 CFR 61, Subpart H (i.e., NESHAP regulations). As a consequence of these noncompliant emission units, a Federal Facilities

Compliance Agreement (FFCA) for NESHAP regulation was made between DOE-RL and EPA Region 10. Until all milestones in the FFCA are complete, EPA approval is required for all construction or modification projects with the potential to increase radionuclide emissions.

Table 3-3. Doses from Major Point Sources
at the Hanford Site in 1998.

Source identification (contractor)	Effective dose equivalent (mrem) ^a	Percent of dose total ^b
<i>200 East Area</i>		
291-A-1 (FDH)	4.8 E-05	<0.4%
291-B-1 (FDH)	7.9 E-06	<0.1%
296-B-1 (FDH)	2.4 E-08	<0.1%
296-B-10 (FDH)	5.0 E-06	<0.1%
296-A-12 (FDH)	did not operate	
296-A-17/296-P-26 (FDH)	5.0 E-06	<0.1%
296-A-25 (FDH)	9.4 E-08	<0.1%
296-A-42 (FDH)	6.1 E-10	<0.1%
296-B-28 (FDH)	8.2 E-10	<0.1%
296-C-5 (FDH)	1.8 E-08	<0.1%
296-C-6 (FDH)	1.8 E-10	<0.1%
296-P-16 (FDH)	4.1 E-08	<0.1%
296-P-32 (FDH)	2.7 E-10	<0.1%
296-P-33 (FDH)	7.0 E-12	<0.1%
296-P-34 (FDH)	2.2 E-10	<0.1%
<i>200 West Area</i>		
296-S-22 (FDH)	4.3 E-10	<0.1%
296-T-18 (FDH)	7.3 E-10	<0.1%
296-W-4 (FDH)	1.9 E-08	<0.1%
291-Z-1 (FDH)	2.2 E-04	<1.7%
<i>300 Area</i>		
EP-324-01-S (FDH)	5.1 E-05	<0.4%
EP-325-01-S (PNNL)	1.2 E-02	>92%
EP-327-01-S (FDH)	9.7 E-05	<0.8%
EP-331-01-V (PNNL)	2.2 E-05	<0.2%
340-NT-EX (FDH)	6.4 E-07	<0.1%
EP-3720-01-S (PNNL)	5.7 E-07	<0.1%
Major point-source totals	1.3 E-02	≈97%

^a 1 mrem = 1.0 E-02 mSv; doses and percentages in this table exclude those attributable to radon and thoron emissions.

^b The small dose total from minor stacks accounts for the balance of 100% of doses attributable to all point-source emissions. Slight differences in totals are due mainly to the dose values having been rounded to two significant figures.

3.7 CERTIFICATION

This certification applies only to Sections 1.0, 2.0, and 3.0.

"I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See 18 U.S.C. 1001."

Keith A. Klein, Manager
U.S. Department of Energy,
Richland Operations Office

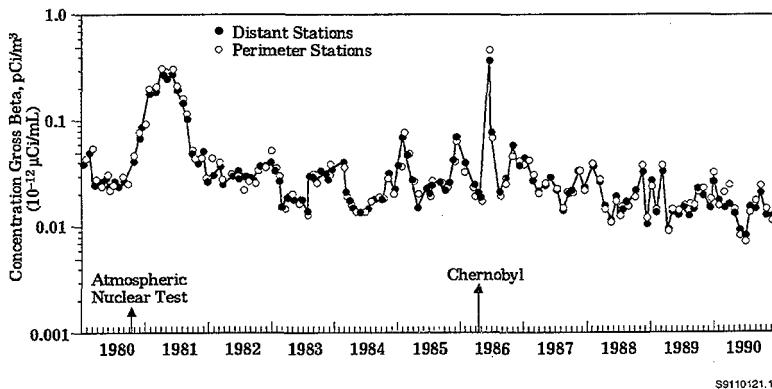
6/28/99
Date

This page intentionally left blank.

4.0 DIFFUSE AND FUGITIVE SOURCES OF EMISSIONS

Diffuse and fugitive sources include all radioactive emission sources that are not actively ventilated or are not routinely sampled (e.g., passively ventilated tank vents, vented containers, outdoor surface contamination areas, cracks between cover blocks, etc.). All diffuse and fugitive emission sources are monitored by the Hanford Site diffuse and fugitive emissions monitoring program, as described in Section 4.1. There are numerous types of these sources in and around the facilities, as described in Section 4.3.

WAC 246-247 requires facilities to monitor nonpoint (i.e., diffuse) and fugitive emissions of radioactive material. DOE Headquarters has requested that estimated doses to the public, related to radioactive emissions from both point sources along with diffuse and fugitive sources, be included in this report. This request is based on the requirement in 40 CFR 61, Subpart H, that the dose from all potential emission sources at DOE facilities not exceed 10 mrem/yr EDE to any member of the public. This section describes the diffuse and fugitive emissions monitoring program and gives the EDE estimate to the public, attributable to diffuse and fugitive sources.


Currently, all nuclear material production facilities on the Hanford Site have been shut down or are in a standby mode. Only waste minimization and stabilization processes continue. In the past, when the Hanford Site was operating at or near full capacity, point-source emissions were easily detected. Now, however, emissions from point sources have diminished in most instances to background levels. Therefore, the environmental contribution from diffuse and fugitive emissions has become a larger percentage of the total radioactivity attributable to activities on the Hanford Site, even though diffuse and fugitive emissions have remained relatively small and constant.

The standard approach for assessing offsite doses from forced ventilation exhaust points is by applying atmospheric transport models to measured releases. Assessing offsite doses from diffuse and fugitive emissions, however, is not as straightforward. It is complicated by the difficulties involved in quantifying the emissions from the source term. Methods for quantifying diffuse and fugitive emissions are still being developed, with factors such as these continuing to complicate the effort: (1) difficulty in accurately quantifying air flow from the source, (2) greater complexity in the influences from meteorological conditions, and (3) exceedingly low detection levels. Passively ventilated emissions are considered diffuse in nature because they lack a measurable flow.

Passively ventilated point sources, breather vents and other openings on tanks, vaults, vented containers, and other structures are potential conduits of radioactive emissions. Airborne radionuclides inside vented structures can be released through passive air exchanges, typically caused by ambient temperature and pressure changes. It is difficult, however, to accurately assess radionuclide releases that might occur under such conditions, particularly when a vent opening is irregularly shaped or when multiple openings are in close proximity. This difficulty in accurately and readily quantifying passively ventilated emissions is the main reason why these sources are not routinely sampled, whereas actively ventilated stacks and vents are. As an alternative to routine record sampling, estimates of radionuclides discharged as diffuse and fugitive emissions sources are made based on data collected from a comprehensive network of ambient air samplers. Dose estimates are then calculated using these data. Section 4.2 contains the dose and release estimates for Hanford Site diffuse and fugitive emissions in 1998.

For this report, doses have been calculated for emissions from both actively ventilated point sources and diffuse and fugitive sources. The methods used for calculating diffuse and fugitive emissions are still being refined. Dose calculations for each type of emission are presented separately. As methods for estimating the dose from diffuse and fugitive emissions are further developed, more precise values that account for radionuclides from natural sources, nuclear-testing fallout, and non-DOE nuclear facilities might be subtracted from measured ambient air concentrations. Figure 4-1 serves as a window with which to better view historical data. First, ambient air concentrations from sample locations at the Hanford Site perimeter are seen to differ little from the concentrations measured at distant locations. The figure illustrates the impact emissions from non-Hanford Site sources can have on diffuse and fugitive emissions estimates. It also shows the sensitivity of the Hanford Site Environmental Surveillance Program, which has in its sample data captured evidence of global nuclear events.

Figure 4-1. Historical Impact on Gross Beta Radioactivity in Hanford Site Ambient Air Samples, 1979 through 1990 (PNL 1991).

4.1 DIFFUSE AND FUGITIVE EMISSIONS MONITORING

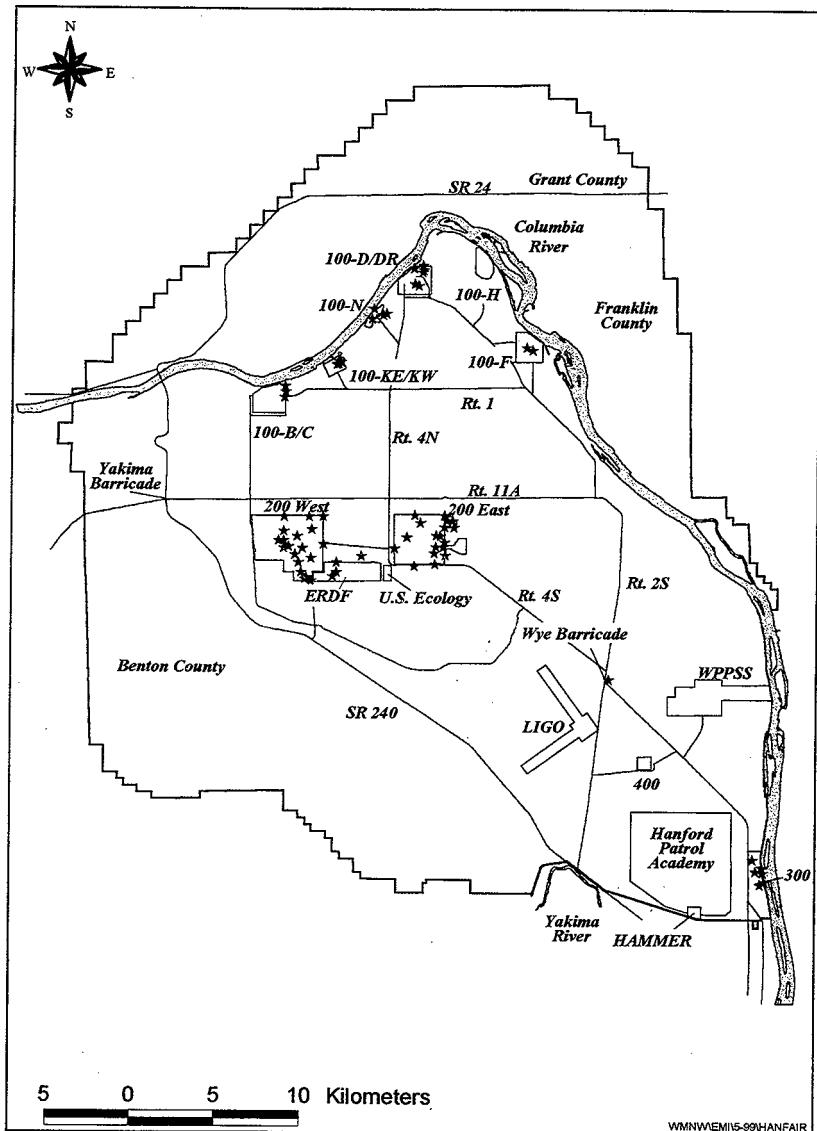
On the Hanford Site, two programs, the Near-Facility Environmental Monitoring Program and the Environmental Surveillance Program, monitor diffuse and fugitive emissions. These two programs monitor locations on and off of the Hanford Site. They are designed to detect and quantify both the amount of radiological and nonradiological contaminants released to the environment that might reach humans via all pathways. They also quantify the environmental and health significance of these contaminants. Monitoring program information is presented here on diffuse and fugitive emissions of radionuclides that enter atmospheric pathways.

4.1.1 Near-Facility Environmental Monitoring

Near-facility environmental monitoring is defined as monitoring done near facilities that have potentially dispersible radioactivity. Monitoring locations are associated mostly with major nuclear facilities and waste storage or disposal facilities such as container storage, burial grounds, tank farms, ponds, cribs, trenches, and ditches.

Routine monitoring activities include the sampling and monitoring of ambient air, surface contamination, surface water, external radiation doses, vadose zone, soil, sediment, vegetation, and animals. Samples are collected from known or expected effluent transport pathways, which are generally downwind of potential or actual airborne releases and downgradient of liquid discharges. Atmospheric transport is the most efficient offsite transport vector, and, thus, ambient air is the principle medium monitored in the near-facility region, although other media samples might also be useful as secondary indicators.

In 1998, airborne radioactivity was sampled by a network of continuously operating samplers at 70 locations near facilities. Four are in the 100-N Area, 4 in the 100-K Area, 6 in the 100-D/DR Area, 3 in the 100-B/C Area, 2 in the 100-F Area, 41 in the 200 Areas, 3 at the Environmental Restoration Disposal Facility (ERDF), 5 at the 300-FF-1 Project (north of the 300 Area), 1 near the 300 Area Treated Effluent Disposal Facility, and 1 station at the Wye Barricade. The station at the Wye Barricade is collocated with samplers operated by the PNNL Surface Environmental Surveillance Project and DOH. Additional samplers are also used to support specific environmental remediation tasks. Ambient air samplers are primarily located at or near (within about 1,600 ft [500 m]) sites and facilities having the potential for or history of environmental releases. Particulate air samples are analyzed for total alpha activity, total beta activity, gamma-emitting isotopes, ⁹⁰Sr, uranium isotopes (²³⁴U, ²³⁵U, and ²³⁸U), plutonium isotopes (²³⁸Pu and ^{239,240}Pu). Gamma-emitting isotopes routinely reported include ⁶⁰Co, ⁶⁵Zn, ⁹⁵Zr, ¹⁰⁶Ru, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹⁵⁴Eu, ¹⁵⁵Eu, and any other detected isotopes. The 100-K Area air samples are also analyzed for ²⁴¹Am and ²⁴¹Pu. Figure 4-2 depicts the locations of the ambient air samplers used for near-facility monitoring. More detailed descriptions of these monitoring programs can be found in the *Hanford Site Environmental Report* (PNNL 1999a) and the *Hanford Site Near-Facility Environmental Monitoring Report* (1999b).


4.1.2 Environmental Surveillance

Environmental surveillance encompasses sampling and analyzing for potential radiological contaminants on and off the Hanford Site. Monitoring locations are divided among four surveillance distances located on and off of the Site.

The first surveillance area extends from the near-facility monitoring locations to the Hanford Site perimeter. The second area consists of a series of perimeter sampling stations near or just inside the Hanford Site boundary and along State Highway 240. The third consists of nearby community sampling locations within a 50-mi (80-km) radius of the Hanford Site. And the fourth surveillance area (i.e., background locations) is performed at distant community locations unaffected by Hanford Site operations.

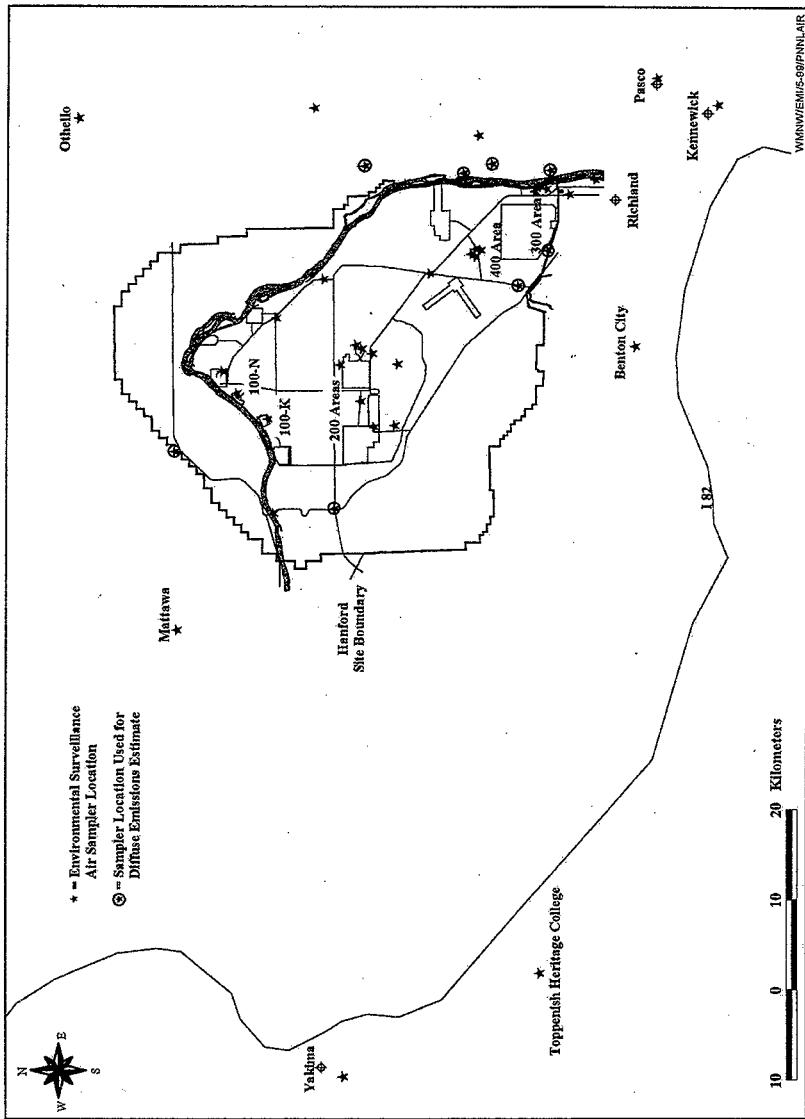
Routine surveillance activities include the sampling and monitoring of air, surface water, groundwater, food and farm products, fish and wildlife, soil and vegetation, and external radiation. Like the near-facility monitoring program, ambient air sampling is the primary method used in monitoring diffuse and fugitive emissions.

Figure 4-2. Near-Facility Ambient Air Sampling Locations.

The air surveillance network consists of 39 sampling stations, of which 20 are on the Hanford Site (onsite), 9 at the Hanford Site perimeter, 8 in nearby communities, and 2 in distant communities (background locations). This program routinely monitors for radioactive vapors, gases, and aerosols. Water vapor, gas, and liquid aerosol sampling and analysis is performed for ^3H and ^{129}I , at selected locations. Airborne particulate radionuclides at all sampling stations are sampled and analyzed. Particulate air samples are routinely analyzed for gross alpha activity, gross beta activity, gamma-emitting isotopes, ^{90}Sr , uranium isotopes (^{234}U , ^{235}U , and ^{238}U), and plutonium isotopes (^{238}Pu and $^{239,240}\text{Pu}$). Gamma-emitting isotope concentrations required to be reported are ^7Be , ^{40}K , ^{60}Co , ^{106}Ru , ^{125}Sb , ^{134}Cs , ^{137}Cs , ^{134}Eu , and ^{155}Eu . Figure 4-3 depicts the locations of the ambient air samplers for the Surface Environmental Surveillance Project.

A more detailed description of this program can be found in the *Hanford Site Environmental Report* (PNNL 1999a).

4.2 ESTIMATED DOSES FROM DIFFUSE AND FUGITIVE EMISSIONS


The potential dose to an offsite individual and the potential releases from diffuse and fugitive sources were estimated using ambient air monitoring data from environmental surveillance air sampling locations along the perimeter of the Hanford Site. Data from 8 perimeter locations were used to perform the assessment of the 1998 emissions (PNNL 1999a, PNNL 1999b) (refer to Figure 4-3).

4.2.1 Description of Dose Assessment Method

The Hanford Site has elected to use environmental surveillance ambient air monitoring data collected at the site perimeter to estimate the dose from diffuse and fugitive emissions sources. This method is preferred for two reasons: (1) these data most accurately represent the actual exposures of an offsite individual to airborne radioactivity and (2) there is currently insufficient information about the extent and characteristics of soil contamination on the Hanford Site to use particle resuspension estimates in conjunction with estimating emissions from other sources of diffuse and fugitive emissions. The ambient air sampling results consisted of measured air concentrations for radionuclides that may be released from site operations and diffuse and fugitive sources. Radionuclides sampled and analyzed for include ^3H , ^{60}Co , ^{90}Sr , ^{106}Ru , ^{125}Sb , ^{129}I , ^{134}Cs , ^{137}Cs , ^{134}Eu , ^{155}Eu , ^{234}U , ^{235}U , ^{238}U , ^{238}Pu , and $^{239,240}\text{Pu}$.

Radionuclide air concentrations resulting from 1998 stack emissions were calculated for each of the 8 selected perimeter sample locations using the CAP88-PC atmospheric dispersion modeling code. The combined contributions to airborne radionuclide concentrations attributable to the stack emissions from all operating areas were subtracted from the ambient air sampling results. Averaged regional background concentrations for each radionuclide were calculated from the air sample results obtained from distant community sampling stations in Toppenish and Yakima. The average background concentration at these stations was also subtracted from the ambient monitoring results at perimeter stations, leaving the radionuclide concentrations attributable to diffuse and fugitive emissions. The only radionuclide concentrations attributable to emissions from non-DOE nuclear sites that have been subtracted were the concentrations attributable to ATG waste management facilities and to WNP-2, because the release data for these facilities were available at the time this report was prepared. As a result, the actual diffuse and fugitive emissions from the Hanford Site are possibly somewhat lower than the estimates presented in this report, since these estimates might contain contributions from other non-DOE nuclear sites.

Figure 4-3 Environmental Surveillance Ambient Air Sampling Locations.

Releases from diffuse and fugitive sources were estimated using the average air concentrations, attributable to diffuse and fugitive emissions, and by performing a back-calculation using CAP88-PC. The 200 West Area was assumed to be the source of all diffuse and fugitive emissions, resulting in the highest release estimates.

The estimated diffuse and fugitive emissions were used to calculate doses at selected Hanford Site perimeter locations with the CAP88-PC code. All diffuse and fugitive emissions were modeled as though they were from the 200 West Area.

4.2.2 Results of Dose Assessment

During 1998, the annual average ambient air concentrations at perimeter sampling stations were found to be numerically greater than the combined contributions from stack releases and background for several analytes, including ^{129}I , ^{90}Sr , ^{125}Sb , ^{137}Cs , ^{155}Eu , ^{234}U , ^{235}U and ^{238}U . Except for ^{129}I , these perimeter concentrations were not statistically different from those measured at the distant community stations (background locations), which are unaffected by Hanford Site effluents (PNNL 1999a, PNNL 1999b).

Concentrations of other radionuclides might have been greater than those caused by stack releases and background radioactivity, at individual monitoring stations. However, the estimated releases, based on the corrected average air concentrations for those nuclides at all sampling stations, were less than zero.

Releases from diffuse and fugitive sources were estimated from the corrected air concentrations by performing a back-calculation using CAP88-PC. The 200 West Area was assumed to be the source of diffuse and fugitive emissions for all radionuclides, which results in the highest release estimate. The diffuse and fugitive source releases reported in Table 4-1 represent the mean of the release estimates for each of the selected perimeter locations at which a particular radionuclide was sampled. Note that not all radionuclides were evaluated at every sampling station; the estimated releases for any particular radionuclide are based on those stations where samples were analyzed for that radionuclide.

In accordance with previous guidance from DOE Headquarters, the average release estimates for diffuse and fugitive sources were calculated using air concentrations that were both positive and negative with respect to the regional background and stack emission estimates. Where the resulting mean release estimate reported in Table 4-1 for an individual radionuclide is less than zero, the average of the monitored air concentrations at the perimeter stations was numerically smaller than the combined concentrations expected as a result of stack emissions and regional background. In such cases, it is unlikely that diffuse and fugitive sources contributed significantly to the offsite measured air concentrations for those radionuclides.

The estimated diffuse or fugitive releases for the sampled radionuclides were also used to calculate the dose at the perimeter sampling stations. An individual at Ringold had the highest estimated dose, and the Byers' Landing station was closest to the Sagemoor Road location, which is the location of the MEI for monitored point sources on the Hanford Site. Table 4-1 shows that for 1998 the hypothetical mean doses to individuals at these two locations were 4.0 E-02 and 2.5 E-02 mrem (4.0 E-04 and 2.5 E-04 mSv), respectively. The doses for the other sampling stations, are not shown in Table 4-1, but were lower than those at the Ringold location.

Where the release estimate for a particular radionuclide was numerically less than zero, the dose estimate for that nuclide was set equal to zero before combining the contributions of all

radionuclides to obtain the total dose at each location. Although the estimated dose from diffuse and fugitive sources at the Sagemoor Road location is somewhat higher than the dose from point sources, the combined dose from point sources and diffuse and fugitive sources during 1998 was substantially below the 10 mrem/yr standard.

In addition to the sitewide diffuse and fugitive emissions estimates, diffuse and fugitive tritium emissions from two sources were estimated for 1998, to determine their potential contribution to the public radiological dose. Tritium emissions from the 100-K Area spent fuel storage basins were estimated at less than 2 Ci/yr (7×10^6 Bq/yr), and those from the 200 Area tank farms were estimated at less than 6 Ci/yr (2×10^7 Bq/yr). Emissions from both sources were assumed to be in the form of tritiated water. During 1998, the resulting dose to the MEI at Sagemoor Road from the estimated tritium emissions was 8.1×10^{-6} mrem (8.1×10^{-8} mSv) from the 100-K basins, and 7.1×10^{-5} mrem (7.1×10^{-7} mSv) from the 200 Area tank farms. The dose from these sources was much lower than the dose from monitored point-source emissions and did not substantially increase the total dose to an offsite receptor.

4.2.3 Estimate of Uncertainty in Dose Assessment

To obtain an estimate of the uncertainty in the diffuse and fugitive emissions dose estimates, the reported 1998 air concentrations at the Byers' Landing sampling station and at the distant community stations were used to estimate the mean and 95% confidence intervals for each location. This analysis employed the uncorrected air concentrations at the reference locations, including the contributions from monitored point-source releases at DOE facilities, diffuse and fugitive sources, sources other than DOE facilities, and regional background. The Byers' Landing station was selected for this analysis because it is closest to the location of the Hanford Site MEI, at Sagemoor Road, and also was the only perimeter station at which all radionuclides were evaluated.

The calculation was performed using the GENII-S computer code (SNL 1992) to produce a stochastic analysis of the environmental radiation doses. The raw values of the measured air concentrations were input as basic concentrations to define an empirical distribution for each radionuclide. The code used a Latin hypercube sampling routine to select random values for each radionuclide concentration in 300 trials to obtain the dose distribution for each location. The values of parameters other than the radionuclide air concentrations were not varied as part of this analysis; therefore, the uncertainties reported in this section reflect only variability in the air sampling data.

The estimated mean dose at the Byers' Landing station was 8.5×10^{-2} mrem (8.5×10^{-4} mSv) for artificially produced radionuclides sampled at that location, with a 95% confidence interval of 6.8×10^{-2} to 1.1×10^{-1} mrem (6.8×10^{-4} to 1.1×10^{-3} mSv). The corresponding result for the distant community monitoring stations was 5.9×10^{-2} mrem (5.9×10^{-4} mSv) with 95% confidence limits of 2.1×10^{-2} to 9.0×10^{-2} mrem (2.1×10^{-4} to 9.0×10^{-4} mSv). The mean dose estimates and the upper 95% confidence limits were slightly higher at the site perimeter than at the distant community stations. The estimated dose at perimeter stations was largely a result of background radioactive materials (naturally occurring radionuclides and fallout). The estimated diffuse and fugitive source component was a relatively small fraction of the total offsite dose; therefore, the 95% confidence interval for the dose from diffuse and fugitive sources would be expected to be less than, or equal to, the overall dose at these locations.

4.2.4 Discussion

It should be noted that the release estimates for diffuse and fugitive sources in Table 4-1 were obtained using CAP88-PC, which incorporates a continuous-release Gaussian-plume dispersion model. Releases from diffuse and fugitive sources would be expected to occur primarily under conditions that are very different from the annual average assumptions used by CAP88-PC. This is particularly true for resuspension of contaminated soil, and to some extent for emissions from sources such as evaporation ponds, which are a function of wind speed. Because release rates from such sources are greatest under conditions that favor atmospheric dispersion, use of an annual average continuous release model to back calculate the release quantities might introduce a significant bias in these estimates. The dose estimates for sources of this type might also be affected by seasonal variation in the resuspension rates due to prevalence of strong winds during certain seasons of the year. If these episodes occur primarily during times when crop production is minimal, some of the exposure pathways incorporated into the CAP88-PC code (direct deposition on human and animal food crops, for example) would not be applicable. The release and dose estimates reported for diffuse and fugitive sources in this evaluation should therefore be viewed as approximations whose accuracy is limited by a number of factors inherent in the sampling and modeling process.

4.3 DIFFUSE AND FUGITIVE EMISSION SOURCES

The Hanford Site consists of 560 mi² (1,450 km²) of semiarid shrub-steppe land, of which approximately 6 percent has been disturbed and actively used. This 6 percent of land (about 32 mi² [83 km²], or 20,000 acres [8,090 ha]) is divided into large operational and support areas: the 100, 200 East, 200 West, 300, 400, and 1100 Areas. The 600 Area designates the remaining land outside the operational and support areas.

Almost all point, diffuse, and fugitive sources of radionuclide emissions are located in the five operational areas or are modeled for those areas because of close proximity. Point-source emissions are measured directly or calculated from process knowledge. Emissions from diffuse and fugitive sources are estimated using sample results from a network of environmental surveillance monitoring systems located along the perimeter of the Hanford Site and at several receptor locations.

The Hanford Site was acquired in 1943 and dedicated to producing plutonium for national defense and managing the resulting production wastes. Restoring the Hanford Site environment is the new mission that has largely supplanted the previous operational objectives. The environmental restoration effort will entail activities such as decontaminating and decommissioning over 100 facilities and cleaning up and restoring about 1,500 waste sites. Until the restoration and cleanup work is completed, radioactive emissions may be released from hundreds of diffuse and fugitive sources, in addition to known point-source stacks.

Besides measuring point-source emissions and modeling those emissions to determine public doses, environmental surveillance is conducted. Environmental and food-chain pathways are monitored near facilities emitting radionuclides from either point sources or diffuse and fugitive sources. The environmental pathways for all air emissions from the Hanford Site are monitored using a stratified sampling approach. Samples are collected and radiation is measured according to four surveillance areas. These areas extend from main onsite operating areas to offsite regions (PNNL 1999a).

Table 4-1. Estimated Hanford Site Diffuse and Fugitive Emissions in 1998 and Resulting Effective Dose Equivalents^a.

Location ^a		Byers' Landing (closest to MEI Location)	Ringold (highest dose from emissions)
Radionuclide	Estimated diffuse and fugitive emissions release from 200 Areas (Ci) ^b	Estimated dose at location (mrem) ^c	Estimated dose at location (mrem) ^c
³ H	-3.5E+02	—	—
⁶⁰ Co	-3.5E-01	—	—
⁹⁰ Sr	4.9E-02	1.3E-03	2.2E-03
¹⁰⁶ Ru	-7.4E-01	—	—
¹²⁵ Sb	1.3E-01	8.6E-04	1.4E-03
¹²⁹ I	3.3E-02	9.8E-04	1.4E-03
¹³⁴ Cs	-2.0E-01	—	—
¹³⁷ Cs	6.0E-02	3.5E-03	5.8E-03
¹⁵⁴ Eu	-8.1E-01	—	—
¹⁵⁵ Eu	2.3E-02	4.5E-05	7.4E-05
²³⁴ U	1.3E-02	9.0E-03	1.5E-02
²³⁵ U	1.8E-03	1.2E-03	2.0E-03
²³⁸ U	1.2E-02	7.6E-03	1.3E-02
^{239,240} Pu	-4.7E-05	—	—
	-1.2E-04	—	—
Total		2.5E-02	4.0E-02

^a Only Hanford Site stack emissions, WNP-2 emissions, and background radioactivity have been subtracted from these diffuse and fugitive emissions estimates, which may contain releases from other non-DOE nuclear facilities. Negative values for releases of a particular radionuclide indicate that air concentrations at the site perimeter are lower than the combined air concentrations expected from natural background and monitored stack releases.

^b 1 Ci = 3.7 E+10 Bq; Emissions from diffuse and fugitive sources are assumed to originate in the Hanford Site 200 Areas and have a release height of 1 m. The 300 Area also has potential sources for the resuspension of uranium from soil, along with naturally occurring uranium isotopes found throughout the area. Uranium releases were modeled as if the total inventory were from the 200 Areas; because it was not possible to determine the source of uranium isotopes detected at offsite sample stations.

^c 1 mrem = 1.0 E-02 mSv; Dose is based on air monitoring results for sample stations at the site perimeter. Radionuclides with negative releases are assumed to have a zero dose.

The first area begins near the operating facilities and ends at the Hanford Site perimeter. Diffuse and fugitive emissions generally will be most concentrated and easier to detect in this area before diluting further as they drift offsite.

The second surveillance area is a series of sampling stations that surround the Hanford Site near its perimeter. Because a person could live as close to the Hanford Site as some of these stations, their data represent the maximum exposures for a member of the public. Therefore, ambient air sampling data from the perimeter locations most closely reflect the actual impacts of radionuclide air emissions from point sources and diffuse and fugitive sources on the Hanford Site.

The third surveillance area encompasses nearby and distant communities within an 50-mi (80-km) radius of the center of the Hanford Site but beyond its boundaries. Surveillance is conducted in communities to provide measurements at those locations where the most people are potentially exposed. This surveillance ensures that radionuclide levels are well below standards established to protect the public health.

Finally, the fourth surveillance area comprises distant locations at which background concentrations are measured. These concentrations are compared with onsite, perimeter, and community locations to indicate the effects of Hanford Site activities. Background locations are essentially unaffected by Hanford Site emissions but contain similar levels of radioactivity originating naturally and from nuclear-testing fallout.

The goal of environmental surveillance at the Hanford Site is to verify compliance with DOE, EPA, and DOH radiological dose standards for public protection. This goal is accomplished by measuring radionuclides and consequent exposure in the onsite and offsite environment. The environmental surveillance criteria are derived from: (1) the collected environmental surveillance data on radionuclides and doses; (2) applicable regulations other than DOE Orders, (3) DOE Order 5400.1; and (4) the DOE *Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance* (DOE 1991). The surveillance program (PNNL 1998a) was established on these criteria and the pathway analyses that provide information on radionuclides and media contributing to human dose. Experience from Hanford Site environmental surveillance activities and studies conducted over the past 45 years has built an invaluable technical background of information for planning and data interpretation.

4.3.1 Description of Diffuse and Fugitive Emission Sources

The presently identified actual or potential sources of diffuse and fugitive radionuclide emissions to the environment at the Hanford Site are described in this section. Among the sources that could contribute diffuse and fugitive radionuclide emissions are several types of waste handling and disposal facilities, such as cribs, ponds, ditches, trenches, retention basins, valve pits, French drains, reverse wells, tanks, vented containers, and burial grounds. Operating facilities or facilities on standby or that are inactive also could contribute diffuse and fugitive emissions. Deactivation, decontamination and decommissioning of facilities and cleanup of inactive waste sites could also contribute diffuse and fugitive emissions. Table 4-2 shows the numbers of and types of waste sites. Table 4-3 lists the types of diffuse and fugitive emission sources. Each site or facility usually has one or more unique features or characteristics that could contribute to the release of diffuse and fugitive emissions. Features could include passive vents, risers, equipment and personnel access doors, and exhausters. Characteristics could include an undetected leak, unburied waste, or an absence of intrusion barriers. Rates of diffuse and fugitive emissions could

Table 4-2. Types of Waste and Number of Waste Sites at the Hanford Site.

Types of waste	Number of waste sites
Nonhazardous	613
Hazardous	263
Radioactive	259
Mixed	1,102
Total	2,273

Table 4-3. Types of Diffuse and Fugitive Emission Sources.

Categories of sources	Active	Inactive
Tanks (passively ventilated)	0	148
Cribs	1	127
Trenches, ponds, ditches, and retention basins	0	153
Reverse wells	0	12
French drains	3	48
Unplanned release sites	0	385
Vented containers	12	0
Burial grounds	7	98
Total	23	971

be influenced by a variety of environmental conditions, such as: (1) changing atmospheric pressures; (2) wind speed; (3) erosion; (4) evaporation; (5) percolation; (6) biotic intrusion; or (7) wind-caused particle resuspension.

The general types of sites and facilities and their potential primary sources of diffuse and fugitive emissions are briefly described in the following sections.

4.3.1.1 Crib

Low-level liquid wastes were discharged to cribs, which are subsurface systems, similar to sanitary drain fields, that allow the liquid component of the waste to percolate into the soil. The natural properties of the soil are used to remove radioactive material from the effluent water.

through filtration, ion-exchange, and precipitation reactions.

Many cribs are vented to the atmosphere through vents and pipe risers. These engineered structures promote downward flow of liquids disposed in the cribs but also provide pathways to the surface and atmosphere. Secondary causes of diffuse and fugitive emissions include erosion, and uptake and intrusion by biota, followed by wind-caused particle resuspension.

4.3.1.2 Pond

Ponds were used to manage large quantities of water (i.e., cooling water and chemical sewer wastewater) associated with chemical reprocessing operations. Normally, these liquid effluents were uncontaminated. The ponds allowed percolation of the liquid effluent into the soil column. Diffuse and fugitive emissions from ponds occur primarily from wind-caused particle resuspension.

4.3.1.3 Ditch

A ditch is an open, unlined excavation used for disposing of liquid effluents or transporting liquid effluents to ponds for disposal. Diffuse and fugitive emissions from ditches occur primarily from wind-caused particle resuspension.

4.3.1.4 Trench

Early disposal practices included disposing of liquid effluents into unlined trenches and over time filling the structures with soil. These were mostly replaced by cribs such as the BC-cribs. Diffuse and fugitive emissions from trenches are primarily caused by erosion, uptake and intrusion by biota, followed by wind-caused particle resuspension.

4.3.1.5 Retention Basin

Similar to trenches, retention basins generally were lined with concrete and used to hold liquids before routing them to ditches or ponds. Diffuse and fugitive emissions from retention basins are caused primarily by wind-caused particle resuspension.

4.3.1.6 Diversion Box

A diversion box is usually an underground, concrete structure formed around a junction of transfer lines carrying liquid effluent. When diversion boxes are accessed for operations or maintenance, radioactively contaminated material might be released in the form of diffuse and fugitive emissions.

4.3.1.7 Valve Pit

A valve pit is similar in structure to a diversion box, but contains piping valves. When valve pits are accessed for maintenance or operations, radioactively contaminated material might be released in the form of diffuse and fugitive emissions.

4.3.1.8 French Drain and Reverse Well

A French drain is a rock-filled encasement inserted in the ground. A reverse well is an ordinary well used for mixing liquid waste with groundwater. These subsurface systems disposed of

potentially contaminated liquid waste by promoting percolation into the soil. The natural filtration properties of the soil removed radioactive material from effluent water. Diffuse and fugitive emissions from French drains and reverse wells might occur through erosion or uptake and intrusion by biota, followed by wind-caused particle resuspension.

4.3.1.9 Tank

A tank generally is a large reinforced metal structure that receives liquid effluent for storage. Examples are double-shell tanks (DSTs) and single shell tanks (SSTs). Pathways for diffuse and fugitive emissions from tanks include passively ventilated point sources, inactive exhausters open to the atmosphere. Transport mechanisms for these emissions include deposition and subsequent particle resuspension.

4.3.1.10 Burial Ground

Burial grounds are trenches in which contaminated solid waste is buried. This waste is generated by various activities on the Hanford Site. Waste packaging procedures and burial practices used depend on the type of waste. Diffuse and fugitive emissions occur at burial grounds through direct release to the atmosphere before the waste is buried, followed by erosion, uptake and intrusion by biota, and wind-caused particle resuspension.

4.3.1.11 Deactivation, Decontamination and Decommissioning Activities

Deactivation, decontamination and decommissioning activities are being conducted to minimize the potential release or spread of contamination from facilities and equipment. Deactivation activities are intended to remove facility systems and/or areas from operational service to make them ready for the facility transition phase in which facilities are either converted to another use or placed in a permanent shutdown condition. Activities could include removal of fuel; draining and/or de-energizing of systems; removal of accessible stored radioactive and hazardous material; and other actions that place the facility systems and/or areas in a safe and stable condition. This allows surveillance and maintenance programs to more cost effectively prevent unacceptable risk to the public or the environment until the ultimate disposition of each facility is decided and implemented.

Decontamination consists of either physically removing contaminants or "fixing" contaminants in place to prevent their mobility during demolition. Methods might include washing with water, scraping, sandblasting, or fixing the contamination in place by painting, applying asphalt, etc. Demolition involves destroying and removing the structure and might include excavating its foundation. In some cases, contaminated material might be exposed to the atmosphere, but proper planning and controls should minimize these exposures. Monitors around demolition sites are used to measure or indicate the effectiveness of controls. To date, no significant increases in contamination at demolition sites have been observed.

4.3.1.12 Waste Site Cleanup Activities

Cleanup activities are being conducted to minimize the potential release or spread of contamination from inactive waste sites. Contaminated soils and structures are being excavated and transported to the ERDF for disposal. Contaminated materials are exposed to the atmosphere during excavation and disposal activities. Proper planning and controls such as tarps, water sprays, and fixatives are used to minimize the potential for airborne emissions. The waste sites are backfilled after excavation and the disposed material is covered with soil.

4.3.1.13 Outdoor Radioactive Surface Contamination Areas

All of the following outdoor radioactive surface contamination areas are routinely surveyed: burial grounds, cribs, trenches, retention basins, and unplanned release sites. The surveys are performed at least annually, but more frequently when needed. The magnitude, in acres, of outdoor surface contamination varies. The magnitude is not fixed because there is a continuing effort to clean, stabilize, or remediate known contaminated areas while new areas of contamination are continuing to be identified. Newly identified contamination may be because of preexisting contamination that has migrated, by way of wind or biological intrusion, to previously uncontaminated areas or because the radiological criteria have become more stringent. Eighty percent of all areas of surface contamination are estimated to have dose rates less than 1 mrem/hr.

Contaminated areas are posted as "Radiologically Controlled Area," "Soil Contamination Area," or "Underground Radioactive Material Area." Radiologically controlled areas are areas having a potential for an individual to receive an annual dose of up to 100 mrem. Soil contamination areas have more widespread contamination, and can have a potential for an individual to receive an annual dose of more than 100 mrem. Underground Radioactive Material Area signs mark cribs, burial grounds, covered trenches, and ponds, but not underground plumes that extend away from these sites. If an area has soil contamination and underground contamination, such as a surface contaminated crib, both postings will be used. The general location, by area, and the approximate area of soil contamination and underground contamination are shown in Table 4-4. Diffuse and fugitive emissions from areas of soil contamination are caused primarily by erosion, uptake and intrusion by biota, followed by wind-caused particle resuspension.

Table 4-4. Hanford Site Soil and Underground Contamination Areas.

Hanford operating area	Soil contamination areas ^a acres (ha)	Underground radioactive material areas ^b acres (ha)
100 Areas	116 (47)	462 (187)
200 Areas ^c	227 (92)	889 (360)
300 Area (north)	47 (19)	32 (13)
600 Area ^d	9,469 (3,832)	133 (54)
Total	9,859 (3,990)	1,517 (614)

^a Includes areas posted as "Soil Contamination Areas" or as "Radiological Controlled Areas" and areas that have both underground and soil contamination.

^b Includes areas with only underground contamination. Does not include areas that had surface and underground radioactive material.

^c Includes tank farms

^d BC controlled-zone and waste disposal facilities outside the 200 East Area boundary that received waste from 200 East Area facilities (e.g., 216-A-25, 216-B-3-3, etc.), and waste disposal facilities outside the 200 West Area boundary that received waste from the 200 West Area facilities (e.g., 216-S-19, 216-U-11, etc.).

4.3.1.14 Structures with Radioactive Contamination

Structures having indoor contamination and not actively ventilated through a point source are sources for diffuse and fugitive emissions. Many structures control diffuse and fugitive emissions with ventilation systems and contamination control practices. Ventilation systems help maintain a negative indoor air pressure, preventing airborne contaminants from leaving the building. The structures with ventilation systems discharge their air to the atmosphere via an emission control device, typically a HEPA filter. Facilities having a potential to emit radioactive contaminants and that have routinely sampled actively ventilated and filtered point sources are not considered a source of diffuse and fugitive emissions. It is true, however, that this type of facility has the potential, though lesser in extent, than facilities not equipped with active ventilation systems but having a comparable source term.

The Hanford Site has many old structures with radioactive contamination and no building ventilation. Contaminants can sometimes migrate outdoors via human entry and exit. Also, contaminants can migrate outdoors via passive ventilation or animal intrusion, since these structures often have cracks and gaps that serve as pathways to the outdoors. Once the contaminants are transported outdoors, they can become airborne by wind-caused resuspension.

4.3.2 Description of Specific Diffuse and Fugitive Emission Sources

4.3.2.1 100 Area Inactive Reactor Sites

The inactive reactor sites include the: 100-B/C Area, 100-D Area, 100-F Area, and 100-H Area. The reactors are currently under surveillance and maintenance until the long-term disposition of these reactors is determined. The potential sources for diffuse and fugitive emissions included personnel and equipment passing through access doors during surveillance and maintenance.

4.3.2.2 100-K Area Basins

Two identical reactors are located in the 100-K Area. One reactor is in the 100-KE Area while the other is in the 100-KW Area. The reactors and their support facilities were constructed between 1952 and 1954, beginning service in 1955. The 100-KW Area reactor ceased operating in 1970 and the 100-KE reactor in 1971.

The 100-KE and -KW reactor systems underwent decontaminating and decommissioning (D&D) after having been shut down. Most of the fuel was sent to 200 East Area for processing. After the initial D&D was completed, the fuel storage basins within the 105-KE and 105-KW buildings were modified to store N Reactor irradiated fuel. Storing this fuel began in 1975 at 105-KE and in 1981 at 105-KW; fuel is still stored in both basins. Shipments of fuel to the basins from 100-N Area ceased in 1989.

The primary radionuclides that could be included in diffuse and fugitive emissions from the 100-K Basins include ^3H , ^{90}Sr , ^{137}Cs , $^{239,240}\text{Pu}$, ^{241}Pu , and ^{241}Am . The potential release points for diffuse and fugitive emissions include personnel and equipment access doors, which are normally closed.

4.3.2.3 N Reactor

The N Reactor was designed to produce special nuclear materials (SNM) and byproduct steam for electrical power generation. It began operations in 1963, and ceased operating in January 1987.

The 100-N Area reactor complex consisted of buildings for reactor operations, maintenance, support facilities, and offices. Some of the more important reactor operations facilities with radioactive materials are identified below.

The 105-N Reactor Building contains the reactor, the reactor control room, the fuel loading area, and the spent fuel storage basin. The N Reactor is a graphite-moderated, light-water-cooled, horizontal-pressure-tube nuclear reactor designed to produce SNM using slightly enriched uranium. Radioactively contaminated facilities associated with the N Reactor are:

- The 1301-N and 1325-N Liquid Waste Disposal Facilities consists of a crib and trench.
- The 109-N Heat-Exchanger Building transferred the heat from the primary loop to the secondary loop through steam generators.
- The 117-N Filter Building houses charcoal and HEPA filters.
- The 107-N Basin Recirculating Building removes radionuclides from the N Basin Fuel Storage Facility water by filtering and demineralizing the water.

The primary radionuclides that might be included in diffuse and fugitive emissions from the 100-N facilities include ^{60}Co , ^{90}Sr , ^{137}Cs , and $^{239,240}\text{Pu}$. The potential primary diffuse and fugitive emission release points include railroad rollup doors, personnel and other equipment access doors (all of which are normally closed), and inactive exhaust vents and risers. A special case is the N Springs, which discharge low-level contamination (primarily ^{90}Sr) into the Columbia River. These springs are perhaps more closely monitored than any comparable component of the Hanford Site ecosystem. Other means of diffuse and fugitive emissions include erosion, uptake or intrusion of biota, and wind-caused resuspension.

4.3.2.4 PUREX Plant

The PUREX Plant is a collection of buildings and facilities located in the 200 East Area at the Hanford Site. The main building, 202-A, is a heavily shielded, reinforced concrete structure known as a canyon. This building contains the main equipment that was in the PUREX process of chemically separating and purifying actinides from the irradiated nuclear fuel.

Radionuclides primarily associated with the PUREX Plant include ^{90}Sr , ^{106}Ru , ^{129}I , ^{137}Cs , ^{238}Pu , $^{239,240}\text{Pu}$, ^{241}Pu , and ^{241}Am . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.5 Uranium-Oxide Plant

The UO_3 Plant, located in the 200 West Area, produced UO_3 powder by calcining uranyl nitrate solutions from the PUREX Plant. The UO_3 powder was sealed in steel drums for shipment offsite.

Uranium was formerly the potential primary source of radioactive diffuse and fugitive emissions from the UO_3 Plant. Since the UO_3 Plant was deactivated, only trace amounts of UO_3 remain, all of which is sealed inside of equipment. Deactivation of the UO_3 Plant has significantly reduced the potential diffuse and fugitive emissions from the facility. The noble gases radon and thoron remain as the only source of diffuse and fugitive emissions, due to residual contamination sealed inside the UO_3 Plant equipment. Potential diffuse and fugitive emission release points include

access doors, all of which are restricted and controlled.

4.3.2.6 PFP

This facility is located in the 200 West Area and is used to recover, stabilize, and store plutonium. Recovered plutonium nitrate and plutonium nitrate solutions received from the PUREX Plant were reduced to plutonium dioxide. The reduction process stabilized the plutonium into the state best suited for long-term storage. The mission for PFP no longer includes the production of finished plutonium metal.

Radionuclides primarily associated with PFP include $^{239,240}\text{Pu}$, ^{241}Pu , and ^{241}Am . Potential diffuse and fugitive emission release points from PFP include access doors, passively ventilated waste drain line vents, and the inlet-exhaust ventilation system.

4.3.2.6.1 234-5Z Building

The 234-5Z Building is often referred to as PFP or the 234-5 Building. The 234-5Z Building basement mostly consists of pipe tunnels carrying drain piping. The first floor houses the following: (1) two plutonium processing lines (Remote Mechanical A and Remote Mechanical C Lines) and their control rooms, (2) scrap stabilization gloveboxes, (3) plutonium storage vaults, and (4) the plutonium nitrate feed load-in/load-out (LI/LO), blending, and storage facilities.

Radionuclides primarily associated with the 234-5Z Building include $^{239,240}\text{Pu}$ and ^{241}Am . Potential diffuse and fugitive release points include access doors, passively ventilated waste drain line vents, and the inlet-exhaust ventilation system.

4.3.2.6.2 236-Z Building

The 236-Z Building, commonly known as PRF (Plutonium Reclamation Facility), is located south of the southeastern corner of the 234-5Z Building, connected to it by the 242-Z Building. The building air exhausts through the 291-Z-1 stack.

Radionuclides primarily associated with the 236-Z Building include $^{239,240}\text{Pu}$ and ^{241}Am . Potential diffuse and fugitive release points include access doors and the inlet-exhaust ventilation system.

4.3.2.6.3 232-Z Building

The 232-Z Building houses the layaway Contaminated Waste Recovery Process. It was commonly called the "Incinerator." The Contaminated Waste Recovery Process was partially decontaminated and decommissioned in 1984 and additional decontamination activities were performed in 1995.

Radionuclides primarily associated with the 232-Z Building include $^{239,240}\text{Pu}$ and ^{241}Am . Potential diffuse and fugitive emission release points include access doors and inlet-exhaust ventilation systems.

4.3.2.6.4 241-Z and 242-Z Buildings

The 241-Z and 242-Z Buildings are designated as waste treatment facilities. 241-Z houses sumps, which are five separate enclosures or ventilated cells, each containing six tanks (5 active and 1 inactive) used to accumulate and treat the liquid wastes generated by PFP before being

transferred to the tank farms. The 241-Z is ventilated by the 296-Z-3 stack.

The 242-Z Building houses abandoned waste treatment process equipment, once used to recover americium. This facility was permanently shut down after a process upset in 1976 spread contamination and caused irreparable equipment damage inside. The structural integrity of the facility was not compromised, however. The facility was then decontaminated extensively before being placed in layaway pending decommissioning work. The 242-Z Building shares the main ventilation system of the 234-5Z and 236-Z Buildings, exhausting its building air through the 291-Z-1 stack.

Radionuclides primarily associated with the 241-Z and 242-Z Buildings include $^{239,240}\text{Pu}$ and ^{241}Am . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.6.5 2736-ZB Building

The 2736-ZB shipping area and receiving area both accommodate a maximum of 100 shipping containers, each of which is about the size of a 55-gal (210-L) drum. Adequate spacing is provided between containers to meet criticality prevention requirements, personnel exposure specifications, and corridor access standards to emergency staging areas. The two areas are physically separated by a wall.

Radionuclides primarily associated with the 2736-ZB Building include $^{239,240}\text{Pu}$ and ^{241}Am . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.6.6 216-Z-20 Crib Effluent Facility

The 216-Z-20 Crib was constructed and commissioned for use in September 1981 to dispose of waste water previously discharged to the 216-U-10 Pond through the 216-Z-19 Ditch. Use of the crib allowed the radioactively contaminated 216-Z-19 Ditch and 216-U-10 Pond to be decommissioned.

The 216-Z-20 Crib was designed and constructed to dispose of potentially radioactive liquid effluents from the 231-Z, 232-Z, 236-Z, 242-Z, 291-Z, 234-5Z, and 2736-ZB Buildings. The same building effluent headers and piping that served the 216-Z-19 Ditch were used. These headers and piping contain some residual contamination. The 207-Z Seepage Basin, later renamed 216-Z-21 Seepage Basin, was designed and constructed to dispose of uncontaminated water from the storm sewer north of the 234-5Z Building, water-tank overflow, and swamp-cooler waste water. The 216-Z-20 Crib and the 216-Z-21 Seepage Basin are inactive and are no longer used to dispose of liquid effluents and waste water.

The 216-Z-20 Crib is approximately 1,500 ft (460 m) long with a cross section at the bottom that is approximately 10 ft (3 m) wide. Gravel was used as backfill to distribute effluents throughout the crib. A vapor barrier was placed above the gravel backfill. Soil was placed over the top to bring the area back to the surrounding grade.

Radionuclides primarily associated with the 216-Z-20 Crib include $^{239,240}\text{Pu}$ and ^{241}Am . Diffuse and fugitive emissions could be released by way of vents, risers, erosion, biotic uptake and intrusion, and wind-caused resuspension.

4.3.2.7 T Plant Complex

Originally, the T Plant Complex, then known just as T Plant, was a fuel separations facility using the bismuth-phosphate process. Now the complex is used for radioactive decontamination of equipment and the processing of waste.

The T Plant Complex is located in the 200 West Area of the Hanford Site. Buildings, structures, or special facilities included as part of the Complex are the 221-T Building and 2706-T Facility, 221-T Building Head-End, and 214-T Storage Building. Ancillary buildings, structures, and areas included are the 271-T, 291-T and 221-TA Buildings, and the 211-T Area.

Decontamination processes are conducted in the 221-T Building and 2706-T Facility. The 221-T Building Head-End is used for waste processing activities. The 214-T Building stores chemicals and the 211-T Waste Storage Area consists of a pad that can store radioactive and nonradioactive waste. The 271-T Building provides office space to staff supporting T Plant operations. The 291-T Building houses the exhaust ventilation fans for the 291-T-1 main stack. The 221-TA Building houses the supply ventilation fans for the 221-T Building canyon.

Radioactive decontamination activities are performed on the canyon deck. The canyon area consists of 37 cells and one railroad tunnel door. The railroad tunnel (used for transporting equipment into and out of the canyon, as well as for some decontamination) enters the plant at cell 2L. A motor-driven rolling steel door, provides railroad tunnel access.

Primary radionuclides associated with T Plant include ^{90}Sr , ^{137}Cs , and $^{239,240}\text{Pu}$. Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.7.1 2706-T Facility

The 2706-T Facility is a ground-level structure constructed of prefabricated steel. It has two openings on the west end that are fitted with roll-up metal doors that allow access to the pit area. Low-level radioactive decontamination activities are performed over this pit.

Radionuclides primarily associated with the 2706-T Facility include ^{90}Sr , ^{137}Cs , $^{239,240}\text{Pu}$, and ^{241}Am . Potential diffuse and fugitive emission release points include access doors, the inlet-exhaust ventilation system, and an outdoor storage area.

4.3.2.7.2 221-T Building — Head-End Operations

The 221-T Building head-end consists of a canyon area extending from the basement floor to the roof. This canyon area has several deck levels and a parapet wall. Four floor levels adjacent to the canyon house include (1) an electrical switchgear room, (2) a chemistry laboratory, (3) office areas, (4) a change room, (5) a lunch room, (6) a control room, (7) an instrument shop, (8) a maintenance shop, (9) and storage areas.

Radionuclides primarily associated with 221-T Head-End Operations include ^{90}Sr , ^{137}Cs , and $^{239,240}\text{Pu}$. Potential diffuse and fugitive emission release points include access doors and inlet-exhaust ventilation system.

4.3.2.7.3 221-T Building — Pressurized-Water Reactor Fuel Assembly Storage

Canyon cell 2R has been modified to store approximately 76 pressurized-water reactor Core 2 blanket fuel assemblies that were used to power the Shippingport Reactor. Provisions have been made to store the assemblies at the Hanford Site for up to 20 years.

The 221-T Building galleries are maintained at atmospheric pressure, while the 221-T Building canyon area is maintained at a negative pressure with respect to atmosphere. A primary design feature of these systems is to ensure that potentially contaminated canyon air is completely separate from the clean air in the 221-T Building galleries and the 271-T Building, which is the office space connected to the 221-T Building. In addition, the canyon ventilation system is operated at negative pressures with respect to the other systems.

The 271-T Building is adjacent to the 221-T Building. While most of this building is used for office space, portions are used by T Plant Complex Operations.

Radionuclides primarily associated with 221-T-PWR Fuel Assembly Storage include ^{90}Sr , ^{137}Cs , and $^{239,240}\text{Pu}$. Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.8 224-T Building

The 224-T Building was originally used to purify plutonium nitrate by the lanthanum fluoride process. After phase-out of the bismuth phosphate plants, the lanthanum fluoride process was no longer needed and the facility remained inactive until the early 1970s. At that time, the 224-T Building was modified for storage of plutonium scrap in liquid and solid forms. In 1984 the facility was selected to house the transuranic waste storage and assay (TRUSAf) operation, in which transuranic waste containers were nondestructively tested and stored for eventual shipment to the Waste Isolation Pilot Plant (WIPP). All stored transuranic wastes were removed from TRUSAf by September 1998, and nondestructive examination and nondestructive assay operations at 224-T TRUSAf were terminated. Currently, no waste is stored and no waste operations are performed at the 224-T Building.

Radionuclides primarily associated with 224-T include ^{90}Sr , ^{137}Cs , and $^{239,240}\text{Pu}$. Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.9 B Plant

B Plant was originally designed to chemically process spent nuclear fuels. Radiological containment and confinement features were incorporated in the various facilities and support systems to prevent exposure of plant personnel and the general public to excessive radiation. The plant was then modified to separate strontium and cesium from the fission product waste stream following plutonium and uranium recovery from irradiated reactor fuels in the PUREX Plant. The recovered purified and concentrated strontium and cesium solutions were then transferred to the Waste Encapsulation Storage Facility (WESF) for conversion to solid compounds, encapsulation, and interim storage. After strontium and cesium removal, the remaining waste was transferred from B Plant to the Tank Farms. Currently, B Plant is deactivated and all production activities have ceased. Chemicals are no longer stored there either.

B Plant consists of three main buildings. They are the 221-B Processing Building and the 271-B Service and Office Building. The 221-B Process Building and its attached 271-B Service Building were constructed in 1943.

Radionuclides primarily associated with B Plant include ^{90}Sr and ^{137}Cs . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.10 Waste Encapsulation and Storage Facility

The Waste Encapsulation and Storage Facility (WESF), or the 225-B Building, is an operating facility used to ensure safe storage and management of the cesium and strontium capsules. Construction of WESF was completed in 1974.

Radionuclides primarily associated with WESF include ^{90}Sr and ^{137}Cs . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.11 222-S Laboratory Complex

The 222-S Laboratory Complex is located in the southeast corner of the 200 West Area. The facility is composed of the main laboratory complex (222-S) and a number of ancillary buildings and structures.

4.3.2.11.1 222-S Laboratory

The 222-S Laboratory is a two-story, aboveground building with a subterranean service level. This building is divided into laboratory support spaces, office spaces, a multi-curie wing, eleven environmental hot cells, and supplemental service areas. The building is designed with its own waste disposal facility, decontamination facility, fire protection and alarm system, ventilation system, and radiation monitoring systems.

The 222-S Laboratory Annex houses the maintenance shop, instrument shop, and the counting room filter building.

Radionuclides primarily associated with the 222-S Laboratory include ^{90}Sr and ^{137}Cs . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.11.2 222-SA Laboratory

The 222-SA Laboratory is a five-wide modular building located southeast of the 222-S Laboratory. Part of this laboratory prepares nonradioactive standards for Hanford Site laboratories. The other section of the laboratory is used for cold-process development work and standards preparation. The 222-SA Laboratory only has the potential for nonradioactive diffuse and fugitive emissions.

4.3.2.11.3 2716-S Storage Building

The 2716-S Storage Building, located south of the 222-S Laboratory, is partitioned off for the storage of acids and bases. It provides both long- and short-term storage capability for laboratory materials and contains no radioactive materials. There are no radioactive diffuse fugitive emissions from the 2716-S Storage Building.

4.3.2.11.4 207-SL Retention Basin

The 207-SL Retention Basin acts as a temporary holding facility for potentially radioactive or hazardous liquid effluents before being transferred by means of a cross-site pipeline to the Treated Effluent Disposal Facility, located in the 200 East Area. Waste water from the laboratory, normally free of radioactive and hazardous chemical contamination, is routed to the 207-SL Retention Basin. This facility is a covered, below-grade concrete structure, directly east of the 222-S Building. Two 25,000-gal (95,000-L) compartments allow batch collection, sampling, and discharge of the waste. Three 20,000-gal (75,708-L) storage tanks were added in 1994 to improve waste transfer and storage capabilities.

Radionuclides primarily associated with the 207-SL Retention Basin include ^{90}Sr , ^{137}Cs , and $^{239,240}\text{Pu}$. Potential diffuse fugitive release points include access doors and seams in the basin cover blocks.

4.3.2.11.5 219-S Waste Handling Facility

The 219-S Waste Handling Facility collects liquid waste generated by the 222-S Laboratory operations that is contaminated radioactively and/or with hazardous chemicals. This facility consists of two below-grade vaults (A and B, also called cells) containing; three stainless-steel tanks, a Transite building, the pipe trench and operating gallery, and an attached concrete-walled sample gallery. Tanks TK-101 and TK-102 are in vault A and tanks TK-103 and TK-104 are in vault B.

Radionuclides primarily associated with the 219-S Waste Handling Facility include ^{90}Sr and ^{137}Cs . Potential diffuse fugitive release points include access doors and seams in the vault cover blocks.

4.3.2.11.6 222-SB Filter Building

The 222-SB Filter Building, located south of the 222-S Building, houses 96 HEPA filters which provide final filtration for the 222-S Laboratory. Under normal operation of the ventilation system, three electrically powered fans exhaust air from the 222-S Laboratory. Exhaust air leaves the 222-S Building through the 296-S-21 stack. Emergency exhaust ventilation is provided by the 222-SE Filter Building, in the event that two or more exhaust fans fail to operate.

Radionuclides primarily associated with the 222-SB Filter Building include ^{90}Sr and ^{137}Cs . Potential diffuse fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.11.7 222-SC Filter Building

The 222-SC Filter Building, located north of the 222-S Laboratory, contains the second and third stage HEPA filtration for hot cells 1-A, 1-E-1, 1-E-2, 1-F, and 11-A-1 through 11-A-6. The hot cells in rooms 1-A, 1-E, 1-E, 1-F, and 11-A are serviced by the main building supply and exhaust ventilation. The 222-SC Filter Building houses five parallel pairs of HEPA filters, which provide filtration to hot cell exhaust air before it enters the main exhaust plenum and final filtering in the 222-SB Filter Building. A total of four stages of HEPA filtration are provided for the hot cell ventilation exhaust.

Radionuclides primarily associated with the 222-SC Filter Building include ^{90}Sr and ^{137}Cs . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.11.8 222-SE Filter Building

The 222-SE Filter Building, located south of the 222-S Building, is a building that houses 56 HEPA filters. This building provides redundant backup filtering capabilities for the 222-S Laboratory exhaust.

Radionuclides primarily associated with the 222-SE Filter Building include ^{90}Sr and ^{137}Cs . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.11.9 218-W-7 Dry Waste Burial Vault

The 218-W-7 Dry Waste Burial Vault is located 40 ft southeast of 222-S. This underground concrete vault was removed from service around 1960. It was used primarily for disposal of plutonium-contaminated dry-hood waste generated by the 222-S Laboratory. Access to the tank is through a locked hatchway.

The radionuclide primarily associated with the 218-W-7 Dry Waste Burial Vault is $^{239,240}\text{Pu}$. A locked access hatchway is the only potential release point for diffuse and fugitive emissions.

4.3.2.11.10 216-S-26 Crib

The 216-S-26 Crib is no longer in service and the pipeline to the crib has been sealed off. All waste water collected in the 207-SL Retention Basins is now discharged to the Treated Effluent Disposal Facility, located in the 200 East Area. Additionally, the 222-SA waste water has been rerouted from the crib to the 207-SL Retention Basins. The line from the 291-S Stack Fan House, which formerly discharged steam condensate to the crib, has been isolated.

Radionuclides historically discharged to the 216-S-26 Crib include ^{90}Sr , ^{137}Cs , and $^{239,240}\text{Pu}$. Diffuse and fugitive emissions may be released by way of vents, risers, erosion, biotic uptake and intrusion, and wind-caused resuspension.

4.3.2.12 Waste Verification and Sampling Facility

The Waste Verification and Sampling Facility, the 213-W Building, is located in the 200 West Area of the Hanford Site. The 213-W Building is adjacent to the 272-WA Building (the Operations Support Building) at the 218-W-5 Burial Grounds at the west end of the 200 West Area. Systems ancillary to the 213-W Building also are included.

The primary function or process associated with the Facility is the verification of waste drums received from waste generators. Because of limited use, it was transferred to the 200 West Tank Farms Facility in 1995.

Radionuclides primarily associated with the 213-W Building include ^{90}Sr and ^{137}Cs ; low-level waste is present also. Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.13 Central Waste Complex

The Central Waste Complex (CWC) is a group of structures located on the west side of 200 West Area exclusion zone. The primary function or process associated with the CWC is the receipt and storage of radioactive and mixed waste (MW), which is currently ongoing. The CWC has the potential to generate radioactive and/or hazardous chemical emissions and radioactive and/or hazardous chemical liquid effluent.

Radionuclides associated with the CWC are from a wide group of mixed-fission, mixed-waste, and transuranic radionuclides. Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system. The CWC consists of the following: Flammable and Alkali Metal Waste Storage Modules; Waste Storage Buildings; Waste Storage Pad; and Waste Receiving and Staging Area.

4.3.2.13.1 Flammable and Alkali Metal Waste Storage Modules

The Flammable and Alkali Waste Storage Modules are pre-engineered structures. The size and weight of the storage modules vary, depending on the manufacturer. As a result, no set standard exists for every module. The front, back, and side walls of all of these modules are constructed of 10-gauge steel and coated inside with chemical-resistant epoxy paint or have a corrosion-resistant covering. All roofs are constructed of 12-gauge steel. All modules have a vented catch sump under their storage floors. Each sump has capacity of 400 to 2,000 gal (1,500 to 7,600 L). Water supply presently is not provided but could be if necessary. Under no circumstances would water be provided to the Alkali Metal Waste Storage Modules.

4.3.2.13.2 2401-W Waste Storage Building

The 2401-W Waste Storage Building is a pre-engineered steel structure for housing dangerous, mixed, radioactive, and/or TSCA waste. It is 50 ft (15.2 m) wide by 80 ft (24.4 m) long by 20 ft (6.1 m) high. It is maintained at atmospheric pressure, and heating and cooling are not required for its operations.

4.3.2.13.3 2402-W Buildings

The 2402-W Buildings are pre-engineered steel structures for housing dangerous, mixed, radioactive, and/or TSCA waste. They are 50 ft (15.2 m) wide by 80 ft (24.4 m) long by 20 ft (6.1 m) high. They are maintained at atmospheric pressure, and heating and cooling are not required for their operations.

4.3.2.13.4 2304-WA through -WC Waste Storage Buildings

These buildings are pre-engineered steel structures for housing dangerous, mixed, radioactive, and/or TSCA waste. They are 170 ft (51.8 m) wide by 200 ft (61 m) long by 20 ft (6.1 m) high. They maintained at atmospheric pressure, and heating and cooling are not required for their operations.

4.3.2.13.5 2403-WD Waste Storage Building

This building is a pre-engineered steel structure for housing dangerous, mixed, radioactive, and/or TSCA waste. It is 170 ft (51.8 m) wide by 275 ft (99 m) long by 20 ft (6.1 m) high. It is

maintained at atmospheric pressure, and heating and cooling are not required for its operations.

4.3.2.13.6 Waste Receiving and Staging Area

This area is an asphalt pad approximately 61 m long and 46 m wide, and is used for container handling and staging of waste destined for various storage buildings.

4.3.2.14 Tank Farms

Liquid waste from chemical processing operations containing high concentrations of radionuclides is stored on an interim basis in underground tanks. The Hanford Site tank farms contain 177 tanks (149 SSTs and 28 DSTs) with capacities ranging from 50,000 to 1.2 million gal (190,000 to 4.5 million L). Since 1967, newly generated liquid waste has been stored in DSTs. The SSTs are no longer receiving waste.

The location of all the tank farms is the 200 East and 200 West Areas. Both DSTs and SSTs are present in these areas. Tank farms in the 200 East Area include the A, AX, B, BX, BY, C (SSTs), AN, AZ, AY, AP, and AW (DSTs). Those in the 200 West Area are the S, SX, T, TX, TY, U (SSTs) and the SY (DST).

Hanford Site tank farms comprise transfer routes, diversion boxes, storage vaults, double-contained receiver tanks (DCRT), and evaporators.

A system of underground pipes is used to transfer wastes from the 200 East Area waste generators to the DSTs, between the DSTs, and from the DSTs to treatment and storage units in the 200 East and 200 West Areas.

Radionuclides primarily associated with the tank farms include ^3H , ^{14}C , ^{90}Sr , ^{125}Sb , ^{129}I , ^{137}Cs , $^{239,240}\text{Pu}$, and ^{241}Am . Diffuse and fugitive emission release locations may include vents, risers, access hole covers, inlet-exhaust ventilation systems, diversion boxes, transfer lines, and storage vaults.

4.3.2.14.1 Double-Shell Waste Tanks

The DSTs are of two distinctly different types. The capacity of the first type is 1 to 1.2 million gal (3.79 to 4.54 million L), and is designed for long-term storage (up to 50 years) of high-activity mixed waste. Twenty-four 1.2-million-gal (4.5-million-L) non-aging waste DSTs and four 1.0-million-gal (3.8-million-L) aging-waste DSTs have been built. For efficiency during construction and operation, the 1-million-gal tanks were grouped into six tank farms.

The second type of DST is smaller, with storage capacities ranging from 800 to 45,000 gal (3,028 to 170,370 L). These tanks were used primarily for lag storage of waste before transfer to the larger tanks or to other facilities. These smaller tanks are called DCRTs.

All DSTs were fabricated as three concentric tanks. Waste is stored in the free-standing primary tank. The secondary tank sits on a concrete pad. The completely enclosed annulus serves as a containment barrier if the primary tank should leak. The annulus is ventilated and continually monitored for evidence of primary tank leakage. The third tank is a concrete shell that encloses the sides of both primary and secondary tanks for additional containment, radiation shielding, and structural support.

Ancillary equipment also is present, such as transfer lines between tank farms and DCRTs, valve pits, diversion boxes, and tank-farm piping.

4.3.2.15 242-A Evaporator

The 242-A Evaporator complex is located in the 200 East Area of the Hanford Site. The 242-A Building is located south of the 241-A and 241-AX Tank Farms and north of the 242-AW Tank Farm. The 242-A Building contains the evaporator vessel and supporting process equipment. The building ventilation exhaust fans and HEPA-filter housings are located on the south side of the building. An emergency diesel generator is located on the south side of the building. Raw water, steam, and electrical power are provided to the 242-A Building from existing service facilities in the 200 East Area.

In general, the 242-A Evaporator Facility can be divided into three areas: process, service, and operating. The process area includes the evaporator room, pump room, condenser room, and ion-exchange enclosure. The service area includes the aqueous make-up (AMU) room, loadout and hot-equipment storage room, loading room, and HVAC room. The operating areas include the control room, personnel change rooms, lunchroom, office, and storage rooms.

Radionuclides primarily associated with 242-A include ^3H , ^{14}C , ^{90}Sr , ^{106}Ru , ^{125}Sb , ^{137}Cs , $^{239,240}\text{Pu}$, and ^{241}Am . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.16 242-S Evaporator

The 242-S Evaporator, currently on standby, is located in the 200 West Area, west of the 241-SY Tank Farm. It consists of an evaporator vessel and supporting process equipment. The building ventilation exhaust fans and HEPA filter housings are on the south side of the building. An emergency diesel generator is on the south side of the building. Raw water, steam, and electrical power are provided from existing service facilities in the 200 East Area. There are three main areas: process, service, and operations. The process area includes the evaporator room, pump room, condenser room, and ion-exchange enclosure. The service area includes the aqueous make-up (AMU) room, loadout and hot equipment storage room, loading room, and the HVAC room. The operating areas include the control room, personnel change rooms, lunchroom, offices, and storage rooms.

Radionuclides primarily associated with 242-S include ^{14}C , ^{90}Sr , ^{125}Sb , ^{129}I , ^{137}Cs , $^{239,240}\text{Pu}$, and ^{241}Am . Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system.

4.3.2.17 242-T Evaporator

The 242-T Evaporator, currently inactive, is located in the 200 West Area, east of the 241-TX and 241-TY Tank Farms. The 242-T Evaporator Facility is divided into a processing area and a control area. The process area includes the 242-T building, the 242-TA Vault, and 242-TB Ventilation building. The control area is contained in the metal building adjacent to the east wall of the 242-T building.

The 242-T Building is a steel reinforced concrete structure 48 feet in length, 42 feet wide, and 23 feet high. The building contains the Condensate Area, the Feed Cell, and the Evaporator Area.

The Feed Cell houses the 4,000 gal (15,100-L) B-1 Blend Tank plus the interconnecting piping between this tank, the evaporator vessel, and the 241-TX Tank Farm. The Evaporator Area (called the hot cell) contains the evaporator vessel, a cyclone separator, the cyclone separator catch tank, two evaporator feed preheaters, a floor sump, and interconnecting piping between the feed and cold cells and the TX Tank Farm. The Condensate Area (called the cold cell) contains two 4,000-gal (15,100-L) condensate catch tanks, a scrubber, condenser, floor sump, and interconnecting piping between the feed and hot cells and the TX Tank Farm.

The 242-TA Vault is a concrete lined pit with a ground level steel cover. Inside this vault sits the 4,000-gal R-1 Receiver Tank and the piping connecting this tank to the feed cell - acetic high level waste from Z Plant flowed into this tank for pumping to the feed cell.

The 242-TB Ventilation Building contains the ventilation equipment and instruments for the TB ventilation system. This ventilation system services the R-1 Receiver Tank and the TA Vault.

4.3.2.18 Grout Treatment Facility

The Grout Treatment Facility (GTF) combined low-level radioactive liquid waste with a cement mixture that is pumped into disposal vaults. GTF was placed in cold standby in 1993.

Radioactive constituents primarily associated with GTF include ^{90}Sr , ^{137}Cs , and other low-level radioactive waste from the tank farms. Potential diffuse and fugitive emission release modes include vents, risers, and the inlet-exhaust ventilation system.

4.3.2.19 Low-Level Burial Grounds

The Low-Level Burial Grounds (LLBG) are a land-based unit consisting of eight burial grounds located in the 200 East and 200 West Areas. The 218-E-10 and 2128-E-12B Burial Grounds are in the 200 East Are. The 218-W-3A, 218-W-3AE, 218-W-4B, 218-W-4C, 218-W-5, and 218-W-6 Burial Grounds are in the 200 West Area. The LLBG are of various sizes and depths of lined and unlined disposal trenches. The lined trenches have leachate collection and removal systems. The less-than-90-day leachate collection tanks have a current design capacity of 10,000 gal (37,850 L).

The following provides a brief description and identifies the generic types of waste disposed of in the LLBG. An electronic database is maintained that documents each waste receipt, type of waste and disposal location.

4.3.2.19.1 Burial Ground 218-W-3A

Burial Ground 218-W-3A is approximately 50 acres (20.4 hectares) in size and began receiving waste in 1970. Examples of waste received in this burial ground include ion-exchange resins, failed equipment, tanks, pumps, ovens, agitators, heaters, hoods, jumpers, vehicles, accessories, retrievable transuranic waste, and post-August 19, 1987-RCRA and state-only designated mixed waste.

4.3.2.19.2 Burial Ground 218-W-3AE

The 218-W-3AE Burial Ground is approximately 49 acres (20 hectares) in size and began receiving waste in 1981. Examples of waste received in this burial ground include rags, paper, rubber gloves, disposable supplies, broken tools, and post-August 19, 1987-RCRA and state-only

designated mixed waste.

4.3.2.19.3 Burial Ground 218-W-4B

The 218-W-4B Burial Ground is approximately 8.6 acres (3.5 hectares) in size and began receiving waste in 1968. Examples of waste received in this burial ground include rags, paper, rubber gloves, disposable supplies, broken tools, alpha caissons, and retrievable transuranic waste.

4.3.2.19.4 Burial Ground 218-W-4C

The 218-W-4C Burial Ground is approximately 49 acres (20 hectares) in size and began receiving waste in 1978. Examples of waste received in this burial ground include contaminated soil, decommissioned pumps, pressure vessels, post-August 19, 1987-RCRA and state-only designated waste, and retrievable transuranic waste.

4.3.2.19.5 Burial Ground 218-W-5

The 218-W-5 Burial Ground is approximately 92 acres (37.2 hectares) in size and began receiving waste in 1986. Examples of waste placed in this burial ground include rags, paper, rubber gloves, disposable supplies, broken tools, and post-August 19, 1987-RCRA and state-only designated waste. It currently contains double-lined mixed-waste trenches (trenches 31 and 34). Trenches 31 and 34 also are designated for greater-than-990-day container storage. Waste to be placed in trenches 31 and 34 for storage purposes predominately will be macro-encapsulated long-length contaminated equipment and other containerized waste that has been treated to meet LDR requirements. Adjacent to the double-lined mixed-waste trenches are leachate collection tanks. Examples of waste to be placed in the double-lined mixed-waste trenches include mixed waste that has been treated to meet LDR requirements (including bulk waste), macro-encapsulated long-length contaminated equipment, etc.

4.3.2.19.6 Burial Ground 218-W-6

The 218-W-6 Burial Ground is approximately 4 acres (16 hectares) in size and has not received any waste. It is reserved for future mixed-waste disposal.

4.3.2.19.7 Burial Ground 218-E-10

The 218-E-10 Burial Ground is approximately 89 acres (36 hectares) in size and began receiving waste in 1960. Examples of waste placed in the burial ground include failed equipment, rags, paper, rubber gloves, disposable supplies, broken tools, and post-August 19, 1987-RCRA and state-only designated mixed waste.

4.3.2.19.8 Burial Ground 218-E-12B

Burial Ground 218-E-12B is approximately 168 acres (68 hectares) in size and began receiving wastes in 1967. Examples of waste placed in the burial ground include defueled reactor compartments (trench 94), low-level waste, and retrievable transuranic waste.

4.3.2.20 340 Complex

The 340 Complex is located in the 300 Area of the Hanford Site near the Columbia River. The

340 Complex was constructed to collect, store, and transport radioactive liquid wastes from 300 Area facilities. The 324, 325, 326, 327, and 329 Buildings are connected to the Radioactive Liquid Waste System (RLWS) which empties directly into the 340 vault tanks. The drains in the 326 and 329 Buildings have been isolated from the RLWS. Direct shipments of containers or tankers are also received at the 340 Facility and added to the vault tanks. The 340 Complex also houses the 300 Area Retention Process Sewer (RPS), which collects process wastewater with the potential to become radioactively contaminated. This waste stream is accumulated in the 307 Basins. This waste stream is monitored for radioactive materials and can be transferred to the 340 vault tanks if necessary. After sampling and analysis in the 307 Basins, the wastewater is pumped to the process sewer for treatment at the 300 Area Treated Effluent Disposal Facility.

Uranium, ^{60}Co , ^{90}Sr , ^{137}Cs , ^{238}Pu , $^{239,240}\text{Pu}$, and ^{241}Am are the most significant radionuclides potentially present at the 340 Complex. Potential diffuse and fugitive emission release points include access doors and the inlet-exhaust ventilation system and the 307 Retention Basin.

4.3.2.20.1 340-A Building

The 340-A Building houses six above ground storage tanks which provide temporary storage of radioactive liquid waste. The 340-NT-EX Stack powered exhaust system provides airborne ventilation to the storage tanks, and the 340-A Building air is passively ventilated to the atmosphere via a roof air vent.

Smearable radiological contamination resulting from leakage of radioactive liquid waste from the storage tanks has been detected in the 340-A Building. The radionuclides with the most significant dose impact include ^{90}Sr , ^{137}Cs , ^{238}Pu , $^{239,240}\text{Pu}$, and ^{241}Am , which could potentially be present in diffuse and fugitive emissions from the facility.

4.3.2.20.2 340-B East Building

The 340-B East Building serves as a railroad car loadout facility. This facility houses railroad cars during the transfer of radioactive liquid wastes from the 340 tanks to the railroad cars.

During periods of time when the railroad cars are not housed in the 340-B East Building, the facility exhaust system is not operated, thus the building is not maintained at negative pressure. Consequently, diffuse and fugitive emissions can potentially occur. Potential diffuse and fugitive emission release points from the 340-B East Building include personnel and equipment access doors. The radionuclides with the largest dose impact that potentially could be released as diffuse and fugitive emissions include ^{90}Sr , ^{137}Cs , ^{238}Pu , $^{239,240}\text{Pu}$, and ^{241}Am .

4.3.2.20.3 Retention Process Sewer

The Retention Process Sewer consists of a plumbing system, a liquid waste retention/storage system, and a monitoring system. The plumbing system consists of underground single-walled pipes, which transport liquid wastes from the generating facilities to the liquid waste retention/storage system. The retention system consists of four lined and connected open-top concrete basins, which are also known as the 307 Retention Basins. Each basin has a holding capacity of approximately 25,000 gal (95,000 L). The monitoring system utilizes in-line gamma radiation detectors to monitor radiation levels in the liquids of the Retention Process Sewer. The gamma detectors are used to divert liquids to the 340 Facility Radioactive Liquid Waste System when predetermined levels are exceeded. Composite samples of 307-Basin influent are collected and analyzed prior to release of the Basin contents. If alpha contamination is detected above

specified action levels, the wastewater can be isolated and pumped to the 340 Vault tanks for shipment to an onsite TSD facility.

4.3.2.20.4 340 Vault

The 340 Vault houses two 15,000-gal (57,000-L) radioactive mixed tanks that accumulate mixed waste for shipment to the 200 Area TSD facilities. The 340 vault, the vault tanks, and the associated piping system is ventilated through the 340-NT-EX stack. Smearable and fixed contamination resulting from tank overfills and maintenance activities are documented in facility records.

4.3.2.21 300 Area Fuel Supply

4.3.2.22 Facility

The 300 Area Fuel Supply Shutdown (FSS) Facility was previously known as the N Reactor Fuels Fabrication Facility. The FSS consists of 16 buildings, two tank farms, and associated pipe trenches and drains. The structures are located on the north side of the 300 Area. The 300 Area Fuels Fabrication facilities began operation in 1944 with some structures being added in the 1950s and 1960s. The following sections provide information on each of the facilities. The 300 Area Fuel Fabrication Facility buildings have been decontaminated in preparation for transferring facility management responsibilities to the ERC.

The 300 Area FSS Facilities and their current functions include:

<u>Building</u>	<u>Current Function</u>
303-A	Uranium fuel element storage
303-B	Uranium billet storage
303-E	Uranium fuel element storage (empty)
303-G	Uranium billet storage
3712	Finished uranium fuel element and billet storage
3716	Unfinished uranium fuel element storage
313	Inactive fuels fabrication support facility
333	Inactive fuel manufacturing
303-K/3707-G	Inactive radioactive material and waste storage (303-K) and change room (3707-G)
303-F	Inactive neutralized waste acid pump house
304/304-A	Inactive uranium concretion facility (304) and change room (304-A)
334-A	Inactive waste acid storage and transfer system (RCRA closure)
334	Inactive process sewer monitoring system
303-M	Uranium oxide facility (inactive)

Waste Transfer Inactive waste acid transfer system pipe trenches within and between Systems 333, 334-A, 334-TF, 313, 303-F and 311-TF facilities

311-TF	Inactive neutralized waste acid storage and transfer facility (adjacent to 303-F building)
334-TF	Inactive product and waste acid storage facility (adjacent to the 334 building)

A significant nonirradiated uranium inventory, present at the time the N Reactor standby was announced, is stored in the 303-A, 303-B, 303-G, 3712, and 3716 Buildings and at the 300 Area FSS Facility. A portion of the uranium is in the form of extrusion billets. The balance is in the form of unenriched fuel elements. Some of the stored fuel elements are partially processed elements, recovered at the time fabrication ceased.

4.3.2.22.1 333 Building

The primary N Reactor Fuels Fabrication activities were conducted in the 333 Building. The fuel fabrication operation produced N Reactor fuel from 1961 until 1987 when operations were stopped.

This facility used a variety of mechanical, chemical, and electrical processes to convert uranium billets and assorted components into finished fuel assemblies for irradiation at N Reactor.

Operations and resulting radionuclide air emissions in the 333 Building ceased in January 1987. Emission monitoring equipment was shut down at that time. Process liquid effluents are no longer generated. However, air conditioning water and stormwater continue to be discharged from the building by way of the process sewer.

Uranium and ^{99}Tc are the most significant radionuclides in surface contamination at the 333 Building. The occasional operation of the heating and cooling ventilation system results in potential diffuse and fugitive emissions by way of equipment and personnel access doors. Normally, ventilation systems are shut down, with the exception of comfort heating and cooling in the office areas. Consequently, infiltration and exfiltration induced by wind and ambient pressure changes results in potential diffuse and fugitive emissions from the building. However, ongoing surveillance activities within the building indicate that radioactive contamination is not present in a dispersible form.

4.3.2.22.2 313 Building

The south end of the building housed the uranium laboratory, copper-casting equipment, waste-acid treatment facility, engineering development laboratory, training rooms, and office areas, all of which have been shut down or are no longer occupied. The north end of the 313 Building houses a complete N Reactor pressure-tube fabrication facility consisting of a 4,000-ton Sutton extrusion press, draw bench, grinders, autoclaves, inspection equipment, and chemical cleaning equipment, none of which was ever used for their intended purpose. The Hanford Metal Working process equipment has been sold to a commercial company, and the north section of the 313 Building has been leased for the commercial operation of the extrusion equipment.

The 313 Building was used from 1944 to 1971 for fabricating uranium fuel elements for the eight retired, single-pass reactors in the 100 Areas. The function of the building changed when those reactors ceased operating. The building then was used as an N Fuels Fabrication Support Facility to treat uranium-bearing acid in the waste-acid treatment system. The recovered uranium sludge was recycled to form new uranium billets at Fernald, Ohio. Engineering development laboratory work and continuous monitoring of airborne emissions were terminated in 1991.

Uranium and ^{99}Tc are the potential primary radioactive constituents in diffuse and fugitive emissions from the 313 Building. Heating and cooling ventilation system in the southern portions of the building are no longer in operation. Infiltration and exfiltration, induced by wind and

ambient pressure changes, results in potential diffuse and fugitive emission release points via equipment and personnel access doors.

4.3.2.22.3 303-K/3707-G Radioactive Mixed Waste Storage Facility

The 303-K Facility was designed and constructed in 1943. The facility is a concrete-block building with a poured concrete ceiling. A storage pad outside consists of two concrete pads, two asphalt pads, and a gravel area. The north room of the 303-K Facility originally had one roof exhaust fan. The fan was used from 1953 to 1977 while aluminum spacer and equipment decontaminating was done. The roof vent fan was replaced with a HEPA-filtered exhaust system in 1977, which was used until the fall of 1982. The exhaust system was only turned on at the end of the curing operation for the concreted billets of recyclable scrap uranium chips and fines or if hydrogen levels indicated a billet fire had occurred. The HEPA exhaust system has not operated since the concrete-curing operation was discontinued in 1982. 3707-G is a small adjoining building used as a change room. The 3707-G Building also serves as an entry point into portions of the 303-K Building, the adjacent outdoor fenced area, and the concrete pad area.

These buildings no longer discharge either air emissions or liquid effluents to the environment. They were used to store radioactive and mixed waste until 1994. Only small quantities of nondispersible radioactive contamination remain in the buildings.

Uranium and ^{99}Tc are the primary radioactive constituents in potential diffuse and fugitive emissions from the 303-K Facility. Infiltration and exfiltration, induced by wind and ambient pressure changes, results in potential diffuse and fugitive emissions via equipment and personnel access doors.

4.3.2.22.4 303-M Uranium Oxide Facility

The 303-M Uranium Oxide Facility is adjacent to the 333 Building and consists of one building, an adjacent outdoor drum storage area, and a small process sewer filter building. The 303-M Uranium Oxide Facility stored and treated recycled material generated during the N Reactor fuel fabrication processes. The fuel fabrication waste material consisted of pyrophoric saw fines and lathe turnings, known as chips, composed of slightly enriched uranium and Zircaloy-2. The wastes were calcinated to remove their pyrophoric properties, thus eliminating the possibility of spontaneous combustion during transportation.

The 303-M Uranium Oxide Facility operated from 1983 to 1987 for the calcination of the wastes generated. The facility ceased operating in 1987.

During operation, the facility operated under negative pressure and the building exhaust was released to the atmosphere through a single stack. The emissions were controlled with a bag-house and HEPA filters.

The 303-M Building is currently closed. The water and electricity have been shut off and the exhaust stack capped. The primary radionuclides associated with the facility are uranium and ^{99}Tc .

4.3.2.22.5 304/304-A Uranium Concretion Facility

The 304 Building was designed and constructed in 1952 as a pilot plant for the lead-dip canning process. The uranium concretion equipment in the 304 Building was installed in 1971 with a

drainage trench and sump to remove liquids resulting from spills, leaks, and daily operations. Standard spill-response procedures inside the building included washing the spilled waste to the sump where the fines would settle out. The wastewater was drained into the 300 Area process sewer, and the fines were shoveled from the sump and concreted. Additionally, an outside storage area is on the north side of the facility. The storage area is a concrete pad surrounded by asphalt. The 304-A Building is a change-room addition to the 304 Building.

The building has no inlet air supply system, the water is shut off, and drains have been plugged. The exhaust stack was capped in 1994. Uranium and ⁹⁹Tc are the primary radionuclides potentially present in diffuse and fugitive emissions via personnel and equipment access doors.

4.3.2.22.6 311 Tank Farm

The recoverable and nonrecoverable uranium-bearing neutralized waste solutions from the 313 Building were combined in aboveground tanks (tanks 40 and 50) in the 311 Tank Farm. These liquid wastes eventually were transferred to tanker trucks and disposed of in the 183-H Basins or the 200 Areas. After 1988, if the wastes were below radioactive release limits, they were shipped to offsite contractors for treatment, storage, and/or disposal. The two tanks received approximately 420,000 gal (1.6 million L) of waste each year, during periods of peak production.

In addition to waste tanks 40 and 50, the 311 Tank Farm has a 4,000-gal (15,000-L) tank used to store nitric acid and two 10,000-gal (38,000-L) tanks that were used to store sodium hydroxide. The tanks were emptied in 1991 and no longer contain nitric acid or sodium hydroxide.

Uranium and ⁹⁹Tc are the potential primary radioactive constituents in diffuse and fugitive emissions from the 311 Tank Farm. Diffuse and fugitive emissions may be released by way of uranium-bearing material transfers and unplanned releases.

4.3.2.22.7 334-A Waste Acid Storage Building

The 334-A Waste Acid Storage Building was completed in late 1974 and placed in use in January 1975. For four months in 1973, an underground tank and tank 4 in the 334 Tank Farm were used to collect acid waste that would be transferred to the 313 Building for neutralization. The underground tank began to leak in August 1973 and was removed during construction of the 334-A Building. The waste acids were discharged directly into the process sewer until the 334-A Building was built in December 1974. The tanks in the 334-A building received approximately 210,000 gal (790,000 L) of waste acids per year. These waste acids consisted of hydrofluoric, nitric, and sulfuric acids with copper, zirconium, chromium, and uranium in solution. Following storage, the acids were pumped from the 334-A Building to the south end of the 313 Building for neutralization.

The building heating and cooling air handling systems have been shut down, the water and electricity have been shut off, and drains have been plugged. The storage tanks in the building have been isolated and cleaned. Uranium and ⁹⁹Tc are the potential primary radioactive constituent in diffuse and fugitive emissions from the 334-A Building. The potential diffuse and fugitive emission release points include personnel and equipment access doors.

4.3.2.22.8 303-A, 303-B, and 303-G Uranium Fuel Storage Buildings

The fuel stored in the 303-A, 303-B and 303-G buildings includes unused fuel elements, uranium billets and some irradiated fuel elements, which had been loaded into N Reactor. The fuel

elements that had been loaded into N Reactor, were recovered during reactor defueling with only low levels of surface contamination on them. These fuel elements are appropriately packaged for safe handling and storage at their present storage location. The structures are single story concrete block and cement construction, with only three doors and no windows. The roofs are precast concrete slabs covered with felt, tar, and gravel. There are four 10-in- (25-cm-) diameter holes in the walls at floor level for water drainage in the unlikely event of a sprinkler system discharge. The buildings are unheated and are not provided with active ventilation. The buildings are equipped with automatic fire detection and sprinkler (dry) systems with freeze protection in the valve rooms. Infiltration and exfiltration, induced by wind and ambient pressure changes, results in potential diffuse and fugitive emissions from equipment and personnel access doors.

4.3.2.22.9 303-E Uranium Fuel Storage Building

No fuel is currently stored in the 303-E building. Until 1996, the 303-E building had been used to store non-irradiated fuel, like the 303-A, 303-B, and 303-G Buildings, until the fuel inventory in the building was removed. Only small quantities of radiological contamination remain in the building. Infiltration and exfiltration, induced by wind and ambient pressure changes, results in potential diffuse and fugitive emissions from equipment and personnel access doors.

4.3.2.22.10 3712 Uranium Fuel Storage Building

The 3712 Building is a one-story steel-frame structure with metal panel siding, metal panel roof, and a concrete floor and foundation. The building is used to store uranium billets, finished fuel elements, uranium/scrap and standards, and unfinished fuel pieces. A heating, ventilation, and air conditioning (HVAC) unit provides heating/cooling of the south portion of the building, when occupied. Infiltration and exfiltration, induced by wind and ambient pressure changes, results in potential diffuse and fugitive emissions from equipment and personnel access doors.

4.3.2.22.11 3716 Uranium Fuel Storage Building

The 3716 Building is a single-story building with insulated aluminum siding and roof. The building is used to store unfinished fuel pieces, which are capped with plastic caps and kept in wooden boxes. The steam heating system and evaporative cooler for the building have been shut down. Infiltration and exfiltration, induced by wind and ambient pressure changes, results in potential diffuse and fugitive emissions from equipment and personnel access doors.

4.3.2.22.12 Waste Transfer System

The waste transfer system serves as an inter-facility pipe chase between the 333 building, 334-A building, 334 tank farm, 313 building, 303-F building, and the 311 Tank farm. It is comprised of various sized concrete trenches topped with removable reinforced concrete or steel panels. Due to historic spills, there are some portions of the system that contain small quantities of radioactive contamination. There is no ventilation system associated with the pipe chase. Infiltration and exfiltration, induced by wind and ambient pressure changes, results in potential diffuse and fugitive emissions from crevices between the pipe chase covers.

4.3.2.23 Fast Flux Test Facility

The Fast Flux Test Facility (FFTF) is a 400-megawatt-thermal, sodium-cooled, fast-neutron-flux reactor designed specifically for irradiation testing of nuclear reactor fuels and materials for

liquid-metal, fast-breeder reactors. The reactor is capable of extensive in-core irradiation testing, including eight core positions that may be used with independent instrumentation for the test loops. In addition to irradiation-testing capabilities, FFTF is designed for long-term testing and evaluation of plant components and systems for liquid-metal, fast-breeder reactors.

The FFTF is a complex of buildings and equipment arranged around the reactor containment building. This arrangement includes the reactor, equipment, and structures for heat removal, containment, core component handling and examination, instrumentation and control, and buildings for supplying utilities and other essential services. The reactor is currently shut down.

Radionuclides primarily associated with FFTF include ^{3}H and ^{137}Cs . The potential primary diffuse and fugitive emission release points include the personnel and equipment access doors and the inlet-exhaust ventilation system.

5.0 SUPPLEMENTAL INFORMATION

This section has supplemental information related to Hanford Site radionuclide air emissions in 1998, and consists of:

- Population dose estimate (§ 5.1)
- Compliance status with Subparts Q and T of 40 CFR 61 (§ 5.2)
- Radionuclide emission estimates and periodic confirmatory measurement information related to Notices of Construction (NOCs) (§ 5.3)
- Ambient air sampling measurements (§ 5.4)
- Quality assurance (QA) program status of compliance with 40 CFR 61, Appendix B, Method 114 (§ 5.5).

5.1 POPULATION DOSE ESTIMATE

The estimated regional population radiation dose (i.e., collective effective dose equivalent [CEDE]) from Hanford Site air emissions in 1998 was calculated using the GENII computer code (PNL 1988). This population comprised approximately 376,000 people residing within a 50-mi (80-km) radius of the five designated Hanford Site operating areas (PNL 1991). Pathways of population exposure to Hanford releases of radionuclides to the atmosphere include inhalation, air submersion, ground-shine, and consumption of food. Population exposure to radionuclide air emissions was determined using values of population-weighted atmospheric dispersion factors for distance and each compass sector.

The CEDE for 1998 from radionuclide air emissions was 8.4 E-02 person-rem (8.4 E-04 person-Sv). Radionuclide releases from the Hanford Site to surface water added 1.1 E-01 person-rem (1.1 E-03 person-Sv). Therefore, the total population dose in 1998 from both air- and liquid-borne radionuclides originating from the Hanford Site was 1.9 E-01 person-rem (1.9 E-03 person-Sv).

5.2 COMPLIANCE STATUS WITH 40 CFR 61, SUBPARTS Q AND T

In 40 CFR 61, Subpart Q, "National Emission Standards for Radon Emissions From Department of Energy Facilities," paragraph 61.190 states that the provisions of Subpart Q apply to the design and operation of all storage and disposal facilities for radium-bearing material that emit ^{222}Rn to the air. Paragraph 61.191(b) states that a source means any building, structure, pile, impoundment, or area used for interim storage or disposal that is or contains waste material containing radium in sufficient concentration to emit ^{222}Rn in excess of the 20 pCi/m³/s. The Hanford Site has no storage and disposal facilities for radium-bearing waste materials; therefore, the provisions of Subpart Q do not apply.

Activities at the Hanford Site were evaluated for compliance with 40 CFR 61 Subpart T, "National Emissions Standards for Radon Emissions From the Disposal of Uranium Mill Tailings." In paragraph 61.220, "Designation of Facilities," these types of owners and operators are subject to the provisions in Subpart T: those whose sites were used for the disposal of tailings and that managed residual radioactive material or uranium byproduct materials during and following the processing of uranium ores and that are listed in or designated by the Secretary of Energy under Title I of the Uranium Mill Tailings Control Act of 1978 or regulated under Title II of that act. But since no uranium milling

and uranium-ore processing activities are not conducted at the Hanford Site, Subpart T does not apply.

5.3 EMISSION ESTIMATES AND CONFIRMATORY MEASUREMENT DATA FOR SPECIFIC NOCS

This section contains emission estimates and periodic confirmatory measurement data as required by specific Notices of Construction (NOCs) and other regulatory agreements.

5.3.1 Sitewide Notices of Construction for Portable Exhausters

This subsection contains information on portable exhausters covered by sitewide NOCs. Among them are portable exhausters referenced in *Air Emissions Notice of Construction for Portable/Temporary Radioactive Air Emission Units* (PTRAEUs) (DOE-RL 1996b), which requires that the estimated emissions from these units be summarized in the *Radionuclide Air Emissions Report*; information in Table 5-1 fulfills this requirement. The estimated emissions were obtained from Section 10.2 of the NOC for PTRAEUs. When documentation demonstrates that the handling limits for these emission units have not been exceeded, the estimated emissions are considered to be equal to or less than the values provided in Section 10.2 of the NOC.

Table 5-1. Emission Estimates for PTRAEUs^a in 1998

Unit Type	Radionuclide	Annual Estimated Emissions (Ci)
Type I Units	^{137}Cs	[6.9E-05
Type II Units	^{90}Sr ^{137}Cs ^{241}Am	[1.2E-06 [2.2E-06 [7.3E-10
Type III Units	^{90}Sr ^{137}Cs ^{241}Am	[5.2E-06 [9.6E-06 [3.2E-08

^a 1 Ci = 1 curie = 3.7 E+10 becquerels

Table 5-2 gives information on another category of portable exhausters used at the Hanford Site: HEPA-filtered vacuums.

Table 5-2. Annual Report for HEPA-Filtered Vacuum Usage in 1998.
(NOC DOE/RL-97-50 as approved by AIR 98-312)

Facility	Area	Alpha Possession Quantity NOC Limit	Beta/Gamma Possession Quantity NOC Limit	Alpha Possession Quantity, 1998	Beta/Gamma Possession Quantity, 1997	Compliance Status (Annual Possession Quantity, Exhauster Smears)
FDH						
Waste Encapsulation Storage Facility (K-3 Pad)	200-E	4.57E-03 Ci	2.3E-01 Ci	<1.51E-07 Ci	<1.51E-04 Ci	compliant
FASTER Services (2704-C)	200-E	4.57E-03 Ci	2.3E-01 Ci	<4.59E-09 Ci	4.59E-05 Ci	compliant
Fuel Supply Shutdown	300	2.29E-04 Ci	1.16E-02 Ci	7.56E-07 Ci	7.56E-06 Ci	compliant
BH1						
RMA (200E-98-002)	200-E	4.57E-03 Ci	2.30E-01 Ci	<2.64E-07	<1.32E-05 Ci	compliant
100-NR-2 Pump and Treat	100	7.55E-04 Ci	3.81 E-02 Ci	9.48E-08 Ci	3.55E-04 Ci	CERCLA

5.3.2 Miscellaneous Periodic Confirmatory Emission Measurements

Tables 5-3 and 5-4 show confirmatory emission information in compliance with NOCs for the 309 and 331G Buildings in the 300 Area.

Table 5-3. Radionuclide Emission Estimates
for FDH,NOC at 309 Building for 1998

Emission source	Radionuclide or Type of Radioactivity	Annual Estimated Emissions (Ci) ^{a,b}
309-PTR stack	alpha beta ⁶⁰ Co ⁹⁰ Sr ¹³⁷ Cs ²³⁹ Pu	3.9E-07 6.8E-07 7.0E-12 1.8E-11 1.7E-11 5.9E-12

^a 1 Ci = 1 curie = 3.7 E+10 becquerels (Bq)

^b Estimates based on record sampling and analysis data from 1997; emissions were verified with smears and survey.

Table 5-4. Radionuclide Emission Estimates
for PNNL NOC at 331G Building for 1998

Emission source	Radionuclide	Annual Estimated Emissions (Ci) ^{a,b}
EP-331G-01-S and EP-331G-02-S	³ H (HTO) ¹⁴ C ³² P ³⁵ S	2.0E-06 1.0E-07 1.0E-07 2.0E-06

^a 1 Ci = 1 curie = 3.7 E+10 becquerels (Bq)^b Emissions estimated using methods from 40 CFR 61, Appendix D.

5.3.3 Periodic Confirmatory Measurements in 1998 on NOC Sources Not Equipped with Record Sampling

This subsection identifies Notice of Construction (NOC) locations that are potential sources of radionuclide emissions at which record sampling is not performed. Before these NOCs were approved, potential emission levels were calculated based on descriptions of work proposed at the sources. Consistently these calculated levels have been too low to measure using conventional stack sampling methods. These low levels also correlate to negligible dose effects. Because of these factors, DOH requires only periodic confirmatory measurements (PCMs) to verify low emission levels have been maintained. Information on these NOCs and their corresponding PCMs is summarized in Table 5-3, which includes the operating and emission status in 1998 for each source. The information is consistent with the database maintained for the Hanford Site Air Operating Permit.

In the far righthand column of Table 5-5, all "Y" entries have a superscripted numeral alongside them. The numerals correspond to PCM verification methods used, which are ¹stack monitoring (for stacks at or near NOC sources); ²dose-rate surveys and/or surface smears; ³continuous air monitor (CAM) data; ⁴ambient air monitoring near sources; ⁵nondestructive analysis of HEPA filters; and ⁶estimates derived from using factors in 40 CFR 61, Appendix D. Details of these measurements are kept on file.

Table 5-5. Notice of Construction Emission Sources Not Record Sampled

Emission Point	Project Title	Permit ID	Issue Date	Operated in 1998? (Y or N) ^a	Verified Low Emissions? (Y, N, or NA) ^a
BWHC					
not assigned	231-Z Bldg. deactivation activities	NA	8/12/95	N	NA
not assigned	304 and 303-M	RTAM	5/14/96	N	NA
not assigned	306-E	RTAM	11/14/95	N	NA
not assigned	309 Bldg.	RTAM	1/14/97	N	NA
not assigned	313 Bldg.	RTAM	11/14/95	N	NA

Emission Point	Project Title	Permit ID	Issue Date	Operated in 1998? (Y or N) ^a	Verified Low Emissions? (Y, N, or NA) ^a
300 P-309PRTR-001	309 Bldg.	AIR 95-401	4/3/95	N	NA
not assigned	313 Bldg.	RTAM	12/12/95	N	NA
not assigned	B Plant organic transfer and storage	RTAM	4/9/96	N	NA
not assigned	CO ₂ Decon Facility (B Plant)	AIR 93-912	9/17/93	N	NA
not assigned	B Plant	AIR 94-802	8/1/94	N	NA
not assigned	PFP (231-Z)	RTAM	8/8/95	N	NA
not assigned	PUREX	RTAM	12/12/95	N	NA
not assigned	PUREX Deactivation	AIR 94-311	3/18/94	N	NA
not assigned	PUREX Deactivation	AIR 94-313	3/30/94	N	NA
not assigned	PUREX Deactivation	RTAM	9/12/95	N	NA
not assigned	PUREX Deactivation	RTAM	6/12/96	N	NA
not assigned	PUREX Storage Tunnels	AIR 96-603	6/7/96	N	NA
not assigned	Tank 50 Waste Water Disposal	RT AM	4/18/95	N	NA
296-B-1, 296-B-2	B Plant Modification of the Ventilation System	AIR 97-805	8/20/97	N	NA
296-B-1, 296-B-2	B Plant Ventilation Upgrades	AIR 97-1012	10/28/97	N	NA
296-B-1, 296-B-2	B Plant Ventilation Upgrades (Project W-059)	RTAM	6/16/98	N	NA
296-B-1, 296-B-2	Minor changes to NOC "Radioactive Air Emissions for Modifications of . . . 221-B Canyon Building"	RTAM	7/21/98	Y	Y ^{1,5}
300 Area Fuel Supply	300 Area Fuel Supply Shutdown Activities, Rev 1	AIR 97-803	8/13/97	N	NA
300 Area Fuel Supply	300 Area Fuel Supply Shutdown Facilities	AIR 96-1001, Rev 1	10/14/96	N	NA
300 P-309RTFEX-001	309 Bldg.	RTAM	7/11/95	N	NA
300 P-309RTFEX-001	309 Bldg.	RTAM	12/12/95	N	NA
400 Na Storage Facility	Construction and Operation of Sodium Storage Facility	Air 95-204	2/24/95	N	NA

Emission Point	Project Title	Permit ID	Issue Date	Operated in 1998? (Y or N) ^a	Verified Low Emissions? (Y, N, or NA) ^a
<i>DESH</i>					
not assigned	PUREX Plant fuel transfers to 105-KW Basin		8/14/95	N	NA
200-W-PORTEX 005	200 Area Interim Storage Area (ISA)	AIR 98-503	5/20/98	N	NA
<i>DynCorp</i>					
W-PORTEX 021	Use of the Guzzler Vacuum Excavation System for Radiologically Limited Activities on the Hanford Site	AIR 98-1215	12/18/98	N	NA
200 W-PORTEX 006	Guzzler Excavation and Backfilling Activities in Support of the 200 East Area A Tank Farm Complex	RTAM	12/23/97	N	NA
200E W-PORTEX 001	Guzzler Excavation and Backfilling Activities in Support of the 200 East Area A Farm Complex			N	NA
200E W-PORTEX 001	Guzzler Excavation and Backfilling Activities in support of the 200 East Area A Farm Complex	Short Form NOC	12/23/97	N	NA
200E W-PORTEX 017	Guzzler Excavation and Backfilling Activities in Support of the L-286, 200 Area Sanitary Water Distribution System	Short Form NOC	10/12/98	Y	Y ²
300 J-NONPOINT 013	3732 Process Equipment Development Laboratory Demolition	RTAM	9/5/97	N	NA
300 J-NONPOINT 014	Excavation and Backfilling in Support of the 315D Backwash Pond Discharge Piping	RTAM	11/17/97	Y	Y ²
300 J-NONPOINT 015	Excavation and Backfilling Support of a Potable Water Line Repair	Short Form NOC	11/20/97	N	NA
300 W-PORTEX 012	Guzzler Excavation and Backfilling Activities in Support of the 3706 Building Isolation of Water Lines	RTAM	5/7/98	Y	Y ²
300 W-PORTEX 013	Guzzler Excavation and Backfilling Activities in Support of the 300 Area Powerhouse Shutdown	RTAM	2/17/98	Y	Y ²
300 W-PORTEX 014	Guzzler Excavation and Backfilling Activities in Support of the 321 Building Isolation of Water Lines	Short Form NOC	9/29/98	Y	Y ²
300 W-PORTEX 015	Guzzler Excavation and Backfilling Activities in Support of the 3701D Building Water Line Repairs	Short Form NOC	9/29/98	Y	Y ²

Emission Point	Project Title	Permit ID	Issue Date	Operated in 1998? (Y or N) ^a	Verified Low Emissions? (Y, N, or NA) ^a
300 W-PORTEX 018	Guzzler Excavation and Backfilling Activities in Support of the 3760 Building Water Line Repairs	Short Form NOC	10/19/98	N	NA
Richland J-NONPOINT 005	Recovery of Radioactive Material from the City of Richland Landfill and Transportation to Burial Ground	Short Form NOC	10/7/98	Y	Y ^{2,3}
<i>ERC</i>					
	216-B-2-2 Ditch	RTAM (CERCLA)	10/17/97	Y	Y ⁴
	216-A-29 Ditch	RTAM	6/29/98	Y	Y ²
100 P-105-C 001	105-C Reactor Safe Storage	AIR 96-802	8/12/96	Y	Y ⁴
100-N 1330-N Permacon	1330-N Waste Handling Facility	RTAM	4/18/95	N	NA
	1310-N/1314-N	RTAM	3/17/97	Y	Y ⁴
600 J-NONPOINT 012	Purgewater Modutanks	AIR 91-803	8/27/91	Y	Y ⁴
600 J-NONPOINT 012	Purgewater Modutanks	RTAM	7/9/98	Y	Y ⁴
<i>LMHC</i>					
not assigned	C-301 Catch Tank Vapor Space Sampling	RTAM	8/8/95	N	NA
not assigned	Flammable Watch List SSTs	RTAM	7/11/95	N	NA
not assigned	Portable Exhauster on 241-A-101 Tank During Salt-Well Pumping	AIR-97-701	7/29/97	N	NA
not assigned	S-Farm	AIR-95-1004	10/12/95	N	NA
not assigned	T-107 Salt-Well Pump		8/23/95	N	NA
not assigned	Tank Farm Routine Activities	RTAM	9/12/95	N	NA
not assigned	Tank Farm Routine Activities-Rev 0	Meeting	4/1/93	N	NA
not assigned	Tank Farm Routine Activities-Rev 2	RTAM	1/9/96	N	NA
not assigned	Tank Farm Routine Activity List	Telecon	8/3/93	N	NA
not assigned	Tank Farms (IMUST Tanks)	RTAM	1/9/96	N	NA
not assigned	Thermocouple Trees	Telecon	9/21/92	N	NA
200 J-NONPOINT 001	Cross-Site Transfer Line	RTAM	11/9/94	N	NA

Emission Point	Project Title	Permit ID	Issue Date	Operated in 1998? (Y or N) ^a	Verified Low Emissions? (Y, N, or NA) ^a
200 J-NONPOINT 003	Tank Farm Restorations and Safe Operations (Project W-314) (See AOP Tracking No. 703)	AIR 98-302	3/5/98	Y	Y ³
200 P-296P033-001, P-296P034-001	Rotary Mode Core Sampling (RMCS) System	AIR 96-707	7/17/96	Y	Y ¹
200-W-PORTEX 002	Operation of a Portable Exhauster in Conjunction with the Light Duty Utility Arm		3/12/96	N	NA
200-W-PORTEX 003	Use of 10 HEPA vacuums at Tank Farms	AIR 97-607	6/12/97	N	NA
200-W-PORTEX 004	Blue Max for Generic Temporary Pump Pit Jumper Cutting and Decon Work, Including Work in 244-A	RTAM	10/8/96	N	Y ^{2,3}
200-W-PORTEX 020	Portable Exhauster Use On Single Shell (SST) Tanks During Salt-well Pumping, Rev 2	AIR 98-1207	12/16/98	N	NA
200E 200E Area Emissions	Tank Farm Routine Activities	RTAM	1/9/96	Y	Y ^{2,4}
200E C-106 Sluicing	241-C-106 Tank Sluicing, Phase II	AIR 95-712	7/31/95	Y	Y ¹
200 C-106 Sluicing	C-106 Sluicing - Phase I	AIR 94-214	2/28/94	N	NA
200 C-106 Sluicing	C-106 Sluicing CO ₂ Decon	AIR 94-108	1/31/94	N	NA
200 J-NONPOINT 020	Soil Characterization Using the Cone Penetrometer	AIR 98-1009	10/29/98	N	NA
200E P-241C103-001	C-103 Organic Removal	AIR 94-910	9/8/94	N	NA
200W J-NONPOINT 004	200W Tank Farms Long-length Equipment Removal	RTAM	9/12/95	N	NA
200W J-NONPOINT 017	2727-WA Tanker Grouting	RTAM	9/10/96	N	NA
<i>PNNL</i>					
300 EP-331G-01-S	Registration of Existing Stacks at the 331-G Building	RTAM	1/16/98	Y	Y ⁶
<i>Sitewide</i>					
Sitewide HEPA Vacuum	High-Efficiency Particulate Air (HEPA) Filtered Vacuum Units	AIR 98-312	3/25/98	Y	Y ²
Sitewide PTRAEU	Portable/Temporary Radionuclide Airborne Emissions Units (PTRAEU) DOE/RL-96-75 Rev 1A	IR 98-1008	10/22/98	Y	Y ⁶

WMH

not assigned	300 Area sewer upgrades	AIR 95-102	1/11/95	N	NA
--------------	-------------------------	------------	---------	---	----

Emission Point	Project Title	Permit ID	Issue Date	Operated in 1998? (Y or N) ^a	Verified Low Emissions? (Y, N, or NA) ^a
not assigned	300 Area sewer upgrades	RTAM	8/8/95	N	NA
not assigned	300 Area sewer upgrades		10/9/95	N	NA
not assigned	304 Concretion Facility	AIR93-1026	10/15/93	N	NA
not assigned	306-E Radiological Air Emissions Abatement	Meeting	10/10/95	N	NA
not assigned	306-E Radiological Air Emissions Abatement	RTAM	12/12/95	N	NA
not assigned	377 Bldg RO skid work	Meeting	8/25/95	N	NA
not assigned	ESL Burial Box Stabilization Project	RTAM	5/14/96	N	NA
not assigned	Liquid Effluent Retention Facility (LERF) and Effluent Treatment Facility (ETF) Load-In Station	RTAM	1/14/97	Y	Y ⁴
not assigned	Open RLAIK Vault for Characterization/Sampling Activities	RTAM	7/11/95	N	NA
not assigned	T Plant	RTAM	6/12/96	N	NA
not assigned	T Plant/Solid Waste	RTAM	3/25/96	N	NA
200-W CWC	Central Waste Complex	AIR 95-1008	10/24/95	N	NA
200-W CWC	Central Waste Complex and Enhanced Radioactive and Mixed Waste Storage, Phase V	AIR 95-1009	10/25/95	N	NA
200-W CWC	Modification to Central Waste Complex (CWC) Radioactive Air Emission NOC for Vented Containers	RTAM	8/24/98	Y	Y ³
200-W J-NONPOINT 018	Grouting Radionuclide Inventory In Tanker Rail Car HO-10H-18581	RTAM	9/28/98	N	NA
200-W J-NONPOINT 019	Unloading Radiologically Contaminated Hanford Garbage Trucks at the 200 West Low-Level Burial Grounds	RTAM	10/13/98	Y	Y ²⁴
200-W P-Trench 31 001	Trench 31: Leachate Collection and Storage Tank (LLBG Mixed Waste Disposal)	RTAM	7/20/94	N	NA
200-W P-Trench 34 001	Trench 34: Leachate Collection and Storage Tank (LLBG Mixed Waste Disposal)	RTAM	8/8/95	N	NA
200-W W-PORTEX 011	Modular Containment (PermaCon) for Sampling Activities at the Central Waste Complex	RTAM	8/18/98	N	NA

Emission Point	Project Title	Permit ID	Issue Date	Operated in 1998? (Y or N) ^a	Verified Low Emissions? (Y, N, or NA) ^a
200-W W-PORTEX 019	T Plant Complex — Euroclean HEPA-filtered vacuums to be used for contamination control and in waste handling activities	RTAM	12/10/96	N	NA
<i>WMNW</i>					
Sitewide ODEX Drilling	ODEX Drilling System	RTAM	10/8/96	N	NA

^a Y = yes; N = no; NA = not applicable.

5.4 AMBIENT AIR SAMPLING MEASUREMENTS

The near-field monitoring (NFM) program comprises a comprehensive network of monitoring locations near facilities and projects at the Hanford Site. It monitors soil, vegetation, and ambient air that may contain radionuclides dispersed there by onsite activities. It also measures ambient dose rates. Emissions from many NOC activities are not measured directly at the source, as are emissions from forcibly ventilated stacks. Frequently, NOC activities are temporary and not conducted within the confines of structures having ventilation systems with permanent sampling or monitoring equipment. Hence, assessing emissions from these activities is not nearly as straightforward as is measuring emissions discharged from stacks.

DOH requires that emissions from NOC activities be periodically measured to verify whether they are low or not. Verification at the Hanford Site is currently done using a variety of data, including those from the NFM program, which provides valuable confirmatory data. Other confirmatory data generally consist of measurements taken from dose-rate surveys, surface smears, CAM sampling, and nondestructive analysis, especially of HEPA filters. Further verifications methods are allowed, provided they are first approved by DOH.

Table 5-6 summarizes the analytical data measured from ambient air samples collected during 1998. Radionuclides with concentrations that fell below analytical detection limits in both the first and second half of the yearly composite samples were not listed in the table.

Table 5-6. Hanford Site Near-Field Monitoring Air Sampling Results for 1998

100-B/C Remedial Action Project					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N464	total α			1.4E-03	3.4E-03
	total β			1.6E-02	3.1E-02
	¹³⁷ Cs	3.7E-04	ND ^b	3.7E-04	3.7E-04
	²³⁴ U	2.9E-05	2.5E-05	2.7E-05	2.9E-05
	²³⁵ U	1.8E-05	ND	1.8E-05	1.8E-05
	²³⁸ U	1.8E-05	2.9E-05	2.3E-05	2.9E-05
N465	^{239,240} Pu	6.3E-06	ND	6.3E-06	6.3E-06
	total α			1.0E-03	2.3E-03
	total β			1.4E-02	3.9E-02
	¹³⁷ Cs	1.7E-04	ND	1.7E-04	1.7E-04
	¹⁵² Eu	4.0E-04	ND	4.0E-04	4.0E-04
	²³⁴ U	2.1E-05	3.1E-05	2.6E-05	3.1E-05
N466	²³⁵ U	6.7E-06	ND	6.7E-06	6.7E-06
	²³⁸ U	1.1E-05	3.6E-05	2.3E-05	3.6E-05
	^{239,240} Pu	4.9E-06	ND	4.9E-06	4.9E-06
	total α			1.1E-03	3.2E-03
	total β			1.3E-02	3.2E-02
	⁹⁰ Sr	ND	3.7E-04	3.7E-04	3.7E-04
	¹³⁷ Cs	1.5E-04	ND	1.5E-04	1.5E-04
	²³⁴ U	3.1E-05	1.8E-05	2.4E-05	3.1E-05
	²³⁵ U	1.2E-05	ND	1.2E-05	1.2E-05
	²³⁸ U	1.6E-05	1.9E-05	1.7E-05	1.9E-05
	^{239,240} Pu	ND	2.9E-05	2.9E-05	2.9E-05

^a air sampler location code (EDP = electronic data processing)

^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

100-D Remedial Action Project					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N467	total α			1.2E-03	3.3E-03
	total β			1.5E-02	3.7E-02
	¹³⁷ Cs	1.6E-04	ND ^b	1.6E-04	1.6E-04
	²³⁴ U	1.6E-05	2.4E-05	2.0E-05	2.4E-05
	²³⁵ U	8.2E-06	2.2E-05	1.5E-05	2.2E-05
	²³⁸ U	6.9E-06	2.2E-05	1.4E-05	2.2E-05
N468	²³⁸ Pu	ND	7.4E-06	7.4E-06	7.4E-06
	total α			1.3E-03	2.3E-03
	total β			1.4E-02	3.1E-02
	⁹⁰ Sr	4.0E-04	ND	4.0E-04	4.0E-04
	¹¹³ Sn	1.6E-04	ND	1.6E-04	1.6E-04
	²³⁴ U	1.7E-05	2.4E-05	2.0E-05	2.4E-05
N469	²³⁵ U	ND	8.1E-06	8.1E-06	8.1E-06
	²³⁸ U	1.8E-05	2.3E-05	2.0E-05	2.3E-05
	^{239,240} Pu	ND	1.6E-05	1.6E-05	1.6E-05
	total α			1.1E-03	2.1E-03
N470	total β			1.5E-02	3.2E-02
	²³⁴ U	2.3E-05	1.6E-05	1.9E-05	2.3E-05
	²³⁵ U	1.4E-05	ND	1.4E-05	1.4E-05
	²³⁸ U	1.2E-05	2.3E-05	1.8E-05	2.3E-05
	^{239,240} Pu	ND	7.5E-06	7.5E-06	7.5E-06

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

Spent Nuclear Fuels and Canister Storage Building					
EDP ^a Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N401	total α			1.1E-03	2.4E-03
	total β			1.5E-02	3.8E-02
	⁹⁰ Sr	1.3E-04	ND ^b	1.3E-04	1.3E-04
	¹³⁷ Cs	3.6E-04	ND	3.6E-04	3.6E-04
	²³⁴ U	7.0E-05	2.8E-05	4.9E-05	7.0E-05
	²³⁵ U	4.1E-05	2.2E-05	3.1E-05	4.1E-05
	²³⁸ U	2.8E-05	1.5E-05	2.2E-05	2.8E-05
	^{239,240} Pu	ND	3.8E-05	3.8E-05	3.8E-05
	²⁴¹ Pu	9.5E-04	ND	9.5E-04	9.5E-04
N402	²⁴¹ Am	4.1E-05	2.9E-05	3.5E-05	4.1E-05
	total α			1.2E-03	2.4E-03
	total β			1.4E-02	3.3E-02
	⁹⁰ Sr	2.0E-04	ND	2.0E-04	2.0E-04
	¹³⁷ Cs	1.2E-04	ND	1.2E-04	1.2E-04
	²³⁴ U	4.3E-05	2.9E-05	3.6E-05	4.3E-05

Spent Nuclear Fuels and Canister Storage Building					
EDP ^a Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
	²³⁵ U	3.4E-05	1.2E-05	2.3E-05	3.4E-05
	²³⁸ U	1.6E-05	1.7E-05	1.6E-05	1.7E-05
	²⁴¹ Am	2.8E-05	3.1E-05	2.9E-05	3.1E-05
N403	total α			1.1E-03	2.3E-03
	total β			1.3E-02	2.8E-02
	⁹⁰ Sr	2.2E-04	ND	2.2E-04	2.2E-04
	²³⁴ U	5.2E-05	2.9E-05	4.0E-05	5.2E-05
	²³⁵ U	3.5E-05	1.9E-05	2.7E-05	3.5E-05
	²³⁸ U	3.1E-05	2.2E-05	2.6E-05	3.1E-05
	^{239,240} Pu	ND	3.0E-05	3.0E-05	3.0E-05
	²⁴¹ Am	2.8E-05	2.7E-05	2.8E-05	2.8E-05
N404	total α			1.2E-03	3.0E-03
	total β			1.5E-02	3.3E-02
	⁹⁰ Sr	1.8E-04	ND	1.8E-04	1.8E-04
	²³⁴ U	3.1E-05	1.9E-05	2.5E-05	3.1E-05
	²³⁵ U	1.6E-05	1.2E-05	1.4E-05	1.6E-05
	²³⁸ U	1.6E-05	1.5E-05	1.5E-05	1.6E-05
	^{239,240} Pu	ND	1.9E-05	1.9E-05	1.9E-05
	²⁴¹ Am	ND	1.9E-05	1.9E-05	1.9E-05
N480	total α			1.0E-03	1.2E-03
	total β			1.2E-02	1.5E-02
	¹³⁷ Cs		2.3E-04	2.3E-04	2.3E-04
	²³⁴ U		4.6E-05	4.6E-05	4.6E-05
	²³⁵ U		5.3E-05	5.3E-05	5.3E-05
	²³⁸ U		3.2E-05	3.2E-05	3.2E-05
	^{239,240} Pu		3.2E-05	3.2E-05	3.2E-05
	²⁴¹ Am		7.4E-05	7.4E-05	7.4E-05
N481	total α			1.1E-03	2.4E-03
	total β			1.3E-02	2.2E-02
	²³⁴ U		3.6E-05	3.6E-05	3.6E-05
	²³⁵ U		2.2E-05	2.2E-05	2.2E-05
	²³⁸ U		2.5E-05	2.5E-05	2.5E-05
	²⁴¹ Am		1.2E-04	1.2E-04	1.2E-04

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

100-N Surveillance and Maintenance Project					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N102	total α			1.3E-03	3.1E-03
	total β			1.3E-02	3.1E-02
	⁹⁰ Sr	3.4E-04	ND ^b	3.4E-04	3.4E-04
	²³⁴ U	3.2E-05	2.8E-05	3.0E-05	3.2E-05
	²³⁵ U	2.9E-05	6.9E-06	1.8E-05	2.9E-05
	²³⁸ U	1.7E-05	2.3E-05	2.0E-05	2.3E-05
N103	^{239,240} Pu	ND	4.8E-06	4.8E-06	4.8E-06
	total α			1.1E-03	2.9E-03
	total β			1.2E-02	2.8E-02
	⁹⁰ Sr	2.1E-04	ND	2.1E-04	2.1E-04
	²³⁴ U	5.3E-05	2.2E-05	3.8E-05	5.3E-05
	²³⁵ U	3.5E-05	3.9E-06	1.9E-05	3.5E-05

100-N Surveillance and Maintenance Project					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N105	²³⁸ U	3.7E-05	1.4E-05	2.6E-05	3.7E-05
	total α			1.3E-03	3.5E-03
	total β			1.5E-02	3.7E-02
	⁶⁰ Co	1.0E-03	5.2E-04	7.6E-04	1.0E-03
	⁹⁰ Sr	4.8E-04	3.6E-04	4.2E-04	4.8E-04
	²³⁴ U	1.3E-05	5.1E-05	3.2E-05	5.1E-05
	²³⁵ U	6.0E-06	1.3E-05	9.5E-06	1.3E-05
N106	²³⁸ U	1.0E-05	5.3E-05	3.1E-05	5.3E-05
	^{239,240} Pu	8.2E-06	1.3E-05	1.1E-05	1.3E-05
N106	total α			1.1E-03	3.1E-03
	total β			1.3E-02	3.2E-02
	⁶⁰ Co	2.1E-04	2.1E-04	2.1E-04	2.1E-04
	²³⁴ U	2.4E-05	5.5E-05	4.0E-05	5.5E-05
	²³⁵ U	2.0E-05	7.1E-06	1.4E-05	2.0E-05
	²³⁸ U	3.1E-05	5.8E-05	4.4E-05	5.8E-05

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

100-F/DR Interim Safe Storage Project					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N492	total α			1.3E-03	1.7E-03
	total β			1.0E-02	1.4E-02
	⁹⁰ Sr		4.7E-04	4.7E-04	4.7E-04
	²³⁴ U		3.9E-05	3.9E-05	3.9E-05
	²³⁵ U		3.4E-05	3.4E-05	3.4E-05
	²³⁸ U		5.8E-05	5.8E-05	5.8E-05
N493	total α			1.4E-03	2.3E-03
	total β			1.7E-02	2.6E-02
	²³⁴ U		3.9E-05	3.9E-05	3.9E-05
	²³⁵ U		2.4E-05	2.4E-05	2.4E-05
N494	total α			1.1E-03	2.0E-03
	total β			1.9E-02	3.0E-02
	²³⁴ U	5.2E-05	3.7E-05	4.5E-05	5.2E-05
N495	²³⁸ U	8.6E-05	3.7E-05	6.2E-05	8.6E-05
	total α			1.0E-03	1.5E-03
	total β			1.8E-02	3.5E-02
	⁹⁰ Sr	8.9E-04	ND ^b	8.9E-04	8.9E-04
	²³⁴ U	ND	2.8E-05	2.8E-05	2.8E-05
	²³⁸ U	8.9E-05	3.9E-05	6.4E-05	8.9E-05
	^{239,240} Pu	4.2E-05	2.5E-05	3.4E-05	4.2E-05

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

200 East Area					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N019	total α			1.2E-03	2.5E-03
	total β			1.5E-02	3.8E-02
	⁹⁰ Sr	3.0E-04	5.7E-04	4.4E-04	5.7E-04
	¹³⁷ Cs	6.9E-04	2.6E-04	4.7E-04	6.9E-04
	²³⁴ U	3.8E-05	2.4E-05	3.1E-05	3.8E-05
	²³⁵ U	2.7E-05	1.0E-05	1.8E-05	2.7E-05
	²³⁸ U	2.1E-05	1.3E-05	1.7E-05	2.1E-05
N158	^{239,240} Pu	ND ^b	6.3E-06	6.3E-06	6.3E-06
	total α			1.1E-03	3.0E-03
	total β			1.5E-02	3.5E-02
	¹³⁷ Cs	2.2E-04	5.3E-04	3.8E-04	5.3E-04
	²³⁴ U	4.2E-05	1.4E-05	2.8E-05	4.2E-05
N498	²³⁵ U	3.0E-05	1.2E-05	2.1E-05	3.0E-05
	²³⁸ U	2.6E-05	2.4E-05	2.5E-05	2.6E-05
	total α			1.6E-03	2.4E-03
	total β			1.7E-02	2.5E-02
N499	²³⁴ U		8.6E-05	8.6E-05	8.6E-05
	²³⁵ U		4.1E-05	4.1E-05	4.1E-05
	²³⁸ U		1.0E-04	1.0E-04	1.0E-04
	total α			1.4E-03	2.2E-03
N957	total β			2.5E-02	3.1E-02
	¹³⁷ Cs		1.5E-03	1.5E-03	1.5E-03
	²³⁴ U		3.2E-05	3.2E-05	3.2E-05
	^{239,240} Pu		2.1E-05	2.1E-05	2.1E-05
	total α			1.1E-03	1.9E-03
N967	total β			1.2E-02	3.0E-02
	⁹⁰ Sr	ND	2.0E-04	2.0E-04	2.0E-04
	¹³⁷ Cs	1.4E-04	ND	1.4E-04	1.4E-04
N968	²³⁴ U	1.7E-05	1.3E-05	1.5E-05	1.7E-05
	²³⁵ U	8.9E-06	ND	8.9E-06	8.9E-06
	²³⁸ U	1.2E-05	1.8E-05	1.5E-05	1.8E-05
	total α			1.1E-03	2.8E-03
	total β			1.4E-02	6.3E-02
N969	⁹⁰ Sr	ND ^b	3.6E-04	3.6E-04	3.6E-04
	¹³⁷ Cs	ND	2.7E-04	2.7E-04	2.7E-04
	²³⁴ U	2.2E-05	2.0E-05	2.4E-05	2.7E-05
	²³⁵ U	2.0E-05	4.8E-06	1.2E-05	2.0E-05
	²³⁸ U	1.2E-05	1.9E-05	1.5E-05	1.9E-05
	^{239,240} Pu	ND	6.5E-06	6.5E-06	6.5E-06

200 East Area					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N970	total α			1.2E-03	3.0E-03
	total β			1.6E-02	4.9E-02
	¹³⁷ Cs	ND	1.2E-04	1.2E-04	1.2E-04
	²³⁴ U	2.8E-05	1.9E-05	2.4E-05	2.8E-05
	²³⁵ U	1.6E-05	5.4E-06	1.1E-05	1.6E-05
	²³⁸ U	1.3E-05	1.4E-05	1.4E-05	1.4E-05
	^{239,240} Pu	ND	7.5E-06	7.5E-06	7.5E-06
N972	total α			9.6E-04	2.2E-03
	total β			1.4E-02	3.3E-02
	⁹⁰ Sr	2.0E-04	2.5E-04	2.3E-04	2.5E-04
	¹³⁷ Cs	2.0E-04	ND	2.0E-04	2.0E-04
	²³⁴ U	3.1E-05	2.1E-05	2.6E-05	3.1E-05
	²³⁵ U	1.0E-05	ND	1.0E-05	1.0E-05
	²³⁸ U	1.2E-05	2.1E-05	1.7E-05	2.1E-05
N973	total α			1.2E-03	3.3E-03
	total β			1.5E-02	3.0E-02
	⁹⁰ Sr	ND	1.7E-04	1.7E-04	1.7E-04
	¹³⁷ Cs	ND	1.9E-04	1.9E-04	1.9E-04
	²³⁴ U	1.3E-05	1.6E-05	1.4E-05	1.6E-05
	²³⁵ U	9.5E-06	7.8E-06	8.6E-06	9.5E-06
	²³⁸ U	1.1E-05	2.4E-05	1.8E-05	2.4E-05
N976	total α			1.0E-03	2.0E-03
	total β			1.5E-02	3.0E-02
	⁹⁰ Sr	ND	2.6E-04	2.6E-04	2.6E-04
	¹³⁷ Cs	ND	2.1E-04	2.1E-04	2.1E-04
	²³⁴ U	3.4E-05	2.6E-05	3.0E-05	3.4E-05
	²³⁵ U	9.4E-06	ND	9.4E-06	9.4E-06
	²³⁸ U	2.2E-05	3.1E-05	2.6E-05	3.1E-05
N977	total α			1.2E-03	3.2E-03
	total β			1.2E-02	2.9E-02
	²³⁴ U	2.2E-05	1.5E-05	1.9E-05	2.2E-05
	²³⁵ U	8.2E-06	ND	8.2E-06	8.2E-06
N978	total α			1.1E-03	2.3E-03
	total β			1.3E-02	2.9E-02
	¹³⁷ Cs	ND ^b	1.3E-04	1.3E-04	1.3E-04
	²³⁴ U	2.2E-05	2.0E-05	2.1E-05	2.2E-05
	²³⁵ U	1.4E-05	7.4E-06	1.1E-05	1.4E-05
	²³⁸ U	1.5E-05	2.0E-05	1.8E-05	2.0E-05
N984	total α			9.8E-04	2.5E-03
	total β			9.8E-04	3.4E-02
	⁹⁰ Sr	2.0E-04	9.6E-04	5.8E-04	9.6E-04
	¹³⁷ Cs	ND	1.7E-04	1.7E-04	1.7E-04
	²³⁴ U	2.9E-05	2.3E-05	2.6E-05	2.9E-05
	²³⁵ U	1.8E-05	4.4E-06	1.1E-05	1.8E-05
	²³⁸ U	1.7E-05	3.1E-05	2.4E-05	3.1E-05

200 East Area

EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N985	total α			1.0E-03	2.0E-03
	total β			1.2E-02	2.7E-02
	⁹⁰ Sr	3.6E-04	ND	3.6E-04	3.6E-04
	¹³⁷ Cs	1.3E-04	1.3E-04	1.3E-04	1.3E-04
	²³⁴ U	3.3E-05	2.3E-05	2.8E-05	3.3E-05
	²³⁵ U	1.9E-05	7.4E-06	1.3E-05	1.9E-05
	²³⁸ U	1.3E-05	1.6E-05	1.4E-05	1.6E-05
N998	^{239,240} Pu	ND	6.0E-06	6.0E-06	6.0E-06
	total α			1.0E-03	1.8E-03
	total β			1.4E-02	3.2E-02
	⁹⁰ Sr	ND	5.5E-04	5.5E-04	5.5E-04
	²³⁴ U	2.5E-05	3.2E-05	2.9E-05	3.2E-05
	²³⁵ U	1.2E-05	1.3E-05	1.3E-05	1.3E-05
	²³⁸ U	1.2E-05	2.7E-05	1.9E-05	2.7E-05
N999	^{239,240} Pu	9.0E-06	ND	9.0E-06	9.0E-06
	total α			9.9E-04	2.6E-03
	total β			1.5E-02	3.6E-02
	⁹⁰ Sr	2.6E-04	ND	2.6E-04	2.6E-04
	²³⁴ U	1.1E-05	2.8E-05	1.9E-05	2.8E-05
	²³⁵ U	1.0E-05	9.3E-06	9.6E-06	1.0E-05
	²³⁸ U	1.1E-05	2.2E-05	1.7E-05	2.2E-05

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

200 West Area

EDP Code ^a	Radionuclide (pCi/m ³)	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N155	total α			1.2E-03	3.1E-03
	total β			1.4E-02	3.4E-02
	⁹⁰ Sr	2.0E-04	ND ^b	2.0E-04	2.0E-04
	¹³⁷ Cs	2.1E-04	1.5E-04	1.8E-04	2.1E-04
	²³⁴ U	4.4E-05	2.6E-05	3.5E-05	4.4E-05
	²³⁵ U	1.2E-05	4.8E-06	8.4E-06	1.2E-05
	²³⁸ U	1.1E-05	2.8E-05	1.9E-05	2.8E-05
N161	^{239,240} Pu	1.3E-05	1.0E-05	1.2E-05	1.3E-05
	total α			1.4E-03	5.3E-03
	total β			1.2E-02	2.6E-02
	⁹⁰ Sr	1.2E-04	ND	1.2E-04	1.2E-04
	¹³⁷ Cs	1.8E-04	ND	1.8E-04	1.8E-04
	²³⁴ U	3.8E-05	2.5E-05	3.1E-05	3.8E-05
	²³⁵ U	1.9E-05	9.2E-06	1.4E-05	1.9E-05
N165	²³⁸ U	6.4E-06	1.2E-05	9.2E-06	1.2E-05
	^{239,240} Pu	5.6E-06	6.1E-06	5.8E-06	6.1E-06
	total α			1.3E-03	3.6E-03
	total β			1.7E-02	1.0E-01
	⁹⁰ Sr	1.1E-04	ND	1.1E-04	1.1E-04
	²³⁴ U	3.5E-05	1.9E-05	2.7E-05	3.5E-05
	²³⁵ U	2.6E-05	9.1E-06	1.8E-05	2.6E-05
²³⁸ U	1.5E-05	2.2E-05	1.9E-05	2.2E-05	
	^{239,240} Pu	4.4E-05	4.0E-05	4.2E-05	4.4E-05
	²⁴¹ Pu	9.0E-04	NM	9.0E-04	9.0E-04

200 West Area					
EDP Code ^a	Radionuclide (pCi/m ³)	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N168	total α			1.2E-03	4.1E-03
	total β			1.3E-02	3.4E-02
	¹³⁷ Cs	1.2E-04	ND	1.2E-04	1.2E-04
	²³⁴ U	7.5E-05	3.0E-05	5.3E-05	7.5E-05
	²³⁵ U	3.9E-05	1.1E-05	2.5E-05	3.9E-05
	²³⁸ U	2.9E-05	2.3E-05	2.6E-05	2.9E-05
N200	^{239,240} Pu	8.2E-06	9.5E-06	8.9E-06	9.5E-06
	total α			9.5E-04	1.8E-03
	total β			1.1E-02	2.7E-02
	²³⁴ U	4.2E-05	1.9E-05	3.0E-05	4.2E-05
	²³⁵ U	1.4E-05	ND	1.4E-05	1.4E-05
	²³⁸ U	1.6E-05	1.5E-05	1.5E-05	1.6E-05
N304	^{239,240} Pu	ND	7.0E-06	7.0E-06	7.0E-06
	total α			1.1E-03	2.6E-03
	total β			1.3E-02	3.1E-02
	⁹⁰ Sr	1.4E-04	ND	1.4E-04	1.4E-04
	²³⁴ U	3.3E-05	1.8E-05	2.5E-05	3.3E-05
	²³⁵ U	1.7E-05	8.6E-06	1.3E-05	1.7E-05
N433	²³⁸ U	1.6E-05	1.9E-05	1.7E-05	1.9E-05
	^{239,240} Pu	ND	4.6E-06	4.6E-06	4.6E-06
	total α			1.2E-03	3.2E-03
	total β			1.4E-02	3.4E-02
	⁹⁰ Sr	9.5E-05	ND ^b	9.5E-05	9.5E-05
	¹³⁷ Cs	ND	3.1E-04	3.1E-04	3.1E-04
N441	²³⁴ U	5.1E-05	2.0E-05	3.6E-05	5.1E-05
	²³⁵ U	5.2E-05	9.5E-06	3.1E-05	5.2E-05
	²³⁸ U	3.7E-05	1.2E-05	2.5E-05	3.7E-05
	²⁴¹ Am	3.1E-05	NM	3.1E-05	3.1E-05
	total α			1.1E-03	2.4E-03
	total β			1.2E-02	2.7E-02
N442	⁹⁰ Sr	1.5E-04	ND	1.5E-04	1.5E-04
	¹³⁷ Cs	ND	2.2E-04	2.2E-04	2.2E-04
	²³⁴ U	1.2E-05	3.0E-05	2.1E-05	3.0E-05
	²³⁵ U	7.7E-06	9.2E-06	8.5E-06	9.2E-06
	²³⁸ U	1.3E-05	2.2E-05	1.8E-05	2.2E-05
	^{239,240} Pu	ND	9.2E-06	9.2E-06	9.2E-06
N449	total α			1.1E-03	2.1E-03
	total β			1.3E-02	3.4E-02
	⁶⁰ Co	ND	ND	1.3E-04	1.3E-04
	⁹⁰ Sr	1.1E-04	1.5E-04	1.5E-04	1.5E-04
	²³⁴ U	3.9E-05	1.6E-05	4.0E-05	5.6E-05
	²³⁵ U	2.5E-05	1.2E-05	2.9E-05	5.2E-05
	²³⁸ U	2.2E-05	2.3E-05	2.4E-05	3.4E-05
	^{239,240} Pu	8.9E-06	ND	8.9E-06	8.9E-06

200 West Area					
EDP Code ^a	Radionuclide (pCi/m ³)	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
	^{239,240} Pu	ND	1.3E-05	1.3E-05	1.3E-05
N456	total α			1.2E-03	2.2E-03
	total β			1.4E-02	4.2E-02
	⁹⁰ Sr	1.2E-04	ND	1.2E-04	1.2E-04
	¹⁰⁶ Ru	ND	6.6E-04	6.6E-04	6.6E-04
	²³⁴ U	1.7E-05	2.2E-05	1.9E-05	2.2E-05
	²³⁵ U	5.0E-06	5.5E-06	5.2E-06	5.5E-06
	²³⁸ U	1.4E-05	2.2E-05	1.8E-05	2.2E-05
	^{239,240} Pu	ND	6.5E-06	6.5E-06	6.5E-06
N457	total α			1.2E-03	2.4E-03
	total β			1.4E-02	3.3E-02
	²³⁴ U	1.5E-05	1.7E-05	1.6E-05	1.7E-05
	²³⁵ U	1.5E-05	7.6E-06	1.1E-05	1.5E-05
	²³⁸ U	2.2E-05	1.3E-05	1.8E-05	2.2E-05
N956	total α			1.2E-03	2.6E-03
	total β			1.4E-02	3.3E-02
	⁹⁰ Sr	ND	1.9E-04	1.9E-04	1.9E-04
	¹³⁷ Cs	1.6E-04	2.1E-04	1.8E-04	2.1E-04
	²³⁴ U	1.7E-05	1.5E-04	8.4E-05	1.5E-04
	²³⁵ U	9.8E-06	2.0E-05	1.5E-05	2.0E-05
	²³⁸ U	ND	1.8E-04	1.8E-04	1.8E-04
N963	total α			1.3E-03	2.5E-03
	total β			1.6E-02	4.1E-02
	¹³⁷ Cs	1.4E-04	6.6E-04	4.0E-04	6.6E-04
	²³⁴ U	3.0E-05	1.8E-05	2.4E-05	3.0E-05
	²³⁵ U	1.8E-05	ND ^b	1.8E-05	1.8E-05
	²³⁸ U	1.5E-05	1.6E-05	1.5E-05	1.6E-05
	^{239,240} Pu	5.7E-06	ND	5.7E-06	5.7E-06
N964	total α			1.2E-03	3.7E-03
	total β			1.4E-02	3.5E-02
	⁹⁰ Sr	1.2E-04	2.5E-04	1.9E-04	2.5E-04
	¹²⁵ Sb	ND	2.5E-03	2.5E-03	2.5E-03
	²³⁴ U	4.1E-05	1.2E-05	2.6E-05	4.1E-05
	²³⁵ U	3.6E-05	1.6E-05	2.6E-05	3.6E-05
	²³⁸ U	2.1E-05	1.9E-05	2.0E-05	2.1E-05
	^{239,240} Pu	8.9E-05	3.9E-06	4.6E-05	8.9E-05
N965	²⁴¹ Pu	1.1E-03	NM	1.1E-03	1.1E-03
	total α			1.7E-03	1.4E-02
	total β			1.7E-02	1.1E-01
	²³⁴ U	2.7E-05	1.3E-05	2.0E-05	2.7E-05
N966	²³⁵ U	2.5E-05	3.6E-06	1.4E-05	2.5E-05
	²³⁸ U	1.6E-05	6.9E-06	1.1E-05	1.6E-05
	total α			1.1E-03	3.0E-03
	total β			1.3E-02	2.8E-02
	⁹⁰ Sr	1.8E-04	ND	1.8E-04	1.8E-04
N974	¹³⁷ Cs	ND	4.5E-04	4.5E-04	4.5E-04
	²³⁴ U	3.5E-05	1.7E-05	2.6E-05	3.5E-05
	²³⁵ U	1.1E-05	9.1E-06	1.0E-05	1.1E-05
	²³⁸ U	1.9E-05	1.5E-05	1.7E-05	1.9E-05
	total α			1.1E-03	2.0E-03
	total β			1.4E-02	3.6E-02

200 West Area					
EDP Code ^a	Radionuclide (pCi/m ³)	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
	⁹⁰ Sr	1.2E-04	ND	1.2E-04	1.2E-04
	²³⁴ U	2.6E-05	1.2E-05	1.9E-05	2.6E-05
	²³⁵ U	1.6E-05	4.5E-06	1.0E-05	1.6E-05
	²³⁸ U	1.6E-05	2.2E-05	1.9E-05	2.2E-05
	^{239,240} Pu	ND	1.2E-05	1.2E-05	1.2E-05
N975	total α			1.2E-03	2.7E-03
	total β			1.4E-02	4.2E-02
	⁹⁰ Sr	2.2E-04	ND	2.2E-04	2.2E-04
	²³⁴ U	3.5E-05	2.2E-05	2.9E-05	3.5E-05
	²³⁵ U	2.9E-05	8.7E-06	1.9E-05	2.9E-05
	²³⁸ U	2.1E-05	2.1E-05	2.1E-05	2.1E-05
	^{239,240} Pu	ND	7.4E-06	7.4E-06	7.4E-06
N987	total α			1.2E-03	3.2E-03
	total β			1.1E-02	2.9E-02
	¹³⁷ Cs	ND ^b	2.1E-04	2.1E-04	2.1E-04
	¹⁵² Eu	ND	8.8E-04	8.8E-04	8.8E-04
	²³⁴ U	2.3E-05	2.4E-05	2.4E-05	2.4E-05
	²³⁵ U	1.8E-05	ND	1.8E-05	1.8E-05
	²³⁸ U	2.2E-05	2.5E-05	2.4E-05	2.5E-05
	^{239,240} Pu	ND	3.0E-05	3.0E-05	3.0E-05
N994	total α			1.2E-03	2.6E-03
	total β			1.4E-02	4.3E-02
	²³⁴ U	2.6E-05	2.1E-05	2.4E-05	2.6E-05
	²³⁵ U	1.0E-05	8.4E-06	9.2E-06	1.0E-05
	²³⁸ U	ND	2.2E-05	2.2E-05	2.2E-05
	^{239,240} Pu	6.7E-06	ND	6.7E-06	6.7E-06
N981	total α			1.2E-03	2.3E-03
	total β			1.3E-02	2.3E-02
	²³⁴ U	2.6E-05	2.4E-04	1.3E-04	2.4E-04
	²³⁵ U	1.1E-05	1.2E-05	1.2E-05	1.2E-05
	²³⁸ U	2.5E-05	2.6E-04	1.4E-04	2.6E-04
	^{239,240} Pu	ND	6.8E-06	6.8E-06	6.8E-06

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

Environmental Restoration Disposal Facility					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N482	total α			1.0E-03	2.5E-03
	total β			1.2E-02	2.4E-02
	¹³⁷ Cs	1.3E-04	1.8E-04	1.5E-04	1.8E-04
	²³⁴ U	1.9E-05	4.7E-05	3.3E-05	4.7E-05
	²³⁵ U	ND ^b	9.6E-06	9.6E-06	9.6E-06
	²³⁸ U	8.8E-06	4.6E-05	2.7E-05	4.6E-05
	^{239,240} Pu	1.3E-05	6.1E-06	9.5E-06	1.3E-05
N483	total α			1.1E-03	2.2E-03
	total β			1.3E-02	3.5E-02
	⁹⁰ Sr	1.1E-04	ND	1.1E-04	1.1E-04
	¹³⁷ Cs	ND	1.0E-03	1.0E-03	1.0E-03
	²³⁴ U	3.3E-05	3.3E-05	3.3E-05	3.3E-05

Environmental Restoration Disposal Facility					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
	²³⁵ U	9.4E-06	ND	9.4E-06	9.4E-06
	²³⁸ U	2.7E-05	3.5E-05	3.1E-05	3.5E-05
	^{239,240} Pu	ND	1.3E-05	1.3E-05	1.3E-05
N484	total α			1.1E-03	2.6E-03
	total β			1.5E-02	3.3E-02
	⁹⁰ Sr	3.5E-04	ND	3.5E-04	3.5E-04
	²³⁴ U	2.3E-05	3.5E-05	2.9E-05	3.5E-05
	²³⁵ U	6.9E-06	ND	6.9E-06	6.9E-06
	²³⁸ U	2.9E-05	3.2E-05	3.0E-05	3.2E-05
	²³⁹ Pu	2.0E-05	ND	2.0E-05	2.0E-05
	^{239,240} Pu	3.0E-05	ND	3.0E-05	3.0E-05

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

300-FF-1 Remedial Action Project					
EDP Code ^a	Radionuclide	1st Half Result (pCi/m ³)	2nd Half Result (pCi/m ³)	Average (pCi/m ³)	Maximum (pCi/m ³)
N485	total α			1.2E-03	4.3E-03
	total β			1.4E-02	3.3E-02
	¹³⁷ Cs	ND ^b	1.9E-04	1.9E-04	1.9E-04
	²³⁴ U	6.3E-05	4.6E-05	5.5E-05	6.3E-05
	²³⁵ U	2.1E-05	ND	2.1E-05	2.1E-05
	²³⁸ U	5.3E-05	5.6E-05	5.5E-05	5.6E-05
N486	total α			1.2E-03	2.6E-03
	total β			1.5E-02	4.5E-02
	²³⁴ U	1.2E-04	8.9E-05	1.0E-04	1.2E-04
	²³⁵ U	2.9E-05	3.3E-05	3.1E-05	3.3E-05
N487	total α			7.8E-05	8.2E-05
	total β			1.1E-03	1.9E-03
	²³⁴ U	1.1E-04	1.9E-04	1.5E-04	1.9E-04
	²³⁵ U	2.0E-05	2.0E-05	2.0E-05	2.0E-05
N488	total α			1.4E-04	1.8E-04
	total β			1.8E-03	2.2E-03
	²³⁴ U		6.6E-05	1.7E-02	1.8E-02
	²³⁵ U		3.9E-05	6.6E-05	3.9E-05
N489	total α			6.1E-05	6.1E-05
	total β			2.3E-03	2.4E-03
	²³⁴ U		1.1E-04	2.5E-02	2.9E-02
	²³⁸ U		1.1E-04	1.1E-04	1.1E-04
N130	total α			1.1E-03	2.0E-03
	total β			1.5E-02	5.3E-02
	⁹⁰ Sr	ND	2.3E-04	2.3E-04	2.3E-04
	¹³⁷ Cs	4.8E-04	ND	4.8E-04	4.8E-04
	²³⁴ U	7.1E-05	3.4E-05	5.3E-05	7.1E-05
	²³⁵ U	2.3E-05	1.6E-05	2.0E-05	2.3E-05
	²³⁸ U	3.1E-05	2.5E-05	2.8E-05	3.1E-05

^a air sampler location code (EDP = electronic data processing)^b ND = not detected (i.e., result less than zero, or less than its overall analytical error, or no peak detected)

Three of the Environmental Restoration Contractor projects have requirements for annually reporting ambient air monitoring data obtained from PNNL air monitoring stations. The projects and their associated PNNL stations are the 100-B/C Remedial Action Project (PNNL station no. 28 [“Yakima Barricade”]), the ERDF Project (PNNL station no. 11 [“200 West SE”]), and the 300-FF-1 Remedial Action Project (PNNL station no. 14 [“300 Trench”] and PNNL station no. 15 [“300 NE”]). The air monitoring data collected in 1998 for these locations is in Table 5-7.

Table 5-7. Ambient Air Monitoring Data for 1998
Related to Environmental Restoration Contractor Projects

Location	Radionuclide or type of radioactivity	Average Concentration (pCi/m ³)	Maximum Concentration (pCi/m ³)
200 West SE	total α	6.7E-04	2.1E-03
	total β	1.4E-02	2.8E-02
	^{90}Sr	1.0E-04	1.0E-04
Yakima Barricade	total α	8.1E-04	1.8E-03
	total β	1.4E-02	3.1E-02
300 NE	total α	6.7E-04	1.1E-03
	total β	1.6E-02	3.5E-02
	^3H	3.7E+00	8.0E+00
	^{234}U	5.0E-05	5.2E-05
	^{235}U	3.0E-06	3.5E-06
	^{238}U	4.0E-05	5.0E-05
300 Trench	total α	6.9E-04	1.5E-03
	total β	1.4E-02	3.5E-02
	^3H	3.8E+00	1.3E+01
	^{234}U	4.2E-05	4.2E-05
	^{238}U	4.8E-05	4.8E-05

^a 1 Ci = 1 curie = 3.7 E+10 becquerels (Bq); pCi = E-12 Ci

5.5 QUALITY ASSURANCE PROGRAM COMPLIANCE STATUS

Appendices in *Quality Assurance Project Plan for Radionuclide Air Emissions Data* (HNF-EP-0528-3) provide point-by-point comparisons of the major point-source monitoring systems and laboratory methods to the quality assurance criteria of 40 CFR 61, Appendix B, Method 114. That document also contains the quality assurance activities associated with data collection and reporting. FDH and BHI airborne effluent monitoring activities are conducted in accordance with federal and state regulations as well as with the documents listed below.

PNNL has implemented a quality assurance plan for facility effluent monitoring, as required by 40 CFR 61, Appendix B, Method 114. The effluent monitoring quality assurance plan incorporates guidance from the documents listed in the paragraph below.

The quality assurance programs described by these plans are based on the following documentation:

- EPA QAMS-005/80, Interim Guidelines for Preparing Quality Assurance Project Plans, (EPA 1983)
- DOE 5700.6C, *Quality Assurance*
- DOE 5400.1, *General Environmental Protection Program*
- DOE/EH-0173T, *Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance*, (DOE 1991)
- applicable criteria of ASME NQA-1, *Quality Assurance Requirements for Nuclear Facility Applications*, (ASME 1997).

This page intentionally left blank.

6.0 REFERENCES

ASME, 1989, *Quality Assurance Program for Nuclear Facilities*, American Society for Testing and Material, NQA-1-1989 Edition, New York.

Brown, R. M., G. L. Ogram, and F. S. Spencer, 1990, *Oxidation and Dispersion of HT in the Environment: The August 1986 Field Experiment at Chalk River*, Health Physics 58(2):171-181.

DOE, 1991, *Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance*, DOE/EH-0173T, U.S. Department of Energy, Washington D.C.

DOE-RL, 1988, *Hanford Site Dangerous Waste Part A Permit Application*, DOE/RL-88-21, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL, 1991, *Calendar Year 1990 Air Emissions Report for the Hanford Site*, DOE/RL-91-10, U.S. Department of Energy, Richland Field Office, Richland, Washington.

DOE-RL, 1992, *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1991*, DOE/RL-92-30, U.S. Department of Energy, Richland Field Office, Richland, Washington.

DOE-RL, 1993, *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1992*, DOE/RL-93-36, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL, 1994, *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1993*, DOE/RL-94-51, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL, 1995, *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1994*, DOE/RL-95-49, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL, 1996a, *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1995*, DOE/RL-96-37, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL, 1996b, *Radioactive Air Emissions Notice of Construction Portable/Temporary Air Emission Units*, DOE/RL-96-75 Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL, 1997a, *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1996*, DOE/RL-97-43, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL, 1997, *Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 1997*, DOE/RL-98-33, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

EPA, 1980, *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans*, EPA/500/80, U.S. Environmental Protection Agency, Washington, D.C.

EPA, 1992, *User's Guide for CAP88-PC*, Version 1.0, 402-B-92-001, Office of Radiation Programs, U.S. Environmental Protection Agency, Las Vegas, Nevada.

PNL, 1988, *GENII — The Hanford Environmental Radiation Dosimetry Software System*, PNL-6584, Vols. 1-3, Pacific Northwest Laboratory, Richland, Washington.

PNL, 1990, *Hanford Site Environmental Report for Calendar Year 1989*, PNL-7346, Pacific Northwest Laboratory, Richland, Washington.

PNL, 1991, *Hanford Area 1990 Population and 50-year Projections*, PNL-7803, Pacific Northwest Laboratory, Richland, Washington.

PNL, 1993, *Recommended Environmental Dose Calculation Methods and Hanford-Specific Parameters*, PNL-3777, Rev. 2., Pacific Northwest Laboratory, Richland, Washington.

PNL, 1998, *Hanford Site National Environmental Policy Act (NEPA) Characterization*, PNL-6415 Rev. 10, Pacific Northwest Laboratory, Richland, Washington.

PNNL, 1999a, *Hanford Site Environmental Report for Calendar Year 1998*, PNNL-12088, Pacific Northwest National Laboratory, Richland, Washington.

PNNL, 1999b, *Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 1998*, PNNL-12088, APP. 2, Pacific Northwest National Laboratory, Richland, Washington.

PNNL, 1999c, *Hanford Site Climatological Data Summary 1998*, with Historical Data, PNNL-12087, Pacific Northwest National Laboratory, Richland, Washington.

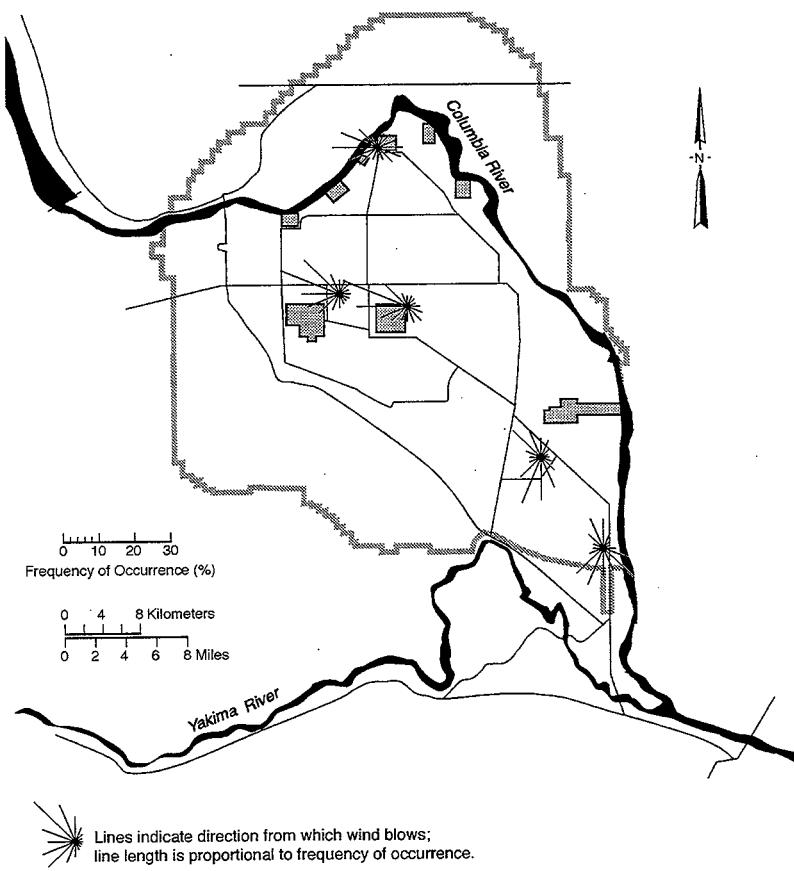
SNL, 1992, *User's Guide for GENII-S: A Code for Statistical and Deterministic Simulations of Radiation Doses to Humans from Radionuclides in the Environment*, SAND91-0561A, Sandia National Laboratories, Albuquerque, New Mexico.

WHC, 1988, *Westinghouse Hanford Company Effluent Releases and Solid Waste Management Report for 1987: 200/600/1100 Areas*, WHC-EP-0141, Westinghouse Hanford Company, Richland, Washington.

WHC, 1995a, *Effluent Monitoring Quality Assurance Project Plan for Radioactive Airborne Emissions Data*, WHC-EP-0528-2, Westinghouse Hanford Company, Richland, Washington.

WHC, 1995b, *Quality Assurance Program Plan for Radionuclide Airborne Emissions Monitoring*, WHC-EP-0536-3, Westinghouse Hanford Company, Richland, Washington.

WMNW, 1998, *Hanford Site Near-Facility Environmental Monitoring Annual Report, Calendar Year 1997*, HNF-EP-0573-6, Waste Management Federal Services, Inc. Northwest Operations, Richland, Washington.


Zacks, R. S., March 1995, *Biological Diversity Inventory and Analysis at the Hanford Site: Insects*, Department of Entomology, Washington State University, Pullman, Washington.

APPENDIX A

DOSE MODELING AND METEOROLOGICAL DATA

This page intentionally left blank.

Figure A-1. Meteorological Station Map and Wind Roses for 1998.

H99050058.2

This page intentionally left blank.

Figure A-2. 100 Area Wind Rose and Histogram.

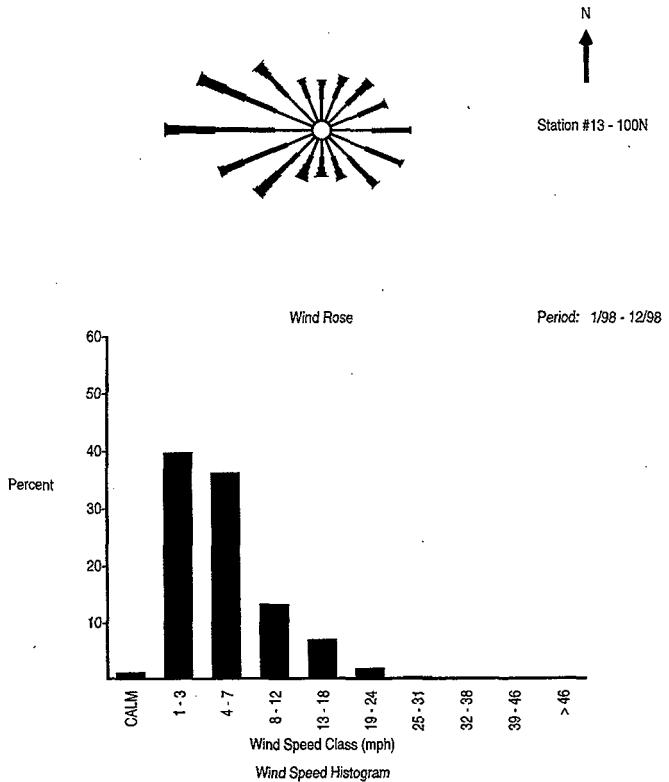


Figure A-3. 200 East Area Wind Rose and Histogram.

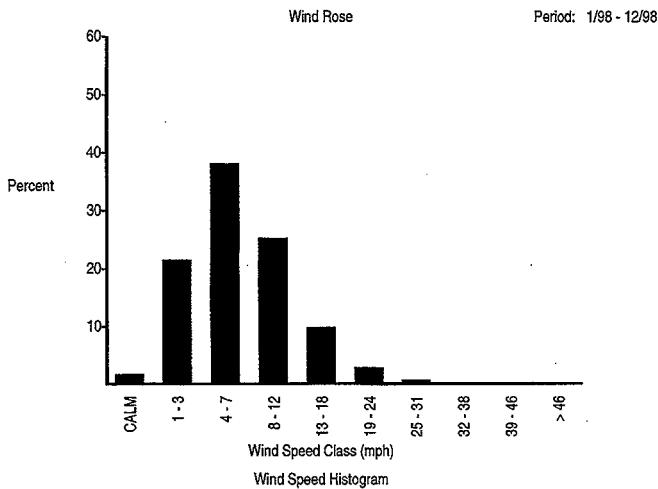
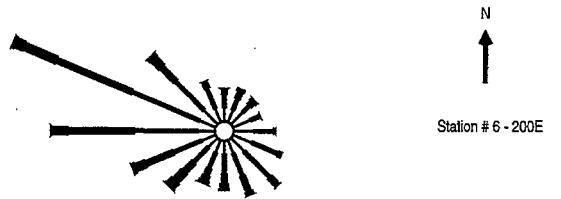



Figure A-4. 200 West Area Wind Rose and Histogram.

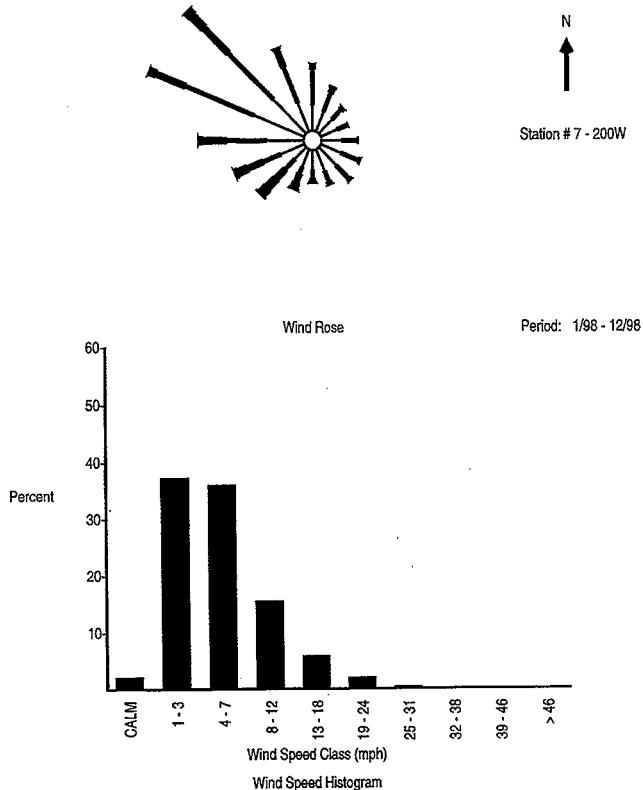


Figure A-5. 300 Area Wind Rose and Histogram.

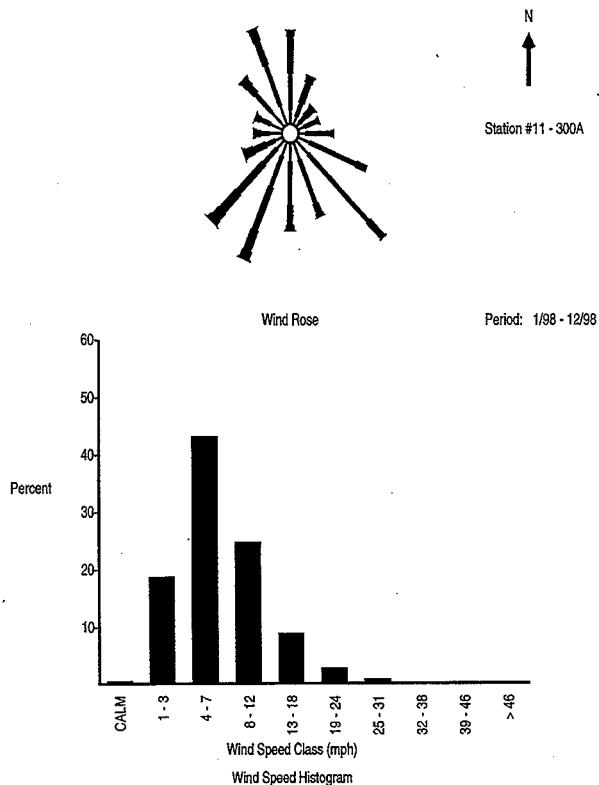


Figure A-6. 400 Area Wind Rose and Histogram.

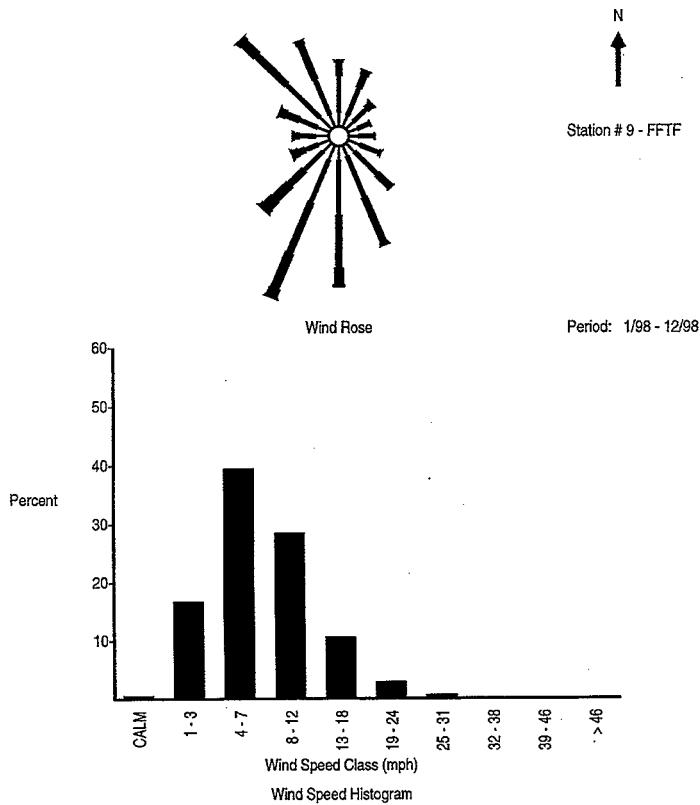


Table A-1. Annual Average Dispersion Factor Around the 100-K Area During 1998 for a 10-Meter Release Height.

Dist:	0.8 km	2.4 km	4.0 km	5.6 km	7.2 km	12 km	24 km	40 km	56 km	72 km
Dir:										
N	2.96E-06	6.20E-07	2.97E-07	1.85E-07	1.30E-07	6.44E-08	2.53E-08	1.29E-08	8.29E-09	5.98E-09
NNE	2.62E-06	5.53E-07	2.65E-07	1.64E-07	1.16E-07	5.72E-08	2.25E-08	1.14E-08	7.38E-09	5.32E-09
NE	3.96E-06	8.22E-07	3.93E-07	2.44E-07	1.72E-07	8.48E-08	3.32E-08	1.69E-08	1.09E-08	7.83E-09
ENE	7.67E-06	1.61E-06	7.70E-07	4.77E-07	3.36E-07	1.66E-07	6.50E-08	3.30E-08	2.13E-08	1.53E-08
E	9.57E-06	1.98E-06	9.44E-07	5.85E-07	4.11E-07	2.03E-07	7.93E-08	4.02E-08	2.58E-08	1.86E-08
ESE	4.95E-06	9.98E-07	4.74E-07	2.93E-07	2.06E-07	1.01E-07	3.95E-08	2.00E-08	1.29E-08	9.29E-09
SE	2.69E-06	5.36E-07	2.55E-07	1.58E-07	1.11E-07	5.52E-08	2.17E-08	1.11E-08	7.18E-09	5.20E-09
SSE	2.15E-06	4.24E-07	2.03E-07	1.26E-07	8.85E-08	4.39E-08	1.74E-08	8.89E-09	5.76E-09	4.18E-09
S	2.10E-06	4.07E-07	1.94E-07	1.20E-07	8.44E-08	4.19E-08	1.66E-08	8.48E-09	5.50E-09	3.98E-09
SSW	1.81E-06	3.73E-07	1.79E-07	1.12E-07	7.88E-08	3.92E-08	1.55E-08	7.96E-09	5.16E-09	3.74E-09
SW	2.05E-06	4.24E-07	2.03E-07	1.26E-07	8.87E-08	4.39E-08	1.73E-08	8.80E-09	5.68E-09	4.10E-09
WSW	2.36E-06	4.73E-07	2.25E-07	1.39E-07	9.73E-08	4.78E-08	1.86E-08	9.44E-09	6.07E-09	4.37E-09
W	2.94E-06	5.90E-07	2.80E-07	1.73E-07	1.22E-07	5.99E-08	2.34E-08	1.19E-08	7.63E-09	5.50E-09
WNW	3.07E-06	6.04E-07	2.86E-07	1.77E-07	1.24E-07	6.08E-08	2.37E-08	1.20E-08	7.70E-09	5.55E-09
NW	3.33E-06	6.87E-07	3.28E-07	2.03E-07	1.43E-07	7.06E-08	2.77E-08	1.41E-08	9.06E-09	6.54E-09
NNW	2.95E-06	6.17E-07	2.95E-07	1.83E-07	1.29E-07	6.38E-08	2.51E-08	1.27E-08	8.20E-09	5.92E-09

Table A-2. Annual Average Dispersion Factor Around the 200 Areas During 1998 for an 89-Meter Release Height.

Dist:	0.8 km	2.4 km	4.0 km	5.6 km	7.2 km	12 km	24 km	40 km	56 km	72 km
Dir:										
N	1.18E-08	6.25E-09	5.23E-09	4.29E-09	3.58E-09	2.34E-09	1.22E-09	7.31E-10	5.16E-10	3.96E-10
NNE	1.49E-08	8.05E-09	6.53E-09	5.26E-09	4.35E-09	2.78E-09	1.40E-09	8.13E-10	5.63E-10	4.25E-10
NE	2.15E-08	1.32E-08	1.12E-08	9.05E-09	7.43E-09	4.66E-09	2.27E-09	1.29E-09	8.85E-10	6.64E-10
ENE	1.61E-08	1.19E-08	1.12E-08	9.57E-09	8.14E-09	5.40E-09	2.78E-09	1.63E-09	1.13E-09	8.54E-10
E	1.01E-08	1.32E-08	1.39E-08	1.24E-08	1.08E-08	7.46E-09	4.02E-09	2.42E-09	1.71E-09	1.31E-09
ESE	2.40E-08	3.48E-08	3.21E-08	2.67E-08	2.22E-08	1.42E-08	6.99E-09	3.98E-09	2.72E-09	2.03E-09
SE	6.51E-08	4.56E-08	3.91E-08	3.22E-08	2.69E-08	1.75E-08	8.90E-09	5.20E-09	3.61E-09	2.73E-09
SSE	5.00E-08	2.49E-08	2.00E-08	1.61E-08	1.33E-08	8.48E-09	4.24E-09	2.45E-09	1.69E-09	1.28E-09
S	2.22E-08	1.23E-08	9.68E-09	7.58E-09	6.13E-09	3.74E-09	1.77E-09	9.94E-10	6.74E-10	5.03E-10
SSW	3.79E-08	1.17E-08	9.23E-09	7.40E-09	6.12E-09	3.93E-09	1.99E-09	1.16E-09	8.10E-10	6.15E-10
SW	4.05E-08	1.42E-08	1.00E-08	7.52E-09	5.94E-09	3.53E-09	1.66E-09	9.33E-10	6.36E-10	4.76E-10
WSW	2.76E-08	1.17E-08	8.78E-09	6.76E-09	5.45E-09	3.37E-09	1.67E-09	9.82E-10	6.89E-10	5.27E-10
W	2.49E-08	1.11E-08	9.67E-09	8.00E-09	6.68E-09	4.31E-09	2.15E-09	1.23E-09	8.47E-10	6.36E-10
WNW	1.28E-08	5.80E-09	4.63E-09	3.66E-09	2.97E-09	1.84E-09	8.83E-10	4.97E-10	3.37E-10	2.52E-10
NW	1.79E-08	9.91E-09	8.02E-09	6.31E-09	5.10E-09	3.12E-09	1.49E-09	8.41E-10	5.75E-10	4.32E-10
NNW	2.63E-08	1.09E-08	9.11E-09	7.63E-09	6.51E-09	4.44E-09	2.40E-09	1.46E-09	1.04E-09	7.99E-10

Table A-3. Annual Average Dispersion Factor Around the 300 Area During 1998 for a 10-Meter Release Height.

Dist:	0.8 km	2.4 km	4.0 km	5.6 km	7.2 km	12 km	24 km	40 km	56 km	72 km
Dir:										
N	3.53E-06	7.02E-07	3.33E-07	2.06E-07	1.44E-07	7.07E-08	2.75E-08	1.39E-08	8.94E-09	6.43E-09
NNE	3.14E-06	6.02E-07	2.84E-07	1.74E-07	1.22E-07	5.97E-08	2.32E-08	1.17E-08	7.51E-09	5.40E-09
NE	2.44E-06	4.66E-07	2.19E-07	1.35E-07	9.41E-08	4.60E-08	1.78E-08	9.00E-09	5.77E-09	4.15E-09
ENE	1.54E-06	3.04E-07	1.44E-07	8.87E-08	6.21E-08	3.05E-08	1.18E-08	5.98E-09	3.84E-09	2.76E-09
E	2.01E-06	4.05E-07	1.92E-07	1.19E-07	8.31E-08	4.08E-08	1.59E-08	8.02E-09	5.15E-09	3.70E-09
ESE	2.12E-06	4.24E-07	2.00E-07	1.23E-07	8.62E-08	4.21E-08	1.63E-08	8.16E-09	5.22E-09	3.74E-09
SE	3.56E-06	7.35E-07	3.50E-07	2.16E-07	1.52E-07	7.44E-08	2.89E-08	1.46E-08	9.34E-09	6.71E-09
SSE	4.39E-06	8.86E-07	4.20E-07	2.59E-07	1.81E-07	8.86E-08	3.43E-08	1.73E-08	1.10E-08	7.93E-09
S	3.49E-06	7.00E-07	3.32E-07	2.04E-07	1.43E-07	7.00E-08	2.71E-08	1.37E-08	8.75E-09	6.29E-09
SSW	1.39E-06	2.74E-07	1.30E-07	8.02E-08	5.62E-08	2.77E-08	1.08E-08	5.50E-09	3.54E-09	2.56E-09
SW	5.49E-07	1.13E-07	5.45E-08	3.41E-08	2.41E-08	1.21E-08	4.86E-09	2.51E-09	1.64E-09	1.20E-09
WSW	7.10E-07	1.42E-07	6.84E-08	4.26E-08	3.01E-08	1.51E-08	6.04E-09	3.12E-09	2.04E-09	1.48E-09
W	9.55E-07	1.89E-07	9.12E-08	5.69E-08	4.03E-08	2.02E-08	8.07E-09	4.17E-09	2.72E-09	1.98E-09
WNW	3.06E-06	6.30E-07	3.02E-07	1.87E-07	1.32E-07	6.53E-08	2.57E-08	1.31E-08	8.43E-09	6.09E-09
NW	5.09E-06	1.06E-06	5.09E-07	3.16E-07	2.23E-07	1.10E-07	4.33E-08	2.20E-08	1.42E-08	1.02E-08
NNW	3.67E-06	7.55E-07	3.61E-07	2.23E-07	1.57E-07	7.75E-08	3.04E-08	1.54E-08	9.91E-09	7.14E-09

Table A-4. Annual Average Dispersion Factor Around the 400 Area During 1998 for a 10-Meter Release Height.

Dist:	0.8 km	2.4 km	4.0 km	5.6 km	7.2 km	12 km	24 km	40 km	56 km	72 km
Dir:										
N	3.69E-06	7.39E-07	3.52E-07	2.18E-07	1.53E-07	7.55E-08	2.96E-08	1.50E-08	9.70E-09	7.00E-09
NNE	3.98E-06	8.09E-07	3.86E-07	2.39E-07	1.68E-07	8.27E-08	3.24E-08	1.64E-08	1.06E-08	7.62E-09
NE	2.49E-06	4.96E-07	2.35E-07	1.45E-07	1.02E-07	4.98E-08	1.93E-08	9.74E-09	6.24E-09	4.49E-09
ENE	1.94E-06	3.99E-07	1.90E-07	1.18E-07	8.28E-08	4.08E-08	1.59E-08	8.07E-09	5.19E-09	3.74E-09
E	1.97E-06	3.97E-07	1.88E-07	1.16E-07	8.15E-08	4.00E-08	1.56E-08	7.86E-09	5.04E-09	3.62E-09
ESE	2.22E-06	4.44E-07	2.10E-07	1.29E-07	9.03E-08	4.41E-08	1.71E-08	8.59E-09	5.50E-09	3.95E-09
SE	4.31E-06	8.55E-07	4.03E-07	2.48E-07	1.73E-07	8.47E-08	3.27E-08	1.64E-08	1.05E-08	7.52E-09
SSE	3.28E-06	6.61E-07	3.13E-07	1.93E-07	1.35E-07	6.65E-08	2.58E-08	1.30E-08	8.37E-09	6.02E-09
S	2.39E-06	4.78E-07	2.28E-07	1.41E-07	9.90E-08	4.89E-08	1.92E-08	9.75E-09	6.29E-09	4.54E-09
SSW	1.79E-06	3.43E-07	1.62E-07	1.00E-07	7.01E-08	3.45E-08	1.35E-08	6.84E-09	4.41E-09	3.18E-09
SW	1.31E-06	2.62E-07	1.25E-07	7.71E-08	5.42E-08	2.67E-08	1.05E-08	5.36E-09	3.46E-09	2.50E-09
WSW	1.01E-06	1.99E-07	9.45E-08	5.85E-08	4.11E-08	2.03E-08	7.97E-09	4.06E-09	2.62E-09	1.89E-09
W	9.10E-07	1.79E-07	8.54E-08	5.31E-08	3.74E-08	1.86E-08	7.36E-09	3.77E-09	2.44E-09	1.77E-09
WNW	1.19E-06	2.28E-07	1.08E-07	6.68E-08	4.69E-08	2.32E-08	9.12E-09	4.66E-09	3.02E-09	2.19E-09
NW	1.96E-06	3.87E-07	1.84E-07	1.14E-07	7.97E-08	3.93E-08	1.54E-08	7.82E-09	5.05E-09	3.64E-09
NNW	3.22E-06	6.56E-07	3.13E-07	1.94E-07	1.36E-07	6.71E-08	2.63E-08	1.33E-08	8.58E-09	6.18E-09

Table A-5. Radionuclide Data Used for CAP88-PC Dose Calculations at Hanford.
(sheet 1 of 3)

Radionuclide	Clearance class	Particle size (μm)	Scavenging Coefficient (per second)	Deposition Velocity (m/s)
^3H	*	0.0	0.00E+00	0.00E+00
^{90}Sr	D	1.0	1.60E-06	1.80E-03
^{125}Sb	W	1.0	1.60E-06	1.80E-03
^{129}I	D	1.0	1.60E-06	3.50E-02
^{137}Cs	D	1.0	1.60E-06	1.80E-03
^{137m}Ba	D	1.0	1.60E-06	1.80E-03
^{238}Pu	Y	1.0	1.60E-06	1.80E-03
^{239}Pu	Y	1.0	1.60E-06	1.80E-03
^{241}Pu	Y	1.0	1.60E-06	1.80E-03
^{241}Am	W	1.0	1.60E-06	1.80E-03

Table A-5. Radionuclide Data Used for CAP88-PC Dose Calculations at Hanford.
(sheet 2 of 3)

Radionuclide	Decay constant (per day)			Transfer coefficient	
	Radioactive ¹	Surface	Water	Milk ²	Meat ³
^3H	0.00E+00	5.48E-05	0.00E+00	0.00E+00	0.00E+00
^{90}Sr	0.00E+00	5.48E-05	0.00E+00	1.50E-03	3.00E-04
^{125}Sb	0.00E+00	5.48E-05	0.00E+00	1.00E-04	1.00E-03
^{129}I	0.00E+00	5.48E-05	0.00E+00	1.00E-02	7.00E-03
^{137}Cs	0.00E+00	5.48E-05	0.00E+00	7.00E-03	2.00E-02
^{137m}Ba	3.91E+02	5.48E-05	0.00E+00	3.50E-04	1.50E-04
^{238}Pu	0.00E+00	5.48E-05	0.00E+00	1.00E-07	5.00E-07
^{239}Pu	0.00E+00	5.48E-05	0.00E+00	1.00E-07	5.00E-07
^{241}Pu	0.00E+00	5.48E-05	0.00E+00	1.00E-07	5.00E-07
^{241}Am	0.00E+00	5.48E-05	0.00E+00	4.00E-07	3.50E-06

¹ Effective radioactive decay constant in plume; set to zero if less than 1.0E-2

² Fraction of animal's daily intake of nuclide that appears in each L of milk (days/L)

³ Fraction of animal's daily intake of nuclide that appears in each kg of meat (days/kg)

Table A-5. Radionuclide Data Used for CAP88-PC Dose Calculations at Hanford.
(sheet 3 of 3)

Radionuclide	Concentration uptake factor		GI uptake fraction	
	Forage ¹	Edible ²	Inhalation	Ingestion
³ H	0.00E+00	0.00E+00	9.50E-01	9.50E-01
⁹⁰ Sr	2.50E+00	1.07E-01	3.00E-01	3.00E-01
¹²⁹ I	1.50E-01	2.14E-02	9.50E-01	9.50E-01
¹²⁵ Sb	2.00E-01	1.28E-02	1.00E-02	1.00E-01
¹³⁷ Cs	8.00E-02	1.28E-02	9.50E-01	9.50E-01
^{137m} Ba	1.50E-01	6.42E-03	1.00E-01	1.00E-01
²³⁸ Pu	4.50E-04	1.93E-05	1.00E-03	1.00E-03
²³⁹ Pu	4.50E-04	1.93E-05	1.00E-04	1.00E-03
²⁴¹ Pu	4.50E-04	1.93E-05	1.00E-03	1.00E-03
²⁴¹ Am	5.50E-03	1.07E-04	1.00E-03	1.00E-03

¹ Concentration factor for uptake of nuclide from soil for pasture and forage (in pCi/kg dry weight per pCi/kg dry soil)

² Concentration factor for uptake of nuclide from soil by edible parts of crops (in pCi/kg wet weight per pCi/kg dry soil)

Table A-6. Exposure and Consumption Data for the Hanford Site. (sheet 1 of 2)

FOOD SOURCE FOR THE MAXIMALLY EXPOSED INDIVIDUAL

Food	<u>Local</u>	<u>Regional</u>	<u>Imported</u>
Vegetable	1.000	0.000	0.000
Meat	1.000	0.000	0.000
Milk	1.000	0.000	0.000

VALUES FOR RADIONUCLIDE-INDEPENDENT VARIABLES**HUMAN INHALATION RATE**

Cubic centimeters/hr 9.70E+05

SOIL PARAMETERSEffective surface density (kg/m², dry weight)
(assumes 15-cm plow layer) 2.24E+02**BUILDUP TIMES**For activity in soil (years) 5.00E+01
For radionuclides deposited on ground/water (days) 1.83E+04**DELAY TIMES**Ingestion of pasture grass by animals (hr) 0.00E+00
Ingestion of stored feed by animals (hr) 2.40E+03
Ingestion of leafy vegetables by man (hr) 2.40E+01
Ingestion of produce by man (hr) 1.20E+02
Transport time from animal feed-milk-man (day) 2.00E+00
Time from slaughter to consumption (day) 1.50E+01**WEATHERING**

Removal rate constant for physical loss (per hr) 3.00E-03

CROP EXPOSURE DURATIONPasture grass (hr) 7.20E+02
Crops/leafy vegetables (hr) 2.16E+03**AGRICULTURAL PRODUCTIVITY**Grass-cow-milk-man pathway (kg/m²) 3.00E-01
Produce/leafy veg for human consumption (kg/m²) 2.00E+00

Table A-6. Exposure and Consumption Data for the Hanford Site. (sheet 2 of 2)

FALLOUT INTERCEPTION FRACTIONS	
Vegetables	2.50E-01
Pasture	2.50E-01
GRAZING PARAMETERS	
Fraction of year animals graze on pasture	7.50E-01
Fraction of daily feed that is pasture grass when animal grazes on pasture	1.00E+00
ANIMAL FEED CONSUMPTION FACTORS	
Contaminated feed/forage (kg/day, dry weight)	1.56E+01
DAIRY PRODUCTIVITY	
Milk production of cow (L/day)	1.10E+01
MEAT ANIMAL SLAUGHTER PARAMETERS	
Muscle mass of animal at slaughter (kg)	2.00E+02
Fraction of herd slaughtered (per day)	3.81E-03
DECONTAMINATION	
Fraction of radioactivity retained after washing for leafy vegetables and produce	1.00E+00
FRACTIONS GROWN IN GARDEN OF INTEREST	
Produce ingested	1.00E+00
Leafy vegetables ingested	1.00E+00
INGESTION RATIOS:	
IMMEDIATE SURROUNDING AREA/TOTAL WITHIN AREA	
Vegetables	1.00E+00
Meat	1.00E+00
Milk	1.00E+00
MINIMUM INGESTION FRACTIONS FROM OUTSIDE AREA	
(Minimum fractions of food types from outside area listed below are actual fixed values.)	
Vegetables	0.00E+00
Meat	0.00E+00
Milk	0.00E+00
HUMAN FOOD UTILIZATION FACTORS	
Produce ingestion (kg/y)	2.20E+02
Milk ingestion (L/y)	2.70E+02
Meat ingestion (kg/y)	9.80E+01
Leafy vegetable ingestion (kg/y)	3.00E+01
SWIMMING PARAMETERS	
Fraction of time spent swimming	1.00E-02
Dilution factor for water (cm)	1.00E+00

Table A-7. Hanford Site Meteorological Data — General Site Information.

HEIGHT OF LID
LIDAI = 1000 (M)

RAINFALL RATE
RR = 15.9 (CM/Y)

AVERAGE AIR TEMPERATURE
TA = 12.0 (DEG C) 285.2 (K)

SURFACE ROUGHNESS LENGTH
Z0 = 0.010 (M)

VERTICAL TEMPERATURE GRADIENTS: (TG) (K/M)

STABILITY E 0.073

STABILITY F 0.109

STABILITY G 0.146

DISTRIBUTION**MSIN**

U.S. Environmental Protection Agency

Region 10

1200 Sixth Avenue

Seattle, WA 98101

J. M. Leitch (5)

A. J. Frankel

R. W. Poeten

OAQ-107

OAQ-107

OAQ-107

Washington State Department of Health

Air Emissions and Defense Waste Section

Division of Radiation Protection

P. O. Box 47827

Olympia, WA 98504-7827

A. W. Conklin (5)

J. E. Erickson

PMB-385

2839 W. Kennewick Ave.

Kennewick, WA 99336

R. S. Acselrod

J. C. Berkey

G. L. Laws

P. J. Martell

J. W. Schmidt

Washington State Department of Ecology

M. A. Wilson

B5-18

U.S. Department of Energy-Headquarters

R. F. Pelletier (3)

EH-232

K. C. Duvall

EH-232

Confederated Tribes of the Umatilla Indian Reservation

P. O. Box 638

Pendleton, OR 97801

J. R. Wilkinson

Nez Perce Tribe

Environmental Restoration and Waste Management

P. O. Box 365

Lapwai, ID 83540

D. L. Powaukee

Yakama Indian Nation

Environmental Restoration Waste Management Program

P.O. Box 151

Toppenish, Washington 98948

R. Jim

DISTRIBUTION (cont)**MSIN**

ATG, Inc.
 P. O. Box 969
Richland, WA 99352
 Curt Cannon

U.S. Department of Energy, Richland Operations Office

D. W. Bowser	A2-22
S. E. Clarke	A5-15
J. B. Hall	A5-15
A. V. Ingle (5)	A5-15
J. E. Mecca	A2-45
B. M. Pangborn	A5-55
J. E. Rasmussen	A5-15
D. C. Ward	A5-15
DOE-RL Public Reading Room	H2-53

Pacific Northwest National Laboratory

E. J. Antonio	K3-54
M. Y. Ballinger	BSRC
E. G. Damberg	P7-68
R. L. Dirkes	K6-75
R. W. Hanf, Jr.	K6-75
A. K. Ikenberry	P7-79
W. J. Martin	K3-54
K. Rhoads	K3-54
G. A. Simiele	P7-68
S. F. Snyder	K3-54
L. H. Staven	K3-54
M. J. Sula	Sequim
H. T. Tilden II	P7-79
R. K. Woodruff	P7-68
PNNL Reference Library	P8-55

Bechtel Hanford, Inc.

A. B. Chaloupka	T6-05
R. G. Egge	S3-21
C. J. Kemp	S3-20
R. J. Landon	H0-02
N. E. Little	T6-05
T. E. Logan	X9-08
J. E. Rugg	S3-21
J. D. Showman	T7-05
J. G. Woolard	H0-02
J. P. Zoric	X5-53

Fluor Daniel Hanford, Inc.

W. D. Adair	H6-21
J. A. Bates	H6-23
K. A. Giese	H6-21
S. M. Price	H6-23

DISTRIBUTION (cont)MSIN

<u>Fluor Daniel Hanford, Inc. (cont)</u>	
D. G. Ranade	H6-23
<u>CH2M Hill, Inc.</u>	
E. T. Coenenberg	H9-03
<u>B&W Hanford Company</u>	
J. M. Barnett	L1-05
J. E. Bramson	T5-54
N. R. Dahl	N2-57
T. A. Dillhoff	S5-03
D. L. Johnson	L1-05
G. J. LeBaron	S4-49
D. E. Rasmussen	L1-04
R. D. Weissenfels	S6-51
D. L. Wiegand	T4-20
<u>DE&S Hanford, Inc.</u>	
R. G. Gant	X3-79
D. J. Watson	X3-79
<u>DynCorp Tri-Cities Services, Inc.</u>	
B. J. Dixon	G3-26
<u>Lockheed Martin Hanford Corporation</u>	
M. S. Allen	R1-51
M. J. Brown	R1-51
D. J. Carrell	R1-51
G. M. Crummel	R1-51
D. L. Dyekman	S7-03
B. G. Erlandson	R1-51
P. C. Miller	R1-51
K. S. Tollefson	R1-51
<u>Lockheed Martin Services, Inc.</u>	
Central Files	B1-07
DPC	H6-08
EDMC (2)	H6-08
<u>Numatec Hanford Corporation</u>	
R. A. Kaldor	H5-25
<u>Waste Management Federal Services of Hanford, Inc.</u>	
B. M. Barnes	T4-04
M. W. Bowman	S6-72
H. C. Boynton	T4-52
J. B. Buckley	T3-04
B. L. Curn	H6-36
W. E. Davis	H6-36
L. P. Diediker (50)	H6-36

DISTRIBUTION (cont)**MSIN**Waste Management Federal Services of Hanford, Inc. (cont)

D. L. Flyckt	L6-04
T. P. Frazier	H6-25
D. W. Fritz	H6-36
C. J. Grando	H6-25
W. E. Green	H6-36
E. M. Greager	H6-36
R. D. Haggard	H6-25
D. L. Halgren	L6-04
J. S. Hill	H6-25
N. A. Homan	H6-25
R. E. Johnson	H6-25
L. D. Kamberg	H6-25
J. J. Luke	H6-25
D. L. Renberger	H6-32
D. J. Rokkan (50)	H6-36
R. W. Szelmeczka	T4-54
G. T. Wells	H6-36
J. A. Winterhalder	H6-21

Waste Management Federal Services, Inc., Northwest Operations

J. J. Dorian	H1-11
A. R. Johnson	H6-34
B. M. Markes	H1-11
S. M. McKinney	H1-11
C. J. Perkins	H1-11